Merge branch 'ggerganov:master' into server-chat-templates

This commit is contained in:
MaggotHATE 2024-11-13 12:15:29 +05:00 committed by GitHub
commit a1ee42d521
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
13 changed files with 144 additions and 27 deletions

View file

@ -196,6 +196,7 @@ struct vk_device_struct {
vk_pipeline pipeline_pad_f32;
vk_pipeline pipeline_repeat_f32;
vk_pipeline pipeline_cpy_f32_f32, pipeline_cpy_f32_f16, pipeline_cpy_f16_f16;
vk_pipeline pipeline_contig_cpy_f32_f32, pipeline_contig_cpy_f32_f16, pipeline_contig_cpy_f16_f16;
vk_pipeline pipeline_norm_f32;
vk_pipeline pipeline_group_norm_f32;
vk_pipeline pipeline_rms_norm_f32;
@ -722,6 +723,12 @@ static void ggml_vk_create_pipeline_func(vk_device& device, vk_pipeline& pipelin
std::lock_guard<std::mutex> guard(compile_count_mutex);
assert(compile_count > 0);
compile_count--;
// "Progress bar" for shader compiles
static uint32_t total_compile_count = 0;
if ((total_compile_count++ % 10) == 0) {
std::cerr << ".";
}
}
compile_count_cond.notify_all();
}
@ -1200,6 +1207,8 @@ static void ggml_vk_wait_events(vk_context& ctx, std::vector<vk::Event>&& events
static void ggml_vk_load_shaders(vk_device& device) {
VK_LOG_DEBUG("ggml_vk_load_shaders(" << device->name << ")");
std::cerr << "ggml_vulkan: Compiling shaders";
// mulmat
std::initializer_list<uint32_t> warptile_l = { 128, 128, 128, 16, device->subgroup_size * 2, 64, 2, 4, 4, device->subgroup_size };
std::initializer_list<uint32_t> warptile_m = { 128, 64, 64, 16, device->subgroup_size, 32, 2, 4, 2, device->subgroup_size };
@ -1759,6 +1768,10 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_f16, "cpy_f32_f16", cpy_f32_f16_len, cpy_f32_f16_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f16_f16, "cpy_f16_f16", cpy_f16_f16_len, cpy_f16_f16_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_f32_f32, "contig_cpy_f32_f32", contig_cpy_f32_f32_len, contig_cpy_f32_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_f32_f16, "contig_cpy_f32_f16", contig_cpy_f32_f16_len, contig_cpy_f32_f16_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_f16_f16, "contig_cpy_f16_f16", contig_cpy_f16_f16_len, contig_cpy_f16_f16_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_add_f32, "add_f32", add_f32_len, add_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_add_f16_f32_f16, "add_f16_f32_f16", add_f16_f32_f16_len, add_f16_f32_f16_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1);
@ -1817,6 +1830,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
for (auto &c : compiles) {
c.wait();
}
std::cerr << "Done!" << std::endl;
}
static vk_device ggml_vk_get_device(size_t idx) {
@ -3061,18 +3075,34 @@ static bool ggml_vk_dim01_contiguous(const ggml_tensor * tensor) {
tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
}
static vk_pipeline ggml_vk_get_cpy_pipeline(ggml_backend_vk_context * ctx, ggml_type from, ggml_type to) {
if (from == GGML_TYPE_F32 && to == GGML_TYPE_F32) {
return ctx->device->pipeline_cpy_f32_f32;
static vk_pipeline ggml_vk_get_cpy_pipeline(ggml_backend_vk_context * ctx, const ggml_tensor * src, const ggml_tensor * dst, ggml_type to) {
// Choose "contiguous copy" shader if src/dst are contiguous
bool contig = ggml_is_contiguous(src) && (!dst || ggml_is_contiguous(dst));
if (src->type == GGML_TYPE_F32 && to == GGML_TYPE_F32) {
if (contig) {
return ctx->device->pipeline_contig_cpy_f32_f32;
} else {
return ctx->device->pipeline_cpy_f32_f32;
}
}
if (from == GGML_TYPE_F32 && to == GGML_TYPE_F16) {
return ctx->device->pipeline_cpy_f32_f16;
if (src->type == GGML_TYPE_F32 && to == GGML_TYPE_F16) {
if (contig) {
return ctx->device->pipeline_contig_cpy_f32_f16;
} else {
return ctx->device->pipeline_cpy_f32_f16;
}
}
if (from == GGML_TYPE_F16 && to == GGML_TYPE_F16) {
return ctx->device->pipeline_cpy_f16_f16;
if (src->type == GGML_TYPE_F16 && to == GGML_TYPE_F16) {
if (contig) {
return ctx->device->pipeline_contig_cpy_f16_f16;
} else {
return ctx->device->pipeline_cpy_f16_f16;
}
}
std::cerr << "Missing CPY op for types: " << ggml_type_name(from) << " " << ggml_type_name(to) << std::endl;
std::cerr << "Missing CPY op for types: " << ggml_type_name(src->type) << " " << ggml_type_name(to) << std::endl;
GGML_ABORT("fatal error");
}
@ -3082,6 +3112,15 @@ static void ggml_vk_cpy_to_contiguous(ggml_backend_vk_context * ctx, vk_context&
const int tensor_type_size = ggml_type_size(tensor->type);
const uint32_t ne = ggml_nelements(tensor);
std::array<uint32_t, 3> elements;
if (ne > 262144) {
elements = { 512, 512, CEIL_DIV(ne, 262144) };
} else if (ne > 512) {
elements = { 512, CEIL_DIV(ne, 512), 1 };
} else {
elements = { ne, 1, 1 };
}
const vk_op_unary_push_constants pc = {
(uint32_t)ne,
@ -3091,7 +3130,7 @@ static void ggml_vk_cpy_to_contiguous(ggml_backend_vk_context * ctx, vk_context&
0.0f, 0.0f,
};
ggml_vk_sync_buffers(subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { in, out }, sizeof(vk_op_unary_push_constants), &pc, { ne, 1, 1 });
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { in, out }, sizeof(vk_op_unary_push_constants), &pc, elements);
}
static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
@ -3176,12 +3215,12 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub
vk_pipeline to_fp16_vk_1 = nullptr;
if (x_non_contig) {
to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0->type, GGML_TYPE_F16);
to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0, nullptr, GGML_TYPE_F16);
} else {
to_fp16_vk_0 = ggml_vk_get_to_fp16(ctx, src0->type);
}
if (y_non_contig) {
to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1->type, GGML_TYPE_F16);
to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1, nullptr, GGML_TYPE_F16);
} else {
to_fp16_vk_1 = ggml_vk_get_to_fp16(ctx, src1->type);
}
@ -3361,10 +3400,10 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context&
vk_pipeline to_fp16_vk_0 = nullptr;
vk_pipeline to_fp16_vk_1 = nullptr;
if (x_non_contig) {
to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0->type, src0->type);
to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0, nullptr, src0->type);
}
if (y_non_contig) {
to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1->type, src1->type);
to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1, nullptr, src1->type);
} else {
to_fp16_vk_1 = ggml_vk_get_to_fp16(ctx, src1->type);
}
@ -3745,12 +3784,12 @@ static void ggml_vk_mul_mat_id_q_f16(ggml_backend_vk_context * ctx, vk_context&
vk_pipeline to_fp16_vk_1 = nullptr;
if (x_non_contig) {
to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0->type, GGML_TYPE_F16);
to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0, nullptr, GGML_TYPE_F16);
} else {
to_fp16_vk_0 = ggml_vk_get_to_fp16(ctx, src0->type);
}
if (y_non_contig) {
to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1->type, GGML_TYPE_F16);
to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1, nullptr, GGML_TYPE_F16);
} else {
to_fp16_vk_1 = ggml_vk_get_to_fp16(ctx, src1->type);
}
@ -3938,10 +3977,10 @@ static void ggml_vk_mul_mat_vec_id_q_f16(ggml_backend_vk_context * ctx, vk_conte
vk_pipeline to_fp16_vk_0 = nullptr;
vk_pipeline to_fp16_vk_1 = nullptr;
if (x_non_contig) {
to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0->type, src0->type);
to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0, nullptr, src0->type);
}
if (y_non_contig) {
to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1->type, src1->type);
to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1, nullptr, src1->type);
} else {
to_fp16_vk_1 = ggml_vk_get_to_fp16(ctx, src1->type);
}
@ -4148,7 +4187,7 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
case GGML_OP_CPY:
case GGML_OP_CONT:
case GGML_OP_DUP:
return ggml_vk_get_cpy_pipeline(ctx, src0->type, dst->type);
return ggml_vk_get_cpy_pipeline(ctx, src0, dst, dst->type);
case GGML_OP_NORM:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_norm_f32;
@ -4281,7 +4320,6 @@ static bool ggml_vk_op_supports_incontiguous(ggml_op op) {
case GGML_OP_DIV:
case GGML_OP_CONCAT:
case GGML_OP_UPSCALE:
case GGML_OP_SCALE:
case GGML_OP_SQR:
case GGML_OP_SIN:
case GGML_OP_COS:

View file

@ -3,6 +3,8 @@
#include "types.comp"
#include "generic_unary_head.comp"
layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
void main() {
const uint idx = get_idx();

View file

@ -0,0 +1,42 @@
#version 450
#include "types.comp"
#include "generic_unary_head.comp"
#extension GL_EXT_control_flow_attributes : require
const uint num_threads = 128;
layout(local_size_x = num_threads, local_size_y = 1, local_size_z = 1) in;
void main() {
uint idx = get_idx();
// num_threads * num_iter must equal 512, to match the wg_denoms and get_idx calculation
const uint num_iter = 4;
// fast path for when all four iterations are in-bounds
if (idx + (num_iter-1)*num_threads < p.ne) {
[[unroll]] for (uint i = 0; i < num_iter; ++i) {
#ifndef OPTIMIZATION_ERROR_WORKAROUND
data_d[p.d_offset + idx] = D_TYPE(data_a[idx]);
#else
data_d[p.d_offset + idx] = data_a[idx];
#endif
idx += num_threads;
}
} else {
[[unroll]] for (uint i = 0; i < num_iter; ++i) {
if (idx >= p.ne) {
continue;
}
#ifndef OPTIMIZATION_ERROR_WORKAROUND
data_d[p.d_offset + idx] = D_TYPE(data_a[idx]);
#else
data_d[p.d_offset + idx] = data_a[idx];
#endif
idx += num_threads;
}
}
}

View file

@ -3,6 +3,8 @@
#include "types.comp"
#include "generic_unary_head.comp"
layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
void main() {
const uint idx = get_idx();

View file

@ -3,6 +3,8 @@
#include "types.comp"
#include "generic_unary_head.comp"
layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
void main() {
const uint idx = get_idx();

View file

@ -1,4 +1,5 @@
#extension GL_EXT_shader_16bit_storage : require
#extension GL_EXT_control_flow_attributes : require
layout (push_constant) uniform parameter
{
@ -9,8 +10,6 @@ layout (push_constant) uniform parameter
float param1; float param2;
} p;
layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
layout (binding = 1) writeonly buffer D {D_TYPE data_d[];};

View file

@ -3,6 +3,8 @@
#include "types.comp"
#include "generic_unary_head.comp"
layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
void main() {
const uint idx = gl_GlobalInvocationID.z * 262144 + gl_GlobalInvocationID.y * 512 + gl_GlobalInvocationID.x;

View file

@ -3,6 +3,8 @@
#include "types.comp"
#include "generic_unary_head.comp"
layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
uint src0_idx_mod(uint idx) {
const uint i13 = idx / (p.ne12*p.ne11*p.ne10);
const uint i13_offset = i13 * p.ne12*p.ne11*p.ne10;

View file

@ -3,12 +3,22 @@
#include "types.comp"
#include "generic_unary_head.comp"
const uint num_threads = 128;
layout(local_size_x = num_threads, local_size_y = 1, local_size_z = 1) in;
void main() {
const uint idx = get_idx();
uint idx = get_idx();
if (idx >= p.ne) {
return;
// num_threads * num_iter must equal 512, to match the wg_denoms and get_idx calculation
const uint num_iter = 4;
[[unroll]] for (uint i = 0; i < num_iter; ++i) {
if (idx >= p.ne) {
continue;
}
data_d[p.d_offset + idx] = D_TYPE(FLOAT_TYPE(data_a[idx]) * FLOAT_TYPE(p.param1));
idx += num_threads;
}
data_d[p.d_offset + dst_idx(idx)] = D_TYPE(FLOAT_TYPE(data_a[src0_idx(idx)]) * FLOAT_TYPE(p.param1));
}

View file

@ -3,6 +3,8 @@
#include "types.comp"
#include "generic_unary_head.comp"
layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
void main() {
const uint idx = get_idx();

View file

@ -3,6 +3,8 @@
#include "types.comp"
#include "generic_unary_head.comp"
layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
void main() {
const uint idx = get_idx();

View file

@ -350,6 +350,9 @@ void process_shaders() {
string_to_spv("cpy_f32_f32", "copy.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("cpy_f32_f16", "copy.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float16_t"}});
string_to_spv("cpy_f16_f16", "copy.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}, {"OPTIMIZATION_ERROR_WORKAROUND", "1"}});
string_to_spv("contig_cpy_f32_f32", "contig_copy.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("contig_cpy_f32_f16", "contig_copy.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float16_t"}});
string_to_spv("contig_cpy_f16_f16", "contig_copy.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}, {"OPTIMIZATION_ERROR_WORKAROUND", "1"}});
string_to_spv("add_f32", "add.comp", {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}});
string_to_spv("add_f16_f32_f16", "add.comp", {{"A_TYPE", "float16_t"}, {"B_TYPE", "float"}, {"D_TYPE", "float16_t"}, {"FLOAT_TYPE", "float"}});

View file

@ -681,6 +681,7 @@ struct test_case {
// run
int64_t total_time_us = 0;
int64_t total_mem = 0;
int total_runs = 0;
do {
int64_t start_time = ggml_time_us();
@ -688,6 +689,7 @@ struct test_case {
int64_t end_time = ggml_time_us();
total_time_us += end_time - start_time;
total_mem += mem;
total_runs += n_runs;
} while (total_time_us < 1000*1000); // run for at least 1 second
@ -717,7 +719,7 @@ struct test_case {
} else {
printf("%8zu kB/run - \033[1;34m%7.2f GB/s\033[0m",
op_size(out) / 1024,
mem / (total_time_us / 1e6) / 1024.0 / 1024.0 / 1024.0);
total_mem / (total_time_us / 1e6) / 1024.0 / 1024.0 / 1024.0);
}
printf("\n");
@ -2740,6 +2742,13 @@ struct test_flash_attn_ext : public test_case {
return 5e-4;
}
uint64_t op_flops(ggml_tensor * t) override {
GGML_UNUSED(t);
// Just counting matmul costs:
// Q*K^T is nb x hs x kv, P*V is nb x kv x hs, per head
return 2 * 2 * nh * nb * hs * kv;
}
test_flash_attn_ext(int64_t hs = 128, int64_t nh = 32, int64_t kv = 96, int64_t nb = 8,
bool mask = true, float max_bias = 0.0f, float logit_softcap = 0.0f, ggml_type type_KV = GGML_TYPE_F16)
: hs(hs), nh(nh), kv(kv), nb(nb), mask(mask), max_bias(max_bias), logit_softcap(logit_softcap), type_KV(type_KV) {}
@ -3779,6 +3788,8 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 1, 1, 1}));
test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 512, 1, 1}));
test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F16, {512, 3072, 1, 1}));
for (int bs : {1, 512}) {
for (ggml_type type_a : all_types) {
for (ggml_type type_b : {GGML_TYPE_F32}) {