diff --git a/convert_hf_to_gguf.py b/convert_hf_to_gguf.py index 7d1d2121f..2efa9f118 100755 --- a/convert_hf_to_gguf.py +++ b/convert_hf_to_gguf.py @@ -2731,7 +2731,7 @@ class MambaModel(Model): else: # Use the GPT-NeoX tokenizer when no tokenizer files are present self._set_vocab_builtin("gpt-neox", vocab_size) - + def set_gguf_parameters(self): d_model = self.find_hparam(["hidden_size", "d_model"]) d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4 @@ -2741,7 +2741,7 @@ class MambaModel(Model): # ref: https://stackoverflow.com/a/17511341/22827863 # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58 dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16) - rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5 + rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5 use_dt_b_c_norm = False # For falconmamba we do apply RMS norm on B / DT and C layers if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",): @@ -3858,7 +3858,7 @@ class ExaoneModel(Model): self.gguf_writer.add_tensor(self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), np.array(rope_factors, dtype=np.float32)) super().prepare_tensors() - + ###### CONVERSION LOGIC ######