diff --git a/.github/workflows/bench.yml.disabled b/.github/workflows/bench.yml.disabled
index bfdbb4ef5..1c8787ef7 100644
--- a/.github/workflows/bench.yml.disabled
+++ b/.github/workflows/bench.yml.disabled
@@ -27,10 +27,10 @@ on:
push:
branches:
- master
- paths: ['llama.cpp', 'ggml.c', 'ggml-backend.c', 'ggml-quants.c', '**/*.cu', 'examples/server/*.h*', 'examples/server/*.cpp']
+ paths: ['llama.cpp', 'ggml.c', 'ggml-backend.cpp', 'ggml-quants.c', '**/*.cu', 'examples/server/*.h*', 'examples/server/*.cpp']
pull_request_target:
types: [opened, synchronize, reopened]
- paths: ['llama.cpp', 'ggml.c', 'ggml-backend.c', 'ggml-quants.c', '**/*.cu', 'examples/server/*.h*', 'examples/server/*.cpp']
+ paths: ['llama.cpp', 'ggml.c', 'ggml-backend.cpp', 'ggml-quants.c', '**/*.cu', 'examples/server/*.h*', 'examples/server/*.cpp']
schedule:
- cron: '04 2 * * *'
diff --git a/Makefile b/Makefile
index 8a903d7ed..2793978c3 100644
--- a/Makefile
+++ b/Makefile
@@ -5,7 +5,6 @@ BUILD_TARGETS = \
llama-batched \
llama-batched-bench \
llama-bench \
- llama-benchmark-matmult \
llama-cli \
llama-convert-llama2c-to-ggml \
llama-embedding \
@@ -68,7 +67,7 @@ TEST_TARGETS = \
# Legacy build targets that were renamed in #7809, but should still be removed when the project is cleaned
LEGACY_TARGETS_CLEAN = main quantize quantize-stats perplexity imatrix embedding vdot q8dot convert-llama2c-to-ggml \
simple batched batched-bench save-load-state server gguf gguf-split eval-callback llama-bench libllava.a llava-cli baby-llama \
- retrieval speculative infill tokenize benchmark-matmult parallel export-lora lookahead lookup passkey gritlm
+ retrieval speculative infill tokenize parallel export-lora lookahead lookup passkey gritlm
# Legacy build targets that were renamed in #7809, but we want to build binaries that for them that output a deprecation warning if people try to use them.
# We don't want to clutter things too much, so we only build replacements for the most commonly used binaries.
@@ -1055,10 +1054,11 @@ ggml/src/ggml-alloc.o: \
$(CC) $(CFLAGS) -c $< -o $@
ggml/src/ggml-backend.o: \
- ggml/src/ggml-backend.c \
+ ggml/src/ggml-backend.cpp \
+ ggml/src/ggml-backend-impl.h \
ggml/include/ggml.h \
ggml/include/ggml-backend.h
- $(CC) $(CFLAGS) -c $< -o $@
+ $(CXX) $(CXXFLAGS) -c $< -o $@
ggml/src/ggml-quants.o: \
ggml/src/ggml-quants.c \
@@ -1523,16 +1523,6 @@ common/build-info.o: common/build-info.cpp
tests: $(TEST_TARGETS)
-llama-benchmark-matmult: examples/benchmark/benchmark-matmult.cpp \
- $(OBJ_GGML) common/build-info.o
- $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
- $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
-
-run-benchmark-matmult: llama-benchmark-matmult
- ./$@
-
-.PHONY: run-benchmark-matmult swift
-
tests/test-arg-parser: tests/test-arg-parser.cpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
diff --git a/Package.swift b/Package.swift
index 1d90b47bf..3a17e6c34 100644
--- a/Package.swift
+++ b/Package.swift
@@ -11,7 +11,7 @@ var sources = [
"src/unicode-data.cpp",
"ggml/src/ggml.c",
"ggml/src/ggml-alloc.c",
- "ggml/src/ggml-backend.c",
+ "ggml/src/ggml-backend.cpp",
"ggml/src/ggml-quants.c",
"ggml/src/ggml-aarch64.c",
]
diff --git a/README.md b/README.md
index ecc2df8ca..c56c97231 100644
--- a/README.md
+++ b/README.md
@@ -92,6 +92,7 @@ Typically finetunes of the base models below are supported as well.
- [x] [EXAONE-3.0-7.8B-Instruct](https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct)
- [x] [FalconMamba Models](https://huggingface.co/collections/tiiuae/falconmamba-7b-66b9a580324dd1598b0f6d4a)
- [x] [Jais](https://huggingface.co/inceptionai/jais-13b-chat)
+- [x] [Bielik-11B-v2.3](https://huggingface.co/collections/speakleash/bielik-11b-v23-66ee813238d9b526a072408a)
(instructions for supporting more models: [HOWTO-add-model.md](./docs/development/HOWTO-add-model.md))
diff --git a/docs/backend/SYCL.md b/docs/backend/SYCL.md
index bc266f7d8..ea34182e4 100644
--- a/docs/backend/SYCL.md
+++ b/docs/backend/SYCL.md
@@ -26,7 +26,7 @@
### Llama.cpp + SYCL
-The llama.cpp SYCL backend is designed to support **Intel GPU** firstly. Based on the cross-platform feature of SYCL, it could support other vendor GPUs: Nvidia GPU (*AMD GPU coming*).
+The llama.cpp SYCL backend is designed to support **Intel GPU** firstly. Based on the cross-platform feature of SYCL, it also supports other vendor GPUs: Nvidia and AMD.
## Recommended Release
@@ -111,10 +111,18 @@ SYCL backend supports Intel GPU Family:
**Verified devices**
-| Nvidia GPU | Status | Verified Model |
-|--------------------------|---------|----------------|
-| Ampere Series | Support | A100, A4000 |
-| Ampere Series *(Mobile)* | Support | RTX 40 Series |
+| Nvidia GPU | Status | Verified Model |
+|--------------------------|-----------|----------------|
+| Ampere Series | Supported | A100, A4000 |
+| Ampere Series *(Mobile)* | Supported | RTX 40 Series |
+
+| AMD GPU | Status | Verified Model |
+|--------------------------|--------------|----------------|
+| Radeon Pro | Experimental | W6800 |
+| Radeon RX | Experimental | 6700 XT |
+
+Note: AMD GPU support is highly experimental and is incompatible with F16.
+Additionally, it only supports GPUs with a sub_group_size (warp size) of 32.
## Docker
The docker build option is currently limited to *intel GPU* targets.
@@ -186,6 +194,10 @@ Platform #0: Intel(R) OpenCL HD Graphics
In order to target Nvidia GPUs through SYCL, please make sure the CUDA/CUBLAS native requirements *-found [here](README.md#cuda)-* are installed.
+- **AMD GPU**
+
+To target AMD GPUs with SYCL, the ROCm stack must be installed first.
+
2. **Install IntelĀ® oneAPI Base toolkit**
- **For Intel GPU**
@@ -212,6 +224,19 @@ cmake -B buildWithCublas -DCMAKE_CXX_COMPILER=icpx -DCMAKE_C_COMPILER=icx -DENAB
cmake --build buildWithCublas --config Release
```
+- **Adding support to AMD GPUs**
+
+**oneAPI Plugin**: In order to enable SYCL support on AMD GPUs, please install the [Codeplay oneAPI Plugin for AMD GPUs](https://developer.codeplay.com/products/oneapi/amd/download). As with Nvidia GPUs, the user should also make sure the plugin version matches the installed base toolkit.
+
+**oneMKL for rocBlas**: The current oneMKL releases *(shipped with the oneAPI base-toolkit)* doesn't contain the rocBLAS backend. A build from source of the upstream [oneMKL](https://github.com/oneapi-src/oneMKL) with the *rocBLAS* backend enabled is thus required to run it on AMD GPUs.
+
+```sh
+git clone https://github.com/oneapi-src/oneMKL
+cd oneMKL
+# Find your HIPTARGET with rocminfo, under the key 'Name:'
+cmake -B buildWithrocBLAS -DCMAKE_CXX_COMPILER=icpx -DCMAKE_C_COMPILER=icx -DENABLE_MKLGPU_BACKEND=OFF -DENABLE_MKLCPU_BACKEND=OFF -DENABLE_ROCBLAS_BACKEND=ON -DHIPTARGETS=${HIPTARGET} -DTARGET_DOMAINS=blas
+cmake --build buildWithrocBLAS --config Release
+```
3. **Verify installation and environment**
@@ -223,22 +248,32 @@ sycl-ls
- **Intel GPU**
-When targeting an intel GPU, the user should expect one or more level-zero devices among the available SYCL devices. Please make sure that at least one GPU is present, for instance [`ext_oneapi_level_zero:gpu:0`] in the sample output below:
+When targeting an intel GPU, the user should expect one or more level-zero devices among the available SYCL devices. Please make sure that at least one GPU is present, for instance [`level_zero:gpu`] in the sample output below:
```
-[opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.10.0.17_160000]
-[opencl:cpu:1] Intel(R) OpenCL, 13th Gen Intel(R) Core(TM) i7-13700K OpenCL 3.0 (Build 0) [2023.16.10.0.17_160000]
-[opencl:gpu:2] Intel(R) OpenCL Graphics, Intel(R) Arc(TM) A770 Graphics OpenCL 3.0 NEO [23.30.26918.50]
-[ext_oneapi_level_zero:gpu:0] Intel(R) Level-Zero, Intel(R) Arc(TM) A770 Graphics 1.3 [1.3.26918]
+[opencl:acc][opencl:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.10.0.17_160000]
+[opencl:cpu][opencl:1] Intel(R) OpenCL, 13th Gen Intel(R) Core(TM) i7-13700K OpenCL 3.0 (Build 0) [2023.16.10.0.17_160000]
+[opencl:gpu][opencl:2] Intel(R) OpenCL Graphics, Intel(R) Arc(TM) A770 Graphics OpenCL 3.0 NEO [23.30.26918.50]
+[level_zero:gpu][level_zero:0] Intel(R) Level-Zero, Intel(R) Arc(TM) A770 Graphics 1.3 [1.3.26918]
```
- **Nvidia GPU**
-Similarly, user targeting Nvidia GPUs should expect at least one SYCL-CUDA device [`ext_oneapi_cuda:gpu`] as bellow:
+Similarly, user targeting Nvidia GPUs should expect at least one SYCL-CUDA device [`cuda:gpu`] as below:
+
```
-[opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.12.0.12_195853.xmain-hotfix]
-[opencl:cpu:1] Intel(R) OpenCL, Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz OpenCL 3.0 (Build 0) [2023.16.12.0.12_195853.xmain-hotfix]
-[ext_oneapi_cuda:gpu:0] NVIDIA CUDA BACKEND, NVIDIA A100-PCIE-40GB 8.0 [CUDA 12.2]
+[opencl:acc][opencl:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.12.0.12_195853.xmain-hotfix]
+[opencl:cpu][opencl:1] Intel(R) OpenCL, Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz OpenCL 3.0 (Build 0) [2023.16.12.0.12_195853.xmain-hotfix]
+[cuda:gpu][cuda:0] NVIDIA CUDA BACKEND, NVIDIA A100-PCIE-40GB 8.0 [CUDA 12.5]
+```
+
+- **AMD GPU**
+
+For AMD GPUs we should expect at least one SYCL-HIP device [`hip:gpu`]:
+
+```
+[opencl:cpu][opencl:0] Intel(R) OpenCL, 12th Gen Intel(R) Core(TM) i9-12900K OpenCL 3.0 (Build 0) [2024.18.6.0.02_160000]
+[hip:gpu][hip:0] AMD HIP BACKEND, AMD Radeon PRO W6800 gfx1030 [HIP 60140.9]
```
### II. Build llama.cpp
@@ -266,6 +301,7 @@ cmake --build build --config Release -j -v
```
#### Nvidia GPU
+
```sh
# Export relevant ENV variables
export LD_LIBRARY_PATH=/path/to/oneMKL/buildWithCublas/lib:$LD_LIBRARY_PATH
@@ -283,7 +319,25 @@ cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DCMAKE_C_COMPILER=icx -
# build all binary
cmake --build build --config Release -j -v
+```
+#### AMD GPU
+
+```sh
+# Export relevant ENV variables
+export LD_LIBRARY_PATH=/path/to/oneMKL/buildWithrocBLAS/lib:$LD_LIBRARY_PATH
+export LIBRARY_PATH=/path/to/oneMKL/buildWithrocBLAS/lib:$LIBRARY_PATH
+export CPLUS_INCLUDE_DIR=/path/to/oneMKL/buildWithrocBLAS/include:$CPLUS_INCLUDE_DIR
+
+# Build LLAMA with rocBLAS acceleration through SYCL
+
+## AMD
+# Use FP32, FP16 is not supported
+# Find your GGML_SYCL_HIP_TARGET with rocminfo, under the key 'Name:'
+cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=AMD -DGGML_SYCL_HIP_TARGET=${GGML_SYCL_HIP_TARGET} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
+
+# build all binary
+cmake --build build --config Release -j -v
```
### III. Run the inference
@@ -586,11 +640,11 @@ use 1 SYCL GPUs: [0] with Max compute units:512
#### Build
-| Name | Value | Function |
-|--------------------|-----------------------------------|---------------------------------------------|
-| GGML_SYCL | ON (mandatory) | Enable build with SYCL code path.
FP32 path - recommended for better perforemance than FP16 on quantized model|
-| GGML_SYCL_TARGET | INTEL *(default)* \| NVIDIA | Set the SYCL target device type. |
-| GGML_SYCL_F16 | OFF *(default)* \|ON *(optional)* | Enable FP16 build with SYCL code path. |
+| Name | Value | Function |
+|--------------------|---------------------------------------|---------------------------------------------|
+| GGML_SYCL | ON (mandatory) | Enable build with SYCL code path.
FP32 path - recommended for better perforemance than FP16 on quantized model|
+| GGML_SYCL_TARGET | INTEL *(default)* \| NVIDIA \| AMD | Set the SYCL target device type. |
+| GGML_SYCL_F16 | OFF *(default)* \|ON *(optional)* | Enable FP16 build with SYCL code path. |
| CMAKE_C_COMPILER | `icx` *(Linux)*, `icx/cl` *(Windows)* | Set `icx` compiler for SYCL code path. |
| CMAKE_CXX_COMPILER | `icpx` *(Linux)*, `icx` *(Windows)* | Set `icpx/icx` compiler for SYCL code path. |
diff --git a/examples/CMakeLists.txt b/examples/CMakeLists.txt
index 67b3d2774..ead630661 100644
--- a/examples/CMakeLists.txt
+++ b/examples/CMakeLists.txt
@@ -16,7 +16,6 @@ else()
add_subdirectory(baby-llama)
add_subdirectory(batched-bench)
add_subdirectory(batched)
- add_subdirectory(benchmark)
add_subdirectory(convert-llama2c-to-ggml)
add_subdirectory(embedding)
add_subdirectory(eval-callback)
diff --git a/examples/benchmark/CMakeLists.txt b/examples/benchmark/CMakeLists.txt
deleted file mode 100644
index 34a58cc02..000000000
--- a/examples/benchmark/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-set(TARGET llama-bench-matmult)
-add_executable(${TARGET} benchmark-matmult.cpp)
-install(TARGETS ${TARGET} RUNTIME)
-target_link_libraries(${TARGET} PRIVATE llama build_info ${CMAKE_THREAD_LIBS_INIT})
-target_include_directories(${TARGET} PRIVATE ../../common)
-target_compile_features(${TARGET} PRIVATE cxx_std_11)
diff --git a/examples/benchmark/benchmark-matmult.cpp b/examples/benchmark/benchmark-matmult.cpp
deleted file mode 100644
index 922daf528..000000000
--- a/examples/benchmark/benchmark-matmult.cpp
+++ /dev/null
@@ -1,275 +0,0 @@
-#include "common.h"
-#include "ggml.h"
-
-#include
-#include
-#include
-#include
-#include
-#include
-#include
-#include
-#include
-#include
-#include
-#include
-#include
-#include
-
-#if defined(_MSC_VER)
-#pragma warning(disable: 4244 4267) // possible loss of data
-#endif
-
-static void ggml_graph_compute_helper(std::vector & buf, ggml_cgraph * graph, int n_threads) {
- struct ggml_cplan plan = ggml_graph_plan(graph, n_threads, nullptr);
-
- if (plan.work_size > 0) {
- buf.resize(plan.work_size);
- plan.work_data = buf.data();
- }
-
- ggml_graph_compute(graph, &plan);
-}
-
-static float tensor_sum_elements(const ggml_tensor * tensor) {
- double sum = 0;
- if (tensor->type == GGML_TYPE_F32) {
- for (int j = 0; j < tensor->ne[1]; j++) {
- for (int k = 0; k < tensor->ne[0]; k++) {
- sum += ((float *) tensor->data)[j*tensor->ne[0] + k];
- }
- }
- }
- return sum;
-}
-
-static void tensor_dump(const ggml_tensor * tensor, const char * name) {
- printf("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64 " x %5" PRIi64 ", nb = (%5zi, %5zi, %5zi) - ", name,
- tensor->type, ggml_type_name(tensor->type),
- tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->nb[0], tensor->nb[1], tensor->nb[2]);
- float sum = tensor_sum_elements(tensor);
- printf("Sum of tensor %s is %6.2f\n", name, sum);
-}
-
-#define TENSOR_DUMP(tensor) tensor_dump(tensor, #tensor)
-
-struct benchmark_params_struct {
- int n_threads = 1;
- int32_t n_iterations = 10;
-};
-
-static void print_usage(int /*argc*/, char ** argv, struct benchmark_params_struct params) {
- fprintf(stderr, "usage: %s [options]\n", argv[0]);
- fprintf(stderr, "\n");
- fprintf(stderr, "options:\n");
- fprintf(stderr, " -h, --help show this help message and exit\n");
- fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
- fprintf(stderr, " -i N, --iter N number of iterations to use during computation (default: %d)\n", params.n_iterations);
- fprintf(stderr, "\n");
-}
-
-int main(int argc, char ** argv) {
- struct benchmark_params_struct benchmark_params;
-
- bool invalid_param = false;
- std::string arg;
- for (int i = 1; i < argc; i++) {
- arg = argv[i];
-
- if (arg == "-t" || arg == "--threads") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- benchmark_params.n_threads = std::stoi(argv[i]);
- } else if (arg == "-i" || arg == "--iter") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- benchmark_params.n_iterations = std::stoi(argv[i]);
- } else if (arg == "-h" || arg == "--help") {
- print_usage(argc, argv, benchmark_params);
- exit(0);
- }
- }
- if (invalid_param) {
- fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
- print_usage(argc, argv, benchmark_params);
- exit(1);
- }
-
- print_build_info();
- printf("Starting Test\n");
-
- // create the ggml context
- struct ggml_context * ctx;
- //const int sizex = 4096;
- //const int sizey = 11008;
-
-#undef VERBOSE_DEBUGGING
-#ifndef VERBOSE_DEBUGGING
- const int sizey = 4096;
- const int sizex = 11008;
- const int sizez = 128;
-#else
- /* Working - let's increase size */
- const int sizey = 1;
- const int sizex = (8*32);
- const int sizez = 1;
-
- /*const int sizey = 1;
- const int sizex = 3*(8*32);
- const int sizez = 1;*/
-#endif
-
- //printf("Memsize required = %i\n", sizex*sizex);
-
- // TODO: perform the bench for all types or for a user specified type
- const ggml_type qtype = GGML_TYPE_Q4_1;
-
- size_t ctx_size = 0;
- ctx_size += ggml_row_size(GGML_TYPE_F32, sizex*sizey);
- ctx_size += ggml_row_size(GGML_TYPE_F32, sizex*sizey);
- ctx_size += ggml_row_size(GGML_TYPE_F32, sizex*sizez);
- ctx_size += ggml_row_size(qtype, sizex*sizey);
- ctx_size += ggml_row_size(qtype, sizex*sizey);
- ctx_size += ggml_row_size(GGML_TYPE_F32, sizex*sizey); // BLAS
- ctx_size += ggml_row_size(GGML_TYPE_F32, sizex*sizey); // BLAS
- ctx_size += 1024*1024*16;
-
- printf("Allocating Memory of size %zi bytes, %zi MB\n",ctx_size, (ctx_size/1024/1024));
-
- struct ggml_init_params params = {
- /*.mem_size =*/ ctx_size,
- /*.mem_buffer =*/ NULL,
- /* no_alloc =*/ 0
- };
-
- ctx = ggml_init(params);
- if (!ctx) {
- fprintf(stderr, "%s: ggml_init() failed\n", __func__);
- return 1;
- }
-
-
- printf("Creating new tensors\n");
- // printf("Creating new tensor m1\n");
- struct ggml_tensor * m11 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizey);
- ggml_set_f32(m11, 1.0f);
-
- // printf("Creating new tensor m1\n");
- struct ggml_tensor * m12 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizey);
- ggml_set_f32(m12, 1.5f);
-
- // printf("Creating new tensor m2\n");
- struct ggml_tensor * m2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizez);
- ggml_set_f32(m2, 2.0f);
-
- printf("\n------ Test 1 - Matrix Mult via F32 code\n");
- // printf("Creating new tensor m11xm2\n");
- struct ggml_tensor * m11xm2 = ggml_mul_mat(ctx, m11, m2);
-
- // printf("Creating compute graph\n");
- struct ggml_cgraph * gf = ggml_new_graph(ctx);
- ggml_build_forward_expand(gf, m11xm2);
-
- printf("n_threads=%i\n", benchmark_params.n_threads);
-
- TENSOR_DUMP(m11);
- TENSOR_DUMP(m2);
-
- std::vector work_buffer;
-
- ggml_graph_compute_helper(work_buffer, gf, benchmark_params.n_threads);
-
- TENSOR_DUMP(ggml_graph_node(gf, 0));
-
- printf("\n------ Test 2 - Matrix Mult via %s code\n", ggml_type_name(qtype));
-
- int32_t nelements = sizex*sizey;
-
- // Set up a the benchmark matrices
- // printf("Creating new tensor q11 & Running quantize\n");
- struct ggml_tensor * q11 = ggml_new_tensor_2d(ctx, qtype, sizex, sizey);
- ggml_quantize_chunk(qtype, (const float *) m11->data, q11->data, 0, nelements/m11->ne[0], m11->ne[0], nullptr);
-
- // Set up a the compute graph
- // printf("Creating new tensor q31\n");
- struct ggml_tensor * q31 = ggml_mul_mat(ctx, q11, m2);
-
- // printf("Creating compute graph\n");
- struct ggml_cgraph * gf31 = ggml_new_graph(ctx);
- ggml_build_forward_expand(gf31, q31);
-
- // Set up a second graph computation to make sure we override the CPU cache lines
- // printf("Creating new tensor q12 & Running quantize\n");
- struct ggml_tensor * q12 = ggml_new_tensor_2d(ctx, qtype, sizex, sizey);
- ggml_quantize_chunk(qtype, (const float *) m12->data, q12->data, 0, nelements/m12->ne[0], m12->ne[0], nullptr);
-
- // printf("Creating new tensor q32\n");
- struct ggml_tensor * q32 = ggml_mul_mat(ctx, q12, m2);
-
- //printf("Creating compute graph\n");
- struct ggml_cgraph * gf32 = ggml_new_graph(ctx);
- ggml_build_forward_expand(gf32, q32);
- printf("n_threads=%i\n", benchmark_params.n_threads);
-
- const int dimx = sizex;
- const int dimy = sizey;
- const int dimz = sizez;
- long long int flops_per_dot_product = dimy + dimy;
- long long int flops_per_matrix = flops_per_dot_product * dimx * dimz; ;
- printf("Matrix Multiplication of (%i,%i,%i) x (%i,%i,%i) - about %6.2f gFLOPS\n\n", sizex, sizey, 1, sizex, sizez, 1, 1.0f*flops_per_matrix / 1000 / 1000 / 1000);
-
-
- // Let's use the F32 result from above as a reference for the quantized multiplication
- float sum_of_F32_reference = tensor_sum_elements(ggml_graph_node(gf, 0));
-
- printf("Iteration;NThreads; SizeX; SizeY; SizeZ; Required_FLOPS; Elapsed_u_Seconds; gigaFLOPS\n");
- printf("=====================================================================================\n");
-
- double gflops_sum = 0;
- for (int i=0;i allowed_delta) {
- printf("\nABORT - ERROR in Matrix Multiplication result - expected %6.2f, got %6.2f (delta %6.2f > allowed_delta %6.2f)\n",
- sum_of_F32_reference,
- sum_of_Q4_result,
- delta,
- allowed_delta
- );
- exit(0);
- }
-
- // Running a different graph computation to make sure we override the CPU cache lines
- ggml_graph_compute_helper(work_buffer, gf32, benchmark_params.n_threads);
- }
- printf("\n");
- printf("Average%78.2f\n",gflops_sum/((double)benchmark_params.n_iterations));
- printf("=====================================================================================\n");
-}
diff --git a/examples/gguf-split/gguf-split.cpp b/examples/gguf-split/gguf-split.cpp
index 82c239b83..7e62657e1 100644
--- a/examples/gguf-split/gguf-split.cpp
+++ b/examples/gguf-split/gguf-split.cpp
@@ -22,12 +22,20 @@
#endif
enum split_operation : uint8_t {
- SPLIT_OP_SPLIT,
- SPLIT_OP_MERGE,
+ OP_NONE,
+ OP_SPLIT,
+ OP_MERGE,
+};
+
+enum split_mode : uint8_t {
+ MODE_NONE,
+ MODE_TENSOR,
+ MODE_SIZE,
};
struct split_params {
- split_operation operation = SPLIT_OP_SPLIT;
+ split_operation operation = OP_NONE;
+ split_mode mode = MODE_NONE;
size_t n_bytes_split = 0;
int n_split_tensors = 128;
std::string input;
@@ -87,59 +95,52 @@ static void split_params_parse_ex(int argc, const char ** argv, split_params & p
}
bool arg_found = false;
- bool is_op_set = false;
- bool is_mode_set = false;
if (arg == "-h" || arg == "--help") {
split_print_usage(argv[0]);
exit(0);
- }
- if (arg == "--version") {
+ } else if (arg == "--version") {
fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
fprintf(stderr, "built with %s for %s\n", LLAMA_COMPILER, LLAMA_BUILD_TARGET);
exit(0);
- }
- if (arg == "--dry-run") {
+ } else if (arg == "--dry-run") {
arg_found = true;
params.dry_run = true;
- }
- if (arg == "--no-tensor-first-split") {
+ } else if (arg == "--no-tensor-first-split") {
arg_found = true;
params.no_tensor_first_split = true;
- }
-
- if (is_op_set) {
- throw std::invalid_argument("error: either --split or --merge can be specified, but not both");
- }
- if (arg == "--merge") {
+ } else if (arg == "--merge") {
arg_found = true;
- is_op_set = true;
- params.operation = SPLIT_OP_MERGE;
- }
- if (arg == "--split") {
+ if (params.operation != OP_NONE && params.operation != OP_MERGE) {
+ throw std::invalid_argument("error: either --split or --merge can be specified, but not both");
+ }
+ params.operation = OP_MERGE;
+ } else if (arg == "--split") {
arg_found = true;
- is_op_set = true;
- params.operation = SPLIT_OP_SPLIT;
- }
-
- if (is_mode_set) {
- throw std::invalid_argument("error: either --split-max-tensors or --split-max-size can be specified, but not both");
- }
- if (arg == "--split-max-tensors") {
+ if (params.operation != OP_NONE && params.operation != OP_SPLIT) {
+ throw std::invalid_argument("error: either --split or --merge can be specified, but not both");
+ }
+ params.operation = OP_SPLIT;
+ } else if (arg == "--split-max-tensors") {
if (++arg_idx >= argc) {
invalid_param = true;
break;
}
arg_found = true;
- is_mode_set = true;
+ if (params.mode != MODE_NONE && params.mode != MODE_TENSOR) {
+ throw std::invalid_argument("error: either --split-max-tensors or --split-max-size can be specified, but not both");
+ }
+ params.mode = MODE_TENSOR;
params.n_split_tensors = atoi(argv[arg_idx]);
- }
- if (arg == "--split-max-size") {
+ } else if (arg == "--split-max-size") {
if (++arg_idx >= argc) {
invalid_param = true;
break;
}
arg_found = true;
- is_mode_set = true;
+ if (params.mode != MODE_NONE && params.mode != MODE_SIZE) {
+ throw std::invalid_argument("error: either --split-max-tensors or --split-max-size can be specified, but not both");
+ }
+ params.mode = MODE_SIZE;
params.n_bytes_split = split_str_to_n_bytes(argv[arg_idx]);
}
@@ -148,6 +149,15 @@ static void split_params_parse_ex(int argc, const char ** argv, split_params & p
}
}
+ // the operation is split if not specified
+ if (params.operation == OP_NONE) {
+ params.operation = OP_SPLIT;
+ }
+ // the split mode is by tensor if not specified
+ if (params.mode == MODE_NONE) {
+ params.mode = MODE_TENSOR;
+ }
+
if (invalid_param) {
throw std::invalid_argument("error: invalid parameter for argument: " + arg);
}
@@ -265,13 +275,15 @@ struct split_strategy {
}
bool should_split(int i_tensor, size_t next_size) {
- if (params.n_bytes_split > 0) {
+ if (params.mode == MODE_SIZE) {
// split by max size per file
return next_size > params.n_bytes_split;
- } else {
+ } else if (params.mode == MODE_TENSOR) {
// split by number of tensors per file
return i_tensor > 0 && i_tensor < n_tensors && i_tensor % params.n_split_tensors == 0;
}
+ // should never happen
+ GGML_ABORT("invalid mode");
}
void print_info() {
@@ -559,9 +571,9 @@ int main(int argc, const char ** argv) {
split_params_parse(argc, argv, params);
switch (params.operation) {
- case SPLIT_OP_SPLIT: gguf_split(params);
+ case OP_SPLIT: gguf_split(params);
break;
- case SPLIT_OP_MERGE: gguf_merge(params);
+ case OP_MERGE: gguf_merge(params);
break;
default: split_print_usage(argv[0]);
exit(EXIT_FAILURE);
diff --git a/ggml/include/ggml-backend.h b/ggml/include/ggml-backend.h
index 71c0bef8e..b096aaed6 100644
--- a/ggml/include/ggml-backend.h
+++ b/ggml/include/ggml-backend.h
@@ -12,43 +12,52 @@ extern "C" {
typedef struct ggml_backend_event * ggml_backend_event_t;
typedef struct ggml_backend * ggml_backend_t;
typedef void * ggml_backend_graph_plan_t;
+ typedef struct ggml_backend_reg * ggml_backend_reg_t;
+ typedef struct ggml_backend_device * ggml_backend_dev_t;
+
+
+ //
+ // Backend buffer type
+ //
+
+ GGML_API const char * ggml_backend_buft_name (ggml_backend_buffer_type_t buft);
+ GGML_API ggml_backend_buffer_t ggml_backend_buft_alloc_buffer (ggml_backend_buffer_type_t buft, size_t size);
+ GGML_API size_t ggml_backend_buft_get_alignment (ggml_backend_buffer_type_t buft);
+ GGML_API size_t ggml_backend_buft_get_max_size (ggml_backend_buffer_type_t buft);
+ GGML_API size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor);
+ GGML_API bool ggml_backend_buft_is_host (ggml_backend_buffer_type_t buft);
+ GGML_API ggml_backend_dev_t ggml_backend_buft_get_device (ggml_backend_buffer_type_t buft);
//
// Backend buffer
//
- // buffer type
- GGML_API const char * ggml_backend_buft_name (ggml_backend_buffer_type_t buft);
- GGML_API GGML_CALL ggml_backend_buffer_t ggml_backend_buft_alloc_buffer (ggml_backend_buffer_type_t buft, size_t size);
- GGML_API size_t ggml_backend_buft_get_alignment (ggml_backend_buffer_type_t buft);
- GGML_API size_t ggml_backend_buft_get_max_size (ggml_backend_buffer_type_t buft);
- GGML_API GGML_CALL size_t ggml_backend_buft_get_alloc_size (ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor);
- GGML_API bool ggml_backend_buft_is_host (ggml_backend_buffer_type_t buft);
-
- // buffer
enum ggml_backend_buffer_usage {
GGML_BACKEND_BUFFER_USAGE_ANY = 0,
GGML_BACKEND_BUFFER_USAGE_WEIGHTS = 1,
GGML_BACKEND_BUFFER_USAGE_COMPUTE = 2,
};
- GGML_API const char * ggml_backend_buffer_name (ggml_backend_buffer_t buffer);
- GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer);
- GGML_API void * ggml_backend_buffer_get_base (ggml_backend_buffer_t buffer);
- GGML_API size_t ggml_backend_buffer_get_size (ggml_backend_buffer_t buffer);
- GGML_API GGML_CALL void ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
- GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer);
- GGML_API size_t ggml_backend_buffer_get_max_size (ggml_backend_buffer_t buffer);
- GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
- GGML_API void ggml_backend_buffer_clear (ggml_backend_buffer_t buffer, uint8_t value);
- GGML_API bool ggml_backend_buffer_is_host (ggml_backend_buffer_t buffer);
- GGML_API void ggml_backend_buffer_set_usage (ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage);
- GGML_API enum ggml_backend_buffer_usage ggml_backend_buffer_get_usage (ggml_backend_buffer_t buffer);
- GGML_API ggml_backend_buffer_type_t ggml_backend_buffer_get_type (ggml_backend_buffer_t buffer);
- GGML_API void ggml_backend_buffer_reset (ggml_backend_buffer_t buffer);
+ GGML_API const char * ggml_backend_buffer_name (ggml_backend_buffer_t buffer);
+ GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer);
+ GGML_API void * ggml_backend_buffer_get_base (ggml_backend_buffer_t buffer);
+ GGML_API size_t ggml_backend_buffer_get_size (ggml_backend_buffer_t buffer);
+ GGML_API void ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
+ GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer);
+ GGML_API size_t ggml_backend_buffer_get_max_size (ggml_backend_buffer_t buffer);
+ GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
+ GGML_API void ggml_backend_buffer_clear (ggml_backend_buffer_t buffer, uint8_t value);
+ GGML_API bool ggml_backend_buffer_is_host (ggml_backend_buffer_t buffer);
+ GGML_API void ggml_backend_buffer_set_usage (ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage);
+ GGML_API enum ggml_backend_buffer_usage ggml_backend_buffer_get_usage (ggml_backend_buffer_t buffer);
+ GGML_API ggml_backend_buffer_type_t ggml_backend_buffer_get_type (ggml_backend_buffer_t buffer);
+ GGML_API void ggml_backend_buffer_reset (ggml_backend_buffer_t buffer);
+
+ // tensor copy between different backends
+ GGML_API void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst);
//
- // Backend
+ // Backend (stream)
//
GGML_API ggml_guid_t ggml_backend_guid(ggml_backend_t backend);
@@ -64,9 +73,9 @@ extern "C" {
GGML_API void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
// "offset" refers to the offset of the tensor data for setting/getting data
- GGML_API GGML_CALL void ggml_backend_tensor_set( struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
- GGML_API GGML_CALL void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
- GGML_API GGML_CALL void ggml_backend_tensor_memset( struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size);
+ GGML_API void ggml_backend_tensor_set( struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
+ GGML_API void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
+ GGML_API void ggml_backend_tensor_memset( struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size);
GGML_API void ggml_backend_synchronize(ggml_backend_t backend);
@@ -76,65 +85,121 @@ extern "C" {
GGML_API enum ggml_status ggml_backend_graph_plan_compute (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
GGML_API enum ggml_status ggml_backend_graph_compute (ggml_backend_t backend, struct ggml_cgraph * cgraph);
GGML_API enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph);
+
+ // NOTE: will be removed, use device version instead
GGML_API bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op);
GGML_API bool ggml_backend_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft);
GGML_API bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op);
- // tensor copy between different backends
- GGML_API void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst);
-
// asynchronous copy
// the copy is performed after all the currently queued operations in backend_src
// backend_dst will wait for the copy to complete before performing other operations
// automatic fallback to sync copy if async is not supported
GGML_API void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, struct ggml_tensor * src, struct ggml_tensor * dst);
- // events
- GGML_API ggml_backend_event_t ggml_backend_event_new (ggml_backend_t backend);
- GGML_API void ggml_backend_event_free (ggml_backend_event_t event);
- GGML_API void ggml_backend_event_record (ggml_backend_event_t event);
- GGML_API void ggml_backend_event_synchronize(ggml_backend_event_t event);
- GGML_API void ggml_backend_event_wait (ggml_backend_t backend, ggml_backend_event_t event);
+ GGML_API ggml_backend_dev_t ggml_backend_get_device(ggml_backend_t backend);
//
- // CPU backend
+ // Events
//
- GGML_API ggml_backend_t ggml_backend_cpu_init(void);
+ GGML_API ggml_backend_event_t ggml_backend_event_new(ggml_backend_dev_t device);
+ GGML_API void ggml_backend_event_free(ggml_backend_event_t event);
+ GGML_API void ggml_backend_event_record(ggml_backend_event_t event, ggml_backend_t backend);
+ GGML_API void ggml_backend_event_synchronize(ggml_backend_event_t event);
+ GGML_API void ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event);
- GGML_API GGML_CALL bool ggml_backend_is_cpu (ggml_backend_t backend);
- GGML_API void ggml_backend_cpu_set_n_threads (ggml_backend_t backend_cpu, int n_threads);
- GGML_API void ggml_backend_cpu_set_threadpool (ggml_backend_t backend_cpu, ggml_threadpool_t threadpool);
- GGML_API void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data);
+ //
+ // Backend device
+ //
- // Create a backend buffer from an existing pointer
- GGML_API GGML_CALL ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size);
+ enum ggml_backend_dev_type {
+ GGML_BACKEND_DEVICE_TYPE_CPU,
+ GGML_BACKEND_DEVICE_TYPE_GPU,
+ // devices with full capabilities (excludes backends such as BLAS that only support matrix multiplication)
+ GGML_BACKEND_DEVICE_TYPE_CPU_FULL,
+ GGML_BACKEND_DEVICE_TYPE_GPU_FULL
+ };
- GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void);
+ // functionality supported by the device
+ struct ggml_backend_dev_caps {
+ // asynchronous operations
+ bool async;
+ // pinned host buffer
+ bool host_buffer;
+ // event synchronization
+ bool events;
+ };
-#ifdef GGML_USE_CPU_HBM
- GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void);
-#endif
+ // all the device properties
+ struct ggml_backend_dev_props {
+ const char * name;
+ const char * description;
+ size_t memory_free;
+ size_t memory_total;
+ enum ggml_backend_dev_type type;
+ struct ggml_backend_dev_caps caps;
+ };
+
+ GGML_API const char * ggml_backend_dev_name(ggml_backend_dev_t device);
+ GGML_API const char * ggml_backend_dev_description(ggml_backend_dev_t device);
+ GGML_API void ggml_backend_dev_memory(ggml_backend_dev_t device, size_t * free, size_t * total);
+ GGML_API enum ggml_backend_dev_type ggml_backend_dev_type(ggml_backend_dev_t device);
+ GGML_API void ggml_backend_dev_get_props(ggml_backend_dev_t device, struct ggml_backend_dev_props * props);
+ GGML_API ggml_backend_reg_t ggml_backend_dev_backend_reg(ggml_backend_dev_t device);
+ GGML_API ggml_backend_t ggml_backend_dev_init(ggml_backend_dev_t device, const char * params);
+ GGML_API ggml_backend_buffer_type_t ggml_backend_dev_buffer_type(ggml_backend_dev_t device);
+ GGML_API ggml_backend_buffer_type_t ggml_backend_dev_host_buffer_type(ggml_backend_dev_t device);
+ GGML_API ggml_backend_buffer_t ggml_backend_dev_buffer_from_host_ptr(ggml_backend_dev_t device, void * ptr, size_t size, size_t max_tensor_size);
+
+ GGML_API bool ggml_backend_dev_supports_op(ggml_backend_dev_t device, const struct ggml_tensor * op);
+ GGML_API bool ggml_backend_dev_supports_buft(ggml_backend_dev_t device, ggml_backend_buffer_type_t buft);
+ GGML_API bool ggml_backend_dev_offload_op(ggml_backend_dev_t device, const struct ggml_tensor * op);
+
+ //
+ // Backend (reg)
+ //
+
+ GGML_API const char * ggml_backend_reg_name(ggml_backend_reg_t reg);
+ GGML_API size_t ggml_backend_reg_dev_count(ggml_backend_reg_t reg);
+ GGML_API ggml_backend_dev_t ggml_backend_reg_dev_get(ggml_backend_reg_t reg, size_t index);
+ GGML_API void * ggml_backend_reg_get_proc_address(ggml_backend_reg_t reg, const char * name);
+ GGML_API void ggml_backend_reg_set_log_callback(ggml_backend_reg_t reg, ggml_log_callback log_callback, void * user_data);
+
+ // Functions that may be obtained using ggml_backend_reg_get_proc_address
+ typedef ggml_backend_buffer_type_t (*ggml_backend_split_buffer_type_t)(const float *);
//
// Backend registry
//
- // The backend registry is a registry of all the available backends, and allows initializing backends in a generic way
+ // Backend (reg) enumeration
+ GGML_API size_t ggml_backend_reg_count(void);
+ GGML_API ggml_backend_reg_t ggml_backend_reg_get(size_t index);
+ GGML_API ggml_backend_reg_t ggml_backend_reg_by_name(const char * name);
- GGML_API size_t ggml_backend_reg_get_count(void);
- GGML_API size_t ggml_backend_reg_find_by_name(const char * name); // returns index of backend with name, or SIZE_MAX if not found
- GGML_API ggml_backend_t ggml_backend_reg_init_backend_from_str(const char * backend_str); // str is backend_name:params (params is optional)
- GGML_API const char * ggml_backend_reg_get_name(size_t i);
- GGML_API ggml_backend_t ggml_backend_reg_init_backend(size_t i, const char * params); // params is backend-specific
- GGML_API ggml_backend_buffer_type_t ggml_backend_reg_get_default_buffer_type(size_t i);
- GGML_API ggml_backend_buffer_t ggml_backend_reg_alloc_buffer(size_t i, size_t size);
+ // Device enumeration
+ GGML_API size_t ggml_backend_dev_count(void);
+ GGML_API ggml_backend_dev_t ggml_backend_dev_get(size_t index);
+ GGML_API ggml_backend_dev_t ggml_backend_dev_by_name(const char * name);
+ GGML_API ggml_backend_dev_t ggml_backend_dev_by_type(enum ggml_backend_dev_type type);
+
+ // Set the log callback for all registered backends
+ GGML_API void ggml_backend_set_log_callback(ggml_log_callback log_callback, void * user_data);
+
+ // Direct backend (stream) initialization
+ // = ggml_backend_dev_init(ggml_backend_dev_by_name(name), params)
+ GGML_API ggml_backend_t ggml_backend_init_by_name(const char * name, const char * params);
+ // = ggml_backend_dev_init(ggml_backend_dev_by_type(type), params)
+ GGML_API ggml_backend_t ggml_backend_init_by_type(enum ggml_backend_dev_type type, const char * params);
+ // = ggml_backend_dev_init(ggml_backend_dev_by_type(GPU_FULL) OR ggml_backend_dev_by_type(CPU_FULL), NULL)
+ GGML_API ggml_backend_t ggml_backend_init_best(void);
//
// Backend scheduler
//
- // The backend scheduler allows for multiple backends to be used together
+ // The backend scheduler allows for multiple backend devices to be used together
// Handles compute buffer allocation, assignment of tensors to backends, and copying of tensors between backends
// The backends are selected based on:
// - the backend that supports the operation
@@ -169,9 +234,9 @@ extern "C" {
}
*/
- struct ggml_backend_sched;
typedef struct ggml_backend_sched * ggml_backend_sched_t;
+ // Evaluation callback for each node in the graph (set with ggml_backend_sched_set_eval_callback)
// when ask == true, the scheduler wants to know if the user wants to observe this node
// this allows the scheduler to batch nodes together in order to evaluate them in a single call
//
@@ -226,7 +291,7 @@ extern "C" {
GGML_API struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph);
GGML_API void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy);
- typedef bool (*GGML_CALL ggml_backend_eval_callback)(int node_index, struct ggml_tensor * t1, struct ggml_tensor * t2, void * user_data);
+ typedef bool (*ggml_backend_eval_callback)(int node_index, struct ggml_tensor * t1, struct ggml_tensor * t2, void * user_data);
// Compare the output of two backends
GGML_API bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data);
@@ -235,6 +300,26 @@ extern "C" {
GGML_API void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr);
GGML_API void ggml_backend_view_init(struct ggml_tensor * tensor);
+ //
+ // CPU backend
+ //
+
+ GGML_API ggml_backend_t ggml_backend_cpu_init(void);
+
+ GGML_API bool ggml_backend_is_cpu (ggml_backend_t backend);
+ GGML_API void ggml_backend_cpu_set_n_threads (ggml_backend_t backend_cpu, int n_threads);
+ GGML_API void ggml_backend_cpu_set_threadpool (ggml_backend_t backend_cpu, ggml_threadpool_t threadpool);
+ GGML_API void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data);
+
+ // Create a backend buffer from an existing pointer
+ GGML_API ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size);
+ GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void);
+
+ GGML_API ggml_backend_reg_t ggml_backend_cpu_reg(void);
+
+#ifdef GGML_USE_CPU_HBM
+ GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void);
+#endif
#ifdef __cplusplus
}
diff --git a/ggml/include/ggml-blas.h b/ggml/include/ggml-blas.h
index f2e37de06..dd612860d 100644
--- a/ggml/include/ggml-blas.h
+++ b/ggml/include/ggml-blas.h
@@ -9,13 +9,13 @@ extern "C" {
#endif
// backend API
-GGML_API GGML_CALL ggml_backend_t ggml_backend_blas_init(void);
+GGML_API ggml_backend_t ggml_backend_blas_init(void);
-GGML_API GGML_CALL bool ggml_backend_is_blas(ggml_backend_t backend);
+GGML_API bool ggml_backend_is_blas(ggml_backend_t backend);
// number of threads used for conversion to float
// for openblas and blis, this will also set the number of threads used for blas operations
-GGML_API GGML_CALL void ggml_backend_blas_set_n_threads(ggml_backend_t backend_blas, int n_threads);
+GGML_API void ggml_backend_blas_set_n_threads(ggml_backend_t backend_blas, int n_threads);
#ifdef __cplusplus
diff --git a/ggml/include/ggml-cann.h b/ggml/include/ggml-cann.h
index 544173ed4..95bdaf10d 100644
--- a/ggml/include/ggml-cann.h
+++ b/ggml/include/ggml-cann.h
@@ -44,7 +44,7 @@ extern "C" {
* @param device The index of the device to initialize.
* @return A pointer to the initialized backend instance, or nullptr on failure.
*/
-GGML_API GGML_CALL ggml_backend_t ggml_backend_cann_init(int32_t device);
+GGML_API ggml_backend_t ggml_backend_cann_init(int32_t device);
/**
* @brief Checks if a given backend is a CANN backend.
@@ -55,7 +55,7 @@ GGML_API GGML_CALL ggml_backend_t ggml_backend_cann_init(int32_t device);
* @param backend The backend instance to check.
* @return True if the backend is a CANN backend, false otherwise.
*/
-GGML_API GGML_CALL bool ggml_backend_is_cann(ggml_backend_t backend);
+GGML_API bool ggml_backend_is_cann(ggml_backend_t backend);
/**
* @brief Retrieves the CANN buffer type for a specified device.
@@ -67,7 +67,7 @@ GGML_API GGML_CALL bool ggml_backend_is_cann(ggml_backend_t backend);
* @return A pointer to the buffer type interface for the specified device, or
* nullptr if the device index is out of range.
*/
-GGML_API GGML_CALL ggml_backend_buffer_type_t
+GGML_API ggml_backend_buffer_type_t
ggml_backend_cann_buffer_type(int32_t device);
/**
@@ -78,14 +78,14 @@ ggml_backend_cann_buffer_type(int32_t device);
*
* @return The number of CANN devices available.
*/
-GGML_API GGML_CALL int32_t ggml_backend_cann_get_device_count(void);
+GGML_API int32_t ggml_backend_cann_get_device_count(void);
/**
* @brief pinned host buffer for use with the CPU backend for faster copies between CPU and NPU.
*
* @return A pointer to the host buffer type interface.
*/
-GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cann_host_buffer_type(void);
+GGML_API ggml_backend_buffer_type_t ggml_backend_cann_host_buffer_type(void);
/**
* @brief Retrieves the description of a specific CANN device.
@@ -97,7 +97,7 @@ GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cann_host_buffer_type
* @param description Pointer to a buffer where the description will be written.
* @param description_size Size of the description buffer.
*/
-GGML_API GGML_CALL void ggml_backend_cann_get_device_description(
+GGML_API void ggml_backend_cann_get_device_description(
int32_t device, char* description, size_t description_size);
/**
@@ -112,9 +112,9 @@ GGML_API GGML_CALL void ggml_backend_cann_get_device_description(
* @param total Pointer to a variable where the total memory size will be
* stored.
*/
-GGML_API GGML_CALL void ggml_backend_cann_get_device_memory(int32_t device,
- size_t* free,
- size_t* total);
+GGML_API void ggml_backend_cann_get_device_memory(int32_t device,
+ size_t* free,
+ size_t* total);
#ifdef __cplusplus
}
diff --git a/ggml/include/ggml-cuda.h b/ggml/include/ggml-cuda.h
index 1bb69d752..f44d8f4e6 100644
--- a/ggml/include/ggml-cuda.h
+++ b/ggml/include/ggml-cuda.h
@@ -3,6 +3,10 @@
#include "ggml.h"
#include "ggml-backend.h"
+#ifdef __cplusplus
+extern "C" {
+#endif
+
#ifdef GGML_USE_HIPBLAS
#define GGML_CUDA_NAME "ROCm"
#define GGML_CUBLAS_NAME "hipBLAS"
@@ -13,33 +17,30 @@
#define GGML_CUDA_NAME "CUDA"
#define GGML_CUBLAS_NAME "cuBLAS"
#endif
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
#define GGML_CUDA_MAX_DEVICES 16
// backend API
-GGML_API GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device);
+GGML_API ggml_backend_t ggml_backend_cuda_init(int device);
-GGML_API GGML_CALL bool ggml_backend_is_cuda(ggml_backend_t backend);
+GGML_API bool ggml_backend_is_cuda(ggml_backend_t backend);
// device buffer
-GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device);
+GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device);
// split tensor buffer that splits matrices by rows across multiple devices
-GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split);
+GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split);
// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
-GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type(void);
+GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type(void);
-GGML_API GGML_CALL int ggml_backend_cuda_get_device_count(void);
-GGML_API GGML_CALL void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size);
-GGML_API GGML_CALL void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total);
+GGML_API int ggml_backend_cuda_get_device_count(void);
+GGML_API void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size);
+GGML_API void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total);
-GGML_API GGML_CALL bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size);
-GGML_API GGML_CALL void ggml_backend_cuda_unregister_host_buffer(void * buffer);
+GGML_API bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size);
+GGML_API void ggml_backend_cuda_unregister_host_buffer(void * buffer);
+
+GGML_API ggml_backend_reg_t ggml_backend_cuda_reg(void);
#ifdef __cplusplus
}
diff --git a/ggml/include/ggml-metal.h b/ggml/include/ggml-metal.h
index b8cc3ad14..c3ec572b2 100644
--- a/ggml/include/ggml-metal.h
+++ b/ggml/include/ggml-metal.h
@@ -1,3 +1,5 @@
+// Note: this description is outdated
+//
// An interface allowing to compute ggml_cgraph with Metal
//
// This is a fully functional interface that extends ggml with GPU support for Apple devices.
@@ -41,11 +43,11 @@ GGML_API ggml_backend_t ggml_backend_metal_init(void);
GGML_API bool ggml_backend_is_metal(ggml_backend_t backend);
-GGML_API GGML_CALL ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t size, size_t max_size);
+GGML_API ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t size, size_t max_size);
GGML_API void ggml_backend_metal_set_abort_callback(ggml_backend_t backend, ggml_abort_callback abort_callback, void * user_data);
-GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
+GGML_API ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
// helper to check if the device supports a specific family
// ideally, the user code should be doing these checks
diff --git a/ggml/include/ggml-rpc.h b/ggml/include/ggml-rpc.h
index aa144832a..64cde7f13 100644
--- a/ggml/include/ggml-rpc.h
+++ b/ggml/include/ggml-rpc.h
@@ -10,14 +10,14 @@ extern "C" {
#define GGML_RPC_MAX_SERVERS 16
// backend API
-GGML_API GGML_CALL ggml_backend_t ggml_backend_rpc_init(const char * endpoint);
-GGML_API GGML_CALL bool ggml_backend_is_rpc(ggml_backend_t backend);
+GGML_API ggml_backend_t ggml_backend_rpc_init(const char * endpoint);
+GGML_API bool ggml_backend_is_rpc(ggml_backend_t backend);
-GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint);
+GGML_API ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint);
-GGML_API GGML_CALL void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total);
+GGML_API void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total);
-GGML_API GGML_CALL void start_rpc_server(ggml_backend_t backend, const char * endpoint, size_t free_mem, size_t total_mem);
+GGML_API void start_rpc_server(ggml_backend_t backend, const char * endpoint, size_t free_mem, size_t total_mem);
#ifdef __cplusplus
}
diff --git a/ggml/include/ggml-sycl.h b/ggml/include/ggml-sycl.h
index 43ab1519c..03b698e61 100644
--- a/ggml/include/ggml-sycl.h
+++ b/ggml/include/ggml-sycl.h
@@ -23,20 +23,20 @@ GGML_API ggml_backend_t ggml_backend_sycl_init(int device);
GGML_API ggml_backend_buffer_type_t ggml_backend_sycl_buffer_type(int device);
// split tensor buffer that splits matrices by rows across multiple devices
-GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_sycl_split_buffer_type(const float * tensor_split);
+GGML_API ggml_backend_buffer_type_t ggml_backend_sycl_split_buffer_type(const float * tensor_split);
// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
GGML_API ggml_backend_buffer_type_t ggml_backend_sycl_host_buffer_type(void);
-GGML_API void ggml_backend_sycl_print_sycl_devices(void);
-GGML_API GGML_CALL void ggml_sycl_get_gpu_list(int *id_list, int max_len);
-GGML_API GGML_CALL void ggml_sycl_get_device_description(int device, char *description, size_t description_size);
-GGML_API GGML_CALL int ggml_backend_sycl_get_device_count();
-GGML_API GGML_CALL void ggml_backend_sycl_get_device_memory(int device, size_t *free, size_t *total);
+GGML_API void ggml_backend_sycl_print_sycl_devices(void);
+GGML_API void ggml_sycl_get_gpu_list(int *id_list, int max_len);
+GGML_API void ggml_sycl_get_device_description(int device, char *description, size_t description_size);
+GGML_API int ggml_backend_sycl_get_device_count();
+GGML_API void ggml_backend_sycl_get_device_memory(int device, size_t *free, size_t *total);
// SYCL doesn't support registering host memory, keep here for reference
-// GGML_API GGML_CALL bool ggml_backend_sycl_register_host_buffer(void * buffer, size_t size);
-// GGML_API GGML_CALL void ggml_backend_sycl_unregister_host_buffer(void * buffer);
+// GGML_API bool ggml_backend_sycl_register_host_buffer(void * buffer, size_t size);
+// GGML_API void ggml_backend_sycl_unregister_host_buffer(void * buffer);
#ifdef __cplusplus
}
#endif
diff --git a/ggml/include/ggml-vulkan.h b/ggml/include/ggml-vulkan.h
index af661c2d7..e074042ef 100644
--- a/ggml/include/ggml-vulkan.h
+++ b/ggml/include/ggml-vulkan.h
@@ -13,16 +13,16 @@ extern "C" {
GGML_API void ggml_vk_instance_init(void);
// backend API
-GGML_API GGML_CALL ggml_backend_t ggml_backend_vk_init(size_t dev_num);
+GGML_API ggml_backend_t ggml_backend_vk_init(size_t dev_num);
-GGML_API GGML_CALL bool ggml_backend_is_vk(ggml_backend_t backend);
-GGML_API GGML_CALL int ggml_backend_vk_get_device_count(void);
-GGML_API GGML_CALL void ggml_backend_vk_get_device_description(int device, char * description, size_t description_size);
-GGML_API GGML_CALL void ggml_backend_vk_get_device_memory(int device, size_t * free, size_t * total);
+GGML_API bool ggml_backend_is_vk(ggml_backend_t backend);
+GGML_API int ggml_backend_vk_get_device_count(void);
+GGML_API void ggml_backend_vk_get_device_description(int device, char * description, size_t description_size);
+GGML_API void ggml_backend_vk_get_device_memory(int device, size_t * free, size_t * total);
-GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_vk_buffer_type(size_t dev_num);
+GGML_API ggml_backend_buffer_type_t ggml_backend_vk_buffer_type(size_t dev_num);
// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
-GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_vk_host_buffer_type(void);
+GGML_API ggml_backend_buffer_type_t ggml_backend_vk_host_buffer_type(void);
#ifdef __cplusplus
}
diff --git a/ggml/include/ggml.h b/ggml/include/ggml.h
index 57b44b85c..1b4006b62 100644
--- a/ggml/include/ggml.h
+++ b/ggml/include/ggml.h
@@ -187,16 +187,6 @@
# define GGML_API
#endif
-#ifdef GGML_MULTIPLATFORM
-# if defined(_WIN32)
-# define GGML_CALL
-# else
-# define GGML_CALL __attribute__((__ms_abi__))
-# endif
-#else
-# define GGML_CALL
-#endif
-
// TODO: support for clang
#ifdef __GNUC__
# define GGML_DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
@@ -340,7 +330,7 @@ extern "C" {
};
// get ggml_status name string
- GGML_API GGML_CALL const char * ggml_status_to_string(enum ggml_status status);
+ GGML_API const char * ggml_status_to_string(enum ggml_status status);
// ieee 754-2008 half-precision float16
// todo: make this not an integral type
@@ -716,46 +706,46 @@ extern "C" {
GGML_API void ggml_print_object (const struct ggml_object * obj);
GGML_API void ggml_print_objects(const struct ggml_context * ctx);
- GGML_API GGML_CALL int64_t ggml_nelements (const struct ggml_tensor * tensor);
- GGML_API GGML_CALL int64_t ggml_nrows (const struct ggml_tensor * tensor);
- GGML_API GGML_CALL size_t ggml_nbytes (const struct ggml_tensor * tensor);
- GGML_API size_t ggml_nbytes_pad (const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
+ GGML_API int64_t ggml_nelements (const struct ggml_tensor * tensor);
+ GGML_API int64_t ggml_nrows (const struct ggml_tensor * tensor);
+ GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor);
+ GGML_API size_t ggml_nbytes_pad(const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
- GGML_API GGML_CALL int64_t ggml_blck_size(enum ggml_type type);
- GGML_API GGML_CALL size_t ggml_type_size(enum ggml_type type); // size in bytes for all elements in a block
- GGML_API GGML_CALL size_t ggml_row_size (enum ggml_type type, int64_t ne); // size in bytes for all elements in a row
+ GGML_API int64_t ggml_blck_size(enum ggml_type type);
+ GGML_API size_t ggml_type_size(enum ggml_type type); // size in bytes for all elements in a block
+ GGML_API size_t ggml_row_size (enum ggml_type type, int64_t ne); // size in bytes for all elements in a row
GGML_DEPRECATED(
GGML_API double ggml_type_sizef(enum ggml_type type), // ggml_type_size()/ggml_blck_size() as float
"use ggml_row_size() instead");
- GGML_API GGML_CALL const char * ggml_type_name(enum ggml_type type);
- GGML_API GGML_CALL const char * ggml_op_name (enum ggml_op op);
- GGML_API const char * ggml_op_symbol(enum ggml_op op);
+ GGML_API const char * ggml_type_name(enum ggml_type type);
+ GGML_API const char * ggml_op_name (enum ggml_op op);
+ GGML_API const char * ggml_op_symbol(enum ggml_op op);
- GGML_API const char * ggml_unary_op_name(enum ggml_unary_op op);
- GGML_API GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t); // unary or op name
+ GGML_API const char * ggml_unary_op_name(enum ggml_unary_op op);
+ GGML_API const char * ggml_op_desc(const struct ggml_tensor * t); // unary or op name
- GGML_API GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor);
+ GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
- GGML_API GGML_CALL bool ggml_is_quantized(enum ggml_type type);
+ GGML_API bool ggml_is_quantized(enum ggml_type type);
// TODO: temporary until model loading of ggml examples is refactored
GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
- GGML_API GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor);
- GGML_API GGML_CALL bool ggml_is_permuted (const struct ggml_tensor * tensor);
- GGML_API GGML_CALL bool ggml_is_empty (const struct ggml_tensor * tensor);
- GGML_API bool ggml_is_scalar (const struct ggml_tensor * tensor);
- GGML_API bool ggml_is_vector (const struct ggml_tensor * tensor);
- GGML_API bool ggml_is_matrix (const struct ggml_tensor * tensor);
- GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor);
- GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars
+ GGML_API bool ggml_is_transposed(const struct ggml_tensor * tensor);
+ GGML_API bool ggml_is_permuted (const struct ggml_tensor * tensor);
+ GGML_API bool ggml_is_empty (const struct ggml_tensor * tensor);
+ GGML_API bool ggml_is_scalar (const struct ggml_tensor * tensor);
+ GGML_API bool ggml_is_vector (const struct ggml_tensor * tensor);
+ GGML_API bool ggml_is_matrix (const struct ggml_tensor * tensor);
+ GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor);
+ GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars
- GGML_API GGML_CALL bool ggml_is_contiguous (const struct ggml_tensor * tensor);
- GGML_API GGML_CALL bool ggml_is_contiguous_0(const struct ggml_tensor * tensor); // same as ggml_is_contiguous()
- GGML_API GGML_CALL bool ggml_is_contiguous_1(const struct ggml_tensor * tensor); // contiguous for dims >= 1
- GGML_API GGML_CALL bool ggml_is_contiguous_2(const struct ggml_tensor * tensor); // contiguous for dims >= 2
+ GGML_API bool ggml_is_contiguous (const struct ggml_tensor * tensor);
+ GGML_API bool ggml_is_contiguous_0(const struct ggml_tensor * tensor); // same as ggml_is_contiguous()
+ GGML_API bool ggml_is_contiguous_1(const struct ggml_tensor * tensor); // contiguous for dims >= 1
+ GGML_API bool ggml_is_contiguous_2(const struct ggml_tensor * tensor); // contiguous for dims >= 2
GGML_API bool ggml_are_same_shape (const struct ggml_tensor * t0, const struct ggml_tensor * t1);
GGML_API bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
@@ -847,7 +837,7 @@ extern "C" {
GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
- GGML_API GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
+ GGML_API enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);
GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);
@@ -1561,7 +1551,7 @@ extern "C" {
"use ggml_rope_ext_inplace instead");
// compute correction dims for YaRN RoPE scaling
- GGML_CALL void ggml_rope_yarn_corr_dims(
+ void ggml_rope_yarn_corr_dims(
int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]);
// rotary position embedding backward, i.e compute dx from dy
diff --git a/ggml/src/CMakeLists.txt b/ggml/src/CMakeLists.txt
index cbc349500..286bec255 100644
--- a/ggml/src/CMakeLists.txt
+++ b/ggml/src/CMakeLists.txt
@@ -511,8 +511,8 @@ if (GGML_HIPBLAS)
endif()
if (GGML_SYCL)
- if (NOT GGML_SYCL_TARGET MATCHES "^(INTEL|NVIDIA)$")
- message(FATAL_ERROR "Invalid backend chosen, supported options are INTEL or NVIDIA")
+ if (NOT GGML_SYCL_TARGET MATCHES "^(INTEL|NVIDIA|AMD)$")
+ message(FATAL_ERROR "Invalid backend chosen, supported options are INTEL, NVIDIA, or AMD")
endif()
check_cxx_compiler_flag("-fsycl" SUPPORTS_SYCL)
@@ -532,6 +532,9 @@ if (GGML_SYCL)
list(APPEND GGML_CDEF_PUBLIC GGML_USE_SYCL)
if (GGML_SYCL_F16)
+ if (GGML_SYCL_TARGET STREQUAL "AMD")
+ message(WARNING "AMD target does not entirely support FP16 in the SYCL backend.")
+ endif()
add_compile_definitions(GGML_SYCL_F16)
endif()
@@ -543,6 +546,12 @@ if (GGML_SYCL)
if (GGML_SYCL_TARGET STREQUAL "NVIDIA")
add_compile_definitions(GGML_SYCL_WARP_SIZE=32)
+ elseif (GGML_SYCL_TARGET STREQUAL "AMD")
+ # INFO: Allowed Sub_group_sizes are not consistent through all
+ # hip targets. For example, 64 is used for certain models, but the backend
+ # does not support it.
+ # Target archs tested working: gfx1030, gfx1031, (Only tested sub_group_size = 32)
+ add_compile_definitions(GGML_SYCL_WARP_SIZE=32)
else()
add_compile_definitions(GGML_SYCL_WARP_SIZE=16)
endif()
@@ -576,6 +585,12 @@ if (GGML_SYCL)
elseif (GGML_SYCL_TARGET STREQUAL "NVIDIA")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsycl-targets=nvptx64-nvidia-cuda")
list(APPEND GGML_EXTRA_LIBS_PRIVATE sycl pthread m dl onemkl)
+ elseif (GGML_SYCL_TARGET STREQUAL "AMD")
+ if (GGML_SYCL_HIP_TARGET STREQUAL "")
+ message(ERROR "Can't enable SYCL hip backend, GGML_SYCL_HIP_TARGET has not been set.")
+ endif()
+ set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsycl-targets=amdgcn-amd-amdhsa -Xsycl-target-backend --offload-arch=${GGML_SYCL_HIP_TARGET}")
+ list(APPEND GGML_EXTRA_LIBS_PRIVATE sycl pthread m dl onemkl)
endif()
endif()
endif()
@@ -1310,7 +1325,7 @@ add_library(ggml
../include/ggml-backend.h
ggml.c
ggml-alloc.c
- ggml-backend.c
+ ggml-backend.cpp
ggml-quants.c
ggml-quants.h
${GGML_SOURCES_CUDA} ${GGML_HEADERS_CUDA}
diff --git a/ggml/src/ggml-backend-impl.h b/ggml/src/ggml-backend-impl.h
index b0d4141cc..470c922fe 100644
--- a/ggml/src/ggml-backend-impl.h
+++ b/ggml/src/ggml-backend-impl.h
@@ -9,145 +9,229 @@ extern "C" {
#endif
//
- // Backend buffer
+ // Backend buffer type
//
- // buffer type
- typedef void * ggml_backend_buffer_type_context_t;
-
struct ggml_backend_buffer_type_i {
- const char * (*GGML_CALL get_name) (ggml_backend_buffer_type_t buft);
+ const char * (*get_name) (ggml_backend_buffer_type_t buft);
// allocate a buffer of this type
- ggml_backend_buffer_t (*GGML_CALL alloc_buffer) (ggml_backend_buffer_type_t buft, size_t size);
+ ggml_backend_buffer_t (*alloc_buffer) (ggml_backend_buffer_type_t buft, size_t size);
// tensor alignment
- size_t (*GGML_CALL get_alignment) (ggml_backend_buffer_type_t buft);
- // max buffer size that can be allocated
- size_t (*GGML_CALL get_max_size) (ggml_backend_buffer_type_t buft);
- // data size needed to allocate the tensor, including padding
- size_t (*GGML_CALL get_alloc_size) (ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor);
- // check if tensor data is in host memory
- bool (*GGML_CALL is_host) (ggml_backend_buffer_type_t buft);
+ size_t (*get_alignment) (ggml_backend_buffer_type_t buft);
+ // (optional) max buffer size that can be allocated (defaults to SIZE_MAX)
+ size_t (*get_max_size) (ggml_backend_buffer_type_t buft);
+ // (optional) data size needed to allocate the tensor, including padding (defaults to ggml_nbytes)
+ size_t (*get_alloc_size)(ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor);
+ // (optional) check if tensor data is in host memory (defaults to false)
+ bool (*is_host) (ggml_backend_buffer_type_t buft);
};
struct ggml_backend_buffer_type {
struct ggml_backend_buffer_type_i iface;
- ggml_backend_buffer_type_context_t context;
+ ggml_backend_dev_t device;
+ void * context;
};
- // buffer
- typedef void * ggml_backend_buffer_context_t;
+ //
+ // Backend buffer
+ //
struct ggml_backend_buffer_i {
- const char * (*GGML_CALL get_name) (ggml_backend_buffer_t buffer);
- void (*GGML_CALL free_buffer) (ggml_backend_buffer_t buffer);
- void * (*GGML_CALL get_base) (ggml_backend_buffer_t buffer);
- void (*GGML_CALL init_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
- void (*GGML_CALL memset_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size);
- void (*GGML_CALL set_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
- void (*GGML_CALL get_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
- bool (*GGML_CALL cpy_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst); // dst is in the buffer, src may be in any buffer
- void (*GGML_CALL clear) (ggml_backend_buffer_t buffer, uint8_t value);
- void (*GGML_CALL reset) (ggml_backend_buffer_t buffer); // reset any internal state due to tensor initialization, such as tensor extras
+ const char * (*get_name) (ggml_backend_buffer_t buffer);
+ // (optional) free the buffer
+ void (*free_buffer) (ggml_backend_buffer_t buffer);
+ // base address of the buffer
+ void * (*get_base) (ggml_backend_buffer_t buffer);
+ // (optional) initialize a tensor in the buffer (eg. add tensor extras)
+ void (*init_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
+ // tensor data access
+ void (*memset_tensor)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size);
+ void (*set_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
+ void (*get_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
+ // (optional) tensor copy: dst is in the buffer, src may be in any buffer, including buffers from a different backend (return false if not supported)
+ bool (*cpy_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst);
+ // clear the entire buffer
+ void (*clear) (ggml_backend_buffer_t buffer, uint8_t value);
+ // (optional) reset any internal state due to tensor initialization, such as tensor extras
+ void (*reset) (ggml_backend_buffer_t buffer);
};
struct ggml_backend_buffer {
struct ggml_backend_buffer_i iface;
ggml_backend_buffer_type_t buft;
- ggml_backend_buffer_context_t context;
+ void * context;
size_t size;
enum ggml_backend_buffer_usage usage;
};
- GGML_CALL ggml_backend_buffer_t ggml_backend_buffer_init(
- ggml_backend_buffer_type_t buft,
- struct ggml_backend_buffer_i iface,
- ggml_backend_buffer_context_t context,
- size_t size);
+ ggml_backend_buffer_t ggml_backend_buffer_init(
+ ggml_backend_buffer_type_t buft,
+ struct ggml_backend_buffer_i iface,
+ void * context,
+ size_t size);
// do not use directly, use ggml_backend_tensor_copy instead
bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst);
+ // multi-buffer
// buffer that contains a collection of buffers
- GGML_CALL ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers);
- GGML_CALL bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer);
- GGML_CALL void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage);
+ ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers);
+ bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer);
+ void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage);
//
- // Backend
+ // Backend (stream)
//
- typedef void * ggml_backend_context_t;
-
struct ggml_backend_i {
- const char * (*GGML_CALL get_name)(ggml_backend_t backend);
+ const char * (*get_name)(ggml_backend_t backend);
- void (*GGML_CALL free)(ggml_backend_t backend);
+ void (*free)(ggml_backend_t backend);
// buffer allocation
- ggml_backend_buffer_type_t (*GGML_CALL get_default_buffer_type)(ggml_backend_t backend);
+ ggml_backend_buffer_type_t (*get_default_buffer_type)(ggml_backend_t backend);
// (optional) asynchronous tensor data access
- void (*GGML_CALL set_tensor_async)(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
- void (*GGML_CALL get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
- bool (*GGML_CALL cpy_tensor_async)(ggml_backend_t backend_src, ggml_backend_t backend_dst, const struct ggml_tensor * src, struct ggml_tensor * dst);
+ void (*set_tensor_async)(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
+ void (*get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
+ bool (*cpy_tensor_async)(ggml_backend_t backend_src, ggml_backend_t backend_dst, const struct ggml_tensor * src, struct ggml_tensor * dst);
// (optional) complete all pending operations
- void (*GGML_CALL synchronize)(ggml_backend_t backend);
+ void (*synchronize)(ggml_backend_t backend);
- // compute graph with a plan (not used currently)
- // create a new plan for a graph
- ggml_backend_graph_plan_t (*GGML_CALL graph_plan_create) (ggml_backend_t backend, const struct ggml_cgraph * cgraph);
- void (*GGML_CALL graph_plan_free) (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
+ // (optional) compute graph with a plan (not used currently)
+ ggml_backend_graph_plan_t (*graph_plan_create) (ggml_backend_t backend, const struct ggml_cgraph * cgraph);
+ void (*graph_plan_free) (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
// update the plan with a new graph - this should be faster than creating a new plan when the graph has the same topology
- void (*GGML_CALL graph_plan_update) (ggml_backend_t backend, ggml_backend_graph_plan_t plan, const struct ggml_cgraph * cgraph);
+ void (*graph_plan_update) (ggml_backend_t backend, ggml_backend_graph_plan_t plan, const struct ggml_cgraph * cgraph);
// compute the graph with the plan
- enum ggml_status (*GGML_CALL graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
+ enum ggml_status (*graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
- // compute graph without a plan (async)
- enum ggml_status (*GGML_CALL graph_compute) (ggml_backend_t backend, struct ggml_cgraph * cgraph);
+ // compute graph (always async if supported by the backend)
+ enum ggml_status (*graph_compute) (ggml_backend_t backend, struct ggml_cgraph * cgraph);
+ // IMPORTANT: these functions have been moved to the device interface and will be removed from the backend interface
+ // new backends should implement the device interface instead
+
+ // These functions are being moved to the device interface
// check if the backend can compute an operation
- bool (*GGML_CALL supports_op)(ggml_backend_t backend, const struct ggml_tensor * op);
+ bool (*supports_op) (ggml_backend_t backend, const struct ggml_tensor * op);
// check if the backend can use tensors allocated in a buffer type
- bool (*GGML_CALL supports_buft)(ggml_backend_t backend, ggml_backend_buffer_type_t buft);
+ bool (*supports_buft)(ggml_backend_t backend, ggml_backend_buffer_type_t buft);
// check if the backend wants to run an operation, even if the weights are allocated in a CPU buffer
// these should be expensive operations with large batch sizes that may benefit from running on this backend
// even if the weight has to be copied from the CPU temporarily
- bool (*GGML_CALL offload_op)(ggml_backend_t backend, const struct ggml_tensor * op);
+ bool (*offload_op) (ggml_backend_t backend, const struct ggml_tensor * op);
// (optional) event synchronization
- // create a new event that can record events on this backend instance
- ggml_backend_event_t (*GGML_CALL event_new) (ggml_backend_t backend);
- void (*GGML_CALL event_free) (ggml_backend_event_t event);
- // record an event on the backend instance that created it
- void (*GGML_CALL event_record) (ggml_backend_event_t event);
- // wait for an event on on a different backend instance
- void (*GGML_CALL event_wait) (ggml_backend_t backend, ggml_backend_event_t event);
- // block until an event is recorded
- void (*GGML_CALL event_synchronize) (ggml_backend_event_t event);
+ // record an event on this stream
+ void (*event_record)(ggml_backend_t backend, ggml_backend_event_t event);
+ // wait for an event on on a different stream
+ void (*event_wait) (ggml_backend_t backend, ggml_backend_event_t event);
};
struct ggml_backend {
ggml_guid_t guid;
-
struct ggml_backend_i iface;
- ggml_backend_context_t context;
+ ggml_backend_dev_t device;
+ void * context;
};
struct ggml_backend_event {
- ggml_backend_t backend;
+ struct ggml_backend_device * device;
void * context;
};
//
- // Backend registry
+ // Backend device
//
- typedef ggml_backend_t (*GGML_CALL ggml_backend_init_fn)(const char * params, void * user_data);
+ // Note: if additional properties are needed, we should add a struct with all of them
+ // the current functions to obtain the properties can remain, since they are more convenient for often used properties
+ struct ggml_backend_device_i {
+ // device name: short identifier for this device, such as "CPU" or "CUDA0"
+ const char * (*get_name)(ggml_backend_dev_t dev);
- GGML_CALL void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data);
+ // device description: short informative description of the device, could be the model name
+ const char * (*get_description)(ggml_backend_dev_t dev);
+
+ // device memory in bytes
+ void (*get_memory)(ggml_backend_dev_t dev, size_t * free, size_t * total);
+
+ // device type
+ enum ggml_backend_dev_type (*get_type)(ggml_backend_dev_t dev);
+
+ // device properties
+ void (*get_props)(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props);
+
+ // backend (stream) initialization
+ ggml_backend_t (*init_backend)(ggml_backend_dev_t dev, const char * params);
+
+ // preferred buffer type
+ ggml_backend_buffer_type_t (*get_buffer_type)(ggml_backend_dev_t dev);
+
+ // (optional) host buffer type (in system memory, typically this is a pinned memory buffer for faster transfers between host and device)
+ ggml_backend_buffer_type_t (*get_host_buffer_type)(ggml_backend_dev_t dev);
+
+ // (optional) buffer from pointer: create a buffer from a host pointer (useful for memory mapped models and importing data from other libraries)
+ ggml_backend_buffer_t (*buffer_from_host_ptr)(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size);
+
+ // check if the backend can compute an operation
+ bool (*supports_op)(ggml_backend_dev_t dev, const struct ggml_tensor * op);
+
+ // check if the backend can use tensors allocated in a buffer type
+ bool (*supports_buft)(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft);
+
+ // check if the backend wants to run an operation, even if the weights are allocated in a CPU buffer
+ // these should be expensive operations with large batch sizes that may benefit from running on this backend
+ // even if the weight has to be copied from the CPU temporarily
+ bool (*offload_op)(ggml_backend_dev_t dev, const struct ggml_tensor * op);
+
+ // (optional) event synchronization
+ ggml_backend_event_t (*event_new) (ggml_backend_dev_t dev);
+ void (*event_free) (ggml_backend_dev_t dev, ggml_backend_event_t event);
+ void (*event_synchronize) (ggml_backend_dev_t dev, ggml_backend_event_t event);
+ };
+
+ struct ggml_backend_device {
+ struct ggml_backend_device_i iface;
+ ggml_backend_reg_t reg;
+ void * context;
+ };
+
+ //
+ // Backend (reg)
+ //
+
+ struct ggml_backend_reg_i {
+ const char * (*get_name)(ggml_backend_reg_t reg);
+
+ // enumerate available devices
+ size_t (*get_device_count)(ggml_backend_reg_t reg);
+ ggml_backend_dev_t (*get_device)(ggml_backend_reg_t reg, size_t index);
+
+ // (optional) get a pointer to a function in the backend
+ // backends can add custom functions that are not part of the standard ggml-backend interface
+ void * (*get_proc_address)(ggml_backend_reg_t reg, const char * name);
+
+ // (optional) set the log callback for the backend
+ void (*set_log_callback)(ggml_backend_reg_t reg, ggml_log_callback log_callback, void * user_data);
+ };
+
+ struct ggml_backend_reg {
+ // int api_version; // TODO: for dynamic loading
+ struct ggml_backend_reg_i iface;
+ void * context;
+ };
+
+
+ // Internal backend registry API
+ void ggml_backend_register(ggml_backend_reg_t reg);
+ void ggml_backend_device_register(ggml_backend_dev_t device);
+ // TODO: backends can be loaded as a dynamic library, in which case it needs to export this function
+ // typedef ggml_backend_register_t * (*ggml_backend_init)(void);
#ifdef __cplusplus
}
diff --git a/ggml/src/ggml-backend.c b/ggml/src/ggml-backend.cpp
similarity index 77%
rename from ggml/src/ggml-backend.c
rename to ggml/src/ggml-backend.cpp
index ba280e064..73a2b24f8 100644
--- a/ggml/src/ggml-backend.c
+++ b/ggml/src/ggml-backend.cpp
@@ -1,3 +1,5 @@
+// Note: porting this file to C++ is a work in progress
+
#include "ggml-backend-impl.h"
#include "ggml-alloc.h"
#include "ggml-impl.h"
@@ -9,8 +11,7 @@
#include
#include
-
-#define MAX(a, b) ((a) > (b) ? (a) : (b))
+#include
// backend buffer type
@@ -18,7 +19,7 @@ const char * ggml_backend_buft_name(ggml_backend_buffer_type_t buft) {
return buft->iface.get_name(buft);
}
-GGML_CALL ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
+ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
return buft->iface.alloc_buffer(buft, size);
}
@@ -34,7 +35,7 @@ size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) {
return SIZE_MAX;
}
-GGML_CALL size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor) {
+size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor) {
// get_alloc_size is optional, defaults to ggml_nbytes
if (buft->iface.get_alloc_size) {
size_t size = buft->iface.get_alloc_size(buft, tensor);
@@ -51,16 +52,18 @@ bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) {
return false;
}
+ggml_backend_dev_t ggml_backend_buft_get_device(ggml_backend_buffer_type_t buft) {
+ return buft->device;
+}
+
// backend buffer
-GGML_CALL ggml_backend_buffer_t ggml_backend_buffer_init(
- ggml_backend_buffer_type_t buft,
- struct ggml_backend_buffer_i iface,
- ggml_backend_buffer_context_t context,
- size_t size) {
- ggml_backend_buffer_t buffer = malloc(sizeof(struct ggml_backend_buffer));
-
- (*buffer) = (struct ggml_backend_buffer) {
+ggml_backend_buffer_t ggml_backend_buffer_init(
+ ggml_backend_buffer_type_t buft,
+ struct ggml_backend_buffer_i iface,
+ void * context,
+ size_t size) {
+ ggml_backend_buffer_t buffer = new ggml_backend_buffer {
/* .interface = */ iface,
/* .buft = */ buft,
/* .context = */ context,
@@ -83,7 +86,7 @@ void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
if (buffer->iface.free_buffer != NULL) {
buffer->iface.free_buffer(buffer);
}
- free(buffer);
+ delete buffer;
}
size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) {
@@ -98,14 +101,14 @@ void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
return base;
}
-GGML_CALL void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
+void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
// init_tensor is optional
if (buffer->iface.init_tensor) {
buffer->iface.init_tensor(buffer, tensor);
}
}
-size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer) {
+size_t ggml_backend_buffer_get_alignment(ggml_backend_buffer_t buffer) {
return ggml_backend_buft_get_alignment(ggml_backend_buffer_get_type(buffer));
}
@@ -218,7 +221,7 @@ void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_ten
}
}
-GGML_CALL void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
+void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
GGML_ASSERT(buf != NULL && "tensor buffer not set");
@@ -232,7 +235,7 @@ GGML_CALL void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void *
buf->iface.set_tensor(buf, tensor, data, offset, size);
}
-GGML_CALL void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
+void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
GGML_ASSERT(buf != NULL && "tensor buffer not set");
@@ -246,7 +249,7 @@ GGML_CALL void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void *
buf->iface.get_tensor(buf, tensor, data, offset, size);
}
-GGML_API GGML_CALL void ggml_backend_tensor_memset(struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
+GGML_API void ggml_backend_tensor_memset(struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
GGML_ASSERT(buf != NULL && "tensor buffer not set");
@@ -299,20 +302,39 @@ enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct
}
bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
+ // helper to ease transition to device interface
+ if (backend->device) {
+ return ggml_backend_dev_supports_op(backend->device, op);
+ }
+
return backend->iface.supports_op(backend, op);
}
bool ggml_backend_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
+ // helper to ease transition to device interface
+ if (backend->device) {
+ return ggml_backend_dev_supports_buft(backend->device, buft);
+ }
+
return backend->iface.supports_buft(backend, buft);
}
bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op) {
+ // helper to ease transition to device interface
+ if (backend->device) {
+ return ggml_backend_dev_offload_op(backend->device, op);
+ }
+
if (backend->iface.offload_op != NULL) {
return backend->iface.offload_op(backend, op);
}
return false;
}
+ggml_backend_dev_t ggml_backend_get_device(ggml_backend_t backend) {
+ return backend->device;
+}
+
// backend copy
static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
@@ -375,30 +397,31 @@ void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t b
// events
-ggml_backend_event_t ggml_backend_event_new(ggml_backend_t backend) {
- if (backend->iface.event_new == NULL) {
+ggml_backend_event_t ggml_backend_event_new(ggml_backend_dev_t device) {
+ // null device is allowed for the transition period to the device interface
+ if (device == NULL || device->iface.event_new == NULL) {
return NULL;
}
- return backend->iface.event_new(backend);
+ return device->iface.event_new(device);
}
void ggml_backend_event_free(ggml_backend_event_t event) {
if (event == NULL) {
return;
}
- event->backend->iface.event_free(event);
+ event->device->iface.event_free(event->device, event);
}
-void ggml_backend_event_record(ggml_backend_event_t event) {
- GGML_ASSERT(event->backend->iface.event_record != NULL);
+void ggml_backend_event_record(ggml_backend_event_t event, ggml_backend_t backend) {
+ GGML_ASSERT(backend->iface.event_record != NULL);
- event->backend->iface.event_record(event);
+ backend->iface.event_record(backend, event);
}
void ggml_backend_event_synchronize(ggml_backend_event_t event) {
- GGML_ASSERT(event->backend->iface.event_synchronize != NULL);
+ GGML_ASSERT(event->device->iface.event_synchronize);
- event->backend->iface.event_synchronize(event);
+ event->device->iface.event_synchronize(event->device, event);
}
void ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
@@ -407,170 +430,236 @@ void ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event)
backend->iface.event_wait(backend, event);
}
-// backend registry
+// Backend device
-#define GGML_REG_MAX_BACKENDS 64
+const char * ggml_backend_dev_name(ggml_backend_dev_t device) {
+ return device->iface.get_name(device);
+}
-struct ggml_backend_reg {
- char name[128];
- ggml_backend_init_fn init_fn;
- ggml_backend_buffer_type_t default_buffer_type;
- void * user_data;
-};
+const char * ggml_backend_dev_description(ggml_backend_dev_t device) {
+ return device->iface.get_description(device);
+}
-static struct ggml_backend_reg ggml_backend_registry[GGML_REG_MAX_BACKENDS];
-static size_t ggml_backend_registry_count = 0;
+void ggml_backend_dev_memory(ggml_backend_dev_t device, size_t * free, size_t * total) {
+ device->iface.get_memory(device, free, total);
+}
-GGML_CALL static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data);
+enum ggml_backend_dev_type ggml_backend_dev_type(ggml_backend_dev_t device) {
+ return device->iface.get_type(device);
+}
-GGML_CALL static void ggml_backend_registry_init(void) {
- static bool initialized = false;
+void ggml_backend_dev_get_props(ggml_backend_dev_t device, struct ggml_backend_dev_props * props) {
+ device->iface.get_props(device, props);
+}
- if (initialized) {
- return;
+ggml_backend_reg_t ggml_backend_dev_backend_reg(ggml_backend_dev_t device) {
+ return device->reg;
+}
+
+ggml_backend_t ggml_backend_dev_init(ggml_backend_dev_t device, const char * params) {
+ return device->iface.init_backend(device, params);
+}
+
+ggml_backend_buffer_type_t ggml_backend_dev_buffer_type(ggml_backend_dev_t device) {
+ return device->iface.get_buffer_type(device);
+}
+
+ggml_backend_buffer_type_t ggml_backend_dev_host_buffer_type(ggml_backend_dev_t device) {
+ return device->iface.get_host_buffer_type(device);
+}
+
+ggml_backend_buffer_t ggml_backend_dev_buffer_from_host_ptr(ggml_backend_dev_t device, void * ptr, size_t size, size_t max_tensor_size) {
+ return device->iface.buffer_from_host_ptr(device, ptr, size, max_tensor_size);
+}
+
+bool ggml_backend_dev_supports_op(ggml_backend_dev_t device, const struct ggml_tensor * op) {
+ return device->iface.supports_op(device, op);
+}
+
+bool ggml_backend_dev_supports_buft(ggml_backend_dev_t device, ggml_backend_buffer_type_t buft) {
+ return device->iface.supports_buft(device, buft);
+}
+
+bool ggml_backend_dev_offload_op(ggml_backend_dev_t device, const struct ggml_tensor * op) {
+ return device->iface.offload_op(device, op);
+}
+
+// Backend (reg)
+
+const char * ggml_backend_reg_name(ggml_backend_reg_t reg) {
+ return reg->iface.get_name(reg);
+}
+
+size_t ggml_backend_reg_dev_count(ggml_backend_reg_t reg) {
+ return reg->iface.get_device_count(reg);
+}
+
+ggml_backend_dev_t ggml_backend_reg_dev_get(ggml_backend_reg_t reg, size_t index) {
+ return reg->iface.get_device(reg, index);
+}
+
+void * ggml_backend_reg_get_proc_address(ggml_backend_reg_t reg, const char * name) {
+ if (!reg->iface.get_proc_address) {
+ return NULL;
+ }
+ return reg->iface.get_proc_address(reg, name);
+}
+
+void ggml_backend_reg_set_log_callback(ggml_backend_reg_t reg, ggml_log_callback log_callback, void * user_data) {
+ if (reg->iface.set_log_callback) {
+ reg->iface.set_log_callback(reg, log_callback, user_data);
+ }
+}
+
+// Backend registry
+
+#ifdef GGML_USE_CUDA
+#include "ggml-cuda.h"
+#endif
+
+struct ggml_backend_registry {
+ std::vector backends;
+ std::vector devices;
+
+ ggml_backend_registry() {
+#ifdef GGML_USE_CUDA
+ register_backend(ggml_backend_cuda_reg());
+#endif
+
+ register_backend(ggml_backend_cpu_reg());
+
+ // TODO: sycl, metal, vulkan, kompute, cann
}
- initialized = true;
-
- ggml_backend_register("CPU", ggml_backend_reg_cpu_init, ggml_backend_cpu_buffer_type(), NULL);
-
- // add forward decls here to avoid including the backend headers
-#ifdef GGML_USE_CUDA
- extern GGML_CALL void ggml_backend_cuda_reg_devices(void);
- ggml_backend_cuda_reg_devices();
-#endif
-
-#ifdef GGML_USE_SYCL
- extern void ggml_backend_sycl_reg_devices(void);
- ggml_backend_sycl_reg_devices();
-#endif
-
-#ifdef GGML_USE_METAL
- extern GGML_CALL ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data);
- extern GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
- ggml_backend_register("Metal", ggml_backend_reg_metal_init, ggml_backend_metal_buffer_type(), NULL);
-#endif
-
-#ifdef GGML_USE_VULKAN
- extern GGML_CALL int ggml_backend_vk_reg_devices(void);
- ggml_backend_vk_reg_devices();
-#endif
-
-#ifdef GGML_USE_KOMPUTE
- extern GGML_CALL void ggml_backend_kompute_reg_devices(void);
- ggml_backend_kompute_reg_devices();
-#endif
-
-#ifdef GGML_USE_CANN
- extern GGML_CALL int ggml_backend_cann_reg_devices(void);
- ggml_backend_cann_reg_devices();
-#endif
-}
-
-GGML_CALL void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data) {
- GGML_ASSERT(ggml_backend_registry_count < GGML_REG_MAX_BACKENDS);
-
- size_t id = ggml_backend_registry_count;
-
- ggml_backend_registry[id] = (struct ggml_backend_reg) {
- /* .name = */ {0},
- /* .fn = */ init_fn,
- /* .default_buffer_type = */ default_buffer_type,
- /* .user_data = */ user_data,
- };
-
- snprintf(ggml_backend_registry[id].name, sizeof(ggml_backend_registry[id].name), "%s", name);
-
+ void register_backend(ggml_backend_reg_t reg) {
#ifndef NDEBUG
- fprintf(stderr, "%s: registered backend %s\n", __func__, name);
+ fprintf(stderr, "%s: registered backend %s (%zu devices)\n",
+ __func__, ggml_backend_reg_name(reg), ggml_backend_reg_dev_count(reg));
#endif
-
- ggml_backend_registry_count++;
-}
-
-size_t ggml_backend_reg_get_count(void) {
- ggml_backend_registry_init();
-
- return ggml_backend_registry_count;
-}
-
-size_t ggml_backend_reg_find_by_name(const char * name) {
- ggml_backend_registry_init();
-
- for (size_t i = 0; i < ggml_backend_registry_count; i++) {
- // TODO: case insensitive in a portable way
- if (strcmp(ggml_backend_registry[i].name, name) == 0) {
- return i;
+ backends.push_back(reg);
+ for (size_t i = 0; i < ggml_backend_reg_dev_count(reg); i++) {
+ register_device(ggml_backend_reg_dev_get(reg, i));
}
}
- // not found
- return SIZE_MAX;
+ void register_device(ggml_backend_dev_t device) {
+#ifndef NDEBUG
+ fprintf(stderr, "%s: registered device %s (%s)\n", __func__, ggml_backend_dev_name(device), ggml_backend_dev_description(device));
+#endif
+ devices.push_back(device);
+ }
+};
+
+static ggml_backend_registry & get_reg() {
+ static ggml_backend_registry reg;
+ return reg;
}
-// init from backend:params string
-ggml_backend_t ggml_backend_reg_init_backend_from_str(const char * backend_str) {
- ggml_backend_registry_init();
+// Internal API
+void ggml_backend_register(ggml_backend_reg_t reg) {
+ get_reg().register_backend(reg);
+}
- const char * params = strchr(backend_str, ':');
- char backend_name[128];
- if (params == NULL) {
- snprintf(backend_name, sizeof(backend_name), "%s", backend_str);
- params = "";
- } else {
- snprintf(backend_name, sizeof(backend_name), "%.*s", (int)(params - backend_str), backend_str);
- params++;
+void ggml_backend_device_register(ggml_backend_dev_t device) {
+ get_reg().register_device(device);
+}
+
+// Backend (reg) enumeration
+size_t ggml_backend_reg_count() {
+ return get_reg().backends.size();
+}
+
+ggml_backend_reg_t ggml_backend_reg_get(size_t index) {
+ GGML_ASSERT(index < ggml_backend_reg_count());
+ return get_reg().backends[index];
+}
+
+ggml_backend_reg_t ggml_backend_reg_by_name(const char * name) {
+ for (size_t i = 0; i < ggml_backend_reg_count(); i++) {
+ ggml_backend_reg_t reg = ggml_backend_reg_get(i);
+ if (strcmp(ggml_backend_reg_name(reg), name) == 0) {
+ return reg;
+ }
}
+ return NULL;
+}
- size_t backend_i = ggml_backend_reg_find_by_name(backend_name);
+// Device enumeration
+size_t ggml_backend_dev_count() {
+ return get_reg().devices.size();
+}
- if (backend_i == SIZE_MAX) {
- fprintf(stderr, "%s: backend %s not found\n", __func__, backend_name);
+ggml_backend_dev_t ggml_backend_dev_get(size_t index) {
+ GGML_ASSERT(index < ggml_backend_dev_count());
+ return get_reg().devices[index];
+}
+
+ggml_backend_dev_t ggml_backend_dev_by_name(const char * name) {
+ for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
+ ggml_backend_dev_t dev = ggml_backend_dev_get(i);
+ if (strcmp(ggml_backend_dev_name(dev), name) == 0) {
+ return dev;
+ }
+ }
+ return NULL;
+}
+
+ggml_backend_dev_t ggml_backend_dev_by_type(enum ggml_backend_dev_type type) {
+ for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
+ ggml_backend_dev_t dev = ggml_backend_dev_get(i);
+ if (ggml_backend_dev_type(dev) == type) {
+ return dev;
+ }
+ }
+ return NULL;
+}
+
+void ggml_backend_set_log_callback(ggml_log_callback log_callback, void * user_data) {
+ for (size_t i = 0; i < ggml_backend_reg_count(); i++) {
+ ggml_backend_reg_t reg = ggml_backend_reg_get(i);
+ ggml_backend_reg_set_log_callback(reg, log_callback, user_data);
+ }
+}
+
+// Convenience functions
+ggml_backend_t ggml_backend_init_by_name(const char * name, const char * params) {
+ ggml_backend_dev_t dev = ggml_backend_dev_by_name(name);
+ if (!dev) {
return NULL;
}
-
- return ggml_backend_reg_init_backend(backend_i, params);
+ return ggml_backend_dev_init(dev, params);
}
-const char * ggml_backend_reg_get_name(size_t i) {
- ggml_backend_registry_init();
-
- GGML_ASSERT(i < ggml_backend_registry_count);
- return ggml_backend_registry[i].name;
+ggml_backend_t ggml_backend_init_by_type(enum ggml_backend_dev_type type, const char * params) {
+ ggml_backend_dev_t dev = ggml_backend_dev_by_type(type);
+ if (!dev) {
+ return NULL;
+ }
+ return ggml_backend_dev_init(dev, params);
}
-ggml_backend_t ggml_backend_reg_init_backend(size_t i, const char * params) {
- ggml_backend_registry_init();
-
- GGML_ASSERT(i < ggml_backend_registry_count);
- return ggml_backend_registry[i].init_fn(params, ggml_backend_registry[i].user_data);
-}
-
-ggml_backend_buffer_type_t ggml_backend_reg_get_default_buffer_type(size_t i) {
- ggml_backend_registry_init();
-
- GGML_ASSERT(i < ggml_backend_registry_count);
- return ggml_backend_registry[i].default_buffer_type;
-}
-
-ggml_backend_buffer_t ggml_backend_reg_alloc_buffer(size_t i, size_t size) {
- ggml_backend_registry_init();
-
- GGML_ASSERT(i < ggml_backend_registry_count);
- return ggml_backend_buft_alloc_buffer(ggml_backend_registry[i].default_buffer_type, size);
+ggml_backend_t ggml_backend_init_best(void) {
+ ggml_backend_dev_t dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_GPU_FULL);
+ if (!dev) {
+ dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU_FULL);
+ }
+ if (!dev) {
+ return NULL;
+ }
+ return ggml_backend_dev_init(dev, NULL);
}
// backend CPU
static const size_t TENSOR_ALIGNMENT = 32; // required for mmap as gguf only guarantees 32-byte alignment
-GGML_CALL static const char * ggml_backend_cpu_buffer_name(ggml_backend_buffer_t buffer) {
+static const char * ggml_backend_cpu_buffer_get_name(ggml_backend_buffer_t buffer) {
return "CPU";
GGML_UNUSED(buffer);
}
-GGML_CALL static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
+static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
uintptr_t data = (uintptr_t)buffer->context;
// align the buffer
@@ -581,29 +670,29 @@ GGML_CALL static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t b
return (void *)data;
}
-GGML_CALL static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
+static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
free(buffer->context);
}
-GGML_CALL static void ggml_backend_cpu_buffer_memset_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
+static void ggml_backend_cpu_buffer_memset_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
memset((char *)tensor->data + offset, value, size);
GGML_UNUSED(buffer);
}
-GGML_CALL static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
+static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
memcpy((char *)tensor->data + offset, data, size);
GGML_UNUSED(buffer);
}
-GGML_CALL static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
+static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
memcpy(data, (const char *)tensor->data + offset, size);
GGML_UNUSED(buffer);
}
-GGML_CALL static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
+static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
if (ggml_backend_buffer_is_host(src->buffer)) {
memcpy(dst->data, src->data, ggml_nbytes(src));
return true;
@@ -613,12 +702,12 @@ GGML_CALL static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t b
GGML_UNUSED(buffer);
}
-GGML_CALL static void ggml_backend_cpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
+static void ggml_backend_cpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
memset(buffer->context, value, buffer->size);
}
-static struct ggml_backend_buffer_i cpu_backend_buffer_i = {
- /* .get_name = */ ggml_backend_cpu_buffer_name,
+static const struct ggml_backend_buffer_i ggml_backend_cpu_buffer_i = {
+ /* .get_name = */ ggml_backend_cpu_buffer_get_name,
/* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer,
/* .get_base = */ ggml_backend_cpu_buffer_get_base,
/* .init_tensor = */ NULL, // no initialization required
@@ -630,9 +719,8 @@ static struct ggml_backend_buffer_i cpu_backend_buffer_i = {
/* .reset = */ NULL,
};
-// for buffers from ptr, free is not called
-static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = {
- /* .get_name = */ ggml_backend_cpu_buffer_name,
+static const struct ggml_backend_buffer_i ggml_backend_cpu_buffer_from_ptr_i = {
+ /* .get_name = */ ggml_backend_cpu_buffer_get_name,
/* .free_buffer = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed
/* .get_base = */ ggml_backend_cpu_buffer_get_base,
/* .init_tensor = */ NULL, // no initialization required
@@ -644,13 +732,13 @@ static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = {
/* .reset = */ NULL,
};
-GGML_CALL static const char * ggml_backend_cpu_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
+static const char * ggml_backend_cpu_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
return "CPU";
GGML_UNUSED(buft);
}
-GGML_CALL static ggml_backend_buffer_t ggml_backend_cpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
+static ggml_backend_buffer_t ggml_backend_cpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
size += TENSOR_ALIGNMENT; // malloc may return an address that is not aligned
void * data = malloc(size); // TODO: use GGML_ALIGNED_MALLOC (move to ggml-impl.h)
if (data == NULL) {
@@ -658,24 +746,24 @@ GGML_CALL static ggml_backend_buffer_t ggml_backend_cpu_buffer_type_alloc_buffer
return NULL;
}
- return ggml_backend_buffer_init(buft, cpu_backend_buffer_i, data, size);
+ return ggml_backend_buffer_init(buft, ggml_backend_cpu_buffer_i, data, size);
}
-GGML_CALL static size_t ggml_backend_cpu_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
+static size_t ggml_backend_cpu_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
return TENSOR_ALIGNMENT;
GGML_UNUSED(buft);
}
-GGML_CALL static bool ggml_backend_cpu_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
+static bool ggml_backend_cpu_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
return true;
GGML_UNUSED(buft);
}
-GGML_CALL ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) {
+ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) {
static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type = {
- /* .iface = */ {
+ /* .iface = */ {
/* .get_name = */ ggml_backend_cpu_buffer_type_get_name,
/* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
@@ -683,6 +771,7 @@ GGML_CALL ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) {
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
/* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
},
+ /* .device = */ ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0),
/* .context = */ NULL,
};
@@ -695,23 +784,23 @@ GGML_CALL ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) {
#include
-GGML_CALL static const char * ggml_backend_cpu_hbm_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
+static const char * ggml_backend_cpu_hbm_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
return "CPU_HBM";
GGML_UNUSED(buft);
}
-GGML_CALL static const char * ggml_backend_cpu_hbm_buffer_get_name(ggml_backend_buffer_t buf) {
+static const char * ggml_backend_cpu_hbm_buffer_get_name(ggml_backend_buffer_t buf) {
return "CPU_HBM";
GGML_UNUSED(buf);
}
-GGML_CALL static void ggml_backend_cpu_hbm_buffer_free_buffer(ggml_backend_buffer_t buffer) {
+static void ggml_backend_cpu_hbm_buffer_free_buffer(ggml_backend_buffer_t buffer) {
hbw_free(buffer->context);
}
-GGML_CALL static ggml_backend_buffer_t ggml_backend_cpu_hbm_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
+static ggml_backend_buffer_t ggml_backend_cpu_hbm_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
//void * ptr = hbw_malloc(size);
void * ptr;
int result = hbw_posix_memalign(&ptr, ggml_backend_cpu_buffer_type_get_alignment(buft), size);
@@ -749,27 +838,27 @@ struct ggml_backend_cpu_context {
int n_threads;
ggml_threadpool_t threadpool;
- void * work_data;
+ uint8_t * work_data;
size_t work_size;
ggml_abort_callback abort_callback;
void * abort_callback_data;
};
-GGML_CALL static const char * ggml_backend_cpu_name(ggml_backend_t backend) {
+static const char * ggml_backend_cpu_get_name(ggml_backend_t backend) {
return "CPU";
GGML_UNUSED(backend);
}
-GGML_CALL static void ggml_backend_cpu_free(ggml_backend_t backend) {
+static void ggml_backend_cpu_free(ggml_backend_t backend) {
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
- free(cpu_ctx->work_data);
- free(cpu_ctx);
- free(backend);
+ delete[] cpu_ctx->work_data;
+ delete cpu_ctx;
+ delete backend;
}
-GGML_CALL static ggml_backend_buffer_type_t ggml_backend_cpu_get_default_buffer_type(ggml_backend_t backend) {
+static ggml_backend_buffer_type_t ggml_backend_cpu_get_default_buffer_type(ggml_backend_t backend) {
return ggml_backend_cpu_buffer_type();
GGML_UNUSED(backend);
@@ -780,18 +869,18 @@ struct ggml_backend_plan_cpu {
struct ggml_cgraph cgraph;
};
-GGML_CALL static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_t backend, const struct ggml_cgraph * cgraph) {
+static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_t backend, const struct ggml_cgraph * cgraph) {
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
- struct ggml_backend_plan_cpu * cpu_plan = malloc(sizeof(struct ggml_backend_plan_cpu));
+ struct ggml_backend_plan_cpu * cpu_plan = new ggml_backend_plan_cpu;
cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads, cpu_ctx->threadpool);
cpu_plan->cgraph = *cgraph; // FIXME: deep copy
if (cpu_plan->cplan.work_size > 0) {
- cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size);
+ cpu_plan->cplan.work_data = new uint8_t[cpu_plan->cplan.work_size];
if (cpu_plan->cplan.work_data == NULL) {
- free(cpu_plan);
+ delete cpu_plan;
return NULL;
}
}
@@ -802,16 +891,16 @@ GGML_CALL static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(gg
return cpu_plan;
}
-GGML_CALL static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
+static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
- free(cpu_plan->cplan.work_data);
- free(cpu_plan);
+ delete[] cpu_plan->cplan.work_data;
+ delete cpu_plan;
GGML_UNUSED(backend);
}
-GGML_CALL static enum ggml_status ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
+static enum ggml_status ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
return ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan);
@@ -819,21 +908,21 @@ GGML_CALL static enum ggml_status ggml_backend_cpu_graph_plan_compute(ggml_backe
GGML_UNUSED(backend);
}
-GGML_CALL static enum ggml_status ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
+static enum ggml_status ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads, cpu_ctx->threadpool);
if (cpu_ctx->work_size < cplan.work_size) {
- free(cpu_ctx->work_data);
- cpu_ctx->work_data = malloc(cplan.work_size);
+ delete[] cpu_ctx->work_data;
+ cpu_ctx->work_data = new uint8_t[cplan.work_size];
if (cpu_ctx->work_data == NULL) {
cpu_ctx->work_size = 0;
return GGML_STATUS_ALLOC_FAILED;
}
cpu_ctx->work_size = cplan.work_size;
}
- cplan.work_data = cpu_ctx->work_data;
+ cplan.work_data = (uint8_t *)cpu_ctx->work_data;
cplan.abort_callback = cpu_ctx->abort_callback;
cplan.abort_callback_data = cpu_ctx->abort_callback_data;
@@ -841,35 +930,8 @@ GGML_CALL static enum ggml_status ggml_backend_cpu_graph_compute(ggml_backend_t
return ggml_graph_compute(cgraph, &cplan);
}
-GGML_CALL static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
- switch (op->op) {
- case GGML_OP_CPY:
- return
- op->type != GGML_TYPE_IQ2_XXS &&
- op->type != GGML_TYPE_IQ2_XS &&
- op->type != GGML_TYPE_IQ1_S &&
- op->type != GGML_TYPE_IQ1_M; // missing type_traits.from_float
- case GGML_OP_MUL_MAT:
- return op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == ggml_internal_get_type_traits(op->src[0]->type).vec_dot_type;
- case GGML_OP_ROPE_BACK:
- return op->src[2] == NULL && (op->op_params[2] & 4) == 0;
- case GGML_OP_IM2COL_BACK:
- return op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32;
- default:
- return true;
- }
-
- GGML_UNUSED(backend);
-}
-
-GGML_CALL static bool ggml_backend_cpu_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
- return ggml_backend_buft_is_host(buft);
-
- GGML_UNUSED(backend);
-}
-
-static struct ggml_backend_i cpu_backend_i = {
- /* .get_name = */ ggml_backend_cpu_name,
+static const struct ggml_backend_i ggml_backend_cpu_i = {
+ /* .get_name = */ ggml_backend_cpu_get_name,
/* .free = */ ggml_backend_cpu_free,
/* .get_default_buffer_type = */ ggml_backend_cpu_get_default_buffer_type,
/* .set_tensor_async = */ NULL,
@@ -881,14 +943,11 @@ static struct ggml_backend_i cpu_backend_i = {
/* .graph_plan_update = */ NULL,
/* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute,
/* .graph_compute = */ ggml_backend_cpu_graph_compute,
- /* .supports_op = */ ggml_backend_cpu_supports_op,
- /* .supports_buft = */ ggml_backend_cpu_supports_buft,
+ /* .supports_op = */ NULL,
+ /* .supports_buft = */ NULL,
/* .offload_op = */ NULL,
- /* .event_new = */ NULL,
- /* .event_free = */ NULL,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
- /* .event_synchronize = */ NULL,
};
static ggml_guid_t ggml_backend_cpu_guid(void) {
@@ -897,7 +956,7 @@ static ggml_guid_t ggml_backend_cpu_guid(void) {
}
ggml_backend_t ggml_backend_cpu_init(void) {
- struct ggml_backend_cpu_context * ctx = malloc(sizeof(struct ggml_backend_cpu_context));
+ struct ggml_backend_cpu_context * ctx = new ggml_backend_cpu_context;
if (ctx == NULL) {
return NULL;
}
@@ -909,21 +968,22 @@ ggml_backend_t ggml_backend_cpu_init(void) {
ctx->abort_callback = NULL;
ctx->abort_callback_data = NULL;
- ggml_backend_t cpu_backend = malloc(sizeof(struct ggml_backend));
+ ggml_backend_t cpu_backend = new ggml_backend {
+ /* .guid = */ ggml_backend_cpu_guid(),
+ /* .interface = */ ggml_backend_cpu_i,
+ /* .device = */ ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0),
+ /* .context = */ ctx,
+ };
+
if (cpu_backend == NULL) {
- free(ctx);
+ delete ctx;
return NULL;
}
- *cpu_backend = (struct ggml_backend) {
- /* .guid = */ ggml_backend_cpu_guid(),
- /* .interface = */ cpu_backend_i,
- /* .context = */ ctx
- };
return cpu_backend;
}
-GGML_CALL bool ggml_backend_is_cpu(ggml_backend_t backend) {
+bool ggml_backend_is_cpu(ggml_backend_t backend) {
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cpu_guid());
}
@@ -954,16 +1014,163 @@ void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_
ctx->abort_callback_data = abort_callback_data;
}
-GGML_CALL ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size) {
+ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size) {
GGML_ASSERT((uintptr_t)ptr % TENSOR_ALIGNMENT == 0 && "buffer pointer must be aligned");
- return ggml_backend_buffer_init(ggml_backend_cpu_buffer_type(), cpu_backend_buffer_i_from_ptr, ptr, size);
+ return ggml_backend_buffer_init(ggml_backend_cpu_buffer_type(), ggml_backend_cpu_buffer_from_ptr_i, ptr, size);
}
-GGML_CALL static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data) {
+////////////////////////
+
+static const char * ggml_backend_cpu_device_get_name(ggml_backend_dev_t dev) {
+ return "CPU";
+
+ GGML_UNUSED(dev);
+}
+
+static const char * ggml_backend_cpu_device_get_description(ggml_backend_dev_t dev) {
+ // TODO
+ return "CPU";
+
+ GGML_UNUSED(dev);
+}
+
+static void ggml_backend_cpu_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
+ // TODO
+ *free = 0;
+ *total = 0;
+
+ GGML_UNUSED(dev);
+}
+
+static enum ggml_backend_dev_type ggml_backend_cpu_device_get_type(ggml_backend_dev_t dev) {
+ return GGML_BACKEND_DEVICE_TYPE_CPU_FULL;
+
+ GGML_UNUSED(dev);
+}
+
+static void ggml_backend_cpu_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
+ props->name = ggml_backend_cpu_device_get_name(dev);
+ props->description = ggml_backend_cpu_device_get_description(dev);
+ props->type = ggml_backend_cpu_device_get_type(dev);
+ ggml_backend_cpu_device_get_memory(dev, &props->memory_free, &props->memory_total);
+ props->caps = {
+ /* async */ false,
+ /* host_buffer */ false,
+ /* events */ false,
+ };
+}
+
+static ggml_backend_t ggml_backend_cpu_device_init(ggml_backend_dev_t dev, const char * params) {
return ggml_backend_cpu_init();
+ GGML_UNUSED(dev);
GGML_UNUSED(params);
- GGML_UNUSED(user_data);
+}
+
+static ggml_backend_buffer_type_t ggml_backend_cpu_device_get_buffer_type(ggml_backend_dev_t dev) {
+ return ggml_backend_cpu_buffer_type();
+
+ GGML_UNUSED(dev);
+}
+
+static ggml_backend_buffer_t ggml_backend_cpu_device_buffer_from_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
+ return ggml_backend_cpu_buffer_from_ptr(ptr, size);
+
+ GGML_UNUSED(dev);
+ GGML_UNUSED(max_tensor_size);
+}
+
+static bool ggml_backend_cpu_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
+ switch (op->op) {
+ case GGML_OP_CPY:
+ return
+ op->type != GGML_TYPE_IQ2_XXS &&
+ op->type != GGML_TYPE_IQ2_XS &&
+ op->type != GGML_TYPE_IQ1_S &&
+ op->type != GGML_TYPE_IQ1_M; // missing type_traits.from_float
+ case GGML_OP_MUL_MAT:
+ return op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == ggml_internal_get_type_traits(op->src[0]->type).vec_dot_type;
+ case GGML_OP_ROPE_BACK:
+ return op->src[2] == NULL && (op->op_params[2] & 4) == 0;
+ case GGML_OP_IM2COL_BACK:
+ return op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32;
+ case GGML_OP_OUT_PROD:
+ return (op->src[0]->type == GGML_TYPE_F32 || ggml_is_quantized(op->src[0]->type)) && op->src[1]->type == GGML_TYPE_F32;
+ default:
+ return true;
+ }
+
+ GGML_UNUSED(dev);
+}
+
+static bool ggml_backend_cpu_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
+ return ggml_backend_buft_is_host(buft);
+
+ GGML_UNUSED(dev);
+}
+
+static const struct ggml_backend_device_i ggml_backend_cpu_device_i = {
+ /* .get_name = */ ggml_backend_cpu_device_get_name,
+ /* .get_description = */ ggml_backend_cpu_device_get_description,
+ /* .get_memory = */ ggml_backend_cpu_device_get_memory,
+ /* .get_type = */ ggml_backend_cpu_device_get_type,
+ /* .get_props = */ ggml_backend_cpu_device_get_props,
+ /* .init_backend = */ ggml_backend_cpu_device_init,
+ /* .get_buffer_type = */ ggml_backend_cpu_device_get_buffer_type,
+ /* .get_host_buffer_type = */ NULL,
+ /* .buffer_from_host_ptr = */ ggml_backend_cpu_device_buffer_from_ptr,
+ /* .supports_op = */ ggml_backend_cpu_device_supports_op,
+ /* .supports_buft = */ ggml_backend_cpu_device_supports_buft,
+ /* .offload_op = */ NULL,
+ /* .event_new = */ NULL,
+ /* .event_free = */ NULL,
+ /* .event_synchronize = */ NULL,
+};
+
+////////////////////////
+
+static const char * ggml_backend_cpu_reg_get_name(ggml_backend_reg_t reg) {
+ return "CPU";
+
+ GGML_UNUSED(reg);
+}
+
+static size_t ggml_backend_cpu_reg_get_device_count(ggml_backend_reg_t reg) {
+ return 1;
+
+ GGML_UNUSED(reg);
+}
+
+static ggml_backend_dev_t ggml_backend_cpu_reg_get_device(ggml_backend_reg_t reg, size_t index) {
+ GGML_ASSERT(index == 0);
+
+ static ggml_backend_device ggml_backend_cpu_device = {
+ /* .iface = */ ggml_backend_cpu_device_i,
+ /* .reg = */ reg,
+ /* .context = */ NULL,
+ };
+
+ return &ggml_backend_cpu_device;
+
+ GGML_UNUSED(reg);
+ GGML_UNUSED(index);
+}
+
+static const struct ggml_backend_reg_i ggml_backend_cpu_reg_i = {
+ /* .get_name = */ ggml_backend_cpu_reg_get_name,
+ /* .get_device_count = */ ggml_backend_cpu_reg_get_device_count,
+ /* .get_device = */ ggml_backend_cpu_reg_get_device,
+ /* .get_proc_address = */ NULL,
+ /* .set_log_callback = */ NULL,
+};
+
+ggml_backend_reg_t ggml_backend_cpu_reg(void) {
+ static struct ggml_backend_reg ggml_backend_cpu_reg = {
+ /* .iface = */ ggml_backend_cpu_reg_i,
+ /* .context = */ NULL,
+ };
+
+ return &ggml_backend_cpu_reg;
}
// multi-buffer buffer
@@ -973,16 +1180,14 @@ struct ggml_backend_multi_buffer_context {
size_t n_buffers;
};
-typedef struct ggml_backend_multi_buffer_context * ggml_backend_multi_buffer_context_t;
-
-GGML_CALL static const char * ggml_backend_multi_buffer_get_name(ggml_backend_buffer_t buffer) {
- ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
+static const char * ggml_backend_multi_buffer_get_name(ggml_backend_buffer_t buffer) {
+ ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context;
return ctx->buffers[0]->iface.get_name(ctx->buffers[0]);
}
-GGML_CALL static void ggml_backend_multi_buffer_free_buffer(ggml_backend_buffer_t buffer) {
- ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
+static void ggml_backend_multi_buffer_free_buffer(ggml_backend_buffer_t buffer) {
+ ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context;
for (size_t i = 0; i < ctx->n_buffers; i++) {
ggml_backend_buffer_free(ctx->buffers[i]);
}
@@ -991,32 +1196,28 @@ GGML_CALL static void ggml_backend_multi_buffer_free_buffer(ggml_backend_buffer_
free(ctx);
}
-GGML_CALL static void ggml_backend_multi_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
- ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
+static void ggml_backend_multi_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
+ ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context;
for (size_t i = 0; i < ctx->n_buffers; i++) {
ggml_backend_buffer_clear(ctx->buffers[i], value);
}
}
-static struct ggml_backend_buffer_i ggml_backend_multi_buffer_context_interface(void) {
- static struct ggml_backend_buffer_i multi_backend_buffer_i = {
- /* .get_name = */ ggml_backend_multi_buffer_get_name,
- /* .free_buffer = */ ggml_backend_multi_buffer_free_buffer,
- /* .get_base = */ NULL,
- /* .init_tensor = */ NULL,
- /* .memset_tensor = */ NULL,
- /* .set_tensor = */ NULL,
- /* .get_tensor = */ NULL,
- /* .cpy_tensor = */ NULL,
- /* .clear = */ ggml_backend_multi_buffer_clear,
- /* .reset = */ NULL,
- };
+static const struct ggml_backend_buffer_i ggml_backend_multi_buffer_i = {
+ /* .get_name = */ ggml_backend_multi_buffer_get_name,
+ /* .free_buffer = */ ggml_backend_multi_buffer_free_buffer,
+ /* .get_base = */ NULL,
+ /* .init_tensor = */ NULL,
+ /* .memset_tensor = */ NULL,
+ /* .set_tensor = */ NULL,
+ /* .get_tensor = */ NULL,
+ /* .cpy_tensor = */ NULL,
+ /* .clear = */ ggml_backend_multi_buffer_clear,
+ /* .reset = */ NULL,
+};
- return multi_backend_buffer_i;
-}
-
-GGML_CALL ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers) {
- ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) malloc(sizeof(struct ggml_backend_multi_buffer_context));
+ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers) {
+ ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) malloc(sizeof(struct ggml_backend_multi_buffer_context));
ctx->n_buffers = n_buffers;
ctx->buffers = (ggml_backend_buffer_t *) malloc(n_buffers * sizeof(ggml_backend_buffer_t));
@@ -1028,16 +1229,16 @@ GGML_CALL ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_back
total_size += ggml_backend_buffer_get_size(buffers[i]);
}
- return ggml_backend_buffer_init(buffers[0]->buft, ggml_backend_multi_buffer_context_interface(), ctx, total_size);
+ return ggml_backend_buffer_init(buffers[0]->buft, ggml_backend_multi_buffer_i, ctx, total_size);
}
-GGML_CALL bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer) {
+bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer) {
return buffer->iface.get_name == ggml_backend_multi_buffer_get_name;
}
-GGML_CALL void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
+void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
GGML_ASSERT(ggml_backend_buffer_is_multi_buffer(buffer));
- ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
+ ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context;
for (size_t i = 0; i < ctx->n_buffers; i++) {
ggml_backend_buffer_set_usage(ctx->buffers[i], usage);
}
@@ -1592,7 +1793,8 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
i_split++;
if (i_split >= sched->splits_capacity) {
sched->splits_capacity *= 2;
- sched->splits = realloc(sched->splits, sched->splits_capacity * sizeof(struct ggml_backend_sched_split));
+ sched->splits = (ggml_backend_sched_split *)
+ realloc(sched->splits, sched->splits_capacity * sizeof(struct ggml_backend_sched_split));
GGML_ASSERT(sched->splits != NULL);
}
split = &sched->splits[i_split];
@@ -1678,11 +1880,11 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
sched->prev_leaf_backend_ids = tmp;
}
- int graph_size = MAX(graph->n_nodes, graph->n_leafs) + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2*sched->n_copies;
+ int graph_size = std::max(graph->n_nodes, graph->n_leafs) + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2*sched->n_copies;
if (sched->graph.size < graph_size) {
sched->graph.size = graph_size;
- sched->graph.nodes = realloc(sched->graph.nodes, graph_size * sizeof(struct ggml_tensor *));
- sched->graph.leafs = realloc(sched->graph.leafs, graph_size * sizeof(struct ggml_tensor *));
+ sched->graph.nodes = (ggml_tensor **) realloc(sched->graph.nodes, graph_size * sizeof(struct ggml_tensor *));
+ sched->graph.leafs = (ggml_tensor **) realloc(sched->graph.leafs, graph_size * sizeof(struct ggml_tensor *));
GGML_ASSERT(sched->graph.nodes != NULL);
GGML_ASSERT(sched->graph.leafs != NULL);
}
@@ -1881,7 +2083,7 @@ static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t s
// record the event of this copy
if (split->n_inputs > 0) {
if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
- ggml_backend_event_record(sched->events[split_backend_id][sched->cur_copy]);
+ ggml_backend_event_record(sched->events[split_backend_id][sched->cur_copy], split_backend);
}
}
}
@@ -1901,7 +2103,7 @@ ggml_backend_sched_t ggml_backend_sched_new(
GGML_ASSERT(n_backends <= GGML_SCHED_MAX_BACKENDS);
GGML_ASSERT(ggml_backend_is_cpu(backends[n_backends - 1])); // last backend must be CPU
- struct ggml_backend_sched * sched = calloc(1, sizeof(struct ggml_backend_sched));
+ struct ggml_backend_sched * sched = (ggml_backend_sched *) calloc(1, sizeof(struct ggml_backend_sched));
sched->debug = getenv("GGML_SCHED_DEBUG") != NULL;
sched->n_backends = n_backends;
@@ -1910,21 +2112,21 @@ ggml_backend_sched_t ggml_backend_sched_new(
// initialize hash table
// FIXME: needs to be size*2 to account for leafs (do it in graph_split instead)
sched->hash_set = ggml_hash_set_new(graph_size);
- sched->hv_tensor_backend_ids = malloc(sched->hash_set.size * sizeof(sched->hv_tensor_backend_ids[0]));
- sched->hv_tensor_copies = malloc(sched->hash_set.size * sched->n_backends * sched->n_copies * sizeof(struct ggml_tensor *));
+ sched->hv_tensor_backend_ids = (int *) malloc(sched->hash_set.size * sizeof(sched->hv_tensor_backend_ids[0]));
+ sched->hv_tensor_copies = (ggml_tensor **) malloc(sched->hash_set.size * sched->n_backends * sched->n_copies * sizeof(struct ggml_tensor *));
const size_t ggml_sched_max_splits = graph_size; // at most there is one split for each node in the graph
const size_t nodes_size = graph_size + ggml_sched_max_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2;
- sched->node_backend_ids = calloc(nodes_size, sizeof(sched->node_backend_ids[0]));
- sched->leaf_backend_ids = calloc(nodes_size, sizeof(sched->leaf_backend_ids[0]));
- sched->prev_node_backend_ids = calloc(nodes_size, sizeof(sched->prev_node_backend_ids[0]));
- sched->prev_leaf_backend_ids = calloc(nodes_size, sizeof(sched->prev_leaf_backend_ids[0]));
+ sched->node_backend_ids = (int *) calloc(nodes_size, sizeof(sched->node_backend_ids[0]));
+ sched->leaf_backend_ids = (int *) calloc(nodes_size, sizeof(sched->leaf_backend_ids[0]));
+ sched->prev_node_backend_ids = (int *) calloc(nodes_size, sizeof(sched->prev_node_backend_ids[0]));
+ sched->prev_leaf_backend_ids = (int *) calloc(nodes_size, sizeof(sched->prev_leaf_backend_ids[0]));
sched->context_buffer_size = ggml_sched_max_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + ggml_graph_overhead_custom(graph_size, false);
- sched->context_buffer = malloc(sched->context_buffer_size);
+ sched->context_buffer = (char *) malloc(sched->context_buffer_size);
const int initial_splits_capacity = 16;
- sched->splits = calloc(initial_splits_capacity, sizeof(sched->splits[0]));
+ sched->splits = (ggml_backend_sched_split *) calloc(initial_splits_capacity, sizeof(sched->splits[0]));
sched->splits_capacity = initial_splits_capacity;
for (int b = 0; b < n_backends; b++) {
@@ -1933,7 +2135,7 @@ ggml_backend_sched_t ggml_backend_sched_new(
GGML_ASSERT(ggml_backend_supports_buft(backends[b], sched->bufts[b]));
if (sched->n_copies > 1) {
for (int c = 0; c < sched->n_copies; c++) {
- sched->events[b][c] = ggml_backend_event_new(backends[b]);
+ sched->events[b][c] = ggml_backend_event_new(backends[b]->device);
}
}
}
@@ -2169,8 +2371,8 @@ static void graph_copy_init_tensor(struct ggml_hash_set * hash_set, struct ggml_
struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) {
struct ggml_hash_set hash_set = ggml_hash_set_new(graph->visited_hash_set.size);
- struct ggml_tensor ** node_copies = calloc(hash_set.size, sizeof(node_copies[0])); // NOLINT
- bool * node_init = calloc(hash_set.size, sizeof(node_init[0]));
+ struct ggml_tensor ** node_copies = (ggml_tensor **) calloc(hash_set.size, sizeof(node_copies[0])); // NOLINT
+ bool * node_init = (bool *) calloc(hash_set.size, sizeof(node_init[0]));
struct ggml_init_params params = {
/* .mem_size = */ ggml_tensor_overhead()*hash_set.size + ggml_graph_overhead_custom(graph->size, false),
@@ -2188,7 +2390,7 @@ struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, s
free(node_init);
ggml_free(ctx_allocated);
ggml_free(ctx_unallocated);
- return (struct ggml_backend_graph_copy) {
+ return {
/* .buffer = */ NULL,
/* .ctx_allocated = */ NULL,
/* .ctx_unallocated = */ NULL,
@@ -2211,7 +2413,7 @@ struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, s
free(node_init);
ggml_free(ctx_allocated);
ggml_free(ctx_unallocated);
- return (struct ggml_backend_graph_copy) {
+ return {
/* .buffer = */ NULL,
/* .ctx_allocated = */ NULL,
/* .ctx_unallocated = */ NULL,
@@ -2240,7 +2442,7 @@ struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, s
free(node_copies);
free(node_init);
- return (struct ggml_backend_graph_copy) {
+ return {
/* .buffer = */ buffer,
/* .ctx_allocated = */ ctx_allocated,
/* .ctx_unallocated = */ ctx_unallocated,
diff --git a/ggml/src/ggml-blas.cpp b/ggml/src/ggml-blas.cpp
index 6d99c6bea..b850e6a8d 100644
--- a/ggml/src/ggml-blas.cpp
+++ b/ggml/src/ggml-blas.cpp
@@ -235,25 +235,25 @@ static void ggml_backend_blas_out_prod(ggml_backend_blas_context * ctx, struct g
// backend interface
-GGML_CALL static const char * ggml_backend_blas_name(ggml_backend_t backend) {
+static const char * ggml_backend_blas_name(ggml_backend_t backend) {
return "BLAS";
GGML_UNUSED(backend);
}
-GGML_CALL static void ggml_backend_blas_free(ggml_backend_t backend) {
+static void ggml_backend_blas_free(ggml_backend_t backend) {
ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend->context;
delete ctx;
delete backend;
}
-GGML_CALL static ggml_backend_buffer_type_t ggml_backend_blas_get_default_buffer_type(ggml_backend_t backend) {
+static ggml_backend_buffer_type_t ggml_backend_blas_get_default_buffer_type(ggml_backend_t backend) {
return ggml_backend_cpu_buffer_type();
GGML_UNUSED(backend);
}
-GGML_CALL static enum ggml_status ggml_backend_blas_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
+static enum ggml_status ggml_backend_blas_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend->context;
for (int i = 0; i < cgraph->n_nodes; i++) {
@@ -285,7 +285,7 @@ GGML_CALL static enum ggml_status ggml_backend_blas_graph_compute(ggml_backend_t
GGML_UNUSED(backend);
}
-GGML_CALL static bool ggml_backend_blas_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
+static bool ggml_backend_blas_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
const struct ggml_tensor * src0 = op->src[0];
const struct ggml_tensor * src1 = op->src[1];
@@ -300,7 +300,7 @@ GGML_CALL static bool ggml_backend_blas_supports_op(ggml_backend_t backend, cons
GGML_UNUSED(backend);
}
-GGML_CALL static bool ggml_backend_blas_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
+static bool ggml_backend_blas_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
return ggml_backend_buft_is_host(buft);
GGML_UNUSED(backend);
@@ -322,11 +322,8 @@ static struct ggml_backend_i blas_backend_i = {
/* .supports_op = */ ggml_backend_blas_supports_op,
/* .supports_buft = */ ggml_backend_blas_supports_buft,
/* .offload_op = */ NULL,
- /* .event_new = */ NULL,
- /* .event_free = */ NULL,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
- /* .event_synchronize = */ NULL,
};
static ggml_guid_t ggml_backend_blas_guid(void) {
@@ -340,6 +337,7 @@ ggml_backend_t ggml_backend_blas_init(void) {
ggml_backend_t backend = new ggml_backend {
/* .guid = */ ggml_backend_blas_guid(),
/* .interface = */ blas_backend_i,
+ /* .device = */ nullptr,
/* .context = */ ctx,
};
@@ -356,7 +354,7 @@ ggml_backend_t ggml_backend_blas_init(void) {
return backend;
}
-GGML_CALL bool ggml_backend_is_blas(ggml_backend_t backend) {
+bool ggml_backend_is_blas(ggml_backend_t backend) {
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_blas_guid());
}
diff --git a/ggml/src/ggml-cann.cpp b/ggml/src/ggml-cann.cpp
index 70fad6abf..db5f8f186 100644
--- a/ggml/src/ggml-cann.cpp
+++ b/ggml/src/ggml-cann.cpp
@@ -497,7 +497,7 @@ struct ggml_backend_cann_buffer_context {
* @return A pointer to a C-string containing the name of the buffer.
*/
-GGML_CALL static const char* ggml_backend_cann_buffer_get_name(
+static const char* ggml_backend_cann_buffer_get_name(
ggml_backend_buffer_t buffer) {
return "CANN";
@@ -513,7 +513,7 @@ GGML_CALL static const char* ggml_backend_cann_buffer_get_name(
* @param buffer The buffer to check.
* @return true if the buffer is a CANN buffer, false otherwise.
*/
-GGML_CALL static bool ggml_backend_buffer_is_cann(
+static bool ggml_backend_buffer_is_cann(
ggml_backend_buffer_t buffer) {
return buffer->iface.get_name == ggml_backend_cann_buffer_get_name;
}
@@ -526,7 +526,7 @@ GGML_CALL static bool ggml_backend_buffer_is_cann(
*
* @param buffer The CANN buffer to free.
*/
-GGML_CALL static void ggml_backend_cann_buffer_free_buffer(
+static void ggml_backend_cann_buffer_free_buffer(
ggml_backend_buffer_t buffer) {
ggml_backend_cann_buffer_context* ctx =
(ggml_backend_cann_buffer_context*)buffer->context;
@@ -542,7 +542,7 @@ GGML_CALL static void ggml_backend_cann_buffer_free_buffer(
* @param buffer The CANN buffer whose base pointer is to be retrieved.
* @return A pointer to the base of the device memory allocated for the buffer.
*/
-GGML_CALL static void* ggml_backend_cann_buffer_get_base(
+static void* ggml_backend_cann_buffer_get_base(
ggml_backend_buffer_t buffer) {
ggml_backend_cann_buffer_context* ctx =
(ggml_backend_cann_buffer_context*)buffer->context;
@@ -562,9 +562,9 @@ GGML_CALL static void* ggml_backend_cann_buffer_get_base(
* @param dst Pointer to the destination buffer where transformed data will be
* stored.
*/
-GGML_CALL static void ggml_backend_cann_transform_q4_0(ggml_tensor* tensor,
- const void* src,
- void* dst) {
+static void ggml_backend_cann_transform_q4_0(ggml_tensor* tensor,
+ const void* src,
+ void* dst) {
int64_t n_elems = ggml_nelements(tensor);
int64_t groups = n_elems / QK4_0;
@@ -614,7 +614,7 @@ GGML_CALL static void ggml_backend_cann_transform_q4_0(ggml_tensor* tensor,
* @param dst Pointer to the destination buffer where the Q4.0 formatted data
* will be stored.
*/
-GGML_CALL static void ggml_backend_cann_transform_back_q4_0(
+static void ggml_backend_cann_transform_back_q4_0(
const ggml_tensor* tensor, void* src, void* dst) {
int64_t n_elems = ggml_nelements(tensor);
@@ -663,9 +663,9 @@ GGML_CALL static void ggml_backend_cann_transform_back_q4_0(
* @param dst Pointer to the destination buffer where transformed data will be
* stored.
*/
-GGML_CALL static void ggml_backend_cann_transform_q8_0(ggml_tensor* tensor,
- const void* src,
- void* dst) {
+static void ggml_backend_cann_transform_q8_0(ggml_tensor* tensor,
+ const void* src,
+ void* dst) {
int64_t n_elems = ggml_nelements(tensor);
int64_t groups = n_elems / QK8_0;
size_t quant_bytes = n_elems * sizeof(uint8_t);
@@ -697,7 +697,7 @@ GGML_CALL static void ggml_backend_cann_transform_q8_0(ggml_tensor* tensor,
* @param dst Pointer to the destination buffer where the Q8.0 formatted data
* will be stored.
*/
-GGML_CALL static void ggml_backend_cann_transform_back_q8_0(
+static void ggml_backend_cann_transform_back_q8_0(
const ggml_tensor* tensor, const void* src, void* dst) {
int64_t n_elems = ggml_nelements(tensor);
int64_t groups = n_elems / QK8_0;
@@ -729,8 +729,8 @@ GGML_CALL static void ggml_backend_cann_transform_back_q8_0(
* @param dst Pointer to the destination buffer where transformed data will be
* stored.
*/
-GGML_CALL static void ggml_backend_cann_transform(ggml_tensor* tensor,
- const void* src, void* dst) {
+static void ggml_backend_cann_transform(ggml_tensor* tensor,
+ const void* src, void* dst) {
switch (tensor->type) {
case GGML_TYPE_Q4_0:
ggml_backend_cann_transform_q4_0(tensor, src, dst);
@@ -755,7 +755,7 @@ GGML_CALL static void ggml_backend_cann_transform(ggml_tensor* tensor,
* @param dst Pointer to the destination buffer where transformed tensor data
* will be stored.
*/
-GGML_CALL static void ggml_backend_cann_transform_back(
+static void ggml_backend_cann_transform_back(
const ggml_tensor* tensor, void* src, void* dst) {
switch (tensor->type) {
case GGML_TYPE_Q4_0:
@@ -778,7 +778,7 @@ GGML_CALL static void ggml_backend_cann_transform_back(
* @param type The tensor type to check.
* @return true if transformation is needed, false otherwise.
*/
-GGML_CALL static bool need_transform(ggml_type type) {
+static bool need_transform(ggml_type type) {
switch (type) {
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q8_0:
@@ -797,7 +797,7 @@ GGML_CALL static bool need_transform(ggml_type type) {
* @param buffer The CANN buffer from which to initialize the tensor.
* @param tensor Pointer to the tensor to be initialized.
*/
-GGML_CALL static void ggml_backend_cann_buffer_init_tensor(
+static void ggml_backend_cann_buffer_init_tensor(
ggml_backend_buffer_t buffer, ggml_tensor* tensor) {
if (tensor->view_src != NULL && tensor->view_offs == 0) {
GGML_ASSERT(tensor->view_src->buffer->buft == buffer->buft);
@@ -833,7 +833,7 @@ GGML_CALL static void ggml_backend_cann_buffer_init_tensor(
* @param offset Offset in the source data from where to start copying.
* @param size Size of the data to be copied, in bytes.
*/
-GGML_CALL static void ggml_backend_cann_buffer_set_tensor(
+static void ggml_backend_cann_buffer_set_tensor(
ggml_backend_buffer_t buffer, ggml_tensor *tensor, const void *data,
size_t offset, size_t size) {
ggml_backend_cann_buffer_context *ctx =
@@ -878,7 +878,7 @@ GGML_CALL static void ggml_backend_cann_buffer_set_tensor(
* @param offset Offset in the destination buffer where to start copying.
* @param size Size of the data to be copied, in bytes.
*/
-GGML_CALL static void ggml_backend_cann_buffer_get_tensor(
+static void ggml_backend_cann_buffer_get_tensor(
ggml_backend_buffer_t buffer, const ggml_tensor* tensor, void* data,
size_t offset, size_t size) {
ggml_backend_cann_buffer_context* ctx =
@@ -912,7 +912,7 @@ GGML_CALL static void ggml_backend_cann_buffer_get_tensor(
* @param dst Pointer to the destination tensor where the data will be copied.
* @return true if the copy operation succeeded, false otherwise.
*/
-GGML_CALL static bool ggml_backend_cann_buffer_cpy_tensor(
+static bool ggml_backend_cann_buffer_cpy_tensor(
ggml_backend_buffer_t buffer, const ggml_tensor* src, ggml_tensor* dst) {
if (ggml_backend_buffer_is_cann(src->buffer)) {
ggml_backend_cann_buffer_context* src_ctx =
@@ -954,7 +954,7 @@ GGML_CALL static bool ggml_backend_cann_buffer_cpy_tensor(
* @param buffer The CANN buffer to be cleared.
* @param value The value to which each byte in the buffer will be set.
*/
-GGML_CALL static void ggml_backend_cann_buffer_clear(
+static void ggml_backend_cann_buffer_clear(
ggml_backend_buffer_t buffer, uint8_t value) {
ggml_backend_cann_buffer_context* ctx =
(ggml_backend_cann_buffer_context*)buffer->context;
@@ -1002,7 +1002,7 @@ struct ggml_backend_cann_buffer_type_context {
* @param buft Pointer to the buffer type context.
* @return Const pointer to the C-style string containing the name.
*/
-GGML_CALL static const char* ggml_backend_cann_buffer_type_name(
+static const char* ggml_backend_cann_buffer_type_name(
ggml_backend_buffer_type_t buft) {
return "CANN";
@@ -1019,7 +1019,7 @@ GGML_CALL static const char* ggml_backend_cann_buffer_type_name(
* @param size Size in bytes of the buffer to allocate.
* @return Pointer to the allocated buffer, or nullptr if allocation fails.
*/
-GGML_CALL static ggml_backend_buffer_t
+static ggml_backend_buffer_t
ggml_backend_cann_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft,
size_t size) {
ggml_backend_cann_buffer_type_context* buft_ctx =
@@ -1058,7 +1058,7 @@ ggml_backend_cann_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft,
* @return The alignment requirement in bytes (fixed at 128 bytes for CANN
* buffers).
*/
-GGML_CALL static size_t ggml_backend_cann_buffer_type_get_alignment(
+static size_t ggml_backend_cann_buffer_type_get_alignment(
ggml_backend_buffer_type_t buft) {
return 128;
@@ -1079,7 +1079,7 @@ GGML_CALL static size_t ggml_backend_cann_buffer_type_get_alignment(
* @return The total allocation size in bytes required for the tensor in the
* CANN buffer.
*/
-GGML_CALL static size_t ggml_backend_cann_buffer_type_get_alloc_size(
+static size_t ggml_backend_cann_buffer_type_get_alloc_size(
ggml_backend_buffer_type_t buft, const ggml_tensor* tensor) {
size_t size = ggml_nbytes(tensor);
int64_t ne0 = tensor->ne[0];
@@ -1130,7 +1130,7 @@ static ggml_backend_buffer_type_i ggml_backend_cann_buffer_type_interface = {
* @return A pointer to the buffer type interface for the specified device, or
* nullptr if the device index is out of range.
*/
-GGML_CALL ggml_backend_buffer_type_t
+ggml_backend_buffer_type_t
ggml_backend_cann_buffer_type(int32_t device) {
static std::mutex mutex;
std::lock_guard lock(mutex);
@@ -1168,7 +1168,7 @@ ggml_backend_cann_buffer_type(int32_t device) {
* @param buft Pointer to the host buffer type context.
* @return Const pointer to the C-style string containing the name.
*/
-GGML_CALL static const char * ggml_backend_cann_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
+static const char * ggml_backend_cann_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
return "CANN_Host";
GGML_UNUSED(buft);
@@ -1183,7 +1183,7 @@ GGML_CALL static const char * ggml_backend_cann_host_buffer_type_name(ggml_backe
* @param buft Pointer to the host buffer context.
* @return Const pointer to the C-style string containing the name.
*/
-GGML_CALL static const char * ggml_backend_cann_host_buffer_name(ggml_backend_buffer_t buffer) {
+static const char * ggml_backend_cann_host_buffer_name(ggml_backend_buffer_t buffer) {
return "CANN_Host";
GGML_UNUSED(buffer);
@@ -1197,7 +1197,7 @@ GGML_CALL static const char * ggml_backend_cann_host_buffer_name(ggml_backend_bu
*
* @param buffer The CANN host buffer to free.
*/
-GGML_CALL static void ggml_backend_cann_host_buffer_free(ggml_backend_buffer_t buffer) {
+static void ggml_backend_cann_host_buffer_free(ggml_backend_buffer_t buffer) {
ACL_CHECK(aclrtFreeHost(buffer->context));
}
@@ -1231,7 +1231,7 @@ static void * ggml_cann_host_malloc(size_t size) {
* @param size Size in bytes of the host buffer to allocate.
* @return Pointer to the allocated host buffer, or CPU buffer pointer if allocation fails.
*/
-GGML_CALL static ggml_backend_buffer_t ggml_backend_cann_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
+static ggml_backend_buffer_t ggml_backend_cann_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
void * hostPtr = ggml_cann_host_malloc(size);
if (hostPtr == nullptr) {
@@ -1253,7 +1253,7 @@ GGML_CALL static ggml_backend_buffer_t ggml_backend_cann_host_buffer_type_alloc_
* Provides function pointers for allocating, querying properties, and managing
* memory for CANN buffer types in the GGML backend.
*/
-GGML_CALL ggml_backend_buffer_type_t ggml_backend_cann_host_buffer_type() {
+ggml_backend_buffer_type_t ggml_backend_cann_host_buffer_type() {
static struct ggml_backend_buffer_type ggml_backend_cann_buffer_type_host = {
/* .iface = */ {
/* .get_name = */ ggml_backend_cann_host_buffer_type_name,
@@ -1263,6 +1263,7 @@ GGML_CALL ggml_backend_buffer_type_t ggml_backend_cann_host_buffer_type() {
/* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
/* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host,
},
+ /* .device = */ nullptr,
/* .context = */ nullptr,
};
@@ -1432,7 +1433,7 @@ static bool ggml_cann_compute_forward(ggml_backend_cann_context& ctx,
* @param backend Pointer to the CANN backend structure.
* @return A pointer to a constant string representing the backend name.
*/
-GGML_CALL static const char* ggml_backend_cann_name(ggml_backend_t backend) {
+static const char* ggml_backend_cann_name(ggml_backend_t backend) {
ggml_backend_cann_context* cann_ctx =
(ggml_backend_cann_context*)backend->context;
@@ -1447,7 +1448,7 @@ GGML_CALL static const char* ggml_backend_cann_name(ggml_backend_t backend) {
*
* @param backend Pointer to the CANN backend structure to be freed.
*/
-GGML_CALL static void ggml_backend_cann_free(ggml_backend_t backend) {
+static void ggml_backend_cann_free(ggml_backend_t backend) {
ggml_backend_cann_context* cann_ctx =
(ggml_backend_cann_context*)backend->context;
ACL_CHECK(aclrtSynchronizeDevice());
@@ -1472,7 +1473,7 @@ GGML_CALL static void ggml_backend_cann_free(ggml_backend_t backend) {
* @param backend Pointer to the CANN backend structure.
* @return Pointer to the buffer type structure for the CANN backend.
*/
-GGML_CALL static ggml_backend_buffer_type_t
+static ggml_backend_buffer_type_t
ggml_backend_cann_get_default_buffer_type(ggml_backend_t backend) {
ggml_backend_cann_context* cann_ctx =
(ggml_backend_cann_context*)backend->context;
@@ -1493,11 +1494,11 @@ ggml_backend_cann_get_default_buffer_type(ggml_backend_t backend) {
* @param offset Offset in bytes within the host data.
* @param size Size of the data to copy in bytes.
*/
-GGML_CALL static void ggml_backend_cann_set_tensor_async(ggml_backend_t backend,
- ggml_tensor *tensor,
- const void *data,
- size_t offset,
- size_t size) {
+static void ggml_backend_cann_set_tensor_async(ggml_backend_t backend,
+ ggml_tensor *tensor,
+ const void *data,
+ size_t offset,
+ size_t size) {
ggml_backend_cann_context *cann_ctx =
(ggml_backend_cann_context *)backend->context;
@@ -1524,7 +1525,7 @@ GGML_CALL static void ggml_backend_cann_set_tensor_async(ggml_backend_t backend,
}
}
-GGML_CALL static void ggml_backend_cann_get_tensor_async(
+static void ggml_backend_cann_get_tensor_async(
ggml_backend_t backend, const ggml_tensor *tensor, void *data,
size_t offset, size_t size) {
ggml_backend_cann_context *cann_ctx =
@@ -1563,7 +1564,7 @@ GGML_CALL static void ggml_backend_cann_get_tensor_async(
* @param dst Pointer to the destination tensor to copy data to.
* @return true if the copy operation succeeds, false otherwise.
*/
-GGML_CALL static bool ggml_backend_cann_cpy_tensor_async(
+static bool ggml_backend_cann_cpy_tensor_async(
ggml_backend_t backend_src, ggml_backend_t backend_dst,
const ggml_tensor* src, ggml_tensor* dst) {
GGML_ASSERT(ggml_backend_is_cann(backend_src) ||
@@ -1631,7 +1632,7 @@ GGML_CALL static bool ggml_backend_cann_cpy_tensor_async(
*
* @param backend Pointer to the CANN backend structure to synchronize.
*/
-GGML_CALL static void ggml_backend_cann_synchronize(ggml_backend_t backend) {
+static void ggml_backend_cann_synchronize(ggml_backend_t backend) {
ggml_backend_cann_context* cann_ctx =
(ggml_backend_cann_context*)backend->context;
@@ -1652,7 +1653,7 @@ GGML_CALL static void ggml_backend_cann_synchronize(ggml_backend_t backend) {
* @return enum ggml_status Returns GGML_STATUS_SUCCESS if computation
* completes successfully, otherwise an appropriate error status.
*/
-GGML_CALL static enum ggml_status ggml_backend_cann_graph_compute(
+static enum ggml_status ggml_backend_cann_graph_compute(
ggml_backend_t backend, ggml_cgraph* cgraph) {
ggml_backend_cann_context* cann_ctx =
(ggml_backend_cann_context*)backend->context;
@@ -1690,7 +1691,7 @@ GGML_CALL static enum ggml_status ggml_backend_cann_graph_compute(
* @return bool Returns true if the operation is supported by the backend,
* otherwise false.
*/
-GGML_CALL static bool ggml_backend_cann_supports_op(ggml_backend_t backend,
+static bool ggml_backend_cann_supports_op(ggml_backend_t backend,
const ggml_tensor* op) {
switch (op->op) {
case GGML_OP_UNARY:
@@ -1812,7 +1813,7 @@ static bool ggml_backend_buft_is_cann(ggml_backend_buffer_type_t buft) {
* @return bool Returns true if the CANN backend supports the buffer type,
* otherwise false.
*/
-GGML_CALL static bool ggml_backend_cann_supports_buft(
+static bool ggml_backend_cann_supports_buft(
ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
if (ggml_backend_buft_is_cann(buft)) {
ggml_backend_cann_context * cann_ctx =
@@ -1838,7 +1839,7 @@ GGML_CALL static bool ggml_backend_cann_supports_buft(
* @return bool Returns true if the operation should be offloaded, otherwise
* false.
*/
-GGML_CALL static bool ggml_backend_cann_offload_op(ggml_backend_t backend,
+static bool ggml_backend_cann_offload_op(ggml_backend_t backend,
const ggml_tensor* op) {
const int min_batch_size = 32;
GGML_UNUSED(backend);
@@ -1958,11 +1959,8 @@ static ggml_backend_i ggml_backend_cann_interface = {
/* .supports_op = */ ggml_backend_cann_supports_op,
/* .supports_buft = */ ggml_backend_cann_supports_buft,
/* .offload_op = */ ggml_backend_cann_offload_op,
- /* .event_new = */ ggml_backend_cann_event_new,
- /* .event_free = */ ggml_backend_cann_event_free,
/* .event_record = */ ggml_backend_cann_event_record,
/* .event_wait = */ ggml_backend_cann_event_wait,
- /* .event_synchronize = */ ggml_backend_cann_event_synchronize,
};
/**
@@ -1979,7 +1977,7 @@ static ggml_guid_t ggml_backend_cann_guid() {
return &guid;
}
-GGML_CALL ggml_backend_t ggml_backend_cann_init(int32_t device) {
+ggml_backend_t ggml_backend_cann_init(int32_t device) {
aclInit(nullptr);
if (device < 0 || device >= ggml_backend_cann_get_device_count()) {
GGML_LOG_ERROR("%s: error: invalid device %d\n", __func__, device);
@@ -1995,75 +1993,30 @@ GGML_CALL ggml_backend_t ggml_backend_cann_init(int32_t device) {
ggml_backend_t cann_backend =
new ggml_backend{/* .guid = */ ggml_backend_cann_guid(),
/* .interface = */ ggml_backend_cann_interface,
+ /* .device = */ nullptr,
/* .context = */ ctx};
return cann_backend;
}
-GGML_CALL bool ggml_backend_is_cann(ggml_backend_t backend) {
+bool ggml_backend_is_cann(ggml_backend_t backend) {
return backend != NULL &&
ggml_guid_matches(backend->guid, ggml_backend_cann_guid());
}
-GGML_CALL int32_t ggml_backend_cann_get_device_count() {
+int32_t ggml_backend_cann_get_device_count() {
return ggml_cann_info().device_count;
}
-GGML_CALL void ggml_backend_cann_get_device_description(
+void ggml_backend_cann_get_device_description(
int32_t device, char* description, size_t description_size) {
ggml_cann_set_device(device);
const char* soc_name = aclrtGetSocName();
snprintf(description, description_size, "%s", soc_name);
}
-GGML_CALL void ggml_backend_cann_get_device_memory(int32_t device, size_t* free,
- size_t* total) {
+void ggml_backend_cann_get_device_memory(int32_t device, size_t* free,
+ size_t* total) {
ggml_cann_set_device(device);
ACL_CHECK(aclrtGetMemInfo(ACL_HBM_MEM, free, total));
}
-
-// backend registry
-/**
- * @brief Initializes a CANN backend based on the provided parameters.
- *
- * This function initializes a CANN backend using the device index and then
- * initializes the backend using `ggml_backend_cann_init`.
- *
- * @param params Parameters for initialization (unused in this implementation).
- * @param user_data User data containing the device index to initialize the
- * backend.
- * @return ggml_backend_t The initialized CANN backend.
- */
-GGML_CALL static ggml_backend_t ggml_backend_reg_cann_init(const char* params,
- void* user_data) {
- ggml_backend_t cann_backend =
- ggml_backend_cann_init((int)(intptr_t)user_data);
- return cann_backend;
-
- GGML_UNUSED(params);
-}
-
-extern "C" GGML_CALL int ggml_backend_cann_reg_devices();
-
-/**
- * @brief Registers CANN (Ascend) devices as backend options.
- *
- * This function initializes ACL, retrieves the number of available CANN
- * devices, and registers each device as a backend option using
- * `ggml_backend_register`. Each device is given a unique name based on
- * `GGML_CANN_NAME` followed by its index.
- *
- * @return int The number of CANN devices registered.
- */
-GGML_CALL int ggml_backend_cann_reg_devices() {
- uint32_t device_count = ggml_backend_cann_get_device_count();
- // initialization
- for (uint32_t i = 0; i < device_count; i++) {
- char name[128];
- snprintf(name, sizeof(name), "CANN%d", i);
- ggml_backend_register(name, ggml_backend_reg_cann_init,
- ggml_backend_cann_buffer_type(i),
- (void*)(intptr_t)i);
- }
- return device_count;
-}
diff --git a/ggml/src/ggml-cuda.cu b/ggml/src/ggml-cuda.cu
index 7bc17bf5b..2fe0d1bd5 100644
--- a/ggml/src/ggml-cuda.cu
+++ b/ggml/src/ggml-cuda.cu
@@ -61,11 +61,11 @@ void ggml_cuda_error(const char * stmt, const char * func, const char * file, in
int id = -1; // in case cudaGetDevice fails
cudaGetDevice(&id);
- GGML_LOG_ERROR("CUDA error: %s\n", msg);
+ GGML_LOG_ERROR(GGML_CUDA_NAME " error: %s\n", msg);
GGML_LOG_ERROR(" current device: %d, in function %s at %s:%d\n", id, func, file, line);
GGML_LOG_ERROR(" %s\n", stmt);
- // abort with GGML_ASSERT to get a stack trace
- GGML_ABORT("CUDA error");
+ // abort with GGML_ABORT to get a stack trace
+ GGML_ABORT(GGML_CUDA_NAME " error");
}
// this is faster on Windows
@@ -289,7 +289,7 @@ struct ggml_cuda_pool_leg : public ggml_cuda_pool {
return;
}
}
- GGML_LOG_WARN("Cuda buffer pool full, increase MAX_CUDA_BUFFERS\n");
+ GGML_LOG_WARN(GGML_CUDA_NAME " buffer pool full, increase MAX_CUDA_BUFFERS\n");
ggml_cuda_set_device(device);
CUDA_CHECK(cudaFree(ptr));
pool_size -= size;
@@ -419,26 +419,26 @@ struct ggml_backend_cuda_buffer_context {
}
};
-GGML_CALL static const char * ggml_backend_cuda_buffer_get_name(ggml_backend_buffer_t buffer) {
+static const char * ggml_backend_cuda_buffer_get_name(ggml_backend_buffer_t buffer) {
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
return ctx->name.c_str();
}
-GGML_CALL static bool ggml_backend_buffer_is_cuda(ggml_backend_buffer_t buffer) {
+static bool ggml_backend_buffer_is_cuda(ggml_backend_buffer_t buffer) {
return buffer->iface.get_name == ggml_backend_cuda_buffer_get_name;
}
-GGML_CALL static void ggml_backend_cuda_buffer_free_buffer(ggml_backend_buffer_t buffer) {
+static void ggml_backend_cuda_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
delete ctx;
}
-GGML_CALL static void * ggml_backend_cuda_buffer_get_base(ggml_backend_buffer_t buffer) {
+static void * ggml_backend_cuda_buffer_get_base(ggml_backend_buffer_t buffer) {
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
return ctx->dev_ptr;
}
-GGML_CALL static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
+static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
if (tensor->view_src != NULL) {
@@ -458,7 +458,7 @@ GGML_CALL static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t
}
}
-GGML_CALL static void ggml_backend_cuda_buffer_memset_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
+static void ggml_backend_cuda_buffer_memset_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
ggml_cuda_set_device(ctx->device);
@@ -466,7 +466,7 @@ GGML_CALL static void ggml_backend_cuda_buffer_memset_tensor(ggml_backend_buffer
CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
}
-GGML_CALL static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
+static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
ggml_cuda_set_device(ctx->device);
@@ -474,7 +474,7 @@ GGML_CALL static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t
CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
}
-GGML_CALL static void ggml_backend_cuda_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
+static void ggml_backend_cuda_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
ggml_cuda_set_device(ctx->device);
@@ -482,7 +482,7 @@ GGML_CALL static void ggml_backend_cuda_buffer_get_tensor(ggml_backend_buffer_t
CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
}
-GGML_CALL static bool ggml_backend_cuda_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
+static bool ggml_backend_cuda_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
if (ggml_backend_buffer_is_cuda(src->buffer)) {
ggml_backend_cuda_buffer_context * src_ctx = (ggml_backend_cuda_buffer_context *)src->buffer->context;
ggml_backend_cuda_buffer_context * dst_ctx = (ggml_backend_cuda_buffer_context *)dst->buffer->context;
@@ -503,7 +503,7 @@ GGML_CALL static bool ggml_backend_cuda_buffer_cpy_tensor(ggml_backend_buffer_t
GGML_UNUSED(buffer);
}
-GGML_CALL static void ggml_backend_cuda_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
+static void ggml_backend_cuda_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
ggml_cuda_set_device(ctx->device);
@@ -512,7 +512,7 @@ GGML_CALL static void ggml_backend_cuda_buffer_clear(ggml_backend_buffer_t buffe
CUDA_CHECK(cudaDeviceSynchronize());
}
-static ggml_backend_buffer_i ggml_backend_cuda_buffer_interface = {
+static const ggml_backend_buffer_i ggml_backend_cuda_buffer_interface = {
/* .get_name = */ ggml_backend_cuda_buffer_get_name,
/* .free_buffer = */ ggml_backend_cuda_buffer_free_buffer,
/* .get_base = */ ggml_backend_cuda_buffer_get_base,
@@ -531,17 +531,17 @@ struct ggml_backend_cuda_buffer_type_context {
std::string name;
};
-GGML_CALL static const char * ggml_backend_cuda_buffer_type_name(ggml_backend_buffer_type_t buft) {
+static const char * ggml_backend_cuda_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
ggml_backend_cuda_buffer_type_context * ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
return ctx->name.c_str();
}
static bool ggml_backend_buft_is_cuda(ggml_backend_buffer_type_t buft) {
- return buft->iface.get_name == ggml_backend_cuda_buffer_type_name;
+ return buft->iface.get_name == ggml_backend_cuda_buffer_type_get_name;
}
-GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
+static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
ggml_cuda_set_device(buft_ctx->device);
@@ -562,13 +562,13 @@ GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffe
return ggml_backend_buffer_init(buft, ggml_backend_cuda_buffer_interface, ctx, size);
}
-GGML_CALL static size_t ggml_backend_cuda_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
+static size_t ggml_backend_cuda_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
return 128;
GGML_UNUSED(buft);
}
-GGML_CALL static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
+static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
size_t size = ggml_nbytes(tensor);
int64_t ne0 = tensor->ne[0];
@@ -583,8 +583,8 @@ GGML_CALL static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backen
GGML_UNUSED(buft);
}
-static ggml_backend_buffer_type_i ggml_backend_cuda_buffer_type_interface = {
- /* .get_name = */ ggml_backend_cuda_buffer_type_name,
+static const ggml_backend_buffer_type_i ggml_backend_cuda_buffer_type_interface = {
+ /* .get_name = */ ggml_backend_cuda_buffer_type_get_name,
/* .alloc_buffer = */ ggml_backend_cuda_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_cuda_buffer_type_get_alignment,
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
@@ -592,7 +592,7 @@ static ggml_backend_buffer_type_i ggml_backend_cuda_buffer_type_interface = {
/* .is_host = */ NULL,
};
-GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) {
+ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) {
static std::mutex mutex;
std::lock_guard lock(mutex);
@@ -605,9 +605,10 @@ GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) {
static bool ggml_backend_cuda_buffer_type_initialized = false;
if (!ggml_backend_cuda_buffer_type_initialized) {
- for (int i = 0; i < GGML_CUDA_MAX_DEVICES; i++) {
+ for (int i = 0; i < ggml_backend_cuda_get_device_count(); i++) {
ggml_backend_cuda_buffer_types[i] = {
/* .iface = */ ggml_backend_cuda_buffer_type_interface,
+ /* .device = */ ggml_backend_reg_dev_get(ggml_backend_cuda_reg(), i),
/* .context = */ new ggml_backend_cuda_buffer_type_context{i, GGML_CUDA_NAME + std::to_string(i)},
};
}
@@ -677,7 +678,7 @@ struct ggml_backend_cuda_split_buffer_context {
std::vector tensor_extras;
};
-GGML_CALL static const char * ggml_backend_cuda_split_buffer_get_name(ggml_backend_buffer_t buffer) {
+static const char * ggml_backend_cuda_split_buffer_get_name(ggml_backend_buffer_t buffer) {
return GGML_CUDA_NAME "_Split";
GGML_UNUSED(buffer);
@@ -688,19 +689,19 @@ static bool ggml_backend_buffer_is_cuda_split(ggml_backend_buffer_t buffer) {
GGML_UNUSED(ggml_backend_buffer_is_cuda_split); // only used in debug builds currently, avoid unused function warning in release builds
}
-GGML_CALL static void ggml_backend_cuda_split_buffer_free_buffer(ggml_backend_buffer_t buffer) {
+static void ggml_backend_cuda_split_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
delete ctx;
}
-GGML_CALL static void * ggml_backend_cuda_split_buffer_get_base(ggml_backend_buffer_t buffer) {
+static void * ggml_backend_cuda_split_buffer_get_base(ggml_backend_buffer_t buffer) {
// the pointers are stored in the tensor extras, this is just a dummy address and never dereferenced
return (void *)0x1000;
GGML_UNUSED(buffer);
}
-GGML_CALL static void ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
+static void ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
GGML_ASSERT(tensor->view_src == nullptr); // views of split tensors are not supported
ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
@@ -748,7 +749,7 @@ GGML_CALL static void ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_bu
tensor->extra = extra;
}
-GGML_CALL static void ggml_backend_cuda_split_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
+static void ggml_backend_cuda_split_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
// split tensors must always be set in their entirety at once
GGML_ASSERT(offset == 0);
GGML_ASSERT(size == ggml_nbytes(tensor));
@@ -786,7 +787,7 @@ GGML_CALL static void ggml_backend_cuda_split_buffer_set_tensor(ggml_backend_buf
}
}
-GGML_CALL static void ggml_backend_cuda_split_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
+static void ggml_backend_cuda_split_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
// split tensors must always be set in their entirety at once
GGML_ASSERT(offset == 0);
GGML_ASSERT(size == ggml_nbytes(tensor));
@@ -824,12 +825,12 @@ GGML_CALL static void ggml_backend_cuda_split_buffer_get_tensor(ggml_backend_buf
}
}
-GGML_CALL static void ggml_backend_cuda_split_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
+static void ggml_backend_cuda_split_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
GGML_UNUSED(buffer);
GGML_UNUSED(value);
}
-static struct ggml_backend_buffer_i ggml_backend_cuda_split_buffer_interface = {
+static const ggml_backend_buffer_i ggml_backend_cuda_split_buffer_interface = {
/* .get_name = */ ggml_backend_cuda_split_buffer_get_name,
/* .free_buffer = */ ggml_backend_cuda_split_buffer_free_buffer,
/* .get_base = */ ggml_backend_cuda_split_buffer_get_base,
@@ -844,17 +845,17 @@ static struct ggml_backend_buffer_i ggml_backend_cuda_split_buffer_interface = {
// cuda split buffer type
-GGML_CALL static const char * ggml_backend_cuda_split_buffer_type_name(ggml_backend_buffer_type_t buft) {
+static const char * ggml_backend_cuda_split_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
return GGML_CUDA_NAME "_Split";
GGML_UNUSED(buft);
}
static bool ggml_backend_buft_is_cuda_split(ggml_backend_buffer_type_t buft) {
- return buft->iface.get_name == ggml_backend_cuda_split_buffer_type_name;
+ return buft->iface.get_name == ggml_backend_cuda_split_buffer_type_get_name;
}
-GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_split_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
+static ggml_backend_buffer_t ggml_backend_cuda_split_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
// since we don't know the exact split after rounding, we cannot allocate the device buffers at this point
// instead, we allocate them for each tensor separately in init_tensor
// however, the size still represents the maximum cumulative size of all the device buffers after the tensors are allocated,
@@ -864,13 +865,13 @@ GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_split_buffer_type_alloc
return ggml_backend_buffer_init(buft, ggml_backend_cuda_split_buffer_interface, ctx, size);
}
-GGML_CALL static size_t ggml_backend_cuda_split_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
+static size_t ggml_backend_cuda_split_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
return 128;
GGML_UNUSED(buft);
}
-GGML_CALL static size_t ggml_backend_cuda_split_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
+static size_t ggml_backend_cuda_split_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
ggml_backend_cuda_split_buffer_type_context * ctx = (ggml_backend_cuda_split_buffer_type_context *)buft->context;
size_t total_size = 0;
@@ -897,14 +898,14 @@ GGML_CALL static size_t ggml_backend_cuda_split_buffer_type_get_alloc_size(ggml_
return total_size;
}
-GGML_CALL static bool ggml_backend_cuda_split_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
+static bool ggml_backend_cuda_split_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
return false;
GGML_UNUSED(buft);
}
-static ggml_backend_buffer_type_i ggml_backend_cuda_split_buffer_type_interface = {
- /* .get_name = */ ggml_backend_cuda_split_buffer_type_name,
+static const ggml_backend_buffer_type_i ggml_backend_cuda_split_buffer_type_interface = {
+ /* .get_name = */ ggml_backend_cuda_split_buffer_type_get_name,
/* .alloc_buffer = */ ggml_backend_cuda_split_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_cuda_split_buffer_type_get_alignment,
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
@@ -912,7 +913,7 @@ static ggml_backend_buffer_type_i ggml_backend_cuda_split_buffer_type_interface
/* .is_host = */ ggml_backend_cuda_split_buffer_type_is_host,
};
-GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split) {
+ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split) {
static std::mutex mutex;
std::lock_guard lock(mutex);
@@ -941,6 +942,7 @@ GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const f
struct ggml_backend_buffer_type buft {
/* .iface = */ ggml_backend_cuda_split_buffer_type_interface,
+ /* .device = */ ggml_backend_reg_dev_get(ggml_backend_cuda_reg(), 0),
/* .context = */ new ggml_backend_cuda_split_buffer_type_context{tensor_split_arr},
};
@@ -950,19 +952,19 @@ GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const f
// host buffer type
-GGML_CALL static const char * ggml_backend_cuda_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
+static const char * ggml_backend_cuda_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
return GGML_CUDA_NAME "_Host";
GGML_UNUSED(buft);
}
-GGML_CALL static const char * ggml_backend_cuda_host_buffer_name(ggml_backend_buffer_t buffer) {
+static const char * ggml_backend_cuda_host_buffer_name(ggml_backend_buffer_t buffer) {
return GGML_CUDA_NAME "_Host";
GGML_UNUSED(buffer);
}
-GGML_CALL static void ggml_backend_cuda_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
+static void ggml_backend_cuda_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
CUDA_CHECK(cudaFreeHost(buffer->context));
}
@@ -984,7 +986,7 @@ static void * ggml_cuda_host_malloc(size_t size) {
return ptr;
}
-GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
+static ggml_backend_buffer_t ggml_backend_cuda_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
void * ptr = ggml_cuda_host_malloc(size);
if (ptr == nullptr) {
@@ -1000,7 +1002,7 @@ GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_host_buffer_type_alloc_
return buffer;
}
-GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type() {
+ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type() {
static struct ggml_backend_buffer_type ggml_backend_cuda_buffer_type_host = {
/* .iface = */ {
/* .get_name = */ ggml_backend_cuda_host_buffer_type_name,
@@ -1010,6 +1012,7 @@ GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type() {
/* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
/* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host,
},
+ /* .device = */ ggml_backend_reg_dev_get(ggml_backend_cuda_reg(), 0),
/* .context = */ nullptr,
};
@@ -2337,26 +2340,26 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
// backend
-GGML_CALL static const char * ggml_backend_cuda_name(ggml_backend_t backend) {
+static const char * ggml_backend_cuda_get_name(ggml_backend_t backend) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
return cuda_ctx->name.c_str();
}
-GGML_CALL static void ggml_backend_cuda_free(ggml_backend_t backend) {
+static void ggml_backend_cuda_free(ggml_backend_t backend) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
delete cuda_ctx;
delete backend;
}
-GGML_CALL static ggml_backend_buffer_type_t ggml_backend_cuda_get_default_buffer_type(ggml_backend_t backend) {
+static ggml_backend_buffer_type_t ggml_backend_cuda_get_default_buffer_type(ggml_backend_t backend) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
return ggml_backend_cuda_buffer_type(cuda_ctx->device);
}
-GGML_CALL static void ggml_backend_cuda_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
+static void ggml_backend_cuda_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
@@ -2365,7 +2368,7 @@ GGML_CALL static void ggml_backend_cuda_set_tensor_async(ggml_backend_t backend,
CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, cuda_ctx->stream()));
}
-GGML_CALL static void ggml_backend_cuda_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
+static void ggml_backend_cuda_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
@@ -2374,7 +2377,7 @@ GGML_CALL static void ggml_backend_cuda_get_tensor_async(ggml_backend_t backend,
CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, cuda_ctx->stream()));
}
-GGML_CALL static bool ggml_backend_cuda_cpy_tensor_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, const ggml_tensor * src, ggml_tensor * dst) {
+static bool ggml_backend_cuda_cpy_tensor_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, const ggml_tensor * src, ggml_tensor * dst) {
ggml_backend_buffer_t buf_src = src->view_src ? src->view_src->buffer : src->buffer;
ggml_backend_buffer_t buf_dst = dst->view_src ? dst->view_src->buffer : dst->buffer;
@@ -2429,7 +2432,7 @@ GGML_CALL static bool ggml_backend_cuda_cpy_tensor_async(ggml_backend_t backend_
return true;
}
-GGML_CALL static void ggml_backend_cuda_synchronize(ggml_backend_t backend) {
+static void ggml_backend_cuda_synchronize(ggml_backend_t backend) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
CUDA_CHECK(cudaStreamSynchronize(cuda_ctx->stream()));
@@ -2488,7 +2491,7 @@ static bool ggml_graph_node_has_matching_properties(ggml_tensor * node, ggml_gra
return true;
}
-GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
+static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
ggml_cuda_set_device(cuda_ctx->device);
@@ -2760,8 +2763,187 @@ GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t
return GGML_STATUS_SUCCESS;
}
-GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
- ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *) backend->context;
+static void ggml_backend_cuda_event_record(ggml_backend_t backend, ggml_backend_event_t event) {
+ ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
+
+ CUDA_CHECK(cudaEventRecord((cudaEvent_t)event->context, cuda_ctx->stream()));
+}
+
+static void ggml_backend_cuda_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
+ ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
+
+ if (ggml_backend_is_cuda(backend)) {
+ CUDA_CHECK(cudaStreamWaitEvent(cuda_ctx->stream(), (cudaEvent_t)event->context, 0));
+ } else {
+#if 0
+ // untested
+ auto wait_fn = [](void * user_data) {
+ ggml_backend_event_t event = (ggml_backend_event_t)user_data;
+ ggml_backend_event_synchronize(event);
+ };
+
+ CUDA_CHECK(cudaLaunchHostFunc(cuda_ctx->stream(), wait_fn, event));
+#endif
+ GGML_ABORT("fatal error");
+ }
+}
+
+static const ggml_backend_i ggml_backend_cuda_interface = {
+ /* .get_name = */ ggml_backend_cuda_get_name,
+ /* .free = */ ggml_backend_cuda_free,
+ /* .get_default_buffer_type = */ ggml_backend_cuda_get_default_buffer_type,
+ /* .set_tensor_async = */ ggml_backend_cuda_set_tensor_async,
+ /* .get_tensor_async = */ ggml_backend_cuda_get_tensor_async,
+ /* .cpy_tensor_async = */ ggml_backend_cuda_cpy_tensor_async,
+ /* .synchronize = */ ggml_backend_cuda_synchronize,
+ /* .graph_plan_create = */ NULL,
+ /* .graph_plan_free = */ NULL,
+ /* .graph_plan_update = */ NULL,
+ /* .graph_plan_compute = */ NULL,
+ /* .graph_compute = */ ggml_backend_cuda_graph_compute,
+ /* .supports_op = */ NULL, // moved to device
+ /* .supports_buft = */ NULL, // moved to device
+ /* .offload_op = */ NULL, // moved to device
+ /* .event_record = */ ggml_backend_cuda_event_record,
+ /* .event_wait = */ ggml_backend_cuda_event_wait,
+};
+
+static ggml_guid_t ggml_backend_cuda_guid() {
+ static ggml_guid guid = { 0x2c, 0xdd, 0xe8, 0x1c, 0x65, 0xb3, 0x65, 0x73, 0x6a, 0x12, 0x88, 0x61, 0x1c, 0xc9, 0xdc, 0x25 };
+ return &guid;
+}
+
+bool ggml_backend_is_cuda(ggml_backend_t backend) {
+ return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cuda_guid());
+}
+
+int ggml_backend_cuda_get_device_count() {
+ return ggml_cuda_info().device_count;
+}
+
+void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size) {
+ cudaDeviceProp prop;
+ CUDA_CHECK(cudaGetDeviceProperties(&prop, device));
+ snprintf(description, description_size, "%s", prop.name);
+}
+
+void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total) {
+ ggml_cuda_set_device(device);
+
+ CUDA_CHECK(cudaMemGetInfo(free, total));
+}
+
+bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size) {
+ if (getenv("GGML_CUDA_REGISTER_HOST") == nullptr) {
+ return false;
+ }
+
+#if CUDART_VERSION >= 11100 || defined(GGML_USE_MUSA)
+ cudaError_t err = cudaHostRegister(buffer, size, cudaHostRegisterPortable | cudaHostRegisterReadOnly);
+ if (err != cudaSuccess) {
+ // clear the error
+ cudaGetLastError();
+
+ GGML_CUDA_LOG_WARN("%s: failed to register %.2f MiB of pinned memory: %s\n", __func__,
+ size / 1024.0 / 1024.0, cudaGetErrorString(err));
+ return false;
+ }
+ return true;
+#else
+ return false;
+#endif
+}
+
+void ggml_backend_cuda_unregister_host_buffer(void * buffer) {
+ if (getenv("GGML_CUDA_REGISTER_HOST") == nullptr) {
+ return;
+ }
+
+ cudaError_t err = cudaHostUnregister(buffer);
+ if (err != cudaSuccess) {
+ // clear the error
+ cudaGetLastError();
+ }
+}
+
+
+// backend device
+
+struct ggml_backend_cuda_device_context {
+ int device;
+ std::string name;
+ std::string description;
+};
+
+static const char * ggml_backend_cuda_device_get_name(ggml_backend_dev_t dev) {
+ ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
+ return ctx->name.c_str();
+}
+
+static const char * ggml_backend_cuda_device_get_description(ggml_backend_dev_t dev) {
+ ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
+ return ctx->description.c_str();
+}
+
+static void ggml_backend_cuda_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
+ ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
+ ggml_cuda_set_device(ctx->device);
+ CUDA_CHECK(cudaMemGetInfo(free, total));
+}
+
+static enum ggml_backend_dev_type ggml_backend_cuda_device_get_type(ggml_backend_dev_t dev) {
+ GGML_UNUSED(dev);
+ return GGML_BACKEND_DEVICE_TYPE_GPU_FULL;
+}
+
+static void ggml_backend_cuda_device_get_props(ggml_backend_dev_t dev, ggml_backend_dev_props * props) {
+ props->name = ggml_backend_cuda_device_get_name(dev);
+ props->description = ggml_backend_cuda_device_get_description(dev);
+ props->type = ggml_backend_cuda_device_get_type(dev);
+ ggml_backend_cuda_device_get_memory(dev, &props->memory_free, &props->memory_total);
+
+ bool host_buffer = getenv("GGML_CUDA_NO_PINNED") == nullptr;
+#ifdef GGML_CUDA_NO_PEER_COPY
+ bool events = false;
+#else
+ bool events = true;
+#endif
+
+ props->caps = {
+ /* async */ true,
+ /* host_buffer */ host_buffer,
+ /* events */ events,
+ };
+}
+
+static ggml_backend_t ggml_backend_cuda_device_init(ggml_backend_dev_t dev, const char * params) {
+ GGML_UNUSED(params);
+ ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
+ return ggml_backend_cuda_init(ctx->device);
+}
+
+static ggml_backend_buffer_type_t ggml_backend_cuda_device_get_buffer_type(ggml_backend_dev_t dev) {
+ ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
+ return ggml_backend_cuda_buffer_type(ctx->device);
+}
+
+static ggml_backend_buffer_type_t ggml_backend_cuda_device_get_host_buffer_type(ggml_backend_dev_t dev) {
+ GGML_UNUSED(dev);
+ return ggml_backend_cuda_host_buffer_type();
+}
+
+static ggml_backend_buffer_t ggml_backend_cuda_device_buffer_from_host_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
+ GGML_UNUSED(dev);
+ GGML_UNUSED(ptr);
+ GGML_UNUSED(size);
+ GGML_UNUSED(max_tensor_size);
+ return nullptr;
+}
+
+// TODO: move these functions here
+static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
+ ggml_backend_cuda_device_context * dev_ctx = (ggml_backend_cuda_device_context *) dev->context;
+
switch (op->op) {
case GGML_OP_UNARY:
switch (ggml_get_unary_op(op)) {
@@ -2966,7 +3148,7 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
if (op->src[0]->ne[0] == 256 && op->src[1]->type == GGML_TYPE_F16 && op->src[2]->type == GGML_TYPE_F16) {
return true;
}
- const int cc = ggml_cuda_info().devices[cuda_ctx->device].cc;
+ const int cc = ggml_cuda_info().devices[dev_ctx->device].cc;
return cc >= CC_VOLTA && cc < CC_OFFSET_AMD && op->src[1]->type == GGML_TYPE_F16 && op->src[2]->type == GGML_TYPE_F16;
}
case GGML_OP_CROSS_ENTROPY_LOSS:
@@ -2976,115 +3158,170 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
default:
return false;
}
-
- GGML_UNUSED(backend);
}
-GGML_CALL static bool ggml_backend_cuda_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
+static bool ggml_backend_cuda_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
if (ggml_backend_buft_is_cuda_split(buft)) {
return true;
}
if (ggml_backend_buft_is_cuda(buft)) {
- ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
+ ggml_backend_cuda_device_context * dev_ctx = (ggml_backend_cuda_device_context *)dev->context;
ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
- return buft_ctx->device == cuda_ctx->device;
+ return buft_ctx->device == dev_ctx->device;
}
return false;
}
-GGML_CALL static bool ggml_backend_cuda_offload_op(ggml_backend_t backend, const ggml_tensor * op) {
+static bool ggml_backend_cuda_device_offload_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
const int min_batch_size = 32;
return (op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS) ||
(op->ne[2] >= min_batch_size && op->op == GGML_OP_MUL_MAT_ID);
- GGML_UNUSED(backend);
+ GGML_UNUSED(dev);
}
-static ggml_backend_event_t ggml_backend_cuda_event_new(ggml_backend_t backend) {
+static ggml_backend_event_t ggml_backend_cuda_device_event_new(ggml_backend_dev_t dev) {
#ifdef GGML_CUDA_NO_PEER_COPY
return nullptr;
#else
- ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
+ ggml_backend_cuda_device_context * dev_ctx = (ggml_backend_cuda_device_context *)dev->context;
- ggml_cuda_set_device(cuda_ctx->device);
+ ggml_cuda_set_device(dev_ctx->device);
cudaEvent_t event;
CUDA_CHECK(cudaEventCreateWithFlags(&event, cudaEventDisableTiming));
return new ggml_backend_event {
- /* .backend = */ backend,
+ /* .device = */ dev,
/* .context = */ event,
};
#endif
}
-static void ggml_backend_cuda_event_free(ggml_backend_event_t event) {
- CUDA_CHECK(cudaEventDestroy((cudaEvent_t)event->context));
+static void ggml_backend_cuda_device_event_free(ggml_backend_dev_t dev, ggml_backend_event_t event) {
+ GGML_UNUSED(dev);
+ CUDA_CHECK(cudaEventDestroy((cudaEvent_t)event->context));
delete event;
}
-static void ggml_backend_cuda_event_record(ggml_backend_event_t event) {
- ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)event->backend->context;
-
- CUDA_CHECK(cudaEventRecord((cudaEvent_t)event->context, cuda_ctx->stream()));
-}
-
-static void ggml_backend_cuda_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
- ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
-
- if (ggml_backend_is_cuda(event->backend)) {
- CUDA_CHECK(cudaStreamWaitEvent(cuda_ctx->stream(), (cudaEvent_t)event->context, 0));
- } else {
-#if 0
- // untested
- auto wait_fn = [](void * user_data) {
- ggml_backend_event_t event = (ggml_backend_event_t)user_data;
- ggml_backend_event_synchronize(event);
- };
-
- CUDA_CHECK(cudaLaunchHostFunc(cuda_ctx->stream(), wait_fn, event));
-#endif
- GGML_ABORT("fatal error");
- }
-}
-
-static void ggml_backend_cuda_event_synchronize(ggml_backend_event_t event) {
+static void ggml_backend_cuda_device_event_synchronize(ggml_backend_dev_t dev, ggml_backend_event_t event) {
+ GGML_UNUSED(dev);
CUDA_CHECK(cudaEventSynchronize((cudaEvent_t)event->context));
}
-static ggml_backend_i ggml_backend_cuda_interface = {
- /* .get_name = */ ggml_backend_cuda_name,
- /* .free = */ ggml_backend_cuda_free,
- /* .get_default_buffer_type = */ ggml_backend_cuda_get_default_buffer_type,
- /* .set_tensor_async = */ ggml_backend_cuda_set_tensor_async,
- /* .get_tensor_async = */ ggml_backend_cuda_get_tensor_async,
- /* .cpy_tensor_async = */ ggml_backend_cuda_cpy_tensor_async,
- /* .synchronize = */ ggml_backend_cuda_synchronize,
- /* .graph_plan_create = */ NULL,
- /* .graph_plan_free = */ NULL,
- /* .graph_plan_update = */ NULL,
- /* .graph_plan_compute = */ NULL,
- /* .graph_compute = */ ggml_backend_cuda_graph_compute,
- /* .supports_op = */ ggml_backend_cuda_supports_op,
- /* .supports_buft = */ ggml_backend_cuda_supports_buft,
- /* .offload_op = */ ggml_backend_cuda_offload_op,
- /* .event_new = */ ggml_backend_cuda_event_new,
- /* .event_free = */ ggml_backend_cuda_event_free,
- /* .event_record = */ ggml_backend_cuda_event_record,
- /* .event_wait = */ ggml_backend_cuda_event_wait,
- /* .event_synchronize = */ ggml_backend_cuda_event_synchronize,
+static const ggml_backend_device_i ggml_backend_cuda_device_interface = {
+ /* .get_name = */ ggml_backend_cuda_device_get_name,
+ /* .get_description = */ ggml_backend_cuda_device_get_description,
+ /* .get_memory = */ ggml_backend_cuda_device_get_memory,
+ /* .get_type = */ ggml_backend_cuda_device_get_type,
+ /* .get_props = */ ggml_backend_cuda_device_get_props,
+ /* .init_backend = */ ggml_backend_cuda_device_init,
+ /* .get_buffer_type = */ ggml_backend_cuda_device_get_buffer_type,
+ /* .get_host_buffer_type = */ ggml_backend_cuda_device_get_host_buffer_type,
+ /* .buffer_from_host_ptr = */ ggml_backend_cuda_device_buffer_from_host_ptr,
+ /* .supports_op = */ ggml_backend_cuda_device_supports_op,
+ /* .supports_buft = */ ggml_backend_cuda_device_supports_buft,
+ /* .offload_op = */ ggml_backend_cuda_device_offload_op,
+ /* .event_new = */ ggml_backend_cuda_device_event_new,
+ /* .event_free = */ ggml_backend_cuda_device_event_free,
+ /* .event_synchronize = */ ggml_backend_cuda_device_event_synchronize,
};
-static ggml_guid_t ggml_backend_cuda_guid() {
- static ggml_guid guid = { 0x2c, 0xdd, 0xe8, 0x1c, 0x65, 0xb3, 0x65, 0x73, 0x6a, 0x12, 0x88, 0x61, 0x1c, 0xc9, 0xdc, 0x25 };
- return &guid;
+// backend reg
+
+struct ggml_backend_cuda_reg_context {
+ std::vector devices;
+};
+
+static const char * ggml_backend_cuda_reg_get_name(ggml_backend_reg_t reg) {
+ GGML_UNUSED(reg);
+ return GGML_CUDA_NAME;
}
-GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device) {
+static size_t ggml_backend_cuda_reg_get_device_count(ggml_backend_reg_t reg) {
+ ggml_backend_cuda_reg_context * ctx = (ggml_backend_cuda_reg_context *)reg->context;
+ return ctx->devices.size();
+}
+
+static ggml_backend_dev_t ggml_backend_cuda_reg_get_device(ggml_backend_reg_t reg, size_t index) {
+ ggml_backend_cuda_reg_context * ctx = (ggml_backend_cuda_reg_context *)reg->context;
+ GGML_ASSERT(index < ctx->devices.size());
+ return ctx->devices[index];
+}
+
+static void * ggml_backend_cuda_reg_get_proc_address(ggml_backend_reg_t reg, const char * name) {
+ GGML_UNUSED(reg);
+ if (strcmp(name, "ggml_backend_split_buffer_type") == 0) {
+ return (void *)ggml_backend_cuda_split_buffer_type;
+ }
+ if (strcmp(name, "ggml_backend_register_host_buffer") == 0) {
+ return (void *)ggml_backend_cuda_register_host_buffer;
+ }
+ if (strcmp(name, "ggml_backend_unregister_host_buffer") == 0) {
+ return (void *)ggml_backend_cuda_unregister_host_buffer;
+ }
+ return nullptr;
+}
+
+static void ggml_backend_cuda_reg_set_log_callback(ggml_backend_reg_t reg, ggml_log_callback log_callback, void * user_data) {
+ GGML_UNUSED(reg);
+ ggml_backend_cuda_log_set_callback(log_callback, user_data);
+}
+
+static const ggml_backend_reg_i ggml_backend_cuda_reg_interface = {
+ /* .get_name = */ ggml_backend_cuda_reg_get_name,
+ /* .get_device_count = */ ggml_backend_cuda_reg_get_device_count,
+ /* .get_device_get = */ ggml_backend_cuda_reg_get_device,
+ /* .get_proc_address = */ ggml_backend_cuda_reg_get_proc_address,
+ /* .set_log_callback = */ ggml_backend_cuda_reg_set_log_callback,
+};
+
+// backend registry
+ggml_backend_reg_t ggml_backend_cuda_reg() {
+ static ggml_backend_reg reg;
+ static bool initialized = false;
+
+ {
+ static std::mutex mutex;
+ std::lock_guard lock(mutex);
+ if (!initialized) {
+ ggml_backend_cuda_reg_context * ctx = new ggml_backend_cuda_reg_context;
+
+ for (int i = 0; i < ggml_cuda_info().device_count; i++) {
+ ggml_backend_cuda_device_context * dev_ctx = new ggml_backend_cuda_device_context;
+ dev_ctx->device = i;
+ dev_ctx->name = GGML_CUDA_NAME + std::to_string(i);
+
+ ggml_cuda_set_device(i);
+ cudaDeviceProp prop;
+ CUDA_CHECK(cudaGetDeviceProperties(&prop, i));
+ dev_ctx->description = prop.name;
+
+ ggml_backend_dev_t dev = new ggml_backend_device {
+ /* .interface = */ ggml_backend_cuda_device_interface,
+ /* .reg = */ ®,
+ /* .context = */ dev_ctx
+ };
+ ctx->devices.push_back(dev);
+ }
+
+ reg = ggml_backend_reg {
+ /* .interface = */ ggml_backend_cuda_reg_interface,
+ /* .context = */ ctx
+ };
+ }
+
+ initialized = true;
+ }
+
+ return ®
+}
+
+ggml_backend_t ggml_backend_cuda_init(int device) {
if (device < 0 || device >= ggml_backend_cuda_get_device_count()) {
GGML_LOG_ERROR("%s: invalid device %d\n", __func__, device);
return nullptr;
@@ -3099,82 +3336,9 @@ GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device) {
ggml_backend_t cuda_backend = new ggml_backend {
/* .guid = */ ggml_backend_cuda_guid(),
/* .interface = */ ggml_backend_cuda_interface,
- /* .context = */ ctx
+ /* .device = */ ggml_backend_reg_dev_get(ggml_backend_cuda_reg(), device),
+ /* .context = */ ctx,
};
return cuda_backend;
}
-
-GGML_CALL bool ggml_backend_is_cuda(ggml_backend_t backend) {
- return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cuda_guid());
-}
-
-GGML_CALL int ggml_backend_cuda_get_device_count() {
- return ggml_cuda_info().device_count;
-}
-
-GGML_CALL void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size) {
- cudaDeviceProp prop;
- CUDA_CHECK(cudaGetDeviceProperties(&prop, device));
- snprintf(description, description_size, "%s", prop.name);
-}
-
-GGML_CALL void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total) {
- ggml_cuda_set_device(device);
-
- CUDA_CHECK(cudaMemGetInfo(free, total));
-}
-
-GGML_CALL bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size) {
- if (getenv("GGML_CUDA_REGISTER_HOST") == nullptr) {
- return false;
- }
-
-#if CUDART_VERSION >= 11100 || defined(GGML_USE_MUSA)
- cudaError_t err = cudaHostRegister(buffer, size, cudaHostRegisterPortable | cudaHostRegisterReadOnly);
- if (err != cudaSuccess) {
- // clear the error
- cudaGetLastError();
-
- GGML_LOG_WARN("%s: failed to register %.2f MiB of pinned memory: %s\n", __func__,
- size / 1024.0 / 1024.0, cudaGetErrorString(err));
- return false;
- }
- return true;
-#else
- return false;
-#endif
-}
-
-GGML_CALL void ggml_backend_cuda_unregister_host_buffer(void * buffer) {
- if (getenv("GGML_CUDA_REGISTER_HOST") == nullptr) {
- return;
- }
-
- cudaError_t err = cudaHostUnregister(buffer);
- if (err != cudaSuccess) {
- // clear the error
- cudaGetLastError();
- }
-}
-
-// backend registry
-GGML_CALL static ggml_backend_t ggml_backend_reg_cuda_init(const char * params, void * user_data) {
- ggml_backend_t cuda_backend = ggml_backend_cuda_init((int) (intptr_t) user_data);
- return cuda_backend;
-
- GGML_UNUSED(params);
-}
-
-extern "C" GGML_CALL int ggml_backend_cuda_reg_devices();
-
-GGML_CALL int ggml_backend_cuda_reg_devices() {
- int device_count = ggml_backend_cuda_get_device_count();
- //int device_count = 1; // DEBUG: some tools require delaying CUDA initialization
- for (int i = 0; i < device_count; i++) {
- char name[128];
- snprintf(name, sizeof(name), "%s%d", GGML_CUDA_NAME, i);
- ggml_backend_register(name, ggml_backend_reg_cuda_init, ggml_backend_cuda_buffer_type(i), (void *) (intptr_t) i);
- }
- return device_count;
-}
diff --git a/ggml/src/ggml-kompute.cpp b/ggml/src/ggml-kompute.cpp
index 9cbc57a64..2c926aaee 100644
--- a/ggml/src/ggml-kompute.cpp
+++ b/ggml/src/ggml-kompute.cpp
@@ -1921,6 +1921,7 @@ ggml_backend_buffer_type_t ggml_backend_kompute_buffer_type(int device) {
for (const auto & dev : devices) {
vec.push_back({
/* .iface = */ ggml_backend_kompute_buffer_type_interface,
+ /* .device = */ nullptr,
/* .context = */ new ggml_backend_kompute_buffer_type_context(dev.index, dev.bufferAlignment, dev.maxAlloc)
});
}
@@ -1989,11 +1990,8 @@ static struct ggml_backend_i kompute_backend_i = {
/* .supports_op = */ ggml_backend_kompute_supports_op,
/* .supports_buft = */ ggml_backend_kompute_supports_buft,
/* .offload_op = */ NULL,
- /* .event_new = */ NULL,
- /* .event_free = */ NULL,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
- /* .event_synchronize = */ NULL,
};
static ggml_guid_t ggml_backend_kompute_guid() {
@@ -2008,6 +2006,7 @@ ggml_backend_t ggml_backend_kompute_init(int device) {
ggml_backend_t kompute_backend = new ggml_backend {
/* .guid = */ ggml_backend_kompute_guid(),
/* .interface = */ kompute_backend_i,
+ /* .device = */ nullptr,
/* .context = */ s_kompute_context,
};
@@ -2017,23 +2016,3 @@ ggml_backend_t ggml_backend_kompute_init(int device) {
bool ggml_backend_is_kompute(ggml_backend_t backend) {
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_kompute_guid());
}
-
-static ggml_backend_t ggml_backend_reg_kompute_init(const char * params, void * user_data) {
- GGML_UNUSED(params);
- return ggml_backend_kompute_init(intptr_t(user_data));
-}
-
-extern "C" int ggml_backend_kompute_reg_devices();
-
-int ggml_backend_kompute_reg_devices() {
- auto devices = ggml_vk_available_devices_internal(0);
- for (const auto & device : devices) {
- ggml_backend_register(
- ggml_kompute_format_name(device.index).c_str(),
- ggml_backend_reg_kompute_init,
- ggml_backend_kompute_buffer_type(device.index),
- reinterpret_cast(intptr_t(device.index))
- );
- }
- return devices.size();
-}
diff --git a/ggml/src/ggml-metal.m b/ggml/src/ggml-metal.m
index f284afc03..7ffaaf8d8 100644
--- a/ggml/src/ggml-metal.m
+++ b/ggml/src/ggml-metal.m
@@ -3157,13 +3157,13 @@ static void ggml_backend_metal_free_device(void) {
}
}
-GGML_CALL static const char * ggml_backend_metal_buffer_get_name(ggml_backend_buffer_t buffer) {
+static const char * ggml_backend_metal_buffer_get_name(ggml_backend_buffer_t buffer) {
return "Metal";
UNUSED(buffer);
}
-GGML_CALL static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_t buffer) {
+static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_t buffer) {
struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context;
for (int i = 0; i < ctx->n_buffers; i++) {
@@ -3182,25 +3182,25 @@ GGML_CALL static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_
free(ctx);
}
-GGML_CALL static void * ggml_backend_metal_buffer_get_base(ggml_backend_buffer_t buffer) {
+static void * ggml_backend_metal_buffer_get_base(ggml_backend_buffer_t buffer) {
struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context;
return ctx->all_data;
}
-GGML_CALL static void ggml_backend_metal_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
+static void ggml_backend_metal_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
memcpy((char *)tensor->data + offset, data, size);
UNUSED(buffer);
}
-GGML_CALL static void ggml_backend_metal_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
+static void ggml_backend_metal_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
memcpy(data, (const char *)tensor->data + offset, size);
UNUSED(buffer);
}
-GGML_CALL static bool ggml_backend_metal_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
+static bool ggml_backend_metal_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
if (ggml_backend_buffer_is_host(src->buffer)) {
memcpy(dst->data, src->data, ggml_nbytes(src));
return true;
@@ -3210,7 +3210,7 @@ GGML_CALL static bool ggml_backend_metal_buffer_cpy_tensor(ggml_backend_buffer_t
UNUSED(buffer);
}
-GGML_CALL static void ggml_backend_metal_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
+static void ggml_backend_metal_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context;
memset(ctx->all_data, value, ctx->all_size);
@@ -3231,7 +3231,7 @@ static struct ggml_backend_buffer_i ggml_backend_metal_buffer_i = {
// default buffer type
-GGML_CALL static const char * ggml_backend_metal_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
+static const char * ggml_backend_metal_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
return "Metal";
UNUSED(buft);
@@ -3262,7 +3262,7 @@ static void ggml_backend_metal_log_allocated_size(id device, size_t s
UNUSED(size_aligned);
}
-GGML_CALL static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
+static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
struct ggml_backend_metal_buffer_context * ctx = malloc(sizeof(struct ggml_backend_metal_buffer_context));
const size_t size_page = sysconf(_SC_PAGESIZE);
@@ -3304,12 +3304,12 @@ GGML_CALL static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buff
return ggml_backend_buffer_init(buft, ggml_backend_metal_buffer_i, ctx, size);
}
-GGML_CALL static size_t ggml_backend_metal_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
+static size_t ggml_backend_metal_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
return 32;
UNUSED(buft);
}
-GGML_CALL static size_t ggml_backend_metal_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
+static size_t ggml_backend_metal_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
id device = ggml_backend_metal_get_device();
size_t max_size = device.maxBufferLength;
ggml_backend_metal_free_device();
@@ -3319,13 +3319,13 @@ GGML_CALL static size_t ggml_backend_metal_buffer_type_get_max_size(ggml_backend
UNUSED(buft);
}
-GGML_CALL static bool ggml_backend_metal_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
+static bool ggml_backend_metal_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
return true;
UNUSED(buft);
}
-GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void) {
+ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void) {
static struct ggml_backend_buffer_type ggml_backend_buffer_type_metal = {
/* .iface = */ {
/* .get_name = */ ggml_backend_metal_buffer_type_get_name,
@@ -3335,6 +3335,7 @@ GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void) {
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
/* .is_host = */ ggml_backend_metal_buffer_type_is_host,
},
+ /* .device = */ NULL,
/* .context = */ NULL,
};
@@ -3343,7 +3344,7 @@ GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void) {
// buffer from ptr
-GGML_CALL ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t size, size_t max_size) {
+ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t size, size_t max_size) {
struct ggml_backend_metal_buffer_context * ctx = malloc(sizeof(struct ggml_backend_metal_buffer_context));
ctx->all_data = data;
@@ -3423,37 +3424,37 @@ GGML_CALL ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data,
// backend
-GGML_CALL static const char * ggml_backend_metal_name(ggml_backend_t backend) {
+static const char * ggml_backend_metal_name(ggml_backend_t backend) {
return "Metal";
UNUSED(backend);
}
-GGML_CALL static void ggml_backend_metal_free(ggml_backend_t backend) {
+static void ggml_backend_metal_free(ggml_backend_t backend) {
struct ggml_backend_metal_context * ctx = (struct ggml_backend_metal_context *)backend->context;
ggml_metal_free(ctx);
free(backend);
}
-GGML_CALL static ggml_backend_buffer_type_t ggml_backend_metal_get_default_buffer_type(ggml_backend_t backend) {
+static ggml_backend_buffer_type_t ggml_backend_metal_get_default_buffer_type(ggml_backend_t backend) {
return ggml_backend_metal_buffer_type();
UNUSED(backend);
}
-GGML_CALL static enum ggml_status ggml_backend_metal_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
+static enum ggml_status ggml_backend_metal_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
struct ggml_backend_metal_context * metal_ctx = (struct ggml_backend_metal_context *)backend->context;
return ggml_metal_graph_compute(metal_ctx, cgraph);
}
-GGML_CALL static bool ggml_backend_metal_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
+static bool ggml_backend_metal_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
struct ggml_backend_metal_context * metal_ctx = (struct ggml_backend_metal_context *)backend->context;
return ggml_metal_supports_op(metal_ctx, op);
}
-GGML_CALL static bool ggml_backend_metal_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
+static bool ggml_backend_metal_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
return buft->iface.get_name == ggml_backend_metal_buffer_type_get_name;
UNUSED(backend);
@@ -3494,11 +3495,8 @@ static struct ggml_backend_i ggml_backend_metal_i = {
/* .supports_op = */ ggml_backend_metal_supports_op,
/* .supports_buft = */ ggml_backend_metal_supports_buft,
/* .offload_op = */ NULL,
- /* .event_new = */ NULL,
- /* .event_free = */ NULL,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
- /* .event_synchronize = */ NULL,
};
static ggml_guid_t ggml_backend_metal_guid(void) {
@@ -3518,6 +3516,7 @@ ggml_backend_t ggml_backend_metal_init(void) {
*backend = (struct ggml_backend) {
/* .guid = */ ggml_backend_metal_guid(),
/* .interface = */ ggml_backend_metal_i,
+ /* .device = */ NULL,
/* .context = */ ctx,
};
@@ -3554,9 +3553,9 @@ void ggml_backend_metal_capture_next_compute(ggml_backend_t backend) {
ctx->capture_next_compute = true;
}
-GGML_CALL ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data); // silence warning
+ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data); // silence warning
-GGML_CALL ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data) {
+ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data) {
return ggml_backend_metal_init();
GGML_UNUSED(params);
diff --git a/ggml/src/ggml-rpc.cpp b/ggml/src/ggml-rpc.cpp
index 49b3fa911..ab7298cba 100644
--- a/ggml/src/ggml-rpc.cpp
+++ b/ggml/src/ggml-rpc.cpp
@@ -319,12 +319,12 @@ static std::shared_ptr get_socket(const std::string & endpoint) {
return sock;
}
-GGML_CALL static const char * ggml_backend_rpc_buffer_get_name(ggml_backend_buffer_t buffer) {
+static const char * ggml_backend_rpc_buffer_get_name(ggml_backend_buffer_t buffer) {
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
return ctx->name.c_str();
}
-GGML_CALL static void ggml_backend_rpc_buffer_free_buffer(ggml_backend_buffer_t buffer) {
+static void ggml_backend_rpc_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
// input serialization format: | remote_ptr (8 bytes) |
std::vector input(sizeof(uint64_t), 0);
@@ -337,7 +337,7 @@ GGML_CALL static void ggml_backend_rpc_buffer_free_buffer(ggml_backend_buffer_t
delete ctx;
}
-GGML_CALL static void * ggml_backend_rpc_buffer_get_base(ggml_backend_buffer_t buffer) {
+static void * ggml_backend_rpc_buffer_get_base(ggml_backend_buffer_t buffer) {
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
if (ctx->base_cache.find(buffer) != ctx->base_cache.end()) {
return ctx->base_cache[buffer];
@@ -388,7 +388,7 @@ static rpc_tensor serialize_tensor(const ggml_tensor * tensor) {
return result;
}
-GGML_CALL static void ggml_backend_rpc_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
+static void ggml_backend_rpc_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
UNUSED(buffer);
if (ggml_is_quantized(tensor->type)) {
// TODO: this check is due to MATRIX_ROW_PADDING in CUDA and should be generalized
@@ -396,7 +396,7 @@ GGML_CALL static void ggml_backend_rpc_buffer_init_tensor(ggml_backend_buffer_t
}
}
-GGML_CALL static void ggml_backend_rpc_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
+static void ggml_backend_rpc_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
// input serialization format: | rpc_tensor | offset (8 bytes) | data (size bytes) |
size_t input_size = sizeof(rpc_tensor) + sizeof(uint64_t) + size;
@@ -410,7 +410,7 @@ GGML_CALL static void ggml_backend_rpc_buffer_set_tensor(ggml_backend_buffer_t b
GGML_ASSERT(status);
}
-GGML_CALL static void ggml_backend_rpc_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
+static void ggml_backend_rpc_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
// input serialization format: | rpc_tensor | offset (8 bytes) | size (8 bytes) |
int input_size = sizeof(rpc_tensor) + 2*sizeof(uint64_t);
@@ -427,7 +427,7 @@ GGML_CALL static void ggml_backend_rpc_buffer_get_tensor(ggml_backend_buffer_t b
memcpy(data, output.data(), size);
}
-GGML_CALL static bool ggml_backend_rpc_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
+static bool ggml_backend_rpc_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
// check if src and dst are on the same server
ggml_backend_buffer_t src_buffer = src->buffer;
ggml_backend_rpc_buffer_context * src_ctx = (ggml_backend_rpc_buffer_context *)src_buffer->context;
@@ -452,7 +452,7 @@ GGML_CALL static bool ggml_backend_rpc_buffer_cpy_tensor(ggml_backend_buffer_t b
return output[0];
}
-GGML_CALL static void ggml_backend_rpc_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
+static void ggml_backend_rpc_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
// serialization format: | bufptr (8 bytes) | value (1 byte) |
int input_size = sizeof(uint64_t) + sizeof(uint8_t);
@@ -477,12 +477,12 @@ static ggml_backend_buffer_i ggml_backend_rpc_buffer_interface = {
/* .reset = */ NULL,
};
-GGML_CALL static const char * ggml_backend_rpc_buffer_type_name(ggml_backend_buffer_type_t buft) {
+static const char * ggml_backend_rpc_buffer_type_name(ggml_backend_buffer_type_t buft) {
ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
return buft_ctx->name.c_str();
}
-GGML_CALL static ggml_backend_buffer_t ggml_backend_rpc_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
+static ggml_backend_buffer_t ggml_backend_rpc_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
// input serialization format: | size (8 bytes) |
int input_size = sizeof(uint64_t);
@@ -522,7 +522,7 @@ static size_t get_alignment(const std::shared_ptr & sock) {
return alignment;
}
-GGML_CALL static size_t ggml_backend_rpc_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
+static size_t ggml_backend_rpc_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
return buft_ctx->alignment;
}
@@ -540,12 +540,12 @@ static size_t get_max_size(const std::shared_ptr & sock) {
return max_size;
}
-GGML_CALL static size_t ggml_backend_rpc_get_max_size(ggml_backend_buffer_type_t buft) {
+static size_t ggml_backend_rpc_get_max_size(ggml_backend_buffer_type_t buft) {
ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
return buft_ctx->max_size;
}
-GGML_CALL static size_t ggml_backend_rpc_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
+static size_t ggml_backend_rpc_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
UNUSED(buft);
return ggml_nbytes(tensor);
}
@@ -559,24 +559,24 @@ static ggml_backend_buffer_type_i ggml_backend_rpc_buffer_type_interface = {
/* .is_host = */ NULL,
};
-GGML_CALL static const char * ggml_backend_rpc_name(ggml_backend_t backend) {
+static const char * ggml_backend_rpc_name(ggml_backend_t backend) {
ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
return rpc_ctx->name.c_str();
}
-GGML_CALL static void ggml_backend_rpc_free(ggml_backend_t backend) {
+static void ggml_backend_rpc_free(ggml_backend_t backend) {
ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
delete rpc_ctx;
delete backend;
}
-GGML_CALL static ggml_backend_buffer_type_t ggml_backend_rpc_get_default_buffer_type(ggml_backend_t backend) {
+static ggml_backend_buffer_type_t ggml_backend_rpc_get_default_buffer_type(ggml_backend_t backend) {
ggml_backend_rpc_context * ctx = (ggml_backend_rpc_context *)backend->context;
return ggml_backend_rpc_buffer_type(ctx->endpoint.c_str());
}
-GGML_CALL static void ggml_backend_rpc_synchronize(ggml_backend_t backend) {
+static void ggml_backend_rpc_synchronize(ggml_backend_t backend) {
UNUSED(backend);
// this is no-op because we don't have any async operations
}
@@ -618,7 +618,7 @@ static void serialize_graph(const ggml_cgraph * cgraph, std::vector & o
memcpy(out_tensors, tensors.data(), n_tensors * sizeof(rpc_tensor));
}
-GGML_CALL static enum ggml_status ggml_backend_rpc_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
+static enum ggml_status ggml_backend_rpc_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
std::vector input;
serialize_graph(cgraph, input);
@@ -630,14 +630,14 @@ GGML_CALL static enum ggml_status ggml_backend_rpc_graph_compute(ggml_backend_t
return (enum ggml_status)output[0];
}
-GGML_CALL static bool ggml_backend_rpc_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
+static bool ggml_backend_rpc_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
UNUSED(backend);
UNUSED(op);
//TODO: call the remote backend and cache the results
return true;
}
-GGML_CALL static bool ggml_backend_rpc_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
+static bool ggml_backend_rpc_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
if (!buft || buft->iface.get_name != ggml_backend_rpc_buffer_type_name) {
return false;
}
@@ -662,14 +662,11 @@ static ggml_backend_i ggml_backend_rpc_interface = {
/* .supports_op = */ ggml_backend_rpc_supports_op,
/* .supports_buft = */ ggml_backend_rpc_supports_buft,
/* .offload_op = */ NULL,
- /* .event_new = */ NULL,
- /* .event_free = */ NULL,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
- /* .event_synchronize = */ NULL,
};
-GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint) {
+GGML_API ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint) {
static std::mutex mutex;
std::lock_guard lock(mutex);
// NOTE: buffer types are allocated and never freed; this is by design
@@ -694,13 +691,14 @@ GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const
ggml_backend_buffer_type_t buft = new ggml_backend_buffer_type {
/* .iface = */ ggml_backend_rpc_buffer_type_interface,
+ /* .device = */ nullptr,
/* .context = */ buft_ctx
};
buft_map[endpoint] = buft;
return buft;
}
-GGML_CALL ggml_backend_t ggml_backend_rpc_init(const char * endpoint) {
+ggml_backend_t ggml_backend_rpc_init(const char * endpoint) {
ggml_backend_rpc_context * ctx = new ggml_backend_rpc_context {
/* .endpoint = */ endpoint,
/* .name = */ "RPC[" + std::string(endpoint) + "]",
@@ -709,12 +707,13 @@ GGML_CALL ggml_backend_t ggml_backend_rpc_init(const char * endpoint) {
ggml_backend_t backend = new ggml_backend {
/* .guid = */ ggml_backend_rpc_guid(),
/* .interface = */ ggml_backend_rpc_interface,
+ /* .device = */ nullptr,
/* .context = */ ctx
};
return backend;
}
-GGML_API GGML_CALL bool ggml_backend_is_rpc(ggml_backend_t backend) {
+GGML_API bool ggml_backend_is_rpc(ggml_backend_t backend) {
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_rpc_guid());
}
@@ -734,7 +733,7 @@ static void get_device_memory(const std::shared_ptr & sock, size_t * f
*total = total_mem;
}
-GGML_API GGML_CALL void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total) {
+GGML_API void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total) {
auto sock = get_socket(endpoint);
if (sock == nullptr) {
*free = 0;
diff --git a/ggml/src/ggml-sycl.cpp b/ggml/src/ggml-sycl.cpp
index 6978a3192..4d3f1c5ce 100644
--- a/ggml/src/ggml-sycl.cpp
+++ b/ggml/src/ggml-sycl.cpp
@@ -4038,7 +4038,7 @@ bool ggml_sycl_compute_forward(ggml_backend_sycl_context & ctx, struct ggml_tens
return true;
}
-GGML_API GGML_CALL void ggml_sycl_get_gpu_list(int *id_list, int max_len) try {
+GGML_API void ggml_sycl_get_gpu_list(int *id_list, int max_len) try {
GGML_SYCL_DEBUG("[SYCL] call ggml_sycl_get_gpu_list\n");
for(int i=0;icontext;
return ctx->name.c_str();
}
-GGML_CALL static bool ggml_backend_buffer_is_sycl(ggml_backend_buffer_t buffer) {
+static bool ggml_backend_buffer_is_sycl(ggml_backend_buffer_t buffer) {
return buffer->iface.get_name == ggml_backend_sycl_buffer_get_name;
}
@@ -4162,7 +4162,7 @@ static void * ggml_backend_sycl_buffer_get_base(ggml_backend_buffer_t buffer) {
return ctx->dev_ptr;
}
-GGML_CALL static void
+static void
ggml_backend_sycl_buffer_init_tensor(ggml_backend_buffer_t buffer,
ggml_tensor *tensor) try {
ggml_backend_sycl_buffer_context * ctx = (ggml_backend_sycl_buffer_context *)buffer->context;
@@ -4237,7 +4237,7 @@ catch (sycl::exception const &exc) {
std::exit(1);
}
-GGML_CALL static bool
+static bool
ggml_backend_sycl_buffer_cpy_tensor(ggml_backend_buffer_t buffer,
const ggml_tensor *src,
ggml_tensor *dst) try {
@@ -4339,12 +4339,12 @@ struct ggml_backend_sycl_buffer_type_context {
queue_ptr stream = nullptr;
};
-GGML_CALL static const char * ggml_backend_sycl_buffer_type_name(ggml_backend_buffer_type_t buft) {
+static const char * ggml_backend_sycl_buffer_type_name(ggml_backend_buffer_type_t buft) {
ggml_backend_sycl_buffer_type_context * ctx = (ggml_backend_sycl_buffer_type_context *)buft->context;
return ctx->name.c_str();
}
-GGML_CALL static ggml_backend_buffer_t
+static ggml_backend_buffer_t
ggml_backend_sycl_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft,
size_t size) try {
ggml_backend_sycl_buffer_type_context * buft_ctx = (ggml_backend_sycl_buffer_type_context *)buft->context;
@@ -4368,7 +4368,7 @@ catch (sycl::exception const &exc) {
std::exit(1);
}
-GGML_CALL static size_t ggml_backend_sycl_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
+static size_t ggml_backend_sycl_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
return 128;
UNUSED(buft);
}
@@ -4379,7 +4379,7 @@ static size_t ggml_backend_sycl_buffer_type_get_max_size(ggml_backend_buffer_typ
UNUSED(buft);
}
-GGML_CALL static size_t ggml_backend_sycl_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
+static size_t ggml_backend_sycl_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
size_t size = ggml_nbytes(tensor);
int64_t ne0 = tensor->ne[0];
@@ -4424,6 +4424,7 @@ ggml_backend_buffer_type_t ggml_backend_sycl_buffer_type(int device) {
queue_ptr stream = &(device_i.default_queue());
ggml_backend_sycl_buffer_types[i] = {
/* .iface = */ ggml_backend_sycl_buffer_type_interface,
+ /* .device = */ nullptr,
/* .context = */ new ggml_backend_sycl_buffer_type_context{i, GGML_SYCL_NAME + std::to_string(i), stream},
};
}
@@ -4449,6 +4450,7 @@ ggml_backend_buffer_type_t ggml_backend_sycl_buffer_type(ggml_backend_sycl_conte
for (int i = 0; i < ggml_sycl_info().device_count; i++) {
ggml_backend_sycl_buffer_types[i] = {
/* .iface = */ ggml_backend_sycl_buffer_type_interface,
+ /* .device = */ nullptr,
/* .context = */ new ggml_backend_sycl_buffer_type_context{i, GGML_SYCL_NAME + std::to_string(i), ctx->stream(i, 0)},
};
}
@@ -4513,7 +4515,7 @@ struct ggml_backend_sycl_split_buffer_context {
std::vector streams;
};
-GGML_CALL static const char * ggml_backend_sycl_split_buffer_get_name(ggml_backend_buffer_t buffer) {
+static const char * ggml_backend_sycl_split_buffer_get_name(ggml_backend_buffer_t buffer) {
return GGML_SYCL_NAME "_Split";
UNUSED(buffer);
@@ -4523,19 +4525,19 @@ static bool ggml_backend_buffer_is_sycl_split(ggml_backend_buffer_t buffer) {
return buffer->iface.get_name == ggml_backend_sycl_split_buffer_get_name;
}
-GGML_CALL static void ggml_backend_sycl_split_buffer_free_buffer(ggml_backend_buffer_t buffer) {
+static void ggml_backend_sycl_split_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_backend_sycl_split_buffer_context * ctx = (ggml_backend_sycl_split_buffer_context *)buffer->context;
delete ctx;
}
-GGML_CALL static void * ggml_backend_sycl_split_buffer_get_base(ggml_backend_buffer_t buffer) {
+static void * ggml_backend_sycl_split_buffer_get_base(ggml_backend_buffer_t buffer) {
// the pointers are stored in the tensor extras, this is just a dummy address and never dereferenced
return (void *)0x1000;
UNUSED(buffer);
}
-GGML_CALL static void
+static void
ggml_backend_sycl_split_buffer_init_tensor(ggml_backend_buffer_t buffer,
ggml_tensor *tensor) try {
GGML_ASSERT(tensor->view_src == nullptr); // views of split tensors are not supported
@@ -4618,7 +4620,7 @@ catch (sycl::exception const &exc) {
std::exit(1);
}
-GGML_CALL static void
+static void
ggml_backend_sycl_split_buffer_set_tensor(ggml_backend_buffer_t buffer,
ggml_tensor *tensor, const void *data,
size_t offset, size_t size) try {
@@ -4671,7 +4673,7 @@ catch (sycl::exception const &exc) {
std::exit(1);
}
-GGML_CALL static void
+static void
ggml_backend_sycl_split_buffer_get_tensor(ggml_backend_buffer_t buffer,
const ggml_tensor *tensor, void *data,
size_t offset, size_t size) try {
@@ -4724,7 +4726,7 @@ catch (sycl::exception const &exc) {
std::exit(1);
}
-GGML_CALL static void ggml_backend_sycl_split_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
+static void ggml_backend_sycl_split_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
UNUSED(buffer);
UNUSED(value);
}
@@ -4742,13 +4744,13 @@ static struct ggml_backend_buffer_i ggml_backend_sycl_split_buffer_interface = {
/* .reset = */ NULL,
};
-GGML_CALL static const char * ggml_backend_sycl_split_buffer_type_name(ggml_backend_buffer_type_t buft) {
+static const char * ggml_backend_sycl_split_buffer_type_name(ggml_backend_buffer_type_t buft) {
return GGML_SYCL_NAME "_Split";
UNUSED(buft);
}
-GGML_CALL static ggml_backend_buffer_t ggml_backend_sycl_split_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
+static ggml_backend_buffer_t ggml_backend_sycl_split_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
// since we don't know the exact split after rounding, we cannot allocate the device buffers at this point
// instead, we allocate them for each tensor separately in init_tensor
// however, the size still represents the maximum cumulative size of all the device buffers after the tensors are allocated,
@@ -4758,12 +4760,12 @@ GGML_CALL static ggml_backend_buffer_t ggml_backend_sycl_split_buffer_type_alloc
return ggml_backend_buffer_init(buft, ggml_backend_sycl_split_buffer_interface, ctx, size);
}
-GGML_CALL static size_t ggml_backend_sycl_split_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
+static size_t ggml_backend_sycl_split_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
return 128;
UNUSED(buft);
}
-GGML_CALL static size_t ggml_backend_sycl_split_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
+static size_t ggml_backend_sycl_split_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
ggml_backend_sycl_split_buffer_type_context * ctx = (ggml_backend_sycl_split_buffer_type_context *)buft->context;
size_t total_size = 0;
@@ -4790,7 +4792,7 @@ GGML_CALL static size_t ggml_backend_sycl_split_buffer_type_get_alloc_size(ggml_
return total_size;
}
-GGML_CALL static bool ggml_backend_sycl_split_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
+static bool ggml_backend_sycl_split_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
return false;
UNUSED(buft);
@@ -4805,7 +4807,7 @@ static ggml_backend_buffer_type_i ggml_backend_sycl_split_buffer_type_interface
/* .is_host = */ ggml_backend_sycl_split_buffer_type_is_host,
};
-GGML_CALL ggml_backend_buffer_type_t ggml_backend_sycl_split_buffer_type(const float * tensor_split) {
+ggml_backend_buffer_type_t ggml_backend_sycl_split_buffer_type(const float * tensor_split) {
static std::mutex mutex;
std::lock_guard lock(mutex);
@@ -4837,6 +4839,7 @@ GGML_CALL ggml_backend_buffer_type_t ggml_backend_sycl_split_buffer_type(const f
struct ggml_backend_buffer_type buft {
/* .iface = */ ggml_backend_sycl_split_buffer_type_interface,
+ /* .device = */ nullptr,
/* .context = */ new ggml_backend_sycl_split_buffer_type_context{tensor_split_arr},
};
@@ -4846,13 +4849,13 @@ GGML_CALL ggml_backend_buffer_type_t ggml_backend_sycl_split_buffer_type(const f
// host buffer type
-GGML_CALL static const char * ggml_backend_sycl_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
+static const char * ggml_backend_sycl_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
return GGML_SYCL_NAME "_Host";
UNUSED(buft);
}
-GGML_CALL static const char * ggml_backend_sycl_host_buffer_name(ggml_backend_buffer_t buffer) {
+static const char * ggml_backend_sycl_host_buffer_name(ggml_backend_buffer_t buffer) {
return GGML_SYCL_NAME "_Host";
UNUSED(buffer);
@@ -4890,6 +4893,7 @@ ggml_backend_buffer_type_t ggml_backend_sycl_host_buffer_type() {
/* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
/* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host,
},
+ /* .device = */ nullptr,
/* .context = */ nullptr,
};
@@ -4898,14 +4902,14 @@ ggml_backend_buffer_type_t ggml_backend_sycl_host_buffer_type() {
// backend
-GGML_CALL static const char * ggml_backend_sycl_name(ggml_backend_t backend) {
+static const char * ggml_backend_sycl_name(ggml_backend_t backend) {
ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
return sycl_ctx->name.c_str();
}
-GGML_CALL static void ggml_backend_sycl_free(ggml_backend_t backend) {
+static void ggml_backend_sycl_free(ggml_backend_t backend) {
ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
delete sycl_ctx;
@@ -4913,12 +4917,12 @@ GGML_CALL static void ggml_backend_sycl_free(ggml_backend_t backend) {
}
-GGML_CALL static ggml_backend_buffer_type_t ggml_backend_sycl_get_default_buffer_type(ggml_backend_t backend) {
+static ggml_backend_buffer_type_t ggml_backend_sycl_get_default_buffer_type(ggml_backend_t backend) {
ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
return ggml_backend_sycl_buffer_type(sycl_ctx->device);
}
-GGML_CALL static void ggml_backend_sycl_set_tensor_async(ggml_backend_t backend,
+static void ggml_backend_sycl_set_tensor_async(ggml_backend_t backend,
ggml_tensor *tensor,
const void *data, size_t offset,
size_t size) try {
@@ -4936,7 +4940,7 @@ catch (sycl::exception const &exc) {
std::exit(1);
}
-GGML_CALL static void ggml_backend_sycl_get_tensor_async(ggml_backend_t backend,
+static void ggml_backend_sycl_get_tensor_async(ggml_backend_t backend,
const ggml_tensor *tensor,
void *data, size_t offset,
size_t size) try {
@@ -4954,9 +4958,9 @@ catch (sycl::exception const &exc) {
std::exit(1);
}
-GGML_CALL static bool ggml_backend_sycl_cpy_tensor_async(ggml_backend_t backend,
- const ggml_tensor *src,
- ggml_tensor *dst) try {
+static bool ggml_backend_sycl_cpy_tensor_async(ggml_backend_t backend,
+ const ggml_tensor *src,
+ ggml_tensor *dst) try {
ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
if (dst->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device) && ggml_backend_buffer_is_sycl(src->buffer)) {
/*
@@ -4991,7 +4995,7 @@ catch (sycl::exception const &exc) {
std::exit(1);
}
-GGML_CALL static ggml_status ggml_backend_sycl_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
+static ggml_status ggml_backend_sycl_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
ggml_sycl_set_main_device(sycl_ctx->device);
@@ -5019,7 +5023,7 @@ GGML_CALL static ggml_status ggml_backend_sycl_graph_compute(ggml_backend_t back
return GGML_STATUS_SUCCESS;
}
-GGML_CALL static bool ggml_backend_sycl_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
+static bool ggml_backend_sycl_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
switch (op->op) {
case GGML_OP_CONV_TRANSPOSE_1D:
{
@@ -5166,13 +5170,13 @@ GGML_CALL static bool ggml_backend_sycl_supports_op(ggml_backend_t backend, cons
UNUSED(backend);
}
-GGML_CALL static bool ggml_backend_sycl_offload_op(ggml_backend_t backend, const ggml_tensor * op) {
+static bool ggml_backend_sycl_offload_op(ggml_backend_t backend, const ggml_tensor * op) {
const int min_batch_size = 32;
return op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS && op->op != GGML_OP_MUL_MAT_ID;
GGML_UNUSED(backend);
}
-GGML_CALL static bool ggml_backend_sycl_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
+static bool ggml_backend_sycl_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
if (buft->iface.get_name != ggml_backend_sycl_buffer_type_name) {
return false;
}
@@ -5197,11 +5201,8 @@ static ggml_backend_i ggml_backend_sycl_interface = {
/* .supports_op = */ ggml_backend_sycl_supports_op,
/* .supports_buft = */ ggml_backend_sycl_supports_buft,
/* .offload_op = */ ggml_backend_sycl_offload_op,
- /* .event_new = */ NULL,
- /* .event_free = */ NULL,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
- /* .event_synchronize = */ NULL,
};
static ggml_guid_t ggml_backend_sycl_guid() {
@@ -5209,7 +5210,7 @@ static ggml_guid_t ggml_backend_sycl_guid() {
return &guid;
}
-GGML_CALL ggml_backend_t ggml_backend_sycl_init(int device) {
+ggml_backend_t ggml_backend_sycl_init(int device) {
GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_init\n");
ggml_check_sycl();
@@ -5224,6 +5225,7 @@ GGML_CALL ggml_backend_t ggml_backend_sycl_init(int device) {
ggml_backend_t sycl_backend = new ggml_backend {
/* .guid = */ ggml_backend_sycl_guid(),
/* .interface = */ ggml_backend_sycl_interface,
+ /* .device = */ nullptr,
/* .context = */ ctx
};
@@ -5234,26 +5236,7 @@ bool ggml_backend_is_sycl(ggml_backend_t backend) {
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_sycl_guid());
}
-GGML_CALL int ggml_backend_sycl_get_device_count() {
+int ggml_backend_sycl_get_device_count() {
GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_get_device_count\n");
return ggml_sycl_info().device_count;
}
-
-GGML_CALL static ggml_backend_t ggml_backend_reg_sycl_init(const char * params, void * user_data) {
- ggml_backend_t sycl_backend = ggml_backend_sycl_init((int) (intptr_t) user_data);
- return sycl_backend;
-
- UNUSED(params);
-}
-
-extern "C" int ggml_backend_sycl_reg_devices();
-
-int ggml_backend_sycl_reg_devices() {
- assert(ggml_sycl_info().device_count>0);
- for (int i = 0; i < ggml_sycl_info().device_count; i++) {
- char name[128];
- snprintf(name, sizeof(name), "%s%d", GGML_SYCL_NAME, i);
- ggml_backend_register(name, ggml_backend_reg_sycl_init, ggml_backend_sycl_buffer_type(i), (void *) (intptr_t) i);
- }
- return ggml_sycl_info().device_count;
-}
diff --git a/ggml/src/ggml-sycl/dequantize.hpp b/ggml/src/ggml-sycl/dequantize.hpp
index 8f4041fff..b8304c3a2 100644
--- a/ggml/src/ggml-sycl/dequantize.hpp
+++ b/ggml/src/ggml-sycl/dequantize.hpp
@@ -55,12 +55,12 @@ static __dpct_inline__ void dequantize_q4_1(const void *vx, const int64_t ib,
#ifdef GGML_SYCL_F16
// v = v * {d, d};
// v = v + {m, m};
- v.s0() = (v.s0() * d) + m;
- v.s1() = (v.s1() * d) + m;
+ v.s0() = sycl::fma(v.s0(), d, m);
+ v.s1() = sycl::fma(v.s1(), d, m);
#else
- v.x() = (v.x() * d) + m;
- v.y() = (v.y() * d) + m;
+ v.x() = sycl::fma(v.x(), d, m);
+ v.y() = sycl::fma(v.y(), d, m);
#endif // GGML_SYCL_F16
}
@@ -110,11 +110,11 @@ static __dpct_inline__ void dequantize_q5_1(const void *vx, const int64_t ib,
#ifdef GGML_SYCL_F16
// v = v * {d, d};
// v = v + {m, m};
- v.s0() = (v.s0() * d) + m;
- v.s1() = (v.s1() * d) + m;
+ v.s0() = sycl::fma(v.s0(), d, m);
+ v.s1() = sycl::fma(v.s1(), d, m);
#else
- v.x() = (v.x() * d) + m;
- v.y() = (v.y() * d) + m;
+ v.x() = sycl::fma(v.x(), d, m);
+ v.y() = sycl::fma(v.y(), d, m);
#endif // GGML_SYCL_F16
}
diff --git a/ggml/src/ggml-vulkan.cpp b/ggml/src/ggml-vulkan.cpp
index 00ad13bb9..12ad9d810 100644
--- a/ggml/src/ggml-vulkan.cpp
+++ b/ggml/src/ggml-vulkan.cpp
@@ -119,11 +119,11 @@ struct ggml_backend_vk_buffer_type_context {
vk_device device;
};
-GGML_CALL static const char * ggml_backend_vk_buffer_type_name(ggml_backend_buffer_type_t buft);
-GGML_CALL static ggml_backend_buffer_t ggml_backend_vk_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size);
-GGML_CALL static size_t ggml_backend_vk_buffer_type_get_alignment(ggml_backend_buffer_type_t buft);
-GGML_CALL static size_t ggml_backend_vk_buffer_type_get_max_size(ggml_backend_buffer_type_t buft);
-GGML_CALL static size_t ggml_backend_vk_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor);
+static const char * ggml_backend_vk_buffer_type_name(ggml_backend_buffer_type_t buft);
+static ggml_backend_buffer_t ggml_backend_vk_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size);
+static size_t ggml_backend_vk_buffer_type_get_alignment(ggml_backend_buffer_type_t buft);
+static size_t ggml_backend_vk_buffer_type_get_max_size(ggml_backend_buffer_type_t buft);
+static size_t ggml_backend_vk_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor);
static ggml_backend_buffer_type_i ggml_backend_vk_buffer_type_interface = {
/* .get_name = */ ggml_backend_vk_buffer_type_name,
/* .alloc_buffer = */ ggml_backend_vk_buffer_type_alloc_buffer,
@@ -433,16 +433,6 @@ struct vk_context_struct {
typedef std::shared_ptr vk_context;
typedef std::weak_ptr vk_context_ref;
-struct ggml_tensor_extra_gpu {
- vk_buffer_ref buffer_gpu;
- uint64_t offset;
-
- void reset() {
- buffer_gpu.reset();
- offset = 0;
- }
-};
-
struct ggml_vk_garbage_collector {
std::vector tl_semaphores;
std::vector semaphores;
@@ -553,6 +543,31 @@ struct ggml_backend_vk_context {
std::vector tensor_ctxs;
};
+static void * const vk_ptr_base = (void *)(uintptr_t) 0x1000; // NOLINT
+
+static uint64_t vk_tensor_offset(const ggml_tensor * tensor) {
+ if (tensor->view_src) {
+ return (uint8_t *) tensor->view_src->data - (uint8_t *) vk_ptr_base;
+ }
+ return (uint8_t *) tensor->data - (uint8_t *) vk_ptr_base;
+}
+
+struct ggml_backend_vk_buffer_context {
+ vk_device_ref device;
+ vk_buffer dev_buffer;
+ std::string name;
+
+ ggml_backend_vk_buffer_context(vk_device_ref device, vk_buffer&& dev_buffer, std::string& name) :
+ device(device),
+ dev_buffer(dev_buffer),
+ name(name) {
+ }
+
+ ~ggml_backend_vk_buffer_context() {
+ ggml_vk_destroy_buffer(dev_buffer);
+ }
+};
+
#ifdef GGML_VULKAN_MEMORY_DEBUG
void vk_memory_logger::log_allocation(vk_buffer_ref buf_ref, size_t size) {
std::lock_guard guard(log_mutex);
@@ -607,7 +622,7 @@ static void ggml_vk_check_results_1(ggml_tensor * tensor);
typedef void (*ggml_vk_func_t)(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
-GGML_CALL static void ggml_backend_vk_free(ggml_backend_t backend);
+static void ggml_backend_vk_free(ggml_backend_t backend);
// variables to track number of compiles in progress
static uint32_t compile_count = 0;
@@ -1938,6 +1953,7 @@ static vk_device ggml_vk_get_device(size_t idx) {
device->buffer_type = {
/* .iface = */ ggml_backend_vk_buffer_type_interface,
+ /* .device = */ nullptr,
/* .context = */ new ggml_backend_vk_buffer_type_context{ device->name, device },
};
@@ -3076,9 +3092,9 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub
const uint64_t r2 = ne12 / ne02;
const uint64_t r3 = ne13 / ne03;
- ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
- ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
- ggml_tensor_extra_gpu * extra_src1 = (ggml_tensor_extra_gpu *) src1->extra;
+ ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context;
+ ggml_backend_vk_buffer_context * src0_buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context;
+ ggml_backend_vk_buffer_context * src1_buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context;
vk_buffer d_Qx;
size_t qx_buf_offset = 0;
@@ -3180,8 +3196,8 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub
return;
}
- vk_buffer d_D = extra->buffer_gpu.lock();
- const uint64_t d_buf_offset = extra->offset + dst->view_offs;
+ vk_buffer d_D = dst_buf_ctx->dev_buffer;
+ const uint64_t d_buf_offset = vk_tensor_offset(dst) + dst->view_offs;
GGML_ASSERT(d_D != nullptr);
GGML_ASSERT(d_D->size >= d_buf_offset + d_sz * ne02 * ne03);
vk_buffer d_X;
@@ -3189,13 +3205,13 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub
vk_buffer d_Y;
uint64_t y_buf_offset = 0;
if (!src0_uma) {
- d_Qx = extra_src0->buffer_gpu.lock();
- qx_buf_offset = extra_src0->offset + src0->view_offs;
+ d_Qx = src0_buf_ctx->dev_buffer;
+ qx_buf_offset = vk_tensor_offset(src0) + src0->view_offs;
GGML_ASSERT(d_Qx != nullptr);
}
if (!src1_uma) {
- d_Qy = extra_src1->buffer_gpu.lock();
- qy_buf_offset = extra_src1->offset + src1->view_offs;
+ d_Qy = src1_buf_ctx->dev_buffer;
+ qy_buf_offset = vk_tensor_offset(src1) + src1->view_offs;
GGML_ASSERT(d_Qy != nullptr);
}
if (qx_needs_dequant) {
@@ -3276,9 +3292,9 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context&
const uint64_t r2 = ne12 / ne02;
const uint64_t r3 = ne13 / ne03;
- ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
- ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
- ggml_tensor_extra_gpu * extra_src1 = (ggml_tensor_extra_gpu *) src1->extra;
+ ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context;
+ ggml_backend_vk_buffer_context * src0_buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context;
+ ggml_backend_vk_buffer_context * src1_buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context;
vk_buffer d_Qx;
size_t qx_buf_offset = 0;
@@ -3357,21 +3373,21 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context&
return;
}
- vk_buffer d_D = extra->buffer_gpu.lock();
- const uint64_t d_buf_offset = extra->offset + dst->view_offs;
+ vk_buffer d_D = dst_buf_ctx->dev_buffer;
+ const uint64_t d_buf_offset = vk_tensor_offset(dst) + dst->view_offs;
GGML_ASSERT(d_D != nullptr);
vk_buffer d_X;
uint64_t x_buf_offset = 0;
vk_buffer d_Y;
uint64_t y_buf_offset = 0;
if(!src0_uma) {
- d_Qx = extra_src0->buffer_gpu.lock();
- qx_buf_offset = extra_src0->offset + src0->view_offs;
+ d_Qx = src0_buf_ctx->dev_buffer;
+ qx_buf_offset = vk_tensor_offset(src0) + src0->view_offs;
GGML_ASSERT(d_Qx != nullptr);
}
if(!src1_uma) {
- d_Qy = extra_src1->buffer_gpu.lock();
- qy_buf_offset = extra_src1->offset + src1->view_offs;
+ d_Qy = src1_buf_ctx->dev_buffer;
+ qy_buf_offset = vk_tensor_offset(src1) + src1->view_offs;
GGML_ASSERT(d_Qy != nullptr);
}
if (qx_needs_dequant) {
@@ -3454,9 +3470,9 @@ static void ggml_vk_mul_mat_vec_p021_f16_f32(ggml_backend_vk_context * ctx, vk_c
GGML_ASSERT(ne11 == 1);
- ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
- ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
- ggml_tensor_extra_gpu * extra_src1 = (ggml_tensor_extra_gpu *) src1->extra;
+ ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context;
+ ggml_backend_vk_buffer_context * src0_buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context;
+ ggml_backend_vk_buffer_context * src1_buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context;
vk_buffer d_Qy;
size_t qy_buf_offset = 0;
@@ -3482,15 +3498,15 @@ static void ggml_vk_mul_mat_vec_p021_f16_f32(ggml_backend_vk_context * ctx, vk_c
return;
}
- vk_buffer d_D = extra->buffer_gpu.lock();
- const uint64_t d_buf_offset = extra->offset + dst->view_offs;
+ vk_buffer d_D = dst_buf_ctx->dev_buffer;
+ const uint64_t d_buf_offset = vk_tensor_offset(dst) + dst->view_offs;
GGML_ASSERT(d_D != nullptr);
- vk_buffer d_Qx = extra_src0->buffer_gpu.lock();
- const uint64_t qx_buf_offset = extra_src0->offset + src0->view_offs;
+ vk_buffer d_Qx = src0_buf_ctx->dev_buffer;
+ const uint64_t qx_buf_offset = vk_tensor_offset(src0) + src0->view_offs;
GGML_ASSERT(d_Qx != nullptr);
if (!src1_uma) {
- d_Qy = extra_src1->buffer_gpu.lock();
- qy_buf_offset = extra_src1->offset + src1->view_offs;
+ d_Qy = src1_buf_ctx->dev_buffer;
+ qy_buf_offset = vk_tensor_offset(src1) + src1->view_offs;
GGML_ASSERT(d_Qx != nullptr);
}
@@ -3532,9 +3548,9 @@ static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_con
GGML_ASSERT(ne11 == 1);
- ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
- ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
- ggml_tensor_extra_gpu * extra_src1 = (ggml_tensor_extra_gpu *) src1->extra;
+ ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context;
+ ggml_backend_vk_buffer_context * src0_buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context;
+ ggml_backend_vk_buffer_context * src1_buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context;
vk_buffer d_Qy = nullptr;
size_t qy_buf_offset = 0;
@@ -3561,15 +3577,15 @@ static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_con
return;
}
- vk_buffer d_D = extra->buffer_gpu.lock();
- const uint64_t d_buf_offset = extra->offset + dst->view_offs;
+ vk_buffer d_D = dst_buf_ctx->dev_buffer;
+ const uint64_t d_buf_offset = vk_tensor_offset(dst) + dst->view_offs;
GGML_ASSERT(d_D != nullptr);
- vk_buffer d_Qx = extra_src0->buffer_gpu.lock();
- const uint64_t qx_buf_offset = extra_src0->offset + src0->view_offs;
+ vk_buffer d_Qx = src0_buf_ctx->dev_buffer;
+ const uint64_t qx_buf_offset = vk_tensor_offset(src0) + src0->view_offs;
GGML_ASSERT(d_Qx != nullptr);
if (!src1_uma) {
- d_Qy = extra_src1->buffer_gpu.lock();
- qy_buf_offset = extra_src1->offset + src1->view_offs;
+ d_Qy = src1_buf_ctx->dev_buffer;
+ qy_buf_offset = vk_tensor_offset(src1) + src1->view_offs;
GGML_ASSERT(d_Qx != nullptr);
}
@@ -3631,10 +3647,10 @@ static void ggml_vk_mul_mat_id_q_f16(ggml_backend_vk_context * ctx, vk_context&
const uint64_t n_as = ne02;
- ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
- ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
- ggml_tensor_extra_gpu * extra_src1 = (ggml_tensor_extra_gpu *) src1->extra;
- ggml_tensor_extra_gpu * extra_ids = (ggml_tensor_extra_gpu *) ids->extra;
+ ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context;
+ ggml_backend_vk_buffer_context * src0_buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context;
+ ggml_backend_vk_buffer_context * src1_buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context;
+ ggml_backend_vk_buffer_context * ids_buf_ctx = (ggml_backend_vk_buffer_context *)ids->buffer->context;
vk_buffer d_Qx;
size_t qx_buf_offset = 0;
@@ -3731,26 +3747,26 @@ static void ggml_vk_mul_mat_id_q_f16(ggml_backend_vk_context * ctx, vk_context&
return;
}
- vk_buffer d_D = extra->buffer_gpu.lock();
- const uint64_t d_buf_offset = extra->offset + dst->view_offs;
+ vk_buffer d_D = dst_buf_ctx->dev_buffer;
+ const uint64_t d_buf_offset = vk_tensor_offset(dst) + dst->view_offs;
GGML_ASSERT(d_D != nullptr);
vk_buffer d_X;
uint64_t x_buf_offset = 0;
vk_buffer d_Y;
uint64_t y_buf_offset = 0;
if (!src0_uma) {
- d_Qx = extra_src0->buffer_gpu.lock();
- qx_buf_offset = extra_src0->offset + src0->view_offs;
+ d_Qx = src0_buf_ctx->dev_buffer;
+ qx_buf_offset = vk_tensor_offset(src0) + src0->view_offs;
GGML_ASSERT(d_Qx != nullptr);
}
if (!src1_uma) {
- d_Qy = extra_src1->buffer_gpu.lock();
- qy_buf_offset = extra_src1->offset + src1->view_offs;
+ d_Qy = src1_buf_ctx->dev_buffer;
+ qy_buf_offset = vk_tensor_offset(src1) + src1->view_offs;
GGML_ASSERT(d_Qy != nullptr);
}
if (!ids_uma) {
- d_ids = extra_ids->buffer_gpu.lock();
- ids_buf_offset = extra_ids->offset + ids->view_offs;
+ d_ids = ids_buf_ctx->dev_buffer;
+ ids_buf_offset = vk_tensor_offset(ids) + ids->view_offs;
GGML_ASSERT(d_ids != nullptr);
}
if (qx_needs_dequant) {
@@ -3836,10 +3852,10 @@ static void ggml_vk_mul_mat_vec_id_q_f16(ggml_backend_vk_context * ctx, vk_conte
const uint64_t ne22 = dst->ne[2];
const uint64_t ne23 = dst->ne[3];
- ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
- ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
- ggml_tensor_extra_gpu * extra_src1 = (ggml_tensor_extra_gpu *) src1->extra;
- ggml_tensor_extra_gpu * extra_ids = (ggml_tensor_extra_gpu *) ids->extra;
+ ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context;
+ ggml_backend_vk_buffer_context * src0_buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context;
+ ggml_backend_vk_buffer_context * src1_buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context;
+ ggml_backend_vk_buffer_context * ids_buf_ctx = (ggml_backend_vk_buffer_context *)ids->buffer->context;
vk_buffer d_Qx;
size_t qx_buf_offset = 0;
@@ -3924,26 +3940,26 @@ static void ggml_vk_mul_mat_vec_id_q_f16(ggml_backend_vk_context * ctx, vk_conte
return;
}
- vk_buffer d_D = extra->buffer_gpu.lock();
- const uint64_t d_buf_offset = extra->offset + dst->view_offs;
+ vk_buffer d_D = dst_buf_ctx->dev_buffer;
+ const uint64_t d_buf_offset = vk_tensor_offset(dst) + dst->view_offs;
GGML_ASSERT(d_D != nullptr);
vk_buffer d_X;
uint64_t x_buf_offset = 0;
vk_buffer d_Y;
uint64_t y_buf_offset = 0;
if(!src0_uma) {
- d_Qx = extra_src0->buffer_gpu.lock();
- qx_buf_offset = extra_src0->offset + src0->view_offs;
+ d_Qx = src0_buf_ctx->dev_buffer;
+ qx_buf_offset = vk_tensor_offset(src0) + src0->view_offs;
GGML_ASSERT(d_Qx != nullptr);
}
if(!src1_uma) {
- d_Qy = extra_src1->buffer_gpu.lock();
- qy_buf_offset = extra_src1->offset + src1->view_offs;
+ d_Qy = src1_buf_ctx->dev_buffer;
+ qy_buf_offset = vk_tensor_offset(src1) + src1->view_offs;
GGML_ASSERT(d_Qy != nullptr);
}
if(!ids_uma) {
- d_ids = extra_ids->buffer_gpu.lock();
- ids_buf_offset = extra_ids->offset + ids->view_offs;
+ d_ids = ids_buf_ctx->dev_buffer;
+ ids_buf_offset = vk_tensor_offset(ids) + ids->view_offs;
GGML_ASSERT(d_ids != nullptr);
}
if (qx_needs_dequant) {
@@ -4250,7 +4266,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
std::cerr << "), " << ggml_op_name(op) << ", " << (dryrun ? "dryrun" : "") << ")");
GGML_ASSERT(op == GGML_OP_GET_ROWS || (!ggml_is_quantized(src0->type) && (src1 == nullptr || !ggml_is_quantized(src1->type)))); // NOLINT
GGML_ASSERT(ggml_vk_op_supports_incontiguous(op) || ggml_vk_dim01_contiguous(src0)); // NOLINT
- GGML_ASSERT(dst->extra != nullptr);
+ GGML_ASSERT(dst->buffer != nullptr);
const uint64_t ne00 = src0->ne[0];
const uint64_t ne01 = src0->ne[1];
const uint64_t ne02 = src0->ne[2];
@@ -4296,10 +4312,10 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
const bool op_supports_incontiguous = ggml_vk_op_supports_incontiguous(op);
- ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
- ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
- ggml_tensor_extra_gpu * extra_src1 = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
- ggml_tensor_extra_gpu * extra_src2 = use_src2 ? (ggml_tensor_extra_gpu *) src2->extra : nullptr;
+ ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context;
+ ggml_backend_vk_buffer_context * src0_buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context;
+ ggml_backend_vk_buffer_context * src1_buf_ctx = use_src1 ? (ggml_backend_vk_buffer_context *)src1->buffer->context : nullptr;
+ ggml_backend_vk_buffer_context * src2_buf_ctx = use_src2 ? (ggml_backend_vk_buffer_context *)src2->buffer->context : nullptr;
vk_buffer d_X = nullptr;
size_t x_buf_offset = 0;
@@ -4330,7 +4346,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
uint64_t z_sz = use_src2 ? ggml_type_size(src2->type) * ne2 : 0;
uint64_t d_sz = ggml_type_size(dst->type) * ned;
- vk_buffer d_D = extra->buffer_gpu.lock();
+ vk_buffer d_D = dst_buf_ctx->dev_buffer;
// Workaround for tiny tensor inputs on ROPE
if (op == GGML_OP_ROPE && use_src1 && y_sz > d_D->size) {
@@ -4338,21 +4354,21 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
}
GGML_ASSERT(d_D != nullptr);
- uint64_t d_buf_offset = ((extra->offset + dst->view_offs) / ctx->device->properties.limits.minStorageBufferOffsetAlignment) * ctx->device->properties.limits.minStorageBufferOffsetAlignment;
- GGML_ASSERT(d_buf_offset == extra->offset || op == GGML_OP_CPY); // NOLINT
+ uint64_t d_buf_offset = ((vk_tensor_offset(dst) + dst->view_offs) / ctx->device->properties.limits.minStorageBufferOffsetAlignment) * ctx->device->properties.limits.minStorageBufferOffsetAlignment;
+ GGML_ASSERT(d_buf_offset == vk_tensor_offset(dst) || op == GGML_OP_CPY); // NOLINT
if(!src0_uma) {
- d_X = extra_src0->buffer_gpu.lock();
- x_buf_offset = extra_src0->offset + src0->view_offs;
+ d_X = src0_buf_ctx->dev_buffer;
+ x_buf_offset = vk_tensor_offset(src0) + src0->view_offs;
GGML_ASSERT(d_X != nullptr);
}
if (use_src1 && !src1_uma) {
- d_Y = extra_src1->buffer_gpu.lock();
- y_buf_offset = extra_src1->offset + src1->view_offs;
+ d_Y = src1_buf_ctx->dev_buffer;
+ y_buf_offset = vk_tensor_offset(src1) + src1->view_offs;
GGML_ASSERT(d_Y != nullptr);
}
if (use_src2 && !src2_uma) {
- d_Z = extra_src2->buffer_gpu.lock();
- z_buf_offset = extra_src2->offset + src2->view_offs;
+ d_Z = src2_buf_ctx->dev_buffer;
+ z_buf_offset = vk_tensor_offset(src2) + src2->view_offs;
GGML_ASSERT(d_Z != nullptr);
}
@@ -4531,11 +4547,10 @@ static void ggml_vk_get_rows(ggml_backend_vk_context * ctx, vk_context& subctx,
}
static void ggml_vk_acc(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
- ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
const uint32_t src0_type_size = ggml_type_size(src0->type);
const uint32_t src1_type_size = ggml_type_size(src1->type);
const uint32_t dst_type_size = ggml_type_size(dst->type);
- const uint32_t d_offset = ((extra->offset + dst->view_offs) % ctx->device->properties.limits.minStorageBufferOffsetAlignment) / dst_type_size;
+ const uint32_t d_offset = ((vk_tensor_offset(dst) + dst->view_offs) % ctx->device->properties.limits.minStorageBufferOffsetAlignment) / dst_type_size;
int nb1 = dst->op_params[0] / 4; // 4 bytes of float32
int nb2 = dst->op_params[1] / 4; // 4 bytes of float32
@@ -4724,10 +4739,9 @@ static void ggml_vk_repeat(ggml_backend_vk_context * ctx, vk_context& subctx, co
}
static void ggml_vk_cpy(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
- ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
const uint32_t src0_type_size = ggml_type_size(src0->type);
const uint32_t dst_type_size = ggml_type_size(dst->type);
- const uint32_t d_offset = ((extra->offset + dst->view_offs) % ctx->device->properties.limits.minStorageBufferOffsetAlignment) / dst_type_size;
+ const uint32_t d_offset = ((vk_tensor_offset(dst) + dst->view_offs) % ctx->device->properties.limits.minStorageBufferOffsetAlignment) / dst_type_size;
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_CPY, {
(uint32_t)ggml_nelements(src0),
@@ -5535,14 +5549,6 @@ static void ggml_vk_test_dequant_matmul(ggml_backend_vk_context * ctx, size_t m,
}
#endif
-static ggml_tensor_extra_gpu * ggml_vk_tensor_create_extra(ggml_tensor * tensor) {
- VK_LOG_DEBUG("ggml_vk_create_extra(" << tensor << " (" << tensor->name << ", " << ggml_op_name(tensor->op) << "))");
- ggml_tensor_extra_gpu * extra = new ggml_tensor_extra_gpu;
- extra->reset();
- tensor->extra = extra;
- return extra;
-}
-
static void ggml_vk_preallocate_buffers(ggml_backend_vk_context * ctx) {
#if defined(GGML_VULKAN_RUN_TESTS)
ggml_vk_test_dequant(ctx, 7680, GGML_TYPE_F32);
@@ -5711,9 +5717,7 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context* ctx, ggml_tensor* t
// Returns true if node has enqueued work into the queue, false otherwise
// If submit is true the current all operations queued so far are being submitted to Vulkan to overlap cmdlist creation and GPU execution.
static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * node, int node_idx, ggml_tensor *node_begin, int node_idx_begin, bool dryrun, bool last_node, bool submit){
- ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) node->extra;
-
- if (ggml_is_empty(node) || extra == nullptr) {
+ if (ggml_is_empty(node) || !node->buffer) {
return false;
}
@@ -5965,7 +5969,7 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
}
static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_tensor * tensor, int tensor_idx, bool use_fence = true){
- ggml_tensor_extra_gpu * extra = nullptr;
+ ggml_backend_buffer * buf = nullptr;
switch (tensor->op) {
case GGML_OP_ADD:
@@ -6001,7 +6005,7 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_tensor *
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_LEAKY_RELU:
case GGML_OP_REPEAT:
- extra = (ggml_tensor_extra_gpu *) tensor->extra;
+ buf = tensor->buffer;
break;
case GGML_OP_UNARY:
@@ -6011,7 +6015,7 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_tensor *
case GGML_UNARY_OP_GELU_QUICK:
case GGML_UNARY_OP_RELU:
case GGML_UNARY_OP_TANH:
- extra = (ggml_tensor_extra_gpu *) tensor->extra;
+ buf = tensor->buffer;
break;
default:
return false;
@@ -6019,14 +6023,14 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_tensor *
break;
case GGML_OP_MUL_MAT:
case GGML_OP_MUL_MAT_ID:
- extra = (ggml_tensor_extra_gpu *) tensor->extra;
+ buf = tensor->buffer;
break;
default:
return false;
}
- if (extra == nullptr) {
+ if (buf == nullptr) {
return false;
}
@@ -6144,13 +6148,13 @@ static void ggml_vk_cleanup(ggml_backend_vk_context * ctx) {
ctx->device->device.destroyFence(ctx->fence);
}
-GGML_CALL static int ggml_vk_get_device_count() {
+static int ggml_vk_get_device_count() {
ggml_vk_instance_init();
return vk_instance.device_indices.size();
}
-GGML_CALL static void ggml_vk_get_device_description(int device, char * description, size_t description_size) {
+static void ggml_vk_get_device_description(int device, char * description, size_t description_size) {
ggml_vk_instance_init();
std::vector devices = vk_instance.instance.enumeratePhysicalDevices();
@@ -6167,111 +6171,61 @@ GGML_CALL static void ggml_vk_get_device_description(int device, char * descript
// device backend
-static void * const vk_ptr_base = (void *)(uintptr_t) 0x1000; // NOLINT
-
-struct ggml_backend_vk_buffer_context {
- vk_device_ref device;
- vk_buffer dev_buffer;
- ggml_tensor_extra_gpu * temp_tensor_extras = nullptr;
- size_t temp_tensor_extra_index = 0;
- std::string name;
-
- ggml_backend_vk_buffer_context(vk_device_ref device, vk_buffer&& dev_buffer, std::string& name) :
- device(device),
- dev_buffer(dev_buffer),
- name(name) {
- }
-
- ~ggml_backend_vk_buffer_context() {
- ggml_vk_destroy_buffer(dev_buffer);
- if (temp_tensor_extras != nullptr) {
- delete[] temp_tensor_extras;
- }
- }
-
- ggml_tensor_extra_gpu * ggml_vk_alloc_temp_tensor_extra() {
- if (temp_tensor_extras == nullptr) {
- temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_VK_MAX_NODES];
- }
-
- size_t alloc_index = temp_tensor_extra_index;
- temp_tensor_extra_index = (temp_tensor_extra_index + 1) % GGML_VK_MAX_NODES;
- ggml_tensor_extra_gpu * extra = &temp_tensor_extras[alloc_index];
- extra->reset();
-
- return extra;
- }
-};
-
-GGML_CALL static const char * ggml_backend_vk_buffer_get_name(ggml_backend_buffer_t buffer) {
+static const char * ggml_backend_vk_buffer_get_name(ggml_backend_buffer_t buffer) {
ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
return ctx->name.c_str();
}
-GGML_CALL static bool ggml_backend_buffer_is_vk(ggml_backend_buffer_t buffer) {
+static bool ggml_backend_buffer_is_vk(ggml_backend_buffer_t buffer) {
return buffer->iface.get_name == ggml_backend_vk_buffer_get_name;
}
-GGML_CALL static void ggml_backend_vk_buffer_free_buffer(ggml_backend_buffer_t buffer) {
+static void ggml_backend_vk_buffer_free_buffer(ggml_backend_buffer_t buffer) {
VK_LOG_MEMORY("ggml_backend_vk_buffer_free_buffer()");
ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
ggml_vk_destroy_buffer(ctx->dev_buffer);
delete ctx;
}
-GGML_CALL static void * ggml_backend_vk_buffer_get_base(ggml_backend_buffer_t buffer) {
+static void * ggml_backend_vk_buffer_get_base(ggml_backend_buffer_t buffer) {
return vk_ptr_base;
UNUSED(buffer);
}
-GGML_CALL static void ggml_backend_vk_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
+static void ggml_backend_vk_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
VK_LOG_DEBUG("ggml_backend_vk_buffer_init_tensor(" << buffer << " (" << buffer->context << "), " << tensor << ")");
- ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
-
if (tensor->view_src != nullptr) {
GGML_ASSERT(tensor->view_src->buffer->buft == buffer->buft);
- GGML_ASSERT(tensor->view_src->extra != nullptr);
- tensor->extra = tensor->view_src->extra;
- } else {
- ggml_tensor_extra_gpu * extra = ctx->ggml_vk_alloc_temp_tensor_extra();
- extra->buffer_gpu = ctx->dev_buffer;
- extra->offset = (uint8_t *) tensor->data - (uint8_t *) vk_ptr_base;
- tensor->extra = extra;
}
}
-GGML_CALL static void ggml_backend_vk_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
+static void ggml_backend_vk_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
VK_LOG_DEBUG("ggml_backend_vk_buffer_set_tensor(" << buffer << ", " << tensor << ", " << data << ", " << offset << ", " << size << ")");
- ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
+ ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)buffer->context;
+ vk_buffer buf = buf_ctx->dev_buffer;
- vk_buffer buf = extra->buffer_gpu.lock();
-
- ggml_vk_buffer_write(buf, extra->offset + tensor->view_offs + offset, data, size);
-
- GGML_UNUSED(buffer);
+ ggml_vk_buffer_write(buf, vk_tensor_offset(tensor) + tensor->view_offs + offset, data, size);
}
-GGML_CALL static void ggml_backend_vk_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
+static void ggml_backend_vk_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
VK_LOG_DEBUG("ggml_backend_vk_buffer_get_tensor(" << buffer << ", " << tensor << ", " << data << ", " << offset << ", " << size << ")");
- ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
+ ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)buffer->context;
- vk_buffer buf = extra->buffer_gpu.lock();
+ vk_buffer buf = buf_ctx->dev_buffer;
- ggml_vk_buffer_read(buf, extra->offset + tensor->view_offs + offset, data, size);
-
- GGML_UNUSED(buffer);
+ ggml_vk_buffer_read(buf, vk_tensor_offset(tensor) + tensor->view_offs + offset, data, size);
}
-GGML_CALL static bool ggml_backend_vk_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
+static bool ggml_backend_vk_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
if (ggml_backend_buffer_is_vk(src->buffer)) {
- ggml_tensor_extra_gpu * src_extra = (ggml_tensor_extra_gpu *) src->extra;
- ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
+ ggml_backend_vk_buffer_context * src_buf_ctx = (ggml_backend_vk_buffer_context *)src->buffer->context;
+ ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context;
- vk_buffer src_buf = src_extra->buffer_gpu.lock();
- vk_buffer dst_buf = dst_extra->buffer_gpu.lock();
+ vk_buffer src_buf = src_buf_ctx->dev_buffer;
+ vk_buffer dst_buf = dst_buf_ctx->dev_buffer;
- ggml_vk_buffer_copy(dst_buf, dst_extra->offset + dst->view_offs, src_buf, src_extra->offset + src->view_offs, ggml_nbytes(src));
+ ggml_vk_buffer_copy(dst_buf, vk_tensor_offset(dst) + dst->view_offs, src_buf, vk_tensor_offset(src) + src->view_offs, ggml_nbytes(src));
return true;
}
@@ -6280,7 +6234,7 @@ GGML_CALL static bool ggml_backend_vk_buffer_cpy_tensor(ggml_backend_buffer_t bu
UNUSED(buffer);
}
-GGML_CALL static void ggml_backend_vk_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
+static void ggml_backend_vk_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
ggml_vk_buffer_memset(ctx->dev_buffer, 0, value, buffer->size);
@@ -6300,13 +6254,13 @@ static ggml_backend_buffer_i ggml_backend_vk_buffer_interface = {
};
// vk buffer type
-GGML_CALL static const char * ggml_backend_vk_buffer_type_name(ggml_backend_buffer_type_t buft) {
+static const char * ggml_backend_vk_buffer_type_name(ggml_backend_buffer_type_t buft) {
ggml_backend_vk_buffer_type_context * ctx = (ggml_backend_vk_buffer_type_context *)buft->context;
return ctx->name.c_str();
}
-GGML_CALL static ggml_backend_buffer_t ggml_backend_vk_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
+static ggml_backend_buffer_t ggml_backend_vk_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
VK_LOG_MEMORY("ggml_backend_vk_buffer_type_alloc_buffer(" << size << ")");
ggml_backend_vk_buffer_type_context * ctx = (ggml_backend_vk_buffer_type_context *) buft->context;
@@ -6322,23 +6276,23 @@ GGML_CALL static ggml_backend_buffer_t ggml_backend_vk_buffer_type_alloc_buffer(
return ggml_backend_buffer_init(buft, ggml_backend_vk_buffer_interface, bufctx, size);
}
-GGML_CALL static size_t ggml_backend_vk_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
+static size_t ggml_backend_vk_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
ggml_backend_vk_buffer_type_context * ctx = (ggml_backend_vk_buffer_type_context *) buft->context;
return ctx->device->properties.limits.minStorageBufferOffsetAlignment;
}
-GGML_CALL static size_t ggml_backend_vk_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
+static size_t ggml_backend_vk_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
ggml_backend_vk_buffer_type_context * ctx = (ggml_backend_vk_buffer_type_context *) buft->context;
return ctx->device->max_memory_allocation_size;
}
-GGML_CALL static size_t ggml_backend_vk_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
+static size_t ggml_backend_vk_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
return ggml_nbytes(tensor);
UNUSED(buft);
}
-GGML_CALL ggml_backend_buffer_type_t ggml_backend_vk_buffer_type(size_t dev_num) {
+ggml_backend_buffer_type_t ggml_backend_vk_buffer_type(size_t dev_num) {
ggml_vk_instance_init();
VK_LOG_DEBUG("ggml_backend_vk_buffer_type(" << dev_num << ")");
@@ -6350,24 +6304,24 @@ GGML_CALL ggml_backend_buffer_type_t ggml_backend_vk_buffer_type(size_t dev_num)
// host buffer type
-GGML_CALL static const char * ggml_backend_vk_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
+static const char * ggml_backend_vk_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
return GGML_VK_NAME "_Host";
UNUSED(buft);
}
-GGML_CALL static const char * ggml_backend_vk_host_buffer_name(ggml_backend_buffer_t buffer) {
+static const char * ggml_backend_vk_host_buffer_name(ggml_backend_buffer_t buffer) {
return GGML_VK_NAME "_Host";
UNUSED(buffer);
}
-GGML_CALL static void ggml_backend_vk_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
+static void ggml_backend_vk_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
VK_LOG_MEMORY("ggml_backend_vk_host_buffer_free_buffer()");
ggml_vk_host_free(vk_instance.devices[0], buffer->context);
}
-GGML_CALL static ggml_backend_buffer_t ggml_backend_vk_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
+static ggml_backend_buffer_t ggml_backend_vk_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
VK_LOG_MEMORY("ggml_backend_vk_host_buffer_type_alloc_buffer(" << size << ")");
size += 32; // Behave like the CPU buffer type
@@ -6391,7 +6345,7 @@ GGML_CALL static ggml_backend_buffer_t ggml_backend_vk_host_buffer_type_alloc_bu
UNUSED(buft);
}
-GGML_CALL static size_t ggml_backend_vk_host_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
+static size_t ggml_backend_vk_host_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
return vk_instance.devices[0]->properties.limits.minMemoryMapAlignment;
UNUSED(buft);
@@ -6399,7 +6353,7 @@ GGML_CALL static size_t ggml_backend_vk_host_buffer_type_get_alignment(ggml_back
// Should be changed to return device-specific host buffer type
// but that probably requires changes in llama.cpp
-GGML_CALL ggml_backend_buffer_type_t ggml_backend_vk_host_buffer_type() {
+ggml_backend_buffer_type_t ggml_backend_vk_host_buffer_type() {
static struct ggml_backend_buffer_type ggml_backend_vk_buffer_type_host = {
/* .iface = */ {
/* .get_name = */ ggml_backend_vk_host_buffer_type_name,
@@ -6409,6 +6363,7 @@ GGML_CALL ggml_backend_buffer_type_t ggml_backend_vk_host_buffer_type() {
/* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
/* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host,
},
+ /* .device = */ nullptr,
/* .context = */ nullptr,
};
@@ -6422,13 +6377,13 @@ GGML_CALL ggml_backend_buffer_type_t ggml_backend_vk_host_buffer_type() {
// backend
-GGML_CALL static const char * ggml_backend_vk_name(ggml_backend_t backend) {
+static const char * ggml_backend_vk_name(ggml_backend_t backend) {
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
return ctx->name.c_str();
}
-GGML_CALL static void ggml_backend_vk_free(ggml_backend_t backend) {
+static void ggml_backend_vk_free(ggml_backend_t backend) {
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
VK_LOG_DEBUG("ggml_backend_vk_free(" << ctx->name << ")");
@@ -6438,18 +6393,18 @@ GGML_CALL static void ggml_backend_vk_free(ggml_backend_t backend) {
delete backend;
}
-GGML_CALL static ggml_backend_buffer_type_t ggml_backend_vk_get_default_buffer_type(ggml_backend_t backend) {
+static ggml_backend_buffer_type_t ggml_backend_vk_get_default_buffer_type(ggml_backend_t backend) {
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
return &ctx->device->buffer_type;
}
-GGML_CALL static void ggml_backend_vk_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
+static void ggml_backend_vk_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
VK_LOG_DEBUG("ggml_backend_vk_set_tensor_async(" << size << ")");
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
GGML_ASSERT((tensor->buffer->buft == ggml_backend_vk_get_default_buffer_type(backend) || tensor->buffer->buft == ggml_backend_vk_host_buffer_type()) && "unsupported buffer type");
- ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
+ ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)tensor->buffer->context;
vk_context transfer_ctx;
@@ -6462,17 +6417,17 @@ GGML_CALL static void ggml_backend_vk_set_tensor_async(ggml_backend_t backend, g
transfer_ctx = ctx->transfer_ctx.lock();
}
- vk_buffer buf = extra->buffer_gpu.lock();
+ vk_buffer buf = buf_ctx->dev_buffer;
- ggml_vk_buffer_write_async(transfer_ctx, buf, extra->offset + tensor->view_offs + offset, data, size);
+ ggml_vk_buffer_write_async(transfer_ctx, buf, vk_tensor_offset(tensor) + tensor->view_offs + offset, data, size);
}
-GGML_CALL static void ggml_backend_vk_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
+static void ggml_backend_vk_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
VK_LOG_DEBUG("ggml_backend_vk_get_tensor_async(" << size << ")");
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
GGML_ASSERT((tensor->buffer->buft == ggml_backend_vk_get_default_buffer_type(backend) || tensor->buffer->buft == ggml_backend_vk_host_buffer_type()) && "unsupported buffer type");
- ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
+ ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)tensor->buffer->context;
vk_context transfer_ctx;
@@ -6485,17 +6440,17 @@ GGML_CALL static void ggml_backend_vk_get_tensor_async(ggml_backend_t backend, c
transfer_ctx = ctx->transfer_ctx.lock();
}
- vk_buffer buf = extra->buffer_gpu.lock();
+ vk_buffer buf = buf_ctx->dev_buffer;
- ggml_vk_buffer_read_async(transfer_ctx, buf, extra->offset + tensor->view_offs + offset, data, size);
+ ggml_vk_buffer_read_async(transfer_ctx, buf, vk_tensor_offset(tensor) + tensor->view_offs + offset, data, size);
}
-GGML_CALL static bool ggml_backend_vk_cpy_tensor_async(ggml_backend_t backend, const ggml_tensor * src, ggml_tensor * dst) {
+static bool ggml_backend_vk_cpy_tensor_async(ggml_backend_t backend, const ggml_tensor * src, ggml_tensor * dst) {
VK_LOG_DEBUG("ggml_backend_vk_cpy_tensor_async()");
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
if ((dst->buffer->buft == ggml_backend_vk_get_default_buffer_type(backend) || dst->buffer->buft == ggml_backend_vk_host_buffer_type()) && ggml_backend_buffer_is_vk(src->buffer)) {
- ggml_tensor_extra_gpu * src_extra = (ggml_tensor_extra_gpu *) src->extra;
- ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
+ ggml_backend_vk_buffer_context * src_buf_ctx = (ggml_backend_vk_buffer_context *)src->buffer->context;
+ ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context;
vk_context transfer_ctx;
@@ -6508,17 +6463,17 @@ GGML_CALL static bool ggml_backend_vk_cpy_tensor_async(ggml_backend_t backend, c
transfer_ctx = ctx->transfer_ctx.lock();
}
- vk_buffer src_buf = src_extra->buffer_gpu.lock();
- vk_buffer dst_buf = dst_extra->buffer_gpu.lock();
+ vk_buffer src_buf = src_buf_ctx->dev_buffer;
+ vk_buffer dst_buf = dst_buf_ctx->dev_buffer;
- ggml_vk_buffer_copy_async(transfer_ctx, dst_buf, dst_extra->offset + dst->view_offs, src_buf, src_extra->offset + src->view_offs, ggml_nbytes(src));
+ ggml_vk_buffer_copy_async(transfer_ctx, dst_buf, vk_tensor_offset(dst) + dst->view_offs, src_buf, vk_tensor_offset(src) + src->view_offs, ggml_nbytes(src));
return true;
}
return false;
}
-GGML_CALL static void ggml_backend_vk_synchronize(ggml_backend_t backend) {
+static void ggml_backend_vk_synchronize(ggml_backend_t backend) {
VK_LOG_DEBUG("ggml_backend_vk_synchronize()");
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
if(ctx->transfer_ctx.expired()) {
@@ -6548,7 +6503,7 @@ static bool ggml_vk_is_empty(ggml_tensor * node) {
return ggml_is_empty(node) || node->op == GGML_OP_NONE || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE;
}
-GGML_CALL static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
+static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
VK_LOG_DEBUG("ggml_backend_vk_graph_compute(" << cgraph->n_nodes << " nodes)");
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
@@ -6611,7 +6566,7 @@ GGML_CALL static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backen
UNUSED(backend);
}
-GGML_CALL static bool ggml_backend_vk_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
+static bool ggml_backend_vk_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
// ggml_backend_vk_context * ctx = (ggml_backend_vk_context *) backend->context;
switch (op->op) {
@@ -6734,7 +6689,7 @@ GGML_CALL static bool ggml_backend_vk_supports_op(ggml_backend_t backend, const
UNUSED(backend);
}
-GGML_CALL static bool ggml_backend_vk_offload_op(ggml_backend_t backend, const ggml_tensor * op) {
+static bool ggml_backend_vk_offload_op(ggml_backend_t backend, const ggml_tensor * op) {
const int min_batch_size = 32;
return (op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS) ||
@@ -6743,7 +6698,7 @@ GGML_CALL static bool ggml_backend_vk_offload_op(ggml_backend_t backend, const g
UNUSED(backend);
}
-GGML_CALL static bool ggml_backend_vk_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
+static bool ggml_backend_vk_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
if (buft->iface.get_name != ggml_backend_vk_buffer_type_name) {
return false;
}
@@ -6771,11 +6726,8 @@ static ggml_backend_i ggml_backend_vk_interface = {
/* .supports_op = */ ggml_backend_vk_supports_op,
/* .supports_buft = */ ggml_backend_vk_supports_buft,
/* .offload_op = */ ggml_backend_vk_offload_op,
- /* .event_new = */ NULL,
- /* .event_free = */ NULL,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
- /* .event_synchronize = */ NULL,
};
static ggml_guid_t ggml_backend_vk_guid() {
@@ -6783,7 +6735,7 @@ static ggml_guid_t ggml_backend_vk_guid() {
return &guid;
}
-GGML_CALL ggml_backend_t ggml_backend_vk_init(size_t dev_num) {
+ggml_backend_t ggml_backend_vk_init(size_t dev_num) {
VK_LOG_DEBUG("ggml_backend_vk_init(" << dev_num << ")");
ggml_backend_vk_context * ctx = new ggml_backend_vk_context;
@@ -6792,25 +6744,26 @@ GGML_CALL ggml_backend_t ggml_backend_vk_init(size_t dev_num) {
ggml_backend_t vk_backend = new ggml_backend {
/* .guid = */ ggml_backend_vk_guid(),
/* .interface = */ ggml_backend_vk_interface,
+ /* .device = */ nullptr,
/* .context = */ ctx,
};
return vk_backend;
}
-GGML_CALL bool ggml_backend_is_vk(ggml_backend_t backend) {
+bool ggml_backend_is_vk(ggml_backend_t backend) {
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_vk_guid());
}
-GGML_CALL int ggml_backend_vk_get_device_count() {
+int ggml_backend_vk_get_device_count() {
return ggml_vk_get_device_count();
}
-GGML_CALL void ggml_backend_vk_get_device_description(int device, char * description, size_t description_size) {
+void ggml_backend_vk_get_device_description(int device, char * description, size_t description_size) {
ggml_vk_get_device_description(device, description, description_size);
}
-GGML_CALL void ggml_backend_vk_get_device_memory(int device, size_t * free, size_t * total) {
+void ggml_backend_vk_get_device_memory(int device, size_t * free, size_t * total) {
GGML_ASSERT(device < (int) vk_instance.device_indices.size());
vk::PhysicalDevice vkdev = vk_instance.instance.enumeratePhysicalDevices()[vk_instance.device_indices[device]];
@@ -6826,27 +6779,6 @@ GGML_CALL void ggml_backend_vk_get_device_memory(int device, size_t * free, size
}
}
-// backend registry
-GGML_CALL static ggml_backend_t ggml_backend_reg_vk_init(const char * params, void * user_data) {
- ggml_backend_t vk_backend = ggml_backend_vk_init((int) (intptr_t) user_data);
- return vk_backend;
-
- UNUSED(params);
-}
-
-extern "C" GGML_CALL int ggml_backend_vk_reg_devices();
-
-GGML_CALL int ggml_backend_vk_reg_devices() {
- ggml_vk_instance_init();
-
- for (size_t i = 0; i < vk_instance.device_indices.size(); i++) {
- char name[128];
- snprintf(name, sizeof(name), "%s%ld", GGML_VK_NAME, i);
- ggml_backend_register(name, ggml_backend_reg_vk_init, ggml_backend_vk_buffer_type(i), (void *) (intptr_t) i); // NOLINT
- }
- return vk_instance.device_indices.size();
-}
-
// Extension availability
static bool ggml_vk_instance_validation_ext_available(const std::vector& instance_extensions) {
#ifdef GGML_VULKAN_VALIDATE
@@ -6949,10 +6881,10 @@ static void ggml_vk_print_tensor(const ggml_tensor * tensor, const char * name)
const size_t tensor_size = ggml_nbytes(tensor);
tensor_data = malloc(tensor_size);
- ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
+ ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)tensor->buffer->context;
- vk_buffer buffer_gpu = extra->buffer_gpu.lock();
- ggml_vk_buffer_read(buffer_gpu, extra->offset + tensor->view_offs, tensor_data, tensor_size);
+ vk_buffer buffer_gpu = buf_ctx->dev_buffer;
+ ggml_vk_buffer_read(buffer_gpu, vk_tensor_offset(tensor) + tensor->view_offs, tensor_data, tensor_size);
}
std::cerr << "TENSOR CHECK " << name << " (" << tensor->name << "): " << ggml_op_name(tensor->op) << std::endl;
@@ -7026,9 +6958,9 @@ static void ggml_vk_check_results_0(ggml_tensor * tensor) {
memcpy(src0_clone->data, src0->data, src0_size);
memcpy(src0_clone->nb, src0->nb, sizeof(size_t) * GGML_MAX_DIMS);
} else if (ggml_backend_buffer_is_vk(src0->buffer)) {
- ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src0->extra;
- vk_buffer buffer_gpu = extra->buffer_gpu.lock();
- uint64_t offset = extra->offset + src0->view_offs;
+ ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context;
+ vk_buffer& buffer_gpu = buf_ctx->dev_buffer;
+ uint64_t offset = vk_tensor_offset(src0) + src0->view_offs;
if (!ggml_is_contiguous(src0) && ggml_vk_dim01_contiguous(src0)) {
for (int i3 = 0; i3 < src0->ne[3]; i3++) {
for (int i2 = 0; i2 < src0->ne[2]; i2++) {
@@ -7068,9 +7000,9 @@ static void ggml_vk_check_results_0(ggml_tensor * tensor) {
memcpy(src1_clone->data, src1->data, src1_size);
memcpy(src1_clone->nb, src1->nb, sizeof(size_t) * GGML_MAX_DIMS);
} else if (ggml_backend_buffer_is_vk(src1->buffer)) {
- ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src1->extra;
- vk_buffer buffer_gpu = extra->buffer_gpu.lock();
- uint64_t offset = extra->offset + src1->view_offs;
+ ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context;
+ vk_buffer& buffer_gpu = buf_ctx->dev_buffer;
+ uint64_t offset = vk_tensor_offset(src1) + src1->view_offs;
if (!ggml_is_contiguous(src1) && ggml_vk_dim01_contiguous(src1)) {
for (int i3 = 0; i3 < src1->ne[3]; i3++) {
for (int i2 = 0; i2 < src1->ne[2]; i2++) {
@@ -7110,9 +7042,9 @@ static void ggml_vk_check_results_0(ggml_tensor * tensor) {
memcpy(src2_clone->data, src2->data, src2_size);
memcpy(src2_clone->nb, src2->nb, sizeof(size_t) * GGML_MAX_DIMS);
} else if (ggml_backend_buffer_is_vk(src2->buffer)) {
- ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src2->extra;
- vk_buffer buffer_gpu = extra->buffer_gpu.lock();
- uint64_t offset = extra->offset + src2->view_offs;
+ ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)src2->buffer->context;
+ vk_buffer& buffer_gpu = buf_ctx->dev_buffer;
+ uint64_t offset = vk_tensor_offset(src2) + src2->view_offs;
if (!ggml_is_contiguous(src2) && ggml_vk_dim01_contiguous(src2)) {
for (int i3 = 0; i3 < src2->ne[3]; i3++) {
for (int i2 = 0; i2 < src2->ne[2]; i2++) {
@@ -7167,7 +7099,7 @@ static void ggml_vk_check_results_0(ggml_tensor * tensor) {
} else if (tensor->op == GGML_OP_PAD) {
tensor_clone = ggml_pad(ggml_ctx, src0_clone, tensor->ne[0] - src0_clone->ne[0], tensor->ne[1] - src0_clone->ne[1], tensor->ne[2] - src0_clone->ne[2], tensor->ne[3] - src0_clone->ne[3]);
} else if (tensor->op == GGML_OP_REPEAT) {
- tensor_clone = ggml_repeat(ggml_ctx, src0_clone, src1_clone);
+ tensor_clone = ggml_repeat(ggml_ctx, src0_clone, tensor);
} else if (tensor->op == GGML_OP_ADD) {
tensor_clone = ggml_add(ggml_ctx, src0_clone, src1_clone);
} else if (tensor->op == GGML_OP_ACC) {
@@ -7312,14 +7244,15 @@ static void ggml_vk_check_results_1(ggml_tensor * tensor) {
size_t tensor_size = ggml_nbytes(tensor);
tensor_data = malloc(tensor_size);
- ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
+ ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)tensor->buffer->context;
- vk_buffer buffer_gpu = extra->buffer_gpu.lock();
- if (extra->offset + tensor->view_offs + tensor_size >= buffer_gpu->size) {
- tensor_size = buffer_gpu->size - (extra->offset + tensor->view_offs);
+ vk_buffer& buffer_gpu = buf_ctx->dev_buffer;
+ uint64_t offset = vk_tensor_offset(tensor) + tensor->view_offs;
+ if (offset + tensor_size >= buffer_gpu->size) {
+ tensor_size = buffer_gpu->size - offset;
}
- ggml_vk_buffer_read(buffer_gpu, extra->offset + tensor->view_offs, tensor_data, tensor_size);
+ ggml_vk_buffer_read(buffer_gpu, offset, tensor_data, tensor_size);
}
float first_error_result = -1.0f;
diff --git a/ggml/src/ggml.c b/ggml/src/ggml.c
index e6917dba7..de500a675 100644
--- a/ggml/src/ggml.c
+++ b/ggml/src/ggml.c
@@ -498,7 +498,7 @@ struct ggml_arm_arch_features_type {
} ggml_arm_arch_features = {-1, -1, -1, 0};
#endif
-GGML_CALL const char * ggml_status_to_string(enum ggml_status status) {
+const char * ggml_status_to_string(enum ggml_status status) {
switch (status) {
case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
@@ -3419,19 +3419,19 @@ void ggml_print_objects(const struct ggml_context * ctx) {
GGML_LOG_INFO("%s: --- end ---\n", __func__);
}
-GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
+int64_t ggml_nelements(const struct ggml_tensor * tensor) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
}
-GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
+int64_t ggml_nrows(const struct ggml_tensor * tensor) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
}
-GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
+size_t ggml_nbytes(const struct ggml_tensor * tensor) {
size_t nbytes;
size_t blck_size = ggml_blck_size(tensor->type);
if (blck_size == 1) {
@@ -3454,15 +3454,15 @@ size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
}
-GGML_CALL int64_t ggml_blck_size(enum ggml_type type) {
+int64_t ggml_blck_size(enum ggml_type type) {
return type_traits[type].blck_size;
}
-GGML_CALL size_t ggml_type_size(enum ggml_type type) {
+size_t ggml_type_size(enum ggml_type type) {
return type_traits[type].type_size;
}
-GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
+size_t ggml_row_size(enum ggml_type type, int64_t ne) {
assert(ne % ggml_blck_size(type) == 0);
return ggml_type_size(type)*ne/ggml_blck_size(type);
}
@@ -3471,15 +3471,15 @@ double ggml_type_sizef(enum ggml_type type) {
return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
}
-GGML_CALL const char * ggml_type_name(enum ggml_type type) {
+const char * ggml_type_name(enum ggml_type type) {
return type < GGML_TYPE_COUNT ? type_traits[type].type_name : "NONE";
}
-GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
+bool ggml_is_quantized(enum ggml_type type) {
return type_traits[type].is_quantized;
}
-GGML_CALL const char * ggml_op_name(enum ggml_op op) {
+const char * ggml_op_name(enum ggml_op op) {
return GGML_OP_NAME[op];
}
@@ -3491,7 +3491,7 @@ const char * ggml_unary_op_name(enum ggml_unary_op op) {
return GGML_UNARY_OP_NAME[op];
}
-GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
+const char * ggml_op_desc(const struct ggml_tensor * t) {
if (t->op == GGML_OP_UNARY) {
enum ggml_unary_op uop = ggml_get_unary_op(t);
return ggml_unary_op_name(uop);
@@ -3499,7 +3499,7 @@ GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
return ggml_op_name(t->op);
}
-GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
+size_t ggml_element_size(const struct ggml_tensor * tensor) {
return ggml_type_size(tensor->type);
}
@@ -3592,7 +3592,7 @@ size_t ggml_tensor_overhead(void) {
return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
}
-GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
+bool ggml_is_transposed(const struct ggml_tensor * tensor) {
return tensor->nb[0] > tensor->nb[1];
}
@@ -3618,23 +3618,23 @@ static bool ggml_is_contiguous_n(const struct ggml_tensor * tensor, int n) {
return true;
}
-GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
+bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
return ggml_is_contiguous_0(tensor);
}
-GGML_CALL bool ggml_is_contiguous_0(const struct ggml_tensor * tensor) {
+bool ggml_is_contiguous_0(const struct ggml_tensor * tensor) {
return ggml_is_contiguous_n(tensor, 0);
}
-GGML_CALL bool ggml_is_contiguous_1(const struct ggml_tensor * tensor) {
+bool ggml_is_contiguous_1(const struct ggml_tensor * tensor) {
return ggml_is_contiguous_n(tensor, 1);
}
-GGML_CALL bool ggml_is_contiguous_2(const struct ggml_tensor * tensor) {
+bool ggml_is_contiguous_2(const struct ggml_tensor * tensor) {
return ggml_is_contiguous_n(tensor, 2);
}
-GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
+bool ggml_is_permuted(const struct ggml_tensor * tensor) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
@@ -3649,7 +3649,7 @@ static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
}
-GGML_CALL bool ggml_is_empty(const struct ggml_tensor * tensor) {
+bool ggml_is_empty(const struct ggml_tensor * tensor) {
for (int i = 0; i < GGML_MAX_DIMS; ++i) {
if (tensor->ne[i] == 0) {
// empty if any dimension has no elements
@@ -4665,7 +4665,7 @@ float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
return (float *)(tensor->data);
}
-GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
+enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
GGML_ASSERT(tensor->op == GGML_OP_UNARY);
return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
}
@@ -12768,6 +12768,10 @@ static void ggml_compute_forward_out_prod_f32(
GGML_TENSOR_BINARY_OP_LOCALS
+ GGML_ASSERT(dst->type == GGML_TYPE_F32);
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
+
const int ith = params->ith;
const int nth = params->nth;
@@ -14097,7 +14101,7 @@ static void ggml_rope_cache_init(
}
}
-GGML_CALL void ggml_rope_yarn_corr_dims(
+void ggml_rope_yarn_corr_dims(
int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]
) {
// start and end correction dims
diff --git a/scripts/sync-ggml-am.sh b/scripts/sync-ggml-am.sh
index f16336594..ffce2aab0 100755
--- a/scripts/sync-ggml-am.sh
+++ b/scripts/sync-ggml-am.sh
@@ -122,7 +122,7 @@ if [ -f $SRC_LLAMA/ggml-src.patch ]; then
# src/ggml-aarch64.h -> ggml/src/ggml-aarch64.h
# src/ggml-alloc.c -> ggml/src/ggml-alloc.c
# src/ggml-backend-impl.h -> ggml/src/ggml-backend-impl.h
- # src/ggml-backend.c -> ggml/src/ggml-backend.c
+ # src/ggml-backend.cpp -> ggml/src/ggml-backend.cpp
# src/ggml-cann/* -> ggml/src/ggml-cann/
# src/ggml-cann.cpp -> ggml/src/ggml-cann.cpp
# src/ggml-common.h -> ggml/src/ggml-common.h
@@ -169,7 +169,7 @@ if [ -f $SRC_LLAMA/ggml-src.patch ]; then
-e 's/([[:space:]]|[ab]\/)src\/ggml-aarch64\.h/\1ggml\/src\/ggml-aarch64.h/g' \
-e 's/([[:space:]]|[ab]\/)src\/ggml-alloc\.c/\1ggml\/src\/ggml-alloc.c/g' \
-e 's/([[:space:]]|[ab]\/)src\/ggml-backend-impl\.h/\1ggml\/src\/ggml-backend-impl.h/g' \
- -e 's/([[:space:]]|[ab]\/)src\/ggml-backend\.c/\1ggml\/src\/ggml-backend.c/g' \
+ -e 's/([[:space:]]|[ab]\/)src\/ggml-backend\.cpp/\1ggml\/src\/ggml-backend.cpp/g' \
-e 's/([[:space:]]|[ab]\/)src\/ggml-cann\//\1ggml\/src\/ggml-cann\//g' \
-e 's/([[:space:]]|[ab]\/)src\/ggml-cann\.cpp/\1ggml\/src\/ggml-cann.cpp/g' \
-e 's/([[:space:]]|[ab]\/)src\/ggml-common\.h/\1ggml\/src\/ggml-common.h/g' \
diff --git a/scripts/sync-ggml.sh b/scripts/sync-ggml.sh
index 30a62e088..f6ff5e683 100755
--- a/scripts/sync-ggml.sh
+++ b/scripts/sync-ggml.sh
@@ -9,7 +9,7 @@ cp -rpv ../ggml/src/ggml-aarch64.c ./ggml/src/ggml-aarch64.c
cp -rpv ../ggml/src/ggml-aarch64.h ./ggml/src/ggml-aarch64.h
cp -rpv ../ggml/src/ggml-alloc.c ./ggml/src/ggml-alloc.c
cp -rpv ../ggml/src/ggml-backend-impl.h ./ggml/src/ggml-backend-impl.h
-cp -rpv ../ggml/src/ggml-backend.c ./ggml/src/ggml-backend.c
+cp -rpv ../ggml/src/ggml-backend.cpp ./ggml/src/ggml-backend.cpp
cp -rpv ../ggml/src/ggml-cann/* ./ggml/src/ggml-cann/
cp -rpv ../ggml/src/ggml-cann.cpp ./ggml/src/ggml-cann.cpp
cp -rpv ../ggml/src/ggml-common.h ./ggml/src/ggml-common.h
diff --git a/src/llama.cpp b/src/llama.cpp
index 45880241c..3443b0689 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -12,9 +12,7 @@
# include "ggml-rpc.h"
#endif
-#ifdef GGML_USE_CUDA
-# include "ggml-cuda.h"
-#elif defined(GGML_USE_VULKAN)
+#if defined(GGML_USE_VULKAN)
# include "ggml-vulkan.h"
#elif defined(GGML_USE_SYCL)
# include "ggml-sycl.h"
@@ -610,7 +608,7 @@ enum llm_tensor {
LLM_TENSOR_CLS_OUT,
};
-static const std::map> LLM_TENSOR_NAMES = {
+static const std::map> LLM_TENSOR_NAMES = {
{
LLM_ARCH_LLAMA,
{
@@ -1566,32 +1564,32 @@ struct LLM_TN {
return LLM_TENSOR_NAMES.at(arch).at(tensor);
}
- std::string operator()(llm_tensor tensor, const std::string & suffix) const {
+ std::string operator()(llm_tensor tensor, const char * suffix) const {
if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
return "__missing__";
}
- return LLM_TENSOR_NAMES.at(arch).at(tensor) + "." + suffix;
+ return std::string(LLM_TENSOR_NAMES.at(arch).at(tensor)) + "." + suffix;
}
std::string operator()(llm_tensor tensor, int bid) const {
if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
return "__missing__";
}
- return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid);
+ return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor), bid);
}
- std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const {
+ std::string operator()(llm_tensor tensor, const char * suffix, int bid) const {
if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
return "__missing__";
}
- return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid) + "." + suffix;
+ return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor), bid) + "." + suffix;
}
- std::string operator()(llm_tensor tensor, const std::string & suffix, int bid, int xid) const {
+ std::string operator()(llm_tensor tensor, const char * suffix, int bid, int xid) const {
if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
return "__missing__";
}
- return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid, xid) + "." + suffix;
+ return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor), bid, xid) + "." + suffix;
}
};
@@ -2264,38 +2262,6 @@ static std::string llama_token_to_piece(const struct llama_model * model, llama_
return piece;
}
-static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer) {
- ggml_backend_buffer_type_t buft = nullptr;
-
-#if defined(GGML_USE_CUDA)
- // host buffers should only be used when data is expected to be copied to/from the GPU
- if (host_buffer) {
- buft = ggml_backend_cuda_host_buffer_type();
- }
-#elif defined(GGML_USE_SYCL)
- if (host_buffer) {
- buft = ggml_backend_sycl_host_buffer_type();
- }
-#elif defined(GGML_USE_CANN)
- if (host_buffer) {
- buft = ggml_backend_cann_host_buffer_type();
- }
-#elif defined(GGML_USE_CPU_HBM)
- buft = ggml_backend_cpu_hbm_buffer_type();
-#elif defined(GGML_USE_VULKAN)
- if (host_buffer) {
- buft = ggml_backend_vk_host_buffer_type();
- }
-#endif
-
- if (buft == nullptr) {
- buft = ggml_backend_cpu_buffer_type();
- }
- return buft;
-
- GGML_UNUSED(host_buffer);
-}
-
//
// globals
//
@@ -2909,14 +2875,17 @@ struct llama_model {
std::vector layers;
+ // gguf metadata
+ std::unordered_map gguf_kv;
+
llama_split_mode split_mode;
int main_gpu;
int n_gpu_layers;
- std::vector rpc_servers;
+ // list of devices used in this model
+ std::vector devices;
- // gguf metadata
- std::unordered_map gguf_kv;
+ std::vector rpc_servers;
// layer -> buffer type mapping
struct layer_buft {
@@ -2959,11 +2928,6 @@ struct llama_model {
ggml_free(ctx);
}
for (ggml_backend_buffer_t buf : bufs) {
-#ifdef GGML_USE_CUDA
- if (ggml_backend_buffer_get_type(buf) == ggml_backend_cpu_buffer_type()) {
- ggml_backend_cuda_unregister_host_buffer(ggml_backend_buffer_get_base(buf));
- }
-#endif
ggml_backend_buffer_free(buf);
}
while (!lora_adapters.empty()) {
@@ -3449,72 +3413,116 @@ struct llama_lora_adapter {
}
};
-static size_t llama_get_device_count(const llama_model & model) {
- size_t count = 1;
-#if defined(GGML_USE_CUDA)
- count = ggml_backend_cuda_get_device_count();
-#elif defined(GGML_USE_SYCL)
- count = ggml_backend_sycl_get_device_count();
-#elif defined(GGML_USE_VULKAN)
- count = ggml_backend_vk_get_device_count();
-#elif defined(GGML_USE_CANN)
- return ggml_backend_cann_get_device_count();
-#endif
+static int llama_get_device_count(const llama_model & model) {
+ int count = (int) model.devices.size();
+
#if defined(GGML_USE_RPC)
- count += model.rpc_servers.size();
+ count += (int) model.rpc_servers.size();
#endif
+
+#if defined(GGML_USE_METAL)
+ count += 1;
+#elif defined(GGML_USE_SYCL)
+ count += ggml_backend_sycl_get_device_count();
+#elif defined(GGML_USE_VULKAN)
+ count += ggml_backend_vk_get_device_count();
+#elif defined(GGML_USE_CANN)
+ count += ggml_backend_cann_get_device_count();
+#endif
+
return count;
+
GGML_UNUSED(model);
}
-static ggml_backend_buffer_type_t llama_default_buffer_type_offload(const llama_model & model, int gpu) {
+static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(const llama_model & model, bool host_buffer) {
ggml_backend_buffer_type_t buft = nullptr;
-#ifdef GGML_USE_RPC
- int rpc_count = (int)model.rpc_servers.size();
-#else
- int rpc_count = 0;
-#endif
- int local_gpu = gpu - rpc_count;
-#if defined(GGML_USE_RPC)
- if (gpu < rpc_count) {
- const char * endpoint = model.rpc_servers[gpu].c_str();
- return ggml_backend_rpc_buffer_type(endpoint);
+ if (host_buffer) {
+ for (auto * dev : model.devices) {
+ buft = ggml_backend_dev_host_buffer_type(dev);
+ if (buft != nullptr) {
+ break;
+ }
+ }
}
-#endif
-#if defined(GGML_USE_METAL)
- buft = ggml_backend_metal_buffer_type();
-#elif defined(GGML_USE_CUDA)
- buft = ggml_backend_cuda_buffer_type(local_gpu);
-#elif defined(GGML_USE_VULKAN)
- buft = ggml_backend_vk_buffer_type(local_gpu);
-#elif defined(GGML_USE_SYCL)
- buft = ggml_backend_sycl_buffer_type(local_gpu);
-#elif defined(GGML_USE_KOMPUTE)
- buft = ggml_backend_kompute_buffer_type(local_gpu);
- if (buft == nullptr) {
- LLAMA_LOG_WARN("%s: cannot use GPU %d, check `vulkaninfo --summary`\n", __func__, local_gpu);
+
+#if defined(GGML_USE_SYCL)
+ if (host_buffer) {
+ buft = ggml_backend_sycl_host_buffer_type();
}
#elif defined(GGML_USE_CANN)
- buft = ggml_backend_cann_buffer_type(local_gpu);
+ if (host_buffer) {
+ buft = ggml_backend_cann_host_buffer_type();
+ }
+#elif defined(GGML_USE_CPU_HBM)
+ buft = ggml_backend_cpu_hbm_buffer_type();
+#elif defined(GGML_USE_VULKAN)
+ if (host_buffer) {
+ buft = ggml_backend_vk_host_buffer_type();
+ }
#endif
if (buft == nullptr) {
- buft = llama_default_buffer_type_cpu(true);
+ buft = ggml_backend_cpu_buffer_type();
}
return buft;
+
+ GGML_UNUSED(host_buffer);
+}
+
+static ggml_backend_buffer_type_t llama_default_buffer_type_offload(const llama_model & model, int device) {
+ ggml_backend_buffer_type_t buft = nullptr;
+
+#if defined(GGML_USE_RPC)
+ int rpc_count = (int)model.rpc_servers.size();
+ if (device < rpc_count) {
+ const char * endpoint = model.rpc_servers[device].c_str();
+ return ggml_backend_rpc_buffer_type(endpoint);
+ }
+ device -= rpc_count;
+#endif
+
+ if (device < (int)model.devices.size()) {
+ return ggml_backend_dev_buffer_type(model.devices[device]);
+ }
+ device -= (int)model.devices.size();
+
+#if defined(GGML_USE_METAL)
+ buft = ggml_backend_metal_buffer_type();
+#elif defined(GGML_USE_VULKAN)
+ buft = ggml_backend_vk_buffer_type(device);
+#elif defined(GGML_USE_SYCL)
+ buft = ggml_backend_sycl_buffer_type(device);
+#elif defined(GGML_USE_KOMPUTE)
+ buft = ggml_backend_kompute_buffer_type(device);
+#elif defined(GGML_USE_CANN)
+ buft = ggml_backend_cann_buffer_type(device);
+#endif
+
+ if (buft == nullptr) {
+ buft = llama_default_buffer_type_cpu(model, true);
+ }
+ return buft;
+
GGML_UNUSED(model);
- GGML_UNUSED(local_gpu);
}
static ggml_backend_buffer_type_t llama_default_buffer_type_split(const llama_model & model, int fallback_gpu, const float * tensor_split) {
ggml_backend_buffer_type_t buft = nullptr;
-#ifdef GGML_USE_CUDA
- if (ggml_backend_cuda_get_device_count() > 1) {
- buft = ggml_backend_cuda_split_buffer_type(tensor_split);
+ // find a backend that supports split buffers
+ for (size_t i = 0; i < ggml_backend_reg_count(); ++i) {
+ ggml_backend_reg_t reg = ggml_backend_reg_get(i);
+
+ auto ggml_backend_split_buffer_type_fn = (ggml_backend_split_buffer_type_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_split_buffer_type");
+ if (ggml_backend_split_buffer_type_fn) {
+ buft = ggml_backend_split_buffer_type_fn(tensor_split);
+ if (buft != nullptr) {
+ break;
+ }
+ }
}
-#endif
#ifdef GGML_USE_SYCL
if (ggml_backend_sycl_get_device_count() > 1) {
@@ -3531,13 +3539,8 @@ static ggml_backend_buffer_type_t llama_default_buffer_type_split(const llama_mo
}
static size_t llama_get_device_memory(const llama_model & model, int device) {
-#ifdef GGML_USE_RPC
- int rpc_count = (int)model.rpc_servers.size();
-#else
- int rpc_count = 0;
-#endif
- int local_device = device - rpc_count;
#if defined(GGML_USE_RPC)
+ int rpc_count = (int)model.rpc_servers.size();
if (device < rpc_count) {
size_t total;
size_t free;
@@ -3545,32 +3548,37 @@ static size_t llama_get_device_memory(const llama_model & model, int device) {
ggml_backend_rpc_get_device_memory(endpoint, &free, &total);
return free;
}
+ device = device - rpc_count;
#endif
-#if defined(GGML_USE_CUDA)
+
+ if (device < (int)model.devices.size()) {
+ ggml_backend_dev_t dev = model.devices[device];
+ size_t total;
+ size_t free;
+ ggml_backend_dev_memory(dev, &free, &total);
+ return free;
+ }
+
+#if defined(GGML_USE_SYCL)
size_t total;
size_t free;
- ggml_backend_cuda_get_device_memory(local_device, &free, &total);
- return free;
-#elif defined(GGML_USE_SYCL)
- size_t total;
- size_t free;
- ggml_backend_sycl_get_device_memory(local_device, &free, &total);
+ ggml_backend_sycl_get_device_memory(device, &free, &total);
return free;
#elif defined(GGML_USE_VULKAN)
size_t total;
size_t free;
- ggml_backend_vk_get_device_memory(local_device, &free, &total);
+ ggml_backend_vk_get_device_memory(device, &free, &total);
return free;
#elif defined(GGML_USE_CANN)
size_t total;
size_t free;
- ggml_backend_cann_get_device_memory(local_device, &free, &total);
+ ggml_backend_cann_get_device_memory(device, &free, &total);
return free;
#else
return 1;
#endif
GGML_UNUSED(model);
- GGML_UNUSED(local_device);
+ GGML_UNUSED(device);
}
//
@@ -3613,7 +3621,7 @@ static bool llama_kv_cache_init(
buft_layer_count[model.buft_layer[i].buft]++;
}
} else {
- buft_layer_count[llama_default_buffer_type_cpu(true)] = n_layer;
+ buft_layer_count[llama_default_buffer_type_cpu(model, true)] = n_layer;
}
// create a context for each buffer type
@@ -4905,7 +4913,7 @@ struct llama_model_loader {
static const int TENSOR_NOT_REQUIRED = 1;
static const int TENSOR_DUPLICATED = 2;
- struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector & ne, int flags = 0) {
+ struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::initializer_list & ne, int flags = 0) {
const struct ggml_tensor * cur = check_tensor_dims(name, ne, !(flags & TENSOR_NOT_REQUIRED));
if (cur == NULL) {
@@ -4915,7 +4923,7 @@ struct llama_model_loader {
return create_tensor_for(ctx, cur, flags & TENSOR_DUPLICATED);
}
- struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::vector & ne, size_t offset, bool required = true) {
+ struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::initializer_list & ne, size_t offset, bool required = true) {
const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
if (cur == NULL) {
@@ -4928,7 +4936,7 @@ struct llama_model_loader {
std::array dims;
for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
- dims[i] = i < ne.size() ? ne[i] : 1;
+ dims[i] = i < ne.size() ? ne.begin()[i] : 1;
}
struct ggml_tensor * tensor = ggml_view_4d(ctx, base,
@@ -5026,7 +5034,7 @@ struct llama_model_loader {
// Returns false if cancelled by progress_callback
bool load_all_data(
struct ggml_context * ctx,
- llama_buf_map & bufs_mmap,
+ llama_buf_map & bufs,
llama_mlocks * lmlocks,
llama_progress_callback progress_callback,
void * progress_callback_user_data) {
@@ -5035,43 +5043,94 @@ struct llama_model_loader {
std::vector> read_buf;
std::vector>> validation_result;
-#if defined(GGML_USE_CUDA)
// 4 staging buffers for async uploads, each sized 1MB seems to be a good default for single NVMe drives.
// NVMe raid configurations might require more / larger buffers.
constexpr size_t n_buffers = 4;
constexpr size_t buffer_size = 1 * 1024 * 1024; // 1MB
std::vector host_buffers;
- std::vector host_ptrs;
std::vector events;
+ std::vector host_ptrs;
size_t buffer_idx = 0; // buffer to use for async loads
-
- ggml_backend_t cuda_backend = nullptr;
- if (!use_mmap && !check_tensors) {
+ ggml_backend_t upload_backend = [&](const char * fn) -> ggml_backend_t {
+ if (use_mmap || check_tensors) {
+ return nullptr;
+ }
// When not using mmaped io use async uploads from pinned memory to GPU memory.
- // First determine if the CUDA backend is active, and if so, determine the device ID.
- ggml_backend_buffer_t buf = bufs_mmap.count(0) ? bufs_mmap.at(0) : nullptr;
- if (buf) {
- ggml_backend_buffer_type_t buffer_type = ggml_backend_buffer_get_type(buf);
- for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) {
- auto * cuda_buffer_type = ggml_backend_cuda_buffer_type(i);
- if (buffer_type == cuda_buffer_type) {
- cuda_backend = ggml_backend_cuda_init(i);
- break;
- }
- }
+ // First determine if the backend supports the necessary features for async uploads.
+ auto * buf = bufs.count(0) ? bufs.at(0) : nullptr;
+ if (!buf) {
+ LLAMA_LOG_DEBUG("%s: no buffer found for async uploads\n", fn);
+ return nullptr;
}
- // If the cuda backend is active create pinned memory buffers and events for synchronisation.
- if (cuda_backend) {
- for (size_t idx = 0; idx < n_buffers; ++idx) {
- host_buffers.emplace_back(ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), buffer_size));
- host_ptrs.emplace_back(ggml_backend_buffer_get_base(host_buffers[idx]));
- events.emplace_back(ggml_backend_event_new(cuda_backend));
- }
+ auto * buft = ggml_backend_buffer_get_type(buf);
+ auto * dev = ggml_backend_buft_get_device(buft);
+ if (!dev) {
+ LLAMA_LOG_DEBUG("%s: no device found for buffer type %s for async uploads\n", fn,
+ ggml_backend_buft_name(buft));
+ return nullptr;
}
+
+ if (buft != ggml_backend_dev_buffer_type(dev)) {
+ LLAMA_LOG_DEBUG("%s: buffer type %s is not the default buffer type for device %s for async uploads\n", fn,
+ ggml_backend_buft_name(buft), ggml_backend_dev_name(dev));
+ return nullptr;
+ }
+
+ ggml_backend_dev_props props;
+ ggml_backend_dev_get_props(dev, &props);
+ if (!props.caps.async || !props.caps.host_buffer || !props.caps.events) {
+ LLAMA_LOG_DEBUG("%s: device %s does not support async, host buffers or events\n", fn,
+ ggml_backend_dev_name(dev));
+ return nullptr;
+ }
+
+ auto * host_buft = ggml_backend_dev_host_buffer_type(dev);
+ if (!host_buft) {
+ LLAMA_LOG_DEBUG("%s: no host buffer type found for device %s\n", fn,
+ ggml_backend_dev_name(dev));
+ return nullptr;
+ }
+
+ // If the backend is supported, create pinned memory buffers and events for synchronisation.
+ for (size_t idx = 0; idx < n_buffers; ++idx) {
+ auto * buf = ggml_backend_buft_alloc_buffer(host_buft, buffer_size);
+ if (!buf) {
+ LLAMA_LOG_DEBUG("%s: failed to allocate host buffer for async uploads for device %s\n", fn,
+ ggml_backend_dev_name(dev));
+ return nullptr;
+ }
+
+ host_buffers.emplace_back(buf);
+ host_ptrs.emplace_back(ggml_backend_buffer_get_base(buf));
+
+ auto * event = ggml_backend_event_new(dev);
+ if (!event) {
+ LLAMA_LOG_DEBUG("%s: failed to create event for async uploads for device %s\n", fn,
+ ggml_backend_dev_name(dev));
+ return nullptr;
+ }
+
+ events.emplace_back(event);
+ }
+
+ ggml_backend_t backend = ggml_backend_dev_init(dev, nullptr);
+ if (!backend) {
+ LLAMA_LOG_DEBUG("%s: failed to initialize backend for device %s for async uploads\n", fn,
+ ggml_backend_dev_name(dev));
+ return nullptr;
+ }
+
+ return backend;
+ }(__func__);
+
+ if (upload_backend) {
+ LLAMA_LOG_DEBUG("%s: using async uploads for device %s, buffer type %s, backend %s\n", __func__,
+ ggml_backend_dev_name(ggml_backend_get_device(upload_backend)),
+ ggml_backend_buft_name(ggml_backend_buffer_get_type(bufs.at(0))),
+ ggml_backend_name(upload_backend));
}
-#endif
for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
const auto * weight = get_weight(ggml_get_name(cur));
@@ -5091,8 +5150,8 @@ struct llama_model_loader {
if (use_mmap) {
const auto & mapping = mappings.at(weight->idx);
ggml_backend_buffer_t buf_mmap = nullptr;
- if (bufs_mmap.count(weight->idx)) {
- buf_mmap = bufs_mmap.at(weight->idx);
+ if (bufs.count(weight->idx)) {
+ buf_mmap = bufs.at(weight->idx);
}
uint8_t * data = (uint8_t *) mapping->addr + weight->offs;
@@ -5128,9 +5187,8 @@ struct llama_model_loader {
}));
}
} else {
-#if defined(GGML_USE_CUDA)
- // If cuda_backend is valid load the tensor in chunks to pinned memory and upload the buffers asynchronously to the GPU.
- if (cuda_backend) {
+ // If upload_backend is valid load the tensor in chunks to pinned memory and upload the buffers asynchronously to the GPU.
+ if (upload_backend) {
file->seek(weight->offs, SEEK_SET);
size_t bytes_read = 0;
@@ -5140,17 +5198,14 @@ struct llama_model_loader {
ggml_backend_event_synchronize(events[buffer_idx]);
file->read_raw(host_ptrs[buffer_idx], read_iteration);
- ggml_backend_tensor_set_async(cuda_backend, cur, host_ptrs[buffer_idx], bytes_read, read_iteration);
- ggml_backend_event_record(events[buffer_idx]);
+ ggml_backend_tensor_set_async(upload_backend, cur, host_ptrs[buffer_idx], bytes_read, read_iteration);
+ ggml_backend_event_record(events[buffer_idx], upload_backend);
bytes_read += read_iteration;
++buffer_idx;
buffer_idx %= n_buffers;
}
- }
- else
-#endif
- {
+ } else {
read_buf.resize(n_size);
file->seek(weight->offs, SEEK_SET);
file->read_raw(read_buf.data(), n_size);
@@ -5165,17 +5220,15 @@ struct llama_model_loader {
size_done += n_size;
}
-#if defined(GGML_USE_CUDA)
- // free temporary resources used for async cuda uploads
- if (cuda_backend) {
- for (size_t idx = 0; idx < n_buffers;++idx) {
- ggml_backend_event_synchronize(events[idx]);
- ggml_backend_event_free(events[idx]);
- ggml_backend_buffer_free(host_buffers[idx]);
- }
- ggml_backend_free(cuda_backend);
+ // free temporary resources used for async uploads
+ for (auto * event : events) {
+ ggml_backend_event_synchronize(event);
+ ggml_backend_event_free(event);
}
-#endif
+ for (auto * buf : host_buffers) {
+ ggml_backend_buffer_free(buf);
+ }
+ ggml_backend_free(upload_backend);
// check validation results
bool validation_failed = false;
@@ -6911,6 +6964,13 @@ static bool llm_load_tensors(
void * progress_callback_user_data) {
auto & hparams = model.hparams;
+ // check if the value of main_gpu is valid
+ if (llama_get_device_count(model) > 0 &&
+ split_mode != LLAMA_SPLIT_MODE_LAYER &&
+ (main_gpu < 0 || main_gpu >= llama_get_device_count(model))) {
+ throw std::runtime_error(format("invalid value for main_gpu: %d (available devices: %d)", main_gpu, llama_get_device_count(model)));
+ }
+
model.split_mode = split_mode;
model.main_gpu = main_gpu;
model.n_gpu_layers = n_gpu_layers;
@@ -6920,14 +6980,14 @@ static bool llm_load_tensors(
bool use_mmap_buffer = true;
// there is very little benefit to offloading the input layer, so always keep it on the CPU
- model.buft_input = llama_default_buffer_type_cpu(true);
+ model.buft_input = llama_default_buffer_type_cpu(model, true);
//model.buft_input = llama_default_buffer_type_offload(main_gpu);
model.buft_layer.resize(n_layer);
// assign cpu layers
for (int i = 0; i < i_gpu_start; ++i) {
- model.buft_layer[i] = llama_default_buffer_type_cpu(true);
+ model.buft_layer[i] = llama_default_buffer_type_cpu(model, true);
}
if (split_mode == LLAMA_SPLIT_MODE_LAYER) {
@@ -6965,7 +7025,7 @@ static bool llm_load_tensors(
int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(act_gpu_layers - 1)/act_gpu_layers) - splits.begin();
model.buft_output = llama_default_buffer_type_offload(model, layer_gpu);
} else {
- model.buft_output = llama_default_buffer_type_cpu(true);
+ model.buft_output = llama_default_buffer_type_cpu(model, true);
}
} else {
ggml_backend_buffer_type_t split_buft;
@@ -6989,7 +7049,7 @@ static bool llm_load_tensors(
llama_default_buffer_type_offload(model, main_gpu)
};
} else {
- model.buft_output = llama_default_buffer_type_cpu(true);
+ model.buft_output = llama_default_buffer_type_cpu(model, true);
}
}
@@ -8861,7 +8921,7 @@ static bool llm_load_tensors(
// only the mmap region containing the tensors in the model is mapped to the backend buffer
// this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
// this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
- if (ml.use_mmap && use_mmap_buffer && buft == llama_default_buffer_type_cpu(true)) {
+ if (ml.use_mmap && use_mmap_buffer && buft == llama_default_buffer_type_cpu(model, true)) {
for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
void * addr = nullptr;
size_t first, last;
@@ -8875,13 +8935,6 @@ static bool llm_load_tensors(
}
model.bufs.push_back(buf);
bufs.emplace(idx, buf);
-#ifdef GGML_USE_CUDA
- if (n_layer >= n_gpu_layers) {
- ggml_backend_cuda_register_host_buffer(
- ggml_backend_buffer_get_base(buf),
- ggml_backend_buffer_get_size(buf));
- }
-#endif
}
}
#ifdef GGML_USE_METAL
@@ -16945,7 +16998,7 @@ static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) {
lctx.embd = nullptr;
}
- lctx.buf_output = ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), new_size);
+ lctx.buf_output = ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(lctx.model, true), new_size);
if (lctx.buf_output == nullptr) {
LLAMA_LOG_ERROR("%s: failed to allocate output buffer of size %.2f MiB\n", __func__, new_size / (1024.0 * 1024.0));
return 0;
@@ -18976,21 +19029,7 @@ struct llama_model_quantize_params llama_model_quantize_default_params() {
}
size_t llama_max_devices(void) {
-#if defined(GGML_USE_RPC)
- return GGML_RPC_MAX_SERVERS;
-#elif defined(GGML_USE_METAL)
- return 1;
-#elif defined(GGML_USE_CUDA)
- return GGML_CUDA_MAX_DEVICES;
-#elif defined(GGML_USE_SYCL)
- return GGML_SYCL_MAX_DEVICES;
-#elif defined(GGML_USE_VULKAN)
- return GGML_VK_MAX_DEVICES;
-#elif defined(GGML_USE_CANN)
- return GGML_CANN_MAX_DEVICES;
-#else
- return 1;
-#endif
+ return 16;
}
bool llama_supports_mmap(void) {
@@ -19002,12 +19041,13 @@ bool llama_supports_mlock(void) {
}
bool llama_supports_gpu_offload(void) {
-#if defined(GGML_USE_CUDA) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
+#if defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE) || defined(GGML_USE_RPC)
// Defined when llama.cpp is compiled with support for offloading model layers to GPU.
return true;
#else
- return false;
+ return ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_GPU) != nullptr ||
+ ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_GPU_FULL) != nullptr;
#endif
}
@@ -19072,17 +19112,30 @@ struct llama_model * llama_load_model_from_file(
return true;
};
}
+
if (params.rpc_servers != nullptr && params.rpc_servers[0] != '\0') {
// split the servers set them into model->rpc_servers
std::string servers(params.rpc_servers);
size_t pos = 0;
- while ((pos = servers.find(",")) != std::string::npos) {
+ while ((pos = servers.find(',')) != std::string::npos) {
std::string server = servers.substr(0, pos);
model->rpc_servers.push_back(server);
servers.erase(0, pos + 1);
}
model->rpc_servers.push_back(servers);
}
+
+ // create list of devices to use with this model
+ // currently, we use all available devices
+ // TODO: rework API to give user more control over device selection
+ for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
+ ggml_backend_dev_t dev = ggml_backend_dev_get(i);
+ // skip the CPU backend since it is handled separately
+ if (ggml_backend_dev_type(dev) != GGML_BACKEND_DEVICE_TYPE_CPU_FULL) {
+ model->devices.push_back(dev);
+ }
+ }
+
int status = llama_model_load(path_model, *model, params);
GGML_ASSERT(status <= 0);
if (status < 0) {
@@ -19244,6 +19297,36 @@ struct llama_context * llama_new_context_with_model(
if (!hparams.vocab_only) {
// initialize backends
+ int main_gpu = model->main_gpu;
+
+ // with registry
+ if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
+ if (main_gpu >= 0 && main_gpu < (int)model->devices.size()) {
+ ggml_backend_dev_t main_dev = model->devices[main_gpu];
+ ggml_backend_t backend = ggml_backend_dev_init(main_dev, nullptr);
+ if (backend == nullptr) {
+ LLAMA_LOG_ERROR("%s: failed to initialize %s backend\n", __func__, ggml_backend_dev_name(main_dev));
+ llama_free(ctx);
+ return nullptr;
+ }
+ ctx->backends.push_back(backend);
+ }
+ } else {
+ // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
+ for (auto * dev : model->devices) {
+ ggml_backend_t backend = ggml_backend_dev_init(dev, nullptr);
+ if (backend == nullptr) {
+ LLAMA_LOG_ERROR("%s: failed to initialize %s backend\n", __func__, ggml_backend_dev_name(dev));
+ llama_free(ctx);
+ return nullptr;
+ }
+ ctx->backends.push_back(backend);
+ }
+ }
+ if (main_gpu >= (int)model->devices.size()) {
+ main_gpu -= (int)model->devices.size();
+ }
+
#if defined(GGML_USE_RPC)
if (model->n_gpu_layers > 0) {
for (const auto & endpoint : model->rpc_servers) {
@@ -19256,6 +19339,9 @@ struct llama_context * llama_new_context_with_model(
ctx->backends.push_back(backend);
}
}
+ if (main_gpu >= (int)model->rpc_servers.size()) {
+ main_gpu -= (int)model->rpc_servers.size();
+ }
#endif
#if defined(GGML_USE_METAL)
@@ -19268,28 +19354,6 @@ struct llama_context * llama_new_context_with_model(
}
ctx->backends.push_back(ctx->backend_metal);
}
-#elif defined(GGML_USE_CUDA)
- if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
- // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
- ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu);
- if (backend == nullptr) {
- LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu);
- llama_free(ctx);
- return nullptr;
- }
- ctx->backends.push_back(backend);
- } else {
- // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
- for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) {
- ggml_backend_t backend = ggml_backend_cuda_init(device);
- if (backend == nullptr) {
- LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, device);
- llama_free(ctx);
- return nullptr;
- }
- ctx->backends.push_back(backend);
- }
- }
#elif defined(GGML_USE_VULKAN)
if (model->split_mode == LLAMA_SPLIT_MODE_ROW) {
LLAMA_LOG_ERROR("%s: Row split not supported. Failed to initialize Vulkan backend\n", __func__);
@@ -19297,7 +19361,7 @@ struct llama_context * llama_new_context_with_model(
return nullptr;
}
if (model->split_mode == LLAMA_SPLIT_MODE_NONE) {
- ggml_backend_t backend = ggml_backend_vk_init(model->main_gpu);
+ ggml_backend_t backend = ggml_backend_vk_init(main_gpu);
if (backend == nullptr) {
LLAMA_LOG_ERROR("%s: failed to initialize Vulkan backend\n", __func__);
llama_free(ctx);
@@ -19318,9 +19382,9 @@ struct llama_context * llama_new_context_with_model(
#elif defined(GGML_USE_SYCL)
// with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
- ggml_backend_t backend = ggml_backend_sycl_init(model->main_gpu);
+ ggml_backend_t backend = ggml_backend_sycl_init(main_gpu);
if (backend == nullptr) {
- LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d backend\n", __func__, model->main_gpu);
+ LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d backend\n", __func__, main_gpu);
llama_free(ctx);
return nullptr;
}
@@ -19339,7 +19403,7 @@ struct llama_context * llama_new_context_with_model(
}
#elif defined(GGML_USE_KOMPUTE)
if (model->n_gpu_layers > 0) {
- auto * backend = ggml_backend_kompute_init(model->main_gpu);
+ auto * backend = ggml_backend_kompute_init(main_gpu);
if (backend == nullptr) {
LLAMA_LOG_ERROR("%s: failed to initialize Kompute backend\n", __func__);
llama_free(ctx);
@@ -19348,29 +19412,29 @@ struct llama_context * llama_new_context_with_model(
ctx->backends.push_back(backend);
}
#elif defined(GGML_USE_CANN)
- // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
- // TODO: ggml_backend_cann is not support split tensor now, just leave code here.
- if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
- ggml_backend_t backend = ggml_backend_cann_init(model->main_gpu);
- if (backend == nullptr) {
- LLAMA_LOG_ERROR("%s: failed to initialize CANN%d backend\n", __func__, model->main_gpu);
- llama_free(ctx);
- return nullptr;
- }
- ctx->backends.push_back(backend);
- } else {
- // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
- // TODO: currently, CANN can't use multi-gpus, just leave code here for further cann version.
- for (int32_t device = 0; device < ggml_backend_cann_get_device_count(); ++device) {
- ggml_backend_t backend = ggml_backend_cann_init(device);
+ // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
+ // TODO: ggml_backend_cann is not support split tensor now, just leave code here.
+ if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
+ ggml_backend_t backend = ggml_backend_cann_init(main_gpu);
if (backend == nullptr) {
- LLAMA_LOG_ERROR("%s: failed to initialize CANN%d backend\n", __func__, device);
+ LLAMA_LOG_ERROR("%s: failed to initialize CANN%d backend\n", __func__, main_gpu);
llama_free(ctx);
return nullptr;
}
ctx->backends.push_back(backend);
+ } else {
+ // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
+ // TODO: currently, CANN can't use multi-gpus, just leave code here for further cann version.
+ for (int32_t device = 0; device < ggml_backend_cann_get_device_count(); ++device) {
+ ggml_backend_t backend = ggml_backend_cann_init(device);
+ if (backend == nullptr) {
+ LLAMA_LOG_ERROR("%s: failed to initialize CANN%d backend\n", __func__, device);
+ llama_free(ctx);
+ return nullptr;
+ }
+ ctx->backends.push_back(backend);
+ }
}
- }
#endif
#ifdef GGML_USE_BLAS
@@ -19435,7 +19499,7 @@ struct llama_context * llama_new_context_with_model(
for (auto * backend : ctx->backends) {
if (ggml_backend_is_cpu(backend)) {
// use host buffers for the CPU backend compute buffer
- backend_buft.push_back(llama_default_buffer_type_cpu(true));
+ backend_buft.push_back(llama_default_buffer_type_cpu(*model, true));
} else {
backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
}
@@ -19446,17 +19510,37 @@ struct llama_context * llama_new_context_with_model(
// buffer used to store the computation graph and the tensor meta data
ctx->buf_compute_meta.resize(ggml_tensor_overhead()*max_nodes + ggml_graph_overhead_custom(max_nodes, false));
+ // TODO: move these checks to ggml_backend_sched
// enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary
bool pipeline_parallel =
llama_get_device_count(*model) > 1 &&
model->n_gpu_layers > (int)model->hparams.n_layer &&
model->split_mode == LLAMA_SPLIT_MODE_LAYER &&
params.offload_kqv;
-#ifndef GGML_USE_CUDA
- // pipeline parallelism requires support for async compute and events
- // currently this is only implemented in the CUDA backend
- pipeline_parallel = false;
-#endif
+
+ // pipeline parallelism requires support for async compute and events in all devices
+ if (pipeline_parallel) {
+ for (auto * backend : ctx->backends) {
+ if (ggml_backend_is_cpu(backend)) {
+ // ignore CPU backend
+ continue;
+ }
+ auto * dev = ggml_backend_get_device(backend);
+ if (!dev) {
+ // backend is using old interface, not supported
+ pipeline_parallel = false;
+ break;
+ }
+ ggml_backend_dev_props props;
+ ggml_backend_dev_get_props(dev, &props);
+ if (!props.caps.async || !props.caps.events) {
+ // device does not support async compute or events
+ pipeline_parallel = false;
+ break;
+ }
+ }
+ }
+
ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), max_nodes, pipeline_parallel);
if (pipeline_parallel) {
diff --git a/src/unicode-data.cpp b/src/unicode-data.cpp
index 02bdf7823..07424bbab 100644
--- a/src/unicode-data.cpp
+++ b/src/unicode-data.cpp
@@ -7,7 +7,7 @@
#include
#include
-const std::vector> unicode_ranges_flags = { // start, flags // last=next_start-1
+const std::initializer_list> unicode_ranges_flags = { // start, flags // last=next_start-1
{0x000000, 0x0080},
{0x000020, 0x0008},
{0x000021, 0x0020},
@@ -2311,7 +2311,8 @@ const std::unordered_set unicode_set_whitespace = {
0x003000,
};
-const std::unordered_map unicode_map_lowercase = {
+// list is always in ascending order, to enable binary searh
+const std::initializer_list> unicode_map_lowercase = {
{0x000041, 0x000061},
{0x000042, 0x000062},
{0x000043, 0x000063},
@@ -3747,7 +3748,8 @@ const std::unordered_map unicode_map_lowercase = {
{0x01E921, 0x01E943},
};
-const std::unordered_map unicode_map_uppercase = {
+// list is always in ascending order, to enable binary searh
+const std::initializer_list> unicode_map_uppercase = {
{0x000061, 0x000041},
{0x000062, 0x000042},
{0x000063, 0x000043},
@@ -5200,7 +5202,7 @@ const std::unordered_map unicode_map_uppercase = {
{0x01E943, 0x01E921},
};
-const std::vector unicode_ranges_nfd = { // start, last, nfd
+const std::initializer_list unicode_ranges_nfd = { // start, last, nfd
{0x000000, 0x000000, 0x000000},
{0x0000C0, 0x0000C5, 0x000041},
{0x0000C7, 0x0000C7, 0x000043},
diff --git a/src/unicode-data.h b/src/unicode-data.h
index e27fe1770..f6973ebd2 100644
--- a/src/unicode-data.h
+++ b/src/unicode-data.h
@@ -13,8 +13,8 @@ struct range_nfd {
static const uint32_t MAX_CODEPOINTS = 0x110000;
-extern const std::vector> unicode_ranges_flags;
+extern const std::initializer_list> unicode_ranges_flags;
extern const std::unordered_set unicode_set_whitespace;
-extern const std::unordered_map unicode_map_lowercase;
-extern const std::unordered_map unicode_map_uppercase;
-extern const std::vector unicode_ranges_nfd;
+extern const std::initializer_list> unicode_map_lowercase;
+extern const std::initializer_list> unicode_map_uppercase;
+extern const std::initializer_list unicode_ranges_nfd;
diff --git a/src/unicode.cpp b/src/unicode.cpp
index f4e941cd1..50b35bbbc 100644
--- a/src/unicode.cpp
+++ b/src/unicode.cpp
@@ -123,11 +123,11 @@ uint32_t unicode_cpt_from_utf8(const std::string & utf8, size_t & offset) {
static std::vector unicode_cpt_flags_array() {
std::vector cpt_flags(MAX_CODEPOINTS, codepoint_flags::UNDEFINED);
- assert (unicode_ranges_flags.front().first == 0);
- assert (unicode_ranges_flags.back().first == MAX_CODEPOINTS);
+ assert (unicode_ranges_flags.begin()[0].first == 0);
+ assert (unicode_ranges_flags.begin()[unicode_ranges_flags.size()-1].first == MAX_CODEPOINTS);
for (size_t i = 1; i < unicode_ranges_flags.size(); ++i) {
- const auto range_ini = unicode_ranges_flags[i-1]; // codepoint_ini, flags
- const auto range_end = unicode_ranges_flags[i]; // codepoint_end, flags
+ const auto range_ini = unicode_ranges_flags.begin()[i-1]; // codepoint_ini, flags
+ const auto range_end = unicode_ranges_flags.begin()[i]; // codepoint_end, flags
for (uint32_t cpt = range_ini.first; cpt < range_end.first; ++cpt) {
cpt_flags[cpt] = range_ini.second;
}
@@ -597,7 +597,7 @@ std::vector unicode_cpts_normalize_nfd(const std::vector & c
std::vector result(cpts.size());
for (size_t i = 0; i < cpts.size(); ++i) {
const uint32_t cpt = cpts[i];
- auto it = std::upper_bound(unicode_ranges_nfd.cbegin(), unicode_ranges_nfd.cend(), cpt, comp) - 1;
+ auto it = std::upper_bound(unicode_ranges_nfd.begin(), unicode_ranges_nfd.end(), cpt, comp) - 1;
result[i] = (it->first <= cpt && cpt <= it->last) ? it->nfd : cpt;
}
return result;
@@ -639,8 +639,15 @@ uint8_t unicode_utf8_to_byte(const std::string & utf8) {
}
uint32_t unicode_tolower(uint32_t cp) {
- auto it = unicode_map_lowercase.find(cp);
- return it == unicode_map_lowercase.end() ? cp : it->second;
+ // binary search
+ auto it = std::lower_bound(unicode_map_lowercase.begin(), unicode_map_lowercase.end(), cp,
+ [](const std::pair & pair, uint32_t value) {
+ return pair.first < value;
+ });
+ if (it != unicode_map_lowercase.end() && it->first == cp) {
+ return it->second;
+ }
+ return cp; // Return the original code point if no lowercase mapping is found
}
std::vector unicode_regex_split(const std::string & text, const std::vector & regex_exprs) {
diff --git a/tests/test-backend-ops.cpp b/tests/test-backend-ops.cpp
index 95d983aa0..86a0b379b 100644
--- a/tests/test-backend-ops.cpp
+++ b/tests/test-backend-ops.cpp
@@ -672,14 +672,11 @@ struct test_case {
}
// run
- ggml_backend_synchronize(backend);
-
int64_t total_time_us = 0;
int total_runs = 0;
do {
int64_t start_time = ggml_time_us();
ggml_backend_graph_compute(backend, gf);
- ggml_backend_synchronize(backend);
int64_t end_time = ggml_time_us();
total_time_us += end_time - start_time;
@@ -3723,20 +3720,22 @@ int main(int argc, char ** argv) {
}
// enumerate backends
- printf("Testing %zu backends\n\n", ggml_backend_reg_get_count());
+ printf("Testing %zu devices\n\n", ggml_backend_dev_count());
size_t n_ok = 0;
- for (size_t i = 0; i < ggml_backend_reg_get_count(); i++) {
- printf("Backend %zu/%zu (%s)\n", i + 1, ggml_backend_reg_get_count(), ggml_backend_reg_get_name(i));
+ for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
+ ggml_backend_dev_t dev = ggml_backend_dev_get(i);
- if (backend_filter != NULL && strcmp(backend_filter, ggml_backend_reg_get_name(i)) != 0) {
+ printf("Backend %zu/%zu: %s\n", i + 1, ggml_backend_dev_count(), ggml_backend_dev_name(dev));
+
+ if (backend_filter != NULL && strcmp(backend_filter, ggml_backend_dev_name(dev)) != 0) {
printf(" Skipping\n");
n_ok++;
continue;
}
- ggml_backend_t backend = ggml_backend_reg_init_backend(i, NULL);
+ ggml_backend_t backend = ggml_backend_dev_init(dev, NULL);
GGML_ASSERT(backend != NULL);
if (backend_filter == NULL && ggml_backend_is_cpu(backend) && mode != MODE_GRAD) {
@@ -3751,7 +3750,11 @@ int main(int argc, char ** argv) {
ggml_backend_cpu_set_n_threads(backend, std::thread::hardware_concurrency() / 2);
}
- printf(" Backend name: %s\n", ggml_backend_name(backend));
+ printf(" Device description: %s\n", ggml_backend_dev_description(dev));
+ size_t free, total; // NOLINT
+ ggml_backend_dev_memory(dev, &free, &total);
+ printf(" Device memory: %zu MB (%zu MB free)\n", total / 1024 / 1024, free / 1024 / 1024);
+ printf("\n");
bool ok = test_backend(backend, mode, op_name_filter);
@@ -3768,9 +3771,9 @@ int main(int argc, char ** argv) {
ggml_backend_free(backend);
}
- printf("%zu/%zu backends passed\n", n_ok, ggml_backend_reg_get_count());
+ printf("%zu/%zu backends passed\n", n_ok, ggml_backend_dev_count());
- if (n_ok != ggml_backend_reg_get_count()) {
+ if (n_ok != ggml_backend_dev_count()) {
printf("\033[1;31mFAIL\033[0m\n");
return 1;
}