diff --git a/ggml-alloc.c b/ggml-alloc.c index 438db4537..ddf973dae 100644 --- a/ggml-alloc.c +++ b/ggml-alloc.c @@ -162,22 +162,12 @@ void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor) printf("\n"); } #endif - if ((char*)addr - (char*)alloc->data + size > alloc->max_size) { - printf("%s: op=%s name=%s max_size=%zu\n", __func__, ggml_op_name(tensor->op), ggml_get_name(tensor), (char*)addr - (char*)alloc->data + size); - } + alloc->max_size = MAX(alloc->max_size, (char*)addr - (char*)alloc->data + size); } // this is a very naive implementation, but for our case the number of free blocks should be very small static void ggml_allocator_free_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) { - // static int counter = 0; - // counter++; - // if (counter > 2) { - // printf("%s: counter=%d OMIT\n", __func__, counter); - // return; - // } else { - // printf("%s: counter=%d\n", __func__, counter); - // } void * ptr = tensor->data; if (ptr < alloc->data || (char*)ptr >= (char*)alloc->data + alloc->max_size) { @@ -189,7 +179,6 @@ static void ggml_allocator_free_tensor(struct ggml_allocr * alloc, struct ggml_t size_t size = ggml_allocator_get_alloc_size(alloc, tensor); size = aligned_offset(NULL, size, alloc->alignment); - // printf("%s: free data=[%p..%p] op=%s name=%s n_free_blocks=%d\n", __func__, tensor->data, (char*) tensor->data + size, ggml_op_name(tensor->op), ggml_get_name(tensor), alloc->n_free_blocks); AT_PRINTF("%s: freeing %s (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, size, alloc->n_free_blocks); #ifdef GGML_ALLOCATOR_DEBUG @@ -489,23 +478,11 @@ static size_t ggml_allocator_alloc_graph_tensors_n( if (parent == NULL) { break; } - bool was_null = parent->data == NULL; allocate_node(alloc, parent); - // if (was_null) { - // printf("%s: alloc n[%02d] %d data=[%p..%p] %s %s\n", __func__, i, j, parent->data, (char*) parent->data + ggml_nbytes(parent), ggml_op_name(parent->op), ggml_get_name(parent)); - // } else { - // printf("%s: exist n[%02d] %d data=[%p..%p] %s %s\n", __func__, i, j, parent->data, (char*) parent->data + ggml_nbytes(parent), ggml_op_name(parent->op), ggml_get_name(parent)); - // } } // allocate node - bool was_null = node->data == NULL; allocate_node(alloc, node); - // if (was_null) { - // printf("%s: alloc node[%02d] data=[%p..%p] %s %s\n", __func__, i, node->data, (char*) node->data + ggml_nbytes(node), ggml_op_name(node->op), ggml_get_name(node)); - // } else { - // printf("%s: exist node[%02d] data=[%p..%p] %s %s\n", __func__, i, node->data, (char*) node->data + ggml_nbytes(node), ggml_op_name(node->op), ggml_get_name(node)); - // } AT_PRINTF("exec: %s (%s) <= ", ggml_op_name(node->op), node->name); for (int j = 0; j < GGML_MAX_SRC; j++) { diff --git a/ggml.c b/ggml.c index b0e1a376c..90b610721 100644 --- a/ggml.c +++ b/ggml.c @@ -17548,48 +17548,6 @@ static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g // ref: https://arxiv.org/pdf/1412.6980.pdf // -uint32_t compute_data_checksum(struct ggml_tensor * tensor) { - const int n3 = (tensor->n_dims >= 3) ? tensor->ne[3] : 1; - const int n2 = (tensor->n_dims >= 2) ? tensor->ne[2] : 1; - const int n1 = (tensor->n_dims >= 1) ? tensor->ne[1] : 1; - const int n0 = (tensor->n_dims >= 0) ? tensor->ne[0] : 1; - const size_t nb0 = tensor->nb[0]; - const size_t nb1 = tensor->nb[1]; - const size_t nb2 = tensor->nb[2]; - const size_t nb3 = tensor->nb[3]; - const size_t nb = ggml_element_size(tensor); - uint32_t result = 0; - for (int i3 = 0; i3 < n3; ++i3) { - for (int i2 = 0; i2 < n2; ++i2) { - for (int i1 = 0; i1 < n1; ++i1) { - for (int i0 = 0; i0 < n0; ++i0) { - char * ptr = ((char *) tensor->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3); - uint32_t val; - memcpy(&val, ptr, nb); - result = result ^ val; - result = (((result << 1u) | ((result >> 31u) & 0x1u)) + 1u) & 0xffffffffu; - } - } - } - } - return result; -} - -void print_data_checksums(struct ggml_cgraph * g) { - for (int i = 0; i < g->n_nodes; ++i) { - struct ggml_tensor * node = g->nodes[i]; - for (int j = 0; jsrc[j]) { - struct ggml_tensor * src = node->src[j]; - uint32_t chk = compute_data_checksum(src); - printf("%s: node[%3d]->src[%d] chk=[%08x] data=[%p] op=%s name=%s\n", __func__, i, j, chk, src->data, ggml_op_name(src->op), ggml_get_name(src)); - } - } - uint32_t chk = compute_data_checksum(node); - printf("%s: node[%3d] chk=[%08x] data=[%p] op=%s name=%s\n", __func__, i, chk, node->data, ggml_op_name(node->op), ggml_get_name(node)); - } -} - static enum ggml_opt_result ggml_opt_adam( struct ggml_context * ctx, struct ggml_opt_context * opt, @@ -17651,8 +17609,6 @@ static enum ggml_opt_result ggml_opt_adam( cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs; ggml_graph_compute(gb, &cplan); - print_data_checksums(gb); - opt->adam.fx_prev = ggml_get_f32_1d(f, 0); opt->adam.fx_best = opt->adam.fx_prev; if (pf) { @@ -17714,8 +17670,6 @@ static enum ggml_opt_result ggml_opt_adam( const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter)); int64_t i = 0; for (int p = 0; p < np; ++p) { - printf("%s: para[%3d] chk=[%08x] op=%s name=%s\n", __func__, p, compute_data_checksum(ps[p]), ggml_op_name(ps[p]->op), ggml_get_name(ps[p])); - printf("%s: para[%3d]->grad chk=[%08x] op=%s name=%s\n", __func__, p, compute_data_checksum(ps[p]->grad), ggml_op_name(ps[p]->grad->op), ggml_get_name(ps[p]->grad)); const int64_t ne = ggml_nelements(ps[p]); const float p_decay = ((ps[p]->n_dims >= decay_min_ndim) ? decay : 0.0) * sched; for (int64_t j = 0; j < ne; ++j) { @@ -17794,11 +17748,6 @@ static enum ggml_opt_result ggml_opt_adam( } } - print_data_checksums(gb); - for (int p = 0; p < np; ++p) { - printf("%s: para[%3d] chk=[%08x] op=%s name=%s\n", __func__, p, compute_data_checksum(ps[p]), ggml_op_name(ps[p]->op), ggml_get_name(ps[p])); - printf("%s: para[%3d]->grad chk=[%08x] op=%s name=%s\n", __func__, p, compute_data_checksum(ps[p]->grad), ggml_op_name(ps[p]->grad->op), ggml_get_name(ps[p]->grad)); - } return GGML_OPT_DID_NOT_CONVERGE; }