ggml : fa without mask + add asserts
ggml-ci
This commit is contained in:
parent
541600201e
commit
a2e6b9dee1
5 changed files with 49 additions and 23 deletions
16
ggml-metal.m
16
ggml-metal.m
|
@ -2512,13 +2512,15 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||
} break;
|
||||
case GGML_OP_FLASH_ATTN_EXT:
|
||||
{
|
||||
GGML_ASSERT(ne00 % 4 == 0);
|
||||
GGML_ASSERT(ne00 % 4 == 0);
|
||||
GGML_ASSERT(ne11 % 32 == 0);
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
|
||||
struct ggml_tensor * src3 = gf->nodes[i]->src[3];
|
||||
GGML_ASSERT(ggml_are_same_shape (src1, src2));
|
||||
GGML_ASSERT(ggml_are_same_stride(src1, src2));
|
||||
|
||||
GGML_ASSERT(ggml_are_same_shape(src1, src2));
|
||||
GGML_ASSERT(src3);
|
||||
struct ggml_tensor * src3 = gf->nodes[i]->src[3];
|
||||
|
||||
size_t offs_src3 = 0;
|
||||
|
||||
|
@ -2590,7 +2592,11 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
||||
[encoder setBuffer:id_src2 offset:offs_src2 atIndex:2];
|
||||
[encoder setBuffer:id_src3 offset:offs_src3 atIndex:3];
|
||||
if (id_src3) {
|
||||
[encoder setBuffer:id_src3 offset:offs_src3 atIndex:3];
|
||||
} else {
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:3];
|
||||
}
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:4];
|
||||
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:5];
|
||||
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:6];
|
||||
|
|
|
@ -2247,11 +2247,16 @@ kernel void kernel_flash_attn_ext_f16(
|
|||
simdgroup_multiply_accumulate(mqk, mq[i], mk, mqk);
|
||||
}
|
||||
|
||||
// mqk = mqk*scale + mask*slope
|
||||
simdgroup_half8x8 mm;
|
||||
simdgroup_load(mm, mp + ic + 8*cc, nb31/sizeof(half), 0, false);
|
||||
simdgroup_multiply(mm, mslope, mm);
|
||||
simdgroup_multiply_accumulate(mqk, mqk, mscale, mm);
|
||||
if (mask != q) {
|
||||
// mqk = mqk*scale + mask*slope
|
||||
simdgroup_half8x8 mm;
|
||||
simdgroup_load(mm, mp + ic + 8*cc, nb31/sizeof(half), 0, false);
|
||||
simdgroup_multiply(mm, mslope, mm);
|
||||
simdgroup_multiply_accumulate(mqk, mqk, mscale, mm);
|
||||
} else {
|
||||
// mqk = mqk*scale
|
||||
simdgroup_multiply(mqk, mscale, mqk);
|
||||
}
|
||||
|
||||
simdgroup_store(mqk, ss + 8*cc, TF, 0, false);
|
||||
}
|
||||
|
@ -2589,8 +2594,7 @@ kernel void kernel_flash_attn_ext_vec_f16(
|
|||
|
||||
// mqk = mqk*scale + mask*slope
|
||||
if (tiisg == 0) {
|
||||
float4 mm = (float4) mp4[ic/4 + cc];
|
||||
mqk = mqk*scale + mm*slope;
|
||||
mqk = mqk*scale + ((mask != q) ? ((float4) mp4[ic/4 + cc])*slope : (float4) 0.0f);
|
||||
|
||||
ss4[cc] = mqk;
|
||||
}
|
||||
|
|
10
ggml.c
10
ggml.c
|
@ -2822,6 +2822,16 @@ bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor
|
|||
(t0->ne[3] == t1->ne[3] );
|
||||
}
|
||||
|
||||
bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
|
||||
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
||||
|
||||
return
|
||||
(t0->nb[0] == t1->nb[0] ) &&
|
||||
(t0->nb[1] == t1->nb[1] ) &&
|
||||
(t0->nb[2] == t1->nb[2] ) &&
|
||||
(t0->nb[3] == t1->nb[3] );
|
||||
}
|
||||
|
||||
// check if t1 can be represented as a repeatition of t0
|
||||
static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
|
||||
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
||||
|
|
3
ggml.h
3
ggml.h
|
@ -766,7 +766,8 @@ extern "C" {
|
|||
GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor);
|
||||
GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars
|
||||
|
||||
GGML_API bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
|
||||
GGML_API bool ggml_are_same_shape (const struct ggml_tensor * t0, const struct ggml_tensor * t1);
|
||||
GGML_API bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
|
||||
|
||||
// use this to compute the memory overhead of a tensor
|
||||
GGML_API size_t ggml_tensor_overhead(void);
|
||||
|
|
|
@ -1487,25 +1487,27 @@ struct test_flash_attn_ext : public test_case {
|
|||
const int64_t kv; // kv size
|
||||
const int64_t nb; // batch size
|
||||
|
||||
const bool mask; // use mask
|
||||
|
||||
const float max_bias; // ALiBi
|
||||
|
||||
std::string vars() override {
|
||||
return VARS_TO_STR5(hs, nh, kv, nb, max_bias);
|
||||
return VARS_TO_STR6(hs, nh, kv, nb, mask, max_bias);
|
||||
}
|
||||
|
||||
double max_nmse_err() override {
|
||||
return 5e-4;
|
||||
}
|
||||
|
||||
test_flash_attn_ext(int64_t hs = 128, int64_t nh = 32, int64_t kv = 96, int64_t nb = 8, float max_bias = 0.0f)
|
||||
: hs(hs), nh(nh), kv(kv), nb(nb), max_bias(max_bias) {}
|
||||
test_flash_attn_ext(int64_t hs = 128, int64_t nh = 32, int64_t kv = 96, int64_t nb = 8, bool mask = true, float max_bias = 0.0f)
|
||||
: hs(hs), nh(nh), kv(kv), nb(nb), mask(mask), max_bias(max_bias) {}
|
||||
|
||||
ggml_tensor * build_graph(ggml_context * ctx) override {
|
||||
ggml_tensor * q = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, hs, nb, nh, 1);
|
||||
ggml_tensor * k = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, hs, kv, nh, 1);
|
||||
ggml_tensor * v = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, hs, kv, nh, 1);
|
||||
ggml_tensor * mask = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), 1, 1);
|
||||
ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, mask, 1.0f/sqrtf(hs), max_bias);
|
||||
ggml_tensor * m = mask ? ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), 1, 1) : nullptr;
|
||||
ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, m, 1.0f/sqrtf(hs), max_bias);
|
||||
return out;
|
||||
}
|
||||
};
|
||||
|
@ -2175,11 +2177,14 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
|||
test_cases.emplace_back(new test_leaky_relu());
|
||||
|
||||
for (int hs : { 64, 80, 128, 256, }) {
|
||||
for (float max_bias : {0.0f, 8.0f}) {
|
||||
for (int nh : { 32, }) {
|
||||
for (int kv : { 512, 1024, }) {
|
||||
for (int nb : { 1, 2, 4, 8, }) {
|
||||
test_cases.emplace_back(new test_flash_attn_ext(hs, nh, kv, nb, max_bias));
|
||||
for (bool mask : { true, false } ) {
|
||||
for (float max_bias : { 0.0f, 8.0f }) {
|
||||
if (!mask && max_bias > 0.0f) continue;
|
||||
for (int nh : { 32, }) {
|
||||
for (int kv : { 512, 1024, }) {
|
||||
for (int nb : { 1, 2, 4, 8, }) {
|
||||
test_cases.emplace_back(new test_flash_attn_ext(hs, nh, kv, nb, mask, max_bias));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue