mamba : fuse more steps of the SSM scan in the ggml_ssm_scan operator

This increases performance on CPU by around 30% for prompt processing,
and by around 20% for text generation.

However, it also makes the ggml_exp and ggml_soft_plus operators unused.
Whether or not they should be kept will be decided later.
This commit is contained in:
Francis Couture-Harpin 2024-02-03 17:49:36 -05:00
parent 5816ae687e
commit a3f4a1c7dc
3 changed files with 88 additions and 82 deletions

115
ggml.c
View file

@ -6156,31 +6156,45 @@ struct ggml_tensor * ggml_flash_attn_back(
struct ggml_tensor * ggml_ssm_scan( struct ggml_tensor * ggml_ssm_scan(
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * s, struct ggml_tensor * s,
struct ggml_tensor * dA, struct ggml_tensor * x,
struct ggml_tensor * dB_x) { struct ggml_tensor * dt,
GGML_ASSERT(ggml_are_same_shape(dA, dB_x)); struct ggml_tensor * A,
struct ggml_tensor * B) {
GGML_ASSERT( s->nb[0] == ggml_type_size( s->type)); GGML_ASSERT(ggml_is_contiguous(s));
GGML_ASSERT( dA->nb[0] == ggml_type_size( dA->type)); GGML_ASSERT(ggml_is_contiguous(x));
GGML_ASSERT(dB_x->nb[0] == ggml_type_size(dB_x->type)); GGML_ASSERT(ggml_is_contiguous(dt));
GGML_ASSERT(ggml_is_contiguous(A));
GGML_ASSERT(s->ne[0] == dA->ne[0]); GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
GGML_ASSERT(s->ne[1] == dA->ne[1]); ggml_are_same_shape(x, dt);
GGML_ASSERT(s->ne[2] == 1 && s->ne[3] == 1); // the ssm_state should be 2D GGML_ASSERT(s->ne[2] == 1 && s->ne[3] == 1); // the ssm_state should be 2D
{
const int64_t d_state = s->ne[0];
const int64_t d_inner = s->ne[1];
const int64_t n_tok = x->ne[1];
GGML_ASSERT(x->ne[0] == d_inner);
GGML_ASSERT(A->ne[0] == d_state);
GGML_ASSERT(A->ne[1] == d_inner);
GGML_ASSERT(B->ne[0] == d_state);
GGML_ASSERT(B->ne[1] == n_tok);
}
bool is_node = false; bool is_node = false;
if (s->grad || dA->grad || dB_x->grad) { if (s->grad || x->grad || dt->grad || A->grad || B->grad) {
is_node = true; is_node = true;
} }
struct ggml_tensor * result = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, dA->ne[0], dA->ne[1], dA->ne[2]); struct ggml_tensor * result = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, s->ne[0], s->ne[1], x->ne[1]);
result->op = GGML_OP_SSM_SCAN; result->op = GGML_OP_SSM_SCAN;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = s; result->src[0] = s;
result->src[1] = dA; result->src[1] = x;
result->src[2] = dB_x; result->src[2] = dt;
result->src[3] = A;
result->src[4] = B;
return result; return result;
} }
@ -14795,9 +14809,11 @@ static void ggml_compute_forward_flash_attn_back(
static void ggml_compute_forward_ssm_scan_f32( static void ggml_compute_forward_ssm_scan_f32(
const struct ggml_compute_params * params, const struct ggml_compute_params * params,
const struct ggml_tensor * src0, const struct ggml_tensor * src0, // s
const struct ggml_tensor * src1, const struct ggml_tensor * src1, // x
const struct ggml_tensor * src2, const struct ggml_tensor * src2, // dt
const struct ggml_tensor * src3, // A
const struct ggml_tensor * src4, // B
struct ggml_tensor * dst) { struct ggml_tensor * dst) {
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return; return;
@ -14806,18 +14822,19 @@ static void ggml_compute_forward_ssm_scan_f32(
const int ith = params->ith; const int ith = params->ith;
const int nth = params->nth; const int nth = params->nth;
const int64_t nc = src1->ne[0]; const int64_t nc = src0->ne[0];
const int64_t n_t = src1->ne[2]; // number of tokens in the batch const int64_t n_t = src1->ne[1]; // number of tokens in the batch
const int64_t nr0 = ggml_nrows(src0); const int64_t nr0 = ggml_nrows(src0);
GGML_ASSERT(nc*n_t*nr0 == ggml_nelements(src1)); GGML_ASSERT(nc*n_t*nr0 == ggml_nelements(dst));
GGML_ASSERT(src0->nb[0] == sizeof(float)); GGML_ASSERT(src0->nb[0] == sizeof(float));
GGML_ASSERT(src1->nb[0] == sizeof(float)); GGML_ASSERT(src1->nb[0] == sizeof(float));
GGML_ASSERT(src2->nb[0] == sizeof(float)); GGML_ASSERT(src2->nb[0] == sizeof(float));
GGML_ASSERT(src3->nb[0] == sizeof(float));
GGML_ASSERT(src4->nb[0] == sizeof(float));
// allow merging multiple rows in the same vec operation // allow merging multiple rows in the same vec operation
GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float)); GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
GGML_ASSERT(src1->nb[1] == src1->ne[0]*sizeof(float)); GGML_ASSERT(src3->nb[1] == src3->ne[0]*sizeof(float));
GGML_ASSERT(src2->nb[1] == src2->ne[0]*sizeof(float));
// rows per thread // rows per thread
const int dr = (nr0 + nth - 1)/nth; const int dr = (nr0 + nth - 1)/nth;
@ -14829,22 +14846,44 @@ static void ggml_compute_forward_ssm_scan_f32(
// first batch // first batch
{ {
float * dest = (float *) ((char *) dst->data + ir0*( dst->nb[1])); float * dest = (float *) ((char *) dst->data + ir0*( dst->nb[1])); // {d_state, d_inner, n_tok}
float * s = (float *) ((char *) src0->data + ir0*(src0->nb[1])); float * s = (float *) ((char *) src0->data + ir0*(src0->nb[1])); // {d_state, d_inner}
float * dA = (float *) ((char *) src1->data + ir0*(src1->nb[1])); float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0])); // {d_inner, n_tok}
float * dB_x = (float *) ((char *) src2->data + ir0*(src2->nb[1])); float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0])); // {d_inner, n_tok}
ggml_vec_mul_f32(nc*ir, dest, s, dA); float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
ggml_vec_add_f32(nc*ir, dest, dest, dB_x); float * B = (float *) ((char *) src4->data); // {d_state, n_tok}
// d_inner
for (int i1 = 0; i1 < ir; ++i1) {
float dt_soft_plus = log1pf(expf(dt[i1]));
float x_dt = x[i1] * dt_soft_plus;
// d_state
for (int i0 = 0; i0 < nc; ++i0) {
int i = i0 + i1*nc;
// ssm_state * dA + dB * x
dest[i] = s[i]*(expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
}
}
} }
// compute state for rest of tokens, previous state comes from dest // compute state for rest of tokens, previous state comes from dest
for (int i2 = 1; i2 < n_t; i2++) { for (int i2 = 1; i2 < n_t; ++i2) {
float * dest = (float *) ((char *) dst->data + ir0*( dst->nb[1]) + i2 *( dst->nb[2])); float * dest = (float *) ((char *) dst->data + ir0*( dst->nb[1]) + i2 *( dst->nb[2])); // {d_state, d_inner, n_tok}
float * s = (float *) ((char *) dst->data + ir0*( dst->nb[1]) + (i2-1)*( dst->nb[2])); float * s = (float *) ((char *) dst->data + ir0*( dst->nb[1]) + (i2-1)*( dst->nb[2])); // {d_state, d_inner, n_tok}
float * dA = (float *) ((char *) src1->data + ir0*(src1->nb[1]) + i2 *(src1->nb[2])); float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2 *(src1->nb[1])); // {d_inner, n_tok}
float * dB_x = (float *) ((char *) src2->data + ir0*(src2->nb[1]) + i2 *(src2->nb[2])); float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0]) + i2 *(src2->nb[1])); // {d_inner, n_tok}
ggml_vec_mul_f32(nc*ir, dest, s, dA); float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
ggml_vec_add_f32(nc*ir, dest, dest, dB_x); float * B = (float *) ((char *) src4->data + i2*(src4->nb[1])); // {d_state, n_tok}
// d_inner
for (int i1 = 0; i1 < ir; ++i1) {
float dt_soft_plus = log1pf(expf(dt[i1]));
float x_dt = x[i1] * dt_soft_plus;
// d_state
for (int i0 = 0; i0 < nc; ++i0) {
int i = i0 + i1*nc;
// ssm_state * dA + dB * x
dest[i] = s[i]*(expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
}
}
} }
} }
@ -14853,11 +14892,13 @@ static void ggml_compute_forward_ssm_scan(
const struct ggml_tensor * src0, const struct ggml_tensor * src0,
const struct ggml_tensor * src1, const struct ggml_tensor * src1,
const struct ggml_tensor * src2, const struct ggml_tensor * src2,
const struct ggml_tensor * src3,
const struct ggml_tensor * src4,
struct ggml_tensor * dst) { struct ggml_tensor * dst) {
switch (src0->type) { switch (src0->type) {
case GGML_TYPE_F32: case GGML_TYPE_F32:
{ {
ggml_compute_forward_ssm_scan_f32(params, src0, src1, src2, dst); ggml_compute_forward_ssm_scan_f32(params, src0, src1, src2, src3, src4, dst);
} break; } break;
default: default:
{ {
@ -15927,7 +15968,7 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
} break; } break;
case GGML_OP_SSM_SCAN: case GGML_OP_SSM_SCAN:
{ {
ggml_compute_forward_ssm_scan(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor); ggml_compute_forward_ssm_scan(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
} break; } break;
case GGML_OP_WIN_PART: case GGML_OP_WIN_PART:
{ {

6
ggml.h
View file

@ -1724,8 +1724,10 @@ extern "C" {
GGML_API struct ggml_tensor * ggml_ssm_scan( GGML_API struct ggml_tensor * ggml_ssm_scan(
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * s, struct ggml_tensor * s,
struct ggml_tensor * dA, struct ggml_tensor * x,
struct ggml_tensor * dB_x); struct ggml_tensor * dt,
struct ggml_tensor * A,
struct ggml_tensor * B);
// partition into non-overlapping windows with padding if needed // partition into non-overlapping windows with padding if needed
// example: // example:

View file

@ -8005,49 +8005,12 @@ struct llm_build_context {
// {dt_rank, d_inner} * {dt_rank, n_tok} => {d_inner, n_tok} // {dt_rank, d_inner} * {dt_rank, n_tok} => {d_inner, n_tok}
dt = ggml_mul_mat(ctx0, model.layers[il].ssm_dt, dt); dt = ggml_mul_mat(ctx0, model.layers[il].ssm_dt, dt);
dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b); dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
dt = ggml_soft_plus(ctx0, dt);
struct ggml_tensor * dA; // Custom operator to implement some of the optimizations
struct ggml_tensor * dB; // described in the Annex D of the Mamba paper.
if (n_tok == 1) { // TODO: maybe also optimize step 4 of the Speed section of Annex D (the mul_mat with C)
// => {d_state, d_inner}
dA = ggml_exp(ctx0, ggml_mul(ctx0, model.layers[il].ssm_a, ggml_transpose(ctx0, dt)));
// {d_state} * {d_inner} => {d_state, d_inner}
dB = ggml_out_prod(ctx0, B, dt);
} else {
// {d_state, d_inner} * {d_inner, n_tok} => {d_state, d_inner, n_tok} * {1, d_inner, n_tok}
// => {d_state, d_inner, n_tok} // => {d_state, d_inner, n_tok}
// Trying to do the equivalent of ssm_state = ggml_ssm_scan(ctx0, ssm_state, x, dt, model.layers[il].ssm_a, B);
// dA = torch.exp(rearrange(dt, "b d -> b d 1") * A) # (batch, dim, dstate)
struct ggml_tensor * A = model.layers[il].ssm_a;
dA = ggml_exp(ctx0,
ggml_mul(ctx0,
ggml_repeat(ctx0, A, ggml_new_tensor_3d(ctx0, A->type, d_state, d_inner, n_tok)),
// {d_inner, n_tok} => {1, d_inner, n_tok}
ggml_permute(ctx0, dt, 1, 2, 0, 3))
);
// {d_state, 1, n_tok} * {d_inner, 1, n_tok} => {d_state, d_inner, n_tok}
dB = ggml_out_prod(ctx0,
// {d_state, n_tok} => {d_state, 1, n_tok}
ggml_permute(ctx0, B, 0, 2, 1, 3),
// {d_state, n_tok} => {d_state, 1, n_tok}
ggml_permute(ctx0, dt, 0, 2, 1, 3));
}
// {d_state, d_inner, n_tok} * {1, d_inner, n_tok} => {d_state, d_inner, n_tok}
cur = ggml_mul(ctx0, dB, ggml_permute(ctx0, x, 1, 2, 0, 3));
// The selective scan seems inherently sequential...
// To avoid making (n_layer * n_tok) graph nodes, let's use a custom operator.
// When n_tok == 1, it's equivalent to the following:
// ssm_state = ggml_add(ctx0, ggml_mul(ctx0, ssm_state, dA), cur);
// When n_tok is bigger, it's the same thing, but iterated n_tok times,
// with the correct dA and cur for each token.
// The resulting states are layered on the ne[2] dimension.
// => {d_state, d_inner, n_tok}
ssm_state = ggml_ssm_scan(ctx0, ssm_state, dA, cur);
// only store last state // only store last state
ggml_build_forward_expand(gf, ggml_build_forward_expand(gf,