IQ4_NL: 4-bit non-linear quants with blocks of 32 (#5590)
* iq4_nl: squash commits for easier rebase * Basics (quantize, dequantize) * CUDA dequantize and dot product * Slightly faster CUDA dot product (120 t/s) * Switch to 6-bit scales * Scalar dot product * AVX2 dot product * ARM_NEON dot product * Works on metal, but still slow * Slightly better Metal dot product * Another small Metal improvement * Metal dot product is getting there * Faster CUDA dot product * Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided * Report the actual bpw * Add _xs mix that is 4.05 bpw for non-MoE models * Remove IQ4_XS for now, slightly adjust kvalues_iq4nl * AVX2 dot product uses Q8_0 instead of Q8_K * Add to test-backend-ops * Minor fix * Also use use Q5_K for attn_output in MoE models * Fixes after merging latest master * Switching to blocks of 32 * AVX2 for blocks of 32 * Scaler dot product for blocks of 32 * ARM_NEON dot product for blocks of 32 * Metal kernels for blocks of 32 * Slightly faster Metal kernels * iq4_nl: Fix after merging with master * iq4_nl: another fix after merging with master * Use IQ4_NL instead of Q4_K when using k-quants is not possible * Fix typo that makes several tests fail * It was the ggml_vdotq thing missed inside the brackets --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
This commit is contained in:
parent
6560bed3f0
commit
a14679cc30
11 changed files with 640 additions and 7 deletions
1
llama.h
1
llama.h
|
@ -101,6 +101,7 @@ extern "C" {
|
|||
LLAMA_FTYPE_MOSTLY_Q3_K_XS = 22, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_IQ3_XXS = 23, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_IQ1_S = 24, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_IQ4_NL = 25, // except 1d tensors
|
||||
|
||||
LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
|
||||
};
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue