Update convert_hf_to_gguf_update.py

This commit is contained in:
Where data meets intelligence 2024-07-07 16:50:24 -07:00 committed by GitHub
parent 3fd62a6b1c
commit 9cac9cecc7
No known key found for this signature in database
GPG key ID: B5690EEEBB952194

View file

@ -2,7 +2,7 @@
# -*- coding: utf-8 -*-
# This script downloads the tokenizer models of the specified models from Huggingface and
# generates the get_vocab_base_pre() function for convert_hf_to_gguf.py
# generates the get_vocab_base_pre() function for convert-hf-to-gguf.py
#
# This is necessary in order to analyze the type of pre-tokenizer used by the model and
# provide the necessary information to llama.cpp via the GGUF header in order to implement
@ -15,9 +15,9 @@
# - Add a new model to the "models" list
# - Run the script with your huggingface token:
#
# python3 convert_hf_to_gguf_update.py <huggingface_token>
# python3 convert-hf-to-gguf-update.py <huggingface_token>
#
# - Copy-paste the generated get_vocab_base_pre() function into convert_hf_to_gguf.py
# - Copy-paste the generated get_vocab_base_pre() function into convert-hf-to-gguf.py
# - Update llama.cpp with the new pre-tokenizer if necessary
#
# TODO: generate tokenizer tests for llama.cpp
@ -27,6 +27,7 @@ import logging
import os
import pathlib
import re
import time
import requests
import sys
@ -37,15 +38,17 @@ from enum import IntEnum, auto
from transformers import AutoTokenizer
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger("convert_hf_to_gguf_update")
logger = logging.getLogger("convert-hf-to-gguf-update")
sess = requests.Session()
# User input for new model
new_name = input("Enter the name of the new model: ")
new_url = input("Enter the URL of the new model: ")
class TOKENIZER_TYPE(IntEnum):
SPM = auto()
BPE = auto()
WPM = auto()
UGM = auto()
# TODO: this string has to exercise as much pre-tokenizer functionality as possible
@ -56,42 +59,21 @@ if len(sys.argv) == 2:
token = sys.argv[1]
if not token.startswith("hf_"):
logger.info("Huggingface token seems invalid")
logger.info("Usage: python convert_hf_to_gguf_update.py <huggingface_token>")
logger.info("Usage: python convert-hf-to-gguf-update.py <huggingface_token>")
sys.exit(1)
else:
logger.info("Usage: python convert_hf_to_gguf_update.py <huggingface_token>")
logger.info("Usage: python convert-hf-to-gguf-update.py <huggingface_token>")
sys.exit(1)
# TODO: add models here, base models preferred
models = [
{"name": "llama-spm", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/meta-llama/Llama-2-7b-hf", },
{"name": "llama-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Meta-Llama-3-8B", },
{"name": "phi-3", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct", },
{"name": "deepseek-llm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-llm-7b-base", },
{"name": "deepseek-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base", },
{"name": "falcon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/falcon-7b", },
{"name": "bert-bge", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/BAAI/bge-small-en-v1.5", },
{"name": "mpt", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mosaicml/mpt-7b", },
{"name": "starcoder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigcode/starcoder2-3b", },
{"name": "gpt-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/openai-community/gpt2", },
{"name": "stablelm2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b", },
{"name": "refact", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/smallcloudai/Refact-1_6-base", },
{"name": "command-r", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/CohereForAI/c4ai-command-r-v01", },
{"name": "qwen2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Qwen/Qwen1.5-7B", },
{"name": "olmo", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/allenai/OLMo-1.7-7B-hf", },
{"name": "dbrx", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/databricks/dbrx-base", },
{"name": "jina-v2-en", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-en", }, # WPM!
{"name": "jina-v2-es", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-es", },
{"name": "jina-v2-de", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-de", },
{"name": "smaug-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct", },
{"name": "poro-chat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LumiOpen/Poro-34B-chat", },
{"name": "jina-v2-code", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-code", },
{"name": "viking", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LumiOpen/Viking-7B", }, # Also used for Viking 13B and 33B
{"name": "gemma", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/google/gemma-2b", },
{"name": "gemma-2", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/google/gemma-2-9b", },
{"name": "jais", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/core42/jais-13b", },
{"name": "t5", "tokt": TOKENIZER_TYPE.UGM, "repo": "https://huggingface.co/google-t5/t5-small", },
]
models = []
# Construct new entry and add to models list
new_entry = {"name": new_name, "tokt": TOKENIZER_TYPE.BPE, "repo": new_url}
models.append(new_entry)
print('Model added...')
print(models)
time.sleep(15)
def download_file_with_auth(url, token, save_path):
@ -112,13 +94,9 @@ def download_model(model):
os.makedirs(f"models/tokenizers/{name}", exist_ok=True)
files = ["config.json", "tokenizer.json", "tokenizer_config.json"]
if tokt == TOKENIZER_TYPE.SPM:
files.append("tokenizer.model")
if tokt == TOKENIZER_TYPE.UGM:
files.append("spiece.model")
for file in files:
save_path = f"models/tokenizers/{name}/{file}"
if os.path.isfile(save_path):
@ -134,14 +112,14 @@ for model in models:
logger.error(f"Failed to download model {model['name']}. Error: {e}")
# generate the source code for the convert_hf_to_gguf.py:get_vocab_base_pre() function:
# generate the source code for the convert-hf-to-gguf.py:get_vocab_base_pre() function:
src_ifs = ""
for model in models:
name = model["name"]
tokt = model["tokt"]
if tokt == TOKENIZER_TYPE.SPM or tokt == TOKENIZER_TYPE.UGM:
if tokt == TOKENIZER_TYPE.SPM:
continue
# Skip if the tokenizer folder does not exist or there are other download issues previously
@ -151,10 +129,7 @@ for model in models:
# create the tokenizer
try:
if name == "t5":
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}", use_fast=False)
else:
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
except OSError as e:
logger.error(f"Error loading tokenizer for model {name}. The model may not exist or is not accessible with the provided token. Error: {e}")
continue # Skip to the next model if the tokenizer can't be loaded
@ -201,7 +176,7 @@ src_func = f"""
res = None
# NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
# NOTE: if you get an error here, you need to update the convert-hf-to-gguf-update.py script
# or pull the latest version of the model from Huggingface
# don't edit the hashes manually!
{src_ifs}
@ -210,9 +185,9 @@ src_func = f"""
logger.warning("**************************************************************************************")
logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
logger.warning("** There are 2 possible reasons for this:")
logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
logger.warning("** - the model has not been added to convert-hf-to-gguf-update.py yet")
logger.warning("** - the pre-tokenization config has changed upstream")
logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
logger.warning("** Check your model files and convert-hf-to-gguf-update.py and update them accordingly.")
logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
logger.warning("**")
logger.warning(f"** chkhsh: {{chkhsh}}")
@ -226,7 +201,7 @@ src_func = f"""
return res
"""
convert_py_pth = pathlib.Path("convert_hf_to_gguf.py")
convert_py_pth = pathlib.Path("convert-hf-to-gguf.py")
convert_py = convert_py_pth.read_text(encoding="utf-8")
convert_py = re.sub(
r"(# Marker: Start get_vocab_base_pre)(.+?)( +# Marker: End get_vocab_base_pre)",
@ -237,7 +212,7 @@ convert_py = re.sub(
convert_py_pth.write_text(convert_py, encoding="utf-8")
logger.info("+++ convert_hf_to_gguf.py was updated")
logger.info("+++ convert-hf-to-gguf.py was updated")
# generate tests for each tokenizer model
@ -275,7 +250,6 @@ tests = [
"\n =",
"' era",
"Hello, y'all! How are you 😁 ?我想在apple工作1314151天",
"!!!!!!",
"3",
"33",
"333",
@ -285,8 +259,7 @@ tests = [
"3333333",
"33333333",
"333333333",
"Cửa Việt", # llama-bpe fails on this
" discards",
# "Cửa Việt", # llama-bpe fails on this
chktxt,
]
@ -314,10 +287,7 @@ for model in models:
# create the tokenizer
try:
if name == "t5":
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}", use_fast=False)
else:
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}",)
except OSError as e:
logger.error(f"Failed to load tokenizer for model {name}. Error: {e}")
continue # Skip this model and continue with the next one in the loop
@ -343,6 +313,6 @@ logger.info("\nRun the following commands to generate the vocab files for testin
for model in models:
name = model["name"]
print(f"python3 convert_hf_to_gguf.py models/tokenizers/{name}/ --outfile models/ggml-vocab-{name}.gguf --vocab-only") # noqa: NP100
print(f"python3 convert-hf-to-gguf.py models/tokenizers/{name}/ --outfile models/ggml-vocab-{name}.gguf --vocab-only") # noqa: NP100
logger.info("\n")