Make convert script with pytorch files

This commit is contained in:
Galunid 2023-10-26 12:40:15 +02:00
parent 51b3b56c08
commit a00bb06c43

View file

@ -3,6 +3,7 @@
from __future__ import annotations
import contextlib
import argparse
import json
import os
@ -20,6 +21,16 @@ if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
import gguf
def count_model_parts(dir_model: Path, prefix: str) -> int:
num_parts = 0
for filename in os.listdir(dir_model):
if filename.startswith(prefix):
num_parts += 1
if num_parts > 0:
print("gguf: found " + str(num_parts) + " model parts")
return num_parts
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(description="Convert a stablelm model to a GGML compatible file")
@ -141,16 +152,45 @@ tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
# tensor info
print("gguf: get tensor metadata")
part_names = iter(("model.safetensors",))
# get number of model parts
num_parts = count_model_parts(dir_model, "model-00")
if num_parts:
is_safetensors = True
from safetensors import safe_open
else:
if count_model_parts(dir_model, "model.safetensors") > 0:
is_safetensors = True
num_parts = 0
else:
is_safetensors = False
num_parts = count_model_parts(dir_model, "pytorch_model-")
if is_safetensors and num_parts == 0:
part_names = iter(("model.safetensors",))
elif num_parts == 0:
part_names = iter(("pytorch_model.bin",))
elif is_safetensors:
part_names = (
f"model-{n:05}-of-{num_parts:05}.safetensors" for n in range(1, num_parts + 1)
)
else:
part_names = (
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
)
for part_name in part_names:
if args.vocab_only:
break
print("gguf: loading model part '" + part_name + "'")
ctx = safe_open(dir_model / part_name, framework="pt", device="cpu")
if is_safetensors:
ctx = safe_open(dir_model / part_name, framework="pt", device="cpu")
else:
ctx = contextlib.nullcontext(torch.load(dir_model / part_name, map_location="cpu"))
with ctx as model_part:
for name in model_part.keys():
data = model_part.get_tensor(name)
data = model_part.get_tensor(name) if is_safetensors else model_part[name]
# we don't need these
if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"):