Fix GPT2 not loading due to graph too small

This commit is contained in:
Concedo 2023-11-26 23:06:42 +08:00
parent eb42c73953
commit a6eb9b8010
8 changed files with 21 additions and 19 deletions

View file

@ -941,19 +941,20 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
llamamodel->hparams.rope_freq_scale_train!=1.0f || llamamodel->hparams.rope_freq_scale_train!=1.0f ||
llamamodel->hparams.rope_scaling_type_train==2) llamamodel->hparams.rope_scaling_type_train==2)
{ {
// float ropemultiplier = 1.0f; float ropemultiplier = 1.0f;
// if(llamamodel->hparams.rope_scaling_type_train!=2 && if(llamamodel->hparams.rope_scaling_type_train!=2 &&
// llamamodel->hparams.n_ctx_train > 2048 && clamped_max_context_length > llamamodel->hparams.n_ctx_train) llamamodel->hparams.n_ctx_train > 2048 && clamped_max_context_length > llamamodel->hparams.n_ctx_train &&
// { llamamodel->hparams.rope_freq_scale_train==1.0f)
// ropemultiplier = (float)llamamodel->hparams.n_ctx_train / (float)clamped_max_context_length; {
// llama_ctx_params.rope_freq_base = rope_freq_base = llamamodel->hparams.rope_freq_base_train; ropemultiplier = (float)llamamodel->hparams.n_ctx_train / (float)clamped_max_context_length;
// llama_ctx_params.rope_freq_scale = rope_freq_scale = ropemultiplier * llamamodel->hparams.rope_freq_scale_train; llama_ctx_params.rope_freq_base = rope_freq_base = llamamodel->hparams.rope_freq_base_train;
// printf("Automatic RoPE Scaling: Using (scale:%.3f, base:%.1f).\n", rope_freq_scale, rope_freq_base); llama_ctx_params.rope_freq_scale = rope_freq_scale = ropemultiplier * llamamodel->hparams.rope_freq_scale_train;
// } printf("Automatic RoPE Scaling: Using (scale:%.3f, base:%.1f).\n", rope_freq_scale, rope_freq_base);
// else }
// { else
{
printf("Automatic RoPE Scaling: Using model internal value.\n"); printf("Automatic RoPE Scaling: Using model internal value.\n");
//} }
} }
else else
{ {

View file

@ -455,7 +455,7 @@ bool gpt2_eval(
struct ggml_context * ctx0 = ggml_init(params); struct ggml_context * ctx0 = ggml_init(params);
struct ggml_cgraph * gf = ggml_new_graph(ctx0); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, 8192, false);
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd)); memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd));

View file

@ -455,7 +455,7 @@ bool gptj_eval(
struct ggml_context * ctx0 = ggml_init(params); struct ggml_context * ctx0 = ggml_init(params);
struct ggml_cgraph * gf = ggml_new_graph(ctx0); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, GGML_MAX_NODES, false);
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd)); memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd));

View file

@ -12,6 +12,7 @@
#include "llama_v3.h" #include "llama_v3.h"
#include "ggml.h" #include "ggml.h"
#include "otherarch.h"
#ifdef GGML_USE_CUBLAS #ifdef GGML_USE_CUBLAS
#include "ggml-cuda.h" #include "ggml-cuda.h"
#endif #endif
@ -88,7 +89,6 @@ enum e_model3 {
static const size_t kB3 = 1024; static const size_t kB3 = 1024;
static const size_t MB3 = 1024*1024; static const size_t MB3 = 1024*1024;
static const size_t GGML_MAX_NODES = 8192;
// computed for n_ctx == 2048 // computed for n_ctx == 2048
// TODO: dynamically determine these sizes // TODO: dynamically determine these sizes

View file

@ -390,7 +390,7 @@ bool mpt_eval(const mpt_model & model, const int n_threads, const int n_past,
params.no_alloc = false; params.no_alloc = false;
struct ggml_context * ctx0 = ggml_init(params); struct ggml_context * ctx0 = ggml_init(params);
struct ggml_cgraph * gf = ggml_new_graph(ctx0); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, GGML_MAX_NODES, false);
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
memcpy(embd->data, embd_inp.data(), N * ggml_element_size(embd)); memcpy(embd->data, embd_inp.data(), N * ggml_element_size(embd));

View file

@ -471,7 +471,7 @@ bool gpt_neox_eval(
struct ggml_context * ctx0 = ggml_init(params); struct ggml_context * ctx0 = ggml_init(params);
struct ggml_cgraph * gf = ggml_new_graph(ctx0); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, GGML_MAX_NODES, false);
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd)); memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd));

View file

@ -459,3 +459,4 @@ struct mpt_model {
}; };
const float default_norm_eps = 1e-5f; const float default_norm_eps = 1e-5f;
const size_t GGML_MAX_NODES = 8192;

View file

@ -1520,7 +1520,7 @@ struct rwkv_context * rwkv_new_context_impl(std::shared_ptr<struct rwkv_instance
serial_graph.ctx = graph_future_ctx; serial_graph.ctx = graph_future_ctx;
RWKV_ASSERT_NULL_MSG(RWKV_ERROR_CTX | RWKV_ERROR_ALLOC, serial_graph.ctx.ctx, "Failed to allocate serial graph context"); RWKV_ASSERT_NULL_MSG(RWKV_ERROR_CTX | RWKV_ERROR_ALLOC, serial_graph.ctx.ctx, "Failed to allocate serial graph context");
serial_graph.tokens = ggml_new_i32(serial_graph.ctx.ctx, 0); serial_graph.tokens = ggml_new_i32(serial_graph.ctx.ctx, 0);
serial_graph.cgraph = ggml_new_graph(serial_graph.ctx.ctx); serial_graph.cgraph = ggml_new_graph_custom(serial_graph.ctx.ctx, GGML_MAX_NODES, false);
RWKV_ASSERT_NULL_MSG(RWKV_ERROR_ALLOC, serial_graph.cgraph, "Failed to allocate serial graph"); RWKV_ASSERT_NULL_MSG(RWKV_ERROR_ALLOC, serial_graph.cgraph, "Failed to allocate serial graph");
RWKV_ASSERT_NULL(RWKV_ERROR_GRAPH, rwkv_build_serial_graph( RWKV_ASSERT_NULL(RWKV_ERROR_GRAPH, rwkv_build_serial_graph(
@ -1698,7 +1698,7 @@ bool rwkv_eval_sequence(struct rwkv_context * ctx, const int n_threads, const ui
sequence_graph.ctx = graph_future_ctx; sequence_graph.ctx = graph_future_ctx;
RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_CTX | RWKV_ERROR_ALLOC, sequence_graph.ctx.ctx, "Failed to allocate sequence graph context"); RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_CTX | RWKV_ERROR_ALLOC, sequence_graph.ctx.ctx, "Failed to allocate sequence graph context");
sequence_graph.tokens = ggml_new_tensor_1d(sequence_graph.ctx.ctx, GGML_TYPE_I32, sequence_len); sequence_graph.tokens = ggml_new_tensor_1d(sequence_graph.ctx.ctx, GGML_TYPE_I32, sequence_len);
sequence_graph.cgraph = ggml_new_graph(sequence_graph.ctx.ctx); sequence_graph.cgraph = ggml_new_graph_custom(sequence_graph.ctx.ctx, GGML_MAX_NODES, false);
RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_ALLOC, sequence_graph.cgraph, "Failed to allocate sequence graph"); RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_ALLOC, sequence_graph.cgraph, "Failed to allocate sequence graph");
RWKV_ASSERT_FALSE(RWKV_ERROR_GRAPH, rwkv_build_sequence_graph( RWKV_ASSERT_FALSE(RWKV_ERROR_GRAPH, rwkv_build_sequence_graph(