convert.py : add python logging instead of print() (#6511)
* convert.py: add python logging instead of print() * convert.py: verbose flag takes priority over dump flag log suppression * convert.py: named instance logging * convert.py: use explicit logger id string * convert.py: convert extra print() to named logger * convert.py: sys.stderr.write --> logger.error * *.py: Convert all python scripts to use logging module * requirements.txt: remove extra line * flake8: update flake8 ignore and exclude to match ci settings * gh-actions: add flake8-no-print to flake8 lint step * pre-commit: add flake8-no-print to flake8 and also update pre-commit version * convert-hf-to-gguf.py: print() to logger conversion * *.py: logging basiconfig refactor to use conditional expression * *.py: removed commented out logging * fixup! *.py: logging basiconfig refactor to use conditional expression * constant.py: logger.error then exit should be a raise exception instead * *.py: Convert logger error and sys.exit() into a raise exception (for atypical error) * gguf-convert-endian.py: refactor convert_byteorder() to use tqdm progressbar * verify-checksum-model.py: This is the result of the program, it should be printed to stdout. * compare-llama-bench.py: add blank line for readability during missing repo response * reader.py: read_gguf_file() use print() over logging * convert.py: warning goes to stderr and won't hurt the dump output * gguf-dump.py: dump_metadata() should print to stdout * convert-hf-to-gguf.py: print --> logger.debug or ValueError() * verify-checksum-models.py: use print() for printing table * *.py: refactor logging.basicConfig() * gguf-py/gguf/*.py: use __name__ as logger name Since they will be imported and not run directly. * python-lint.yml: use .flake8 file instead * constants.py: logger no longer required * convert-hf-to-gguf.py: add additional logging * convert-hf-to-gguf.py: print() --> logger * *.py: fix flake8 warnings * revert changes to convert-hf-to-gguf.py for get_name() * convert-hf-to-gguf-update.py: use triple quoted f-string instead * *.py: accidentally corrected the wrong line * *.py: add compilade warning suggestions and style fixes
This commit is contained in:
parent
433def286e
commit
a2ac89d6ef
23 changed files with 536 additions and 482 deletions
|
@ -2,6 +2,7 @@
|
|||
|
||||
from __future__ import annotations
|
||||
|
||||
import logging
|
||||
import argparse
|
||||
import contextlib
|
||||
import json
|
||||
|
@ -26,6 +27,8 @@ import gguf
|
|||
|
||||
from convert import LlamaHfVocab, permute
|
||||
|
||||
logger = logging.getLogger("hf-to-gguf")
|
||||
|
||||
|
||||
###### MODEL DEFINITIONS ######
|
||||
|
||||
|
@ -76,7 +79,7 @@ class Model(ABC):
|
|||
|
||||
def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
|
||||
for part_name in self.part_names:
|
||||
print(f"gguf: loading model part '{part_name}'")
|
||||
logger.info(f"gguf: loading model part '{part_name}'")
|
||||
ctx: ContextManager[Any]
|
||||
if self.is_safetensors:
|
||||
from safetensors import safe_open
|
||||
|
@ -95,42 +98,42 @@ class Model(ABC):
|
|||
|
||||
if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
|
||||
self.gguf_writer.add_context_length(n_ctx)
|
||||
print(f"gguf: context length = {n_ctx}")
|
||||
logger.info(f"gguf: context length = {n_ctx}")
|
||||
|
||||
n_embd = self.find_hparam(["hidden_size", "n_embd"])
|
||||
self.gguf_writer.add_embedding_length(n_embd)
|
||||
print(f"gguf: embedding length = {n_embd}")
|
||||
logger.info(f"gguf: embedding length = {n_embd}")
|
||||
|
||||
if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
|
||||
self.gguf_writer.add_feed_forward_length(n_ff)
|
||||
print(f"gguf: feed forward length = {n_ff}")
|
||||
logger.info(f"gguf: feed forward length = {n_ff}")
|
||||
|
||||
n_head = self.find_hparam(["num_attention_heads", "n_head"])
|
||||
self.gguf_writer.add_head_count(n_head)
|
||||
print(f"gguf: head count = {n_head}")
|
||||
logger.info(f"gguf: head count = {n_head}")
|
||||
|
||||
if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
|
||||
self.gguf_writer.add_head_count_kv(n_head_kv)
|
||||
print(f"gguf: key-value head count = {n_head_kv}")
|
||||
logger.info(f"gguf: key-value head count = {n_head_kv}")
|
||||
|
||||
if (rope_theta := self.hparams.get("rope_theta")) is not None:
|
||||
self.gguf_writer.add_rope_freq_base(rope_theta)
|
||||
print(f"gguf: rope theta = {rope_theta}")
|
||||
logger.info(f"gguf: rope theta = {rope_theta}")
|
||||
if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
|
||||
self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
|
||||
print(f"gguf: rms norm epsilon = {f_rms_eps}")
|
||||
logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
|
||||
if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
|
||||
self.gguf_writer.add_layer_norm_eps(f_norm_eps)
|
||||
print(f"gguf: layer norm epsilon = {f_norm_eps}")
|
||||
logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
|
||||
if (n_experts := self.hparams.get("num_local_experts")) is not None:
|
||||
self.gguf_writer.add_expert_count(n_experts)
|
||||
print(f"gguf: expert count = {n_experts}")
|
||||
logger.info(f"gguf: expert count = {n_experts}")
|
||||
if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
|
||||
self.gguf_writer.add_expert_used_count(n_experts_used)
|
||||
print(f"gguf: experts used count = {n_experts_used}")
|
||||
logger.info(f"gguf: experts used count = {n_experts_used}")
|
||||
|
||||
self.gguf_writer.add_file_type(self.ftype)
|
||||
print(f"gguf: file type = {self.ftype}")
|
||||
logger.info(f"gguf: file type = {self.ftype}")
|
||||
|
||||
def write_tensors(self):
|
||||
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
|
||||
|
@ -151,8 +154,7 @@ class Model(ABC):
|
|||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
@ -169,7 +171,7 @@ class Model(ABC):
|
|||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
@ -274,8 +276,8 @@ class Model(ABC):
|
|||
chktok = tokenizer.encode(chktxt)
|
||||
chkhsh = sha256(str(chktok).encode()).hexdigest()
|
||||
|
||||
print(f"chktok: {chktok}")
|
||||
print(f"chkhsh: {chkhsh}")
|
||||
logger.debug(f"chktok: {chktok}")
|
||||
logger.debug(f"chkhsh: {chkhsh}")
|
||||
|
||||
res = None
|
||||
|
||||
|
@ -308,22 +310,22 @@ class Model(ABC):
|
|||
res = "gpt-2"
|
||||
|
||||
if res is None:
|
||||
print("\n")
|
||||
print("**************************************************************************************")
|
||||
print("** WARNING: The BPE pre-tokenizer was not recognized!")
|
||||
print("** There are 2 possible reasons for this:")
|
||||
print("** - the model has not been added to convert-hf-to-gguf-update.py yet")
|
||||
print("** - the pre-tokenization config has changed upstream")
|
||||
print("** Check your model files and convert-hf-to-gguf-update.py and update them accordingly.")
|
||||
print("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
|
||||
print("**")
|
||||
print(f"** chkhsh: {chkhsh}")
|
||||
print("**************************************************************************************")
|
||||
print("\n")
|
||||
logger.warning("\n")
|
||||
logger.warning("**************************************************************************************")
|
||||
logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
|
||||
logger.warning("** There are 2 possible reasons for this:")
|
||||
logger.warning("** - the model has not been added to convert-hf-to-gguf-update.py yet")
|
||||
logger.warning("** - the pre-tokenization config has changed upstream")
|
||||
logger.warning("** Check your model files and convert-hf-to-gguf-update.py and update them accordingly.")
|
||||
logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
|
||||
logger.warning("**")
|
||||
logger.warning(f"** chkhsh: {chkhsh}")
|
||||
logger.warning("**************************************************************************************")
|
||||
logger.warning("\n")
|
||||
raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
|
||||
|
||||
print(f"tokenizer.ggml.pre: {res}")
|
||||
print(f"chkhsh: {chkhsh}")
|
||||
logger.debug(f"tokenizer.ggml.pre: {res}")
|
||||
logger.debug(f"chkhsh: {chkhsh}")
|
||||
|
||||
return res
|
||||
|
||||
|
@ -439,9 +441,7 @@ class Model(ABC):
|
|||
|
||||
if vocab_size > len(tokens):
|
||||
pad_count = vocab_size - len(tokens)
|
||||
print(
|
||||
f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]"
|
||||
)
|
||||
logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
|
||||
for i in range(1, pad_count + 1):
|
||||
tokens.append(f"[PAD{i}]")
|
||||
scores.append(-1000.0)
|
||||
|
@ -553,7 +553,7 @@ class BloomModel(Model):
|
|||
),
|
||||
axis=0,
|
||||
)
|
||||
print("re-format attention.linear_qkv.weight")
|
||||
logger.info("re-format attention.linear_qkv.weight")
|
||||
elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
|
||||
qkv_bias = data.reshape((n_head, 3, n_embed // n_head))
|
||||
data = np.concatenate(
|
||||
|
@ -564,13 +564,12 @@ class BloomModel(Model):
|
|||
),
|
||||
axis=0,
|
||||
)
|
||||
print("re-format attention.linear_qkv.bias")
|
||||
logger.info("re-format attention.linear_qkv.bias")
|
||||
|
||||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
@ -587,13 +586,13 @@ class BloomModel(Model):
|
|||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"=> {new_name}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
|
||||
logger.info(f"=> {new_name}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
if not has_lm_head and name == "word_embeddings.weight":
|
||||
self.gguf_writer.add_tensor("output.weight", data)
|
||||
print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
|
||||
logger.info(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
|
||||
@Model.register("MPTForCausalLM")
|
||||
|
@ -653,8 +652,7 @@ class MPTModel(Model):
|
|||
else:
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
@ -671,7 +669,7 @@ class MPTModel(Model):
|
|||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
@ -697,8 +695,7 @@ class OrionModel(Model):
|
|||
elif "model_max_length" in self.hparams:
|
||||
ctx_length = self.hparams["model_max_length"]
|
||||
else:
|
||||
print("gguf: can not find ctx length parameter.")
|
||||
sys.exit()
|
||||
raise ValueError("gguf: can not find ctx length parameter.")
|
||||
|
||||
self.gguf_writer.add_file_type(self.ftype)
|
||||
self.gguf_writer.add_name(self.dir_model.name)
|
||||
|
@ -736,8 +733,7 @@ class OrionModel(Model):
|
|||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
@ -754,7 +750,7 @@ class OrionModel(Model):
|
|||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
logger.info(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
||||
|
@ -779,8 +775,7 @@ class BaichuanModel(Model):
|
|||
elif "model_max_length" in self.hparams:
|
||||
ctx_length = self.hparams["model_max_length"]
|
||||
else:
|
||||
print("gguf: can not find ctx length parameter.")
|
||||
sys.exit()
|
||||
raise ValueError("gguf: can not find ctx length parameter.")
|
||||
|
||||
self.gguf_writer.add_name(self.dir_model.name)
|
||||
self.gguf_writer.add_source_hf_repo(hf_repo)
|
||||
|
@ -809,7 +804,7 @@ class BaichuanModel(Model):
|
|||
|
||||
for i in range(block_count):
|
||||
if (w := model_kv.get(f"model.layers.{i}.self_attn.W_pack.weight")) is not None:
|
||||
print(f"Unpacking and permuting layer {i}")
|
||||
logger.info(f"Unpacking and permuting layer {i}")
|
||||
model_kv[f"model.layers.{i}.self_attn.q_proj.weight"] = \
|
||||
self._reverse_hf_permute_part(w, 0, head_count, head_count)
|
||||
model_kv[f"model.layers.{i}.self_attn.k_proj.weight"] = \
|
||||
|
@ -834,8 +829,7 @@ class BaichuanModel(Model):
|
|||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
@ -852,7 +846,7 @@ class BaichuanModel(Model):
|
|||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
logger.info(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
|
||||
|
@ -937,8 +931,7 @@ class XverseModel(Model):
|
|||
elif "model_max_length" in self.hparams:
|
||||
ctx_length = self.hparams["model_max_length"]
|
||||
else:
|
||||
print("gguf: can not find ctx length parameter.")
|
||||
sys.exit()
|
||||
raise ValueError("gguf: can not find ctx length parameter.")
|
||||
|
||||
self.gguf_writer.add_name(self.dir_model.name)
|
||||
self.gguf_writer.add_source_hf_repo(hf_repo)
|
||||
|
@ -987,8 +980,7 @@ class XverseModel(Model):
|
|||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
@ -1005,7 +997,7 @@ class XverseModel(Model):
|
|||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
logger.info(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
|
||||
|
@ -1092,8 +1084,7 @@ class FalconModel(Model):
|
|||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
@ -1110,7 +1101,7 @@ class FalconModel(Model):
|
|||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
@ -1197,8 +1188,7 @@ class RefactModel(Model):
|
|||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight",))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
@ -1215,7 +1205,7 @@ class RefactModel(Model):
|
|||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
@ -1264,10 +1254,9 @@ class PersimmonModel(Model):
|
|||
data = data_torch.to(torch.float32).squeeze().numpy()
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
n_dims = len(data.shape)
|
||||
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
||||
|
@ -1332,8 +1321,7 @@ class StableLMModel(Model):
|
|||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
@ -1350,7 +1338,7 @@ class StableLMModel(Model):
|
|||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and not new_name.endswith("_norm.weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
logger.debug(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
@ -1366,8 +1354,7 @@ class StableLMModel(Model):
|
|||
merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
|
||||
new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
|
||||
data = data.astype(np.float32)
|
||||
|
||||
|
@ -1375,7 +1362,7 @@ class StableLMModel(Model):
|
|||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and not new_name.endswith("_norm.weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
|
||||
logger.debug(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
@ -1480,10 +1467,9 @@ class LlamaModel(Model):
|
|||
|
||||
new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
|
||||
print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
|
||||
logger.info(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
continue
|
||||
|
@ -1491,8 +1477,7 @@ class LlamaModel(Model):
|
|||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
@ -1509,7 +1494,7 @@ class LlamaModel(Model):
|
|||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
@ -1584,10 +1569,9 @@ class GrokModel(Model):
|
|||
|
||||
new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
|
||||
print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
|
||||
logger.info(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
continue
|
||||
|
@ -1595,8 +1579,7 @@ class GrokModel(Model):
|
|||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
@ -1613,7 +1596,7 @@ class GrokModel(Model):
|
|||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
@ -1646,7 +1629,7 @@ class DbrxModel(Model):
|
|||
self.gguf_writer.add_layer_norm_eps(1e-5)
|
||||
|
||||
self.gguf_writer.add_file_type(self.ftype)
|
||||
print(f"gguf: file type = {self.ftype}")
|
||||
logger.info(f"gguf: file type = {self.ftype}")
|
||||
|
||||
def write_tensors(self):
|
||||
block_count = self.hparams.get("n_layers")
|
||||
|
@ -1689,8 +1672,7 @@ class DbrxModel(Model):
|
|||
# https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
|
||||
new_name = tensor_map.get_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
@ -1698,8 +1680,7 @@ class DbrxModel(Model):
|
|||
# Most of the codebase that takes in 1D tensors only handles F32 tensors
|
||||
# and most of the outputs tensors are F32.
|
||||
if data_dtype != np.float32 and n_dims == 1:
|
||||
print(f"Can not map tensor {name!r}: all 1D tensors must be F32")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}: all 1D tensors must be F32")
|
||||
|
||||
# if f32 desired, convert any float16 to float32
|
||||
if self.ftype == 0 and data_dtype == np.float16:
|
||||
|
@ -1709,7 +1690,7 @@ class DbrxModel(Model):
|
|||
if self.ftype == 1 and data_dtype == np.float32 and n_dims > 1:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{new_name}, n_dims = {n_dims}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
|
||||
logger.debug(f"{new_name}, n_dims = {n_dims}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
@ -1771,8 +1752,7 @@ class MiniCPMModel(Model):
|
|||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
@ -1789,7 +1769,7 @@ class MiniCPMModel(Model):
|
|||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
@ -1855,8 +1835,7 @@ class QwenModel(Model):
|
|||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
@ -1873,7 +1852,7 @@ class QwenModel(Model):
|
|||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
||||
|
@ -1950,10 +1929,9 @@ class Qwen2MoeModel(Model):
|
|||
|
||||
new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
|
||||
print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
|
||||
logger.debug(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
continue
|
||||
|
@ -1961,8 +1939,7 @@ class Qwen2MoeModel(Model):
|
|||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
@ -1979,7 +1956,7 @@ class Qwen2MoeModel(Model):
|
|||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{new_name}, n_dims = {n_dims}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
|
||||
logger.debug(f"{new_name}, n_dims = {n_dims}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
@ -2024,8 +2001,7 @@ class GPT2Model(Model):
|
|||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
@ -2042,13 +2018,13 @@ class GPT2Model(Model):
|
|||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
# note: GPT2 output is tied to (same as) wte in original model
|
||||
if new_name == "token_embd.weight":
|
||||
print(f"output.weight, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
logger.info(f"output.weight, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
self.gguf_writer.add_tensor("output.weight", data)
|
||||
|
||||
|
||||
|
@ -2087,8 +2063,7 @@ class Phi3MiniModel(Model):
|
|||
tokenizer_path = self.dir_model / 'tokenizer.model'
|
||||
|
||||
if not tokenizer_path.is_file():
|
||||
print(f'Error: Missing {tokenizer_path}', file=sys.stderr)
|
||||
sys.exit(1)
|
||||
raise ValueError(f'Error: Missing {tokenizer_path}')
|
||||
|
||||
tokenizer = SentencePieceProcessor(str(tokenizer_path))
|
||||
|
||||
|
@ -2126,7 +2101,7 @@ class Phi3MiniModel(Model):
|
|||
for key in added_tokens_json:
|
||||
token_id = added_tokens_json[key]
|
||||
if (token_id >= vocab_size):
|
||||
print(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
|
||||
logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
|
||||
continue
|
||||
|
||||
tokens[token_id] = key.encode("utf-8")
|
||||
|
@ -2208,8 +2183,7 @@ class PlamoModel(Model):
|
|||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
|
||||
# shuffle for broadcasting of gqa in ggml_mul_mat
|
||||
if new_name.endswith("attn_q.weight"):
|
||||
|
@ -2240,7 +2214,7 @@ class PlamoModel(Model):
|
|||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
@ -2286,8 +2260,7 @@ class CodeShellModel(Model):
|
|||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
@ -2304,13 +2277,13 @@ class CodeShellModel(Model):
|
|||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
if not has_lm_head and name == "transformer.wte.weight":
|
||||
self.gguf_writer.add_tensor("output.weight", data)
|
||||
print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
|
||||
logger.info(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
|
||||
@Model.register("InternLM2ForCausalLM")
|
||||
|
@ -2332,7 +2305,7 @@ class InternLM2Model(Model):
|
|||
toktypes: list[int] = []
|
||||
|
||||
if not tokenizer_path.is_file():
|
||||
print(f'Error: Missing {tokenizer_path}', file=sys.stderr)
|
||||
logger.error(f'Error: Missing {tokenizer_path}')
|
||||
sys.exit(1)
|
||||
|
||||
sentencepiece_model = model.ModelProto()
|
||||
|
@ -2349,7 +2322,7 @@ class InternLM2Model(Model):
|
|||
if text == b"\x00":
|
||||
# (TODO): fixme
|
||||
# Hack here and replace the \x00 characters.
|
||||
print(f"InternLM2 convert token '{text}' to '🐉'!")
|
||||
logger.debug(f"InternLM2 convert token '{text}' to '🐉'!")
|
||||
text = "🐉"
|
||||
|
||||
toktype = SentencePieceTokenTypes.NORMAL
|
||||
|
@ -2390,7 +2363,7 @@ class InternLM2Model(Model):
|
|||
# TODO: this is a hack, should be fixed
|
||||
# https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
|
||||
special_vocab.special_token_ids["eos"] = self._try_get_sft_eos(tokenizer)
|
||||
print(f"Replace eos:{old_eos} with a special token:{special_vocab.special_token_ids['eos']} \
|
||||
logger.warning(f"Replace eos:{old_eos} with a special token:{special_vocab.special_token_ids['eos']} \
|
||||
in chat mode so that the conversation can end normally.")
|
||||
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
@ -2435,8 +2408,7 @@ in chat mode so that the conversation can end normally.")
|
|||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
@ -2453,7 +2425,7 @@ in chat mode so that the conversation can end normally.")
|
|||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
def write_tensors(self):
|
||||
|
@ -2564,8 +2536,7 @@ class BertModel(Model):
|
|||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
|
||||
# convert any unsupported data types to float32
|
||||
if data_torch.dtype not in (torch.float16, torch.float32):
|
||||
|
@ -2585,7 +2556,7 @@ class BertModel(Model):
|
|||
# if f32 desired, convert any float16 to float32
|
||||
new_dtype = np.float32
|
||||
|
||||
print(f"{new_name}, n_dims = {n_dims}, {data_torch.dtype} --> {new_dtype}")
|
||||
logger.info(f"{new_name}, n_dims = {n_dims}, {data_torch.dtype} --> {new_dtype}")
|
||||
|
||||
if data.dtype != new_dtype:
|
||||
data = data.astype(new_dtype)
|
||||
|
@ -2664,7 +2635,7 @@ class GemmaModel(Model):
|
|||
# lm_head is not used in llama.cpp, while autoawq will include this tensor in model
|
||||
# To prevent errors, skip loading lm_head.weight.
|
||||
if name == "lm_head.weight":
|
||||
print(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
|
||||
logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
|
||||
continue
|
||||
|
||||
old_dtype = data_torch.dtype
|
||||
|
@ -2681,8 +2652,7 @@ class GemmaModel(Model):
|
|||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
@ -2693,7 +2663,7 @@ class GemmaModel(Model):
|
|||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
@ -2721,7 +2691,7 @@ class MambaModel(Model):
|
|||
else:
|
||||
# Use the GPT-NeoX tokenizer when no tokenizer files are present
|
||||
tokenizer_path = Path(sys.path[0]) / "models" / "ggml-vocab-gpt-neox.gguf"
|
||||
print(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
|
||||
logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
|
||||
neox_reader = gguf.GGUFReader(tokenizer_path, "r")
|
||||
|
||||
field = neox_reader.get_field(gguf.Keys.Tokenizer.MODEL)
|
||||
|
@ -2793,17 +2763,16 @@ class MambaModel(Model):
|
|||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
|
||||
if name.endswith(".A_log"):
|
||||
print("A_log --> A ==> " + new_name)
|
||||
logger.debug("A_log --> A ==> " + new_name)
|
||||
data_torch = -torch.exp(data_torch)
|
||||
|
||||
# assuming token_embd.weight is seen before output.weight
|
||||
if tok_embd is not None and new_name == output_name:
|
||||
if torch.equal(tok_embd, data_torch):
|
||||
print(f"{output_name} is equivalent to {tok_embd_name}, omitting")
|
||||
logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
|
||||
continue
|
||||
if new_name == tok_embd_name:
|
||||
tok_embd = data_torch
|
||||
|
@ -2826,7 +2795,7 @@ class MambaModel(Model):
|
|||
if self.ftype == 1 and data_dtype == np.float32 and new_weight_name.endswith((".ssm_in", ".ssm_out", "token_embd", "output")) and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
@ -2885,8 +2854,7 @@ class OlmoModel(Model):
|
|||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
raise ValueError(f"Can not map tensor {name!r}")
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
@ -2903,7 +2871,7 @@ class OlmoModel(Model):
|
|||
if self.ftype == 1 and data_dtype == np.float32 and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
@ -2936,6 +2904,7 @@ def parse_args() -> argparse.Namespace:
|
|||
)
|
||||
parser.add_argument("--use-temp-file", action="store_true", help="use the tempfile library while processing (helpful when running out of memory, process killed)")
|
||||
parser.add_argument("--model-name", type=str, default=None, help="name of the model")
|
||||
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
@ -2943,6 +2912,8 @@ def parse_args() -> argparse.Namespace:
|
|||
def main() -> None:
|
||||
args = parse_args()
|
||||
|
||||
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
|
||||
|
||||
dir_model = args.model
|
||||
|
||||
if args.awq_path:
|
||||
|
@ -2951,15 +2922,15 @@ def main() -> None:
|
|||
tmp_model_path = args.model / "weighted_model"
|
||||
dir_model = tmp_model_path
|
||||
if tmp_model_path.is_dir():
|
||||
print(f"{tmp_model_path} exists as a weighted model.")
|
||||
logger.info(f"{tmp_model_path} exists as a weighted model.")
|
||||
else:
|
||||
tmp_model_path.mkdir(parents=True, exist_ok=True)
|
||||
print("Saving new weighted model ...")
|
||||
logger.info("Saving new weighted model ...")
|
||||
add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
|
||||
print(f"Saved weighted model at {tmp_model_path}.")
|
||||
logger.info(f"Saved weighted model at {tmp_model_path}.")
|
||||
|
||||
if not dir_model.is_dir():
|
||||
print(f'Error: {args.model} is not a directory', file=sys.stderr)
|
||||
logger.error(f'Error: {args.model} is not a directory')
|
||||
sys.exit(1)
|
||||
|
||||
ftype_map = {
|
||||
|
@ -2973,7 +2944,7 @@ def main() -> None:
|
|||
# output in the same directory as the model by default
|
||||
fname_out = dir_model / f'ggml-model-{args.outtype}.gguf'
|
||||
|
||||
print(f"Loading model: {dir_model.name}")
|
||||
logger.info(f"Loading model: {dir_model.name}")
|
||||
|
||||
hparams = Model.load_hparams(dir_model)
|
||||
|
||||
|
@ -2981,20 +2952,20 @@ def main() -> None:
|
|||
model_class = Model.from_model_architecture(hparams["architectures"][0])
|
||||
model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian, args.use_temp_file)
|
||||
|
||||
print("Set model parameters")
|
||||
logger.info("Set model parameters")
|
||||
model_instance.set_gguf_parameters()
|
||||
|
||||
print("Set model tokenizer")
|
||||
logger.info("Set model tokenizer")
|
||||
model_instance.set_vocab()
|
||||
|
||||
if args.vocab_only:
|
||||
print(f"Exporting model vocab to '{fname_out}'")
|
||||
logger.info(f"Exporting model vocab to '{fname_out}'")
|
||||
model_instance.write_vocab()
|
||||
else:
|
||||
print(f"Exporting model to '{fname_out}'")
|
||||
logger.info(f"Exporting model to '{fname_out}'")
|
||||
model_instance.write()
|
||||
|
||||
print(f"Model successfully exported to '{fname_out}'")
|
||||
logger.info(f"Model successfully exported to '{fname_out}'")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue