build : fix and ignore MSVC warnings (#1889)
This commit is contained in:
parent
3d01122610
commit
9cbf50c041
16 changed files with 88 additions and 37 deletions
|
@ -4,6 +4,10 @@
|
|||
#include <random>
|
||||
#include <cstring>
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
float frand() {
|
||||
return (float)rand()/(float)RAND_MAX;
|
||||
}
|
||||
|
@ -1470,7 +1474,7 @@ struct ggml_tensor * square_error_loss(struct ggml_context * ctx, struct ggml_te
|
|||
}
|
||||
|
||||
struct ggml_tensor * cross_entropy_loss(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b) {
|
||||
const float eps = 1e-3;
|
||||
const float eps = 1e-3f;
|
||||
return
|
||||
ggml_sum(ctx,
|
||||
ggml_neg(ctx,
|
||||
|
|
|
@ -16,6 +16,10 @@
|
|||
#include <iterator>
|
||||
#include <algorithm>
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
float tensor_sum_elements(const ggml_tensor * tensor) {
|
||||
float sum = 0;
|
||||
if (tensor->type==GGML_TYPE_F32) {
|
||||
|
@ -29,9 +33,9 @@ float tensor_sum_elements(const ggml_tensor * tensor) {
|
|||
}
|
||||
|
||||
void tensor_dump(const ggml_tensor * tensor, const char * name) {
|
||||
printf("%15s: type = %i (%5s) ne = %5d x %5d x %5d, nb = (%5li, %5li, %5li) - ", name,
|
||||
printf("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64 " x %5" PRIi64 ", nb = (%5zi, %5zi, %5zi) - ", name,
|
||||
tensor->type, ggml_type_name(tensor->type),
|
||||
(int) tensor->ne[0], (int) tensor->ne[1], (int) tensor->ne[2], tensor->nb[0], tensor->nb[1], tensor->nb[2]);
|
||||
tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->nb[0], tensor->nb[1], tensor->nb[2]);
|
||||
float sum = tensor_sum_elements(tensor);
|
||||
printf("Sum of tensor %s is %6.2f\n", name, sum);
|
||||
}
|
||||
|
@ -120,7 +124,7 @@ int main(int argc, char ** argv) {
|
|||
ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32); // BLAS
|
||||
ctx_size += 1024*1024*16;
|
||||
|
||||
printf("Allocating Memory of size %li bytes, %li MB\n",ctx_size, (ctx_size/1024/1024));
|
||||
printf("Allocating Memory of size %zi bytes, %zi MB\n",ctx_size, (ctx_size/1024/1024));
|
||||
|
||||
struct ggml_init_params params = {
|
||||
/*.mem_size =*/ ctx_size,
|
||||
|
|
|
@ -28,6 +28,10 @@
|
|||
#include <wchar.h>
|
||||
#endif
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
int32_t get_num_physical_cores() {
|
||||
#ifdef __linux__
|
||||
// enumerate the set of thread siblings, num entries is num cores
|
||||
|
@ -373,7 +377,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
|||
} else {
|
||||
throw std::exception();
|
||||
}
|
||||
} catch (const std::exception &e) {
|
||||
} catch (const std::exception&) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
|
|
|
@ -4,6 +4,10 @@
|
|||
|
||||
#include <ctime>
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
|
||||
|
|
|
@ -28,6 +28,10 @@
|
|||
#include <signal.h>
|
||||
#endif
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
static console_state con_st;
|
||||
static llama_context ** g_ctx;
|
||||
|
||||
|
@ -348,7 +352,7 @@ int main(int argc, char ** argv) {
|
|||
if ((int)embd.size() > max_embd_size) {
|
||||
auto skipped_tokens = embd.size() - max_embd_size;
|
||||
console_set_color(con_st, CONSOLE_COLOR_ERROR);
|
||||
printf("<<input too long: skipped %ld token%s>>", skipped_tokens, skipped_tokens != 1 ? "s" : "");
|
||||
printf("<<input too long: skipped %" PRIu64 " token%s>>", skipped_tokens, skipped_tokens != 1 ? "s" : "");
|
||||
console_set_color(con_st, CONSOLE_COLOR_DEFAULT);
|
||||
fflush(stdout);
|
||||
embd.resize(max_embd_size);
|
||||
|
|
|
@ -5,6 +5,10 @@
|
|||
#include <cmath>
|
||||
#include <ctime>
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
std::vector<float> softmax(const std::vector<float>& logits) {
|
||||
std::vector<float> probs(logits.size());
|
||||
float max_logit = logits[0];
|
||||
|
|
|
@ -19,6 +19,10 @@
|
|||
#include <thread>
|
||||
#include <mutex>
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
struct quantize_stats_params {
|
||||
std::string model = "models/7B/ggml-model-f16.bin";
|
||||
bool verbose = false;
|
||||
|
|
|
@ -37,7 +37,7 @@ int main(int argc, char ** argv) {
|
|||
// init
|
||||
auto ctx = llama_init_from_file(params.model.c_str(), lparams);
|
||||
auto tokens = std::vector<llama_token>(params.n_ctx);
|
||||
auto n_prompt_tokens = llama_tokenize(ctx, params.prompt.c_str(), tokens.data(), tokens.size(), true);
|
||||
auto n_prompt_tokens = llama_tokenize(ctx, params.prompt.c_str(), tokens.data(), int(tokens.size()), true);
|
||||
|
||||
if (n_prompt_tokens < 1) {
|
||||
fprintf(stderr, "%s : failed to tokenize prompt\n", __func__);
|
||||
|
|
|
@ -12,6 +12,9 @@
|
|||
#include <algorithm>
|
||||
#include <string>
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
struct random_normal_distribution {
|
||||
std::mt19937 gen;
|
||||
|
@ -20,7 +23,6 @@ struct random_normal_distribution {
|
|||
float max;
|
||||
};
|
||||
|
||||
|
||||
struct random_uniform_distribution {
|
||||
std::mt19937 gen;
|
||||
std::uniform_real_distribution<float> rd;
|
||||
|
@ -2366,7 +2368,7 @@ void write_tensor(struct llama_file * file, struct ggml_tensor * tensor) {
|
|||
file->write_u32(0);
|
||||
file->write_u32(0);
|
||||
file->write_u32(GGML_TYPE_F32);
|
||||
file->seek(-file->tell() & 31, SEEK_CUR);
|
||||
file->seek(0-file->tell() & 31, SEEK_CUR);
|
||||
return;
|
||||
}
|
||||
const char * name = ggml_get_name(tensor);
|
||||
|
@ -2381,7 +2383,7 @@ void write_tensor(struct llama_file * file, struct ggml_tensor * tensor) {
|
|||
file->write_u32(tensor->type);
|
||||
file->write_raw(ne, sizeof(ne[0]) * nd);
|
||||
file->write_raw(name, name_len);
|
||||
file->seek(-file->tell() & 31, SEEK_CUR);
|
||||
file->seek(0-file->tell() & 31, SEEK_CUR);
|
||||
file->write_raw(tensor->data, ggml_nbytes(tensor));
|
||||
}
|
||||
|
||||
|
@ -2402,7 +2404,7 @@ void read_tensor(struct llama_file * file, struct ggml_tensor * tensor) {
|
|||
std::string name = file->read_string(name_len);
|
||||
GGML_ASSERT(strncmp(ggml_get_name(tensor), name.c_str(), sizeof(tensor->name)-1) == 0);
|
||||
|
||||
file->seek(-file->tell() & 31, SEEK_CUR);
|
||||
file->seek(0-file->tell() & 31, SEEK_CUR);
|
||||
file->read_raw(tensor->data, ggml_nbytes(tensor));
|
||||
}
|
||||
|
||||
|
@ -2756,8 +2758,8 @@ struct train_params get_default_train_params() {
|
|||
|
||||
params.lbfgs_n_iter = 16;
|
||||
params.adam_n_iter = 16;
|
||||
params.adam_alpha = 1e-3;
|
||||
params.adam_decay = 1e-3;
|
||||
params.adam_alpha = 1e-3f;
|
||||
params.adam_decay = 1e-3f;
|
||||
|
||||
params.mem_model_gb = 2;
|
||||
params.mem_compute_gb = 24;
|
||||
|
@ -3331,8 +3333,8 @@ int main(int argc, char ** argv) {
|
|||
int n_gen = params.n_predict;
|
||||
int sample_ctx = n_tokens - n_tokens/8;
|
||||
|
||||
sampler.params.temp = 0.2;
|
||||
sampler.params.repeat_penalty = 1.1;
|
||||
sampler.params.temp = 0.2f;
|
||||
sampler.params.repeat_penalty = 1.1f;
|
||||
sampler.params.mirostat = 2;
|
||||
init_sampler(&sampler, lctx);
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue