Merge branch 'master' into finetune-lora
# Conflicts: # ggml-alloc.c
This commit is contained in:
commit
9ea2f7ff58
42 changed files with 1542 additions and 1033 deletions
1
.github/workflows/build.yml
vendored
1
.github/workflows/build.yml
vendored
|
@ -18,7 +18,6 @@ on:
|
|||
env:
|
||||
BRANCH_NAME: ${{ github.head_ref || github.ref_name }}
|
||||
GGML_NLOOP: 3
|
||||
GGML_NITER: 1
|
||||
GGML_N_THREADS: 1
|
||||
|
||||
jobs:
|
||||
|
|
36
.github/workflows/code-coverage.yml
vendored
Normal file
36
.github/workflows/code-coverage.yml
vendored
Normal file
|
@ -0,0 +1,36 @@
|
|||
name: Code Coverage
|
||||
on: [push, pull_request]
|
||||
|
||||
env:
|
||||
GGML_NLOOP: 3
|
||||
GGML_N_THREADS: 1
|
||||
|
||||
jobs:
|
||||
run:
|
||||
runs-on: ubuntu-20.04
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Dependencies
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential gcc-8 lcov
|
||||
|
||||
- name: Build
|
||||
run: CC=gcc-8 make -j LLAMA_CODE_COVERAGE=1 tests
|
||||
|
||||
- name: Run tests
|
||||
run: CC=gcc-8 make test
|
||||
|
||||
- name: Generate coverage report
|
||||
run: |
|
||||
make coverage
|
||||
make lcov-report
|
||||
|
||||
- name: Upload coverage to Codecov
|
||||
uses: codecov/codecov-action@v3
|
||||
env:
|
||||
CODECOV_TOKEN: ${{ secrets.CODECOV_TOKEN }}
|
||||
with:
|
||||
files: lcov-report/coverage.info
|
7
.gitignore
vendored
7
.gitignore
vendored
|
@ -6,6 +6,10 @@
|
|||
*.exe
|
||||
*.dll
|
||||
*.log
|
||||
*.gcov
|
||||
*.gcno
|
||||
*.gcda
|
||||
*.dot
|
||||
.DS_Store
|
||||
.build/
|
||||
.cache/
|
||||
|
@ -17,6 +21,9 @@
|
|||
.vs/
|
||||
.vscode/
|
||||
|
||||
lcov-report/
|
||||
gcovr-report/
|
||||
|
||||
build*/
|
||||
out/
|
||||
tmp/
|
||||
|
|
|
@ -403,6 +403,7 @@ if (LLAMA_ALL_WARNINGS)
|
|||
-Wpointer-arith
|
||||
-Wmissing-prototypes
|
||||
-Werror=implicit-int
|
||||
-Wno-unused-function
|
||||
)
|
||||
set(cxx_flags
|
||||
-Wall
|
||||
|
@ -412,6 +413,10 @@ if (LLAMA_ALL_WARNINGS)
|
|||
-Wno-unused-function
|
||||
-Wno-multichar
|
||||
)
|
||||
if (CMAKE_CXX_COMPILER_ID STREQUAL "GNU")
|
||||
# g++ only
|
||||
set(cxx_flags ${cxx_flags} -Wno-format-truncation)
|
||||
endif()
|
||||
else()
|
||||
# todo : msvc
|
||||
endif()
|
||||
|
|
204
Makefile
204
Makefile
|
@ -4,6 +4,9 @@ BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-tex
|
|||
# Binaries only useful for tests
|
||||
TEST_TARGETS = tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0-llama tests/test-tokenizer-0-falcon tests/test-tokenizer-1
|
||||
|
||||
# Code coverage output files
|
||||
COV_TARGETS = *.gcno tests/*.gcno *.gcda tests/*.gcda *.gcov tests/*.gcov lcov-report gcovr-report
|
||||
|
||||
default: $(BUILD_TARGETS)
|
||||
|
||||
test:
|
||||
|
@ -23,6 +26,18 @@ test:
|
|||
|
||||
all: $(BUILD_TARGETS) $(TEST_TARGETS)
|
||||
|
||||
coverage: ## Run code coverage
|
||||
gcov -pb tests/*.cpp
|
||||
|
||||
lcov-report: coverage ## Generate lcov report
|
||||
mkdir -p lcov-report
|
||||
lcov --capture --directory . --output-file lcov-report/coverage.info
|
||||
genhtml lcov-report/coverage.info --output-directory lcov-report
|
||||
|
||||
gcovr-report: coverage ## Generate gcovr report
|
||||
mkdir -p gcovr-report
|
||||
gcovr --root . --html --html-details --output gcovr-report/coverage.html
|
||||
|
||||
ifndef UNAME_S
|
||||
UNAME_S := $(shell uname -s)
|
||||
endif
|
||||
|
@ -35,6 +50,11 @@ ifndef UNAME_M
|
|||
UNAME_M := $(shell uname -m)
|
||||
endif
|
||||
|
||||
ifdef RISCV_CROSS_COMPILE
|
||||
CC := riscv64-unknown-linux-gnu-gcc
|
||||
CXX := riscv64-unknown-linux-gnu-g++
|
||||
endif
|
||||
|
||||
CCV := $(shell $(CC) --version | head -n 1)
|
||||
CXXV := $(shell $(CXX) --version | head -n 1)
|
||||
|
||||
|
@ -62,53 +82,48 @@ OPT = -Ofast
|
|||
else
|
||||
OPT = -O3
|
||||
endif
|
||||
CFLAGS = -I. $(OPT) -std=c11 -fPIC
|
||||
CXXFLAGS = -I. -I./common $(OPT) -std=c++11 -fPIC
|
||||
LDFLAGS =
|
||||
MK_CPPFLAGS = -I. -Icommon
|
||||
MK_CFLAGS = $(CPPFLAGS) $(OPT) -std=c11 -fPIC
|
||||
MK_CXXFLAGS = $(CPPFLAGS) $(OPT) -std=c++11 -fPIC
|
||||
MK_LDFLAGS =
|
||||
|
||||
ifdef LLAMA_DEBUG
|
||||
CFLAGS += -O0 -g
|
||||
CXXFLAGS += -O0 -g
|
||||
LDFLAGS += -g
|
||||
MK_CFLAGS += -O0 -g
|
||||
MK_CXXFLAGS += -O0 -g
|
||||
MK_LDFLAGS += -g
|
||||
else
|
||||
CFLAGS += -DNDEBUG
|
||||
CXXFLAGS += -DNDEBUG
|
||||
MK_CPPFLAGS += -DNDEBUG
|
||||
endif
|
||||
|
||||
ifdef LLAMA_SERVER_VERBOSE
|
||||
CXXFLAGS += -DSERVER_VERBOSE=$(LLAMA_SERVER_VERBOSE)
|
||||
MK_CPPFLAGS += -DSERVER_VERBOSE=$(LLAMA_SERVER_VERBOSE)
|
||||
endif
|
||||
|
||||
|
||||
ifdef LLAMA_CODE_COVERAGE
|
||||
CXXFLAGS += -fprofile-arcs -ftest-coverage -dumpbase ''
|
||||
endif
|
||||
|
||||
ifdef LLAMA_DISABLE_LOGS
|
||||
CFLAGS += -DLOG_DISABLE_LOGS
|
||||
CXXFLAGS += -DLOG_DISABLE_LOGS
|
||||
endif # LLAMA_DISABLE_LOGS
|
||||
|
||||
# warnings
|
||||
CFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wdouble-promotion -Wshadow -Wstrict-prototypes -Wpointer-arith \
|
||||
-Wmissing-prototypes -Werror=implicit-int
|
||||
CXXFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wno-multichar
|
||||
MK_CFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wdouble-promotion -Wshadow -Wstrict-prototypes -Wpointer-arith \
|
||||
-Wmissing-prototypes -Werror=implicit-int -Wno-unused-function
|
||||
MK_CXXFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wno-multichar
|
||||
|
||||
ifeq '' '$(findstring clang++,$(CXX))'
|
||||
# g++ only
|
||||
CXXFLAGS += -Wno-format-truncation
|
||||
endif
|
||||
|
||||
# OS specific
|
||||
# TODO: support Windows
|
||||
ifeq ($(UNAME_S),Linux)
|
||||
CFLAGS += -pthread
|
||||
CXXFLAGS += -pthread
|
||||
endif
|
||||
ifeq ($(UNAME_S),Darwin)
|
||||
CFLAGS += -pthread
|
||||
CXXFLAGS += -pthread
|
||||
endif
|
||||
ifeq ($(UNAME_S),FreeBSD)
|
||||
CFLAGS += -pthread
|
||||
CXXFLAGS += -pthread
|
||||
endif
|
||||
ifeq ($(UNAME_S),NetBSD)
|
||||
CFLAGS += -pthread
|
||||
CXXFLAGS += -pthread
|
||||
endif
|
||||
ifeq ($(UNAME_S),OpenBSD)
|
||||
CFLAGS += -pthread
|
||||
CXXFLAGS += -pthread
|
||||
endif
|
||||
ifeq ($(UNAME_S),Haiku)
|
||||
CFLAGS += -pthread
|
||||
CXXFLAGS += -pthread
|
||||
ifneq '' '$(filter $(UNAME_S),Linux Darwin FreeBSD NetBSD OpenBSD Haiku)'
|
||||
MK_CFLAGS += -pthread
|
||||
MK_CXXFLAGS += -pthread
|
||||
endif
|
||||
|
||||
# detect Windows
|
||||
|
@ -134,72 +149,84 @@ ifeq ($(_WIN32),1)
|
|||
endif
|
||||
|
||||
ifdef LLAMA_GPROF
|
||||
CFLAGS += -pg
|
||||
CXXFLAGS += -pg
|
||||
MK_CFLAGS += -pg
|
||||
MK_CXXFLAGS += -pg
|
||||
endif
|
||||
ifdef LLAMA_PERF
|
||||
CFLAGS += -DGGML_PERF
|
||||
CXXFLAGS += -DGGML_PERF
|
||||
MK_CPPFLAGS += -DGGML_PERF
|
||||
endif
|
||||
|
||||
# Architecture specific
|
||||
# TODO: probably these flags need to be tweaked on some architectures
|
||||
# feel free to update the Makefile for your architecture and send a pull request or issue
|
||||
|
||||
ifndef RISCV
|
||||
|
||||
ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686 amd64))
|
||||
# Use all CPU extensions that are available:
|
||||
CFLAGS += -march=native -mtune=native
|
||||
CXXFLAGS += -march=native -mtune=native
|
||||
MK_CFLAGS += -march=native -mtune=native
|
||||
MK_CXXFLAGS += -march=native -mtune=native
|
||||
|
||||
# Usage AVX-only
|
||||
#CFLAGS += -mfma -mf16c -mavx
|
||||
#CXXFLAGS += -mfma -mf16c -mavx
|
||||
#MK_CFLAGS += -mfma -mf16c -mavx
|
||||
#MK_CXXFLAGS += -mfma -mf16c -mavx
|
||||
|
||||
# Usage SSSE3-only (Not is SSE3!)
|
||||
#CFLAGS += -mssse3
|
||||
#CXXFLAGS += -mssse3
|
||||
#MK_CFLAGS += -mssse3
|
||||
#MK_CXXFLAGS += -mssse3
|
||||
endif
|
||||
|
||||
# The stack is only 16-byte aligned on Windows, so don't let gcc emit aligned moves.
|
||||
# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=54412
|
||||
# https://github.com/ggerganov/llama.cpp/issues/2922
|
||||
ifneq '' '$(findstring mingw,$(shell $(CC) -dumpmachine))'
|
||||
CFLAGS += -Xassembler -muse-unaligned-vector-move
|
||||
CXXFLAGS += -Xassembler -muse-unaligned-vector-move
|
||||
endif
|
||||
|
||||
ifneq ($(filter aarch64%,$(UNAME_M)),)
|
||||
# Apple M1, M2, etc.
|
||||
# Raspberry Pi 3, 4, Zero 2 (64-bit)
|
||||
CFLAGS += -mcpu=native
|
||||
CXXFLAGS += -mcpu=native
|
||||
MK_CFLAGS += -mcpu=native
|
||||
MK_CXXFLAGS += -mcpu=native
|
||||
endif
|
||||
|
||||
ifneq ($(filter armv6%,$(UNAME_M)),)
|
||||
# Raspberry Pi 1, Zero
|
||||
CFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access
|
||||
MK_CFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access
|
||||
MK_CXXFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access
|
||||
endif
|
||||
|
||||
ifneq ($(filter armv7%,$(UNAME_M)),)
|
||||
# Raspberry Pi 2
|
||||
CFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access -funsafe-math-optimizations
|
||||
MK_CFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access -funsafe-math-optimizations
|
||||
MK_CXXFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access -funsafe-math-optimizations
|
||||
endif
|
||||
|
||||
ifneq ($(filter armv8%,$(UNAME_M)),)
|
||||
# Raspberry Pi 3, 4, Zero 2 (32-bit)
|
||||
CFLAGS += -mfp16-format=ieee -mno-unaligned-access
|
||||
MK_CFLAGS += -mfp16-format=ieee -mno-unaligned-access
|
||||
MK_CXXFLAGS += -mfp16-format=ieee -mno-unaligned-access
|
||||
endif
|
||||
|
||||
ifneq ($(filter ppc64%,$(UNAME_M)),)
|
||||
POWER9_M := $(shell grep "POWER9" /proc/cpuinfo)
|
||||
ifneq (,$(findstring POWER9,$(POWER9_M)))
|
||||
CFLAGS += -mcpu=power9
|
||||
CXXFLAGS += -mcpu=power9
|
||||
endif
|
||||
# Require c++23's std::byteswap for big-endian support.
|
||||
ifeq ($(UNAME_M),ppc64)
|
||||
CXXFLAGS += -std=c++23 -DGGML_BIG_ENDIAN
|
||||
MK_CFLAGS += -mcpu=power9
|
||||
MK_CXXFLAGS += -mcpu=power9
|
||||
endif
|
||||
endif
|
||||
|
||||
else
|
||||
CFLAGS += -march=rv64gcv -mabi=lp64d
|
||||
CXXFLAGS += -march=rv64gcv -mabi=lp64d
|
||||
endif
|
||||
|
||||
ifndef LLAMA_NO_K_QUANTS
|
||||
CFLAGS += -DGGML_USE_K_QUANTS
|
||||
CXXFLAGS += -DGGML_USE_K_QUANTS
|
||||
MK_CPPFLAGS += -DGGML_USE_K_QUANTS
|
||||
OBJS += k_quants.o
|
||||
ifdef LLAMA_QKK_64
|
||||
CFLAGS += -DGGML_QKK_64
|
||||
CXXFLAGS += -DGGML_QKK_64
|
||||
MK_CPPFLAGS += -DGGML_QKK_64
|
||||
endif
|
||||
endif
|
||||
|
||||
|
@ -207,31 +234,32 @@ ifndef LLAMA_NO_ACCELERATE
|
|||
# Mac M1 - include Accelerate framework.
|
||||
# `-framework Accelerate` works on Mac Intel as well, with negliable performance boost (as of the predict time).
|
||||
ifeq ($(UNAME_S),Darwin)
|
||||
CFLAGS += -DGGML_USE_ACCELERATE
|
||||
LDFLAGS += -framework Accelerate
|
||||
MK_CPPFLAGS += -DGGML_USE_ACCELERATE
|
||||
MK_LDFLAGS += -framework Accelerate
|
||||
endif
|
||||
endif # LLAMA_NO_ACCELERATE
|
||||
|
||||
ifdef LLAMA_MPI
|
||||
CFLAGS += -DGGML_USE_MPI -Wno-cast-qual
|
||||
CXXFLAGS += -DGGML_USE_MPI -Wno-cast-qual
|
||||
MK_CPPFLAGS += -DGGML_USE_MPI
|
||||
MK_CFLAGS += -Wno-cast-qual
|
||||
MK_CXXFLAGS += -Wno-cast-qual
|
||||
OBJS += ggml-mpi.o
|
||||
endif # LLAMA_MPI
|
||||
|
||||
ifdef LLAMA_OPENBLAS
|
||||
CFLAGS += -DGGML_USE_OPENBLAS $(shell pkg-config --cflags openblas)
|
||||
LDFLAGS += $(shell pkg-config --libs openblas)
|
||||
MK_CPPFLAGS += -DGGML_USE_OPENBLAS $(shell pkg-config --cflags-only-I openblas)
|
||||
MK_CFLAGS += $(shell pkg-config --cflags-only-other openblas)
|
||||
MK_LDFLAGS += $(shell pkg-config --libs openblas)
|
||||
endif # LLAMA_OPENBLAS
|
||||
|
||||
ifdef LLAMA_BLIS
|
||||
CFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/blis -I/usr/include/blis
|
||||
LDFLAGS += -lblis -L/usr/local/lib
|
||||
MK_CPPFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/blis -I/usr/include/blis
|
||||
MK_LDFLAGS += -lblis -L/usr/local/lib
|
||||
endif # LLAMA_BLIS
|
||||
|
||||
ifdef LLAMA_CUBLAS
|
||||
CFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include
|
||||
CXXFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include
|
||||
LDFLAGS += -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L$(CUDA_PATH)/targets/x86_64-linux/lib
|
||||
MK_CPPFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include
|
||||
MK_LDFLAGS += -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L$(CUDA_PATH)/targets/x86_64-linux/lib
|
||||
OBJS += ggml-cuda.o
|
||||
NVCCFLAGS = --forward-unknown-to-host-compiler -use_fast_math
|
||||
ifdef LLAMA_CUDA_NVCC
|
||||
|
@ -282,14 +310,15 @@ endif # LLAMA_CUBLAS
|
|||
|
||||
ifdef LLAMA_CLBLAST
|
||||
|
||||
CFLAGS += -DGGML_USE_CLBLAST $(shell pkg-config --cflags clblast OpenCL)
|
||||
CXXFLAGS += -DGGML_USE_CLBLAST $(shell pkg-config --cflags clblast OpenCL)
|
||||
MK_CPPFLAGS += -DGGML_USE_CLBLAST $(shell pkg-config --cflags-only-I clblast OpenCL)
|
||||
MK_CFLAGS += $(shell pkg-config --cflags-only-other clblast OpenCL)
|
||||
MK_CXXFLAGS += $(shell pkg-config --cflags-only-other clblast OpenCL)
|
||||
|
||||
# Mac provides OpenCL as a framework
|
||||
ifeq ($(UNAME_S),Darwin)
|
||||
LDFLAGS += -lclblast -framework OpenCL
|
||||
MK_LDFLAGS += -lclblast -framework OpenCL
|
||||
else
|
||||
LDFLAGS += $(shell pkg-config --libs clblast OpenCL)
|
||||
MK_LDFLAGS += $(shell pkg-config --libs clblast OpenCL)
|
||||
endif
|
||||
OBJS += ggml-opencl.o
|
||||
|
||||
|
@ -304,10 +333,9 @@ ifdef LLAMA_HIPBLAS
|
|||
LLAMA_CUDA_DMMV_X ?= 32
|
||||
LLAMA_CUDA_MMV_Y ?= 1
|
||||
LLAMA_CUDA_KQUANTS_ITER ?= 2
|
||||
CFLAGS += -DGGML_USE_HIPBLAS -DGGML_USE_CUBLAS
|
||||
CXXFLAGS += -DGGML_USE_HIPBLAS -DGGML_USE_CUBLAS
|
||||
LDFLAGS += -L$(ROCM_PATH)/lib -Wl,-rpath=$(ROCM_PATH)/lib
|
||||
LDFLAGS += -lhipblas -lamdhip64 -lrocblas
|
||||
MK_CPPFLAGS += -DGGML_USE_HIPBLAS -DGGML_USE_CUBLAS
|
||||
MK_LDFLAGS += -L$(ROCM_PATH)/lib -Wl,-rpath=$(ROCM_PATH)/lib
|
||||
MK_LDFLAGS += -lhipblas -lamdhip64 -lrocblas
|
||||
HIPFLAGS += $(addprefix --offload-arch=,$(GPU_TARGETS))
|
||||
HIPFLAGS += -DGGML_CUDA_DMMV_X=$(LLAMA_CUDA_DMMV_X)
|
||||
HIPFLAGS += -DGGML_CUDA_MMV_Y=$(LLAMA_CUDA_MMV_Y)
|
||||
|
@ -322,9 +350,8 @@ ggml-cuda.o: ggml-cuda.cu ggml-cuda.h
|
|||
endif # LLAMA_HIPBLAS
|
||||
|
||||
ifdef LLAMA_METAL
|
||||
CFLAGS += -DGGML_USE_METAL #-DGGML_METAL_NDEBUG
|
||||
CXXFLAGS += -DGGML_USE_METAL
|
||||
LDFLAGS += -framework Foundation -framework Metal -framework MetalKit
|
||||
MK_CPPFLAGS += -DGGML_USE_METAL #-DGGML_METAL_NDEBUG
|
||||
MK_LDFLAGS += -framework Foundation -framework Metal -framework MetalKit
|
||||
OBJS += ggml-metal.o
|
||||
endif # LLAMA_METAL
|
||||
|
||||
|
@ -338,15 +365,16 @@ ggml-mpi.o: ggml-mpi.c ggml-mpi.h
|
|||
$(CC) $(CFLAGS) -c $< -o $@
|
||||
endif # LLAMA_MPI
|
||||
|
||||
ifdef LLAMA_NO_K_QUANTS
|
||||
ifndef LLAMA_NO_K_QUANTS
|
||||
k_quants.o: k_quants.c k_quants.h
|
||||
$(CC) $(CFLAGS) -c $< -o $@
|
||||
endif # LLAMA_NO_K_QUANTS
|
||||
|
||||
ifdef LLAMA_DISABLE_LOGS
|
||||
CFLAGS += -DLOG_DISABLE_LOGS
|
||||
CXXFLAGS += -DLOG_DISABLE_LOGS
|
||||
endif # LLAMA_DISABLE_LOGS
|
||||
# combine build flags with cmdline overrides
|
||||
override CPPFLAGS := $(MK_CPPFLAGS) $(CPPFLAGS)
|
||||
override CFLAGS := $(MK_CFLAGS) $(CFLAGS)
|
||||
override CXXFLAGS := $(MK_CXXFLAGS) $(CXXFLAGS)
|
||||
override LDFLAGS := $(MK_LDFLAGS) $(LDFLAGS)
|
||||
|
||||
#
|
||||
# Print build information
|
||||
|
@ -391,7 +419,7 @@ libllama.so: llama.o ggml.o $(OBJS)
|
|||
$(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS)
|
||||
|
||||
clean:
|
||||
rm -vf *.o tests/*.o *.so *.dll benchmark-matmult build-info.h $(BUILD_TARGETS) $(TEST_TARGETS)
|
||||
rm -vrf *.o tests/*.o *.so *.dll benchmark-matmult build-info.h *.dot $(COV_TARGETS) $(BUILD_TARGETS) $(TEST_TARGETS)
|
||||
|
||||
#
|
||||
# Examples
|
||||
|
|
|
@ -12,9 +12,18 @@ let package = Package(
|
|||
name: "llama",
|
||||
path: ".",
|
||||
exclude: ["ggml-metal.metal"],
|
||||
sources: ["ggml.c", "llama.cpp"],
|
||||
sources: [
|
||||
"ggml.c",
|
||||
"llama.cpp",
|
||||
"ggml-alloc.c",
|
||||
"k_quants.c"
|
||||
],
|
||||
publicHeadersPath: "spm-headers",
|
||||
cSettings: [.unsafeFlags(["-Wno-shorten-64-to-32"]), .define("GGML_USE_ACCELERATE")],
|
||||
cSettings: [
|
||||
.unsafeFlags(["-Wno-shorten-64-to-32"]),
|
||||
.define("GGML_USE_K_QUANTS"),
|
||||
.define("GGML_USE_ACCELERATE")
|
||||
],
|
||||
linkerSettings: [
|
||||
.linkedFramework("Accelerate")
|
||||
]
|
||||
|
|
42
README.md
42
README.md
|
@ -114,11 +114,13 @@ as the main playground for developing new features for the [ggml](https://github
|
|||
- Scala 3: [donderom/llm4s](https://github.com/donderom/llm4s)
|
||||
- Clojure: [phronmophobic/llama.clj](https://github.com/phronmophobic/llama.clj)
|
||||
- React Native: [mybigday/llama.rn](https://github.com/mybigday/llama.rn)
|
||||
- Java: [kherud/java-llama.cpp](https://github.com/kherud/java-llama.cpp)
|
||||
|
||||
**UI:**
|
||||
|
||||
- [nat/openplayground](https://github.com/nat/openplayground)
|
||||
- [oobabooga/text-generation-webui](https://github.com/oobabooga/text-generation-webui)
|
||||
- [withcatai/catai](https://github.com/withcatai/catai)
|
||||
|
||||
---
|
||||
|
||||
|
@ -463,6 +465,8 @@ Building the program with BLAS support may lead to some performance improvements
|
|||
You will need the [OpenCL SDK](https://github.com/KhronosGroup/OpenCL-SDK).
|
||||
- For Ubuntu or Debian, the packages `opencl-headers`, `ocl-icd` may be needed.
|
||||
|
||||
- For Windows, a pre-built SDK is available on the [OpenCL Releases](https://github.com/KhronosGroup/OpenCL-SDK/releases) page.
|
||||
|
||||
- <details>
|
||||
<summary>Installing the OpenCL SDK from source</summary>
|
||||
|
||||
|
@ -480,10 +484,27 @@ Building the program with BLAS support may lead to some performance improvements
|
|||
```
|
||||
</details>
|
||||
|
||||
Installing CLBlast: it may be found in your operating system's packages.
|
||||
##### Installing CLBlast
|
||||
|
||||
Pre-built CLBlast binaries may be found on the [CLBlast Releases](https://github.com/CNugteren/CLBlast/releases) page. For Unix variants, it may also be found in your operating system's packages.
|
||||
|
||||
Alternatively, they may be built from source.
|
||||
|
||||
- <details>
|
||||
<summary>If not, then installing from source:</summary>
|
||||
<summary>Windows:</summary>
|
||||
|
||||
```cmd
|
||||
set OPENCL_SDK_ROOT="C:/OpenCL-SDK-v2023.04.17-Win-x64"
|
||||
git clone https://github.com/CNugteren/CLBlast.git
|
||||
mkdir CLBlast\build
|
||||
cd CLBlast\build
|
||||
cmake .. -DBUILD_SHARED_LIBS=OFF -DOVERRIDE_MSVC_FLAGS_TO_MT=OFF -DTUNERS=OFF -DOPENCL_ROOT=%OPENCL_SDK_ROOT% -G "Visual Studio 17 2022" -A x64
|
||||
cmake --build . --config Release
|
||||
cmake --install . --prefix C:/CLBlast
|
||||
```
|
||||
|
||||
- <details>
|
||||
<summary>Unix:</summary>
|
||||
|
||||
```sh
|
||||
git clone https://github.com/CNugteren/CLBlast.git
|
||||
|
@ -497,21 +518,32 @@ Building the program with BLAS support may lead to some performance improvements
|
|||
Where `/some/path` is where the built library will be installed (default is `/usr/local`).
|
||||
</details>
|
||||
|
||||
Building:
|
||||
##### Building Llama with CLBlast
|
||||
|
||||
- Build with make:
|
||||
```sh
|
||||
make LLAMA_CLBLAST=1
|
||||
```
|
||||
- CMake:
|
||||
- CMake (Unix):
|
||||
```sh
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. -DLLAMA_CLBLAST=ON -DCLBlast_dir=/some/path
|
||||
cmake --build . --config Release
|
||||
```
|
||||
- CMake (Windows):
|
||||
```cmd
|
||||
set CL_BLAST_CMAKE_PKG="C:/CLBlast/lib/cmake/CLBlast"
|
||||
git clone https://github.com/ggerganov/llama.cpp
|
||||
cd llama.cpp
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. -DBUILD_SHARED_LIBS=OFF -DLLAMA_CLBLAST=ON -DCMAKE_PREFIX_PATH=%CL_BLAST_CMAKE_PKG% -G "Visual Studio 17 2022" -A x64
|
||||
cmake --build . --config Release
|
||||
cmake --install . --prefix C:/LlamaCPP
|
||||
```
|
||||
|
||||
Running:
|
||||
##### Running Llama with CLBlast
|
||||
|
||||
The CLBlast build supports `--gpu-layers|-ngl` like the CUDA version does.
|
||||
|
||||
|
|
14
codecov.yml
Normal file
14
codecov.yml
Normal file
|
@ -0,0 +1,14 @@
|
|||
comment: off
|
||||
|
||||
coverage:
|
||||
status:
|
||||
project:
|
||||
default:
|
||||
target: auto
|
||||
threshold: 0
|
||||
base: auto
|
||||
patch:
|
||||
default:
|
||||
target: auto
|
||||
threshold: 0
|
||||
base: auto
|
|
@ -24,7 +24,9 @@
|
|||
|
||||
#if defined(_WIN32)
|
||||
#define WIN32_LEAN_AND_MEAN
|
||||
#ifndef NOMINMAX
|
||||
# define NOMINMAX
|
||||
#endif
|
||||
#include <codecvt>
|
||||
#include <locale>
|
||||
#include <windows.h>
|
||||
|
@ -303,6 +305,12 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
|||
break;
|
||||
}
|
||||
params.n_keep = std::stoi(argv[i]);
|
||||
} else if (arg == "--draft") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.n_draft = std::stoi(argv[i]);
|
||||
} else if (arg == "--chunks") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
|
@ -315,6 +323,12 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
|||
break;
|
||||
}
|
||||
params.model = argv[i];
|
||||
} else if (arg == "-md" || arg == "--model-draft") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.model_draft = argv[i];
|
||||
} else if (arg == "-a" || arg == "--alias") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
|
@ -648,6 +662,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
|||
fprintf(stdout, " --hellaswag compute HellaSwag score over random tasks from datafile supplied with -f\n");
|
||||
fprintf(stdout, " --hellaswag-tasks N number of tasks to use when computing the HellaSwag score (default: %zu)\n", params.hellaswag_tasks);
|
||||
fprintf(stdout, " --keep N number of tokens to keep from the initial prompt (default: %d, -1 = all)\n", params.n_keep);
|
||||
fprintf(stdout, " --draft N number of tokens to draft for speculative decoding (default: %d)\n", params.n_draft);
|
||||
fprintf(stdout, " --chunks N max number of chunks to process (default: %d, -1 = all)\n", params.n_chunks);
|
||||
if (llama_mlock_supported()) {
|
||||
fprintf(stdout, " --mlock force system to keep model in RAM rather than swapping or compressing\n");
|
||||
|
@ -680,6 +695,8 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
|||
fprintf(stdout, " --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
|
||||
fprintf(stdout, " -m FNAME, --model FNAME\n");
|
||||
fprintf(stdout, " model path (default: %s)\n", params.model.c_str());
|
||||
fprintf(stdout, " -md FNAME, --model-draft FNAME\n");
|
||||
fprintf(stdout, " draft model for speculative decoding (default: %s)\n", params.model.c_str());
|
||||
fprintf(stdout, " -ld LOGDIR, --logdir LOGDIR\n");
|
||||
fprintf(stdout, " path under which to save YAML logs (no logging if unset)\n");
|
||||
fprintf(stdout, "\n");
|
||||
|
@ -768,6 +785,14 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
|
|||
params.logit_bias[llama_token_eos(lctx)] = -INFINITY;
|
||||
}
|
||||
|
||||
{
|
||||
LOG("warming up the model with an empty run\n");
|
||||
|
||||
const std::vector<llama_token> tmp = { llama_token_bos(lctx), };
|
||||
llama_eval(lctx, tmp.data(), tmp.size(), 0, params.n_threads);
|
||||
llama_reset_timings(lctx);
|
||||
}
|
||||
|
||||
return std::make_tuple(model, lctx);
|
||||
}
|
||||
|
||||
|
@ -840,6 +865,130 @@ std::string llama_detokenize_bpe(llama_context * ctx, const std::vector<llama_to
|
|||
return result;
|
||||
}
|
||||
|
||||
//
|
||||
// Sampling utils
|
||||
//
|
||||
|
||||
llama_token llama_sample_token(
|
||||
struct llama_context * ctx,
|
||||
struct llama_context * ctx_guidance,
|
||||
struct llama_grammar * grammar,
|
||||
const struct gpt_params & params,
|
||||
const std::vector<llama_token> & last_tokens,
|
||||
std::vector<llama_token_data> & candidates,
|
||||
int idx) {
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
const int n_vocab = llama_n_vocab(ctx);
|
||||
|
||||
const float temp = params.temp;
|
||||
const int32_t top_k = params.top_k <= 0 ? n_vocab : params.top_k;
|
||||
const float top_p = params.top_p;
|
||||
const float tfs_z = params.tfs_z;
|
||||
const float typical_p = params.typical_p;
|
||||
const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
|
||||
const float repeat_penalty = params.repeat_penalty;
|
||||
const float alpha_presence = params.presence_penalty;
|
||||
const float alpha_frequency = params.frequency_penalty;
|
||||
const int mirostat = params.mirostat;
|
||||
const float mirostat_tau = params.mirostat_tau;
|
||||
const float mirostat_eta = params.mirostat_eta;
|
||||
const bool penalize_nl = params.penalize_nl;
|
||||
|
||||
llama_token id = 0;
|
||||
|
||||
float * logits = llama_get_logits(ctx) + idx * n_vocab;
|
||||
|
||||
// Apply params.logit_bias map
|
||||
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
|
||||
logits[it->first] += it->second;
|
||||
}
|
||||
|
||||
candidates.clear();
|
||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
|
||||
}
|
||||
|
||||
llama_token_data_array cur_p = { candidates.data(), candidates.size(), false };
|
||||
|
||||
if (ctx_guidance) {
|
||||
llama_sample_classifier_free_guidance(ctx, &cur_p, ctx_guidance, params.cfg_scale);
|
||||
}
|
||||
|
||||
// apply penalties
|
||||
if (!last_tokens.empty()) {
|
||||
const float nl_logit = logits[llama_token_nl(ctx)];
|
||||
const int last_n_repeat = std::min(std::min((int)last_tokens.size(), repeat_last_n), n_ctx);
|
||||
|
||||
llama_sample_repetition_penalty(ctx, &cur_p,
|
||||
last_tokens.data() + last_tokens.size() - last_n_repeat,
|
||||
last_n_repeat, repeat_penalty);
|
||||
llama_sample_frequency_and_presence_penalties(ctx, &cur_p,
|
||||
last_tokens.data() + last_tokens.size() - last_n_repeat,
|
||||
last_n_repeat, alpha_frequency, alpha_presence);
|
||||
|
||||
if (!penalize_nl) {
|
||||
for (size_t idx = 0; idx < cur_p.size; idx++) {
|
||||
if (cur_p.data[idx].id == llama_token_nl(ctx)) {
|
||||
cur_p.data[idx].logit = nl_logit;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (grammar != NULL) {
|
||||
llama_sample_grammar(ctx, &cur_p, grammar);
|
||||
}
|
||||
|
||||
if (temp <= 0) {
|
||||
// Greedy sampling
|
||||
id = llama_sample_token_greedy(ctx, &cur_p);
|
||||
} else {
|
||||
if (mirostat == 1) {
|
||||
static float mirostat_mu = 2.0f * mirostat_tau;
|
||||
const int mirostat_m = 100;
|
||||
llama_sample_temperature(ctx, &cur_p, temp);
|
||||
id = llama_sample_token_mirostat(ctx, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
|
||||
} else if (mirostat == 2) {
|
||||
static float mirostat_mu = 2.0f * mirostat_tau;
|
||||
llama_sample_temperature(ctx, &cur_p, temp);
|
||||
id = llama_sample_token_mirostat_v2(ctx, &cur_p, mirostat_tau, mirostat_eta, &mirostat_mu);
|
||||
} else {
|
||||
// Temperature sampling
|
||||
llama_sample_top_k (ctx, &cur_p, top_k, 1);
|
||||
llama_sample_tail_free (ctx, &cur_p, tfs_z, 1);
|
||||
llama_sample_typical (ctx, &cur_p, typical_p, 1);
|
||||
llama_sample_top_p (ctx, &cur_p, top_p, 1);
|
||||
llama_sample_temperature(ctx, &cur_p, temp);
|
||||
|
||||
{
|
||||
const int n_top = 10;
|
||||
LOG("top %d candidates:\n", n_top);
|
||||
|
||||
for (int i = 0; i < n_top; i++) {
|
||||
const llama_token id = cur_p.data[i].id;
|
||||
LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx, id).c_str(), cur_p.data[i].p);
|
||||
}
|
||||
}
|
||||
|
||||
id = llama_sample_token(ctx, &cur_p);
|
||||
|
||||
LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx, id).c_str());
|
||||
}
|
||||
}
|
||||
// printf("`%d`", candidates_p.size);
|
||||
|
||||
if (grammar != NULL) {
|
||||
llama_grammar_accept_token(ctx, grammar, id);
|
||||
}
|
||||
|
||||
return id;
|
||||
}
|
||||
|
||||
//
|
||||
// YAML utils
|
||||
//
|
||||
|
||||
// returns true if successful, false otherwise
|
||||
bool create_directory_with_parents(const std::string & path) {
|
||||
#ifdef _WIN32
|
||||
|
@ -1045,7 +1194,7 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
|
|||
dump_string_yaml_multiline(stream, "grammar", params.grammar.c_str());
|
||||
fprintf(stream, "grammar-file: # never logged, see grammar instead. Can still be specified for input.\n");
|
||||
fprintf(stream, "hellaswag: %s # default: false\n", params.hellaswag ? "true" : "false");
|
||||
fprintf(stream, "hellaswag_tasks: %ld # default: 400\n", params.hellaswag_tasks);
|
||||
fprintf(stream, "hellaswag_tasks: %zu # default: 400\n", params.hellaswag_tasks);
|
||||
|
||||
const auto logit_bias_eos = params.logit_bias.find(llama_token_eos(lctx));
|
||||
const bool ignore_eos = logit_bias_eos != params.logit_bias.end() && logit_bias_eos->second == -INFINITY;
|
||||
|
@ -1091,6 +1240,7 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
|
|||
fprintf(stream, "mirostat_lr: %f # default: 0.1\n", params.mirostat_eta);
|
||||
fprintf(stream, "mlock: %s # default: false\n", params.use_mlock ? "true" : "false");
|
||||
fprintf(stream, "model: %s # default: models/7B/ggml-model.bin\n", params.model.c_str());
|
||||
fprintf(stream, "model_draft: %s # default:\n", params.model_draft.c_str());
|
||||
fprintf(stream, "mtest: %s # default: false\n", params.mem_test ? "true" : "false");
|
||||
fprintf(stream, "multiline_input: %s # default: false\n", params.multiline_input ? "true" : "false");
|
||||
fprintf(stream, "n_gpu_layers: %d # default: 0\n", params.n_gpu_layers);
|
||||
|
|
|
@ -32,6 +32,7 @@ struct gpt_params {
|
|||
int32_t n_ctx = 512; // context size
|
||||
int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
|
||||
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
||||
int32_t n_draft = 16; // number of tokens to draft during speculative decoding
|
||||
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
|
||||
int32_t n_gpu_layers = 0; // number of layers to store in VRAM
|
||||
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
|
||||
|
@ -63,6 +64,7 @@ struct gpt_params {
|
|||
float cfg_scale = 1.f; // How strong is guidance
|
||||
|
||||
std::string model = "models/7B/ggml-model-f16.gguf"; // model path
|
||||
std::string model_draft = ""; // draft model for speculative decoding
|
||||
std::string model_alias = "unknown"; // model alias
|
||||
std::string prompt = "";
|
||||
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
|
||||
|
@ -156,6 +158,40 @@ std::string llama_detokenize_bpe(
|
|||
llama_context * ctx,
|
||||
const std::vector<llama_token> & tokens);
|
||||
|
||||
//
|
||||
// Sampling utils
|
||||
//
|
||||
|
||||
// this is a common sampling function used across the examples for convenience
|
||||
// it can serve as a starting point for implementing your own sampling function
|
||||
//
|
||||
// required:
|
||||
// - ctx: context to use for sampling
|
||||
// - params: sampling parameters
|
||||
//
|
||||
// optional:
|
||||
// - ctx_guidance: context to use for classifier-free guidance, ignore if NULL
|
||||
// - grammar: grammar to use for sampling, ignore if NULL
|
||||
// - last_tokens: needed for repetition penalty, ignore if empty
|
||||
// - idx: sample from llama_get_logits(ctx) + idx * n_vocab
|
||||
//
|
||||
// returns:
|
||||
// - token: sampled token
|
||||
// - candidates: vector of candidate tokens
|
||||
//
|
||||
llama_token llama_sample_token(
|
||||
struct llama_context * ctx,
|
||||
struct llama_context * ctx_guidance,
|
||||
struct llama_grammar * grammar,
|
||||
const struct gpt_params & params,
|
||||
const std::vector<llama_token> & last_tokens,
|
||||
std::vector<llama_token_data> & candidates,
|
||||
int idx = 0);
|
||||
|
||||
//
|
||||
// YAML utils
|
||||
//
|
||||
|
||||
bool create_directory_with_parents(const std::string & path);
|
||||
void dump_vector_float_yaml(FILE * stream, const char * prop_name, const std::vector<float> & data);
|
||||
void dump_vector_int_yaml(FILE * stream, const char * prop_name, const std::vector<int> & data);
|
||||
|
|
|
@ -235,6 +235,7 @@ namespace console {
|
|||
|
||||
int estimateWidth(char32_t codepoint) {
|
||||
#if defined(_WIN32)
|
||||
(void)codepoint;
|
||||
return 1;
|
||||
#else
|
||||
return wcwidth(codepoint);
|
||||
|
|
24
common/log.h
24
common/log.h
|
@ -154,7 +154,7 @@ inline std::string log_filename_generator_impl(const std::string & log_file_base
|
|||
// #include "log.h"
|
||||
//
|
||||
#ifndef LOG_NO_TIMESTAMPS
|
||||
#ifndef _WIN32
|
||||
#ifndef _MSC_VER
|
||||
#define LOG_TIMESTAMP_FMT "[%" PRIu64 "] "
|
||||
#define LOG_TIMESTAMP_VAL , (std::chrono::duration_cast<std::chrono::duration<std::uint64_t>>(std::chrono::system_clock::now().time_since_epoch())).count()
|
||||
#else
|
||||
|
@ -167,7 +167,7 @@ inline std::string log_filename_generator_impl(const std::string & log_file_base
|
|||
#endif
|
||||
|
||||
#ifdef LOG_TEE_TIMESTAMPS
|
||||
#ifndef _WIN32
|
||||
#ifndef _MSC_VER
|
||||
#define LOG_TEE_TIMESTAMP_FMT "[%" PRIu64 "] "
|
||||
#define LOG_TEE_TIMESTAMP_VAL , (std::chrono::duration_cast<std::chrono::duration<std::uint64_t>>(std::chrono::system_clock::now().time_since_epoch())).count()
|
||||
#else
|
||||
|
@ -187,7 +187,7 @@ inline std::string log_filename_generator_impl(const std::string & log_file_base
|
|||
// #include "log.h"
|
||||
//
|
||||
#ifndef LOG_NO_FILE_LINE_FUNCTION
|
||||
#ifndef _WIN32
|
||||
#ifndef _MSC_VER
|
||||
#define LOG_FLF_FMT "[%24s:%5d][%24s] "
|
||||
#define LOG_FLF_VAL , __FILE__, __LINE__, __FUNCTION__
|
||||
#else
|
||||
|
@ -200,7 +200,7 @@ inline std::string log_filename_generator_impl(const std::string & log_file_base
|
|||
#endif
|
||||
|
||||
#ifdef LOG_TEE_FILE_LINE_FUNCTION
|
||||
#ifndef _WIN32
|
||||
#ifndef _MSC_VER
|
||||
#define LOG_TEE_FLF_FMT "[%24s:%5d][%24s] "
|
||||
#define LOG_TEE_FLF_VAL , __FILE__, __LINE__, __FUNCTION__
|
||||
#else
|
||||
|
@ -224,7 +224,7 @@ enum LogTriState
|
|||
// INTERNAL, DO NOT USE
|
||||
// USE LOG() INSTEAD
|
||||
//
|
||||
#ifndef _WIN32
|
||||
#ifndef _MSC_VER
|
||||
#define LOG_IMPL(str, ...) \
|
||||
{ \
|
||||
if (LOG_TARGET != nullptr) \
|
||||
|
@ -247,7 +247,7 @@ enum LogTriState
|
|||
// INTERNAL, DO NOT USE
|
||||
// USE LOG_TEE() INSTEAD
|
||||
//
|
||||
#ifndef _WIN32
|
||||
#ifndef _MSC_VER
|
||||
#define LOG_TEE_IMPL(str, ...) \
|
||||
{ \
|
||||
if (LOG_TARGET != nullptr) \
|
||||
|
@ -284,7 +284,7 @@ enum LogTriState
|
|||
// Main LOG macro.
|
||||
// behaves like printf, and supports arguments the exact same way.
|
||||
//
|
||||
#ifndef _WIN32
|
||||
#ifndef _MSC_VER
|
||||
#define LOG(...) LOG_IMPL(__VA_ARGS__, "")
|
||||
#else
|
||||
#define LOG(str, ...) LOG_IMPL("%s" str, "", __VA_ARGS__, "")
|
||||
|
@ -298,14 +298,14 @@ enum LogTriState
|
|||
// Secondary target can be changed just like LOG_TARGET
|
||||
// by defining LOG_TEE_TARGET
|
||||
//
|
||||
#ifndef _WIN32
|
||||
#ifndef _MSC_VER
|
||||
#define LOG_TEE(...) LOG_TEE_IMPL(__VA_ARGS__, "")
|
||||
#else
|
||||
#define LOG_TEE(str, ...) LOG_TEE_IMPL("%s" str, "", __VA_ARGS__, "")
|
||||
#endif
|
||||
|
||||
// LOG macro variants with auto endline.
|
||||
#ifndef _WIN32
|
||||
#ifndef _MSC_VER
|
||||
#define LOGLN(...) LOG_IMPL(__VA_ARGS__, "\n")
|
||||
#define LOG_TEELN(...) LOG_TEE_IMPL(__VA_ARGS__, "\n")
|
||||
#else
|
||||
|
@ -341,14 +341,14 @@ inline FILE *log_handler1_impl(bool change = false, LogTriState disable = LogTri
|
|||
}
|
||||
}
|
||||
|
||||
if (_initialized)
|
||||
{
|
||||
if (_disabled)
|
||||
{
|
||||
// Log is disabled
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
if (_initialized)
|
||||
{
|
||||
// with fallback in case something went wrong
|
||||
return logfile ? logfile : stderr;
|
||||
}
|
||||
|
@ -461,7 +461,7 @@ inline void log_test()
|
|||
LOG("13 Hello World this time in yet new file?\n")
|
||||
log_set_target(log_filename_generator("llama_autonamed", "log"));
|
||||
LOG("14 Hello World in log with generated filename!\n")
|
||||
#ifdef _WIN32
|
||||
#ifdef _MSC_VER
|
||||
LOG_TEE("15 Hello msvc TEE without arguments\n")
|
||||
LOG_TEE("16 Hello msvc TEE with (%d)(%s) arguments\n", 1, "test")
|
||||
LOG_TEELN("17 Hello msvc TEELN without arguments\n")
|
||||
|
|
|
@ -11,11 +11,14 @@ import sys
|
|||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
import gguf
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer # type: ignore[import]
|
||||
|
||||
if 'NO_LOCAL_GGUF' not in os.environ:
|
||||
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
|
||||
import gguf
|
||||
|
||||
|
||||
def bytes_to_unicode():
|
||||
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
|
||||
|
|
|
@ -11,11 +11,14 @@ import sys
|
|||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
import gguf
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer # type: ignore[import]
|
||||
|
||||
if 'NO_LOCAL_GGUF' not in os.environ:
|
||||
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
|
||||
import gguf
|
||||
|
||||
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
|
||||
|
||||
|
||||
|
|
|
@ -1,261 +0,0 @@
|
|||
#!/usr/bin/env python3
|
||||
# 7b pth llama --> gguf conversion
|
||||
# Only models with a single datafile are supported, like 7B
|
||||
# HF files required in the model dir: config.json tokenizer_config.json tokenizer.json tokenizer.model
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
import struct
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import TYPE_CHECKING, Any
|
||||
|
||||
import gguf
|
||||
import numpy as np
|
||||
import torch
|
||||
from sentencepiece import SentencePieceProcessor # type: ignore[import]
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from typing import TypeAlias
|
||||
|
||||
NDArray: TypeAlias = 'np.ndarray[Any, Any]'
|
||||
|
||||
|
||||
def count_model_parts(dir_model: Path) -> int:
|
||||
num_parts = 0
|
||||
for filename in os.listdir(dir_model):
|
||||
if filename.startswith("consolidated."):
|
||||
num_parts += 1
|
||||
|
||||
if num_parts > 0:
|
||||
print("gguf: found " + str(num_parts) + " model parts")
|
||||
return num_parts
|
||||
|
||||
|
||||
def parse_args() -> argparse.Namespace:
|
||||
parser = argparse.ArgumentParser(description="Convert a PyTorch 7B LLaMA model to a GGML compatible file")
|
||||
parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
|
||||
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
|
||||
parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.bin)")
|
||||
parser.add_argument("ftype", type=int, choices=[0, 1], help="output format - use 0 for float32, 1 for float16", default = 1)
|
||||
return parser.parse_args()
|
||||
|
||||
args = parse_args()
|
||||
|
||||
dir_model = args.model
|
||||
ftype = args.ftype
|
||||
if not dir_model.is_dir():
|
||||
print(f'Error: {args.model} is not a directory', file = sys.stderr)
|
||||
sys.exit(1)
|
||||
|
||||
# possible tensor data types
|
||||
# ftype == 0 -> float32
|
||||
# ftype == 1 -> float16
|
||||
|
||||
# map from ftype to string
|
||||
ftype_str = ["f32", "f16"]
|
||||
|
||||
if args.outfile is not None:
|
||||
fname_out = args.outfile
|
||||
else:
|
||||
# output in the same directory as the model by default
|
||||
fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
|
||||
|
||||
print("gguf: loading model "+dir_model.name)
|
||||
|
||||
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
|
||||
hparams = json.load(f)
|
||||
|
||||
if hparams["architectures"][0] != "LlamaForCausalLM":
|
||||
print("Model architecture not supported: " + hparams["architectures"][0])
|
||||
sys.exit()
|
||||
|
||||
# get number of model parts
|
||||
num_parts = count_model_parts(dir_model)
|
||||
|
||||
if num_parts > 1:
|
||||
print("gguf: Only models with a single datafile are supported.")
|
||||
|
||||
sys.exit()
|
||||
|
||||
ARCH=gguf.MODEL_ARCH.LLAMA
|
||||
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
|
||||
|
||||
|
||||
print("gguf: get model metadata")
|
||||
|
||||
block_count = hparams["num_hidden_layers"]
|
||||
head_count = hparams["num_attention_heads"]
|
||||
|
||||
if "num_key_value_heads" in hparams:
|
||||
head_count_kv = hparams["num_key_value_heads"]
|
||||
else:
|
||||
head_count_kv = head_count
|
||||
|
||||
if "_name_or_path" in hparams:
|
||||
hf_repo = hparams["_name_or_path"]
|
||||
else:
|
||||
hf_repo = ""
|
||||
|
||||
if "max_sequence_length" in hparams:
|
||||
ctx_length = hparams["max_sequence_length"]
|
||||
elif "max_position_embeddings" in hparams:
|
||||
ctx_length = hparams["max_position_embeddings"]
|
||||
else:
|
||||
print("gguf: can not find ctx length parameter.")
|
||||
|
||||
sys.exit()
|
||||
|
||||
|
||||
gguf_writer.add_name(dir_model.name)
|
||||
gguf_writer.add_source_hf_repo(hf_repo)
|
||||
gguf_writer.add_tensor_data_layout("Meta AI original pth")
|
||||
gguf_writer.add_context_length(ctx_length)
|
||||
gguf_writer.add_embedding_length(hparams["hidden_size"])
|
||||
gguf_writer.add_block_count(block_count)
|
||||
gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
|
||||
gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
|
||||
gguf_writer.add_head_count(head_count)
|
||||
gguf_writer.add_head_count_kv(head_count_kv)
|
||||
gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
|
||||
|
||||
if "rope_scaling" in hparams and hparams["rope_scaling"] != None and "factor" in hparams["rope_scaling"]:
|
||||
if "type" in hparams["rope_scaling"]:
|
||||
if hparams["rope_scaling"]["type"] == "linear":
|
||||
gguf_writer.add_rope_scale_linear(hparams["rope_scaling"]["factor"])
|
||||
|
||||
|
||||
# TOKENIZATION
|
||||
|
||||
print("gguf: get tokenizer metadata")
|
||||
|
||||
tokens: list[bytes] = []
|
||||
scores: list[float] = []
|
||||
toktypes: list[int] = []
|
||||
|
||||
tokenizer_model_file = dir_model / 'tokenizer.model'
|
||||
if not tokenizer_model_file.is_file():
|
||||
print(f'Error: Missing {tokenizer_model_file}', file = sys.stderr)
|
||||
sys.exit(1)
|
||||
|
||||
# vocab type sentencepiece
|
||||
print("gguf: get sentencepiece tokenizer vocab and scores")
|
||||
|
||||
tokenizer = SentencePieceProcessor(str(tokenizer_model_file))
|
||||
|
||||
for i in range(tokenizer.vocab_size()):
|
||||
text: bytes
|
||||
score: float
|
||||
|
||||
piece = tokenizer.id_to_piece(i)
|
||||
text = piece.encode("utf-8")
|
||||
score = tokenizer.get_score(i)
|
||||
|
||||
toktype = 1 # defualt to normal token type
|
||||
if tokenizer.is_unknown(i):
|
||||
toktype = 2
|
||||
if tokenizer.is_control(i):
|
||||
toktype = 3
|
||||
|
||||
# toktype = 4 is user-defined = tokens from added_tokens.json
|
||||
|
||||
if tokenizer.is_unused(i):
|
||||
toktype = 5
|
||||
if tokenizer.is_byte(i):
|
||||
toktype = 6
|
||||
|
||||
tokens.append(text)
|
||||
scores.append(score)
|
||||
toktypes.append(toktype)
|
||||
|
||||
added_tokens_file = dir_model / 'added_tokens.json'
|
||||
if added_tokens_file.is_file():
|
||||
with open(added_tokens_file, "r", encoding="utf-8") as f:
|
||||
addtokens_json = json.load(f)
|
||||
|
||||
print("gguf: get added tokens")
|
||||
|
||||
for key in addtokens_json:
|
||||
tokens.append( key.encode("utf-8") )
|
||||
scores.append(-1000.0)
|
||||
toktypes.append(4) # user-defined token type
|
||||
|
||||
gguf_writer.add_tokenizer_model("llama")
|
||||
gguf_writer.add_token_list(tokens)
|
||||
gguf_writer.add_token_scores(scores)
|
||||
gguf_writer.add_token_types(toktypes)
|
||||
|
||||
special_vocab = gguf.SpecialVocab(dir_model)
|
||||
special_vocab.add_to_gguf(gguf_writer)
|
||||
|
||||
# TENSORS
|
||||
|
||||
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
|
||||
|
||||
# tensor info
|
||||
print("gguf: get tensor metadata")
|
||||
|
||||
part_names = (f"consolidated.{n:02}.pth" for n in range(0, num_parts))
|
||||
|
||||
for part_name in part_names:
|
||||
if args.vocab_only:
|
||||
break
|
||||
print("gguf: loading model part '" + part_name + "'")
|
||||
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
|
||||
|
||||
for name in model_part.keys():
|
||||
data = model_part[name]
|
||||
|
||||
# we don't need these
|
||||
if name == "rope.freqs":
|
||||
continue
|
||||
|
||||
old_dtype = data.dtype
|
||||
|
||||
# convert any unsupported data types to float32
|
||||
if data.dtype != torch.float16 and data.dtype != torch.float32:
|
||||
data = data.to(torch.float32)
|
||||
|
||||
data = data.squeeze().numpy()
|
||||
|
||||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print("Can not map tensor '" + name + "'")
|
||||
sys.exit()
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
||||
# if f32 desired, convert any float16 to float32
|
||||
if ftype == 0 and data_dtype == np.float16:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||||
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||||
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
|
||||
|
||||
gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
||||
print("gguf: write header")
|
||||
gguf_writer.write_header_to_file()
|
||||
print("gguf: write metadata")
|
||||
gguf_writer.write_kv_data_to_file()
|
||||
if not args.vocab_only:
|
||||
print("gguf: write tensors")
|
||||
gguf_writer.write_tensors_to_file()
|
||||
|
||||
gguf_writer.close()
|
||||
|
||||
print(f"gguf: model successfully exported to '{fname_out}'")
|
||||
print("")
|
|
@ -7,9 +7,13 @@ import struct
|
|||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
import gguf
|
||||
import numpy as np
|
||||
|
||||
import os
|
||||
if 'NO_LOCAL_GGUF' not in os.environ:
|
||||
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
|
||||
import gguf
|
||||
|
||||
# Note: Does not support GGML_QKK_64
|
||||
QK_K = 256
|
||||
# Items here are (block size, type size)
|
||||
|
|
|
@ -1,280 +0,0 @@
|
|||
#!/usr/bin/env python3
|
||||
# HF llama --> gguf conversion
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
import struct
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import TYPE_CHECKING, Any
|
||||
|
||||
import gguf
|
||||
import numpy as np
|
||||
import torch
|
||||
from sentencepiece import SentencePieceProcessor # type: ignore[import]
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from typing import TypeAlias
|
||||
|
||||
NDArray: TypeAlias = 'np.ndarray[Any, Any]'
|
||||
|
||||
# reverse HF permute back to original pth layout
|
||||
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py
|
||||
|
||||
|
||||
def reverse_hf_permute(weights: NDArray, n_head: int, n_kv_head: int | None = None) -> NDArray:
|
||||
if n_kv_head is not None and n_head != n_kv_head:
|
||||
n_head //= n_kv_head
|
||||
|
||||
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
|
||||
.swapaxes(1, 2)
|
||||
.reshape(weights.shape))
|
||||
|
||||
|
||||
def count_model_parts(dir_model: str) -> int:
|
||||
num_parts = 0
|
||||
|
||||
for filename in os.listdir(dir_model):
|
||||
if filename.startswith("pytorch_model-"):
|
||||
num_parts += 1
|
||||
|
||||
if num_parts > 0:
|
||||
print("gguf: found " + str(num_parts) + " model parts")
|
||||
|
||||
return num_parts
|
||||
|
||||
|
||||
def parse_args() -> argparse.Namespace:
|
||||
parser = argparse.ArgumentParser(description="Convert a HuggingFace LLaMA model to a GGML compatible file")
|
||||
parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
|
||||
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
|
||||
parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.bin)")
|
||||
parser.add_argument("ftype", type=int, choices=[0, 1], help="output format - use 0 for float32, 1 for float16", default = 1)
|
||||
return parser.parse_args()
|
||||
|
||||
args = parse_args()
|
||||
|
||||
dir_model = args.model
|
||||
ftype = args.ftype
|
||||
if not dir_model.is_dir():
|
||||
print(f'Error: {args.model} is not a directory', file = sys.stderr)
|
||||
sys.exit(1)
|
||||
|
||||
# possible tensor data types
|
||||
# ftype == 0 -> float32
|
||||
# ftype == 1 -> float16
|
||||
|
||||
# map from ftype to string
|
||||
ftype_str = ["f32", "f16"]
|
||||
|
||||
if args.outfile is not None:
|
||||
fname_out = args.outfile
|
||||
else:
|
||||
# output in the same directory as the model by default
|
||||
fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
|
||||
|
||||
print("gguf: loading model "+dir_model.name)
|
||||
|
||||
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
|
||||
hparams = json.load(f)
|
||||
|
||||
if hparams["architectures"][0] != "LlamaForCausalLM":
|
||||
print("Model architecture not supported: " + hparams["architectures"][0])
|
||||
|
||||
sys.exit()
|
||||
|
||||
# get number of model parts
|
||||
num_parts = count_model_parts(dir_model)
|
||||
|
||||
ARCH=gguf.MODEL_ARCH.LLAMA
|
||||
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
|
||||
|
||||
print("gguf: get model metadata")
|
||||
|
||||
block_count = hparams["num_hidden_layers"]
|
||||
head_count = hparams["num_attention_heads"]
|
||||
|
||||
if "num_key_value_heads" in hparams:
|
||||
head_count_kv = hparams["num_key_value_heads"]
|
||||
else:
|
||||
head_count_kv = head_count
|
||||
|
||||
if "_name_or_path" in hparams:
|
||||
hf_repo = hparams["_name_or_path"]
|
||||
else:
|
||||
hf_repo = ""
|
||||
|
||||
if "max_sequence_length" in hparams:
|
||||
ctx_length = hparams["max_sequence_length"]
|
||||
elif "max_position_embeddings" in hparams:
|
||||
ctx_length = hparams["max_position_embeddings"]
|
||||
else:
|
||||
print("gguf: can not find ctx length parameter.")
|
||||
|
||||
sys.exit()
|
||||
|
||||
|
||||
gguf_writer.add_name(dir_model.name)
|
||||
gguf_writer.add_source_hf_repo(hf_repo)
|
||||
gguf_writer.add_tensor_data_layout("Meta AI original pth")
|
||||
gguf_writer.add_context_length(ctx_length)
|
||||
gguf_writer.add_embedding_length(hparams["hidden_size"])
|
||||
gguf_writer.add_block_count(block_count)
|
||||
gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
|
||||
gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
|
||||
gguf_writer.add_head_count(head_count)
|
||||
gguf_writer.add_head_count_kv(head_count_kv)
|
||||
gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
|
||||
|
||||
if "rope_scaling" in hparams and hparams["rope_scaling"] != None and "factor" in hparams["rope_scaling"]:
|
||||
if "type" in hparams["rope_scaling"]:
|
||||
if hparams["rope_scaling"]["type"] == "linear":
|
||||
gguf_writer.add_rope_scale_linear(hparams["rope_scaling"]["factor"])
|
||||
|
||||
|
||||
# TOKENIZATION
|
||||
|
||||
print("gguf: get tokenizer metadata")
|
||||
|
||||
tokens: list[bytes] = []
|
||||
scores: list[float] = []
|
||||
toktypes: list[int] = []
|
||||
|
||||
tokenizer_model_file = dir_model / 'tokenizer.model'
|
||||
if not tokenizer_model_file.is_file():
|
||||
print(f'Error: Missing {tokenizer_model_file}', file = sys.stderr)
|
||||
sys.exit(1)
|
||||
|
||||
# vocab type sentencepiece
|
||||
print("gguf: get sentencepiece tokenizer vocab, scores and token types")
|
||||
|
||||
tokenizer = SentencePieceProcessor(str(tokenizer_model_file))
|
||||
|
||||
for i in range(tokenizer.vocab_size()):
|
||||
text: bytes
|
||||
score: float
|
||||
|
||||
piece = tokenizer.id_to_piece(i)
|
||||
text = piece.encode("utf-8")
|
||||
score = tokenizer.get_score(i)
|
||||
|
||||
toktype = 1 # defualt to normal token type
|
||||
if tokenizer.is_unknown(i):
|
||||
toktype = 2
|
||||
if tokenizer.is_control(i):
|
||||
toktype = 3
|
||||
|
||||
# toktype = 4 is user-defined = tokens from added_tokens.json
|
||||
|
||||
if tokenizer.is_unused(i):
|
||||
toktype = 5
|
||||
if tokenizer.is_byte(i):
|
||||
toktype = 6
|
||||
|
||||
tokens.append(text)
|
||||
scores.append(score)
|
||||
toktypes.append(toktype)
|
||||
|
||||
added_tokens_file = dir_model / 'added_tokens.json'
|
||||
if added_tokens_file.is_file():
|
||||
with open(added_tokens_file, "r", encoding="utf-8") as f:
|
||||
addtokens_json = json.load(f)
|
||||
|
||||
print("gguf: get added tokens")
|
||||
|
||||
for key in addtokens_json:
|
||||
tokens.append( key.encode("utf-8") )
|
||||
scores.append(-1000.0)
|
||||
toktypes.append(4) # user-defined token type
|
||||
|
||||
|
||||
gguf_writer.add_tokenizer_model("llama")
|
||||
gguf_writer.add_token_list(tokens)
|
||||
gguf_writer.add_token_scores(scores)
|
||||
gguf_writer.add_token_types(toktypes)
|
||||
|
||||
special_vocab = gguf.SpecialVocab(dir_model)
|
||||
special_vocab.add_to_gguf(gguf_writer)
|
||||
|
||||
# TENSORS
|
||||
|
||||
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
|
||||
|
||||
# tensor info
|
||||
print("gguf: get tensor metadata")
|
||||
|
||||
if num_parts == 0:
|
||||
part_names = iter(("pytorch_model.bin",))
|
||||
else:
|
||||
part_names = (
|
||||
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
|
||||
)
|
||||
|
||||
for part_name in part_names:
|
||||
if args.vocab_only:
|
||||
break
|
||||
print("gguf: loading model part '" + part_name + "'")
|
||||
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
|
||||
|
||||
for name in model_part.keys():
|
||||
data = model_part[name]
|
||||
|
||||
# we don't need these
|
||||
if name.endswith(".rotary_emb.inv_freq"):
|
||||
continue
|
||||
|
||||
old_dtype = data.dtype
|
||||
|
||||
# convert any unsupported data types to float32
|
||||
if data.dtype != torch.float16 and data.dtype != torch.float32:
|
||||
data = data.to(torch.float32)
|
||||
|
||||
data = data.squeeze().numpy()
|
||||
|
||||
# reverse permute these
|
||||
if name.endswith(".q_proj.weight"):
|
||||
data = reverse_hf_permute(data, head_count)
|
||||
if name.endswith(".k_proj.weight"):
|
||||
data = reverse_hf_permute(data, head_count, head_count_kv)
|
||||
|
||||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print("Can not map tensor '" + name + "'")
|
||||
sys.exit()
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
||||
# if f32 desired, convert any float16 to float32
|
||||
if ftype == 0 and data_dtype == np.float16:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||||
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||||
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
|
||||
|
||||
gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
||||
print("gguf: write header")
|
||||
gguf_writer.write_header_to_file()
|
||||
print("gguf: write metadata")
|
||||
gguf_writer.write_kv_data_to_file()
|
||||
if not args.vocab_only:
|
||||
print("gguf: write tensors")
|
||||
gguf_writer.write_tensors_to_file()
|
||||
|
||||
gguf_writer.close()
|
||||
|
||||
print(f"gguf: model successfully exported to '{fname_out}'")
|
||||
print("")
|
38
convert.py
38
convert.py
|
@ -25,10 +25,14 @@ from dataclasses import dataclass
|
|||
from pathlib import Path
|
||||
from typing import IO, TYPE_CHECKING, Any, Callable, Generator, Iterable, Literal, Sequence, TypeVar
|
||||
|
||||
import gguf
|
||||
import numpy as np
|
||||
from sentencepiece import SentencePieceProcessor # type: ignore[import]
|
||||
|
||||
import os
|
||||
if 'NO_LOCAL_GGUF' not in os.environ:
|
||||
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
|
||||
import gguf
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from typing import TypeAlias
|
||||
|
||||
|
@ -319,15 +323,27 @@ class BpeVocab:
|
|||
self.bpe_tokenizer = json.loads(open(str(fname_tokenizer), encoding="utf-8").read())
|
||||
added_tokens: dict[str, int]
|
||||
if fname_added_tokens is not None:
|
||||
# FIXME: Verify that added tokens here _cannot_ overlap with the main vocab.
|
||||
added_tokens = json.load(open(fname_added_tokens, encoding="utf-8"))
|
||||
else:
|
||||
# Fall back to trying to find the added tokens in tokenizer.json
|
||||
tokenizer_json_file = fname_tokenizer.parent / 'tokenizer.json'
|
||||
if not tokenizer_json_file.is_file():
|
||||
added_tokens = {}
|
||||
else:
|
||||
tokenizer_json = json.load(open(tokenizer_json_file, encoding="utf-8"))
|
||||
added_tokens = dict(
|
||||
(item['content'], item['id'])
|
||||
for item in tokenizer_json.get('added_tokens', [])
|
||||
# Added tokens here can be duplicates of the main vocabulary.
|
||||
if item['content'] not in self.bpe_tokenizer )
|
||||
|
||||
vocab_size: int = len(self.bpe_tokenizer)
|
||||
expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
|
||||
actual_ids = sorted(added_tokens.values())
|
||||
if expected_ids != actual_ids:
|
||||
raise Exception(f"Expected added token IDs to be sequential and start at {len(added_tokens)}; got {actual_ids}")
|
||||
expected_end_id = vocab_size + len(actual_ids) - 1
|
||||
raise Exception(f"Expected the {len(actual_ids)} added token ID(s) to be sequential in the range {vocab_size} - {expected_end_id}; got {actual_ids}")
|
||||
|
||||
items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1])
|
||||
self.added_tokens_list = [text for (text, idx) in items]
|
||||
|
@ -341,10 +357,22 @@ class BpeVocab:
|
|||
from transformers.models.gpt2 import tokenization_gpt2 # type: ignore[import]
|
||||
byte_encoder = tokenization_gpt2.bytes_to_unicode()
|
||||
byte_decoder = {v: k for k, v in byte_encoder.items()}
|
||||
score = 0.0
|
||||
for i, item in enumerate(tokenizer):
|
||||
text: bytes = item.encode("utf-8")
|
||||
score: float = -i
|
||||
yield text, score, gguf.TokenType.USER_DEFINED
|
||||
# FIXME: These shouldn't be hardcoded, but it's probably better than the current behavior?
|
||||
if i <= 258 and text.startswith(b'<') and text.endswith(b'>'):
|
||||
if i == 0 and text == b'<unk>':
|
||||
toktype = gguf.TokenType.UNKNOWN
|
||||
elif i == 1 or i == 2:
|
||||
toktype = gguf.TokenType.CONTROL
|
||||
elif i >= 3 and text.startswith(b'<0x'):
|
||||
toktype = gguf.TokenType.BYTE
|
||||
else:
|
||||
toktype = gguf.TokenType.NORMAL
|
||||
else:
|
||||
toktype = gguf.TokenType.NORMAL
|
||||
yield text, score, toktype
|
||||
|
||||
def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
||||
for text in self.added_tokens_list:
|
||||
|
@ -526,7 +554,7 @@ class LazyTensor:
|
|||
raise ValueError(f'Cannot validate conversion from {self.data_type} to {data_type}.')
|
||||
|
||||
|
||||
LazyModel = dict[str, LazyTensor]
|
||||
LazyModel: TypeAlias = 'dict[str, LazyTensor]'
|
||||
|
||||
|
||||
@dataclass
|
||||
|
|
|
@ -24,6 +24,7 @@ else()
|
|||
add_subdirectory(finetune)
|
||||
add_subdirectory(convert-llama2c-to-ggml)
|
||||
add_subdirectory(simple)
|
||||
add_subdirectory(speculative)
|
||||
add_subdirectory(embd-input)
|
||||
add_subdirectory(llama-bench)
|
||||
add_subdirectory(beam-search)
|
||||
|
|
|
@ -1617,15 +1617,10 @@ int main(int argc, char ** argv) {
|
|||
|
||||
float error_before_opt = ggml_get_f32_1d(e, 0);
|
||||
|
||||
struct ggml_opt_params opt_params_adam = ggml_opt_default_params(GGML_OPT_ADAM);
|
||||
struct ggml_opt_params opt_params_lbfgs = ggml_opt_default_params(GGML_OPT_LBFGS);
|
||||
opt_params_adam.print_forward_graph = false;
|
||||
opt_params_adam.print_backward_graph = false;
|
||||
opt_params_lbfgs.print_forward_graph = false;
|
||||
opt_params_lbfgs.print_backward_graph = false;
|
||||
opt_params_adam.adam.n_iter = 16;
|
||||
opt_params_lbfgs.lbfgs.n_iter = 16;
|
||||
// ggml_opt(ctx0, opt_params_adam, e);
|
||||
ggml_opt(ctx0, opt_params_lbfgs, e);
|
||||
//
|
||||
ggml_build_forward_expand(&gf, e);
|
||||
|
|
|
@ -22,7 +22,9 @@
|
|||
#include <unistd.h>
|
||||
#elif defined (_WIN32)
|
||||
#define WIN32_LEAN_AND_MEAN
|
||||
#ifndef NOMINMAX
|
||||
# define NOMINMAX
|
||||
#endif
|
||||
#include <windows.h>
|
||||
#include <signal.h>
|
||||
#endif
|
||||
|
@ -73,7 +75,7 @@ void beam_search_callback(void * callback_data_ptr, llama_beams_state beams_stat
|
|||
assert(0u < beams_state.n_beams);
|
||||
const llama_token * tokens = beams_state.beam_views[0].tokens;
|
||||
std::copy(tokens, tokens + n, callback_data.response.end() - n);
|
||||
printf("%lu", n);
|
||||
printf("%zu", n);
|
||||
}
|
||||
fflush(stdout);
|
||||
#if 1 // DEBUG: print current beams for this iteration
|
||||
|
@ -145,7 +147,7 @@ int main(int argc, char ** argv)
|
|||
|
||||
if (tokens_list.size() > max_tokens_list_size)
|
||||
{
|
||||
fprintf( stderr , "%s: error: prompt too long (%lu tokens, max %lu)\n" ,
|
||||
fprintf( stderr , "%s: error: prompt too long (%zu tokens, max %zu)\n" ,
|
||||
__func__ , tokens_list.size() , max_tokens_list_size );
|
||||
return 1;
|
||||
}
|
||||
|
|
|
@ -75,7 +75,7 @@ typedef struct {
|
|||
int seq_len; // max sequence length
|
||||
} Config;
|
||||
|
||||
typedef struct {
|
||||
struct TransformerWeights {
|
||||
// token embedding table
|
||||
float* token_embedding_table; // (vocab_size, dim)
|
||||
// weights for rmsnorms
|
||||
|
@ -97,7 +97,22 @@ typedef struct {
|
|||
// float* freq_cis_imag; // (seq_len, dim/2)
|
||||
// (optional) classifier weights for the logits, on the last layer
|
||||
float* wcls;
|
||||
} TransformerWeights;
|
||||
|
||||
~TransformerWeights() {
|
||||
delete[] token_embedding_table;
|
||||
delete[] rms_att_weight;
|
||||
delete[] rms_ffn_weight;
|
||||
delete[] wq;
|
||||
delete[] wk;
|
||||
delete[] wv;
|
||||
delete[] wo;
|
||||
delete[] w1;
|
||||
delete[] w2;
|
||||
delete[] w3;
|
||||
delete[] rms_final_weight;
|
||||
delete[] wcls;
|
||||
}
|
||||
};
|
||||
|
||||
void malloc_weights(TransformerWeights* w, Config* p, bool shared_weights) {
|
||||
// we calloc instead of malloc to keep valgrind happy
|
||||
|
@ -173,21 +188,6 @@ int checkpoint_init_weights(TransformerWeights *w, Config* p, FILE* f, bool shar
|
|||
return 0;
|
||||
}
|
||||
|
||||
void free_weights(TransformerWeights* w) {
|
||||
delete w->token_embedding_table;
|
||||
delete w->rms_att_weight;
|
||||
delete w->rms_ffn_weight;
|
||||
delete w->wq;
|
||||
delete w->wk;
|
||||
delete w->wv;
|
||||
delete w->wo;
|
||||
delete w->w1;
|
||||
delete w->w2;
|
||||
delete w->w3;
|
||||
delete w->rms_final_weight;
|
||||
if (w->wcls) delete w->wcls;
|
||||
}
|
||||
|
||||
void print_sample_weights(TransformerWeights *w){
|
||||
printf("----- Quick print of first of the weight vales of all the variables\n");
|
||||
printf("%f\n", w->token_embedding_table[0]);
|
||||
|
@ -596,6 +596,10 @@ void load_vocab(const char *filename, Config *config, struct llama_vocab *vocab)
|
|||
// assume llama2.c vocabulary
|
||||
printf("Assuming llama2.c vocabulary since %s is not a gguf file\n", filename);
|
||||
llama_file file(filename, "rb");
|
||||
if (!file.fp) {
|
||||
fprintf(stderr, "error: %s: %s\n", strerror(errno), filename);
|
||||
exit(1);
|
||||
}
|
||||
const int n_vocab = config->vocab_size;
|
||||
/* uint32_t max_token_length = */ file.read_u32(); // unused
|
||||
vocab->id_to_token.resize(n_vocab);
|
||||
|
@ -633,7 +637,7 @@ void load_vocab(const char *filename, Config *config, struct llama_vocab *vocab)
|
|||
}
|
||||
}
|
||||
|
||||
void stuff_karpathy_weights_into_gg(struct ggml_tensor * gg_weights, float * karpathy_weights){
|
||||
void convert_weights_ak_to_gg(struct ggml_tensor * gg_weights, const float * karpathy_weights) {
|
||||
int ct;
|
||||
switch (gg_weights->n_dims){
|
||||
case 1:
|
||||
|
@ -670,13 +674,13 @@ void stuff_karpathy_weights_into_gg(struct ggml_tensor * gg_weights, float * kar
|
|||
}
|
||||
|
||||
void save_as_llama_model(struct llama_vocab * vocab, struct my_llama_model * model, TransformerWeights* w, const char * filename) {
|
||||
// stuff AK weights into GG weights one by one.
|
||||
// convert AK weights into GG weights one by one.
|
||||
// w->token_embedding_table -> model->tok_embeddings
|
||||
// float* -> struct ggml_tensor
|
||||
stuff_karpathy_weights_into_gg(model->tok_embeddings, w->token_embedding_table);
|
||||
stuff_karpathy_weights_into_gg(model->output, w->wcls ? w->wcls : w->token_embedding_table);
|
||||
convert_weights_ak_to_gg(model->tok_embeddings, w->token_embedding_table);
|
||||
convert_weights_ak_to_gg(model->output, w->wcls ? w->wcls : w->token_embedding_table);
|
||||
|
||||
stuff_karpathy_weights_into_gg(model->norm, w->rms_final_weight);
|
||||
convert_weights_ak_to_gg(model->norm, w->rms_final_weight);
|
||||
//print_row(model->norm, 0);
|
||||
|
||||
// for rms-att-weight
|
||||
|
@ -686,18 +690,18 @@ void save_as_llama_model(struct llama_vocab * vocab, struct my_llama_model * mod
|
|||
for (uint32_t i = 0; i < model->hparams.n_layer; ++i){
|
||||
auto & layer = model->layers[i];
|
||||
// 1d
|
||||
stuff_karpathy_weights_into_gg(layer.attention_norm, &w->rms_att_weight[i*row_length]);
|
||||
stuff_karpathy_weights_into_gg(layer.ffn_norm , &w->rms_ffn_weight[i*row_length]);
|
||||
convert_weights_ak_to_gg(layer.attention_norm, &w->rms_att_weight[i*row_length]);
|
||||
convert_weights_ak_to_gg(layer.ffn_norm , &w->rms_ffn_weight[i*row_length]);
|
||||
|
||||
// from 3d matrix layer x dim x dim to 2d matrix dim x dim
|
||||
stuff_karpathy_weights_into_gg(layer.wq , &w->wq[i*row_length*row_length]);
|
||||
stuff_karpathy_weights_into_gg(layer.wk , &w->wk[i*row_length*row_length]);
|
||||
stuff_karpathy_weights_into_gg(layer.wv , &w->wv[i*row_length*row_length]);
|
||||
stuff_karpathy_weights_into_gg(layer.wo , &w->wo[i*row_length*row_length]);
|
||||
convert_weights_ak_to_gg(layer.wq , &w->wq[i*row_length*row_length]);
|
||||
convert_weights_ak_to_gg(layer.wk , &w->wk[i*row_length*row_length]);
|
||||
convert_weights_ak_to_gg(layer.wv , &w->wv[i*row_length*row_length]);
|
||||
convert_weights_ak_to_gg(layer.wo , &w->wo[i*row_length*row_length]);
|
||||
|
||||
stuff_karpathy_weights_into_gg(layer.w1 , &w->w1[i*row_length*n_ff]);
|
||||
stuff_karpathy_weights_into_gg(layer.w2 , &w->w2[i*n_ff*row_length]);
|
||||
stuff_karpathy_weights_into_gg(layer.w3 , &w->w3[i*row_length*n_ff]);
|
||||
convert_weights_ak_to_gg(layer.w1 , &w->w1[i*row_length*n_ff]);
|
||||
convert_weights_ak_to_gg(layer.w2 , &w->w2[i*n_ff*row_length]);
|
||||
convert_weights_ak_to_gg(layer.w3 , &w->w3[i*row_length*n_ff]);
|
||||
}
|
||||
|
||||
struct gguf_context * ctx = gguf_init_empty();
|
||||
|
@ -898,7 +902,7 @@ bool params_parse(int argc, char ** argv, struct train_params * params) {
|
|||
}
|
||||
|
||||
std::string basename(const std::string &path) {
|
||||
size_t pos = path.find_last_of("/");
|
||||
size_t pos = path.find_last_of("/\\");
|
||||
if (pos == std::string::npos) {
|
||||
return path;
|
||||
}
|
||||
|
@ -911,7 +915,7 @@ int main(int argc, char ** argv) {
|
|||
return 1;
|
||||
}
|
||||
Config config;
|
||||
TransformerWeights weights;
|
||||
TransformerWeights weights = {};
|
||||
{
|
||||
FILE *file = fopen(params.fn_llama2c_model, "rb");
|
||||
if (!file) { printf("Unable to open the checkpoint file %s!\n", params.fn_llama2c_model); return 1; }
|
||||
|
@ -953,6 +957,5 @@ int main(int argc, char ** argv) {
|
|||
printf("Saving llama.c model file %s in ggml format at %s\n", params.fn_llama2c_model, params.fn_llama2c_output_model);
|
||||
|
||||
ggml_free(model.ctx);
|
||||
free_weights(&weights);
|
||||
return 0;
|
||||
}
|
||||
|
|
|
@ -660,9 +660,10 @@ bool gpt_neox_model_load(const std::string & fname, gpt_neox_model & model, gpt2
|
|||
ggml_tensor * gpt_neox_ff(
|
||||
const gpt_neox_block &block,
|
||||
ggml_context * ctx0,
|
||||
ggml_tensor * inp) {
|
||||
ggml_tensor * inp,
|
||||
const gpt_neox_hparams &hparams) {
|
||||
|
||||
ggml_tensor * cur = ggml_norm(ctx0, inp);
|
||||
ggml_tensor * cur = ggml_norm(ctx0, inp, hparams.norm_eps);
|
||||
|
||||
cur = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, block.ln_2_g, cur), cur), ggml_repeat(ctx0, block.ln_2_b, cur));
|
||||
cur = ggml_mul_mat(ctx0, block.c_mlp_fc_w, cur);
|
||||
|
@ -753,7 +754,7 @@ bool gpt_neox_eval(
|
|||
// self-attention
|
||||
{
|
||||
{
|
||||
cur = ggml_norm(ctx0, inpL);
|
||||
cur = ggml_norm(ctx0, inpL, hparams.norm_eps);
|
||||
|
||||
cur = ggml_add(ctx0,
|
||||
ggml_mul(ctx0, ggml_repeat(ctx0, model.blocks[il].ln_1_g, cur), cur),
|
||||
|
@ -844,7 +845,7 @@ bool gpt_neox_eval(
|
|||
if (hparams.par_res == 0) {
|
||||
struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpL);
|
||||
|
||||
cur = gpt_neox_ff(model.blocks[il], ctx0, inpFF);
|
||||
cur = gpt_neox_ff(model.blocks[il], ctx0, inpFF, hparams);
|
||||
|
||||
// input for next layer
|
||||
inpL = ggml_add(ctx0, cur, inpFF);
|
||||
|
@ -853,7 +854,7 @@ bool gpt_neox_eval(
|
|||
|
||||
// this is independent of the self-attention result, so it could be done in parallel to the self-attention
|
||||
// note here we pass inpL instead of cur
|
||||
cur = gpt_neox_ff(model.blocks[il], ctx0, inpL);
|
||||
cur = gpt_neox_ff(model.blocks[il], ctx0, inpL, hparams);
|
||||
|
||||
// layer input + FF
|
||||
cur = ggml_add(ctx0, cur, inpFF);
|
||||
|
@ -867,7 +868,7 @@ bool gpt_neox_eval(
|
|||
|
||||
// norm
|
||||
{
|
||||
inpL = ggml_norm(ctx0, inpL);
|
||||
inpL = ggml_norm(ctx0, inpL, hparams.norm_eps);
|
||||
|
||||
// inpL = ln_f_g*inpL + ln_f_b
|
||||
inpL = ggml_add(ctx0,
|
||||
|
|
|
@ -34,7 +34,7 @@ For an interactive experience, try this command:
|
|||
#### Unix-based systems (Linux, macOS, etc.):
|
||||
|
||||
```bash
|
||||
./main -m models/7B/ggml-model.bin -n -1 --color -r "User:" --in-prefix " " \
|
||||
./main -m models/7B/ggml-model.bin -n -1 --color -r "User:" --in-prefix " " -i -p \
|
||||
'User: Hi
|
||||
AI: Hello. I am an AI chatbot. Would you like to talk?
|
||||
User: Sure!
|
||||
|
@ -45,7 +45,7 @@ User:'
|
|||
#### Windows:
|
||||
|
||||
```powershell
|
||||
main.exe -m models\7B\ggml-model.bin -n -1 --color -r "User:" --in-prefix " " -e --prompt "User: Hi\nAI: Hello. I am an AI chatbot. Would you like to talk?\nUser: Sure!\nAI: What would you like to talk about?\nUser:"
|
||||
main.exe -m models\7B\ggml-model.bin -n -1 --color -r "User:" --in-prefix " " -i -e -p "User: Hi\nAI: Hello. I am an AI chatbot. Would you like to talk?\nUser: Sure!\nAI: What would you like to talk about?\nUser:"
|
||||
```
|
||||
|
||||
The following command generates "infinite" text from a starting prompt (you can use `Ctrl-C` to stop it):
|
||||
|
|
|
@ -425,8 +425,9 @@ int main(int argc, char ** argv) {
|
|||
LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
|
||||
LOG_TEE("\n\n");
|
||||
|
||||
struct llama_grammar * grammar = NULL;
|
||||
grammar_parser::parse_state parsed_grammar;
|
||||
llama_grammar * grammar = NULL;
|
||||
|
||||
if (!params.grammar.empty()) {
|
||||
parsed_grammar = grammar_parser::parse(params.grammar.c_str());
|
||||
// will be empty (default) if there are parse errors
|
||||
|
@ -450,8 +451,8 @@ int main(int argc, char ** argv) {
|
|||
}
|
||||
|
||||
// TODO: replace with ring-buffer
|
||||
std::vector<llama_token> last_n_tokens(n_ctx);
|
||||
std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
|
||||
std::vector<llama_token> last_tokens(n_ctx);
|
||||
std::fill(last_tokens.begin(), last_tokens.end(), 0);
|
||||
|
||||
if (params.interactive) {
|
||||
const char *control_message;
|
||||
|
@ -492,13 +493,10 @@ int main(int argc, char ** argv) {
|
|||
std::vector<llama_token> embd;
|
||||
std::vector<llama_token> embd_guidance;
|
||||
|
||||
{
|
||||
LOG("warming up the model with an empty run\n");
|
||||
const int n_vocab = llama_n_vocab(ctx);
|
||||
|
||||
const std::vector<llama_token> tmp = { llama_token_bos(ctx), };
|
||||
llama_eval(ctx, tmp.data(), tmp.size(), 0, params.n_threads);
|
||||
llama_reset_timings(ctx);
|
||||
}
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(n_vocab);
|
||||
|
||||
while ((n_remain != 0 && !is_antiprompt) || params.interactive) {
|
||||
// predict
|
||||
|
@ -537,8 +535,8 @@ int main(int argc, char ** argv) {
|
|||
|
||||
LOG("after swap: n_past = %d, n_past_guidance = %d\n", n_past, n_past_guidance);
|
||||
|
||||
// insert n_left/2 tokens at the start of embd from last_n_tokens
|
||||
embd.insert(embd.begin(), last_n_tokens.begin() + n_ctx - n_left/2 - embd.size(), last_n_tokens.end() - embd.size());
|
||||
// insert n_left/2 tokens at the start of embd from last_tokens
|
||||
embd.insert(embd.begin(), last_tokens.begin() + n_ctx - n_left/2 - embd.size(), last_tokens.end() - embd.size());
|
||||
|
||||
LOG("embd: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd));
|
||||
|
||||
|
@ -637,20 +635,6 @@ int main(int argc, char ** argv) {
|
|||
embd_guidance.clear();
|
||||
|
||||
if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
|
||||
const float temp = params.temp;
|
||||
const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k;
|
||||
const float top_p = params.top_p;
|
||||
const float tfs_z = params.tfs_z;
|
||||
const float typical_p = params.typical_p;
|
||||
const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
|
||||
const float repeat_penalty = params.repeat_penalty;
|
||||
const float alpha_presence = params.presence_penalty;
|
||||
const float alpha_frequency = params.frequency_penalty;
|
||||
const int mirostat = params.mirostat;
|
||||
const float mirostat_tau = params.mirostat_tau;
|
||||
const float mirostat_eta = params.mirostat_eta;
|
||||
const bool penalize_nl = params.penalize_nl;
|
||||
|
||||
// optionally save the session on first sample (for faster prompt loading next time)
|
||||
if (!path_session.empty() && need_to_save_session && !params.prompt_cache_ro) {
|
||||
need_to_save_session = false;
|
||||
|
@ -659,98 +643,12 @@ int main(int argc, char ** argv) {
|
|||
LOG("saved session to %s\n", path_session.c_str());
|
||||
}
|
||||
|
||||
llama_token id = 0;
|
||||
const llama_token id = llama_sample_token(ctx, ctx_guidance, grammar, params, last_tokens, candidates);
|
||||
|
||||
{
|
||||
auto logits = llama_get_logits(ctx);
|
||||
auto n_vocab = llama_n_vocab(ctx);
|
||||
last_tokens.erase(last_tokens.begin());
|
||||
last_tokens.push_back(id);
|
||||
|
||||
// Apply params.logit_bias map
|
||||
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
|
||||
logits[it->first] += it->second;
|
||||
}
|
||||
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(n_vocab);
|
||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
|
||||
}
|
||||
|
||||
llama_token_data_array cur_p = { candidates.data(), candidates.size(), false };
|
||||
|
||||
if (ctx_guidance) {
|
||||
llama_sample_classifier_free_guidance(ctx, &cur_p, ctx_guidance, params.cfg_scale);
|
||||
}
|
||||
|
||||
// Apply penalties
|
||||
float nl_logit = logits[llama_token_nl(ctx)];
|
||||
auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
|
||||
llama_sample_repetition_penalty(ctx, &cur_p,
|
||||
last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
|
||||
last_n_repeat, repeat_penalty);
|
||||
llama_sample_frequency_and_presence_penalties(ctx, &cur_p,
|
||||
last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
|
||||
last_n_repeat, alpha_frequency, alpha_presence);
|
||||
if (!penalize_nl) {
|
||||
for (size_t idx = 0; idx < cur_p.size; idx++) {
|
||||
if (cur_p.data[idx].id == llama_token_nl(ctx)) {
|
||||
cur_p.data[idx].logit = nl_logit;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (grammar != NULL) {
|
||||
llama_sample_grammar(ctx, &cur_p, grammar);
|
||||
}
|
||||
|
||||
if (temp <= 0) {
|
||||
// Greedy sampling
|
||||
id = llama_sample_token_greedy(ctx, &cur_p);
|
||||
} else {
|
||||
if (mirostat == 1) {
|
||||
static float mirostat_mu = 2.0f * mirostat_tau;
|
||||
const int mirostat_m = 100;
|
||||
llama_sample_temperature(ctx, &cur_p, temp);
|
||||
id = llama_sample_token_mirostat(ctx, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
|
||||
} else if (mirostat == 2) {
|
||||
static float mirostat_mu = 2.0f * mirostat_tau;
|
||||
llama_sample_temperature(ctx, &cur_p, temp);
|
||||
id = llama_sample_token_mirostat_v2(ctx, &cur_p, mirostat_tau, mirostat_eta, &mirostat_mu);
|
||||
} else {
|
||||
// Temperature sampling
|
||||
llama_sample_top_k (ctx, &cur_p, top_k, 1);
|
||||
llama_sample_tail_free (ctx, &cur_p, tfs_z, 1);
|
||||
llama_sample_typical (ctx, &cur_p, typical_p, 1);
|
||||
llama_sample_top_p (ctx, &cur_p, top_p, 1);
|
||||
llama_sample_temperature(ctx, &cur_p, temp);
|
||||
|
||||
{
|
||||
const int n_top = 10;
|
||||
LOG("top %d candidates:\n", n_top);
|
||||
|
||||
for (int i = 0; i < n_top; i++) {
|
||||
const llama_token id = cur_p.data[i].id;
|
||||
LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx, id).c_str(), cur_p.data[i].p);
|
||||
}
|
||||
}
|
||||
|
||||
id = llama_sample_token(ctx, &cur_p);
|
||||
|
||||
LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx, id).c_str());
|
||||
}
|
||||
}
|
||||
// printf("`%d`", candidates_p.size);
|
||||
|
||||
if (grammar != NULL) {
|
||||
llama_grammar_accept_token(ctx, grammar, id);
|
||||
}
|
||||
|
||||
last_n_tokens.erase(last_n_tokens.begin());
|
||||
last_n_tokens.push_back(id);
|
||||
|
||||
LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, last_n_tokens));
|
||||
}
|
||||
LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, last_tokens));
|
||||
|
||||
embd.push_back(id);
|
||||
|
||||
|
@ -766,8 +664,8 @@ int main(int argc, char ** argv) {
|
|||
LOG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed);
|
||||
while ((int) embd_inp.size() > n_consumed) {
|
||||
embd.push_back(embd_inp[n_consumed]);
|
||||
last_n_tokens.erase(last_n_tokens.begin());
|
||||
last_n_tokens.push_back(embd_inp[n_consumed]);
|
||||
last_tokens.erase(last_tokens.begin());
|
||||
last_tokens.push_back(embd_inp[n_consumed]);
|
||||
++n_consumed;
|
||||
if ((int) embd.size() >= params.n_batch) {
|
||||
break;
|
||||
|
@ -800,7 +698,7 @@ int main(int argc, char ** argv) {
|
|||
// check for reverse prompt
|
||||
if (params.antiprompt.size()) {
|
||||
std::string last_output;
|
||||
for (auto id : last_n_tokens) {
|
||||
for (auto id : last_tokens) {
|
||||
last_output += llama_token_to_piece(ctx, id);
|
||||
}
|
||||
|
||||
|
@ -831,7 +729,7 @@ int main(int argc, char ** argv) {
|
|||
}
|
||||
|
||||
// deal with end of text token in interactive mode
|
||||
if (last_n_tokens.back() == llama_token_eos(ctx)) {
|
||||
if (last_tokens.back() == llama_token_eos(ctx)) {
|
||||
LOG("found EOS token\n");
|
||||
|
||||
if (params.interactive) {
|
||||
|
|
|
@ -35,6 +35,8 @@ static const std::vector<struct quant_option> QUANT_OPTIONS = {
|
|||
{ "Q8_0", LLAMA_FTYPE_MOSTLY_Q8_0, " 6.70G, +0.0004 ppl @ LLaMA-v1-7B", },
|
||||
{ "F16", LLAMA_FTYPE_MOSTLY_F16, "13.00G @ 7B", },
|
||||
{ "F32", LLAMA_FTYPE_ALL_F32, "26.00G @ 7B", },
|
||||
// Note: Ensure COPY comes after F32 to avoid ftype 0 from matching.
|
||||
{ "COPY", LLAMA_FTYPE_ALL_F32, "only copy tensors, no quantizing", },
|
||||
};
|
||||
|
||||
|
||||
|
@ -71,12 +73,17 @@ bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftype, std:
|
|||
// ./quantize [--allow-requantize] [--leave-output-tensor] models/llama/ggml-model.gguf [models/llama/ggml-model-quant.gguf] type [nthreads]
|
||||
//
|
||||
void usage(const char * executable) {
|
||||
fprintf(stderr, "usage: %s [--help] [--allow-requantize] [--leave-output-tensor] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable);
|
||||
fprintf(stderr, " --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n");
|
||||
fprintf(stderr, " --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n");
|
||||
fprintf(stderr, "\nAllowed quantization types:\n");
|
||||
printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable);
|
||||
printf(" --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n");
|
||||
printf(" --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n");
|
||||
printf("\nAllowed quantization types:\n");
|
||||
for (auto & it : QUANT_OPTIONS) {
|
||||
printf(" %2d or %-6s : %s\n", it.ftype, it.name.c_str(), it.desc.c_str());
|
||||
if (it.name != "COPY") {
|
||||
printf(" %2d or ", it.ftype);
|
||||
} else {
|
||||
printf(" ");
|
||||
}
|
||||
printf("%-6s : %s\n", it.name.c_str(), it.desc.c_str());
|
||||
}
|
||||
exit(1);
|
||||
}
|
||||
|
@ -121,6 +128,9 @@ int main(int argc, char ** argv) {
|
|||
// export as [inp path]/ggml-model-[ftype].gguf
|
||||
fname_out = fpath + "ggml-model-" + ftype_str + ".gguf";
|
||||
arg_idx++;
|
||||
if (ftype_str == "COPY") {
|
||||
params.only_copy = true;
|
||||
}
|
||||
}
|
||||
else {
|
||||
fname_out = argv[arg_idx];
|
||||
|
@ -133,6 +143,10 @@ int main(int argc, char ** argv) {
|
|||
if (!try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) {
|
||||
fprintf(stderr, "%s: invalid ftype '%s'\n", __func__, argv[3]);
|
||||
return 1;
|
||||
} else {
|
||||
if (ftype_str == "COPY") {
|
||||
params.only_copy = true;
|
||||
}
|
||||
}
|
||||
arg_idx++;
|
||||
}
|
||||
|
|
|
@ -17,6 +17,8 @@
|
|||
#include "completion.js.hpp"
|
||||
#include "json-schema-to-grammar.mjs.hpp"
|
||||
|
||||
#include <cstddef>
|
||||
|
||||
#ifndef SERVER_VERBOSE
|
||||
#define SERVER_VERBOSE 1
|
||||
#endif
|
||||
|
@ -1054,7 +1056,7 @@ static json format_timings(llama_server_context &llama)
|
|||
{
|
||||
const auto timings = llama_get_timings(llama.ctx);
|
||||
|
||||
assert(timings.n_eval == llama.num_tokens_predicted);
|
||||
assert(timings.n_eval == ptrdiff_t(llama.num_tokens_predicted));
|
||||
|
||||
return json{
|
||||
{"prompt_n", timings.n_p_eval},
|
||||
|
@ -1255,7 +1257,7 @@ void beam_search_callback(void * callback_data, llama_beams_state beams_state) {
|
|||
const llama_token * tokens = beams_state.beam_views[0].tokens;
|
||||
const auto map = [](llama_token tok) { return completion_token_output{{},tok}; };
|
||||
std::transform(tokens, tokens + n, llama.generated_token_probs.end() - n, map);
|
||||
printf("%lu", n);
|
||||
printf("%zu", n);
|
||||
}
|
||||
fflush(stdout);
|
||||
#if 0 // DEBUG: print current beams for this iteration
|
||||
|
@ -1393,7 +1395,13 @@ int main(int argc, char **argv)
|
|||
}
|
||||
}
|
||||
|
||||
const json data = format_final_response(llama, llama.generated_text, llama.generated_token_probs);
|
||||
auto probs = llama.generated_token_probs;
|
||||
if (llama.params.n_probs > 0 && llama.stopped_word) {
|
||||
const std::vector<llama_token> stop_word_toks = llama_tokenize(llama.ctx, llama.stopping_word, false);
|
||||
probs = std::vector<completion_token_output>(llama.generated_token_probs.begin(), llama.generated_token_probs.end() - stop_word_toks.size());
|
||||
}
|
||||
|
||||
const json data = format_final_response(llama, llama.generated_text, probs);
|
||||
|
||||
llama_print_timings(llama.ctx);
|
||||
|
||||
|
@ -1470,7 +1478,11 @@ int main(int argc, char **argv)
|
|||
|
||||
if (!llama.has_next_token) {
|
||||
// Generation is done, send extra information.
|
||||
const json data = format_final_response(llama, "", llama.generated_token_probs);
|
||||
const json data = format_final_response(
|
||||
llama,
|
||||
"",
|
||||
std::vector<completion_token_output>(llama.generated_token_probs.begin(), llama.generated_token_probs.begin() + sent_token_probs_index)
|
||||
);
|
||||
|
||||
const std::string str =
|
||||
"data: " +
|
||||
|
@ -1564,7 +1576,7 @@ int main(int argc, char **argv)
|
|||
|
||||
svr.set_exception_handler([](const Request &, Response &res, std::exception_ptr ep)
|
||||
{
|
||||
const auto * fmt = "500 Internal Server Error\n%s";
|
||||
const char fmt[] = "500 Internal Server Error\n%s";
|
||||
char buf[BUFSIZ];
|
||||
try {
|
||||
std::rethrow_exception(std::move(ep));
|
||||
|
|
8
examples/speculative/CMakeLists.txt
Normal file
8
examples/speculative/CMakeLists.txt
Normal file
|
@ -0,0 +1,8 @@
|
|||
set(TARGET speculative)
|
||||
add_executable(${TARGET} speculative.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
if(TARGET BUILD_INFO)
|
||||
add_dependencies(${TARGET} BUILD_INFO)
|
||||
endif()
|
234
examples/speculative/speculative.cpp
Normal file
234
examples/speculative/speculative.cpp
Normal file
|
@ -0,0 +1,234 @@
|
|||
#ifndef _GNU_SOURCE
|
||||
#define _GNU_SOURCE
|
||||
#endif
|
||||
|
||||
#include "build-info.h"
|
||||
|
||||
#include "common.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
|
||||
if (gpt_params_parse(argc, argv, params) == false) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (params.model_draft.empty()) {
|
||||
fprintf(stderr, "%s: error: --model-draft is required\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
#ifndef LOG_DISABLE_LOGS
|
||||
log_set_target(log_filename_generator("speculative", "log"));
|
||||
LOG_TEE("Log start\n");
|
||||
log_dump_cmdline(argc, argv);
|
||||
#endif // LOG_DISABLE_LOGS
|
||||
|
||||
// init llama.cpp
|
||||
llama_backend_init(params.numa);
|
||||
|
||||
llama_model * model_tgt = NULL;
|
||||
llama_model * model_dft = NULL;
|
||||
|
||||
llama_context * ctx_tgt = NULL;
|
||||
llama_context * ctx_dft = NULL;
|
||||
|
||||
// load the target model
|
||||
params.perplexity = true; // HACK: enable logits_all = true
|
||||
std::tie(model_tgt, ctx_tgt) = llama_init_from_gpt_params(params);
|
||||
|
||||
// load the draft model
|
||||
params.model = params.model_draft;
|
||||
std::tie(model_dft, ctx_dft) = llama_init_from_gpt_params(params);
|
||||
|
||||
// tokenize the prompt
|
||||
std::vector<llama_token> inp;
|
||||
inp = ::llama_tokenize(ctx_tgt, params.prompt, true);
|
||||
|
||||
const int max_context_size = llama_n_ctx(ctx_tgt);
|
||||
const int max_tokens_list_size = max_context_size - 4;
|
||||
|
||||
if ((int) inp.size() > max_tokens_list_size) {
|
||||
fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size);
|
||||
return 1;
|
||||
}
|
||||
|
||||
fprintf(stderr, "\n\n");
|
||||
|
||||
for (auto id : inp) {
|
||||
fprintf(stderr, "%s", llama_token_to_piece(ctx_tgt, id).c_str());
|
||||
}
|
||||
|
||||
fflush(stderr);
|
||||
|
||||
const int n_input = inp.size();
|
||||
|
||||
const auto t_enc_start = ggml_time_us();
|
||||
|
||||
// eval the prompt with both models
|
||||
llama_eval(ctx_tgt, inp.data(), int(inp.size() - 1), 0, params.n_threads);
|
||||
llama_eval(ctx_tgt, &inp.back(), 1, inp.size() - 1, params.n_threads);
|
||||
llama_eval(ctx_dft, inp.data(), int(inp.size()), 0, params.n_threads);
|
||||
|
||||
const auto t_enc_end = ggml_time_us();
|
||||
|
||||
// the 2 models should have the same vocab
|
||||
const int n_ctx = llama_n_ctx(ctx_tgt);
|
||||
const int n_vocab = llama_n_vocab(ctx_tgt);
|
||||
//GGML_ASSERT(n_vocab == llama_n_vocab(ctx_dft));
|
||||
|
||||
// how many tokens to draft each time
|
||||
const int n_draft = params.n_draft;
|
||||
|
||||
int n_predict = 0;
|
||||
int n_drafted = 0;
|
||||
int n_accept = 0;
|
||||
|
||||
int n_past_tgt = inp.size();
|
||||
int n_past_dft = inp.size();
|
||||
|
||||
std::vector<llama_token> drafted;
|
||||
|
||||
std::vector<llama_token> last_tokens(n_ctx);
|
||||
std::fill(last_tokens.begin(), last_tokens.end(), 0);
|
||||
|
||||
for (auto & id : inp) {
|
||||
last_tokens.erase(last_tokens.begin());
|
||||
last_tokens.push_back(id);
|
||||
}
|
||||
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(n_vocab);
|
||||
|
||||
// used to determine end of generation
|
||||
bool has_eos = false;
|
||||
|
||||
const auto t_dec_start = ggml_time_us();
|
||||
|
||||
while (true) {
|
||||
LOG("drafted: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_dft, drafted));
|
||||
|
||||
// sample from the drafted tokens if any
|
||||
int i_dft = 0;
|
||||
while (true) {
|
||||
const llama_token id = llama_sample_token(ctx_tgt, NULL, NULL, params, last_tokens, candidates, i_dft);
|
||||
|
||||
last_tokens.erase(last_tokens.begin());
|
||||
last_tokens.push_back(id);
|
||||
|
||||
//LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_tgt, last_tokens));
|
||||
|
||||
const std::string token_str = llama_token_to_piece(ctx_tgt, id);
|
||||
printf("%s", token_str.c_str());
|
||||
fflush(stdout);
|
||||
|
||||
if (id == llama_token_eos(ctx_tgt)) {
|
||||
has_eos = true;
|
||||
}
|
||||
|
||||
++n_predict;
|
||||
|
||||
if (i_dft < (int) drafted.size() && id == drafted[i_dft]) {
|
||||
LOG("drafted token %d accepted\n", id);
|
||||
++n_accept;
|
||||
++n_past_tgt;
|
||||
++n_past_dft;
|
||||
++i_dft;
|
||||
|
||||
continue;
|
||||
}
|
||||
|
||||
// the drafted token was rejected or we are out of drafted tokens
|
||||
llama_eval(ctx_dft, &id, 1, n_past_dft, params.n_threads);
|
||||
++n_past_dft;
|
||||
|
||||
drafted.clear();
|
||||
drafted.push_back(id);
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
if (n_predict > params.n_predict || has_eos) {
|
||||
break;
|
||||
}
|
||||
|
||||
// sample n_draft tokens from the draft model picking the best token
|
||||
int n_past_cur = n_past_dft;
|
||||
for (int i = 0; i < n_draft; ++i) {
|
||||
float * logits = llama_get_logits(ctx_dft);
|
||||
|
||||
candidates.clear();
|
||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
|
||||
}
|
||||
|
||||
llama_token_data_array cur_p = { candidates.data(), candidates.size(), false };
|
||||
|
||||
// computes softmax and sorts the candidates
|
||||
llama_sample_softmax(ctx_dft, &cur_p);
|
||||
|
||||
for (int i = 0; i < 3; ++i) {
|
||||
LOG(" - draft candidate %d: %d (%.3f)\n", i, cur_p.data[i].id, cur_p.data[i].p);
|
||||
}
|
||||
|
||||
// too low probability, stop drafting
|
||||
if (cur_p.data[0].p < 2*cur_p.data[1].p) {
|
||||
break;
|
||||
}
|
||||
|
||||
drafted.push_back(cur_p.data[0].id);
|
||||
++n_drafted;
|
||||
|
||||
if (i < n_draft - 1) {
|
||||
// evaluate the drafted token on the draft model
|
||||
llama_eval(ctx_dft, &drafted.back(), 1, n_past_cur, params.n_threads);
|
||||
++n_past_cur;
|
||||
}
|
||||
}
|
||||
|
||||
// evaluate the target model on the drafted tokens
|
||||
llama_eval(ctx_tgt, drafted.data(), drafted.size(), n_past_tgt, params.n_threads);
|
||||
++n_past_tgt;
|
||||
|
||||
drafted.erase(drafted.begin());
|
||||
}
|
||||
|
||||
auto t_dec_end = ggml_time_us();
|
||||
|
||||
LOG_TEE("\n\n");
|
||||
|
||||
LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
|
||||
LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
|
||||
|
||||
// TODO: make sure these numbers are computed correctly
|
||||
LOG_TEE("\n");
|
||||
LOG_TEE("n_draft = %d\n", n_draft);
|
||||
LOG_TEE("n_predict = %d\n", n_predict);
|
||||
LOG_TEE("n_drafted = %d\n", n_drafted);
|
||||
LOG_TEE("n_accept = %d\n", n_accept);
|
||||
LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
|
||||
|
||||
LOG_TEE("\ndraft:\n");
|
||||
llama_print_timings(ctx_dft);
|
||||
|
||||
LOG_TEE("\ntarget:\n");
|
||||
llama_print_timings(ctx_tgt);
|
||||
|
||||
llama_free(ctx_tgt);
|
||||
llama_free_model(model_tgt);
|
||||
|
||||
llama_free(ctx_dft);
|
||||
llama_free_model(model_dft);
|
||||
|
||||
llama_backend_free();
|
||||
|
||||
fprintf(stderr, "\n\n");
|
||||
|
||||
return 0;
|
||||
}
|
|
@ -2,13 +2,16 @@
|
|||
# train-text-from-scratch checkpoint --> gguf conversion
|
||||
|
||||
import argparse
|
||||
import gguf
|
||||
import os
|
||||
import struct
|
||||
import sys
|
||||
import numpy as np
|
||||
from pathlib import Path
|
||||
|
||||
if 'NO_LOCAL_GGUF' not in os.environ:
|
||||
sys.path.insert(1, str(Path(__file__).parent / '..' / '..' / 'gguf-py' / 'gguf'))
|
||||
import gguf
|
||||
|
||||
# gguf constants
|
||||
LLM_KV_OPTIMIZER_TYPE = "optimizer.type"
|
||||
LLM_KV_OPTIMIZER_TYPE_ADAM = "adam"
|
||||
|
|
118
ggml-alloc.c
118
ggml-alloc.c
|
@ -1,3 +1,8 @@
|
|||
// defines MAP_ANONYMOUS
|
||||
#ifndef _GNU_SOURCE
|
||||
#define _GNU_SOURCE
|
||||
#endif
|
||||
|
||||
#include "ggml-alloc.h"
|
||||
#include "ggml.h"
|
||||
#include <assert.h>
|
||||
|
@ -6,6 +11,26 @@
|
|||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
#ifdef __has_include
|
||||
#if __has_include(<unistd.h>)
|
||||
#include <unistd.h>
|
||||
#if defined(_POSIX_MAPPED_FILES)
|
||||
#include <sys/types.h>
|
||||
#include <sys/mman.h>
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(_WIN32)
|
||||
#define WIN32_LEAN_AND_MEAN
|
||||
#ifndef NOMINMAX
|
||||
#define NOMINMAX
|
||||
#endif
|
||||
#include <windows.h>
|
||||
#include <memoryapi.h>
|
||||
#endif
|
||||
|
||||
|
||||
#define UNUSED(x) (void)(x)
|
||||
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
||||
#define GGML_MAX_CONCUR (2*GGML_MAX_NODES)
|
||||
|
@ -99,19 +124,24 @@ static void remove_allocated_tensor(struct ggml_allocr * alloc, struct ggml_tens
|
|||
}
|
||||
#endif
|
||||
|
||||
|
||||
static size_t ggml_allocator_get_alloc_size(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
|
||||
static size_t ggml_allocr_get_alloc_size(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
|
||||
return ggml_nbytes(tensor);
|
||||
|
||||
UNUSED(alloc);
|
||||
}
|
||||
|
||||
// check if a tensor is allocated by this buffer
|
||||
static bool ggml_allocr_is_own(struct ggml_allocr * alloc, const struct ggml_tensor * tensor) {
|
||||
void * ptr = tensor->data;
|
||||
return ptr >= alloc->data && (char *)ptr < (char *)alloc->data + alloc->max_size;
|
||||
}
|
||||
|
||||
void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
|
||||
#ifdef GGML_ALLOCATOR_DEBUG
|
||||
GGML_ASSERT(ggml_is_view(tensor) == false); // views generally get data pointer from one of their sources
|
||||
GGML_ASSERT(tensor->data == NULL); // avoid allocating tensor which already has memory allocated
|
||||
#endif
|
||||
size_t size = ggml_allocator_get_alloc_size(alloc, tensor);
|
||||
size_t size = ggml_allocr_get_alloc_size(alloc, tensor);
|
||||
size = aligned_offset(NULL, size, alloc->alignment);
|
||||
|
||||
AT_PRINTF("%s: allocating %s (%zu bytes) - ", __func__, tensor->name, size);
|
||||
|
@ -178,17 +208,17 @@ void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor)
|
|||
}
|
||||
|
||||
// this is a very naive implementation, but for our case the number of free blocks should be very small
|
||||
static void ggml_allocator_free_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
|
||||
static void ggml_allocr_free_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
|
||||
void * ptr = tensor->data;
|
||||
|
||||
if (ptr < alloc->data || (char*)ptr >= (char*)alloc->data + alloc->max_size) {
|
||||
if (ggml_allocr_is_own(alloc, tensor) == false) {
|
||||
// the tensor was not allocated in this buffer
|
||||
// this can happen because the graph allocator will try to free weights and other tensors from different buffers
|
||||
// the easiest way to deal with this is just to ignore it
|
||||
return;
|
||||
}
|
||||
|
||||
size_t size = ggml_allocator_get_alloc_size(alloc, tensor);
|
||||
size_t size = ggml_allocr_get_alloc_size(alloc, tensor);
|
||||
size = aligned_offset(NULL, size, alloc->alignment);
|
||||
AT_PRINTF("%s: freeing %s at %p (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, ptr, size, alloc->n_free_blocks);
|
||||
AT_PRINTF("%s: alloc->data = %p alloc->data+alloc->size = %p alloc->data+alloc->max_size = %p\n", __func__, alloc->data, (char*)alloc->data + alloc->size, (char*)alloc->data + alloc->max_size);
|
||||
|
@ -283,17 +313,64 @@ struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment)
|
|||
return alloc;
|
||||
}
|
||||
|
||||
// address and size of the buffer when measuring
|
||||
// it needs to be large enough to fit all the tensors, but it cannot overlap with other existing buffers
|
||||
static void * const MEASURE_BASE_ADDR = (void *) (-(1ULL<<40) - 1);
|
||||
static const size_t MEASURE_MAX_SIZE = 1ULL<<40; // 1 TB
|
||||
// OS specific functions to allocate and free uncommitted virtual memory
|
||||
static void * alloc_vmem(size_t size) {
|
||||
#if defined(_WIN32)
|
||||
return VirtualAlloc(NULL, size, MEM_RESERVE, PAGE_NOACCESS);
|
||||
#elif defined(_POSIX_MAPPED_FILES)
|
||||
return mmap(NULL, size, PROT_NONE, MAP_PRIVATE | MAP_ANON, -1, 0);
|
||||
#else
|
||||
// use a fixed address for other platforms
|
||||
uintptr_t base_addr = (uintptr_t)-size - 0x100;
|
||||
return (void *)base_addr;
|
||||
#endif
|
||||
}
|
||||
|
||||
static void free_vmem(void * base_addr, size_t size) {
|
||||
#if defined(_WIN32)
|
||||
VirtualFree(base_addr, 0, MEM_RELEASE);
|
||||
UNUSED(size);
|
||||
#elif defined(_POSIX_MAPPED_FILES)
|
||||
munmap(base_addr, size);
|
||||
#else
|
||||
// nothing to do
|
||||
UNUSED(base_addr);
|
||||
UNUSED(size);
|
||||
#endif
|
||||
}
|
||||
|
||||
// allocate uncommitted virtual memory to measure the size of the graph
|
||||
static void alloc_measure_vmem(void ** base_addr, size_t * size) {
|
||||
// 1TB for 64-bit, 1GB for 32-bit
|
||||
*size = sizeof(void *) == 4 ? 1ULL<<30 : 1ULL<<40;
|
||||
do {
|
||||
*base_addr = alloc_vmem(*size);
|
||||
if (*base_addr != NULL) {
|
||||
AT_PRINTF("allocated %.2f GB of virtual memory for measure buffer at %p\n", *size / 1024.0 / 1024.0 / 1024.0, *base_addr);
|
||||
return;
|
||||
}
|
||||
// try again with half the size
|
||||
*size /= 2;
|
||||
} while (*size > 0);
|
||||
|
||||
GGML_ASSERT(!"failed to allocate virtual memory for measure buffer");
|
||||
}
|
||||
|
||||
static void free_measure_vmem(void * base_addr, size_t size) {
|
||||
free_vmem(base_addr, size);
|
||||
}
|
||||
|
||||
struct ggml_allocr * ggml_allocr_new_measure(size_t alignment) {
|
||||
struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr) /* + n_free_blocks * sizeof(struct free_block) */);
|
||||
|
||||
void * base_addr;
|
||||
size_t size;
|
||||
|
||||
alloc_measure_vmem(&base_addr, &size);
|
||||
|
||||
*alloc = (struct ggml_allocr){
|
||||
/*.data = */ MEASURE_BASE_ADDR,
|
||||
/*.size = */ MEASURE_MAX_SIZE,
|
||||
/*.data = */ base_addr,
|
||||
/*.size = */ size,
|
||||
/*.alignment = */ alignment,
|
||||
/*.n_free_blocks = */ 0,
|
||||
/*.free_blocks = */ {{0}},
|
||||
|
@ -313,6 +390,9 @@ struct ggml_allocr * ggml_allocr_new_measure(size_t alignment) {
|
|||
}
|
||||
|
||||
void ggml_allocr_free(struct ggml_allocr * alloc) {
|
||||
if (alloc->measure) {
|
||||
free_measure_vmem(alloc->data, alloc->size);
|
||||
}
|
||||
free(alloc);
|
||||
}
|
||||
|
||||
|
@ -382,8 +462,7 @@ static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node)
|
|||
}
|
||||
|
||||
// if the node's data is external, then we cannot re-use it
|
||||
if ((char *) parent->data < (char *) alloc->data ||
|
||||
(char *) parent->data >= ((char *) alloc->data + alloc->size)) {
|
||||
if (ggml_allocr_is_own(alloc, parent) == false) {
|
||||
AT_PRINTF("not reusing parent %s for %s as %p is external\n", parent->name, node->name, parent->data);
|
||||
continue;
|
||||
}
|
||||
|
@ -417,7 +496,7 @@ static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node)
|
|||
}
|
||||
}
|
||||
|
||||
static size_t ggml_allocator_alloc_graph_tensors_n(
|
||||
static size_t ggml_allocr_alloc_graph_tensors_n(
|
||||
struct ggml_allocr * alloc,
|
||||
struct ggml_cgraph ** graphs, int n_graphs,
|
||||
struct ggml_tensor *** inputs, struct ggml_tensor *** outputs) {
|
||||
|
@ -495,7 +574,6 @@ static size_t ggml_allocator_alloc_graph_tensors_n(
|
|||
AT_PRINTF("\n");
|
||||
}
|
||||
|
||||
|
||||
// update parents
|
||||
// update immediately if there is no parse_seq
|
||||
// update only at barriers if there is parse_seq
|
||||
|
@ -523,12 +601,12 @@ static size_t ggml_allocator_alloc_graph_tensors_n(
|
|||
view_src_hn->n_views -= 1;
|
||||
AT_PRINTF("view_src %s: %d children, %d views\n", view_src->name, view_src_hn->n_children, view_src_hn->n_views);
|
||||
if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0 && view_src->data != node->data) {
|
||||
ggml_allocator_free_tensor(alloc, view_src);
|
||||
ggml_allocr_free_tensor(alloc, view_src);
|
||||
}
|
||||
}
|
||||
else {
|
||||
if (parent->data != node->data) {
|
||||
ggml_allocator_free_tensor(alloc, parent);
|
||||
ggml_allocr_free_tensor(alloc, parent);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -545,7 +623,7 @@ static size_t ggml_allocator_alloc_graph_tensors_n(
|
|||
for (int i = 0; outputs[g][i] != NULL; i++) {
|
||||
struct ggml_tensor * output = outputs[g][i];
|
||||
AT_PRINTF("output: %s\n", output->name);
|
||||
ggml_allocator_free_tensor(alloc, output);
|
||||
ggml_allocr_free_tensor(alloc, output);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -554,7 +632,7 @@ static size_t ggml_allocator_alloc_graph_tensors_n(
|
|||
}
|
||||
|
||||
size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph) {
|
||||
return ggml_allocator_alloc_graph_tensors_n(alloc, &graph, 1, NULL, NULL);
|
||||
return ggml_allocr_alloc_graph_tensors_n(alloc, &graph, 1, NULL, NULL);
|
||||
}
|
||||
|
||||
size_t ggml_allocr_max_size(struct ggml_allocr * alloc) {
|
||||
|
|
17
ggml-cuda.cu
17
ggml-cuda.cu
|
@ -81,12 +81,29 @@
|
|||
#if defined(GGML_USE_HIPBLAS)
|
||||
#define __CUDA_ARCH__ 1300
|
||||
|
||||
#ifndef __has_builtin
|
||||
#define __has_builtin(x) 0
|
||||
#endif
|
||||
|
||||
typedef int8_t int8x4_t __attribute__((ext_vector_type(4)));
|
||||
static __device__ __forceinline__ int __vsubss4(const int a, const int b) {
|
||||
const int8x4_t va = reinterpret_cast<const int8x4_t&>(a);
|
||||
const int8x4_t vb = reinterpret_cast<const int8x4_t&>(b);
|
||||
#if __has_builtin(__builtin_elementwise_sub_sat)
|
||||
const int8x4_t c = __builtin_elementwise_sub_sat(va, vb);
|
||||
return reinterpret_cast<const int&>(c);
|
||||
#else
|
||||
int8x4_t c;
|
||||
int16_t tmp;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < 4; i++) {
|
||||
tmp = va[i] - vb[i];
|
||||
if(tmp > std::numeric_limits<int8_t>::max()) tmp = std::numeric_limits<int8_t>::max();
|
||||
if(tmp < std::numeric_limits<int8_t>::min()) tmp = std::numeric_limits<int8_t>::min();
|
||||
c[i] = tmp;
|
||||
}
|
||||
return reinterpret_cast<int&>(c);
|
||||
#endif // __has_builtin(__builtin_elementwise_sub_sat)
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int __dp4a(const int a, const int b, int c) {
|
||||
|
|
60
ggml-metal.m
60
ggml-metal.m
|
@ -76,6 +76,7 @@ struct ggml_metal_context {
|
|||
GGML_METAL_DECL_KERNEL(rms_norm);
|
||||
GGML_METAL_DECL_KERNEL(norm);
|
||||
GGML_METAL_DECL_KERNEL(mul_mat_f16_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mat_f16_f32_1row);
|
||||
GGML_METAL_DECL_KERNEL(mul_mat_q4_0_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mat_q4_1_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mat_q8_0_f32);
|
||||
|
@ -116,10 +117,24 @@ static NSString * const msl_library_source = @"see metal.metal";
|
|||
struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
metal_printf("%s: allocating\n", __func__);
|
||||
|
||||
struct ggml_metal_context * ctx = malloc(sizeof(struct ggml_metal_context));
|
||||
// Show all the Metal device instances in the system
|
||||
NSArray * devices = MTLCopyAllDevices();
|
||||
id <MTLDevice> device;
|
||||
NSString * s;
|
||||
for (device in devices) {
|
||||
s = [device name];
|
||||
metal_printf("%s: found device: %s\n", __func__, [s UTF8String]);
|
||||
}
|
||||
|
||||
// Pick and show default Metal device
|
||||
device = MTLCreateSystemDefaultDevice();
|
||||
s = [device name];
|
||||
metal_printf("%s: picking default device: %s\n", __func__, [s UTF8String]);
|
||||
|
||||
// Configure context
|
||||
struct ggml_metal_context * ctx = malloc(sizeof(struct ggml_metal_context));
|
||||
ctx->device = device;
|
||||
ctx->n_cb = MIN(n_cb, GGML_METAL_MAX_BUFFERS);
|
||||
ctx->device = MTLCreateSystemDefaultDevice();
|
||||
ctx->queue = [ctx->device newCommandQueue];
|
||||
ctx->n_buffers = 0;
|
||||
ctx->concur_list_len = 0;
|
||||
|
@ -205,6 +220,7 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
|||
GGML_METAL_ADD_KERNEL(rms_norm);
|
||||
GGML_METAL_ADD_KERNEL(norm);
|
||||
GGML_METAL_ADD_KERNEL(mul_mat_f16_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mat_f16_f32_1row);
|
||||
GGML_METAL_ADD_KERNEL(mul_mat_q4_0_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mat_q4_1_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mat_q8_0_f32);
|
||||
|
@ -270,6 +286,7 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
|
|||
GGML_METAL_DEL_KERNEL(rms_norm);
|
||||
GGML_METAL_DEL_KERNEL(norm);
|
||||
GGML_METAL_DEL_KERNEL(mul_mat_f16_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mat_f16_f32_1row);
|
||||
GGML_METAL_DEL_KERNEL(mul_mat_q4_0_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mat_q4_1_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mat_q8_0_f32);
|
||||
|
@ -680,6 +697,12 @@ void ggml_metal_graph_compute(
|
|||
} break;
|
||||
case GGML_OP_ADD:
|
||||
{
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
|
||||
// utilize float4
|
||||
GGML_ASSERT(ne00 % 4 == 0);
|
||||
const int64_t nb = ne00/4;
|
||||
|
||||
if (ggml_nelements(src1) == ne10) {
|
||||
// src1 is a row
|
||||
[encoder setComputePipelineState:ctx->pipeline_add_row];
|
||||
|
@ -689,14 +712,20 @@ void ggml_metal_graph_compute(
|
|||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
||||
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
|
||||
[encoder setBytes:&nb length:sizeof(nb) atIndex:3];
|
||||
|
||||
const int64_t n = ggml_nelements(dst);
|
||||
const int64_t n = ggml_nelements(dst)/4;
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
} break;
|
||||
case GGML_OP_MUL:
|
||||
{
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
|
||||
// utilize float4
|
||||
GGML_ASSERT(ne00 % 4 == 0);
|
||||
const int64_t nb = ne00/4;
|
||||
|
||||
if (ggml_nelements(src1) == ne10) {
|
||||
// src1 is a row
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_row];
|
||||
|
@ -706,9 +735,9 @@ void ggml_metal_graph_compute(
|
|||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
||||
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
|
||||
[encoder setBytes:&nb length:sizeof(nb) atIndex:3];
|
||||
|
||||
const int64_t n = ggml_nelements(dst);
|
||||
const int64_t n = ggml_nelements(dst)/4;
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
} break;
|
||||
|
@ -840,9 +869,13 @@ void ggml_metal_graph_compute(
|
|||
switch (src0t) {
|
||||
case GGML_TYPE_F16:
|
||||
{
|
||||
nth0 = 64;
|
||||
nth0 = 32;
|
||||
nth1 = 1;
|
||||
if (ne11 * ne12 < 4) {
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32_1row];
|
||||
} else {
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32];
|
||||
}
|
||||
} break;
|
||||
case GGML_TYPE_Q4_0:
|
||||
{
|
||||
|
@ -894,8 +927,8 @@ void ggml_metal_graph_compute(
|
|||
GGML_ASSERT(ne02 == 1);
|
||||
GGML_ASSERT(ne12 == 1);
|
||||
|
||||
nth0 = 2;
|
||||
nth1 = 32;
|
||||
nth0 = 4; //1;
|
||||
nth1 = 8; //32;
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_K_f32];
|
||||
} break;
|
||||
case GGML_TYPE_Q5_K:
|
||||
|
@ -943,9 +976,12 @@ void ggml_metal_graph_compute(
|
|||
[encoder setBytes:&gqa length:sizeof(gqa) atIndex:17];
|
||||
|
||||
if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 || src0t == GGML_TYPE_Q8_0 ||
|
||||
src0t == GGML_TYPE_Q2_K || src0t == GGML_TYPE_Q4_K) {
|
||||
src0t == GGML_TYPE_Q2_K) {// || src0t == GGML_TYPE_Q4_K) {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src0t == GGML_TYPE_Q4_K) {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src0t == GGML_TYPE_Q3_K) {
|
||||
#ifdef GGML_QKK_64
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
|
@ -959,8 +995,8 @@ void ggml_metal_graph_compute(
|
|||
else if (src0t == GGML_TYPE_Q6_K) {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
} else {
|
||||
[encoder setThreadgroupMemoryLength:nth0*sizeof(float) atIndex:0];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
int64_t ny = (ne11 + 3)/4;
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ny, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
}
|
||||
} break;
|
||||
|
|
232
ggml-metal.metal
232
ggml-metal.metal
|
@ -25,9 +25,9 @@ typedef struct {
|
|||
} block_q8_0;
|
||||
|
||||
kernel void kernel_add(
|
||||
device const float * src0,
|
||||
device const float * src1,
|
||||
device float * dst,
|
||||
device const float4 * src0,
|
||||
device const float4 * src1,
|
||||
device float4 * dst,
|
||||
uint tpig[[thread_position_in_grid]]) {
|
||||
dst[tpig] = src0[tpig] + src1[tpig];
|
||||
}
|
||||
|
@ -35,18 +35,18 @@ kernel void kernel_add(
|
|||
// assumption: src1 is a row
|
||||
// broadcast src1 into src0
|
||||
kernel void kernel_add_row(
|
||||
device const float * src0,
|
||||
device const float * src1,
|
||||
device float * dst,
|
||||
constant int64_t & ne00,
|
||||
device const float4 * src0,
|
||||
device const float4 * src1,
|
||||
device float4 * dst,
|
||||
constant int64_t & nb,
|
||||
uint tpig[[thread_position_in_grid]]) {
|
||||
dst[tpig] = src0[tpig] + src1[tpig % ne00];
|
||||
dst[tpig] = src0[tpig] + src1[tpig % nb];
|
||||
}
|
||||
|
||||
kernel void kernel_mul(
|
||||
device const float * src0,
|
||||
device const float * src1,
|
||||
device float * dst,
|
||||
device const float4 * src0,
|
||||
device const float4 * src1,
|
||||
device float4 * dst,
|
||||
uint tpig[[thread_position_in_grid]]) {
|
||||
dst[tpig] = src0[tpig] * src1[tpig];
|
||||
}
|
||||
|
@ -54,12 +54,12 @@ kernel void kernel_mul(
|
|||
// assumption: src1 is a row
|
||||
// broadcast src1 into src0
|
||||
kernel void kernel_mul_row(
|
||||
device const float * src0,
|
||||
device const float * src1,
|
||||
device float * dst,
|
||||
constant int64_t & ne00,
|
||||
device const float4 * src0,
|
||||
device const float4 * src1,
|
||||
device float4 * dst,
|
||||
constant int64_t & nb,
|
||||
uint tpig[[thread_position_in_grid]]) {
|
||||
dst[tpig] = src0[tpig] * src1[tpig % ne00];
|
||||
dst[tpig] = src0[tpig] * src1[tpig % nb];
|
||||
}
|
||||
|
||||
kernel void kernel_scale(
|
||||
|
@ -133,19 +133,24 @@ kernel void kernel_soft_max(
|
|||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
}
|
||||
|
||||
// broadcast
|
||||
if (tpitg[0] == 0) {
|
||||
buf[0] = buf[0];
|
||||
}
|
||||
//// broadcast - not needed. There is a threadgroup barrier above in the last iteration of
|
||||
// the loop, and when that is done, buf[0] has the correct (synchronized) value
|
||||
//if (tpitg[0] == 0) {
|
||||
// buf[0] = buf[0];
|
||||
//}
|
||||
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
//threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
|
||||
const float max = buf[0];
|
||||
|
||||
// parallel sum
|
||||
buf[tpitg[0]] = 0.0f;
|
||||
for (int i00 = tpitg[0]; i00 < ne00; i00 += ntg[0]) {
|
||||
buf[tpitg[0]] += exp(psrc0[i00] - max);
|
||||
const float exp_psrc0 = exp(psrc0[i00] - max);
|
||||
buf[tpitg[0]] += exp_psrc0;
|
||||
// Remember the result of exp here. exp is expensive, so we really do not
|
||||
// whish to compute it twice.
|
||||
pdst[i00] = exp_psrc0;
|
||||
}
|
||||
|
||||
// reduce
|
||||
|
@ -157,17 +162,18 @@ kernel void kernel_soft_max(
|
|||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
}
|
||||
|
||||
// broadcast
|
||||
if (tpitg[0] == 0) {
|
||||
buf[0] = buf[0];
|
||||
}
|
||||
// broadcast - not needed, see above
|
||||
//// broadcast
|
||||
//if (tpitg[0] == 0) {
|
||||
// buf[0] = buf[0];
|
||||
//}
|
||||
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
//threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
|
||||
const float sum = buf[0];
|
||||
|
||||
for (int i00 = tpitg[0]; i00 < ne00; i00 += ntg[0]) {
|
||||
pdst[i00] = exp(psrc0[i00] - max) / sum;
|
||||
pdst[i00] /= sum;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -214,25 +220,27 @@ kernel void kernel_norm(
|
|||
}
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
}
|
||||
// broadcast
|
||||
if (tpitg == 0) {
|
||||
sum[0] /= ne00;
|
||||
}
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
//// broadcast
|
||||
//if (tpitg == 0) {
|
||||
// sum[0] /= ne00;
|
||||
//}
|
||||
//threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
const float mean = sum[0];
|
||||
|
||||
// recenter
|
||||
// recenter and VARIANCE
|
||||
device float * y = dst + tgpig*ne00;
|
||||
for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
|
||||
y[i00] = x[i00] - mean;
|
||||
}
|
||||
|
||||
// VARIANCE
|
||||
// parallel sum
|
||||
sum[tpitg] = 0.0f;
|
||||
for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
|
||||
y[i00] = x[i00] - mean;
|
||||
sum[tpitg] += y[i00] * y[i00];
|
||||
}
|
||||
|
||||
//// VARIANCE
|
||||
//// parallel sum
|
||||
//sum[tpitg] = 0.0f;
|
||||
//for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
|
||||
// sum[tpitg] += y[i00] * y[i00];
|
||||
//}
|
||||
// reduce
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
for (uint i = ntg/2; i > 0; i /= 2) {
|
||||
|
@ -241,11 +249,11 @@ kernel void kernel_norm(
|
|||
}
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
}
|
||||
// broadcast
|
||||
if (tpitg == 0) {
|
||||
sum[0] /= ne00;
|
||||
}
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
//// broadcast
|
||||
//if (tpitg == 0) {
|
||||
// sum[0] /= ne00;
|
||||
//}
|
||||
//threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
const float variance = sum[0];
|
||||
|
||||
const float scale = 1.0f/sqrt(variance + eps);
|
||||
|
@ -435,6 +443,8 @@ kernel void kernel_mul_mat_q4_1_f32(
|
|||
mul_vec_q_n_f32<block_q4_1, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,gqa,tgpig,tiisg,sgitg);
|
||||
}
|
||||
|
||||
#define NB_Q8_0 8
|
||||
|
||||
kernel void kernel_mul_mat_q8_0_f32(
|
||||
device const void * src0,
|
||||
device const float * src1,
|
||||
|
@ -463,30 +473,30 @@ kernel void kernel_mul_mat_q8_0_f32(
|
|||
device const block_q8_0 * x = (device const block_q8_0 *) src0 + offset0;
|
||||
device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
|
||||
|
||||
float yl[16];
|
||||
float yl[NB_Q8_0];
|
||||
float sumf[nr]={0.f};
|
||||
|
||||
const int ix = tiisg/2;
|
||||
const int il = tiisg%2;
|
||||
const int ix = tiisg/4;
|
||||
const int il = tiisg%4;
|
||||
|
||||
device const float * yb = y + ix * QK8_0 + 16*il;
|
||||
device const float * yb = y + ix * QK8_0 + NB_Q8_0*il;
|
||||
|
||||
// each thread in a SIMD group deals with half a block.
|
||||
for (int ib = ix; ib < nb; ib += nw/2) {
|
||||
for (int i = 0; i < 16; ++i) {
|
||||
// each thread in a SIMD group deals with NB_Q8_0 quants at a time
|
||||
for (int ib = ix; ib < nb; ib += nw/4) {
|
||||
for (int i = 0; i < NB_Q8_0; ++i) {
|
||||
yl[i] = yb[i];
|
||||
}
|
||||
|
||||
for (int row = 0; row < nr; row++) {
|
||||
device const int8_t * qs = x[ib+row*nb].qs + 16*il;
|
||||
device const int8_t * qs = x[ib+row*nb].qs + NB_Q8_0*il;
|
||||
float sumq = 0.f;
|
||||
for (int iq = 0; iq < 16; ++iq) {
|
||||
for (int iq = 0; iq < NB_Q8_0; ++iq) {
|
||||
sumq += qs[iq] * yl[iq];
|
||||
}
|
||||
sumf[row] += sumq*x[ib+row*nb].d;
|
||||
}
|
||||
|
||||
yb += QK8_0 * 16;
|
||||
yb += NB_Q8_0 * nw;
|
||||
}
|
||||
|
||||
for (int row = 0; row < nr; ++row) {
|
||||
|
@ -497,6 +507,60 @@ kernel void kernel_mul_mat_q8_0_f32(
|
|||
}
|
||||
}
|
||||
|
||||
kernel void kernel_mul_mat_f16_f32_1row(
|
||||
device const char * src0,
|
||||
device const char * src1,
|
||||
device float * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
constant int64_t & ne02,
|
||||
constant uint64_t & nb00,
|
||||
constant uint64_t & nb01,
|
||||
constant uint64_t & nb02,
|
||||
constant int64_t & ne10,
|
||||
constant int64_t & ne11,
|
||||
constant int64_t & ne12,
|
||||
constant uint64_t & nb10,
|
||||
constant uint64_t & nb11,
|
||||
constant uint64_t & nb12,
|
||||
constant int64_t & ne0,
|
||||
constant int64_t & ne1,
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint tiisg[[thread_index_in_simdgroup]]) {
|
||||
|
||||
const int64_t r0 = tgpig.x;
|
||||
const int64_t r1 = tgpig.y;
|
||||
const int64_t im = tgpig.z;
|
||||
|
||||
device const half * x = (device const half *) (src0 + r0*nb01 + im/(ne12/ne02)*nb02);
|
||||
device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
|
||||
|
||||
float sumf = 0;
|
||||
if (ne00 < 128) {
|
||||
for (int i = tiisg; i < ne00; i += 32) {
|
||||
sumf += (float) x[i] * (float) y[i];
|
||||
}
|
||||
float all_sum = simd_sum(sumf);
|
||||
if (tiisg == 0) {
|
||||
dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
|
||||
}
|
||||
} else {
|
||||
device const half4 * x4 = (device const half4 *) x;
|
||||
device const float4 * y4 = (device const float4 *) y;
|
||||
for (int i = tiisg; i < ne00/4; i += 32) {
|
||||
for (int k = 0; k < 4; ++k) sumf += (float)x4[i][k] * y4[i][k];
|
||||
}
|
||||
float all_sum = simd_sum(sumf);
|
||||
if (tiisg == 0) {
|
||||
for (int i = 4*(ne00/4); i < ne00; ++i) all_sum += (float) x[i] * y[i];
|
||||
dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#define N_F16_F32 4
|
||||
|
||||
kernel void kernel_mul_mat_f16_f32(
|
||||
device const char * src0,
|
||||
device const char * src1,
|
||||
|
@ -515,37 +579,58 @@ kernel void kernel_mul_mat_f16_f32(
|
|||
constant uint64_t & nb12,
|
||||
constant int64_t & ne0,
|
||||
constant int64_t & ne1,
|
||||
threadgroup float * sum [[threadgroup(0)]],
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint3 tpig[[thread_position_in_grid]],
|
||||
uint3 tpitg[[thread_position_in_threadgroup]],
|
||||
uint3 tptg[[threads_per_threadgroup]]) {
|
||||
uint tiisg[[thread_index_in_simdgroup]]) {
|
||||
|
||||
const int64_t r0 = tgpig.x;
|
||||
const int64_t r1 = tgpig.y;
|
||||
const int64_t rb = tgpig.y*N_F16_F32;
|
||||
const int64_t im = tgpig.z;
|
||||
|
||||
device const half * x = (device const half *) (src0 + r0*nb01 + im/(ne12/ne02)*nb02);
|
||||
|
||||
if (ne00 < 128) {
|
||||
for (int row = 0; row < N_F16_F32; ++row) {
|
||||
int r1 = rb + row;
|
||||
if (r1 >= ne11) {
|
||||
break;
|
||||
}
|
||||
|
||||
device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
|
||||
|
||||
sum[tpitg.x] = 0.0f;
|
||||
|
||||
for (int i = tpitg.x; i < ne00; i += tptg.x) {
|
||||
sum[tpitg.x] += (float) x[i] * (float) y[i];
|
||||
float sumf = 0;
|
||||
for (int i = tiisg; i < ne00; i += 32) {
|
||||
sumf += (float) x[i] * (float) y[i];
|
||||
}
|
||||
|
||||
// accumulate the sum from all threads in the threadgroup
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
for (uint i = tptg.x/2; i > 0; i /= 2) {
|
||||
if (tpitg.x < i) {
|
||||
sum[tpitg.x] += sum[tpitg.x + i];
|
||||
float all_sum = simd_sum(sumf);
|
||||
if (tiisg == 0) {
|
||||
dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
|
||||
}
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
}
|
||||
} else {
|
||||
device const half4 * x4 = (device const half4 *)x;
|
||||
for (int row = 0; row < N_F16_F32; ++row) {
|
||||
int r1 = rb + row;
|
||||
if (r1 >= ne11) {
|
||||
break;
|
||||
}
|
||||
|
||||
if (tpitg.x == 0) {
|
||||
dst[im*ne1*ne0 + r1*ne0 + r0] = sum[0];
|
||||
device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
|
||||
device const float4 * y4 = (device const float4 *) y;
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = tiisg; i < ne00/4; i += 32) {
|
||||
for (int k = 0; k < 4; ++k) sumf += (float) x4[i][k] * y4[i][k];
|
||||
}
|
||||
|
||||
float all_sum = simd_sum(sumf);
|
||||
if (tiisg == 0) {
|
||||
for (int i = 4*(ne00/4); i < ne00; ++i) all_sum += (float) x[i] * y[i];
|
||||
dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
kernel void kernel_alibi_f32(
|
||||
|
@ -1244,7 +1329,8 @@ kernel void kernel_mul_mat_q4_K_f32(
|
|||
const int r0 = tgpig.x;
|
||||
const int r1 = tgpig.y;
|
||||
const int r2 = tgpig.z;
|
||||
const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
|
||||
//const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
|
||||
const int first_row = r0 * N_DST;
|
||||
const int ib_row = first_row * nb;
|
||||
const uint offset0 = r2/gqa*(nb*ne0);
|
||||
device const block_q4_K * x = (device const block_q4_K *) src0 + ib_row + offset0;
|
||||
|
|
|
@ -1493,7 +1493,7 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
|
|||
if (src0->backend == GGML_BACKEND_GPU) { // NOLINT
|
||||
d_X = (cl_mem) src0->data;
|
||||
} else {
|
||||
d_X = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &x_size);
|
||||
d_X = ggml_cl_pool_malloc(sizeof(float) * x_ne, &x_size);
|
||||
}
|
||||
cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size);
|
||||
cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size);
|
||||
|
|
273
ggml.c
273
ggml.c
|
@ -301,6 +301,10 @@ typedef double ggml_float;
|
|||
#endif
|
||||
#endif
|
||||
|
||||
#ifdef __riscv_v_intrinsic
|
||||
#include <riscv_vector.h>
|
||||
#endif
|
||||
|
||||
#ifdef __F16C__
|
||||
|
||||
#ifdef _MSC_VER
|
||||
|
@ -813,46 +817,6 @@ static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128
|
|||
|
||||
#if !defined(__aarch64__)
|
||||
|
||||
inline static uint16_t vaddvq_u8(uint8x16_t v) {
|
||||
return
|
||||
(uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
|
||||
(uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
|
||||
(uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
|
||||
(uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
|
||||
(uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
|
||||
(uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
|
||||
(uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
|
||||
(uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
|
||||
}
|
||||
|
||||
inline static int16_t vaddvq_s8(int8x16_t v) {
|
||||
return
|
||||
(int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
|
||||
(int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
|
||||
(int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
|
||||
(int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
|
||||
(int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
|
||||
(int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
|
||||
(int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
|
||||
(int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
|
||||
}
|
||||
|
||||
inline static int32_t vaddvq_s16(int16x8_t v) {
|
||||
return
|
||||
(int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
|
||||
(int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
|
||||
(int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
|
||||
(int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
|
||||
}
|
||||
|
||||
inline static uint32_t vaddvq_u16(uint16x8_t v) {
|
||||
return
|
||||
(uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
|
||||
(uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
|
||||
(uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
|
||||
(uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
|
||||
}
|
||||
|
||||
inline static int32_t vaddvq_s32(int32x4_t v) {
|
||||
return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
|
||||
}
|
||||
|
@ -861,12 +825,6 @@ inline static float vaddvq_f32(float32x4_t v) {
|
|||
return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
|
||||
}
|
||||
|
||||
inline static float vminvq_f32(float32x4_t v) {
|
||||
return
|
||||
MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
|
||||
MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
|
||||
}
|
||||
|
||||
inline static float vmaxvq_f32(float32x4_t v) {
|
||||
return
|
||||
MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
|
||||
|
@ -2677,6 +2635,41 @@ static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void *
|
|||
}
|
||||
|
||||
*s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
|
||||
#elif defined(__riscv_v_intrinsic)
|
||||
float sumf = 0.0;
|
||||
|
||||
size_t vl = __riscv_vsetvl_e8m1(qk/2);
|
||||
|
||||
for (int i = 0; i < nb; i++) {
|
||||
vuint8m1_t tx = __riscv_vle8_v_u8m1(x[i].qs, vl);
|
||||
|
||||
vint8m1_t y0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
|
||||
vint8m1_t y1 = __riscv_vle8_v_i8m1(y[i].qs+16, vl);
|
||||
|
||||
vuint8m1_t x_a = __riscv_vand_vx_u8m1(tx, 0x0F, vl);
|
||||
vuint8m1_t x_l = __riscv_vsrl_vx_u8m1(tx, 0x04, vl);
|
||||
|
||||
vint8m1_t x_ai = __riscv_vreinterpret_v_u8m1_i8m1(x_a);
|
||||
vint8m1_t x_li = __riscv_vreinterpret_v_u8m1_i8m1(x_l);
|
||||
|
||||
vint8m1_t v0 = __riscv_vsub_vx_i8m1(x_ai, 8, vl);
|
||||
vint8m1_t v1 = __riscv_vsub_vx_i8m1(x_li, 8, vl);
|
||||
|
||||
vint16m2_t vec_mul1 = __riscv_vwmul_vv_i16m2(v0, y0, vl);
|
||||
vint16m2_t vec_mul2 = __riscv_vwmul_vv_i16m2(v1, y1, vl);
|
||||
|
||||
vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
|
||||
|
||||
vint32m1_t vs1 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul1, vec_zero, vl);
|
||||
vint32m1_t vs2 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul2, vec_zero, vl);
|
||||
|
||||
int sumi = __riscv_vmv_x_s_i32m1_i32(vs1);
|
||||
sumi += __riscv_vmv_x_s_i32m1_i32(vs2);
|
||||
|
||||
sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
#else
|
||||
// scalar
|
||||
float sumf = 0.0;
|
||||
|
@ -2803,6 +2796,38 @@ static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void *
|
|||
}
|
||||
|
||||
*s = hsum_float_8(acc) + summs;
|
||||
#elif defined(__riscv_v_intrinsic)
|
||||
float sumf = 0.0;
|
||||
|
||||
size_t vl = __riscv_vsetvl_e8m1(qk/2);
|
||||
|
||||
for (int i = 0; i < nb; i++) {
|
||||
vuint8m1_t tx = __riscv_vle8_v_u8m1(x[i].qs, vl);
|
||||
|
||||
vint8m1_t y0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
|
||||
vint8m1_t y1 = __riscv_vle8_v_i8m1(y[i].qs+16, vl);
|
||||
|
||||
vuint8m1_t x_a = __riscv_vand_vx_u8m1(tx, 0x0F, vl);
|
||||
vuint8m1_t x_l = __riscv_vsrl_vx_u8m1(tx, 0x04, vl);
|
||||
|
||||
vint8m1_t v0 = __riscv_vreinterpret_v_u8m1_i8m1(x_a);
|
||||
vint8m1_t v1 = __riscv_vreinterpret_v_u8m1_i8m1(x_l);
|
||||
|
||||
vint16m2_t vec_mul1 = __riscv_vwmul_vv_i16m2(v0, y0, vl);
|
||||
vint16m2_t vec_mul2 = __riscv_vwmul_vv_i16m2(v1, y1, vl);
|
||||
|
||||
vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
|
||||
|
||||
vint32m1_t vs1 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul1, vec_zero, vl);
|
||||
vint32m1_t vs2 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul2, vec_zero, vl);
|
||||
|
||||
int sumi = __riscv_vmv_x_s_i32m1_i32(vs1);
|
||||
sumi += __riscv_vmv_x_s_i32m1_i32(vs2);
|
||||
|
||||
sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
#else
|
||||
// scalar
|
||||
float sumf = 0.0;
|
||||
|
@ -3037,6 +3062,76 @@ static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void *
|
|||
}
|
||||
|
||||
*s = hsum_float_8(acc);
|
||||
#elif defined(__riscv_v_intrinsic)
|
||||
float sumf = 0.0;
|
||||
|
||||
uint32_t qh;
|
||||
|
||||
// These temp values are for masking and shift operations
|
||||
uint32_t temp_1[16] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
|
||||
uint32_t temp_2[16] = {0x1, 0x2, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80,
|
||||
0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000, 0x8000};
|
||||
|
||||
size_t vl = __riscv_vsetvl_e8m1(qk/2);
|
||||
|
||||
for (int i = 0; i < nb; i++) {
|
||||
memcpy(&qh, x[i].qh, sizeof(uint32_t));
|
||||
|
||||
// temporary registers
|
||||
vuint32m4_t vt_1 = __riscv_vle32_v_u32m4(temp_2, vl);
|
||||
vuint32m4_t vt_2 = __riscv_vle32_v_u32m4(temp_1, vl);
|
||||
vuint32m4_t vt_3 = __riscv_vsll_vx_u32m4(vt_1, 16, vl);
|
||||
vuint32m4_t vt_4 = __riscv_vadd_vx_u32m4(vt_2, 12, vl);
|
||||
|
||||
// ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
|
||||
vuint32m4_t xha_0 = __riscv_vand_vx_u32m4(vt_1, qh, vl);
|
||||
vuint32m4_t xhr_0 = __riscv_vsrl_vv_u32m4(xha_0, vt_2, vl);
|
||||
vuint32m4_t xhl_0 = __riscv_vsll_vx_u32m4(xhr_0, 4, vl);
|
||||
|
||||
// ((qh & (1u << (j + 16))) >> (j + 12));
|
||||
vuint32m4_t xha_1 = __riscv_vand_vx_u32m4(vt_3, qh, vl);
|
||||
vuint32m4_t xhl_1 = __riscv_vsrl_vv_u32m4(xha_1, vt_4, vl);
|
||||
|
||||
// narrowing
|
||||
vuint16m2_t xhc_0 = __riscv_vncvt_x_x_w_u16m2(xhl_0, vl);
|
||||
vuint8m1_t xh_0 = __riscv_vncvt_x_x_w_u8m1(xhc_0, vl);
|
||||
|
||||
vuint16m2_t xhc_1 = __riscv_vncvt_x_x_w_u16m2(xhl_1, vl);
|
||||
vuint8m1_t xh_1 = __riscv_vncvt_x_x_w_u8m1(xhc_1, vl);
|
||||
|
||||
// load
|
||||
vuint8m1_t tx = __riscv_vle8_v_u8m1(x[i].qs, vl);
|
||||
|
||||
vint8m1_t y0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
|
||||
vint8m1_t y1 = __riscv_vle8_v_i8m1(y[i].qs+16, vl);
|
||||
|
||||
vuint8m1_t x_at = __riscv_vand_vx_u8m1(tx, 0x0F, vl);
|
||||
vuint8m1_t x_lt = __riscv_vsrl_vx_u8m1(tx, 0x04, vl);
|
||||
|
||||
vuint8m1_t x_a = __riscv_vor_vv_u8m1(x_at, xh_0, vl);
|
||||
vuint8m1_t x_l = __riscv_vor_vv_u8m1(x_lt, xh_1, vl);
|
||||
|
||||
vint8m1_t x_ai = __riscv_vreinterpret_v_u8m1_i8m1(x_a);
|
||||
vint8m1_t x_li = __riscv_vreinterpret_v_u8m1_i8m1(x_l);
|
||||
|
||||
vint8m1_t v0 = __riscv_vsub_vx_i8m1(x_ai, 16, vl);
|
||||
vint8m1_t v1 = __riscv_vsub_vx_i8m1(x_li, 16, vl);
|
||||
|
||||
vint16m2_t vec_mul1 = __riscv_vwmul_vv_i16m2(v0, y0, vl);
|
||||
vint16m2_t vec_mul2 = __riscv_vwmul_vv_i16m2(v1, y1, vl);
|
||||
|
||||
vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
|
||||
|
||||
vint32m1_t vs1 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul1, vec_zero, vl);
|
||||
vint32m1_t vs2 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul2, vec_zero, vl);
|
||||
|
||||
int sumi = __riscv_vmv_x_s_i32m1_i32(vs1);
|
||||
sumi += __riscv_vmv_x_s_i32m1_i32(vs2);
|
||||
|
||||
sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
#else
|
||||
// scalar
|
||||
float sumf = 0.0;
|
||||
|
@ -3293,6 +3388,72 @@ static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void *
|
|||
}
|
||||
|
||||
*s = hsum_float_8(acc) + summs;
|
||||
#elif defined(__riscv_v_intrinsic)
|
||||
float sumf = 0.0;
|
||||
|
||||
uint32_t qh;
|
||||
|
||||
// These temp values are for shift operations
|
||||
uint32_t temp_1[16] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
|
||||
|
||||
size_t vl = __riscv_vsetvl_e8m1(qk/2);
|
||||
|
||||
for (int i = 0; i < nb; i++) {
|
||||
memcpy(&qh, x[i].qh, sizeof(uint32_t));
|
||||
|
||||
// temporary registers
|
||||
vuint32m4_t vt_1 = __riscv_vle32_v_u32m4(temp_1, vl);
|
||||
vuint32m4_t vt_2 = __riscv_vadd_vx_u32m4(vt_1, 12, vl);
|
||||
|
||||
// load qh
|
||||
vuint32m4_t vqh = __riscv_vmv_v_x_u32m4(qh, vl);
|
||||
|
||||
// ((qh >> (j + 0)) << 4) & 0x10;
|
||||
vuint32m4_t xhr_0 = __riscv_vsrl_vv_u32m4(vqh, vt_1, vl);
|
||||
vuint32m4_t xhl_0 = __riscv_vsll_vx_u32m4(xhr_0, 4, vl);
|
||||
vuint32m4_t xha_0 = __riscv_vand_vx_u32m4(xhl_0, 0x10, vl);
|
||||
|
||||
// ((qh >> (j + 12)) ) & 0x10;
|
||||
vuint32m4_t xhr_1 = __riscv_vsrl_vv_u32m4(vqh, vt_2, vl);
|
||||
vuint32m4_t xha_1 = __riscv_vand_vx_u32m4(xhr_1, 0x10, vl);
|
||||
|
||||
// narrowing
|
||||
vuint16m2_t xhc_0 = __riscv_vncvt_x_x_w_u16m2(xha_0, vl);
|
||||
vuint8m1_t xh_0 = __riscv_vncvt_x_x_w_u8m1(xhc_0, vl);
|
||||
|
||||
vuint16m2_t xhc_1 = __riscv_vncvt_x_x_w_u16m2(xha_1, vl);
|
||||
vuint8m1_t xh_1 = __riscv_vncvt_x_x_w_u8m1(xhc_1, vl);
|
||||
|
||||
// load
|
||||
vuint8m1_t tx = __riscv_vle8_v_u8m1(x[i].qs, vl);
|
||||
|
||||
vint8m1_t y0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
|
||||
vint8m1_t y1 = __riscv_vle8_v_i8m1(y[i].qs+16, vl);
|
||||
|
||||
vuint8m1_t x_at = __riscv_vand_vx_u8m1(tx, 0x0F, vl);
|
||||
vuint8m1_t x_lt = __riscv_vsrl_vx_u8m1(tx, 0x04, vl);
|
||||
|
||||
vuint8m1_t x_a = __riscv_vor_vv_u8m1(x_at, xh_0, vl);
|
||||
vuint8m1_t x_l = __riscv_vor_vv_u8m1(x_lt, xh_1, vl);
|
||||
|
||||
vint8m1_t v0 = __riscv_vreinterpret_v_u8m1_i8m1(x_a);
|
||||
vint8m1_t v1 = __riscv_vreinterpret_v_u8m1_i8m1(x_l);
|
||||
|
||||
vint16m2_t vec_mul1 = __riscv_vwmul_vv_i16m2(v0, y0, vl);
|
||||
vint16m2_t vec_mul2 = __riscv_vwmul_vv_i16m2(v1, y1, vl);
|
||||
|
||||
vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
|
||||
|
||||
vint32m1_t vs1 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul1, vec_zero, vl);
|
||||
vint32m1_t vs2 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul2, vec_zero, vl);
|
||||
|
||||
int sumi = __riscv_vmv_x_s_i32m1_i32(vs1);
|
||||
sumi += __riscv_vmv_x_s_i32m1_i32(vs2);
|
||||
|
||||
sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
#else
|
||||
// scalar
|
||||
float sumf = 0.0;
|
||||
|
@ -3404,6 +3565,26 @@ static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void *
|
|||
}
|
||||
|
||||
*s = hsum_float_8(acc);
|
||||
#elif defined(__riscv_v_intrinsic)
|
||||
float sumf = 0.0;
|
||||
size_t vl = __riscv_vsetvl_e8m1(qk);
|
||||
|
||||
for (int i = 0; i < nb; i++) {
|
||||
// load elements
|
||||
vint8m1_t bx = __riscv_vle8_v_i8m1(x[i].qs, vl);
|
||||
vint8m1_t by = __riscv_vle8_v_i8m1(y[i].qs, vl);
|
||||
|
||||
vint16m2_t vw_mul = __riscv_vwmul_vv_i16m2(bx, by, vl);
|
||||
|
||||
vint32m1_t v_zero = __riscv_vmv_v_x_i32m1(0, vl);
|
||||
vint32m1_t v_sum = __riscv_vwredsum_vs_i16m2_i32m1(vw_mul, v_zero, vl);
|
||||
|
||||
int sumi = __riscv_vmv_x_s_i32m1_i32(v_sum);
|
||||
|
||||
sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
#else
|
||||
// scalar
|
||||
float sumf = 0.0;
|
||||
|
|
|
@ -801,7 +801,7 @@ class SpecialVocab:
|
|||
else:
|
||||
continue
|
||||
for maybe_token_id in (atok.get('id') for atok in added_tokens if atok.get('content') == tc_content):
|
||||
if isinstance(maybe_token_id, int):
|
||||
if isinstance(maybe_token_id, int) and maybe_token_id >= 0:
|
||||
self.special_token_ids[typ] = maybe_token_id
|
||||
break
|
||||
return True
|
||||
|
@ -814,7 +814,7 @@ class SpecialVocab:
|
|||
config = json.load(f)
|
||||
for typ in self.special_token_types:
|
||||
maybe_token_id = config.get(f'{typ}_token_id')
|
||||
if isinstance(maybe_token_id, int):
|
||||
if isinstance(maybe_token_id, int) and maybe_token_id >= 0:
|
||||
self.special_token_ids[typ] = maybe_token_id
|
||||
return True
|
||||
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
[tool.poetry]
|
||||
name = "gguf"
|
||||
version = "0.3.1"
|
||||
version = "0.3.2"
|
||||
description = "Write ML models in GGUF for GGML"
|
||||
authors = ["GGML <ggml@ggml.ai>"]
|
||||
packages = [
|
||||
|
|
42
grammars/c.gbnf
Normal file
42
grammars/c.gbnf
Normal file
|
@ -0,0 +1,42 @@
|
|||
root ::= (declaration)*
|
||||
|
||||
declaration ::= dataType identifier "(" parameter? ")" "{" statement* "}"
|
||||
|
||||
dataType ::= "int" ws | "float" ws | "char" ws
|
||||
identifier ::= [a-zA-Z_] [a-zA-Z_0-9]*
|
||||
|
||||
parameter ::= dataType identifier
|
||||
|
||||
statement ::=
|
||||
( dataType identifier ws "=" ws expression ";" ) |
|
||||
( identifier ws "=" ws expression ";" ) |
|
||||
( identifier ws "(" argList? ")" ";" ) |
|
||||
( "return" ws expression ";" ) |
|
||||
( "while" "(" condition ")" "{" statement* "}" ) |
|
||||
( "for" "(" forInit ";" ws condition ";" ws forUpdate ")" "{" statement* "}" ) |
|
||||
( "if" "(" condition ")" "{" statement* "}" ("else" "{" statement* "}")? ) |
|
||||
( singleLineComment ) |
|
||||
( multiLineComment )
|
||||
|
||||
forInit ::= dataType identifier ws "=" ws expression | identifier ws "=" ws expression
|
||||
forUpdate ::= identifier ws "=" ws expression
|
||||
|
||||
condition ::= expression relationOperator expression
|
||||
relationOperator ::= ("<=" | "<" | "==" | "!=" | ">=" | ">")
|
||||
|
||||
expression ::= term (("+" | "-") term)*
|
||||
term ::= factor(("*" | "/") factor)*
|
||||
|
||||
factor ::= identifier | number | unaryTerm | funcCall | parenExpression
|
||||
unaryTerm ::= "-" factor
|
||||
funcCall ::= identifier "(" argList? ")"
|
||||
parenExpression ::= "(" ws expression ws ")"
|
||||
|
||||
argList ::= expression ("," ws expression)*
|
||||
|
||||
number ::= [0-9]+
|
||||
|
||||
singleLineComment ::= "//" [^\n]* "\n"
|
||||
multiLineComment ::= "/*" ( [^*] | ("*" [^/]) )* "*/"
|
||||
|
||||
ws ::= ([ \t\n]+)
|
48
k_quants.c
48
k_quants.c
|
@ -13,6 +13,26 @@
|
|||
//
|
||||
#include <arm_neon.h>
|
||||
|
||||
#if !defined(__aarch64__)
|
||||
inline static int32_t vaddvq_s16(int16x8_t v) {
|
||||
return
|
||||
(int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
|
||||
(int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
|
||||
(int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
|
||||
(int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
|
||||
}
|
||||
|
||||
inline static int16x8_t vpaddq_s16(int16x8_t a, int16x8_t b) {
|
||||
int16x4_t a0 = vpadd_s16(vget_low_s16(a), vget_high_s16(a));
|
||||
int16x4_t b0 = vpadd_s16(vget_low_s16(b), vget_high_s16(b));
|
||||
return vcombine_s16(a0, b0);
|
||||
}
|
||||
|
||||
inline static int32_t vaddvq_s32(int32x4_t v) {
|
||||
return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
|
||||
}
|
||||
#endif
|
||||
|
||||
#else
|
||||
|
||||
#ifdef __wasm_simd128__
|
||||
|
@ -183,13 +203,9 @@ static float make_qkx1_quants(int n, int nmax, const float * restrict x, uint8_t
|
|||
int ntry, float alpha) {
|
||||
float min = x[0];
|
||||
float max = x[0];
|
||||
float sum_x = 0;
|
||||
float sum_x2 = 0;
|
||||
for (int i = 1; i < n; ++i) {
|
||||
if (x[i] < min) min = x[i];
|
||||
if (x[i] > max) max = x[i];
|
||||
sum_x += x[i];
|
||||
sum_x2 += x[i]*x[i];
|
||||
}
|
||||
if (max == min) {
|
||||
for (int i = 0; i < n; ++i) L[i] = 0;
|
||||
|
@ -1306,7 +1322,9 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
|
|||
|
||||
const uint8x16_t m3 = vdupq_n_u8(0x3);
|
||||
const uint8x16_t m4 = vdupq_n_u8(0xF);
|
||||
#if defined(__ARM_FEATURE_DOTPROD)
|
||||
const int32x4_t vzero = vdupq_n_s32(0);
|
||||
#endif
|
||||
|
||||
int8x16x2_t q2bytes;
|
||||
uint8_t aux[16];
|
||||
|
@ -1612,7 +1630,9 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
|
|||
#ifdef __ARM_NEON
|
||||
|
||||
const uint8x16_t m3 = vdupq_n_u8(0x3);
|
||||
#if defined(__ARM_FEATURE_DOTPROD)
|
||||
const int32x4_t vzero = vdupq_n_s32(0);
|
||||
#endif
|
||||
|
||||
int8x16x4_t q2bytes;
|
||||
|
||||
|
@ -2060,7 +2080,7 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
|
|||
|
||||
__m256 acc = _mm256_setzero_ps();
|
||||
|
||||
uint32_t *aux;
|
||||
const uint32_t *aux;
|
||||
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
|
||||
|
@ -2070,7 +2090,7 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
|
|||
const int8_t * restrict q8 = y[i].qs;
|
||||
|
||||
// Set up scales
|
||||
aux = (uint32_t *)x[i].scales;
|
||||
aux = (const uint32_t *)x[i].scales;
|
||||
__m128i scales128 = _mm_set_epi32(
|
||||
((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
|
||||
((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
|
||||
|
@ -2596,8 +2616,6 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
|
|||
const uint8_t * restrict q4 = x[i].qs;
|
||||
const int8_t * restrict q8 = y[i].qs;
|
||||
|
||||
//int32x4_t isum = mzero;
|
||||
|
||||
int32_t sumi1 = 0;
|
||||
int32_t sumi2 = 0;
|
||||
|
||||
|
@ -3096,9 +3114,11 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri
|
|||
#ifdef __ARM_NEON
|
||||
|
||||
const uint8x16_t m4b = vdupq_n_u8(0xf);
|
||||
const int32x4_t mzero = vdupq_n_s32(0);
|
||||
const uint8x16_t mone = vdupq_n_u8(1);
|
||||
const uint8x16_t mtwo = vdupq_n_u8(2);
|
||||
#if defined(__ARM_FEATURE_DOTPROD)
|
||||
const int32x4_t mzero = vdupq_n_s32(0);
|
||||
#endif
|
||||
|
||||
int8x16x4_t q5bytes;
|
||||
|
||||
|
@ -3441,8 +3461,10 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri
|
|||
#ifdef __ARM_NEON
|
||||
|
||||
const uint8x16_t m4b = vdupq_n_u8(0xf);
|
||||
const int32x4_t mzero = vdupq_n_s32(0);
|
||||
const uint8x16_t mh = vdupq_n_u8(16);
|
||||
#if defined(__ARM_FEATURE_DOTPROD)
|
||||
const int32x4_t mzero = vdupq_n_s32(0);
|
||||
#endif
|
||||
|
||||
int8x16x4_t q5bytes;
|
||||
uint8x16x4_t q5h;
|
||||
|
@ -3660,7 +3682,9 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
|
|||
float sum = 0;
|
||||
|
||||
const uint8x16_t m4b = vdupq_n_u8(0xF);
|
||||
#if defined(__ARM_FEATURE_DOTPROD)
|
||||
const int32x4_t vzero = vdupq_n_s32(0);
|
||||
#endif
|
||||
//const int8x16_t m32s = vdupq_n_s8(32);
|
||||
|
||||
const uint8x16_t mone = vdupq_n_u8(3);
|
||||
|
@ -4049,8 +4073,10 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
|
|||
float sum = 0;
|
||||
|
||||
const uint8x16_t m4b = vdupq_n_u8(0xF);
|
||||
const int32x4_t vzero = vdupq_n_s32(0);
|
||||
const int8x16_t m32s = vdupq_n_s8(32);
|
||||
#if defined(__ARM_FEATURE_DOTPROD)
|
||||
const int32x4_t vzero = vdupq_n_s32(0);
|
||||
#endif
|
||||
|
||||
const uint8x16_t mone = vdupq_n_u8(3);
|
||||
|
||||
|
|
79
llama.cpp
79
llama.cpp
|
@ -325,6 +325,44 @@ static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES =
|
|||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_GPT2,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_GPTJ,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_GPTNEOX,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
{ LLM_TENSOR_OUTPUT, "output" },
|
||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
|
||||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_MPT,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_UNKNOWN,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
},
|
||||
},
|
||||
};
|
||||
|
||||
static llm_arch llm_arch_from_string(const std::string & name) {
|
||||
|
@ -1605,10 +1643,14 @@ static void llm_load_hparams(
|
|||
|
||||
GGUF_GET_KEY(ctx, hparams.n_rot, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ROPE_DIMENSION_COUNT));
|
||||
|
||||
if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
|
||||
if (hparams.n_rot != hparams.n_embd / hparams.n_head) {
|
||||
throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd / hparams.n_head));
|
||||
}
|
||||
}
|
||||
// gpt-neox n_rot = rotary_pct * (n_embd / n_head)
|
||||
// gpt-j n_rot = rotary_dim
|
||||
}
|
||||
|
||||
// arch-specific KVs
|
||||
switch (model.arch) {
|
||||
|
@ -3324,10 +3366,16 @@ struct llm_tokenizer_bpe {
|
|||
std::string byte_str(1, *j);
|
||||
auto token_multibyte = vocab.token_to_id.find(byte_str);
|
||||
if (token_multibyte == vocab.token_to_id.end()) {
|
||||
try {
|
||||
llama_token token_byte = llama_byte_to_token(vocab, *j);
|
||||
output.push_back(token_byte);
|
||||
} catch (const std::out_of_range & err) {
|
||||
fprintf(stderr,"ERROR: byte not found in vocab: '%s'\n", byte_str.c_str());
|
||||
}
|
||||
} else {
|
||||
output.push_back((*token_multibyte).second);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
output.push_back((*token).second);
|
||||
}
|
||||
|
@ -3600,7 +3648,7 @@ static void llama_grammar_advance_stack(
|
|||
std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
|
||||
|
||||
if (stack.empty()) {
|
||||
new_stacks.push_back(stack);
|
||||
new_stacks.emplace_back(stack);
|
||||
return;
|
||||
}
|
||||
|
||||
|
@ -3637,7 +3685,7 @@ static void llama_grammar_advance_stack(
|
|||
}
|
||||
case LLAMA_GRETYPE_CHAR:
|
||||
case LLAMA_GRETYPE_CHAR_NOT:
|
||||
new_stacks.push_back(stack);
|
||||
new_stacks.emplace_back(stack);
|
||||
break;
|
||||
default:
|
||||
// end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range
|
||||
|
@ -4393,7 +4441,7 @@ struct llama_logit_info {
|
|||
}
|
||||
return min_heap;
|
||||
}
|
||||
float probability_from_logit(float logit) {
|
||||
float probability_from_logit(float logit) const {
|
||||
return normalizer * std::exp(logit - max_l);
|
||||
}
|
||||
};
|
||||
|
@ -4683,6 +4731,10 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|||
llm_load_arch(*ml, model);
|
||||
llm_load_hparams(*ml, model, 0, 0, 0);
|
||||
|
||||
if (params->only_copy) {
|
||||
ftype = model.ftype;
|
||||
}
|
||||
|
||||
const size_t align = GGUF_DEFAULT_ALIGNMENT;
|
||||
struct gguf_context * ctx_out = gguf_init_empty();
|
||||
|
||||
|
@ -4769,18 +4821,13 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|||
// quantize only 2D tensors
|
||||
quantize &= (tensor->n_dims == 2);
|
||||
quantize &= params->quantize_output_tensor || name != "output.weight";
|
||||
quantize &= quantized_type != tensor->type;
|
||||
quantize &= !params->only_copy;
|
||||
|
||||
enum ggml_type new_type;
|
||||
void * new_data;
|
||||
size_t new_size;
|
||||
|
||||
if (!quantize) {
|
||||
new_type = tensor->type;
|
||||
new_data = tensor->data;
|
||||
new_size = ggml_nbytes(tensor);
|
||||
LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
|
||||
} else {
|
||||
if (quantize) {
|
||||
new_type = quantized_type;
|
||||
#ifdef GGML_USE_K_QUANTS
|
||||
// TODO: avoid hardcoded tensor names - use the TN_* constants
|
||||
|
@ -4879,7 +4926,16 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
// If we've decided to quantize to the same type the tensor is already
|
||||
// in then there's nothing to do.
|
||||
quantize = tensor->type != new_type;
|
||||
}
|
||||
if (!quantize) {
|
||||
new_type = tensor->type;
|
||||
new_data = tensor->data;
|
||||
new_size = ggml_nbytes(tensor);
|
||||
LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
|
||||
} else {
|
||||
const size_t nelements = ggml_nelements(tensor);
|
||||
|
||||
float * f32_data;
|
||||
|
@ -5311,6 +5367,7 @@ struct llama_model_quantize_params llama_model_quantize_default_params() {
|
|||
/*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
|
||||
/*.allow_requantize =*/ false,
|
||||
/*.quantize_output_tensor =*/ true,
|
||||
/*.only_copy =*/ false,
|
||||
};
|
||||
|
||||
return result;
|
||||
|
|
1
llama.h
1
llama.h
|
@ -164,6 +164,7 @@ extern "C" {
|
|||
enum llama_ftype ftype; // quantize to this llama_ftype
|
||||
bool allow_requantize; // allow quantizing non-f32/f16 tensors
|
||||
bool quantize_output_tensor; // quantize output.weight
|
||||
bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
|
||||
} llama_model_quantize_params;
|
||||
|
||||
// grammar types
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue