Merge branch 'master' into pr-train-mem-usage-improvements

This commit is contained in:
xaedes 2023-08-27 23:11:47 +02:00
commit a6f3a47c39
No known key found for this signature in database
GPG key ID: 30030EDD817EA2B1
60 changed files with 5049 additions and 2118 deletions

View file

@ -0,0 +1,44 @@
ARG UBUNTU_VERSION=22.04
# This needs to generally match the container host's environment.
ARG ROCM_VERSION=5.6
# Target the CUDA build image
ARG BASE_ROCM_DEV_CONTAINER=rocm/dev-ubuntu-${UBUNTU_VERSION}:${ROCM_VERSION}-complete
FROM ${BASE_ROCM_DEV_CONTAINER} as build
# Unless otherwise specified, we make a fat build.
# List from https://github.com/ggerganov/llama.cpp/pull/1087#issuecomment-1682807878
# This is mostly tied to rocBLAS supported archs.
ARG ROCM_DOCKER_ARCH=\
gfx803 \
gfx900 \
gfx906 \
gfx908 \
gfx90a \
gfx1010 \
gfx1030 \
gfx1100 \
gfx1101 \
gfx1102
COPY requirements.txt requirements.txt
RUN pip install --upgrade pip setuptools wheel \
&& pip install -r requirements.txt
WORKDIR /app
COPY . .
# Set nvcc architecture
ENV GPU_TARGETS=${ROCM_DOCKER_ARCH}
# Enable ROCm
ENV LLAMA_HIPBLAS=1
ENV CC=/opt/rocm/llvm/bin/clang
ENV CXX=/opt/rocm/llvm/bin/clang++
RUN make
ENTRYPOINT ["/app/.devops/tools.sh"]

View file

@ -0,0 +1,44 @@
ARG UBUNTU_VERSION=22.04
# This needs to generally match the container host's environment.
ARG ROCM_VERSION=5.6
# Target the CUDA build image
ARG BASE_ROCM_DEV_CONTAINER=rocm/dev-ubuntu-${UBUNTU_VERSION}:${ROCM_VERSION}-complete
FROM ${BASE_ROCM_DEV_CONTAINER} as build
# Unless otherwise specified, we make a fat build.
# List from https://github.com/ggerganov/llama.cpp/pull/1087#issuecomment-1682807878
# This is mostly tied to rocBLAS supported archs.
ARG ROCM_DOCKER_ARCH=\
gfx803 \
gfx900 \
gfx906 \
gfx908 \
gfx90a \
gfx1010 \
gfx1030 \
gfx1100 \
gfx1101 \
gfx1102
COPY requirements.txt requirements.txt
RUN pip install --upgrade pip setuptools wheel \
&& pip install -r requirements.txt
WORKDIR /app
COPY . .
# Set nvcc architecture
ENV GPU_TARGETS=${ROCM_DOCKER_ARCH}
# Enable ROCm
ENV LLAMA_HIPBLAS=1
ENV CC=/opt/rocm/llvm/bin/clang
ENV CXX=/opt/rocm/llvm/bin/clang++
RUN make
ENTRYPOINT [ "/app/main" ]

View file

@ -5,14 +5,7 @@
.vscode/ .vscode/
.DS_Store .DS_Store
build/ build*/
build-em/
build-debug/
build-release/
build-static/
build-no-accel/
build-sanitize-addr/
build-sanitize-thread/
models/* models/*

View file

@ -291,24 +291,32 @@ jobs:
cd build cd build
ctest -C Release --verbose --timeout 900 ctest -C Release --verbose --timeout 900
- name: Get commit hash - name: Determine tag name
id: commit id: tag
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }} shell: bash
uses: pr-mpt/actions-commit-hash@v2 run: |
BUILD_NUMBER="$(git rev-list --count HEAD)"
SHORT_HASH="$(git rev-parse --short=7 HEAD)"
if [[ "${{ env.BRANCH_NAME }}" == "master" ]]; then
echo "name=b${BUILD_NUMBER}" >> $GITHUB_OUTPUT
else
SAFE_NAME=$(echo "${{ env.BRANCH_NAME }}" | tr '/' '-')
echo "name=${SAFE_NAME}-b${BUILD_NUMBER}-${SHORT_HASH}" >> $GITHUB_OUTPUT
fi
- name: Pack artifacts - name: Pack artifacts
id: pack_artifacts id: pack_artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }} if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
run: | run: |
Copy-Item LICENSE .\build\bin\Release\llama.cpp.txt Copy-Item LICENSE .\build\bin\Release\llama.cpp.txt
7z a llama-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-win-${{ matrix.build }}-x64.zip .\build\bin\Release\* 7z a llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}-x64.zip .\build\bin\Release\*
- name: Upload artifacts - name: Upload artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }} if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
uses: actions/upload-artifact@v3 uses: actions/upload-artifact@v3
with: with:
path: | path: |
llama-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-win-${{ matrix.build }}-x64.zip llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}-x64.zip
windows-latest-cmake-cublas: windows-latest-cmake-cublas:
runs-on: windows-latest runs-on: windows-latest
@ -338,23 +346,31 @@ jobs:
cmake .. -DLLAMA_BUILD_SERVER=ON -DLLAMA_CUBLAS=ON cmake .. -DLLAMA_BUILD_SERVER=ON -DLLAMA_CUBLAS=ON
cmake --build . --config Release cmake --build . --config Release
- name: Get commit hash - name: Determine tag name
id: commit id: tag
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }} shell: bash
uses: pr-mpt/actions-commit-hash@v2 run: |
BUILD_NUMBER="$(git rev-list --count HEAD)"
SHORT_HASH="$(git rev-parse --short=7 HEAD)"
if [[ "${{ env.BRANCH_NAME }}" == "master" ]]; then
echo "name=b${BUILD_NUMBER}" >> $GITHUB_OUTPUT
else
SAFE_NAME=$(echo "${{ env.BRANCH_NAME }}" | tr '/' '-')
echo "name=${SAFE_NAME}-b${BUILD_NUMBER}-${SHORT_HASH}" >> $GITHUB_OUTPUT
fi
- name: Pack artifacts - name: Pack artifacts
id: pack_artifacts id: pack_artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }} if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
run: | run: |
7z a llama-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-win-${{ matrix.build }}-cu${{ matrix.cuda }}-x64.zip .\build\bin\Release\* 7z a llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}-cu${{ matrix.cuda }}-x64.zip .\build\bin\Release\*
- name: Upload artifacts - name: Upload artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }} if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
uses: actions/upload-artifact@v3 uses: actions/upload-artifact@v3
with: with:
path: | path: |
llama-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-win-${{ matrix.build }}-cu${{ matrix.cuda }}-x64.zip llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}-cu${{ matrix.cuda }}-x64.zip
- name: Copy and pack Cuda runtime - name: Copy and pack Cuda runtime
if: ${{ matrix.cuda == '12.1.0' }} if: ${{ matrix.cuda == '12.1.0' }}
@ -400,21 +416,34 @@ jobs:
- windows-latest-cmake-cublas - windows-latest-cmake-cublas
steps: steps:
- name: Clone
id: checkout
uses: actions/checkout@v1
- name: Determine tag name
id: tag
shell: bash
run: |
BUILD_NUMBER="$(git rev-list --count HEAD)"
SHORT_HASH="$(git rev-parse --short=7 HEAD)"
if [[ "${{ env.BRANCH_NAME }}" == "master" ]]; then
echo "name=b${BUILD_NUMBER}" >> $GITHUB_OUTPUT
else
SAFE_NAME=$(echo "${{ env.BRANCH_NAME }}" | tr '/' '-')
echo "name=${SAFE_NAME}-b${BUILD_NUMBER}-${SHORT_HASH}" >> $GITHUB_OUTPUT
fi
- name: Download artifacts - name: Download artifacts
id: download-artifact id: download-artifact
uses: actions/download-artifact@v3 uses: actions/download-artifact@v3
- name: Get commit hash
id: commit
uses: pr-mpt/actions-commit-hash@v2
- name: Create release - name: Create release
id: create_release id: create_release
uses: anzz1/action-create-release@v1 uses: anzz1/action-create-release@v1
env: env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
with: with:
tag_name: ${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }} tag_name: ${{ steps.tag.outputs.name }}
- name: Upload release - name: Upload release
id: upload_release id: upload_release

17
.gitignore vendored
View file

@ -16,20 +16,7 @@
.vs/ .vs/
.vscode/ .vscode/
build/ build*/
build-em/
build-debug/
build-release/
build-ci-debug/
build-ci-release/
build-static/
build-cublas/
build-opencl/
build-metal/
build-mpi/
build-no-accel/
build-sanitize-addr/
build-sanitize-thread/
out/ out/
tmp/ tmp/
@ -60,6 +47,7 @@ compile_commands.json
CMakeSettings.json CMakeSettings.json
__pycache__ __pycache__
dist
zig-out/ zig-out/
zig-cache/ zig-cache/
@ -70,7 +58,6 @@ perf-*.txt
examples/jeopardy/results.txt examples/jeopardy/results.txt
pyproject.toml
poetry.lock poetry.lock
poetry.toml poetry.toml

View file

@ -74,6 +74,7 @@ set(LLAMA_CUDA_DMMV_X "32" CACHE STRING "llama: x stride for dmmv CUDA kern
set(LLAMA_CUDA_MMV_Y "1" CACHE STRING "llama: y block size for mmv CUDA kernels") set(LLAMA_CUDA_MMV_Y "1" CACHE STRING "llama: y block size for mmv CUDA kernels")
option(LLAMA_CUDA_F16 "llama: use 16 bit floats for some calculations" OFF) option(LLAMA_CUDA_F16 "llama: use 16 bit floats for some calculations" OFF)
set(LLAMA_CUDA_KQUANTS_ITER "2" CACHE STRING "llama: iters./thread per block for Q2_K/Q6_K") set(LLAMA_CUDA_KQUANTS_ITER "2" CACHE STRING "llama: iters./thread per block for Q2_K/Q6_K")
option(LLAMA_HIPBLAS "llama: use hipBLAS" OFF)
option(LLAMA_CLBLAST "llama: use CLBlast" OFF) option(LLAMA_CLBLAST "llama: use CLBlast" OFF)
option(LLAMA_METAL "llama: use Metal" OFF) option(LLAMA_METAL "llama: use Metal" OFF)
option(LLAMA_MPI "llama: use MPI" OFF) option(LLAMA_MPI "llama: use MPI" OFF)
@ -352,6 +353,43 @@ if (LLAMA_CLBLAST)
endif() endif()
endif() endif()
if (LLAMA_HIPBLAS)
list(APPEND CMAKE_PREFIX_PATH /opt/rocm)
if (NOT ${CMAKE_C_COMPILER_ID} MATCHES "Clang")
message(WARNING "Only LLVM is supported for HIP, hint: CC=/opt/rocm/llvm/bin/clang")
endif()
if (NOT ${CMAKE_CXX_COMPILER_ID} MATCHES "Clang")
message(WARNING "Only LLVM is supported for HIP, hint: CXX=/opt/rocm/llvm/bin/clang++")
endif()
find_package(hip)
find_package(hipblas)
find_package(rocblas)
if (${hipblas_FOUND} AND ${hip_FOUND})
message(STATUS "HIP and hipBLAS found")
add_compile_definitions(GGML_USE_HIPBLAS GGML_USE_CUBLAS)
add_library(ggml-rocm OBJECT ggml-cuda.cu ggml-cuda.h)
if (LLAMA_CUDA_FORCE_DMMV)
target_compile_definitions(ggml-rocm PRIVATE GGML_CUDA_FORCE_DMMV)
endif()
target_compile_definitions(ggml-rocm PRIVATE GGML_CUDA_DMMV_X=${LLAMA_CUDA_DMMV_X})
target_compile_definitions(ggml-rocm PRIVATE GGML_CUDA_MMV_Y=${LLAMA_CUDA_MMV_Y})
target_compile_definitions(ggml-rocm PRIVATE K_QUANTS_PER_ITERATION=${LLAMA_CUDA_KQUANTS_ITER})
target_compile_definitions(ggml-rocm PRIVATE CC_TURING=1000000000)
set_source_files_properties(ggml-cuda.cu PROPERTIES LANGUAGE CXX)
target_link_libraries(ggml-rocm PRIVATE hip::device PUBLIC hip::host roc::rocblas roc::hipblas)
if (LLAMA_STATIC)
message(FATAL_ERROR "Static linking not supported for HIP/ROCm")
endif()
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} ggml-rocm)
else()
message(WARNING "hipBLAS or HIP not found. Try setting CMAKE_PREFIX_PATH=/opt/rocm")
endif()
endif()
if (LLAMA_ALL_WARNINGS) if (LLAMA_ALL_WARNINGS)
if (NOT MSVC) if (NOT MSVC)
set(c_flags set(c_flags

View file

@ -280,6 +280,30 @@ ggml-opencl.o: ggml-opencl.cpp ggml-opencl.h
$(CXX) $(CXXFLAGS) -c $< -o $@ $(CXX) $(CXXFLAGS) -c $< -o $@
endif # LLAMA_CLBLAST endif # LLAMA_CLBLAST
ifdef LLAMA_HIPBLAS
ROCM_PATH ?= /opt/rocm
HIPCC ?= $(ROCM_PATH)/bin/hipcc
GPU_TARGETS ?= $(shell $(ROCM_PATH)/llvm/bin/amdgpu-arch)
LLAMA_CUDA_DMMV_X ?= 32
LLAMA_CUDA_MMV_Y ?= 1
LLAMA_CUDA_KQUANTS_ITER ?= 2
CFLAGS += -DGGML_USE_HIPBLAS -DGGML_USE_CUBLAS
CXXFLAGS += -DGGML_USE_HIPBLAS -DGGML_USE_CUBLAS
LDFLAGS += -L$(ROCM_PATH)/lib -Wl,-rpath=$(ROCM_PATH)/lib
LDFLAGS += -lhipblas -lamdhip64 -lrocblas
HIPFLAGS += $(addprefix --offload-arch=,$(GPU_TARGETS))
HIPFLAGS += -DGGML_CUDA_DMMV_X=$(LLAMA_CUDA_DMMV_X)
HIPFLAGS += -DGGML_CUDA_MMV_Y=$(LLAMA_CUDA_MMV_Y)
HIPFLAGS += -DK_QUANTS_PER_ITERATION=$(LLAMA_CUDA_KQUANTS_ITER)
HIPFLAGS += -DCC_TURING=1000000000
ifdef LLAMA_CUDA_FORCE_DMMV
HIPFLAGS += -DGGML_CUDA_FORCE_DMMV
endif # LLAMA_CUDA_FORCE_DMMV
OBJS += ggml-cuda.o
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h
$(HIPCC) $(CXXFLAGS) $(HIPFLAGS) -x hip -c -o $@ $<
endif # LLAMA_HIPBLAS
ifdef LLAMA_METAL ifdef LLAMA_METAL
CFLAGS += -DGGML_USE_METAL -DGGML_METAL_NDEBUG CFLAGS += -DGGML_USE_METAL -DGGML_METAL_NDEBUG
CXXFLAGS += -DGGML_USE_METAL CXXFLAGS += -DGGML_USE_METAL

View file

@ -11,6 +11,10 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
### Hot topics ### Hot topics
- #### IMPORTANT: Tokenizer fixes and API change (developers and projects using `llama.cpp` built-in tokenization must read): https://github.com/ggerganov/llama.cpp/pull/2810
- GGUFv2 adds support for 64-bit sizes + backwards compatible: https://github.com/ggerganov/llama.cpp/pull/2821
- Added support for Falcon models: https://github.com/ggerganov/llama.cpp/pull/2717 - Added support for Falcon models: https://github.com/ggerganov/llama.cpp/pull/2717
- A new file format has been introduced: [GGUF](https://github.com/ggerganov/llama.cpp/pull/2398) - A new file format has been introduced: [GGUF](https://github.com/ggerganov/llama.cpp/pull/2398)
@ -422,6 +426,35 @@ Building the program with BLAS support may lead to some performance improvements
| LLAMA_CUDA_F16 | Boolean | false | If enabled, use half-precision floating point arithmetic for the CUDA dequantization + mul mat vec kernels and for the q4_1 and q5_1 matrix matrix multiplication kernels. Can improve performance on relatively recent GPUs. | | LLAMA_CUDA_F16 | Boolean | false | If enabled, use half-precision floating point arithmetic for the CUDA dequantization + mul mat vec kernels and for the q4_1 and q5_1 matrix matrix multiplication kernels. Can improve performance on relatively recent GPUs. |
| LLAMA_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per CUDA thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. | | LLAMA_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per CUDA thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. |
- #### hipBLAS
This provide BLAS acceleation on HIP supported GPU like AMD GPU.
Make sure to have ROCm installed.
You can download it from your Linux distro's package manager or from here: [ROCm Quick Start (Linux)](https://rocm.docs.amd.com/en/latest/deploy/linux/quick_start.html).
Windows support is coming soon...
- Using `make`:
```bash
make LLAMA_HIPBLAS=1
```
- Using `CMake`:
```bash
mkdir build
cd build
CC=/opt/rocm/llvm/bin/clang CXX=/opt/rocm/llvm/bin/clang++ cmake .. -DLLAMA_HIPBLAS=ON
cmake --build .
```
The environment variable [`HIP_VISIBLE_DEVICES`](https://rocm.docs.amd.com/en/latest/understand/gpu_isolation.html#hip-visible-devices) can be used to specify which GPU(s) will be used.
If your GPU is not officialy supported you can use the environment variable [`HSA_OVERRIDE_GFX_VERSION`] set to a similar GPU, for example 10.3.0 on RDNA2 or 11.0.0 on RDNA3.
The following compilation options are also available to tweak performance (yes, they refer to CUDA, not HIP, because it uses the same code as the cuBLAS version above):
| Option | Legal values | Default | Description |
|-------------------------|------------------------|---------|-------------|
| LLAMA_CUDA_DMMV_X | Positive integer >= 32 | 32 | Number of values in x direction processed by the HIP dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants. |
| LLAMA_CUDA_MMV_Y | Positive integer | 1 | Block size in y direction for the HIP mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. Does not affect k-quants. |
| LLAMA_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per HIP thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. |
- #### CLBlast - #### CLBlast
OpenCL acceleration is provided by the matrix multiplication kernels from the [CLBlast](https://github.com/CNugteren/CLBlast) project and custom kernels for ggml that can generate tokens on the GPU. OpenCL acceleration is provided by the matrix multiplication kernels from the [CLBlast](https://github.com/CNugteren/CLBlast) project and custom kernels for ggml that can generate tokens on the GPU.

141
ci/run.sh
View file

@ -196,17 +196,17 @@ function gg_run_open_llama_3b_v2 {
(time ./bin/main --model ${model_q5_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log (time ./bin/main --model ${model_q5_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/main --model ${model_q6_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log (time ./bin/main --model ${model_q6_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/perplexity --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log (time ./bin/perplexity --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/perplexity --model ${model_q8_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log (time ./bin/perplexity --model ${model_q8_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/perplexity --model ${model_q4_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log (time ./bin/perplexity --model ${model_q4_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/perplexity --model ${model_q4_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log (time ./bin/perplexity --model ${model_q4_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/perplexity --model ${model_q5_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log (time ./bin/perplexity --model ${model_q5_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/perplexity --model ${model_q5_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log (time ./bin/perplexity --model ${model_q5_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/perplexity --model ${model_q2_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log (time ./bin/perplexity --model ${model_q2_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/perplexity --model ${model_q3_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log (time ./bin/perplexity --model ${model_q3_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/perplexity --model ${model_q4_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log (time ./bin/perplexity --model ${model_q4_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log (time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log (time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
function check_ppl { function check_ppl {
qnt="$1" qnt="$1"
@ -233,6 +233,48 @@ function gg_run_open_llama_3b_v2 {
check_ppl "q5_k" "$(cat $OUT/${ci}-tg-q5_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log check_ppl "q5_k" "$(cat $OUT/${ci}-tg-q5_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q6_k" "$(cat $OUT/${ci}-tg-q6_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log check_ppl "q6_k" "$(cat $OUT/${ci}-tg-q6_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
# lora
function compare_ppl {
qnt="$1"
ppl1=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
ppl2=$(echo "$3" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
if [ $(echo "$ppl1 < $ppl2" | bc) -eq 1 ]; then
printf ' - %s @ %s (FAIL: %s > %s)\n' "$qnt" "$ppl" "$ppl1" "$ppl2"
return 20
fi
printf ' - %s @ %s %s OK\n' "$qnt" "$ppl1" "$ppl2"
return 0
}
path_lora="../models-mnt/open-llama/3B-v2/lora"
path_shakespeare="../models-mnt/shakespeare"
shakespeare="${path_shakespeare}/shakespeare.txt"
lora_shakespeare="${path_lora}/ggml-adapter-model.bin"
gg_wget ${path_lora} https://huggingface.co/slaren/open_llama_3b_v2_shakespeare_lora/resolve/main/adapter_config.json
gg_wget ${path_lora} https://huggingface.co/slaren/open_llama_3b_v2_shakespeare_lora/resolve/main/adapter_model.bin
gg_wget ${path_shakespeare} https://huggingface.co/slaren/open_llama_3b_v2_shakespeare_lora/resolve/main/shakespeare.txt
python3 ../convert-lora-to-ggml.py ${path_lora}
# f16
(time ./bin/perplexity --model ${model_f16} -f ${shakespeare} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-f16.log
(time ./bin/perplexity --model ${model_f16} -f ${shakespeare} --lora ${lora_shakespeare} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-f16.log
compare_ppl "f16 shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-f16.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log
# q8_0
(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-q8_0.log
(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} --lora ${lora_shakespeare} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-q8_0.log
compare_ppl "q8_0 shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log
# q8_0 + f16 lora-base
(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} --lora ${lora_shakespeare} --lora-base ${model_f16} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log
compare_ppl "q8_0 / f16 base shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log
set +e set +e
} }
@ -242,6 +284,7 @@ function gg_sum_open_llama_3b_v2 {
gg_printf 'OpenLLaMA 3B-v2:\n' gg_printf 'OpenLLaMA 3B-v2:\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)" gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '- perplexity:\n%s\n' "$(cat $OUT/${ci}-ppl.log)" gg_printf '- perplexity:\n%s\n' "$(cat $OUT/${ci}-ppl.log)"
gg_printf '- lora:\n%s\n' "$(cat $OUT/${ci}-lora-ppl.log)"
gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)" gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)"
gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)" gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)"
gg_printf '- q4_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_0.log)" gg_printf '- q4_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_0.log)"
@ -253,6 +296,11 @@ function gg_sum_open_llama_3b_v2 {
gg_printf '- q4_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_k.log)" gg_printf '- q4_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_k.log)"
gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)" gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)"
gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)" gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)"
gg_printf '- shakespeare (f16):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-f16.log)"
gg_printf '- shakespeare (f16 lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-f16.log)"
gg_printf '- shakespeare (q8_0):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log)"
gg_printf '- shakespeare (q8_0 lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0.log)"
gg_printf '- shakespeare (q8_0 / f16 base lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log)"
} }
# open_llama_7b_v2 # open_llama_7b_v2
@ -310,17 +358,17 @@ function gg_run_open_llama_7b_v2 {
./bin/quantize ${model_f16} ${model_q5_k} q5_k ./bin/quantize ${model_f16} ${model_q5_k} q5_k
./bin/quantize ${model_f16} ${model_q6_k} q6_k ./bin/quantize ${model_f16} ${model_q6_k} q6_k
(time ./bin/main --model ${model_f16} -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log (time ./bin/main --model ${model_f16} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/main --model ${model_q8_0} -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log (time ./bin/main --model ${model_q8_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/main --model ${model_q4_0} -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log (time ./bin/main --model ${model_q4_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/main --model ${model_q4_1} -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log (time ./bin/main --model ${model_q4_1} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/main --model ${model_q5_0} -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log (time ./bin/main --model ${model_q5_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/main --model ${model_q5_1} -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log (time ./bin/main --model ${model_q5_1} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/main --model ${model_q2_k} -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log (time ./bin/main --model ${model_q2_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/main --model ${model_q3_k} -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log (time ./bin/main --model ${model_q3_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/main --model ${model_q4_k} -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log (time ./bin/main --model ${model_q4_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/main --model ${model_q5_k} -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log (time ./bin/main --model ${model_q5_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/main --model ${model_q6_k} -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log (time ./bin/main --model ${model_q6_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/perplexity --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log (time ./bin/perplexity --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/perplexity --model ${model_q8_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log (time ./bin/perplexity --model ${model_q8_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
@ -359,6 +407,48 @@ function gg_run_open_llama_7b_v2 {
check_ppl "q5_k" "$(cat $OUT/${ci}-tg-q5_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log check_ppl "q5_k" "$(cat $OUT/${ci}-tg-q5_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q6_k" "$(cat $OUT/${ci}-tg-q6_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log check_ppl "q6_k" "$(cat $OUT/${ci}-tg-q6_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
# lora
function compare_ppl {
qnt="$1"
ppl1=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
ppl2=$(echo "$3" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
if [ $(echo "$ppl1 < $ppl2" | bc) -eq 1 ]; then
printf ' - %s @ %s (FAIL: %s > %s)\n' "$qnt" "$ppl" "$ppl1" "$ppl2"
return 20
fi
printf ' - %s @ %s %s OK\n' "$qnt" "$ppl1" "$ppl2"
return 0
}
path_lora="../models-mnt/open-llama/7B-v2/lora"
path_shakespeare="../models-mnt/shakespeare"
shakespeare="${path_shakespeare}/shakespeare.txt"
lora_shakespeare="${path_lora}/ggml-adapter-model.bin"
gg_wget ${path_lora} https://huggingface.co/slaren/open_llama_7b_v2_shakespeare_lora/resolve/main/adapter_config.json
gg_wget ${path_lora} https://huggingface.co/slaren/open_llama_7b_v2_shakespeare_lora/resolve/main/adapter_model.bin
gg_wget ${path_shakespeare} https://huggingface.co/slaren/open_llama_7b_v2_shakespeare_lora/resolve/main/shakespeare.txt
python3 ../convert-lora-to-ggml.py ${path_lora}
# f16
(time ./bin/perplexity --model ${model_f16} -f ${shakespeare} -t 1 -ngl 999 -c 2048 -b 512 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-f16.log
(time ./bin/perplexity --model ${model_f16} -f ${shakespeare} --lora ${lora_shakespeare} -t 1 -ngl 999 -c 2048 -b 512 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-f16.log
compare_ppl "f16 shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-f16.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log
# currently not supported by the CUDA backend
# q8_0
#(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} -t 1 -ngl 999 -c 2048 -b 512 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-q8_0.log
#(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} --lora ${lora_shakespeare} -t 1 -ngl 999 -c 2048 -b 512 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-q8_0.log
#compare_ppl "q8_0 shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log
# q8_0 + f16 lora-base
#(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} --lora ${lora_shakespeare} --lora-base ${model_f16} -t 1 -ngl 999 -c 2048 -b 512 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log
#compare_ppl "q8_0 / f16 shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log
set +e set +e
} }
@ -368,6 +458,7 @@ function gg_sum_open_llama_7b_v2 {
gg_printf 'OpenLLaMA 7B-v2:\n' gg_printf 'OpenLLaMA 7B-v2:\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)" gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '- perplexity:\n%s\n' "$(cat $OUT/${ci}-ppl.log)" gg_printf '- perplexity:\n%s\n' "$(cat $OUT/${ci}-ppl.log)"
gg_printf '- lora:\n%s\n' "$(cat $OUT/${ci}-lora-ppl.log)"
gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)" gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)"
gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)" gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)"
gg_printf '- q4_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_0.log)" gg_printf '- q4_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_0.log)"
@ -379,6 +470,11 @@ function gg_sum_open_llama_7b_v2 {
gg_printf '- q4_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_k.log)" gg_printf '- q4_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_k.log)"
gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)" gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)"
gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)" gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)"
gg_printf '- shakespeare (f16):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-f16.log)"
gg_printf '- shakespeare (f16 lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-f16.log)"
#gg_printf '- shakespeare (q8_0):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log)"
#gg_printf '- shakespeare (q8_0 lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0.log)"
#gg_printf '- shakespeare (q8_0 / f16 base lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log)"
} }
## main ## main
@ -391,6 +487,7 @@ if [ -z ${GG_BUILD_LOW_PERF} ]; then
ln -sfn ${mnt_models} ${SRC}/models-mnt ln -sfn ${mnt_models} ${SRC}/models-mnt
python3 -m pip install -r ${SRC}/requirements.txt python3 -m pip install -r ${SRC}/requirements.txt
python3 -m pip install --editable gguf-py
fi fi
ret=0 ret=0

View file

@ -613,9 +613,11 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
fprintf(stdout, " how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n"); fprintf(stdout, " how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
fprintf(stdout, " -mg i, --main-gpu i the GPU to use for scratch and small tensors\n"); fprintf(stdout, " -mg i, --main-gpu i the GPU to use for scratch and small tensors\n");
fprintf(stdout, " -lv, --low-vram don't allocate VRAM scratch buffer\n"); fprintf(stdout, " -lv, --low-vram don't allocate VRAM scratch buffer\n");
#ifdef GGML_USE_CUBLAS
fprintf(stdout, " -nommq, --no-mul-mat-q\n"); fprintf(stdout, " -nommq, --no-mul-mat-q\n");
fprintf(stdout, " use cuBLAS instead of custom mul_mat_q CUDA kernels.\n"); fprintf(stdout, " use " GGML_CUBLAS_NAME " instead of custom mul_mat_q " GGML_CUDA_NAME " kernels.\n");
fprintf(stdout, " Not recommended since this is both slower and uses more VRAM.\n"); fprintf(stdout, " Not recommended since this is both slower and uses more VRAM.\n");
#endif // GGML_USE_CUBLAS
#endif #endif
fprintf(stdout, " --mtest compute maximum memory usage\n"); fprintf(stdout, " --mtest compute maximum memory usage\n");
fprintf(stdout, " --export export the computation graph to 'llama.ggml'\n"); fprintf(stdout, " --export export the computation graph to 'llama.ggml'\n");
@ -731,12 +733,12 @@ std::vector<llama_token> llama_tokenize(
return result; return result;
} }
std::string llama_token_to_str(const struct llama_context * ctx, llama_token token) { std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) {
std::vector<char> result(8, 0); std::vector<char> result(8, 0);
const int n_tokens = llama_token_to_str(ctx, token, result.data(), result.size()); const int n_tokens = llama_token_to_piece(ctx, token, result.data(), result.size());
if (n_tokens < 0) { if (n_tokens < 0) {
result.resize(-n_tokens); result.resize(-n_tokens);
int check = llama_token_to_str(ctx, token, result.data(), result.size()); int check = llama_token_to_piece(ctx, token, result.data(), result.size());
GGML_ASSERT(check == -n_tokens); GGML_ASSERT(check == -n_tokens);
} else { } else {
result.resize(n_tokens); result.resize(n_tokens);
@ -744,3 +746,36 @@ std::string llama_token_to_str(const struct llama_context * ctx, llama_token tok
return std::string(result.data(), result.size()); return std::string(result.data(), result.size());
} }
std::string llama_detokenize_spm(llama_context * ctx, const std::vector<llama_token> & tokens) {
const llama_token bos_id = llama_token_bos(ctx);
std::string piece;
std::string result;
for (size_t i = 0; i < tokens.size(); ++i) {
piece = llama_token_to_piece(ctx, tokens[i]);
// remove the leading space of the first non-BOS token
if (((tokens[0] == bos_id && i == 1) || (tokens[0] != bos_id && i == 0)) && piece[0] == ' ') {
piece = piece.substr(1);
}
result += piece;
}
return result;
}
std::string llama_detokenize_bpe(llama_context * ctx, const std::vector<llama_token> & tokens) {
std::string piece;
std::string result;
for (size_t i = 0; i < tokens.size(); ++i) {
piece = llama_token_to_piece(ctx, tokens[i]);
result += piece;
}
return result;
}

View file

@ -28,6 +28,7 @@ struct gpt_params {
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens. int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
int32_t n_beams = 0; // if non-zero then use beam search of given width.
float rope_freq_base = 10000.0f; // RoPE base frequency float rope_freq_base = 10000.0f; // RoPE base frequency
float rope_freq_scale = 1.0f; // RoPE frequency scaling factor float rope_freq_scale = 1.0f; // RoPE frequency scaling factor
@ -115,11 +116,31 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
// Vocab utils // Vocab utils
// //
// tokenizes a string into a vector of tokens
// should work similar to Python's `tokenizer.encode`
std::vector<llama_token> llama_tokenize( std::vector<llama_token> llama_tokenize(
struct llama_context * ctx, struct llama_context * ctx,
const std::string & text, const std::string & text,
bool add_bos); bool add_bos);
std::string llama_token_to_str( // tokenizes a token into a piece
// should work similar to Python's `tokenizer.id_to_piece`
std::string llama_token_to_piece(
const struct llama_context * ctx, const struct llama_context * ctx,
llama_token token); llama_token token);
// TODO: these should be moved in llama.h C-style API under single `llama_detokenize` function
// that takes into account the tokenizer type and decides how to handle the leading space
//
// detokenizes a vector of tokens into a string
// should work similar to Python's `tokenizer.decode`
// removes the leading space from the first non-BOS token
std::string llama_detokenize_spm(
llama_context * ctx,
const std::vector<llama_token> & tokens);
// detokenizes a vector of tokens into a string
// should work similar to Python's `tokenizer.decode`
std::string llama_detokenize_bpe(
llama_context * ctx,
const std::vector<llama_token> & tokens);

View file

@ -107,6 +107,7 @@ if "n_head_kv" in hparams:
else: else:
gguf_writer.add_head_count_kv(1) gguf_writer.add_head_count_kv(1)
gguf_writer.add_layer_norm_eps(hparams["layer_norm_epsilon"]) gguf_writer.add_layer_norm_eps(hparams["layer_norm_epsilon"])
gguf_writer.add_file_type(ftype)
# TOKENIZATION # TOKENIZATION

View file

@ -3,6 +3,7 @@
import gguf import gguf
import argparse import argparse
import concurrent.futures import concurrent.futures
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor
import copy import copy
import enum import enum
import faulthandler import faulthandler
@ -17,13 +18,14 @@ import re
import signal import signal
import struct import struct
import sys import sys
import time
import zipfile import zipfile
import numpy as np import numpy as np
from abc import ABCMeta, abstractmethod from abc import ABCMeta, abstractmethod
from dataclasses import dataclass from dataclasses import dataclass
from pathlib import Path from pathlib import Path
from typing import (IO, TYPE_CHECKING, Any, Callable, Dict, Iterable, List, Literal, Optional, Sequence, Tuple, TypeVar, Union) from typing import (IO, TYPE_CHECKING, Any, Callable, Dict, Generator, Iterable, List, Literal, Optional, Sequence, Set, Tuple, TypeVar, Union)
from sentencepiece import SentencePieceProcessor # type: ignore from sentencepiece import SentencePieceProcessor # type: ignore
if TYPE_CHECKING: if TYPE_CHECKING:
@ -37,30 +39,70 @@ NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]'
ARCH=gguf.MODEL_ARCH.LLAMA ARCH=gguf.MODEL_ARCH.LLAMA
NAMES=gguf.MODEL_TENSOR_NAMES[ARCH] NAMES=gguf.MODEL_TENSOR_NAMES[ARCH]
DEFAULT_CONCURRENCY = 8
# #
# data types # data types
# #
@dataclass(frozen=True) @dataclass(frozen=True)
class UnquantizedDataType: class DataType:
name: str name: str
dtype: 'np.dtype[Any]'
valid_conversions: List[str]
DT_F16 = UnquantizedDataType('F16') def elements_to_bytes(self, n_elements: int) -> int:
DT_F32 = UnquantizedDataType('F32') return n_elements * self.dtype.itemsize
DT_I32 = UnquantizedDataType('I32')
DT_BF16 = UnquantizedDataType('BF16')
DataType = Union[UnquantizedDataType] @dataclass(frozen=True)
class UnquantizedDataType(DataType):
pass
DATA_TYPE_TO_NUMPY: Dict[DataType, 'np.dtype[Any]'] = { DT_F16 = UnquantizedDataType('F16', dtype = np.dtype(np.float16), valid_conversions = ['F32', 'Q8_0'])
DT_BF16: np.dtype(np.uint16), DT_F32 = UnquantizedDataType('F32', dtype = np.dtype(np.float32), valid_conversions = ['F16', 'Q8_0'])
DT_F16: np.dtype(np.float16), DT_I32 = UnquantizedDataType('I32', dtype = np.dtype(np.int16), valid_conversions = [])
DT_F32: np.dtype(np.float32), DT_BF16 = UnquantizedDataType('BF16', dtype = np.dtype(np.uint16), valid_conversions = ['F32', 'F16', 'Q8_0'])
DT_I32: np.dtype(np.int32),
}
NUMPY_TYPE_TO_DATA_TYPE: Dict['np.dtype[Any]', DataType] = \ @dataclass(frozen=True)
{dtype: data_type for (data_type, dtype) in DATA_TYPE_TO_NUMPY.items()} class QuantizedDataType(DataType):
block_size: int
quantized_dtype: 'np.dtype[Any]'
ggml_type: gguf.GGMLQuantizationType
def quantize(self, arr: NDArray) -> NDArray:
raise NotImplementedError(f'Quantization for {self.name} not implemented')
def elements_to_bytes(self, n_elements: int) -> int:
assert n_elements % self.block_size == 0, f'Invalid number of elements {n_elements} for {self.name} with block size {self.block_size}'
return self.quantized_dtype.itemsize * (n_elements // self.block_size)
@dataclass(frozen=True)
class Q8_0QuantizedDataType(QuantizedDataType):
# Mini Q8_0 quantization in Python!
def quantize(self, arr: NDArray) -> NDArray:
assert arr.size % self.block_size == 0 and arr.size != 0, f'Bad array size {arr.size}'
assert arr.dtype == np.float32, f'Bad array type {arr.dtype}'
n_blocks = arr.size // self.block_size
blocks = arr.reshape((n_blocks, self.block_size))
# Much faster implementation of block quantization contributed by @Cebtenzzre
def quantize_blocks_q8_0(blocks: NDArray) -> Iterable[Tuple[Any, Any]]:
d = abs(blocks).max(axis = 1) / np.float32(127)
with np.errstate(divide = 'ignore'):
qs = (blocks / d[:, None]).round()
qs[d == 0] = 0
yield from zip(d, qs)
return np.fromiter(quantize_blocks_q8_0(blocks), count = n_blocks, dtype = self.quantized_dtype)
DT_Q8_0 = Q8_0QuantizedDataType('Q8_0',
dtype = np.dtype(np.float32), valid_conversions = [],
ggml_type = gguf.GGMLQuantizationType.Q8_0, block_size = 32,
quantized_dtype = np.dtype([('d', '<f2'), ('qs', 'i1', (32,))]))
# Quantized types skipped here because they may also map to np.float32
NUMPY_TYPE_TO_DATA_TYPE: Dict['np.dtype[Any]', DataType] = {}
for dt in (DT_BF16, DT_F16, DT_F32, DT_I32):
if dt.dtype in NUMPY_TYPE_TO_DATA_TYPE:
raise ValueError(f'Invalid duplicate data type {dt}')
NUMPY_TYPE_TO_DATA_TYPE[dt.dtype] = dt
SAFETENSORS_DATA_TYPES: Dict[str, DataType] = { SAFETENSORS_DATA_TYPES: Dict[str, DataType] = {
'BF16': DT_BF16, 'BF16': DT_BF16,
@ -73,20 +115,22 @@ SAFETENSORS_DATA_TYPES: Dict[str, DataType] = {
# TODO: rename to LLAMAFileType # TODO: rename to LLAMAFileType
# TODO: move to `gguf.py` # TODO: move to `gguf.py`
class GGMLFileType(enum.IntEnum): class GGMLFileType(enum.IntEnum):
AllF32 = 0 AllF32 = 0
MostlyF16 = 1 # except 1d tensors MostlyF16 = 1 # except 1d tensors
MostlyQ8_0 = 7 # except 1d tensors
def type_for_tensor(self, name: str, tensor: 'LazyTensor') -> DataType: def type_for_tensor(self, name: str, tensor: 'LazyTensor') -> DataType:
if len(tensor.shape) == 1: dt = GGML_FILE_TYPE_TO_DATA_TYPE.get(self)
# 1D tensors are always F32. if dt is None:
return DT_F32
elif self == GGMLFileType.AllF32:
return DT_F32
elif self == GGMLFileType.MostlyF16:
return DT_F16
else:
raise ValueError(self) raise ValueError(self)
# 1D tensors are always F32.
return dt if len(tensor.shape) > 1 else DT_F32
GGML_FILE_TYPE_TO_DATA_TYPE: Dict[GGMLFileType, DataType] = {
GGMLFileType.AllF32 : DT_F32,
GGMLFileType.MostlyF16 : DT_F16,
GGMLFileType.MostlyQ8_0: DT_Q8_0,
}
# #
# hparams loading # hparams loading
@ -104,8 +148,14 @@ class Params:
n_head_kv: int n_head_kv: int
f_norm_eps: float f_norm_eps: float
f_rope_freq_base: Optional[float] = None
f_rope_scale: Optional[float] = None
ftype: Optional[GGMLFileType] = None ftype: Optional[GGMLFileType] = None
# path to the directory containing the model files
path_model: Optional['Path'] = None
@staticmethod @staticmethod
def find_n_mult(n_ff: int, n_embd: int) -> int: def find_n_mult(n_ff: int, n_embd: int) -> int:
# hardcoded magic range # hardcoded magic range
@ -155,13 +205,20 @@ class Params:
def loadHFTransformerJson(model: 'LazyModel', config_path: 'Path') -> 'Params': def loadHFTransformerJson(model: 'LazyModel', config_path: 'Path') -> 'Params':
config = json.load(open(config_path)) config = json.load(open(config_path))
n_vocab = config["vocab_size"] n_vocab = config["vocab_size"]
n_embd = config["hidden_size"] n_embd = config["hidden_size"]
n_layer = config["num_hidden_layers"] n_layer = config["num_hidden_layers"]
n_ff = config["intermediate_size"] n_ff = config["intermediate_size"]
n_head = config["num_attention_heads"] n_head = config["num_attention_heads"]
n_head_kv = config["num_key_value_heads"] if "num_key_value_heads" in config else n_head n_head_kv = config["num_key_value_heads"] if "num_key_value_heads" in config else n_head
f_norm_eps = config["rms_norm_eps"] f_norm_eps = config["rms_norm_eps"]
f_rope_freq_base = config["rope_theta"] if "rope_theta" in config else None
rope_scaling = config.get("rope_scaling")
if isinstance(rope_scaling, dict) and rope_scaling.get("type") == "linear":
f_rope_scale = config["rope_scaling"].get("factor")
else:
f_rope_scale = None
n_mult = Params.find_n_mult(n_ff, n_embd) n_mult = Params.find_n_mult(n_ff, n_embd)
@ -174,15 +231,17 @@ class Params:
"Suggestion: provide 'config.json' of the model in the same directory containing model files.") "Suggestion: provide 'config.json' of the model in the same directory containing model files.")
return Params( return Params(
n_vocab = n_vocab, n_vocab = n_vocab,
n_embd = n_embd, n_embd = n_embd,
n_mult = n_mult, n_mult = n_mult,
n_layer = n_layer, n_layer = n_layer,
n_ctx = n_ctx, n_ctx = n_ctx,
n_ff = n_ff, n_ff = n_ff,
n_head = n_head, n_head = n_head,
n_head_kv = n_head_kv, n_head_kv = n_head_kv,
f_norm_eps = f_norm_eps, f_norm_eps = f_norm_eps,
f_rope_freq_base = f_rope_freq_base,
f_rope_scale = f_rope_scale,
) )
# LLaMA v2 70B params.json # LLaMA v2 70B params.json
@ -191,15 +250,26 @@ class Params:
def loadOriginalParamsJson(model: 'LazyModel', config_path: 'Path') -> 'Params': def loadOriginalParamsJson(model: 'LazyModel', config_path: 'Path') -> 'Params':
config = json.load(open(config_path)) config = json.load(open(config_path))
n_vocab = config["vocab_size"] n_vocab = config["vocab_size"] if "vocab_size" in config else -1
n_embd = config["dim"] n_embd = config["dim"]
n_layer = config["n_layers"] n_layer = config["n_layers"]
n_mult = config["multiple_of"] n_mult = config["multiple_of"]
n_ctx = 2048 if config["norm_eps"] == 1e-06 else 4096 # hack to determine LLaMA v1 vs v2 n_ff = -1
n_ff = -1 n_head = config["n_heads"]
n_head = config["n_heads"] n_head_kv = config["n_kv_heads"] if "n_kv_heads" in config else n_head
n_head_kv = config["n_kv_heads"] if "n_kv_heads" in config else n_head f_norm_eps = config["norm_eps"]
f_norm_eps = config["norm_eps"] f_rope_freq_base = config["rope_theta"] if "rope_theta" in config else None
# hack to determine LLaMA v1 vs v2 vs CodeLlama
if f_rope_freq_base and f_rope_freq_base == 1000000:
# CodeLlama
n_ctx = 16384
elif config["norm_eps"] == 1e-05:
# LLaMA v2
n_ctx = 4096
else:
# LLaMA v1
n_ctx = 2048
if n_vocab == -1: if n_vocab == -1:
n_vocab = model["tok_embeddings.weight"].shape[0] n_vocab = model["tok_embeddings.weight"].shape[0]
@ -208,15 +278,16 @@ class Params:
n_ff = model["layers.0.feed_forward.w1.weight"].shape[0] n_ff = model["layers.0.feed_forward.w1.weight"].shape[0]
return Params( return Params(
n_vocab = n_vocab, n_vocab = n_vocab,
n_embd = n_embd, n_embd = n_embd,
n_mult = n_mult, n_mult = n_mult,
n_layer = n_layer, n_layer = n_layer,
n_ctx = n_ctx, n_ctx = n_ctx,
n_ff = n_ff, n_ff = n_ff,
n_head = n_head, n_head = n_head,
n_head_kv = n_head_kv, n_head_kv = n_head_kv,
f_norm_eps = f_norm_eps, f_norm_eps = f_norm_eps,
f_rope_freq_base = f_rope_freq_base,
) )
@staticmethod @staticmethod
@ -231,6 +302,8 @@ class Params:
else: else:
params = Params.guessed(model_plus.model) params = Params.guessed(model_plus.model)
params.path_model = model_plus.paths[0].parent
return params return params
@ -386,7 +459,7 @@ class UnquantizedTensor(Tensor):
self.data_type = NUMPY_TYPE_TO_DATA_TYPE[ndarray.dtype] self.data_type = NUMPY_TYPE_TO_DATA_TYPE[ndarray.dtype]
def astype(self, data_type: DataType) -> Tensor: def astype(self, data_type: DataType) -> Tensor:
dtype = DATA_TYPE_TO_NUMPY[data_type] dtype = data_type.dtype
if self.data_type == DT_BF16: if self.data_type == DT_BF16:
self.ndarray = bf16_to_fp32(self.ndarray) self.ndarray = bf16_to_fp32(self.ndarray)
return UnquantizedTensor(self.ndarray.astype(dtype)) return UnquantizedTensor(self.ndarray.astype(dtype))
@ -425,22 +498,6 @@ def load_unquantized(lazy_tensor: 'LazyTensor', expected_dtype: Any = None, conv
GGMLCompatibleTensor = Union[UnquantizedTensor] GGMLCompatibleTensor = Union[UnquantizedTensor]
class DeferredPermutedTensor(Tensor):
def __init__(self, base: Tensor, n_head: int, n_head_kv: int) -> None:
self.base = base
self.n_head = n_head
self.data_type = self.base.data_type
def astype(self, data_type: DataType) -> Tensor:
return self.base.astype(data_type).permute(self.n_head, self.n_head_kv)
def to_ggml(self) -> GGMLCompatibleTensor:
return self.base.to_ggml().permute(self.n_head, self.n_head_kv)
def permute(self, n_head: int, n_head_kv: int) -> Tensor:
raise Exception("shouldn't permute twice")
@dataclass @dataclass
class LazyTensor: class LazyTensor:
_load: Callable[[], Tensor] _load: Callable[[], Tensor]
@ -450,7 +507,9 @@ class LazyTensor:
def load(self) -> Tensor: def load(self) -> Tensor:
ret = self._load() ret = self._load()
assert ret.data_type == self.data_type, (self.data_type, ret.data_type, self.description) # Should be okay if it maps to the same numpy type?
assert ret.data_type == self.data_type or (self.data_type.dtype == ret.data_type.dtype), \
(self.data_type, ret.data_type, self.description)
return ret return ret
def astype(self, data_type: DataType) -> 'LazyTensor': def astype(self, data_type: DataType) -> 'LazyTensor':
@ -461,8 +520,8 @@ class LazyTensor:
return LazyTensor(load, self.shape, data_type, f'convert({data_type}) {self.description}') return LazyTensor(load, self.shape, data_type, f'convert({data_type}) {self.description}')
def validate_conversion_to(self, data_type: DataType) -> None: def validate_conversion_to(self, data_type: DataType) -> None:
if data_type == self.data_type: if data_type != self.data_type and data_type.name not in self.data_type.valid_conversions:
return raise ValueError(f'Cannot validate conversion from {self.data_type} to {data_type}.')
LazyModel = Dict[str, LazyTensor] LazyModel = Dict[str, LazyTensor]
@ -588,9 +647,7 @@ class LazyUnpickler(pickle.Unpickler):
info = self.zip_file.getinfo(filename) info = self.zip_file.getinfo(filename)
def load(offset: int, elm_count: int) -> NDArray: def load(offset: int, elm_count: int) -> NDArray:
dtype = DATA_TYPE_TO_NUMPY.get(data_type) dtype = data_type.dtype
if dtype is None:
raise Exception("tensor stored in unsupported format")
fp = self.zip_file.open(info) fp = self.zip_file.open(info)
fp.seek(offset * dtype.itemsize) fp.seek(offset * dtype.itemsize)
size = elm_count * dtype.itemsize size = elm_count * dtype.itemsize
@ -654,7 +711,7 @@ def lazy_load_safetensors_file(fp: IO[bytes], path: Path) -> ModelPlus:
def convert(info: Dict[str, Any]) -> LazyTensor: def convert(info: Dict[str, Any]) -> LazyTensor:
data_type = SAFETENSORS_DATA_TYPES[info['dtype']] data_type = SAFETENSORS_DATA_TYPES[info['dtype']]
numpy_dtype = DATA_TYPE_TO_NUMPY[data_type] numpy_dtype = data_type.dtype
shape: List[int] = info['shape'] shape: List[int] = info['shape']
begin, end = info['data_offsets'] begin, end = info['data_offsets']
assert 0 <= begin <= end <= len(byte_buf) assert 0 <= begin <= end <= len(byte_buf)
@ -694,23 +751,35 @@ def lazy_load_file(path: Path) -> ModelPlus:
In = TypeVar('In') In = TypeVar('In')
Out = TypeVar('Out') Out = TypeVar('Out')
def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], concurrency: int) -> Iterable[Out]: def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], concurrency: int, max_workers: Optional[int] = None, factory: Callable = ThreadPoolExecutor) -> Iterable[Out]:
'''Parallel map, but with backpressure. If the caller doesn't call `next` '''Parallel map, but with backpressure. If the caller doesn't call `next`
fast enough, this will stop calling `func` at some point rather than fast enough, this will stop calling `func` at some point rather than
letting results pile up in memory. Specifically, there is a max of one letting results pile up in memory. Specifically, there is a max of one
output value buffered per thread.''' output value buffered per thread.'''
with concurrent.futures.ThreadPoolExecutor() as executor: if concurrency < 2:
yield from map(func, iterable)
# Not reached.
iterable = iter(iterable)
with factory(max_workers = max_workers) as executor:
futures: List[concurrent.futures.Future[Out]] = [] futures: List[concurrent.futures.Future[Out]] = []
items_rev = list(iterable)[::-1] done = False
for i in range(min(concurrency, len(items_rev))): for _ in range(concurrency):
futures.append(executor.submit(func, items_rev.pop())) try:
futures.append(executor.submit(func, next(iterable)))
except StopIteration:
done = True
break
while futures: while futures:
result = futures.pop(0).result() result = futures.pop(0).result()
if items_rev: while not done and len(futures) < concurrency:
futures.append(executor.submit(func, items_rev.pop())) try:
futures.append(executor.submit(func, next(iterable)))
except StopIteration:
done = True
break
yield result yield result
def check_vocab_size(params: Params, vocab: Vocab) -> None: def check_vocab_size(params: Params, vocab: Vocab) -> None:
if params.n_vocab != vocab.vocab_size: if params.n_vocab != vocab.vocab_size:
assert isinstance(vocab, BpeVocab) or isinstance(vocab, SentencePieceVocab) assert isinstance(vocab, BpeVocab) or isinstance(vocab, SentencePieceVocab)
@ -733,11 +802,13 @@ class OutputFile:
self.gguf = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH]) self.gguf = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
def add_meta_arch(self, params: Params) -> None: def add_meta_arch(self, params: Params) -> None:
ver = None name = "LLaMA"
if (params.n_ctx == 4096): if (params.n_ctx == 4096):
ver = "v2" name = "LLaMA v2"
if params.path_model:
name = str(params.path_model.parent).split('/')[-1]
self.gguf.add_name ("LLaMA" if ver == None else "LLaMA " + ver) self.gguf.add_name (name)
self.gguf.add_context_length (params.n_ctx) self.gguf.add_context_length (params.n_ctx)
self.gguf.add_embedding_length (params.n_embd) self.gguf.add_embedding_length (params.n_embd)
self.gguf.add_block_count (params.n_layer) self.gguf.add_block_count (params.n_layer)
@ -747,6 +818,12 @@ class OutputFile:
self.gguf.add_head_count_kv (params.n_head_kv) self.gguf.add_head_count_kv (params.n_head_kv)
self.gguf.add_layer_norm_rms_eps (params.f_norm_eps) self.gguf.add_layer_norm_rms_eps (params.f_norm_eps)
if params.f_rope_freq_base:
self.gguf.add_rope_freq_base(params.f_rope_freq_base)
if params.f_rope_scale:
self.gguf.add_rope_scale_linear(params.f_rope_scale)
if params.ftype: if params.ftype:
self.gguf.add_file_type(params.ftype) self.gguf.add_file_type(params.ftype)
@ -767,12 +844,11 @@ class OutputFile:
self.gguf.add_token_types(toktypes) self.gguf.add_token_types(toktypes)
def add_tensor_info(self, name: str, tensor: LazyTensor) -> None: def add_tensor_info(self, name: str, tensor: LazyTensor) -> None:
n_elements = 1 n_elements = int(np.prod(tensor.shape))
for dim in tensor.shape: raw_dtype = getattr(tensor.data_type, 'ggml_type', None)
n_elements *= dim data_type = getattr(tensor.data_type, 'quantized_type', None) or tensor.data_type.dtype
data_type = DATA_TYPE_TO_NUMPY[tensor.data_type] data_nbytes = tensor.data_type.elements_to_bytes(n_elements)
data_nbytes = n_elements * data_type.itemsize self.gguf.add_tensor_info(name, tensor.shape, data_type, data_nbytes, raw_dtype = raw_dtype)
self.gguf.add_tensor_info(name, tensor.shape, data_type, data_nbytes)
def write_meta(self) -> None: def write_meta(self) -> None:
self.gguf.write_header_to_file() self.gguf.write_header_to_file()
@ -798,7 +874,20 @@ class OutputFile:
of.close() of.close()
@staticmethod @staticmethod
def write_all(fname_out: Path, params: Params, model: LazyModel, vocab: Vocab) -> None: def do_item(item: Tuple[str, LazyTensor]) -> Tuple[DataType, NDArray]:
name, lazy_tensor = item
tensor = lazy_tensor.load().to_ggml()
return (lazy_tensor.data_type, tensor.ndarray)
@staticmethod
def maybe_do_quantize(item: Tuple[DataType, NDArray]) -> NDArray:
dt, arr = item
if not isinstance(dt, QuantizedDataType):
return arr
return dt.quantize(arr)
@staticmethod
def write_all(fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: Vocab, concurrency: int = DEFAULT_CONCURRENCY) -> None:
check_vocab_size(params, vocab) check_vocab_size(params, vocab)
of = OutputFile(fname_out) of = OutputFile(fname_out)
@ -814,16 +903,19 @@ class OutputFile:
of.write_meta() of.write_meta()
of.write_tensor_info() of.write_tensor_info()
def do_item(item: Tuple[str, LazyTensor]) -> NDArray:
name, lazy_tensor = item
return lazy_tensor.load().to_ggml().ndarray
# tensor data # tensor data
ndarrays = bounded_parallel_map(do_item, model.items(), concurrency=8) ndarrays_inner = bounded_parallel_map(OutputFile.do_item, model.items(), concurrency = concurrency)
if ftype == GGMLFileType.MostlyQ8_0:
ndarrays = bounded_parallel_map(OutputFile.maybe_do_quantize, ndarrays_inner, concurrency = concurrency, max_workers = concurrency, factory = ProcessPoolExecutor)
else:
ndarrays = map(OutputFile.maybe_do_quantize, ndarrays_inner)
start = time.time()
for i, ((name, lazy_tensor), ndarray) in enumerate(zip(model.items(), ndarrays)): for i, ((name, lazy_tensor), ndarray) in enumerate(zip(model.items(), ndarrays)):
elapsed = time.time() - start
size = ' x '.join(f"{dim:6d}" for dim in lazy_tensor.shape) size = ' x '.join(f"{dim:6d}" for dim in lazy_tensor.shape)
padi = len(str(len(model))) padi = len(str(len(model)))
print(f"[{i+1:{padi}d}/{len(model)}] Writing tensor {name:38s} | size {size:16} | type {lazy_tensor.data_type}") print(f"[{i+1:{padi}d}/{len(model)}] Writing tensor {name:38s} | size {size:16} | type {lazy_tensor.data_type.name:4} | T+{int(elapsed):4}")
of.gguf.write_tensor_data(ndarray) of.gguf.write_tensor_data(ndarray)
of.close() of.close()
@ -835,6 +927,8 @@ def pick_output_type(model: LazyModel, output_type_str: Optional[str]) -> GGMLFi
return GGMLFileType.AllF32 return GGMLFileType.AllF32
if output_type_str == "f16" or (output_type_str is None and wq_type in (DT_F16, DT_BF16)): if output_type_str == "f16" or (output_type_str is None and wq_type in (DT_F16, DT_BF16)):
return GGMLFileType.MostlyF16 return GGMLFileType.MostlyF16
if output_type_str == "q8_0":
return GGMLFileType.MostlyQ8_0
name_to_type = {name: lazy_tensor.data_type for (name, lazy_tensor) in model.items()} name_to_type = {name: lazy_tensor.data_type for (name, lazy_tensor) in model.items()}
@ -881,7 +975,7 @@ def convert_model_names(model: LazyModel, params: Params) -> LazyModel:
print(f"skipping tensor {name_new}") print(f"skipping tensor {name_new}")
continue continue
else: else:
print(f"{name:48s} -> {name_new:40s} | {lazy_tensor.data_type} | {lazy_tensor.shape}") print(f"{name:48s} -> {name_new:40s} | {lazy_tensor.data_type.name:6s} | {lazy_tensor.shape}")
out[name_new] = lazy_tensor out[name_new] = lazy_tensor
return out return out
@ -986,6 +1080,7 @@ def default_outfile(model_paths: List[Path], file_type: GGMLFileType) -> Path:
namestr = { namestr = {
GGMLFileType.AllF32: "f32", GGMLFileType.AllF32: "f32",
GGMLFileType.MostlyF16: "f16", GGMLFileType.MostlyF16: "f16",
GGMLFileType.MostlyQ8_0:"q8_0",
}[file_type] }[file_type]
ret = model_paths[0].parent / f"ggml-model-{namestr}.gguf" ret = model_paths[0].parent / f"ggml-model-{namestr}.gguf"
if ret in model_paths: if ret in model_paths:
@ -1009,12 +1104,13 @@ def main(args_in: Optional[List[str]] = None) -> None:
parser.add_argument("--dump", action="store_true", help="don't convert, just show what's in the model") parser.add_argument("--dump", action="store_true", help="don't convert, just show what's in the model")
parser.add_argument("--dump-single", action="store_true", help="don't convert, just show what's in a single model file") parser.add_argument("--dump-single", action="store_true", help="don't convert, just show what's in a single model file")
parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab") parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
parser.add_argument("--outtype", choices=["f32", "f16"], help="output format (default: based on input)") parser.add_argument("--outtype", choices=["f32", "f16", "q8_0"], help="output format - note: q8_0 may be very slow (default: f16 or f32 based on input)")
parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file") parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file")
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input") parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)") parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)")
parser.add_argument("--vocabtype", choices=["spm", "bpe"], help="vocab format (default: spm)", default="spm") parser.add_argument("--vocabtype", choices=["spm", "bpe"], help="vocab format (default: spm)", default="spm")
parser.add_argument("--ctx", type=int, help="model training context (default: based on input)") parser.add_argument("--ctx", type=int, help="model training context (default: based on input)")
parser.add_argument("--concurrency", type=int, help=f"concurrency used for conversion (default: {DEFAULT_CONCURRENCY})", default = DEFAULT_CONCURRENCY)
args = parser.parse_args(args_in) args = parser.parse_args(args_in)
if args.dump_single: if args.dump_single:
@ -1036,6 +1132,7 @@ def main(args_in: Optional[List[str]] = None) -> None:
params.ftype = { params.ftype = {
"f32": GGMLFileType.AllF32, "f32": GGMLFileType.AllF32,
"f16": GGMLFileType.MostlyF16, "f16": GGMLFileType.MostlyF16,
"q8_0": GGMLFileType.MostlyQ8_0,
}[args.outtype] }[args.outtype]
print(f"params = {params}") print(f"params = {params}")
@ -1067,7 +1164,7 @@ def main(args_in: Optional[List[str]] = None) -> None:
params.ftype = ftype params.ftype = ftype
print(f"Writing {outfile}, format {ftype}") print(f"Writing {outfile}, format {ftype}")
OutputFile.write_all(outfile, params, model, vocab) OutputFile.write_all(outfile, ftype, params, model, vocab, concurrency = args.concurrency)
print(f"Wrote {outfile}") print(f"Wrote {outfile}")

View file

@ -25,6 +25,7 @@ else()
add_subdirectory(simple) add_subdirectory(simple)
add_subdirectory(embd-input) add_subdirectory(embd-input)
add_subdirectory(llama-bench) add_subdirectory(llama-bench)
add_subdirectory(beam_search)
if (LLAMA_METAL) if (LLAMA_METAL)
add_subdirectory(metal) add_subdirectory(metal)
endif() endif()

View file

@ -0,0 +1,8 @@
set(TARGET beam_search)
add_executable(${TARGET} beam_search.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
if(TARGET BUILD_INFO)
add_dependencies(${TARGET} BUILD_INFO)
endif()

View file

@ -0,0 +1,188 @@
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#include "common.h"
#include "llama.h"
#include "build-info.h"
#include <cassert>
#include <cinttypes>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <ctime>
#include <fstream>
#include <iostream>
#include <string>
#include <vector>
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
#include <signal.h>
#include <unistd.h>
#elif defined (_WIN32)
#define WIN32_LEAN_AND_MEAN
#define NOMINMAX
#include <windows.h>
#include <signal.h>
#endif
// Used for debugging to print out beam tokens.
struct ostream_beam_view {
llama_context * ctx;
llama_beam_view beam_view;
};
std::ostream& operator<<(std::ostream& os, const ostream_beam_view & obv) {
os << "p(" << obv.beam_view.p << ") eob(" << std::boolalpha << obv.beam_view.eob << ") tokens(";
for (size_t i = 0 ; i < obv.beam_view.n_tokens ; ++i) {
os << llama_token_to_piece(obv.ctx, obv.beam_view.tokens[i]);
}
return os << ')';
}
// Put here anything you want back in beam_search_callback().
struct beam_search_callback_data {
llama_context * ctx;
std::vector<llama_token> response;
};
// In this case, end-of-beam (eob) is equivalent to end-of-sentence (eos) but this need not always be the same.
// For example, eob can be flagged due to maximum token length, stop words, etc.
bool is_at_eob(const beam_search_callback_data & callback_data, const llama_token * tokens, const size_t n_tokens) {
return n_tokens && tokens[n_tokens-1] == llama_token_eos(callback_data.ctx);
}
// Function matching type llama_beam_search_callback_fn_t.
// Custom callback example is called each time the beams lengths increase:
// * Show progress by printing ',' following by number of convergent beam tokens if any.
// * When all beams converge to a common prefix, they are made available in beams_state.beams[0].
// This is also called when the stop condition is met.
// Collect tokens into std::vector<llama_token> response which is pointed to by callback_data.
void beam_search_callback(void * callback_data_ptr, llama_beams_state beams_state) {
auto& callback_data = *static_cast<beam_search_callback_data*>(callback_data_ptr);
// Mark beams as EOS as needed.
for (size_t i = 0 ; i < beams_state.n_beams ; ++i) {
llama_beam_view& beam_view = beams_state.beam_views[i];
if (!beam_view.eob && is_at_eob(callback_data, beam_view.tokens, beam_view.n_tokens)) {
beam_view.eob = true;
}
}
printf(","); // Show progress
if (const size_t n = beams_state.common_prefix_length) {
callback_data.response.resize(callback_data.response.size() + n);
assert(0u < beams_state.n_beams);
const llama_token * tokens = beams_state.beam_views[0].tokens;
std::copy(tokens, tokens + n, callback_data.response.end() - n);
printf("%lu", n);
}
fflush(stdout);
#if 1 // DEBUG: print current beams for this iteration
std::cout << "\n\nCurrent beams (last_call=" << beams_state.last_call << "):\n";
for (size_t i = 0 ; i < beams_state.n_beams ; ++i) {
std::cout << "beams["<<i<<"]: " << ostream_beam_view{callback_data.ctx,beams_state.beam_views[i]} << std::endl;
}
#endif
}
int main(int argc, char ** argv)
{
gpt_params params;
//params.n_gpu_layers = 200;
//---------------------------------
// Print help :
//---------------------------------
if ( argc < 2 || argv[1][0] == '-' )
{
printf( "Usage: %s MODEL_PATH [BEAM_WIDTH=2] [PROMPT]\n" , argv[0] );
return 1 ;
}
//---------------------------------
// Load parameters :
//---------------------------------
params.model = argv[1];
params.n_beams = 2 < argc ? std::stoi(argv[2]) : 2;
if ( argc > 3 )
{
params.prompt = argv[3];
}
if ( params.prompt.empty() )
{
params.prompt = "### Request:\nHow many countries are there?\n\n### Response:\n";
}
//---------------------------------
// Init LLM :
//---------------------------------
llama_backend_init(params.numa);
llama_model * model;
llama_context * ctx;
std::tie(model, ctx) = llama_init_from_gpt_params( params );
if ( model == NULL )
{
fprintf( stderr , "%s: error: unable to load model\n" , __func__ );
return 1;
}
//---------------------------------
// Tokenize the prompt :
//---------------------------------
std::vector<llama_token> tokens_list = llama_tokenize(ctx, params.prompt, true);
const size_t max_context_size = llama_n_ctx( ctx );
const size_t max_tokens_list_size = max_context_size - 4 ;
if (tokens_list.size() > max_tokens_list_size)
{
fprintf( stderr , "%s: error: prompt too long (%lu tokens, max %lu)\n" ,
__func__ , tokens_list.size() , max_tokens_list_size );
return 1;
}
fprintf( stderr, "\n\n" );
// Print the tokens from the prompt :
for( auto id : tokens_list )
{
std::cout << llama_token_to_piece(ctx, id);
}
std::cout << std::flush;
int n_past = llama_get_kv_cache_token_count(ctx);
if (llama_eval(ctx, tokens_list.data(), tokens_list.size(), n_past, params.n_threads))
{
fprintf(stderr, "%s : failed to eval prompt.\n" , __func__ );
return 1;
}
n_past += tokens_list.size();
beam_search_callback_data callback_data{ctx, {}};
size_t const beam_width = static_cast<size_t>(params.n_beams);
int const n_predict = 256;
llama_beam_search(ctx, beam_search_callback, &callback_data, beam_width, n_past, n_predict, params.n_threads);
std::cout << "\n\n";
for (llama_token const token_id : callback_data.response) {
std::cout << llama_token_to_piece(ctx,token_id);
}
std::cout << std::endl;
llama_free( ctx );
llama_free_model( model );
llama_backend_free();
return 0;
}

View file

@ -12,18 +12,14 @@ usage: ./convert-llama2c-to-ggml [options]
options: options:
-h, --help show this help message and exit -h, --help show this help message and exit
--copy-vocab-from-model FNAME model path from which to copy vocab (default 'tokenizer.bin') --copy-vocab-from-model FNAME path of gguf llama model or llama2.c vocabulary from which to copy vocab (default 'models/7B/ggml-model-f16.gguf')
--llama2c-model FNAME [REQUIRED] model path from which to load Karpathy's llama2.c model --llama2c-model FNAME [REQUIRED] model path from which to load Karpathy's llama2.c model
--llama2c-output-model FNAME model path to save the converted llama2.c model (default ak_llama_model.bin') --llama2c-output-model FNAME model path to save the converted llama2.c model (default ak_llama_model.bin')
``` ```
An example command using a model from [karpathy/tinyllamas](https://huggingface.co/karpathy/tinyllamas) is as follows: An example command using a model from [karpathy/tinyllamas](https://huggingface.co/karpathy/tinyllamas) is as follows:
`$ ./convert-llama2c-to-ggml --copy-vocab-from-model ../llama2.c/tokenizer.bin --llama2c-model stories42M.bin --llama2c-output-model stories42M.ggmlv3.bin` `$ ./convert-llama2c-to-ggml --copy-vocab-from-model llama-2-7b-chat.gguf.q2_K.bin --llama2c-model stories42M.bin --llama2c-output-model stories42M.gguf.bin`
For now the generated model is in the legacy GGJTv3 format, so you need to convert it to gguf manually:
`$ python ./convert-llama-ggmlv3-to-gguf.py --eps 1e-5 --input stories42M.ggmlv3.bin --output stories42M.gguf.bin`
Now you can use the model with a command like: Now you can use the model with a command like:

View file

@ -10,9 +10,48 @@
#include <ctime> #include <ctime>
#include <random> #include <random>
#include <stdexcept> #include <stdexcept>
#include <sstream>
#include <algorithm> #include <algorithm>
#include <string> #include <string>
// GGUF keys & tensor names.
#define KV_GENERAL_ARCHITECTURE "general.architecture"
#define KV_GENERAL_NAME "general.name"
#define KV_TOKENIZER_MODEL "tokenizer.ggml.model"
#define KV_TOKENIZER_LIST "tokenizer.ggml.tokens"
#define KV_TOKENIZER_TOKEN_TYPE "tokenizer.ggml.token_type"
#define KV_TOKENIZER_SCORES "tokenizer.ggml.scores"
#define KV_TOKENIZER_BOS_ID "tokenizer.ggml.bos_token_id"
#define KV_TOKENIZER_EOS_ID "tokenizer.ggml.eos_token_id"
#define KV_TOKENIZER_UNK_ID "tokenizer.ggml.unknown_token_id"
#define KV_TOKENIZER_SEP_ID "tokenizer.ggml.seperator_token_id"
#define KV_TOKENIZER_PAD_ID "tokenizer.ggml.padding_token_id"
#define KV_TOKENIZER_HF_JSON "tokenizer.huggingface.json"
#define KV_CONTEXT_LENGTH "llama.context_length"
#define KV_EMBEDDING_LENGTH "llama.embedding_length"
#define KV_BLOCK_COUNT "llama.block_count"
#define KV_FEED_FORWARD_LENGTH "llama.feed_forward_length"
#define KV_ATTENTION_HEAD_COUNT "llama.attention.head_count"
#define KV_ATTENTION_HEAD_COUNT_KV "llama.attention.head_count_kv"
#define KV_ATTENTION_LAYERNORM_RMS_EPS "llama.attention.layer_norm_rms_epsilon"
#define KV_ROPE_DIMENSION_COUNT "llama.rope.dimension_count"
#define TN_TOKEN_EMBD "token_embd.weight"
#define TN_OUTPUT_NORM "output_norm.weight"
#define TN_OUTPUT "output.weight"
#define TN_ATTN_NORM "blk.%d.attn_norm.weight"
#define TN_ATTN_Q "blk.%d.attn_q.weight"
#define TN_ATTN_K "blk.%d.attn_k.weight"
#define TN_ATTN_V "blk.%d.attn_v.weight"
#define TN_ATTN_OUTPUT "blk.%d.attn_output.weight"
#define TN_FFN_NORM "blk.%d.ffn_norm.weight"
#define TN_FFN_GATE "blk.%d.ffn_gate.weight"
#define TN_FFN_DOWN "blk.%d.ffn_down.weight"
#define TN_FFN_UP "blk.%d.ffn_up.weight"
#if defined(_MSC_VER) #if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data #pragma warning(disable: 4244 4267) // possible loss of data
#endif #endif
@ -20,6 +59,11 @@
#define LLAMA_FILE_MAGIC_GGJT 0x67676a74u // 'ggjt' #define LLAMA_FILE_MAGIC_GGJT 0x67676a74u // 'ggjt'
#define LLAMA_FILE_VERSION_GGJT_V3 3 #define LLAMA_FILE_VERSION_GGJT_V3 3
#define TOKENIZER_NAME "llama"
#define UNKNOWN_TOKEN_ID 0
#define BOS_TOKEN_ID 1
#define EOS_TOKEN_ID 2
//////////////////////////////////////// llama2.c model structs and functions to load models, alloc memory etc. //////////////////////////////////////// llama2.c model structs and functions to load models, alloc memory etc.
typedef struct { typedef struct {
int dim; // transformer dimension int dim; // transformer dimension
@ -183,6 +227,7 @@ struct my_llama_hparams {
uint32_t n_vocab = 32000; uint32_t n_vocab = 32000;
uint32_t n_ctx = 512; // this is provided as user input? uint32_t n_ctx = 512; // this is provided as user input?
uint32_t n_embd = 4096; uint32_t n_embd = 4096;
uint32_t n_ff = 11008;
uint32_t n_mult = 4; uint32_t n_mult = 4;
uint32_t n_head = 32; uint32_t n_head = 32;
uint32_t n_layer = 32; uint32_t n_layer = 32;
@ -214,6 +259,8 @@ struct my_llama_layer {
struct my_llama_model { struct my_llama_model {
struct ggml_context * ctx = NULL; struct ggml_context * ctx = NULL;
std::string name;
my_llama_hparams hparams; my_llama_hparams hparams;
struct ggml_tensor * tok_embeddings; struct ggml_tensor * tok_embeddings;
@ -276,18 +323,13 @@ struct train_params {
int mem_compute1_gb; int mem_compute1_gb;
}; };
uint32_t get_n_ff(const struct my_llama_hparams* hparams) {
const uint32_t n_ff = ((2*(4*hparams->n_embd)/3 + hparams->n_mult - 1)/hparams->n_mult)*hparams->n_mult;
return n_ff;
}
void print_params(struct my_llama_hparams * params) { void print_params(struct my_llama_hparams * params) {
printf("%s: n_vocab: %d\n", __func__, params->n_vocab); printf("%s: n_vocab: %d\n", __func__, params->n_vocab);
printf("%s: n_ctx: %d\n", __func__, params->n_ctx); printf("%s: n_ctx: %d\n", __func__, params->n_ctx);
printf("%s: n_embd: %d\n", __func__, params->n_embd); printf("%s: n_embd: %d\n", __func__, params->n_embd);
printf("%s: n_mult: %d\n", __func__, params->n_mult); printf("%s: n_mult: %d\n", __func__, params->n_mult);
printf("%s: n_head: %d\n", __func__, params->n_head); printf("%s: n_head: %d\n", __func__, params->n_head);
printf("%s: n_ff: %d\n", __func__, get_n_ff(params)); printf("%s: n_ff: %d\n", __func__, params->n_ff);
printf("%s: n_layer: %d\n", __func__, params->n_layer); printf("%s: n_layer: %d\n", __func__, params->n_layer);
printf("%s: n_rot: %d\n", __func__, params->n_rot); printf("%s: n_rot: %d\n", __func__, params->n_rot);
} }
@ -299,7 +341,7 @@ void init_model(struct my_llama_model * model) {
const uint32_t n_layer = hparams.n_layer; const uint32_t n_layer = hparams.n_layer;
const uint32_t n_vocab = hparams.n_vocab; const uint32_t n_vocab = hparams.n_vocab;
const uint32_t n_ff = get_n_ff(&hparams); const uint32_t n_ff = hparams.n_ff;
struct ggml_context * ctx = model->ctx; struct ggml_context * ctx = model->ctx;
model->train_its = 0; model->train_its = 0;
@ -481,21 +523,6 @@ struct llama_file {
return std::string(chars.data(), len); return std::string(chars.data(), len);
} }
void write_raw(const void * ptr, size_t size) {
if (size == 0) {
return;
}
errno = 0;
size_t ret = std::fwrite(ptr, size, 1, fp);
if (ret != 1) {
throw std::runtime_error(format("write error: %s", strerror(errno)));
}
}
void write_u32(std::uint32_t val) {
write_raw(&val, sizeof(val));
}
~llama_file() { ~llama_file() {
if (fp) { if (fp) {
std::fclose(fp); std::fclose(fp);
@ -503,30 +530,6 @@ struct llama_file {
} }
}; };
void write_tensor(struct llama_file * file, struct ggml_tensor * tensor) {
if (tensor == NULL) {
file->write_u32(0);
file->write_u32(0);
file->write_u32(GGML_TYPE_F32);
file->seek((0-file->tell()) & 31, SEEK_CUR);
return;
}
const char * name = ggml_get_name(tensor);
uint32_t name_len = strlen(name);
uint32_t nd = tensor->n_dims;
uint32_t ne[4] = { (uint32_t)tensor->ne[0],
(uint32_t)tensor->ne[1],
(uint32_t)tensor->ne[2],
(uint32_t)tensor->ne[3] };
file->write_u32(nd);
file->write_u32(name_len);
file->write_u32(tensor->type);
file->write_raw(ne, sizeof(ne[0]) * nd);
file->write_raw(name, name_len);
file->seek((0-file->tell()) & 31, SEEK_CUR);
file->write_raw(tensor->data, ggml_nbytes(tensor));
}
bool is_ggml_file(const char *filename) { bool is_ggml_file(const char *filename) {
llama_file file(filename, "rb"); llama_file file(filename, "rb");
if (file.size < 4) { if (file.size < 4) {
@ -536,48 +539,96 @@ bool is_ggml_file(const char *filename) {
return magic == GGUF_MAGIC; return magic == GGUF_MAGIC;
} }
static std::string llama_escape_whitespaces(const std::string& text) {
std::ostringstream out;
for (char c : text) {
if (c == ' ') out << "\xe2\x96\x81";
else out << c;
}
return out.str();
}
void load_vocab(const char *filename, Config *config, struct llama_vocab *vocab) { void load_vocab(const char *filename, Config *config, struct llama_vocab *vocab) {
#pragma message("TODO: implement reading vocabulary using gguf") if (is_ggml_file(filename)) {
// // heuristic to infer whether vocab is from ggml or from llama2.c vocabulary struct ggml_context * ctx_data = NULL;
// if (is_ggml_file(filename)) {
// struct gguf_init_params params = {
// struct llama_context_params llama_params = llama_context_default_params(); /*.no_alloc = */ false,
// llama_params.vocab_only = true; /*.ctx = */ &ctx_data,
// };
// struct llama_model * lmodel = llama_load_model_from_file(filename, llama_params);
// struct llama_context * lctx = llama_new_context_with_model(lmodel, llama_params); struct gguf_context * ctx = gguf_init_from_file(filename, params);
// GGML_ASSERT(ctx != NULL);
// const int n_vocab = llama_n_vocab(lctx);
// vocab->id_to_token.resize(n_vocab); const int model_idx = gguf_find_key(ctx, KV_TOKENIZER_MODEL);
// for (int i=0; i<n_vocab; ++i) { GGML_ASSERT(model_idx >= 0);
// vocab->id_to_token[i].text = llama_token_get_text(lctx, i); std::string tokenizer_name = gguf_get_val_str(ctx, model_idx);
// vocab->id_to_token[i].score = llama_token_get_score(lctx, i); GGML_ASSERT(tokenizer_name == TOKENIZER_NAME);
// vocab->id_to_token[i].type = llama_token_get_type(lctx, i);
// vocab->token_to_id.emplace(vocab->id_to_token[i].text, i); const int token_idx = gguf_find_key(ctx, KV_TOKENIZER_LIST);
// } GGML_ASSERT(token_idx >= 0);
// llama_free(lctx);
// llama_free_model(lmodel); const int score_idx = gguf_find_key(ctx, KV_TOKENIZER_SCORES);
// } else GGML_ASSERT(score_idx >= 0);
{ // assume llama2.c vocabulary const float * scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
printf("Assuming llama2.c vocabulary since %s is not a ggml file\n", filename);
const int toktype_idx = gguf_find_key(ctx, KV_TOKENIZER_TOKEN_TYPE);
GGML_ASSERT(toktype_idx >= 0);
const int * toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
vocab->id_to_token.resize(n_vocab);
for (uint32_t i = 0; i < n_vocab; i++) {
std::string word = gguf_get_arr_str(ctx, token_idx, i);
vocab->token_to_id[word] = i;
auto & token_data = vocab->id_to_token[i];
token_data.text = std::move(word);
token_data.score = scores[i];
token_data.type = (llama_token_type) toktypes[i];
}
ggml_free(ctx_data);
gguf_free(ctx);
} else {
// assume llama2.c vocabulary
printf("Assuming llama2.c vocabulary since %s is not a gguf file\n", filename);
llama_file file(filename, "rb"); llama_file file(filename, "rb");
const int n_vocab = config->vocab_size; const int n_vocab = config->vocab_size;
/* uint32_t max_token_length = */ file.read_u32(); // unused /* uint32_t max_token_length = */ file.read_u32(); // unused
vocab->id_to_token.resize(n_vocab); vocab->id_to_token.resize(n_vocab);
for (int i=0; i<n_vocab; ++i) { for (llama_vocab::id id=0; id<n_vocab; ++id) {
float_t score = file.read_f32(); float_t score = file.read_f32();
uint32_t len = file.read_u32(); uint32_t len = file.read_u32();
std::string text = file.read_string(len); std::string text = file.read_string(len);
// Special-case handling of <0xXX> single byte tokens.
char byte_val; unsigned char byte_val;
if (sscanf(text.c_str(), "<0x%02hhX>", &byte_val) == 1) { llama_vocab::ttype type = LLAMA_TOKEN_TYPE_NORMAL;
char cstr[2] = { byte_val, 0 }; if (id == UNKNOWN_TOKEN_ID) {
text = cstr; text = "<unk>";
type = LLAMA_TOKEN_TYPE_UNKNOWN;
} else if (id == BOS_TOKEN_ID) {
text = "<s>";
type = LLAMA_TOKEN_TYPE_CONTROL;
} else if (id == EOS_TOKEN_ID) {
text = "</s>";
type = LLAMA_TOKEN_TYPE_CONTROL;
} else if (text.empty()) {
type = LLAMA_TOKEN_TYPE_CONTROL;
} else if (sscanf(text.c_str(), "<0x%02hhX>", &byte_val) == 1) {
// Text of byte tokens is already in the expected format.
type = LLAMA_TOKEN_TYPE_BYTE;
} else {
type = LLAMA_TOKEN_TYPE_NORMAL;
} }
vocab->id_to_token[i].text = text; text = llama_escape_whitespaces(text);
vocab->id_to_token[i].score = score;
vocab->id_to_token[i].type = LLAMA_TOKEN_TYPE_UNDEFINED; vocab->id_to_token[id].text = text;
vocab->token_to_id.emplace(text, i); vocab->id_to_token[id].score = score;
vocab->id_to_token[id].type = type;
vocab->token_to_id.emplace(text, id);
} }
} }
} }
@ -619,33 +670,6 @@ void stuff_karpathy_weights_into_gg(struct ggml_tensor * gg_weights, float * kar
} }
void save_as_llama_model(struct llama_vocab * vocab, struct my_llama_model * model, TransformerWeights* w, const char * filename) { void save_as_llama_model(struct llama_vocab * vocab, struct my_llama_model * model, TransformerWeights* w, const char * filename) {
struct llama_file file(filename, "wb");
if (file.fp == NULL) {
return;
}
#pragma message("TODO: implement file saving using gguf")
// write_magic
file.write_u32(LLAMA_FILE_MAGIC_GGJT); // magic
file.write_u32(LLAMA_FILE_VERSION_GGJT_V3); // version
// write_hparams
file.write_u32(model->hparams.n_vocab);
file.write_u32(model->hparams.n_embd);
file.write_u32(model->hparams.n_mult);
file.write_u32(model->hparams.n_head);
file.write_u32(model->hparams.n_layer);
file.write_u32(model->hparams.n_rot);
file.write_u32(LLAMA_FTYPE_ALL_F32);
// write_vocab - for now we are just writing the existing BPE voc. assuming karpathy's vocabulary is the same. idk.
uint32_t n_vocab = model->hparams.n_vocab;
for (uint32_t i = 0; i < n_vocab; i++) {
const auto & token_data = vocab->id_to_token.at(i);
file.write_u32((uint32_t) token_data.text.size());
file.write_raw(token_data.text.data(), token_data.text.size());
file.write_raw(&token_data.score, sizeof(token_data.score));
}
// stuff AK weights into GG weights one by one. // stuff AK weights into GG weights one by one.
// w->token_embedding_table -> model->tok_embeddings // w->token_embedding_table -> model->tok_embeddings
// float* -> struct ggml_tensor // float* -> struct ggml_tensor
@ -658,8 +682,7 @@ void save_as_llama_model(struct llama_vocab * vocab, struct my_llama_model * mod
// for rms-att-weight // for rms-att-weight
int row_length = model->hparams.n_embd; int row_length = model->hparams.n_embd;
const auto & hparams = model->hparams; const auto & hparams = model->hparams;
//int n_ff = model->hparams.n_embd; int n_ff = model->hparams.n_ff;
int n_ff = get_n_ff(&hparams);
for (uint32_t i = 0; i < model->hparams.n_layer; ++i){ for (uint32_t i = 0; i < model->hparams.n_layer; ++i){
auto & layer = model->layers[i]; auto & layer = model->layers[i];
@ -677,28 +700,91 @@ void save_as_llama_model(struct llama_vocab * vocab, struct my_llama_model * mod
stuff_karpathy_weights_into_gg(layer.w2 , &w->w2[i*n_ff*row_length]); stuff_karpathy_weights_into_gg(layer.w2 , &w->w2[i*n_ff*row_length]);
stuff_karpathy_weights_into_gg(layer.w3 , &w->w3[i*row_length*n_ff]); stuff_karpathy_weights_into_gg(layer.w3 , &w->w3[i*row_length*n_ff]);
} }
struct gguf_context * ctx = gguf_init_empty();
std::vector<const char*> tokens;
std::vector<float> scores;
std::vector<llama_token_type> token_types;
for (const llama_vocab::token_data & token_data : vocab->id_to_token) {
tokens.push_back(token_data.text.c_str());
scores.push_back(token_data.score);
token_types.push_back(token_data.type);
}
gguf_set_arr_str(ctx, KV_TOKENIZER_LIST, tokens.data(), tokens.size());
gguf_set_arr_data(ctx, KV_TOKENIZER_SCORES, GGUF_TYPE_FLOAT32, scores.data(), scores.size());
gguf_set_arr_data(ctx, KV_TOKENIZER_TOKEN_TYPE, GGUF_TYPE_INT32, token_types.data(), token_types.size());
gguf_set_val_str(ctx, KV_TOKENIZER_MODEL, TOKENIZER_NAME);
gguf_set_val_str(ctx, KV_GENERAL_ARCHITECTURE, "llama");
gguf_set_val_str(ctx, KV_GENERAL_NAME, "llama");
// special tokens
gguf_set_val_u32(ctx, KV_TOKENIZER_UNK_ID, UNKNOWN_TOKEN_ID);
gguf_set_val_u32(ctx, KV_TOKENIZER_BOS_ID, BOS_TOKEN_ID);
gguf_set_val_u32(ctx, KV_TOKENIZER_EOS_ID, EOS_TOKEN_ID);
gguf_set_val_u32(ctx, KV_TOKENIZER_SEP_ID, -1);
gguf_set_val_u32(ctx, KV_TOKENIZER_PAD_ID, -1);
gguf_set_val_u32(ctx, KV_CONTEXT_LENGTH, model->hparams.n_ctx);
gguf_set_val_u32(ctx, KV_EMBEDDING_LENGTH, model->hparams.n_embd);
gguf_set_val_u32(ctx, KV_FEED_FORWARD_LENGTH, model->hparams.n_ff);
gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT, model->hparams.n_head);
// n_head_kv is optional, default to n_head
// gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT_KV, ...);
gguf_set_val_u32(ctx, KV_BLOCK_COUNT, model->hparams.n_layer);
gguf_set_val_u32(ctx, KV_ROPE_DIMENSION_COUNT, model->hparams.n_rot);
gguf_set_val_f32(ctx, KV_ATTENTION_LAYERNORM_RMS_EPS, 1e-5f);
// write tensors // write tensors
write_tensor(&file, model->tok_embeddings); ggml_set_name(model->tok_embeddings, TN_TOKEN_EMBD);
write_tensor(&file, model->norm); gguf_add_tensor(ctx, model->tok_embeddings);
write_tensor(&file, model->output); // ?
ggml_set_name(model->norm, TN_OUTPUT_NORM);
gguf_add_tensor(ctx, model->norm);
ggml_set_name(model->output, TN_OUTPUT);
gguf_add_tensor(ctx, model->output);
for (uint32_t i = 0; i < model->hparams.n_layer; ++i) { for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
auto & layer = model->layers[i]; auto & layer = model->layers[i];
write_tensor(&file, layer.attention_norm); ggml_format_name(layer.wq, TN_ATTN_Q, i);
write_tensor(&file, layer.wq); gguf_add_tensor(ctx, layer.wq);
write_tensor(&file, layer.wk);
write_tensor(&file, layer.wv); ggml_format_name(layer.wk, TN_ATTN_K, i);
write_tensor(&file, layer.wo); gguf_add_tensor(ctx, layer.wk);
write_tensor(&file, layer.ffn_norm);
write_tensor(&file, layer.w1); ggml_format_name(layer.wv, TN_ATTN_V, i);
write_tensor(&file, layer.w2); gguf_add_tensor(ctx, layer.wv);
write_tensor(&file, layer.w3);
ggml_format_name(layer.wo, TN_ATTN_OUTPUT, i);
gguf_add_tensor(ctx, layer.wo);
ggml_format_name(layer.attention_norm, TN_ATTN_NORM, i);
gguf_add_tensor(ctx, layer.attention_norm);
ggml_format_name(layer.w1, TN_FFN_GATE, i);
gguf_add_tensor(ctx, layer.w1);
ggml_format_name(layer.w2, TN_FFN_DOWN, i);
gguf_add_tensor(ctx, layer.w2);
ggml_format_name(layer.w3, TN_FFN_UP, i);
gguf_add_tensor(ctx, layer.w3);
ggml_format_name(layer.ffn_norm, TN_FFN_NORM, i);
gguf_add_tensor(ctx, layer.ffn_norm);
} }
gguf_write_to_file(ctx, filename, false);
gguf_free(ctx);
} }
struct train_params get_default_train_params() { struct train_params get_default_train_params() {
struct train_params params; struct train_params params;
params.fn_vocab_model = "tokenizer.bin"; params.fn_vocab_model = "models/7B/ggml-model-f16.gguf";
params.fn_llama2c_output_model = "ak_llama_model.bin"; params.fn_llama2c_output_model = "ak_llama_model.bin";
params.fn_train_data = "shakespeare.txt"; params.fn_train_data = "shakespeare.txt";
params.fn_checkpoint_in = "checkpoint.bin"; params.fn_checkpoint_in = "checkpoint.bin";
@ -751,7 +837,7 @@ void print_usage(int /*argc*/, char ** argv, const struct train_params * params)
fprintf(stderr, "\n"); fprintf(stderr, "\n");
fprintf(stderr, "options:\n"); fprintf(stderr, "options:\n");
fprintf(stderr, " -h, --help show this help message and exit\n"); fprintf(stderr, " -h, --help show this help message and exit\n");
fprintf(stderr, " --copy-vocab-from-model FNAME llama2.c vocabulary or ggmlv3 model path from which to copy vocab (default '%s')\n", params->fn_vocab_model); fprintf(stderr, " --copy-vocab-from-model FNAME path of gguf llama model or llama2.c vocabulary from which to copy vocab (default '%s')\n", params->fn_vocab_model);
fprintf(stderr, " --llama2c-model FNAME [REQUIRED] model path from which to load Karpathy's llama2.c model\n"); fprintf(stderr, " --llama2c-model FNAME [REQUIRED] model path from which to load Karpathy's llama2.c model\n");
fprintf(stderr, " --llama2c-output-model FNAME model path to save the converted llama2.c model (default %s')\n", params->fn_llama2c_output_model); fprintf(stderr, " --llama2c-output-model FNAME model path to save the converted llama2.c model (default %s')\n", params->fn_llama2c_output_model);
fprintf(stderr, "\n"); fprintf(stderr, "\n");
@ -812,6 +898,14 @@ bool params_parse(int argc, char ** argv, struct train_params * params) {
return true; return true;
} }
std::string basename(const std::string &path) {
size_t pos = path.find_last_of("/");
if (pos == std::string::npos) {
return path;
}
return path.substr(pos + 1);
}
int main(int argc, char ** argv) { int main(int argc, char ** argv) {
struct train_params params = get_default_train_params(); struct train_params params = get_default_train_params();
if (!params_parse(argc, argv, &params)) { if (!params_parse(argc, argv, &params)) {
@ -840,6 +934,7 @@ int main(int argc, char ** argv) {
model.hparams.n_vocab = config.vocab_size; //llama_n_vocab(lctx); model.hparams.n_vocab = config.vocab_size; //llama_n_vocab(lctx);
model.hparams.n_ctx = params.n_ctx; model.hparams.n_ctx = params.n_ctx;
model.hparams.n_embd = config.dim; //params.n_embd; model.hparams.n_embd = config.dim; //params.n_embd;
model.hparams.n_ff = config.hidden_dim;
model.hparams.n_mult = 32;//params.n_mult; model.hparams.n_mult = 32;//params.n_mult;
model.hparams.n_head = config.n_heads; //params.n_head; model.hparams.n_head = config.n_heads; //params.n_head;
model.hparams.n_layer = config.n_layers; //params.n_layer; model.hparams.n_layer = config.n_layers; //params.n_layer;
@ -853,6 +948,7 @@ int main(int argc, char ** argv) {
model.ctx = ggml_init(lcparams); model.ctx = ggml_init(lcparams);
init_model(&model); init_model(&model);
model.name = basename(params.fn_llama2c_model);
save_as_llama_model(&vocab, &model, &weights, params.fn_llama2c_output_model); save_as_llama_model(&vocab, &model, &weights, params.fn_llama2c_output_model);
printf("Saving llama.c model file %s in ggml format at %s\n", params.fn_llama2c_model, params.fn_llama2c_output_model); printf("Saving llama.c model file %s in ggml format at %s\n", params.fn_llama2c_model, params.fn_llama2c_output_model);

View file

@ -214,7 +214,7 @@ const char * sampling(struct MyModel * mymodel) {
if (id == llama_token_eos(ctx)) { if (id == llama_token_eos(ctx)) {
ret = "</s>"; ret = "</s>";
} else { } else {
ret = llama_token_to_str(ctx, id); ret = llama_token_to_piece(ctx, id);
} }
eval_id(mymodel, id); eval_id(mymodel, id);
return ret.c_str(); return ret.c_str();

View file

@ -56,9 +56,6 @@ int main(int argc, char ** argv) {
int n_past = 0; int n_past = 0;
// Add a space in front of the first character to match OG llama tokenizer behavior
params.prompt.insert(0, 1, ' ');
// tokenize the prompt // tokenize the prompt
auto embd_inp = ::llama_tokenize(ctx, params.prompt, true); auto embd_inp = ::llama_tokenize(ctx, params.prompt, true);
@ -67,7 +64,7 @@ int main(int argc, char ** argv) {
fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str()); fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str());
fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size()); fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
for (int i = 0; i < (int) embd_inp.size(); i++) { for (int i = 0; i < (int) embd_inp.size(); i++) {
fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], llama_token_to_str(ctx, embd_inp[i]).c_str()); fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], llama_token_to_piece(ctx, embd_inp[i]).c_str());
} }
fprintf(stderr, "\n"); fprintf(stderr, "\n");
} }

View file

@ -30,6 +30,9 @@ bool gguf_ex_write(const std::string & fname) {
gguf_set_val_u32 (ctx, "some.parameter.uint32", 0x12345678); gguf_set_val_u32 (ctx, "some.parameter.uint32", 0x12345678);
gguf_set_val_i32 (ctx, "some.parameter.int32", -0x12345679); gguf_set_val_i32 (ctx, "some.parameter.int32", -0x12345679);
gguf_set_val_f32 (ctx, "some.parameter.float32", 0.123456789f); gguf_set_val_f32 (ctx, "some.parameter.float32", 0.123456789f);
gguf_set_val_u64 (ctx, "some.parameter.uint64", 0x123456789abcdef0ull);
gguf_set_val_i64 (ctx, "some.parameter.int64", -0x123456789abcdef1ll);
gguf_set_val_f64 (ctx, "some.parameter.float64", 0.1234567890123456789);
gguf_set_val_bool(ctx, "some.parameter.bool", true); gguf_set_val_bool(ctx, "some.parameter.bool", true);
gguf_set_val_str (ctx, "some.parameter.string", "hello world"); gguf_set_val_str (ctx, "some.parameter.string", "hello world");

View file

@ -18,9 +18,7 @@
#include "llama.h" #include "llama.h"
#include "common.h" #include "common.h"
#include "build-info.h" #include "build-info.h"
#ifdef GGML_USE_CUBLAS
#include "ggml-cuda.h" #include "ggml-cuda.h"
#endif
// utils // utils
static uint64_t get_time_ns() { static uint64_t get_time_ns() {
@ -443,6 +441,8 @@ struct test {
static const std::string gpu_info; static const std::string gpu_info;
std::string model_filename; std::string model_filename;
std::string model_type; std::string model_type;
uint64_t model_size;
uint64_t model_n_params;
int n_batch; int n_batch;
int n_threads; int n_threads;
bool f32_kv; bool f32_kv;
@ -459,8 +459,10 @@ struct test {
test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) { test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) {
model_filename = inst.model; model_filename = inst.model;
char buf[128]; char buf[128];
llama_model_type(lmodel, buf, sizeof(buf)); llama_model_desc(lmodel, buf, sizeof(buf));
model_type = buf; model_type = buf;
model_size = llama_model_size(lmodel);
model_n_params = llama_model_n_params(lmodel);
n_batch = inst.n_batch; n_batch = inst.n_batch;
n_threads = inst.n_threads; n_threads = inst.n_threads;
f32_kv = inst.f32_kv; f32_kv = inst.f32_kv;
@ -504,7 +506,7 @@ struct test {
static std::string get_backend() { static std::string get_backend() {
if (cuda) { if (cuda) {
return "CUDA"; return GGML_CUDA_NAME;
} }
if (opencl) { if (opencl) {
return "OpenCL"; return "OpenCL";
@ -526,7 +528,7 @@ struct test {
"build_commit", "build_number", "build_commit", "build_number",
"cuda", "opencl", "metal", "gpu_blas", "blas", "cuda", "opencl", "metal", "gpu_blas", "blas",
"cpu_info", "gpu_info", "cpu_info", "gpu_info",
"model_filename", "model_type", "model_filename", "model_type", "model_size", "model_n_params",
"n_batch", "n_threads", "f16_kv", "n_batch", "n_threads", "f16_kv",
"n_gpu_layers", "main_gpu", "mul_mat_q", "low_vram", "tensor_split", "n_gpu_layers", "main_gpu", "mul_mat_q", "low_vram", "tensor_split",
"n_prompt", "n_gen", "test_time", "n_prompt", "n_gen", "test_time",
@ -540,6 +542,7 @@ struct test {
static field_type get_field_type(const std::string & field) { static field_type get_field_type(const std::string & field) {
if (field == "build_number" || field == "n_batch" || field == "n_threads" || if (field == "build_number" || field == "n_batch" || field == "n_threads" ||
field == "model_size" || field == "model_n_params" ||
field == "n_gpu_layers" || field == "main_gpu" || field == "n_gpu_layers" || field == "main_gpu" ||
field == "n_prompt" || field == "n_gen" || field == "n_prompt" || field == "n_gen" ||
field == "avg_ns" || field == "stddev_ns") { field == "avg_ns" || field == "stddev_ns") {
@ -575,7 +578,7 @@ struct test {
build_commit, std::to_string(build_number), build_commit, std::to_string(build_number),
std::to_string(cuda), std::to_string(opencl), std::to_string(metal), std::to_string(gpu_blas), std::to_string(blas), std::to_string(cuda), std::to_string(opencl), std::to_string(metal), std::to_string(gpu_blas), std::to_string(blas),
cpu_info, gpu_info, cpu_info, gpu_info,
model_filename, model_type, model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
std::to_string(n_batch), std::to_string(n_threads), std::to_string(!f32_kv), std::to_string(n_batch), std::to_string(n_threads), std::to_string(!f32_kv),
std::to_string(n_gpu_layers), std::to_string(main_gpu), std::to_string(mul_mat_q), std::to_string(low_vram), tensor_split_str, std::to_string(n_gpu_layers), std::to_string(main_gpu), std::to_string(mul_mat_q), std::to_string(low_vram), tensor_split_str,
std::to_string(n_prompt), std::to_string(n_gen), test_time, std::to_string(n_prompt), std::to_string(n_gen), test_time,
@ -711,8 +714,15 @@ struct markdown_printer : public printer {
return -30; return -30;
} }
if (field == "t/s") { if (field == "t/s") {
return 15; return 16;
} }
if (field == "size" || field == "params") {
return 10;
}
if (field == "n_gpu_layers") {
return 3;
}
int width = std::max((int)field.length(), 10); int width = std::max((int)field.length(), 10);
if (test::get_field_type(field) == test::STRING) { if (test::get_field_type(field) == test::STRING) {
@ -721,9 +731,28 @@ struct markdown_printer : public printer {
return width; return width;
} }
static std::string get_field_display_name(const std::string & field) {
if (field == "n_gpu_layers") {
return "ngl";
}
if (field == "n_threads") {
return "threads";
}
if (field == "mul_mat_q") {
return "mmq";
}
if (field == "tensor_split") {
return "ts";
}
return field;
}
void print_header(const cmd_params & params) override { void print_header(const cmd_params & params) override {
// select fields to print // select fields to print
fields = { "model", "backend" }; fields.push_back("model");
fields.push_back("size");
fields.push_back("params");
fields.push_back("backend");
bool is_cpu_backend = test::get_backend() == "CPU" || test::get_backend() == "BLAS"; bool is_cpu_backend = test::get_backend() == "CPU" || test::get_backend() == "BLAS";
if (!is_cpu_backend) { if (!is_cpu_backend) {
fields.push_back("n_gpu_layers"); fields.push_back("n_gpu_layers");
@ -754,7 +783,7 @@ struct markdown_printer : public printer {
fprintf(fout, "|"); fprintf(fout, "|");
for (const auto & field : fields) { for (const auto & field : fields) {
fprintf(fout, " %*s |", get_field_width(field), field.c_str()); fprintf(fout, " %*s |", get_field_width(field), get_field_display_name(field).c_str());
} }
fprintf(fout, "\n"); fprintf(fout, "\n");
fprintf(fout, "|"); fprintf(fout, "|");
@ -771,12 +800,26 @@ struct markdown_printer : public printer {
fprintf(fout, "|"); fprintf(fout, "|");
for (const auto & field : fields) { for (const auto & field : fields) {
std::string value; std::string value;
char buf[128];
if (field == "model") { if (field == "model") {
value = t.model_type; value = t.model_type;
} else if (field == "size") {
if (t.model_size < 1024*1024*1024) {
snprintf(buf, sizeof(buf), "%.2f MiB", t.model_size / 1024.0 / 1024.0);
} else {
snprintf(buf, sizeof(buf), "%.2f GiB", t.model_size / 1024.0 / 1024.0 / 1024.0);
}
value = buf;
} else if (field == "params") {
if (t.model_n_params < 1000*1000*1000) {
snprintf(buf, sizeof(buf), "%.2f M", t.model_n_params / 1e6);
} else {
snprintf(buf, sizeof(buf), "%.2f B", t.model_n_params / 1e9);
}
value = buf;
} else if (field == "backend") { } else if (field == "backend") {
value = test::get_backend(); value = test::get_backend();
} else if (field == "test") { } else if (field == "test") {
char buf[128];
if (t.n_prompt > 0 && t.n_gen == 0) { if (t.n_prompt > 0 && t.n_gen == 0) {
snprintf(buf, sizeof(buf), "pp %d", t.n_prompt); snprintf(buf, sizeof(buf), "pp %d", t.n_prompt);
} else if (t.n_gen > 0 && t.n_prompt == 0) { } else if (t.n_gen > 0 && t.n_prompt == 0) {
@ -787,7 +830,6 @@ struct markdown_printer : public printer {
} }
value = buf; value = buf;
} else if (field == "t/s") { } else if (field == "t/s") {
char buf[128];
snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts()); snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
value = buf; value = buf;
} else if (vmap.find(field) != vmap.end()) { } else if (vmap.find(field) != vmap.end()) {

View file

@ -189,12 +189,14 @@ int main(int argc, char ** argv) {
} }
} }
const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM; // Add BOS if SPM tokenizer
const bool add_bos = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM;
// tokenize the prompt // tokenize the prompt
std::vector<llama_token> embd_inp; std::vector<llama_token> embd_inp;
if (params.interactive_first || params.instruct || !params.prompt.empty() || session_tokens.empty()) { if (params.interactive_first || params.instruct || !params.prompt.empty() || session_tokens.empty()) {
embd_inp = ::llama_tokenize(ctx, params.prompt, is_spm); embd_inp = ::llama_tokenize(ctx, params.prompt, add_bos);
} else { } else {
embd_inp = session_tokens; embd_inp = session_tokens;
} }
@ -209,10 +211,9 @@ int main(int argc, char ** argv) {
int guidance_offset = 0; int guidance_offset = 0;
int original_prompt_len = 0; int original_prompt_len = 0;
if (ctx_guidance) { if (ctx_guidance) {
params.cfg_negative_prompt.insert(0, 1, ' '); guidance_inp = ::llama_tokenize(ctx_guidance, params.cfg_negative_prompt, add_bos);
guidance_inp = ::llama_tokenize(ctx_guidance, params.cfg_negative_prompt, is_spm);
std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, is_spm); std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, add_bos);
original_prompt_len = original_inp.size(); original_prompt_len = original_inp.size();
guidance_offset = (int)guidance_inp.size() - original_prompt_len; guidance_offset = (int)guidance_inp.size() - original_prompt_len;
} }
@ -259,7 +260,7 @@ int main(int argc, char ** argv) {
} }
// prefix & suffix for instruct mode // prefix & suffix for instruct mode
const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", is_spm); const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", add_bos);
const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false); const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false);
// in instruct mode, we inject a prefix and a suffix to each input by the user // in instruct mode, we inject a prefix and a suffix to each input by the user
@ -278,7 +279,7 @@ int main(int argc, char ** argv) {
fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str()); fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str());
fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size()); fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
for (int i = 0; i < (int) embd_inp.size(); i++) { for (int i = 0; i < (int) embd_inp.size(); i++) {
fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], llama_token_to_str(ctx, embd_inp[i]).c_str()); fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], llama_token_to_piece(ctx, embd_inp[i]).c_str());
} }
if (ctx_guidance) { if (ctx_guidance) {
@ -286,14 +287,14 @@ int main(int argc, char ** argv) {
fprintf(stderr, "%s: negative prompt: '%s'\n", __func__, params.cfg_negative_prompt.c_str()); fprintf(stderr, "%s: negative prompt: '%s'\n", __func__, params.cfg_negative_prompt.c_str());
fprintf(stderr, "%s: number of tokens in negative prompt = %zu\n", __func__, guidance_inp.size()); fprintf(stderr, "%s: number of tokens in negative prompt = %zu\n", __func__, guidance_inp.size());
for (int i = 0; i < (int) guidance_inp.size(); i++) { for (int i = 0; i < (int) guidance_inp.size(); i++) {
fprintf(stderr, "%6d -> '%s'\n", guidance_inp[i], llama_token_to_str(ctx, guidance_inp[i]).c_str()); fprintf(stderr, "%6d -> '%s'\n", guidance_inp[i], llama_token_to_piece(ctx, guidance_inp[i]).c_str());
} }
} }
if (params.n_keep > 0) { if (params.n_keep > 0) {
fprintf(stderr, "%s: static prompt based on n_keep: '", __func__); fprintf(stderr, "%s: static prompt based on n_keep: '", __func__);
for (int i = 0; i < params.n_keep; i++) { for (int i = 0; i < params.n_keep; i++) {
fprintf(stderr, "%s", llama_token_to_str(ctx, embd_inp[i]).c_str()); fprintf(stderr, "%s", llama_token_to_piece(ctx, embd_inp[i]).c_str());
} }
fprintf(stderr, "'\n"); fprintf(stderr, "'\n");
} }
@ -449,7 +450,7 @@ int main(int argc, char ** argv) {
//printf("\n---\n"); //printf("\n---\n");
//printf("resetting: '"); //printf("resetting: '");
//for (int i = 0; i < (int) embd.size(); i++) { //for (int i = 0; i < (int) embd.size(); i++) {
// printf("%s", llama_token_to_str(ctx, embd[i])); // printf("%s", llama_token_to_piece(ctx, embd[i]));
//} //}
//printf("'\n"); //printf("'\n");
//printf("\n---\n"); //printf("\n---\n");
@ -502,7 +503,7 @@ int main(int argc, char ** argv) {
input_size = embd_guidance.size(); input_size = embd_guidance.size();
//fprintf(stderr, "\n---------------------\n"); //fprintf(stderr, "\n---------------------\n");
//for (int i = 0; i < (int) embd_guidance.size(); i++) { //for (int i = 0; i < (int) embd_guidance.size(); i++) {
//fprintf(stderr, "%s", llama_token_to_str(ctx, embd_guidance[i])); //fprintf(stderr, "%s", llama_token_to_piece(ctx, embd_guidance[i]));
//} //}
//fprintf(stderr, "\n---------------------\n"); //fprintf(stderr, "\n---------------------\n");
} else { } else {
@ -597,7 +598,12 @@ int main(int argc, char ** argv) {
last_n_tokens.data() + last_n_tokens.size() - last_n_repeat, last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
last_n_repeat, alpha_frequency, alpha_presence); last_n_repeat, alpha_frequency, alpha_presence);
if (!penalize_nl) { if (!penalize_nl) {
logits[llama_token_nl(ctx)] = nl_logit; for (size_t idx = 0; idx < candidates_p.size; idx++) {
if (candidates_p.data[idx].id == llama_token_nl(ctx)) {
candidates_p.data[idx].logit = nl_logit;
break;
}
}
} }
if (grammar != NULL) { if (grammar != NULL) {
@ -661,7 +667,7 @@ int main(int argc, char ** argv) {
// display text // display text
if (input_echo) { if (input_echo) {
for (auto id : embd) { for (auto id : embd) {
printf("%s", llama_token_to_str(ctx, id).c_str()); printf("%s", llama_token_to_piece(ctx, id).c_str());
} }
fflush(stdout); fflush(stdout);
} }
@ -677,7 +683,7 @@ int main(int argc, char ** argv) {
if (params.antiprompt.size()) { if (params.antiprompt.size()) {
std::string last_output; std::string last_output;
for (auto id : last_n_tokens) { for (auto id : last_n_tokens) {
last_output += llama_token_to_str(ctx, id); last_output += llama_token_to_piece(ctx, id);
} }
is_antiprompt = false; is_antiprompt = false;
@ -798,7 +804,8 @@ int main(int argc, char ** argv) {
} }
// In interactive mode, respect the maximum number of tokens and drop back to user input when reached. // In interactive mode, respect the maximum number of tokens and drop back to user input when reached.
if (params.interactive && n_remain <= 0 && params.n_predict != -1) { // We skip this logic when n_predict == -1 (infinite) or -2 (stop at context size).
if (params.interactive && n_remain <= 0 && params.n_predict >= 0) {
n_remain = params.n_predict; n_remain = params.n_predict;
is_interacting = true; is_interacting = true;
} }

View file

@ -6,6 +6,8 @@
#include <ctime> #include <ctime>
#include <sstream> #include <sstream>
#include <cstring> #include <cstring>
#include <thread>
#include <mutex>
#if defined(_MSC_VER) #if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data #pragma warning(disable: 4244 4267) // possible loss of data
@ -27,6 +29,40 @@ std::vector<float> softmax(const std::vector<float>& logits) {
return probs; return probs;
} }
float log_softmax(int n_vocab, const float * logits, int tok) {
float max_logit = logits[0];
for (int i = 1; i < n_vocab; ++i) max_logit = std::max(max_logit, logits[i]);
double sum_exp = 0.0;
for (int i = 0; i < n_vocab; ++i) sum_exp += expf(logits[i] - max_logit);
return logits[tok] - max_logit - log(sum_exp);
}
void process_logits(int n_vocab, const float * logits, const int * tokens, int n_token, std::vector<std::thread>& workers,
double& nll, double& nll2) {
std::mutex mutex;
int counter = 0;
auto compute = [&mutex, &counter, &nll, &nll2, n_vocab, logits, tokens, n_token] () {
double local_nll = 0, local_nll2 = 0;
while (true) {
std::unique_lock<std::mutex> lock(mutex);
int i = counter++;
if (i >= n_token) {
nll += local_nll; nll2 += local_nll2;
break;
}
lock.unlock();
double v = -log_softmax(n_vocab, logits + i*n_vocab, tokens[i+1]);
local_nll += v;
local_nll2 += v*v;
}
};
for (auto& w : workers) w = std::thread(compute);
compute();
for (auto& w : workers) w.join();
}
void perplexity_v2(llama_context * ctx, const gpt_params & params) { void perplexity_v2(llama_context * ctx, const gpt_params & params) {
// Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research // Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
// Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw` // Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
@ -154,10 +190,14 @@ void perplexity(llama_context * ctx, const gpt_params & params) {
const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM; const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM;
const bool add_bos = is_spm; const bool add_bos = is_spm;
auto tim1 = std::chrono::high_resolution_clock::now();
fprintf(stderr, "%s: tokenizing the input ..\n", __func__); fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
auto tokens = ::llama_tokenize(ctx, params.prompt, add_bos); auto tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
auto tim2 = std::chrono::high_resolution_clock::now();
fprintf(stderr, "%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast<std::chrono::microseconds>(tim2-tim1).count());
const int n_chunk_max = tokens.size() / params.n_ctx; const int n_chunk_max = tokens.size() / params.n_ctx;
const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max); const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
@ -166,9 +206,12 @@ void perplexity(llama_context * ctx, const gpt_params & params) {
int count = 0; int count = 0;
double nll = 0.0; double nll = 0.0;
double nll2 = 0.0;
fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch); fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch);
std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);
for (int i = 0; i < n_chunk; ++i) { for (int i = 0; i < n_chunk; ++i) {
const int start = i * params.n_ctx; const int start = i * params.n_ctx;
const int end = start + params.n_ctx; const int end = start + params.n_ctx;
@ -228,26 +271,32 @@ void perplexity(llama_context * ctx, const gpt_params & params) {
// Example, we have a context window of 512, we will compute perplexity for each of the // Example, we have a context window of 512, we will compute perplexity for each of the
// last 256 tokens. Then, we split the input up into context window size chunks to // last 256 tokens. Then, we split the input up into context window size chunks to
// process the entire prompt. // process the entire prompt.
for (int j = std::min(512, params.n_ctx / 2); j < params.n_ctx - 1; ++j) { const int first = std::min(512, params.n_ctx/2);
// Calculate probability of next token, given the previous ones. process_logits(n_vocab, logits.data() + first*n_vocab, tokens.data() + start + first, params.n_ctx - 1 - first, workers, nll, nll2);
const std::vector<float> tok_logits( count += params.n_ctx - first - 1;
logits.begin() + (j + 0) * n_vocab,
logits.begin() + (j + 1) * n_vocab);
const float prob = softmax(tok_logits)[tokens[start + j + 1]];
nll += -std::log(prob);
++count;
}
// perplexity is e^(average negative log-likelihood) // perplexity is e^(average negative log-likelihood)
if (params.ppl_output_type == 0) { if (params.ppl_output_type == 0) {
printf("[%d]%.4lf,", i + 1, std::exp(nll / count)); printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
} else { } else {
printf("%8d %.4lf\n", i*params.n_ctx, std::exp(nll / count)); double av = nll/count;
double av2 = nll2/count - av*av;
if (av2 > 0) av2 = sqrt(av2/(count-1));
printf("%8d %.4lf %4lf %4lf\n", i*params.n_ctx, std::exp(nll / count), av, av2);
} }
fflush(stdout); fflush(stdout);
} }
printf("\n"); printf("\n");
nll2 /= count;
nll /= count;
nll2 -= nll * nll;
if (nll2 > 0) {
nll2 = sqrt(nll2/(count-1));
double ppl = exp(nll);
printf("Final estimate: PPL = %.4lf +/- %.5lf\n", ppl, nll2*ppl);
} else {
printf("Unexpected negative standard deviation of log(prob)\n");
}
} }
std::vector<float> hellaswag_evaluate_tokens(llama_context * ctx, const std::vector<int>& tokens, int n_past, int n_batch, std::vector<float> hellaswag_evaluate_tokens(llama_context * ctx, const std::vector<int>& tokens, int n_past, int n_batch,
@ -306,6 +355,7 @@ void hellaswag_score(llama_context * ctx, const gpt_params & params) {
fprintf(stderr, "%s : loaded %zu tasks from prompt.\n", __func__, hs_task_count); fprintf(stderr, "%s : loaded %zu tasks from prompt.\n", __func__, hs_task_count);
const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM; const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM;
fprintf(stderr, "================================= is_spm = %d\n", is_spm);
// This is needed as usual for LLaMA models // This is needed as usual for LLaMA models
const bool add_bos = is_spm; const bool add_bos = is_spm;
@ -346,7 +396,7 @@ void hellaswag_score(llama_context * ctx, const gpt_params & params) {
hs_data[i].context = prompt_lines[idx*6]; hs_data[i].context = prompt_lines[idx*6];
hs_data[i].gold_ending_idx = std::stoi( prompt_lines[idx*6+1] ); hs_data[i].gold_ending_idx = std::stoi( prompt_lines[idx*6+1] );
for (size_t j=0; j < 4; j++) { for (size_t j=0; j < 4; j++) {
hs_data[i].ending[j] = " " + prompt_lines[idx*6+2+j]; hs_data[i].ending[j] = prompt_lines[idx*6+2+j];
} }
// Delete the selected random example from the prompt // Delete the selected random example from the prompt
@ -361,6 +411,8 @@ void hellaswag_score(llama_context * ctx, const gpt_params & params) {
double acc = 0.0f; double acc = 0.0f;
const int n_vocab = llama_n_vocab(ctx); const int n_vocab = llama_n_vocab(ctx);
std::vector<std::vector<int>> ending_tokens(4);
std::vector<float> tok_logits(n_vocab); std::vector<float> tok_logits(n_vocab);
for (size_t task_idx = 0; task_idx < hs_task_count; task_idx++) { for (size_t task_idx = 0; task_idx < hs_task_count; task_idx++) {
@ -368,11 +420,21 @@ void hellaswag_score(llama_context * ctx, const gpt_params & params) {
std::vector<int> context_embd = ::llama_tokenize(ctx, hs_data[task_idx].context, add_bos); std::vector<int> context_embd = ::llama_tokenize(ctx, hs_data[task_idx].context, add_bos);
size_t context_size = context_embd.size(); size_t context_size = context_embd.size();
for (int i = 0; i < 4; ++i) {
ending_tokens[i] = ::llama_tokenize(ctx, hs_data[task_idx].context + " " + hs_data[task_idx].ending[i], add_bos);
for (int k = 0; k < int(context_size); ++k) {
if (ending_tokens[i][k] != context_embd[k]) {
fprintf(stderr, "Oops: ending %d of task %d differs from context at position %d\n",i,int(task_idx),k);
break;
}
}
}
// Do the 1st ending // Do the 1st ending
// In this case we include the context when evaluating // In this case we include the context when evaluating
auto query_embd = ::llama_tokenize(ctx, hs_data[task_idx].context + hs_data[task_idx].ending[0], add_bos); //auto query_embd = ::llama_tokenize(ctx, hs_data[task_idx].context + hs_data[task_idx].ending[0], add_bos);
auto query_embd = ending_tokens[0];
auto query_size = query_embd.size(); auto query_size = query_embd.size();
//printf("First query: %d\n",(int)query_size);
// Stop if query wont fit the ctx window // Stop if query wont fit the ctx window
if (query_size > (size_t)params.n_ctx) { if (query_size > (size_t)params.n_ctx) {
@ -417,7 +479,8 @@ void hellaswag_score(llama_context * ctx, const gpt_params & params) {
for (size_t ending_idx = 1; ending_idx < 4; ending_idx++) { for (size_t ending_idx = 1; ending_idx < 4; ending_idx++) {
// Tokenize the query // Tokenize the query
query_embd = ::llama_tokenize(ctx, hs_data[task_idx].ending[ending_idx], false); query_embd.resize(ending_tokens[ending_idx].size() - context_size);
std::memcpy(query_embd.data(), ending_tokens[ending_idx].data() + context_size, query_embd.size()*sizeof(int));
query_size = query_embd.size(); query_size = query_embd.size();
// Stop if query wont fit the ctx window // Stop if query wont fit the ctx window

View file

@ -87,7 +87,7 @@ int main(int argc, char ** argv) {
} }
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
auto next_token = llama_sample_token(ctx, &candidates_p); auto next_token = llama_sample_token(ctx, &candidates_p);
auto next_token_str = llama_token_to_str(ctx, next_token); auto next_token_str = llama_token_to_piece(ctx, next_token);
last_n_tokens_data.push_back(next_token); last_n_tokens_data.push_back(next_token);
printf("%s", next_token_str.c_str()); printf("%s", next_token_str.c_str());
@ -147,7 +147,7 @@ int main(int argc, char ** argv) {
} }
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
auto next_token = llama_sample_token(ctx2, &candidates_p); auto next_token = llama_sample_token(ctx2, &candidates_p);
auto next_token_str = llama_token_to_str(ctx2, next_token); auto next_token_str = llama_token_to_piece(ctx2, next_token);
last_n_tokens_data.push_back(next_token); last_n_tokens_data.push_back(next_token);
printf("%s", next_token_str.c_str()); printf("%s", next_token_str.c_str());

View file

@ -77,34 +77,31 @@ You need to have [Node.js](https://nodejs.org/en) installed.
```bash ```bash
mkdir llama-client mkdir llama-client
cd llama-client cd llama-client
npm init
npm install axios
``` ```
Create a index.js file and put inside this: Create a index.js file and put inside this:
```javascript ```javascript
const axios = require("axios");
const prompt = `Building a website can be done in 10 simple steps:`; const prompt = `Building a website can be done in 10 simple steps:`;
async function Test() { async function Test() {
let result = await axios.post("http://127.0.0.1:8080/completion", { let response = await fetch("http://127.0.0.1:8080/completion", {
prompt, method: 'POST',
n_predict: 512, body: JSON.stringify({
}); prompt,
n_predict: 512,
// the response is received until completion finish })
console.log(result.data.content); })
console.log((await response.json()).content)
} }
Test(); Test()
``` ```
And run it: And run it:
```bash ```bash
node . node index.js
``` ```
## API Endpoints ## API Endpoints
@ -167,6 +164,12 @@ node .
Note that the special `BOS` token is not added in front of the text and also a space character is not inserted automatically as it is for `/completion`. Note that the special `BOS` token is not added in front of the text and also a space character is not inserted automatically as it is for `/completion`.
- **POST** `/detokenize`: Convert tokens to text.
*Options:*
`tokens`: Set the tokens to detokenize.
- **POST** `/embedding`: Generate embedding of a given text just as [the embedding example](../embedding) does. - **POST** `/embedding`: Generate embedding of a given text just as [the embedding example](../embedding) does.
*Options:* *Options:*

File diff suppressed because it is too large Load diff

View file

@ -102,6 +102,17 @@
padding: 0.5em; padding: 0.5em;
} }
.prob-set {
padding: 0.3em;
border-bottom: 1px solid #ccc;
}
.popover-content {
position: absolute;
background-color: white;
padding: 0.2em;
box-shadow: 0 0 10px rgba(0, 0, 0, 0.1);
}
textarea { textarea {
padding: 5px; padding: 5px;
@ -133,11 +144,17 @@
font-size: 80%; font-size: 80%;
color: #888; color: #888;
} }
@media (prefers-color-scheme: dark) {
.popover-content {
background-color: black;
}
}
</style> </style>
<script type="module"> <script type="module">
import { import {
html, h, signal, effect, computed, render, useSignal, useEffect, useRef html, h, signal, effect, computed, render, useSignal, useEffect, useRef, Component
} from '/index.js'; } from '/index.js';
import { llama } from '/completion.js'; import { llama } from '/completion.js';
@ -168,6 +185,7 @@
mirostat_tau: 5, // target entropy mirostat_tau: 5, // target entropy
mirostat_eta: 0.1, // learning rate mirostat_eta: 0.1, // learning rate
grammar: '', grammar: '',
n_probs: 0, // no completion_probabilities
}) })
/* START: Support for storing prompt templates and parameters in borwser LocalStorage */ /* START: Support for storing prompt templates and parameters in borwser LocalStorage */
@ -334,10 +352,21 @@
const prompt = template(session.value.template, { const prompt = template(session.value.template, {
message: msg, message: msg,
history: session.value.transcript.flatMap(([name, message]) => template(session.value.historyTemplate, {name, message})).join("\n"), history: session.value.transcript.flatMap(
([name, data]) =>
template(
session.value.historyTemplate,
{
name,
message: Array.isArray(data) ?
data.map(msg => msg.content).join('').replace(/^\s/, '') :
data,
}
)
).join("\n"),
}); });
let currentMessage = ''; const currentMessages = [];
const history = session.value.transcript const history = session.value.transcript
const llamaParams = { const llamaParams = {
@ -347,15 +376,19 @@
for await (const chunk of llama(prompt, llamaParams, { controller: controller.value })) { for await (const chunk of llama(prompt, llamaParams, { controller: controller.value })) {
const data = chunk.data; const data = chunk.data;
currentMessage += data.content;
// remove leading whitespace
currentMessage = currentMessage.replace(/^\s+/, "")
transcriptUpdate([...history, ["{{char}}", currentMessage]])
if (data.stop) { if (data.stop) {
console.log("Completion finished: '", currentMessage, "', summary: ", data); while (
currentMessages.length > 0 &&
currentMessages[currentMessages.length - 1].content.match(/\n$/) != null
) {
currentMessages.pop();
}
transcriptUpdate([...history, ["{{char}}", currentMessages]])
console.log("Completion finished: '", currentMessages.map(msg => msg.content).join(''), "', summary: ", data);
} else {
currentMessages.push(data);
transcriptUpdate([...history, ["{{char}}", currentMessages]])
} }
if (data.timings) { if (data.timings) {
@ -420,8 +453,18 @@
} }
}, [messages]) }, [messages])
const chatLine = ([user, msg]) => { const chatLine = ([user, data], index) => {
return html`<p key=${msg}><strong>${template(user)}:</strong> <${Markdownish} text=${template(msg)} /></p>` let message
const isArrayMessage = Array.isArray(data)
if (params.value.n_probs > 0 && isArrayMessage) {
message = html`<${Probabilities} data=${data} />`
} else {
const text = isArrayMessage ?
data.map(msg => msg.content).join('').replace(/^\s+/, '') :
data;
message = html`<${Markdownish} text=${template(text)} />`
}
return html`<p key=${index}><strong>${template(user)}:</strong> ${message}</p>`
}; };
return html` return html`
@ -568,10 +611,71 @@
${FloatField({label: "Mirostat tau", max: 10.0, min: 0.0, name: "mirostat_tau", step: 0.01, value: params.value.mirostat_tau})} ${FloatField({label: "Mirostat tau", max: 10.0, min: 0.0, name: "mirostat_tau", step: 0.01, value: params.value.mirostat_tau})}
${FloatField({label: "Mirostat eta", max: 1.0, min: 0.0, name: "mirostat_eta", step: 0.01, value: params.value.mirostat_eta})} ${FloatField({label: "Mirostat eta", max: 1.0, min: 0.0, name: "mirostat_eta", step: 0.01, value: params.value.mirostat_eta})}
</fieldset> </fieldset>
<fieldset>
${IntField({label: "Show Probabilities", max: 10, min: 0, name: "n_probs", value: params.value.n_probs})}
</fieldset>
</details> </details>
</form> </form>
` `
} }
const probColor = (p) => {
const r = Math.floor(192 * (1 - p));
const g = Math.floor(192 * p);
return `rgba(${r},${g},0,0.3)`;
}
const Probabilities = (params) => {
return params.data.map(msg => {
const { completion_probabilities } = msg;
if (
!completion_probabilities ||
completion_probabilities.length === 0
) return msg.content
if (completion_probabilities.length > 1) {
// Not for byte pair
if (completion_probabilities[0].content.startsWith('byte: \\')) return msg.content
const splitData = completion_probabilities.map(prob => ({
content: prob.content,
completion_probabilities: [prob]
}))
return html`<${Probabilities} data=${splitData} />`
}
const { probs, content } = completion_probabilities[0]
const found = probs.find(p => p.tok_str === msg.content)
const pColor = found ? probColor(found.prob) : 'transparent'
const popoverChildren = html`
<div class="prob-set">
${probs.map((p, index) => {
return html`
<div
key=${index}
title=${`prob: ${p.prob}`}
style=${{
padding: '0.3em',
backgroundColor: p.tok_str === content ? probColor(p.prob) : 'transparent'
}}
>
<span>${p.tok_str}: </span>
<span>${Math.floor(p.prob * 100)}%</span>
</div>
`
})}
</div>
`
return html`
<${Popover} style=${{ backgroundColor: pColor }} popoverChildren=${popoverChildren}>
${msg.content.match(/\n/gim) ? html`<br />` : msg.content}
</>
`
});
}
// poor mans markdown replacement // poor mans markdown replacement
const Markdownish = (params) => { const Markdownish = (params) => {
const md = params.text const md = params.text
@ -600,10 +704,121 @@
` `
} }
// simple popover impl
const Popover = (props) => {
const isOpen = useSignal(false);
const position = useSignal({ top: '0px', left: '0px' });
const buttonRef = useRef(null);
const popoverRef = useRef(null);
const togglePopover = () => {
if (buttonRef.current) {
const rect = buttonRef.current.getBoundingClientRect();
position.value = {
top: `${rect.bottom + window.scrollY}px`,
left: `${rect.left + window.scrollX}px`,
};
}
isOpen.value = !isOpen.value;
};
const handleClickOutside = (event) => {
if (popoverRef.current && !popoverRef.current.contains(event.target) && !buttonRef.current.contains(event.target)) {
isOpen.value = false;
}
};
useEffect(() => {
document.addEventListener('mousedown', handleClickOutside);
return () => {
document.removeEventListener('mousedown', handleClickOutside);
};
}, []);
return html`
<span style=${props.style} ref=${buttonRef} onClick=${togglePopover}>${props.children}</span>
${isOpen.value && html`
<${Portal} into="#portal">
<div
ref=${popoverRef}
class="popover-content"
style=${{
top: position.value.top,
left: position.value.left,
}}
>
${props.popoverChildren}
</div>
</${Portal}>
`}
`;
};
// Source: preact-portal (https://github.com/developit/preact-portal/blob/master/src/preact-portal.js)
/** Redirect rendering of descendants into the given CSS selector */
class Portal extends Component {
componentDidUpdate(props) {
for (let i in props) {
if (props[i] !== this.props[i]) {
return setTimeout(this.renderLayer);
}
}
}
componentDidMount() {
this.isMounted = true;
this.renderLayer = this.renderLayer.bind(this);
this.renderLayer();
}
componentWillUnmount() {
this.renderLayer(false);
this.isMounted = false;
if (this.remote && this.remote.parentNode) this.remote.parentNode.removeChild(this.remote);
}
findNode(node) {
return typeof node === 'string' ? document.querySelector(node) : node;
}
renderLayer(show = true) {
if (!this.isMounted) return;
// clean up old node if moving bases:
if (this.props.into !== this.intoPointer) {
this.intoPointer = this.props.into;
if (this.into && this.remote) {
this.remote = render(html`<${PortalProxy} />`, this.into, this.remote);
}
this.into = this.findNode(this.props.into);
}
this.remote = render(html`
<${PortalProxy} context=${this.context}>
${show && this.props.children || null}
</${PortalProxy}>
`, this.into, this.remote);
}
render() {
return null;
}
}
// high-order component that renders its first child if it exists.
// used as a conditional rendering proxy.
class PortalProxy extends Component {
getChildContext() {
return this.props.context;
}
render({ children }) {
return children || null;
}
}
function App(props) { function App(props) {
return html` return html`
<div id="container"> <div>
<header> <header>
<h1>llama.cpp</h1> <h1>llama.cpp</h1>
</header> </header>
@ -624,11 +839,13 @@
`; `;
} }
render(h(App), document.body); render(h(App), document.querySelector('#container'));
</script> </script>
</head> </head>
<body> <body>
<div id="container"></div>
<div id="portal"></div>
</body> </body>
</html> </html>

View file

@ -94,7 +94,7 @@ static std::string tokens_to_str(llama_context *ctx, Iter begin, Iter end)
std::string ret; std::string ret;
for (; begin != end; ++begin) for (; begin != end; ++begin)
{ {
ret += llama_token_to_str(ctx, *begin); ret += llama_token_to_piece(ctx, *begin);
} }
return ret; return ret;
} }
@ -123,9 +123,10 @@ static void server_log(const char *level, const char *function, int line,
// format incomplete utf-8 multibyte character for output // format incomplete utf-8 multibyte character for output
static std::string tokens_to_output_formatted_string(const llama_context *ctx, const llama_token token) static std::string tokens_to_output_formatted_string(const llama_context *ctx, const llama_token token)
{ {
std::string out = token == -1 ? "" : llama_token_to_str(ctx, token); std::string out = token == -1 ? "" : llama_token_to_piece(ctx, token);
// if first bit is 1, meaning it's a partial character // if the size is 1 and first bit is 1, meaning it's a partial character
if (out.size() > 0 && (out[0] & 0x80) == 0x80) // (size > 1 meaning it's already a known token)
if (out.size() == 1 && (out[0] & 0x80) == 0x80)
{ {
std::stringstream ss; std::stringstream ss;
ss << std::hex << (out[0] & 0xff); ss << std::hex << (out[0] & 0xff);
@ -285,7 +286,6 @@ struct llama_server_context
std::vector<llama_token> p; std::vector<llama_token> p;
if (first) if (first)
{ {
s.insert(0, 1, ' '); // add a space if it's the first
p = ::llama_tokenize(ctx, s, add_bos); p = ::llama_tokenize(ctx, s, add_bos);
first = false; first = false;
} }
@ -308,7 +308,6 @@ struct llama_server_context
else else
{ {
auto s = json_prompt.template get<std::string>(); auto s = json_prompt.template get<std::string>();
s.insert(0, 1, ' '); // always add a first space
prompt_tokens = ::llama_tokenize(ctx, s, add_bos); prompt_tokens = ::llama_tokenize(ctx, s, add_bos);
} }
@ -565,7 +564,7 @@ struct llama_server_context
if (!embd.empty() && embd.back() == llama_token_eos(ctx)) if (!embd.empty() && embd.back() == llama_token_eos(ctx))
{ {
// stopping_word = llama_token_to_str(ctx, embd.back()); // stopping_word = llama_token_to_piece(ctx, embd.back());
has_next_token = false; has_next_token = false;
stopped_eos = true; stopped_eos = true;
LOG_VERBOSE("eos token found", {}); LOG_VERBOSE("eos token found", {});
@ -612,7 +611,7 @@ struct llama_server_context
{ {
const completion_token_output token_with_probs = nextToken(); const completion_token_output token_with_probs = nextToken();
const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_str(ctx, token_with_probs.tok); const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_piece(ctx, token_with_probs.tok);
generated_text += token_text; generated_text += token_text;
if (params.n_probs > 0) if (params.n_probs > 0)
@ -1103,6 +1102,12 @@ static json format_tokenizer_response(const std::vector<llama_token> &tokens)
{"tokens", tokens}}; {"tokens", tokens}};
} }
static json format_detokenized_response(std::string content)
{
return json{
{"content", content}};
}
template <typename T> template <typename T>
static T json_value(const json &body, const std::string &key, const T &default_value) static T json_value(const json &body, const std::string &key, const T &default_value)
{ {
@ -1208,6 +1213,62 @@ static void log_server_request(const Request &req, const Response &res)
}); });
} }
bool is_at_eob(llama_server_context & server_context, const llama_token * tokens, const size_t n_tokens) {
return n_tokens && tokens[n_tokens-1] == llama_token_eos(server_context.ctx);
}
// Function matching type llama_beam_search_callback_fn_t.
// Custom callback example is called each time the beams lengths increase:
// * Show progress by printing ',' following by number of convergent beam tokens if any.
// * When all beams converge to a common prefix, they are made available in beams_state.beams[0].
// This is also called when the stop condition is met.
// Collect tokens into std::vector<llama_token> response which is pointed to by callback_data.
void beam_search_callback(void * callback_data, llama_beams_state beams_state) {
auto & llama = *static_cast<llama_server_context*>(callback_data);
// Mark beams as EOS as needed.
for (size_t i = 0 ; i < beams_state.n_beams ; ++i) {
llama_beam_view& beam_view = beams_state.beam_views[i];
if (!beam_view.eob && is_at_eob(llama, beam_view.tokens, beam_view.n_tokens)) {
beam_view.eob = true;
}
}
printf(","); // Show progress
if (const size_t n = beams_state.common_prefix_length) {
llama.generated_token_probs.resize(llama.generated_token_probs.size() + n);
assert(0u < beams_state.n_beams);
const llama_token * tokens = beams_state.beam_views[0].tokens;
const auto map = [](llama_token tok) { return completion_token_output{{},tok}; };
std::transform(tokens, tokens + n, llama.generated_token_probs.end() - n, map);
printf("%lu", n);
}
fflush(stdout);
#if 0 // DEBUG: print current beams for this iteration
std::cout << "\n\nCurrent beams:\n";
for (size_t i=0 ; i < beams_state.n_beams ; ++i) {
std::cout << "beams["<<i<<"]: " << ostream_beam_view{state.ctx,beams_state.beam_views[i]} << std::endl;
}
#endif
}
struct token_translator {
llama_context * ctx;
std::string operator()(llama_token tok) const { return llama_token_to_piece(ctx, tok); }
std::string operator()(completion_token_output cto) const { return (*this)(cto.tok); }
};
void append_to_generated_text_from_generated_token_probs(llama_server_context & llama) {
auto & gtps = llama.generated_token_probs;
auto translator = token_translator{llama.ctx};
auto add_strlen = [=](size_t sum, const completion_token_output & cto) { return sum + translator(cto).size(); };
const size_t len = std::accumulate(gtps.begin(), gtps.end(), size_t(0), add_strlen);
if (llama.generated_text.capacity() < llama.generated_text.size() + len) {
llama.generated_text.reserve(llama.generated_text.size() + len);
}
for (const completion_token_output & cto : gtps) {
llama.generated_text += translator(cto);
}
}
int main(int argc, char **argv) int main(int argc, char **argv)
{ {
// own arguments required by this example // own arguments required by this example
@ -1290,22 +1351,30 @@ int main(int argc, char **argv)
llama.beginCompletion(); llama.beginCompletion();
if (!llama.stream) { if (!llama.stream) {
size_t stop_pos = std::string::npos; if (llama.params.n_beams) {
// Fill llama.generated_token_probs vector with final beam.
llama_beam_search(llama.ctx, beam_search_callback, &llama, llama.params.n_beams,
llama.n_past, llama.n_remain, llama.params.n_threads);
// Translate llama.generated_token_probs to llama.generated_text.
append_to_generated_text_from_generated_token_probs(llama);
} else {
size_t stop_pos = std::string::npos;
while (llama.has_next_token) { while (llama.has_next_token) {
const completion_token_output token_with_probs = llama.doCompletion(); const completion_token_output token_with_probs = llama.doCompletion();
const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_str(llama.ctx, token_with_probs.tok); const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_piece(llama.ctx, token_with_probs.tok);
stop_pos = llama.findStoppingStrings(llama.generated_text, stop_pos = llama.findStoppingStrings(llama.generated_text,
token_text.size(), STOP_FULL); token_text.size(), STOP_FULL);
} }
if (stop_pos == std::string::npos) { if (stop_pos == std::string::npos) {
stop_pos = llama.findStoppingStrings(llama.generated_text, 0, STOP_PARTIAL); stop_pos = llama.findStoppingStrings(llama.generated_text, 0, STOP_PARTIAL);
} }
if (stop_pos != std::string::npos) { if (stop_pos != std::string::npos) {
llama.generated_text.erase(llama.generated_text.begin() + stop_pos, llama.generated_text.erase(llama.generated_text.begin() + stop_pos,
llama.generated_text.end()); llama.generated_text.end());
}
} }
const json data = format_final_response(llama, llama.generated_text, llama.generated_token_probs); const json data = format_final_response(llama, llama.generated_text, llama.generated_token_probs);
@ -1321,59 +1390,86 @@ int main(int argc, char **argv)
while (llama.has_next_token) { while (llama.has_next_token) {
const completion_token_output token_with_probs = llama.doCompletion(); const completion_token_output token_with_probs = llama.doCompletion();
const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_str(llama.ctx, token_with_probs.tok); if (token_with_probs.tok == -1 || llama.multibyte_pending > 0) {
if (llama.multibyte_pending > 0) {
continue; continue;
} }
const std::string token_text = llama_token_to_piece(llama.ctx, token_with_probs.tok);
size_t pos = std::min(sent_count, llama.generated_text.size()); size_t pos = std::min(sent_count, llama.generated_text.size());
const std::string str_test = llama.generated_text.substr(pos); const std::string str_test = llama.generated_text.substr(pos);
bool is_stop_full = false;
size_t stop_pos = size_t stop_pos =
llama.findStoppingStrings(str_test, token_text.size(), STOP_FULL); llama.findStoppingStrings(str_test, token_text.size(), STOP_FULL);
if (stop_pos != std::string::npos) { if (stop_pos != std::string::npos) {
is_stop_full = true;
llama.generated_text.erase( llama.generated_text.erase(
llama.generated_text.begin() + pos + stop_pos, llama.generated_text.begin() + pos + stop_pos,
llama.generated_text.end()); llama.generated_text.end());
pos = std::min(sent_count, llama.generated_text.size()); pos = std::min(sent_count, llama.generated_text.size());
} else { } else {
is_stop_full = false;
stop_pos = llama.findStoppingStrings(str_test, token_text.size(), stop_pos = llama.findStoppingStrings(str_test, token_text.size(),
STOP_PARTIAL); STOP_PARTIAL);
} }
const std::string to_send = llama.generated_text.substr(pos, stop_pos); if (
sent_count += to_send.size(); stop_pos == std::string::npos ||
// Send rest of the text if we are at the end of the generation
(!llama.has_next_token && !is_stop_full && stop_pos > 0)
) {
const std::string to_send = llama.generated_text.substr(pos, std::string::npos);
std::vector<completion_token_output> probs_output = {}; sent_count += to_send.size();
if (llama.params.n_probs > 0) { std::vector<completion_token_output> probs_output = {};
const std::vector<llama_token> to_send_toks = llama_tokenize(llama.ctx, to_send, false);
size_t probs_pos = std::min(sent_token_probs_index, llama.generated_token_probs.size()); if (llama.params.n_probs > 0) {
size_t probs_stop_pos = std::min(sent_token_probs_index + to_send_toks.size(), llama.generated_token_probs.size()); const std::vector<llama_token> to_send_toks = llama_tokenize(llama.ctx, to_send, false);
if (probs_pos < probs_stop_pos) { size_t probs_pos = std::min(sent_token_probs_index, llama.generated_token_probs.size());
probs_output = std::vector<completion_token_output>(llama.generated_token_probs.begin() + probs_pos, llama.generated_token_probs.begin() + probs_stop_pos); size_t probs_stop_pos = std::min(sent_token_probs_index + to_send_toks.size(), llama.generated_token_probs.size());
if (probs_pos < probs_stop_pos) {
probs_output = std::vector<completion_token_output>(llama.generated_token_probs.begin() + probs_pos, llama.generated_token_probs.begin() + probs_stop_pos);
}
sent_token_probs_index = probs_stop_pos;
}
const json data = format_partial_response(llama, to_send, probs_output);
const std::string str =
"data: " +
data.dump(-1, ' ', false, json::error_handler_t::replace) +
"\n\n";
LOG_VERBOSE("data stream", {
{ "to_send", str }
});
if (!sink.write(str.data(), str.size())) {
LOG_VERBOSE("stream closed", {});
llama_print_timings(llama.ctx);
return false;
} }
sent_token_probs_index = probs_stop_pos;
} }
const json data = llama.has_next_token if (!llama.has_next_token) {
? format_partial_response(llama, to_send, probs_output) // Generation is done, send extra information.
// Generation is done, send extra information. const json data = format_final_response(llama, "", llama.generated_token_probs);
: format_final_response(llama, to_send, llama.generated_token_probs);
const std::string str = const std::string str =
"data: " + "data: " +
data.dump(-1, ' ', false, json::error_handler_t::replace) + data.dump(-1, ' ', false, json::error_handler_t::replace) +
"\n\n"; "\n\n";
LOG_VERBOSE("data stream", { LOG_VERBOSE("data stream", {
{ "to_send", str } { "to_send", str }
}); });
if (!sink.write(str.data(), str.size())) { if (!sink.write(str.data(), str.size())) {
LOG_VERBOSE("stream closed", {}); LOG_VERBOSE("stream closed", {});
llama_print_timings(llama.ctx); llama_print_timings(llama.ctx);
return false; return false;
}
} }
} }
@ -1409,6 +1505,21 @@ int main(int argc, char **argv)
const json data = format_tokenizer_response(tokens); const json data = format_tokenizer_response(tokens);
return res.set_content(data.dump(), "application/json"); }); return res.set_content(data.dump(), "application/json"); });
svr.Post("/detokenize", [&llama](const Request &req, Response &res)
{
auto lock = llama.lock();
const json body = json::parse(req.body);
std::string content;
if (body.count("tokens") != 0)
{
const std::vector<llama_token> tokens = body["tokens"];
content = tokens_to_str(llama.ctx, tokens.cbegin(), tokens.cend());
}
const json data = format_detokenized_response(content);
return res.set_content(data.dump(), "application/json"); });
svr.Post("/embedding", [&llama](const Request &req, Response &res) svr.Post("/embedding", [&llama](const Request &req, Response &res)
{ {
auto lock = llama.lock(); auto lock = llama.lock();

View file

@ -63,7 +63,7 @@ int main(int argc, char ** argv) {
fprintf(stderr, "\n\n"); fprintf(stderr, "\n\n");
for (auto id : tokens_list) { for (auto id : tokens_list) {
fprintf(stderr, "%s", llama_token_to_str(ctx, id).c_str()); fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str());
} }
fflush(stderr); fflush(stderr);
@ -112,7 +112,7 @@ int main(int argc, char ** argv) {
} }
// print the new token : // print the new token :
printf("%s", llama_token_to_str(ctx, new_token_id).c_str()); printf("%s", llama_token_to_piece(ctx, new_token_id).c_str());
fflush(stdout); fflush(stdout);
// push this new token for next evaluation // push this new token for next evaluation

View file

@ -1150,7 +1150,7 @@ void print_matrix(struct ggml_tensor * probs) {
void print_token(struct llama_context * ctx, llama_token token) { void print_token(struct llama_context * ctx, llama_token token) {
printf("%s", llama_token_to_str(ctx, token).c_str()); printf("%s", llama_token_to_piece(ctx, token).c_str());
} }
void print_tokens(struct llama_context* ctx, struct ggml_tensor * tokens) { void print_tokens(struct llama_context* ctx, struct ggml_tensor * tokens) {
@ -1331,7 +1331,7 @@ int tokenize_file(struct llama_context * lctx, const char * filename, std::vecto
const char * in = buf.data(); const char * in = buf.data();
const char * end = buf.data() + buf.size(); const char * end = buf.data() + buf.size();
for (int i = 0; i < (int) out.size(); ++i) { for (int i = 0; i < (int) out.size(); ++i) {
std::string s = llama_token_to_str(lctx, out[i]); std::string s = llama_token_to_piece(lctx, out[i]);
int len = s.length(); int len = s.length();
if (in >= end) { if (in >= end) {
printf("%s: unexpected end of original text.\n", __func__); printf("%s: unexpected end of original text.\n", __func__);

12
flake.lock generated
View file

@ -5,11 +5,11 @@
"systems": "systems" "systems": "systems"
}, },
"locked": { "locked": {
"lastModified": 1685518550, "lastModified": 1692799911,
"narHash": "sha256-o2d0KcvaXzTrPRIo0kOLV0/QXHhDQ5DTi+OxcjO8xqY=", "narHash": "sha256-3eihraek4qL744EvQXsK1Ha6C3CR7nnT8X2qWap4RNk=",
"owner": "numtide", "owner": "numtide",
"repo": "flake-utils", "repo": "flake-utils",
"rev": "a1720a10a6cfe8234c0e93907ffe81be440f4cef", "rev": "f9e7cf818399d17d347f847525c5a5a8032e4e44",
"type": "github" "type": "github"
}, },
"original": { "original": {
@ -20,11 +20,11 @@
}, },
"nixpkgs": { "nixpkgs": {
"locked": { "locked": {
"lastModified": 1685931219, "lastModified": 1692913444,
"narHash": "sha256-8EWeOZ6LKQfgAjB/USffUSELPRjw88A+xTcXnOUvO5M=", "narHash": "sha256-1SvMQm2DwofNxXVtNWWtIcTh7GctEVrS/Xel/mdc6iY=",
"owner": "NixOS", "owner": "NixOS",
"repo": "nixpkgs", "repo": "nixpkgs",
"rev": "7409480d5c8584a1a83c422530419efe4afb0d19", "rev": "18324978d632ffc55ef1d928e81630c620f4f447",
"type": "github" "type": "github"
}, },
"original": { "original": {

View file

@ -6,6 +6,9 @@
outputs = { self, nixpkgs, flake-utils }: outputs = { self, nixpkgs, flake-utils }:
flake-utils.lib.eachDefaultSystem (system: flake-utils.lib.eachDefaultSystem (system:
let let
name = "llama.cpp";
src = ./.;
meta.mainProgram = "llama";
inherit (pkgs.stdenv) isAarch32 isAarch64 isDarwin; inherit (pkgs.stdenv) isAarch32 isAarch64 isDarwin;
buildInputs = with pkgs; [ openmpi ]; buildInputs = with pkgs; [ openmpi ];
osSpecific = with pkgs; buildInputs ++ osSpecific = with pkgs; buildInputs ++
@ -21,11 +24,17 @@
CoreGraphics CoreGraphics
CoreVideo CoreVideo
] ]
else if isDarwin then
with pkgs.darwin.apple_sdk.frameworks; [
Accelerate
CoreGraphics
CoreVideo
]
else else
with pkgs; [ openblas ] with pkgs; [ openblas ]
); );
pkgs = import nixpkgs { inherit system; }; pkgs = import nixpkgs { inherit system; };
nativeBuildInputs = with pkgs; [ cmake pkgconfig ]; nativeBuildInputs = with pkgs; [ cmake ninja pkgconfig ];
llama-python = llama-python =
pkgs.python3.withPackages (ps: with ps; [ numpy sentencepiece ]); pkgs.python3.withPackages (ps: with ps; [ numpy sentencepiece ]);
postPatch = '' postPatch = ''
@ -38,35 +47,35 @@
mv $out/bin/server $out/bin/llama-server mv $out/bin/server $out/bin/llama-server
''; '';
cmakeFlags = [ "-DLLAMA_BUILD_SERVER=ON" "-DLLAMA_MPI=ON" "-DBUILD_SHARED_LIBS=ON" "-DCMAKE_SKIP_BUILD_RPATH=ON" ]; cmakeFlags = [ "-DLLAMA_BUILD_SERVER=ON" "-DLLAMA_MPI=ON" "-DBUILD_SHARED_LIBS=ON" "-DCMAKE_SKIP_BUILD_RPATH=ON" ];
in { in
{
packages.default = pkgs.stdenv.mkDerivation { packages.default = pkgs.stdenv.mkDerivation {
name = "llama.cpp"; inherit name src meta postPatch nativeBuildInputs buildInputs postInstall;
src = ./.;
postPatch = postPatch;
nativeBuildInputs = nativeBuildInputs;
buildInputs = osSpecific;
cmakeFlags = cmakeFlags cmakeFlags = cmakeFlags
++ (if isAarch64 && isDarwin then [ ++ (if isAarch64 && isDarwin then [
"-DCMAKE_C_FLAGS=-D__ARM_FEATURE_DOTPROD=1" "-DCMAKE_C_FLAGS=-D__ARM_FEATURE_DOTPROD=1"
"-DLLAMA_METAL=ON" "-DLLAMA_METAL=ON"
] else [ ] else [
"-DLLAMA_BLAS=ON" "-DLLAMA_BLAS=ON"
"-DLLAMA_BLAS_VENDOR=OpenBLAS" "-DLLAMA_BLAS_VENDOR=OpenBLAS"
]); ]);
postInstall = postInstall;
meta.mainProgram = "llama";
}; };
packages.opencl = pkgs.stdenv.mkDerivation { packages.opencl = pkgs.stdenv.mkDerivation {
name = "llama.cpp"; inherit name src meta postPatch nativeBuildInputs postInstall;
src = ./.;
postPatch = postPatch;
nativeBuildInputs = nativeBuildInputs;
buildInputs = with pkgs; buildInputs ++ [ clblast ]; buildInputs = with pkgs; buildInputs ++ [ clblast ];
cmakeFlags = cmakeFlags ++ [ cmakeFlags = cmakeFlags ++ [
"-DLLAMA_CLBLAST=ON" "-DLLAMA_CLBLAST=ON"
]; ];
postInstall = postInstall; };
meta.mainProgram = "llama"; packages.rocm = pkgs.stdenv.mkDerivation {
inherit name src meta postPatch nativeBuildInputs postInstall;
buildInputs = with pkgs; buildInputs ++ [ hip hipblas rocblas ];
cmakeFlags = cmakeFlags ++ [
"-DLLAMA_HIPBLAS=1"
"-DCMAKE_C_COMPILER=hipcc"
"-DCMAKE_CXX_COMPILER=hipcc"
"-DCMAKE_POSITION_INDEPENDENT_CODE=ON"
];
}; };
apps.llama-server = { apps.llama-server = {
type = "app"; type = "app";
@ -80,8 +89,13 @@
type = "app"; type = "app";
program = "${self.packages.${system}.default}/bin/llama"; program = "${self.packages.${system}.default}/bin/llama";
}; };
apps.quantize = {
type = "app";
program = "${self.packages.${system}.default}/bin/quantize";
};
apps.default = self.apps.${system}.llama; apps.default = self.apps.${system}.llama;
devShells.default = pkgs.mkShell { devShells.default = pkgs.mkShell {
buildInputs = [ llama-python ];
packages = nativeBuildInputs ++ osSpecific; packages = nativeBuildInputs ++ osSpecific;
}; };
}); });

View file

@ -8,6 +8,7 @@
#define UNUSED(x) (void)(x) #define UNUSED(x) (void)(x)
#define MAX(a, b) ((a) > (b) ? (a) : (b)) #define MAX(a, b) ((a) > (b) ? (a) : (b))
#define GGML_MAX_CONCUR (2*GGML_MAX_NODES)
//#define GGML_ALLOCATOR_DEBUG //#define GGML_ALLOCATOR_DEBUG
@ -67,8 +68,8 @@ struct ggml_allocr {
struct hash_node hash_table[GGML_GRAPH_HASHTABLE_SIZE]; struct hash_node hash_table[GGML_GRAPH_HASHTABLE_SIZE];
size_t max_size; size_t max_size;
bool measure; bool measure;
int parse_seq[GGML_MAX_NODES]; int parse_seq[GGML_MAX_CONCUR];
bool has_parse_seq; int parse_seq_len;
#ifdef GGML_ALLOCATOR_DEBUG #ifdef GGML_ALLOCATOR_DEBUG
struct ggml_tensor * allocated_tensors[1024]; struct ggml_tensor * allocated_tensors[1024];
@ -243,14 +244,10 @@ static void ggml_allocator_free_tensor(struct ggml_allocr * alloc, struct ggml_t
} }
void ggml_allocr_set_parse_seq(struct ggml_allocr * alloc, const int * list, int n) { void ggml_allocr_set_parse_seq(struct ggml_allocr * alloc, const int * list, int n) {
int pos = 0;
for (int i = 0; i < n; i++) { for (int i = 0; i < n; i++) {
if (list[i] != -1) { alloc->parse_seq[i] = list[i];
alloc->parse_seq[pos] = list[i];
pos++;
}
} }
alloc->has_parse_seq = true; alloc->parse_seq_len = n;
} }
void ggml_allocr_reset(struct ggml_allocr * alloc) { void ggml_allocr_reset(struct ggml_allocr * alloc) {
@ -273,7 +270,7 @@ struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment)
/*.max_size = */ 0, /*.max_size = */ 0,
/*.measure = */ false, /*.measure = */ false,
/*.parse_seq = */ {0}, /*.parse_seq = */ {0},
/*.has_parse_seq = */ false, /*.parse_seq_len = */ 0,
#ifdef GGML_ALLOCATOR_DEBUG #ifdef GGML_ALLOCATOR_DEBUG
/*.allocated_tensors = */ = {0}, /*.allocated_tensors = */ = {0},
#endif #endif
@ -302,7 +299,7 @@ struct ggml_allocr * ggml_allocr_new_measure(size_t alignment) {
/*.max_size = */ 0, /*.max_size = */ 0,
/*.measure = */ true, /*.measure = */ true,
/*.parse_seq = */ {0}, /*.parse_seq = */ {0},
/*.has_parse_seq = */ false, /*.parse_seq_len = */ 0,
#ifdef GGML_ALLOCATOR_DEBUG #ifdef GGML_ALLOCATOR_DEBUG
/*.allocated_tensors = */ = {0}, /*.allocated_tensors = */ = {0},
#endif #endif
@ -449,8 +446,8 @@ static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node)
else { else {
AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name); AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name);
node->data = parent->data; node->data = parent->data;
return;
} }
return;
} }
} }
} }
@ -501,69 +498,86 @@ static size_t ggml_allocator_alloc_graph_tensors_n(
allocate_node(alloc, input); allocate_node(alloc, input);
} }
} }
for (int ind = 0; ind < gf->n_nodes; ind++) { // if we have parse_seq then we allocate nodes following the list, and we only free nodes at barriers
int i; int last_barrier_pos = 0;
if (alloc->has_parse_seq) { int n_nodes = alloc->parse_seq_len ? alloc->parse_seq_len : gf->n_nodes;
i = alloc->parse_seq[ind];
} else {
i = ind;
}
struct ggml_tensor * node = gf->nodes[i];
// allocate parents (leafs) for (int ind = 0; ind < n_nodes; ind++) {
for (int j = 0; j < GGML_MAX_SRC; j++) { // allocate a node if there is no parse_seq or this is not a barrier
struct ggml_tensor * parent = node->src[j]; if ((alloc->parse_seq_len==0) || alloc->parse_seq[ind] != -1) {
if (parent == NULL) { int i = alloc->parse_seq_len ? alloc->parse_seq[ind] : ind;
break; struct ggml_tensor * node = gf->nodes[i];
// allocate parents (leafs)
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * parent = node->src[j];
if (parent == NULL) {
break;
}
allocate_node(alloc, parent);
} }
allocate_node(alloc, parent);
// allocate node
allocate_node(alloc, node);
AT_PRINTF("exec: %s (%s) <= ", ggml_op_name(node->op), node->name);
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * parent = node->src[j];
if (parent == NULL) {
break;
}
AT_PRINTF("%s", parent->name);
if (j < GGML_MAX_SRC - 1 && node->src[j + 1] != NULL) {
AT_PRINTF(", ");
}
}
AT_PRINTF("\n");
} }
// allocate node
allocate_node(alloc, node);
AT_PRINTF("exec: %s (%s) <= ", ggml_op_name(node->op), node->name);
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * parent = node->src[j];
if (parent == NULL) {
break;
}
AT_PRINTF("%s", parent->name);
if (j < GGML_MAX_SRC - 1 && node->src[j + 1] != NULL) {
AT_PRINTF(", ");
}
}
AT_PRINTF("\n");
// update parents // update parents
for (int j = 0; j < GGML_MAX_SRC; j++) { // update immediately if there is no parse_seq
struct ggml_tensor * parent = node->src[j]; // update only at barriers if there is parse_seq
if (parent == NULL) { if ((alloc->parse_seq_len==0) || alloc->parse_seq[ind] == -1) {
break; int update_start = alloc->parse_seq_len ? last_barrier_pos : ind;
int update_end = alloc->parse_seq_len ? ind : ind + 1;
for (int i = update_start; i < update_end; i++) {
int node_i = alloc->parse_seq_len ? alloc->parse_seq[i] : i;
struct ggml_tensor * node = gf->nodes[node_i];
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * parent = node->src[j];
if (parent == NULL) {
break;
}
struct hash_node * p_hn = hash_get(ht, parent);
p_hn->n_children -= 1;
//AT_PRINTF("parent %s: %d children, %d views\n", parent->name, parent->n_children, parent->n_views);
if (p_hn->n_children == 0 && p_hn->n_views == 0) {
if (ggml_is_view(parent)) {
struct ggml_tensor * view_src = get_view_source(parent);
struct hash_node * view_src_hn = hash_get(ht, view_src);
view_src_hn->n_views -= 1;
AT_PRINTF("view_src %s\n", view_src->name);
if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0 && view_src->data != node->data) {
ggml_allocator_free_tensor(alloc, view_src);
}
}
else {
if (parent->data != node->data) {
ggml_allocator_free_tensor(alloc, parent);
}
}
}
}
} }
struct hash_node * p_hn = hash_get(ht, parent); AT_PRINTF("\n");
p_hn->n_children -= 1; if (alloc->parse_seq_len) {
last_barrier_pos = ind + 1;
//AT_PRINTF("parent %s: %d children, %d views\n", parent->name, parent->n_children, parent->n_views);
if (p_hn->n_children == 0 && p_hn->n_views == 0) {
if (ggml_is_view(parent)) {
struct ggml_tensor * view_src = get_view_source(parent);
struct hash_node * view_src_hn = hash_get(ht, view_src);
view_src_hn->n_views -= 1;
AT_PRINTF("view_src %s\n", view_src->name);
if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0 && view_src->data != node->data) {
ggml_allocator_free_tensor(alloc, view_src);
}
}
else {
if (parent->data != node->data) {
ggml_allocator_free_tensor(alloc, parent);
}
}
} }
} }
AT_PRINTF("\n");
} }
// free graph outputs here that wouldn't be freed otherwise because they have no children // free graph outputs here that wouldn't be freed otherwise because they have no children
if (outputs != NULL && outputs[g] != NULL) { if (outputs != NULL && outputs[g] != NULL) {

View file

@ -6,15 +6,116 @@
#include <atomic> #include <atomic>
#include <assert.h> #include <assert.h>
#if defined(GGML_USE_HIPBLAS)
#include <hip/hip_runtime.h>
#include <hipblas/hipblas.h>
#include <hip/hip_fp16.h>
#ifdef __HIP_PLATFORM_AMD__
// for rocblas_initialize()
#include "rocblas/rocblas.h"
#endif
#define CUBLAS_COMPUTE_32F HIPBLAS_R_32F
#define CUBLAS_COMPUTE_32F_FAST_16F HIPBLAS_R_32F
#define CUBLAS_GEMM_DEFAULT HIPBLAS_GEMM_DEFAULT
#define CUBLAS_OP_N HIPBLAS_OP_N
#define CUBLAS_OP_T HIPBLAS_OP_T
#define CUBLAS_STATUS_SUCCESS HIPBLAS_STATUS_SUCCESS
#define CUBLAS_TF32_TENSOR_OP_MATH 0
#define CUDA_R_16F HIPBLAS_R_16F
#define CUDA_R_32F HIPBLAS_R_32F
#define __shfl_xor_sync(mask, var, laneMask, width) __shfl_xor(var, laneMask, width)
#define cublasCreate hipblasCreate
#define cublasGemmEx hipblasGemmEx
#define cublasHandle_t hipblasHandle_t
#define cublasSetMathMode(handle, mode) CUBLAS_STATUS_SUCCESS
#define cublasSetStream hipblasSetStream
#define cublasSgemm hipblasSgemm
#define cublasStatus_t hipblasStatus_t
#define cudaDeviceProp hipDeviceProp_t
#define cudaDeviceSynchronize hipDeviceSynchronize
#define cudaError_t hipError_t
#define cudaEventCreateWithFlags hipEventCreateWithFlags
#define cudaEventDisableTiming hipEventDisableTiming
#define cudaEventRecord hipEventRecord
#define cudaEvent_t hipEvent_t
#define cudaEventDestroy hipEventDestroy
#define cudaFree hipFree
#define cudaFreeHost hipHostFree
#define cudaGetDevice hipGetDevice
#define cudaGetDeviceCount hipGetDeviceCount
#define cudaGetDeviceProperties hipGetDeviceProperties
#define cudaGetErrorString hipGetErrorString
#define cudaGetLastError hipGetLastError
#define cudaMalloc hipMalloc
#define cudaMallocHost(ptr, size) hipHostMalloc(ptr, size, hipHostMallocDefault)
#define cudaMemcpy hipMemcpy
#define cudaMemcpy2DAsync hipMemcpy2DAsync
#define cudaMemcpyAsync hipMemcpyAsync
#define cudaMemcpyDeviceToDevice hipMemcpyDeviceToDevice
#define cudaMemcpyDeviceToHost hipMemcpyDeviceToHost
#define cudaMemcpyHostToDevice hipMemcpyHostToDevice
#define cudaMemcpyKind hipMemcpyKind
#define cudaMemset hipMemset
#define cudaOccupancyMaxPotentialBlockSize hipOccupancyMaxPotentialBlockSize
#define cudaSetDevice hipSetDevice
#define cudaStreamCreateWithFlags hipStreamCreateWithFlags
#define cudaStreamNonBlocking hipStreamNonBlocking
#define cudaStreamSynchronize hipStreamSynchronize
#define cudaStreamWaitEvent(stream, event) hipStreamWaitEvent(stream, event, 0)
#define cudaStream_t hipStream_t
#define cudaSuccess hipSuccess
#else
#include <cuda_runtime.h> #include <cuda_runtime.h>
#include <cublas_v2.h> #include <cublas_v2.h>
#include <cuda_fp16.h> #include <cuda_fp16.h>
#endif
#include "ggml-cuda.h" #include "ggml-cuda.h"
#include "ggml.h" #include "ggml.h"
#define MIN_CC_DP4A 610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products #define MIN_CC_DP4A 610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products
#ifndef CC_TURING
#define CC_TURING 700 #define CC_TURING 700
#endif
#if defined(GGML_USE_HIPBLAS)
#define __CUDA_ARCH__ 1300
typedef int8_t int8x4_t __attribute__((ext_vector_type(4)));
static __device__ __forceinline__ int __vsubss4(const int a, const int b) {
const int8x4_t va = reinterpret_cast<const int8x4_t&>(a);
const int8x4_t vb = reinterpret_cast<const int8x4_t&>(b);
const int8x4_t c = __builtin_elementwise_sub_sat(va, vb);
return reinterpret_cast<const int&>(c);
}
static __device__ __forceinline__ int __dp4a(const int a, const int b, int c) {
#if defined(__gfx906__) || defined(__gfx908__) || defined(__gfx90a__) || defined(__gfx1030__)
c = __builtin_amdgcn_sdot4(a, b, c, false);
#elif defined(__gfx1100__)
c = __builtin_amdgcn_sudot4( true, a, true, b, c, false);
#elif defined(__gfx1010__) || defined(__gfx900__)
int tmp1;
int tmp2;
asm("\n \
v_mul_i32_i24 %1, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_0 src1_sel:BYTE_0 \n \
v_mul_i32_i24 %2, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_1 src1_sel:BYTE_1 \n \
v_add3_u32 %0, %1, %2, %0 \n \
v_mul_i32_i24 %1, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_2 src1_sel:BYTE_2 \n \
v_mul_i32_i24 %2, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_3 src1_sel:BYTE_3 \n \
v_add3_u32 %0, %1, %2, %0 \n \
"
: "+v"(c), "=&v"(tmp1), "=&v"(tmp2)
: "v"(a), "v"(b)
);
#else
const int8x4_t va = reinterpret_cast<const int8x4_t&>(a);
const int8x4_t vb = reinterpret_cast<const int8x4_t&>(b);
c += va[0] * vb[0] + va[1] * vb[1] + va[2] * vb[2] + va[3] * vb[3];
#endif
return c;
}
#endif
#if defined(_MSC_VER) #if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data #pragma warning(disable: 4244 4267) // possible loss of data
@ -205,11 +306,11 @@ typedef struct {
#define QI4_K (QK_K / (4*QR4_K)) #define QI4_K (QK_K / (4*QR4_K))
#ifdef GGML_QKK_64 #ifdef GGML_QKK_64
typedef struct { typedef struct {
half d[2]; // super-block scales/mins half dm[2]; // super-block scales/mins
uint8_t scales[2]; // 4-bit block scales/mins uint8_t scales[2]; // 4-bit block scales/mins
uint8_t qs[QK_K/2]; // 4--bit quants uint8_t qs[QK_K/2]; // 4--bit quants
} block_q4_K; } block_q4_K;
static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + QK_K/2 + 2, "wrong q4_K block size/padding"); static_assert(sizeof(block_q4_K) == sizeof(half2) + QK_K/2 + 2, "wrong q4_K block size/padding");
#else #else
typedef struct { typedef struct {
half2 dm; // super-block scale for quantized scales/mins half2 dm; // super-block scale for quantized scales/mins
@ -424,8 +525,8 @@ static __device__ __forceinline__ void dequantize_q4_0(const void * vx, const in
static __device__ __forceinline__ void dequantize_q4_1(const void * vx, const int ib, const int iqs, dfloat2 & v){ static __device__ __forceinline__ void dequantize_q4_1(const void * vx, const int ib, const int iqs, dfloat2 & v){
const block_q4_1 * x = (const block_q4_1 *) vx; const block_q4_1 * x = (const block_q4_1 *) vx;
const dfloat d = x[ib].dm.x; const dfloat d = __low2half(x[ib].dm);
const dfloat m = x[ib].dm.y; const dfloat m = __high2half(x[ib].dm);
const int vui = x[ib].qs[iqs]; const int vui = x[ib].qs[iqs];
@ -467,8 +568,8 @@ static __device__ __forceinline__ void dequantize_q5_0(const void * vx, const in
static __device__ __forceinline__ void dequantize_q5_1(const void * vx, const int ib, const int iqs, dfloat2 & v){ static __device__ __forceinline__ void dequantize_q5_1(const void * vx, const int ib, const int iqs, dfloat2 & v){
const block_q5_1 * x = (const block_q5_1 *) vx; const block_q5_1 * x = (const block_q5_1 *) vx;
const dfloat d = x[ib].dm.x; const dfloat d = __low2half(x[ib].dm);
const dfloat m = x[ib].dm.y; const dfloat m = __high2half(x[ib].dm);
uint32_t qh; uint32_t qh;
memcpy(&qh, x[ib].qh, sizeof(qh)); memcpy(&qh, x[ib].qh, sizeof(qh));
@ -520,8 +621,8 @@ static __global__ void dequantize_block_q2_K(const void * __restrict__ vx, float
const uint8_t q = x[i].qs[32*n + l]; const uint8_t q = x[i].qs[32*n + l];
float * y = yy + i*QK_K + 128*n; float * y = yy + i*QK_K + 128*n;
float dall = x[i].dm.x; float dall = __low2half(x[i].dm);
float dmin = x[i].dm.y; float dmin = __high2half(x[i].dm);
y[l+ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4); y[l+ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
y[l+32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is+2] >> 4); y[l+32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is+2] >> 4);
y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4); y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4);
@ -531,8 +632,8 @@ static __global__ void dequantize_block_q2_K(const void * __restrict__ vx, float
const int il = tid%16; // 0...15 const int il = tid%16; // 0...15
const uint8_t q = x[i].qs[il] >> (2*is); const uint8_t q = x[i].qs[il] >> (2*is);
float * y = yy + i*QK_K + 16*is + il; float * y = yy + i*QK_K + 16*is + il;
float dall = x[i].dm.x; float dall = __low2half(x[i].dm);
float dmin = x[i].dm.y; float dmin = __high2half(x[i].dm);
y[ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4); y[ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
y[32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+2] >> 4); y[32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+2] >> 4);
#endif #endif
@ -618,8 +719,8 @@ static __global__ void dequantize_block_q4_K(const void * __restrict__ vx, float
float * y = yy + i*QK_K + 64*il + n*ir; float * y = yy + i*QK_K + 64*il + n*ir;
const float dall = x[i].dm.x; const float dall = __low2half(x[i].dm);
const float dmin = x[i].dm.y; const float dmin = __high2half(x[i].dm);
const uint8_t * q = x[i].qs + 32*il + n*ir; const uint8_t * q = x[i].qs + 32*il + n*ir;
@ -636,8 +737,8 @@ static __global__ void dequantize_block_q4_K(const void * __restrict__ vx, float
const int tid = threadIdx.x; const int tid = threadIdx.x;
const uint8_t * q = x[i].qs; const uint8_t * q = x[i].qs;
float * y = yy + i*QK_K; float * y = yy + i*QK_K;
const float d = (float)x[i].d[0]; const float d = (float)x[i].dm[0];
const float m = (float)x[i].d[1]; const float m = (float)x[i].dm[1];
y[tid+ 0] = d * (x[i].scales[0] & 0xF) * (q[tid] & 0xF) - m * (x[i].scales[0] >> 4); y[tid+ 0] = d * (x[i].scales[0] & 0xF) * (q[tid] & 0xF) - m * (x[i].scales[0] >> 4);
y[tid+32] = d * (x[i].scales[1] & 0xF) * (q[tid] >> 4) - m * (x[i].scales[1] >> 4); y[tid+32] = d * (x[i].scales[1] & 0xF) * (q[tid] >> 4) - m * (x[i].scales[1] >> 4);
#endif #endif
@ -657,8 +758,8 @@ static __global__ void dequantize_block_q5_K(const void * __restrict__ vx, float
float * y = yy + i*QK_K + 64*il + 2*ir; float * y = yy + i*QK_K + 64*il + 2*ir;
const float dall = x[i].dm.x; const float dall = __low2half(x[i].dm);
const float dmin = x[i].dm.y; const float dmin = __high2half(x[i].dm);
const uint8_t * ql = x[i].qs + 32*il + 2*ir; const uint8_t * ql = x[i].qs + 32*il + 2*ir;
const uint8_t * qh = x[i].qh + 2*ir; const uint8_t * qh = x[i].qh + 2*ir;
@ -770,8 +871,8 @@ static __global__ void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx,
const float * y = yy + i * QK_K + y_offset; const float * y = yy + i * QK_K + y_offset;
const uint8_t * q = x[i].qs + q_offset; const uint8_t * q = x[i].qs + q_offset;
const float dall = x[i].dm.x; const float dall = __low2half(x[i].dm);
const float dmin = x[i].dm.y; const float dmin = __high2half(x[i].dm);
const uint32_t * a = (const uint32_t *)(x[i].scales + s_offset); const uint32_t * a = (const uint32_t *)(x[i].scales + s_offset);
aux[0] = a[0] & 0x0f0f0f0f; aux[0] = a[0] & 0x0f0f0f0f;
@ -991,8 +1092,8 @@ static __global__ void dequantize_mul_mat_vec_q4_k(const void * __restrict__ vx,
const float * y1 = yy + i*QK_K + y_offset; const float * y1 = yy + i*QK_K + y_offset;
const float * y2 = y1 + 128; const float * y2 = y1 + 128;
const float dall = x[i].dm.x; const float dall = __low2half(x[i].dm);
const float dmin = x[i].dm.y; const float dmin = __high2half(x[i].dm);
const uint16_t * a = (const uint16_t *)x[i].scales; const uint16_t * a = (const uint16_t *)x[i].scales;
aux[0] = a[im+0] & kmask1; aux[0] = a[im+0] & kmask1;
@ -1054,8 +1155,8 @@ static __global__ void dequantize_mul_mat_vec_q4_k(const void * __restrict__ vx,
const uint16_t * a = (const uint16_t *)x[i].scales; const uint16_t * a = (const uint16_t *)x[i].scales;
aux16[0] = a[0] & 0x0f0f; aux16[0] = a[0] & 0x0f0f;
aux16[1] = (a[0] >> 4) & 0x0f0f; aux16[1] = (a[0] >> 4) & 0x0f0f;
const float d = (float)x[i].d[0]; const float d = (float)x[i].dm[0];
const float m = (float)x[i].d[1]; const float m = (float)x[i].dm[1];
float sum = 0.f; float sum = 0.f;
for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) { for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
sum += y[j+ 0] * (d * s[0] * (q[j+ 0] & 0xF) - m * s[2]) sum += y[j+ 0] * (d * s[0] * (q[j+ 0] & 0xF) - m * s[2])
@ -1124,8 +1225,8 @@ static __global__ void dequantize_mul_mat_vec_q5_k(const void * __restrict__ vx,
const float * y1 = yy + i*QK_K + y_offset; const float * y1 = yy + i*QK_K + y_offset;
const float * y2 = y1 + 128; const float * y2 = y1 + 128;
const float dall = x[i].dm.x; const float dall = __low2half(x[i].dm);
const float dmin = x[i].dm.y; const float dmin = __high2half(x[i].dm);
const uint16_t * a = (const uint16_t *)x[i].scales; const uint16_t * a = (const uint16_t *)x[i].scales;
aux[0] = a[im+0] & kmask1; aux[0] = a[im+0] & kmask1;
@ -1348,8 +1449,8 @@ static __global__ void quantize_q8_1(const float * __restrict__ x, void * __rest
return; return;
} }
y[ib].ds.x = d; reinterpret_cast<half&>(y[ib].ds.x) = d;
y[ib].ds.y = sum; reinterpret_cast<half&>(y[ib].ds.y) = sum;
} }
template <int qk, int qr, dequantize_kernel_t dequantize_kernel> template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
@ -2346,7 +2447,7 @@ static __device__ __forceinline__ float vec_dot_q8_0_q8_1(
u[i] = get_int_from_int8_aligned(bq8_1->qs, iqs + i); u[i] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
} }
return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMVQ>(v, u, bq8_0->d, bq8_1->ds.x); return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMVQ>(v, u, bq8_0->d, __low2half(bq8_1->ds));
} }
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q8_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) { template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q8_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
@ -2432,7 +2533,7 @@ static __device__ __forceinline__ float vec_dot_q2_K_q8_1(
#pragma unroll #pragma unroll
for (int i = 0; i < QR2_K; ++ i) { for (int i = 0; i < QR2_K; ++ i) {
u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1); u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
d8[i] = bq8_1[bq8_offset + i].ds.x; d8[i] = __low2half(bq8_1[bq8_offset + i].ds);
} }
return vec_dot_q2_K_q8_1_impl_mmvq(v, u, scales, bq2_K->dm, d8); return vec_dot_q2_K_q8_1_impl_mmvq(v, u, scales, bq2_K->dm, d8);
@ -2551,7 +2652,7 @@ static __device__ __forceinline__ float vec_dot_q3_K_q8_1(
#pragma unroll #pragma unroll
for (int i = 0; i < QR3_K; ++i) { for (int i = 0; i < QR3_K; ++i) {
u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1); u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
d8[i] = bq8_1[bq8_offset + i].ds.x; d8[i] = __low2half(bq8_1[bq8_offset + i].ds);
} }
return vec_dot_q3_K_q8_1_impl_mmvq(vl, vh, u, bq3_K->scales, scale_offset, d, d8); return vec_dot_q3_K_q8_1_impl_mmvq(vl, vh, u, bq3_K->scales, scale_offset, d, d8);
@ -2720,7 +2821,7 @@ static __device__ __forceinline__ float vec_dot_q4_K_q8_1(
for (int i = 0; i < QR4_K; ++i) { for (int i = 0; i < QR4_K; ++i) {
const block_q8_1 * bq8i = bq8_1 + bq8_offset + i; const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
d8[i] = bq8i->ds.x; d8[i] = __low2half(bq8i->ds);
const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4); const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
u[2*i+0] = q8[0]; u[2*i+0] = q8[0];
@ -2744,11 +2845,11 @@ static __device__ __forceinline__ float vec_dot_q4_K_q8_1(
aux16[0] = a[0] & 0x0f0f; aux16[0] = a[0] & 0x0f0f;
aux16[1] = (a[0] >> 4) & 0x0f0f; aux16[1] = (a[0] >> 4) & 0x0f0f;
const float dall = bq4_K->d[0]; const float dall = bq4_K->dm[0];
const float dmin = bq4_K->d[1]; const float dmin = bq4_K->dm[1];
const float d8_1 = bq8_1[0].ds.x; const float d8_1 = __low2float(bq8_1[0].ds);
const float d8_2 = bq8_1[1].ds.x; const float d8_2 = __low2float(bq8_1[1].ds);
const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2)); const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4); const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
@ -2828,7 +2929,11 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
const block_q4_K * bxi = bx0 + i*blocks_per_row + kbxd; const block_q4_K * bxi = bx0 + i*blocks_per_row + kbxd;
#if QK_K == 256
x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = bxi->dm; x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = bxi->dm;
#else
x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = {bxi->dm[0], bxi->dm[1]};
#endif
} }
#pragma unroll #pragma unroll
@ -2901,7 +3006,7 @@ static __device__ __forceinline__ float vec_dot_q5_K_q8_1(
#pragma unroll #pragma unroll
for (int i = 0; i < QR5_K; ++i) { for (int i = 0; i < QR5_K; ++i) {
const block_q8_1 * bq8i = bq8_1 + bq8_offset + i; const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
d8[i] = bq8i->ds.x; d8[i] = __low2float(bq8i->ds);
const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4); const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
u[2*i+0] = q8[0]; u[2*i+0] = q8[0];
@ -2919,8 +3024,8 @@ static __device__ __forceinline__ float vec_dot_q5_K_q8_1(
const float d = bq5_K->d; const float d = bq5_K->d;
const float d8_1 = bq8_1[0].ds.x; const float d8_1 = __low2half(bq8_1[0].ds);
const float d8_2 = bq8_1[1].ds.x; const float d8_2 = __low2half(bq8_1[1].ds);
const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2)); const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4); const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
@ -3018,7 +3123,9 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
const block_q5_K * bxi = bx0 + i*blocks_per_row + kbxd; const block_q5_K * bxi = bx0 + i*blocks_per_row + kbxd;
#if QK_K == 256
x_dm[i * (WARP_SIZE/QI5_K) + i / QI5_K + kbxd] = bxi->dm; x_dm[i * (WARP_SIZE/QI5_K) + i / QI5_K + kbxd] = bxi->dm;
#endif
} }
#pragma unroll #pragma unroll
@ -3075,7 +3182,7 @@ static __device__ __forceinline__ float vec_dot_q6_K_q8_1(
#pragma unroll #pragma unroll
for (int i = 0; i < QR6_K; ++i) { for (int i = 0; i < QR6_K; ++i) {
u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + 2*i].qs, iqs % QI8_1); u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + 2*i].qs, iqs % QI8_1);
d8[i] = bq8_1[bq8_offset + 2*i].ds.x; d8[i] = __low2half(bq8_1[bq8_offset + 2*i].ds);
} }
return vec_dot_q6_K_q8_1_impl_mmvq(vl, vh, u, scales, bq6_K->d, d8); return vec_dot_q6_K_q8_1_impl_mmvq(vl, vh, u, scales, bq6_K->d, d8);
@ -3243,7 +3350,7 @@ static __device__ __forceinline__ void mul_mat_q(
*dsi_dst = *dsi_src; *dsi_dst = *dsi_src;
} else { } else {
float * dfi_dst = (float *) dsi_dst; float * dfi_dst = (float *) dsi_dst;
*dfi_dst = (*dsi_src).x; *dfi_dst = __low2half(*dsi_src);
} }
} }
@ -3907,28 +4014,27 @@ static __global__ void rope_f32(const float * x, float * dst, const int ncols, c
dst[i + 1] = x0*sin_theta + x1*cos_theta; dst[i + 1] = x0*sin_theta + x1*cos_theta;
} }
// TODO: this implementation is wrong! static __global__ void rope_neox_f32(const float * x, float * dst, const int ncols, const float p0,
//static __global__ void rope_neox_f32(const float * x, float * dst, const int ncols, const float p0, const float p_delta, const int p_delta_rows, const float theta_scale) {
// const float p_delta, const int p_delta_rows, const float theta_scale) { const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y);
// const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y);
// if (col >= ncols) {
// if (col >= ncols) { return;
// return; }
// }
// const int row = blockDim.x*blockIdx.x + threadIdx.x;
// const int row = blockDim.x*blockIdx.x + threadIdx.x; const int i = row*ncols + col/2;
// const int i = row*ncols + col/2;
// const float theta = (p0 + p_delta * (row/p_delta_rows))*powf(theta_scale, col/2);
// const float theta = (p0 + p_delta * (row/p_delta_rows))*powf(theta_scale, col/2); const float sin_theta = sinf(theta);
// const float sin_theta = sinf(theta); const float cos_theta = cosf(theta);
// const float cos_theta = cosf(theta);
// const float x0 = x[i + 0];
// const float x0 = x[i + 0]; const float x1 = x[i + ncols/2];
// const float x1 = x[i + ncols/2];
// dst[i + 0] = x0*cos_theta - x1*sin_theta;
// dst[i + 0] = x0*cos_theta - x1*sin_theta; dst[i + ncols/2] = x0*sin_theta + x1*cos_theta;
// dst[i + ncols/2] = x0*sin_theta + x1*cos_theta; }
//}
static __global__ void rope_glm_f32(const float * x, float * dst, const int ncols, const float p, const float block_p, const float theta_scale) { static __global__ void rope_glm_f32(const float * x, float * dst, const int ncols, const float p, const float block_p, const float theta_scale) {
const int col = blockDim.x*blockIdx.x + threadIdx.x; const int col = blockDim.x*blockIdx.x + threadIdx.x;
@ -4609,6 +4715,8 @@ static void ggml_mul_mat_q3_K_q8_1_cuda(
const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x, const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) { const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
#if QK_K == 256
int id; int id;
CUDA_CHECK(cudaGetDevice(&id)); CUDA_CHECK(cudaGetDevice(&id));
const int compute_capability = g_compute_capabilities[id]; const int compute_capability = g_compute_capabilities[id];
@ -4640,6 +4748,7 @@ static void ggml_mul_mat_q3_K_q8_1_cuda(
mul_mat_q3_K<need_check><<<block_nums, block_dims, 0, stream>>> mul_mat_q3_K<need_check><<<block_nums, block_dims, 0, stream>>>
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
} }
#endif
} }
static void ggml_mul_mat_q4_K_q8_1_cuda( static void ggml_mul_mat_q4_K_q8_1_cuda(
@ -4799,13 +4908,21 @@ static void scale_f32_cuda(const float * x, float * dst, const float scale, cons
static void rope_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p0, static void rope_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p0,
const float p_delta, const int p_delta_rows, const float theta_scale, cudaStream_t stream) { const float p_delta, const int p_delta_rows, const float theta_scale, cudaStream_t stream) {
GGML_ASSERT(nrows % 2 == 0); GGML_ASSERT(nrows % 2 == 0); // GG: is this assert really needed? I don't see why
const dim3 block_dims(1, 2*CUDA_ROPE_BLOCK_SIZE, 1); const dim3 block_dims(1, 2*CUDA_ROPE_BLOCK_SIZE, 1);
const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE); const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
const dim3 block_nums(nrows, num_blocks_x, 1); const dim3 block_nums(nrows, num_blocks_x, 1);
rope_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, p0, p_delta, p_delta_rows, theta_scale); rope_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, p0, p_delta, p_delta_rows, theta_scale);
} }
static void rope_neox_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p0,
const float p_delta, const int p_delta_rows, const float theta_scale, cudaStream_t stream) {
const dim3 block_dims(1, 2*CUDA_ROPE_BLOCK_SIZE, 1);
const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
const dim3 block_nums(nrows, num_blocks_x, 1);
rope_neox_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, p0, p_delta, p_delta_rows, theta_scale);
}
static void rope_glm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p, const float block_p, const float theta_scale, cudaStream_t stream) { static void rope_glm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p, const float block_p, const float theta_scale, cudaStream_t stream) {
GGML_ASSERT(nrows % 4 == 0); GGML_ASSERT(nrows % 4 == 0);
const dim3 block_dims(4*CUDA_ROPE_BLOCK_SIZE, 1, 1); const dim3 block_dims(4*CUDA_ROPE_BLOCK_SIZE, 1, 1);
@ -4937,10 +5054,18 @@ void ggml_init_cublas() {
static bool initialized = false; static bool initialized = false;
if (!initialized) { if (!initialized) {
#ifdef __HIP_PLATFORM_AMD__
// Workaround for a rocBLAS bug when using multiple graphics cards:
// https://github.com/ROCmSoftwarePlatform/rocBLAS/issues/1346
rocblas_initialize();
CUDA_CHECK(cudaDeviceSynchronize());
#endif
CUDA_CHECK(cudaGetDeviceCount(&g_device_count)); CUDA_CHECK(cudaGetDeviceCount(&g_device_count));
GGML_ASSERT(g_device_count <= GGML_CUDA_MAX_DEVICES); GGML_ASSERT(g_device_count <= GGML_CUDA_MAX_DEVICES);
int64_t total_vram = 0; int64_t total_vram = 0;
fprintf(stderr, "%s: found %d CUDA devices:\n", __func__, g_device_count); fprintf(stderr, "%s: found %d " GGML_CUDA_NAME " devices:\n", __func__, g_device_count);
for (int id = 0; id < g_device_count; ++id) { for (int id = 0; id < g_device_count; ++id) {
cudaDeviceProp prop; cudaDeviceProp prop;
CUDA_CHECK(cudaGetDeviceProperties(&prop, id)); CUDA_CHECK(cudaGetDeviceProperties(&prop, id));
@ -5548,8 +5673,9 @@ inline void ggml_cuda_op_rope(
const float block_p = max(p - (n_ctx - 2.f), 0.f); const float block_p = max(p - (n_ctx - 2.f), 0.f);
rope_glm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, id_p, block_p, theta_scale, cudaStream_main); rope_glm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, id_p, block_p, theta_scale, cudaStream_main);
} else if (is_neox) { } else if (is_neox) {
GGML_ASSERT(false && "RoPE NeoX not implemented yet"); GGML_ASSERT(ne00 == n_dims && "ne00 != n_dims is not implemented for CUDA yet");
#pragma message("TODO: implement RoPE NeoX for CUDA") const float p0 = (((mode & 1) == 0 ? n_past : 0)) * freq_scale;
rope_neox_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p0, freq_scale, ne01, theta_scale, cudaStream_main);
} else { } else {
const float p0 = (((mode & 1) == 0 ? n_past : 0)) * freq_scale; const float p0 = (((mode & 1) == 0 ? n_past : 0)) * freq_scale;
rope_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p0, freq_scale, ne01, theta_scale, cudaStream_main); rope_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p0, freq_scale, ne01, theta_scale, cudaStream_main);
@ -6211,9 +6337,11 @@ void ggml_cuda_soft_max(const ggml_tensor * src0, const ggml_tensor * src1, ggml
void ggml_cuda_rope(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { void ggml_cuda_rope(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32); GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
GGML_ASSERT(ggml_is_contiguous(src0)); // TODO: this restriction is temporary until non-cont support is implemented
const int mode = ((int32_t *) dst->op_params)[2]; const int mode = ((int32_t *) dst->op_params)[2];
const bool is_glm = mode & 4; const bool is_glm = mode & 4;
ggml_cuda_op(src0, src1, dst, ggml_cuda_op_rope, true, !is_glm); // flatten support not implemented for glm ggml_cuda_op(src0, src1, dst, ggml_cuda_op_rope, true, !is_glm); // flatten support not implemented for glm
} }

View file

@ -2,6 +2,14 @@
#include "ggml.h" #include "ggml.h"
#ifdef GGML_USE_HIPBLAS
#define GGML_CUDA_NAME "ROCm"
#define GGML_CUBLAS_NAME "hipBLAS"
#else
#define GGML_CUDA_NAME "CUDA"
#define GGML_CUBLAS_NAME "cuBLAS"
#endif
#ifdef __cplusplus #ifdef __cplusplus
extern "C" { extern "C" {
#endif #endif

153
ggml.c
View file

@ -19397,7 +19397,7 @@ size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, i
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
struct gguf_str { struct gguf_str {
uint32_t n; uint64_t n; // GGUFv2
char * data; char * data;
}; };
@ -19411,9 +19411,12 @@ static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
[GGUF_TYPE_FLOAT32] = sizeof(float), [GGUF_TYPE_FLOAT32] = sizeof(float),
[GGUF_TYPE_BOOL] = sizeof(bool), [GGUF_TYPE_BOOL] = sizeof(bool),
[GGUF_TYPE_STRING] = sizeof(struct gguf_str), [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
[GGUF_TYPE_UINT64] = sizeof(uint64_t),
[GGUF_TYPE_INT64] = sizeof(int64_t),
[GGUF_TYPE_FLOAT64] = sizeof(double),
[GGUF_TYPE_ARRAY] = 0, // undefined [GGUF_TYPE_ARRAY] = 0, // undefined
}; };
static_assert(GGUF_TYPE_COUNT == 10, "GGUF_TYPE_COUNT != 10"); static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = { static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
[GGUF_TYPE_UINT8] = "u8", [GGUF_TYPE_UINT8] = "u8",
@ -19426,8 +19429,11 @@ static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
[GGUF_TYPE_BOOL] = "bool", [GGUF_TYPE_BOOL] = "bool",
[GGUF_TYPE_STRING] = "str", [GGUF_TYPE_STRING] = "str",
[GGUF_TYPE_ARRAY] = "arr", [GGUF_TYPE_ARRAY] = "arr",
[GGUF_TYPE_UINT64] = "u64",
[GGUF_TYPE_INT64] = "i64",
[GGUF_TYPE_FLOAT64] = "f64",
}; };
static_assert(GGUF_TYPE_COUNT == 10, "GGUF_TYPE_COUNT != 10"); static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
union gguf_value { union gguf_value {
uint8_t uint8; uint8_t uint8;
@ -19437,6 +19443,9 @@ union gguf_value {
uint32_t uint32; uint32_t uint32;
int32_t int32; int32_t int32;
float float32; float float32;
uint64_t uint64;
int64_t int64;
double float64;
bool bool_; bool bool_;
struct gguf_str str; struct gguf_str str;
@ -19444,7 +19453,7 @@ union gguf_value {
struct { struct {
enum gguf_type type; enum gguf_type type;
uint32_t n; uint64_t n; // GGUFv2
void * data; void * data;
} arr; } arr;
}; };
@ -19452,8 +19461,6 @@ union gguf_value {
struct gguf_kv { struct gguf_kv {
struct gguf_str key; struct gguf_str key;
uint32_t n_bytes; // TODO: is this actually needed?
enum gguf_type type; enum gguf_type type;
union gguf_value value; union gguf_value value;
}; };
@ -19461,15 +19468,15 @@ struct gguf_kv {
struct gguf_header { struct gguf_header {
uint32_t magic; uint32_t magic;
uint32_t version; uint32_t version;
uint32_t n_tensors; uint64_t n_tensors; // GGUFv2
uint32_t n_kv; uint64_t n_kv; // GGUFv2
}; };
struct gguf_tensor_info { struct gguf_tensor_info {
struct gguf_str name; struct gguf_str name;
uint32_t n_dims; uint32_t n_dims;
uint32_t ne[GGML_MAX_DIMS]; uint64_t ne[GGML_MAX_DIMS];
enum ggml_type type; enum ggml_type type;
@ -19500,19 +19507,32 @@ static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset)
return n == size; return n == size;
} }
static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) { // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
static bool gguf_fread_str_cur(FILE * file, struct gguf_str * p, size_t * offset) {
p->n = 0; p->n = 0;
p->data = NULL; p->data = NULL;
bool ok = true; bool ok = true;
// TODO: how to avoid mallocs for strings?
ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset); p->data = calloc(p->n + 1, 1); ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset); p->data = calloc(p->n + 1, 1);
ok = ok && gguf_fread_el(file, p->data, p->n, offset); ok = ok && gguf_fread_el(file, p->data, p->n, offset);
return ok; return ok;
} }
static bool gguf_fread_str_v1(FILE * file, struct gguf_str * p, size_t * offset) {
p->n = 0;
p->data = NULL;
bool ok = true;
uint32_t n = 0;
ok = ok && gguf_fread_el(file, &n, sizeof(n), offset); p->data = calloc(n + 1, 1); p->n = n;
ok = ok && gguf_fread_el(file, p->data, p->n, offset);
return ok;
}
struct gguf_context * gguf_init_empty(void) { struct gguf_context * gguf_init_empty(void) {
struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context)); struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
@ -19568,8 +19588,21 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
ctx->data = NULL; ctx->data = NULL;
ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset); ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset); if (ctx->header.version == 1) {
// NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
uint32_t n_tensors = 0;
uint32_t n_kv = 0;
ok = ok && gguf_fread_el(file, &n_tensors, sizeof(n_tensors), &offset);
ok = ok && gguf_fread_el(file, &n_kv, sizeof(n_kv), &offset);
ctx->header.n_tensors = n_tensors;
ctx->header.n_kv = n_kv;
} else {
ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
}
if (!ok) { if (!ok) {
fprintf(stderr, "%s: failed to read header\n", __func__); fprintf(stderr, "%s: failed to read header\n", __func__);
@ -19579,6 +19612,12 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
} }
} }
// NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
bool (* gguf_fread_str)(FILE *, struct gguf_str *, size_t *) = gguf_fread_str_cur;
if (ctx->header.version == 1) {
gguf_fread_str = gguf_fread_str_v1;
}
// read the kv pairs // read the kv pairs
{ {
ctx->kv = GGML_ALIGNED_MALLOC(ctx->header.n_kv * sizeof(struct gguf_kv)); ctx->kv = GGML_ALIGNED_MALLOC(ctx->header.n_kv * sizeof(struct gguf_kv));
@ -19588,9 +19627,8 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
//fprintf(stderr, "%s: reading kv %d\n", __func__, i); //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
ok = ok && gguf_fread_str(file, &kv->key, &offset); ok = ok && gguf_fread_str(file, &kv->key, &offset);
//ok = ok && gguf_fread_el (file, &kv->n_bytes, sizeof(kv->n_bytes), &offset); ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
//fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data); //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
@ -19602,12 +19640,23 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break; case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break; case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break; case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break; case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break; case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
case GGUF_TYPE_ARRAY: case GGUF_TYPE_ARRAY:
{ {
ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset); ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
if (ctx->header.version == 1) {
// NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
uint32_t n = 0;
ok = ok && gguf_fread_el(file, &n, sizeof(n), &offset);
kv->value.arr.n = n;
} else {
ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
}
switch (kv->value.arr.type) { switch (kv->value.arr.type) {
case GGUF_TYPE_UINT8: case GGUF_TYPE_UINT8:
@ -19617,6 +19666,9 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
case GGUF_TYPE_UINT32: case GGUF_TYPE_UINT32:
case GGUF_TYPE_INT32: case GGUF_TYPE_INT32:
case GGUF_TYPE_FLOAT32: case GGUF_TYPE_FLOAT32:
case GGUF_TYPE_UINT64:
case GGUF_TYPE_INT64:
case GGUF_TYPE_FLOAT64:
case GGUF_TYPE_BOOL: case GGUF_TYPE_BOOL:
{ {
kv->value.arr.data = malloc(kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]); kv->value.arr.data = malloc(kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
@ -19663,7 +19715,14 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
ok = ok && gguf_fread_str(file, &info->name, &offset); ok = ok && gguf_fread_str(file, &info->name, &offset);
ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset); ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
for (uint32_t j = 0; j < info->n_dims; ++j) { for (uint32_t j = 0; j < info->n_dims; ++j) {
ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset); if (ctx->header.version == 1) {
// NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
uint32_t t = 0;
ok = ok && gguf_fread_el(file, &t, sizeof(t), &offset);
info->ne[j] = t;
} else {
ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
}
} }
ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset); ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset); ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
@ -19957,6 +20016,18 @@ float gguf_get_val_f32(struct gguf_context * ctx, int i) {
return ctx->kv[i].value.float32; return ctx->kv[i].value.float32;
} }
uint64_t gguf_get_val_u64(struct gguf_context * ctx, int i) {
return ctx->kv[i].value.uint64;
}
int64_t gguf_get_val_i64(struct gguf_context * ctx, int i) {
return ctx->kv[i].value.int64;
}
double gguf_get_val_f64(struct gguf_context * ctx, int i) {
return ctx->kv[i].value.float64;
}
bool gguf_get_val_bool(struct gguf_context * ctx, int i) { bool gguf_get_val_bool(struct gguf_context * ctx, int i) {
return ctx->kv[i].value.bool_; return ctx->kv[i].value.bool_;
} }
@ -20003,7 +20074,7 @@ static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
const int n_kv = gguf_get_n_kv(ctx); const int n_kv = gguf_get_n_kv(ctx);
ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv)); ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
ctx->kv[n_kv].key.n = strlen(key) + 1; ctx->kv[n_kv].key.n = strlen(key);
ctx->kv[n_kv].key.data = strdup(key); ctx->kv[n_kv].key.data = strdup(key);
ctx->header.n_kv++; ctx->header.n_kv++;
@ -20059,6 +20130,27 @@ void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
ctx->kv[idx].value.float32 = val; ctx->kv[idx].value.float32 = val;
} }
void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
const int idx = gguf_get_or_add_key(ctx, key);
ctx->kv[idx].type = GGUF_TYPE_UINT64;
ctx->kv[idx].value.uint64 = val;
}
void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
const int idx = gguf_get_or_add_key(ctx, key);
ctx->kv[idx].type = GGUF_TYPE_INT64;
ctx->kv[idx].value.int64 = val;
}
void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
const int idx = gguf_get_or_add_key(ctx, key);
ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
ctx->kv[idx].value.float64 = val;
}
void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) { void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
const int idx = gguf_get_or_add_key(ctx, key); const int idx = gguf_get_or_add_key(ctx, key);
@ -20070,7 +20162,7 @@ void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char *
const int idx = gguf_get_or_add_key(ctx, key); const int idx = gguf_get_or_add_key(ctx, key);
ctx->kv[idx].type = GGUF_TYPE_STRING; ctx->kv[idx].type = GGUF_TYPE_STRING;
ctx->kv[idx].value.str.n = strlen(val) + 1; ctx->kv[idx].value.str.n = strlen(val);
ctx->kv[idx].value.str.data = strdup(val); ctx->kv[idx].value.str.data = strdup(val);
} }
@ -20093,7 +20185,7 @@ void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char **
ctx->kv[idx].value.arr.data = malloc(n*sizeof(struct gguf_str)); ctx->kv[idx].value.arr.data = malloc(n*sizeof(struct gguf_str));
for (int i = 0; i < n; i++) { for (int i = 0; i < n; i++) {
struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i]; struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
str->n = strlen(data[i]) + 1; str->n = strlen(data[i]);
str->data = strdup(data[i]); str->data = strdup(data[i]);
} }
} }
@ -20109,6 +20201,9 @@ void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break; case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break; case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break; case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break; case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break; case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
case GGUF_TYPE_ARRAY: case GGUF_TYPE_ARRAY:
@ -20137,7 +20232,7 @@ void gguf_add_tensor(
const int idx = ctx->header.n_tensors; const int idx = ctx->header.n_tensors;
ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info)); ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
ctx->infos[idx].name.n = strlen(tensor->name) + 1; ctx->infos[idx].name.n = strlen(tensor->name);
ctx->infos[idx].name.data = strdup(tensor->name); ctx->infos[idx].name.data = strdup(tensor->name);
for (int i = 0; i < GGML_MAX_DIMS; ++i) { for (int i = 0; i < GGML_MAX_DIMS; ++i) {
@ -20270,6 +20365,9 @@ static void gguf_write_to_buf(struct gguf_context * ctx, struct gguf_buf * buf,
case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break; case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break; case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break; case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break; case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break; case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
case GGUF_TYPE_ARRAY: case GGUF_TYPE_ARRAY:
@ -20285,6 +20383,9 @@ static void gguf_write_to_buf(struct gguf_context * ctx, struct gguf_buf * buf,
case GGUF_TYPE_UINT32: case GGUF_TYPE_UINT32:
case GGUF_TYPE_INT32: case GGUF_TYPE_INT32:
case GGUF_TYPE_FLOAT32: case GGUF_TYPE_FLOAT32:
case GGUF_TYPE_UINT64:
case GGUF_TYPE_INT64:
case GGUF_TYPE_FLOAT64:
case GGUF_TYPE_BOOL: case GGUF_TYPE_BOOL:
{ {
gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]); gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
@ -20519,6 +20620,14 @@ int ggml_cpu_has_sse3(void) {
#endif #endif
} }
int ggml_cpu_has_ssse3(void) {
#if defined(__SSSE3__)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_vsx(void) { int ggml_cpu_has_vsx(void) {
#if defined(__POWER9_VECTOR__) #if defined(__POWER9_VECTOR__)
return 1; return 1;

12
ggml.h
View file

@ -216,7 +216,7 @@
#define GGML_EXIT_ABORTED 1 #define GGML_EXIT_ABORTED 1
#define GGUF_MAGIC 0x46554747 // "GGUF" #define GGUF_MAGIC 0x46554747 // "GGUF"
#define GGUF_VERSION 1 #define GGUF_VERSION 2
#define GGUF_DEFAULT_ALIGNMENT 32 #define GGUF_DEFAULT_ALIGNMENT 32
@ -1832,6 +1832,9 @@ extern "C" {
GGUF_TYPE_BOOL = 7, GGUF_TYPE_BOOL = 7,
GGUF_TYPE_STRING = 8, GGUF_TYPE_STRING = 8,
GGUF_TYPE_ARRAY = 9, GGUF_TYPE_ARRAY = 9,
GGUF_TYPE_UINT64 = 10,
GGUF_TYPE_INT64 = 11,
GGUF_TYPE_FLOAT64 = 12,
GGUF_TYPE_COUNT, // marks the end of the enum GGUF_TYPE_COUNT, // marks the end of the enum
}; };
@ -1872,6 +1875,9 @@ extern "C" {
GGML_API uint32_t gguf_get_val_u32 (struct gguf_context * ctx, int i); GGML_API uint32_t gguf_get_val_u32 (struct gguf_context * ctx, int i);
GGML_API int32_t gguf_get_val_i32 (struct gguf_context * ctx, int i); GGML_API int32_t gguf_get_val_i32 (struct gguf_context * ctx, int i);
GGML_API float gguf_get_val_f32 (struct gguf_context * ctx, int i); GGML_API float gguf_get_val_f32 (struct gguf_context * ctx, int i);
GGML_API uint64_t gguf_get_val_u64 (struct gguf_context * ctx, int i);
GGML_API int64_t gguf_get_val_i64 (struct gguf_context * ctx, int i);
GGML_API double gguf_get_val_f64 (struct gguf_context * ctx, int i);
GGML_API bool gguf_get_val_bool(struct gguf_context * ctx, int i); GGML_API bool gguf_get_val_bool(struct gguf_context * ctx, int i);
GGML_API const char * gguf_get_val_str (struct gguf_context * ctx, int i); GGML_API const char * gguf_get_val_str (struct gguf_context * ctx, int i);
GGML_API int gguf_get_arr_n (struct gguf_context * ctx, int i); GGML_API int gguf_get_arr_n (struct gguf_context * ctx, int i);
@ -1891,6 +1897,9 @@ extern "C" {
GGML_API void gguf_set_val_u32 (struct gguf_context * ctx, const char * key, uint32_t val); GGML_API void gguf_set_val_u32 (struct gguf_context * ctx, const char * key, uint32_t val);
GGML_API void gguf_set_val_i32 (struct gguf_context * ctx, const char * key, int32_t val); GGML_API void gguf_set_val_i32 (struct gguf_context * ctx, const char * key, int32_t val);
GGML_API void gguf_set_val_f32 (struct gguf_context * ctx, const char * key, float val); GGML_API void gguf_set_val_f32 (struct gguf_context * ctx, const char * key, float val);
GGML_API void gguf_set_val_u64 (struct gguf_context * ctx, const char * key, uint64_t val);
GGML_API void gguf_set_val_i64 (struct gguf_context * ctx, const char * key, int64_t val);
GGML_API void gguf_set_val_f64 (struct gguf_context * ctx, const char * key, double val);
GGML_API void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val); GGML_API void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val);
GGML_API void gguf_set_val_str (struct gguf_context * ctx, const char * key, const char * val); GGML_API void gguf_set_val_str (struct gguf_context * ctx, const char * key, const char * val);
GGML_API void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n); GGML_API void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n);
@ -1949,6 +1958,7 @@ extern "C" {
GGML_API int ggml_cpu_has_clblast (void); GGML_API int ggml_cpu_has_clblast (void);
GGML_API int ggml_cpu_has_gpublas (void); GGML_API int ggml_cpu_has_gpublas (void);
GGML_API int ggml_cpu_has_sse3 (void); GGML_API int ggml_cpu_has_sse3 (void);
GGML_API int ggml_cpu_has_ssse3 (void);
GGML_API int ggml_cpu_has_vsx (void); GGML_API int ggml_cpu_has_vsx (void);
// //

21
gguf-py/LICENSE Normal file
View file

@ -0,0 +1,21 @@
MIT License
Copyright (c) 2023 Georgi Gerganov
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

55
gguf-py/README.md Normal file
View file

@ -0,0 +1,55 @@
## gguf
This is a Python package for writing binary files in the [GGUF](https://github.com/ggerganov/ggml/pull/302)
(GGML Universal File) format.
See [convert-llama-hf-to-gguf.py](https://github.com/ggerganov/llama.cpp/blob/master/convert-llama-hf-to-gguf.py)
as an example for its usage.
## Installation
```sh
pip install gguf
```
## Development
Maintainers who participate in development of this package are advised to install it in editable mode:
```sh
cd /path/to/llama.cpp/gguf-py
pip install --editable .
```
**Note**: This may require to upgrade your Pip installation, with a message saying that editable installation currently requires `setup.py`.
In this case, upgrade Pip to the latest:
```sh
pip install --upgrade pip
```
## Publishing
To publish the package, you need to have `twine` and `build` installed:
```sh
pip install build twine
```
Then, folow these steps to release a new version:
1. Update the version in `pyproject.toml`.
2. Build the package:
```sh
python -m build
```
3. Upload the generated distribution archives:
```sh
python -m twine upload dist/*
```
## TODO
- [ ] Add tests
- [ ] Include conversion scripts as command line entry points in this package.
- Add CI workflow for releasing the package.

1
gguf-py/gguf/__init__.py Normal file
View file

@ -0,0 +1 @@
from .gguf import *

42
gguf.py → gguf-py/gguf/gguf.py Executable file → Normal file
View file

@ -13,7 +13,7 @@ from typing import Any, IO, List, Optional
# #
GGUF_MAGIC = 0x46554747 GGUF_MAGIC = 0x46554747
GGUF_VERSION = 1 GGUF_VERSION = 2
GGUF_DEFAULT_ALIGNMENT = 32 GGUF_DEFAULT_ALIGNMENT = 32
# general # general
@ -47,6 +47,7 @@ KEY_ATTENTION_LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon"
# RoPE # RoPE
KEY_ROPE_DIMENSION_COUNT = "{arch}.rope.dimension_count" KEY_ROPE_DIMENSION_COUNT = "{arch}.rope.dimension_count"
KEY_ROPE_FREQ_BASE = "{arch}.rope.freq_base"
KEY_ROPE_SCALE_LINEAR = "{arch}.rope.scale_linear" KEY_ROPE_SCALE_LINEAR = "{arch}.rope.scale_linear"
# tokenization # tokenization
@ -364,6 +365,9 @@ class GGUFValueType(IntEnum):
BOOL = 7 BOOL = 7
STRING = 8 STRING = 8
ARRAY = 9 ARRAY = 9
UINT64 = 10
INT64 = 11
FLOAT64 = 12
@staticmethod @staticmethod
def get_type(val): def get_type(val):
@ -377,6 +381,7 @@ class GGUFValueType(IntEnum):
return GGUFValueType.BOOL return GGUFValueType.BOOL
elif isinstance(val, int): elif isinstance(val, int):
return GGUFValueType.INT32 return GGUFValueType.INT32
# TODO: need help with 64-bit types in Python
else: else:
print("Unknown type: "+str(type(val))) print("Unknown type: "+str(type(val)))
sys.exit() sys.exit()
@ -399,8 +404,8 @@ class GGUFWriter:
def write_header_to_file(self): def write_header_to_file(self):
self.fout.write(struct.pack("<I", GGUF_MAGIC)) self.fout.write(struct.pack("<I", GGUF_MAGIC))
self.fout.write(struct.pack("<I", GGUF_VERSION)) self.fout.write(struct.pack("<I", GGUF_VERSION))
self.fout.write(struct.pack("<I", self.ti_data_count)) self.fout.write(struct.pack("<Q", self.ti_data_count))
self.fout.write(struct.pack("<I", self.kv_data_count)) self.fout.write(struct.pack("<Q", self.kv_data_count))
self.flush() self.flush()
# print("tensors " + str(self.ti_data_count) + " kv " + str(self.kv_data_count)) # print("tensors " + str(self.ti_data_count) + " kv " + str(self.kv_data_count))
@ -443,6 +448,18 @@ class GGUFWriter:
self.add_key(key) self.add_key(key)
self.add_val(val, GGUFValueType.FLOAT32) self.add_val(val, GGUFValueType.FLOAT32)
def add_uint64(self, key: str, val: int):
self.add_key(key)
self.add_val(val, GGUFValueType.UINT64)
def add_int64(self, key: str, val: int):
self.add_key(key)
self.add_val(val, GGUFValueType.INT64)
def add_float64(self, key: str, val: float):
self.add_key(key)
self.add_val(val, GGUFValueType.FLOAT64)
def add_bool(self, key: str, val: bool): def add_bool(self, key: str, val: bool):
self.add_key(key) self.add_key(key)
self.add_val(val, GGUFValueType.BOOL) self.add_val(val, GGUFValueType.BOOL)
@ -482,17 +499,23 @@ class GGUFWriter:
self.kv_data += struct.pack("<i", val) self.kv_data += struct.pack("<i", val)
elif vtype == GGUFValueType.FLOAT32: elif vtype == GGUFValueType.FLOAT32:
self.kv_data += struct.pack("<f", val) self.kv_data += struct.pack("<f", val)
elif vtype == GGUFValueType.UINT64:
self.kv_data += struct.pack("<Q", val)
elif vtype == GGUFValueType.INT64:
self.kv_data += struct.pack("<q", val)
elif vtype == GGUFValueType.FLOAT64:
self.kv_data += struct.pack("<d", val)
elif vtype == GGUFValueType.BOOL: elif vtype == GGUFValueType.BOOL:
self.kv_data += struct.pack("?", val) self.kv_data += struct.pack("?", val)
elif vtype == GGUFValueType.STRING: elif vtype == GGUFValueType.STRING:
encoded_val = val.encode("utf8") if isinstance(val, str) else val encoded_val = val.encode("utf8") if isinstance(val, str) else val
self.kv_data += struct.pack("<I", len(encoded_val)) self.kv_data += struct.pack("<Q", len(encoded_val))
self.kv_data += encoded_val self.kv_data += encoded_val
elif vtype == GGUFValueType.ARRAY: elif vtype == GGUFValueType.ARRAY:
ltype = set([GGUFValueType.get_type(item) for item in val]) ltype = set([GGUFValueType.get_type(item) for item in val])
assert len(ltype) == 1, "All items in a GGUF array should be of the same type" assert len(ltype) == 1, "All items in a GGUF array should be of the same type"
self.kv_data += struct.pack("<I", list(ltype)[0]) self.kv_data += struct.pack("<I", list(ltype)[0])
self.kv_data += struct.pack("<I", len(val)) self.kv_data += struct.pack("<Q", len(val))
for item in val: for item in val:
self.add_val(item, add_vtype=False) self.add_val(item, add_vtype=False)
else: else:
@ -506,12 +529,12 @@ class GGUFWriter:
assert raw_dtype is not None or tensor_dtype in (np.float32, np.float16), "Only F32 and F16 tensors are supported for now" assert raw_dtype is not None or tensor_dtype in (np.float32, np.float16), "Only F32 and F16 tensors are supported for now"
encoded_name = name.encode("utf8") encoded_name = name.encode("utf8")
self.ti_data += struct.pack("<I", len(encoded_name)) self.ti_data += struct.pack("<Q", len(encoded_name))
self.ti_data += encoded_name self.ti_data += encoded_name
n_dims = len(tensor_shape) n_dims = len(tensor_shape)
self.ti_data += struct.pack("<I", n_dims) self.ti_data += struct.pack("<I", n_dims)
for i in range(n_dims): for i in range(n_dims):
self.ti_data += struct.pack("<I", tensor_shape[n_dims - 1 - i]) self.ti_data += struct.pack("<Q", tensor_shape[n_dims - 1 - i])
if raw_dtype is None: if raw_dtype is None:
dtype = GGMLQuantizationType.F32 if tensor_dtype == np.float32 else GGMLQuantizationType.F16 dtype = GGMLQuantizationType.F32 if tensor_dtype == np.float32 else GGMLQuantizationType.F16
else: else:
@ -663,7 +686,10 @@ class GGUFWriter:
self.add_uint32( self.add_uint32(
KEY_ROPE_DIMENSION_COUNT.format(arch=self.arch), count) KEY_ROPE_DIMENSION_COUNT.format(arch=self.arch), count)
def add_rope_scale_linear(self, value: float): def add_rope_freq_base(self, value: float):
self.add_float32(KEY_ROPE_FREQ_BASE.format(arch=self.arch), value)
def add_rope_scale_linear(self, value: float):
self.add_float32(KEY_ROPE_SCALE_LINEAR.format(arch=self.arch), value) self.add_float32(KEY_ROPE_SCALE_LINEAR.format(arch=self.arch), value)
def add_tokenizer_model(self, model: str): def add_tokenizer_model(self, model: str):

28
gguf-py/pyproject.toml Normal file
View file

@ -0,0 +1,28 @@
[tool.poetry]
name = "gguf"
version = "0.2.1"
description = "Write ML models in GGUF for GGML"
authors = ["GGML <ggml@ggml.ai>"]
packages = [
{include = "gguf"},
]
readme = "README.md"
homepage = "https://ggml.ai"
repository = "https://github.com/ggerganov/llama.cpp"
keywords = ["ggml", "gguf", "llama.cpp"]
classifiers = [
"Programming Language :: Python :: 3",
"License :: OSI Approved :: MIT License",
"Operating System :: OS Independent",
]
[tool.poetry.dependencies]
python = ">=3.8"
numpy = ">=1.17"
[tool.poetry.dev-dependencies]
pytest = "^5.2"
[build-system]
requires = ["poetry-core>=1.0.0"]
build-backend = "poetry.core.masonry.api"

View file

@ -0,0 +1,7 @@
import gguf
# TODO: add tests
def test_write_gguf():
pass

522
llama.cpp
View file

@ -1,9 +1,6 @@
// Defines fileno on msys: // Defines fileno on msys:
#ifndef _GNU_SOURCE #ifndef _GNU_SOURCE
#define _GNU_SOURCE #define _GNU_SOURCE
#include <cstddef>
#include <cstdint>
#include <cstdio>
#endif #endif
#include "llama.h" #include "llama.h"
@ -62,6 +59,9 @@
#include <cinttypes> #include <cinttypes>
#include <climits> #include <climits>
#include <cstdarg> #include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstring> #include <cstring>
#include <ctime> #include <ctime>
#include <fstream> #include <fstream>
@ -114,12 +114,17 @@ static size_t utf8_len(char src) {
} }
void replace_all(std::string & s, const std::string & search, const std::string & replace) { void replace_all(std::string & s, const std::string & search, const std::string & replace) {
for (size_t pos = 0; ; pos += replace.length()) { std::string result;
pos = s.find(search, pos); for (size_t pos = 0; ; pos += search.length()) {
if (pos == std::string::npos) break; auto new_pos = s.find(search, pos);
s.erase(pos, search.length()); if (new_pos == std::string::npos) {
s.insert(pos, replace); result += s.substr(pos, s.size() - pos);
break;
}
result += s.substr(pos, new_pos - pos) + replace;
pos = new_pos;
} }
s = std::move(result);
} }
static void zeros(std::ofstream & file, size_t n) { static void zeros(std::ofstream & file, size_t n) {
@ -195,6 +200,7 @@ enum llm_kv {
LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,
LLM_KV_ROPE_DIMENSION_COUNT, LLM_KV_ROPE_DIMENSION_COUNT,
LLM_KV_ROPE_FREQ_BASE,
LLM_KV_ROPE_SCALE_LINEAR, LLM_KV_ROPE_SCALE_LINEAR,
LLM_KV_TOKENIZER_MODEL, LLM_KV_TOKENIZER_MODEL,
@ -238,6 +244,7 @@ static std::map<llm_kv, std::string> LLM_KV_NAMES = {
{ LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" }, { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
{ LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" }, { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
{ LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
{ LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" }, { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" },
{ LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" }, { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" },
@ -794,12 +801,12 @@ static void llama_nop(struct ggml_tensor * tensor) { // don't offload by default
(void) tensor; (void) tensor;
} }
static std::string llama_token_to_text(const struct llama_context * ctx, llama_token token) { static std::string llama_token_to_str(const struct llama_context * ctx, llama_token token) {
std::vector<char> result(8, 0); std::vector<char> result(8, 0);
const int n_tokens = llama_token_to_str(ctx, token, result.data(), result.size()); const int n_tokens = llama_token_to_piece(ctx, token, result.data(), result.size());
if (n_tokens < 0) { if (n_tokens < 0) {
result.resize(-n_tokens); result.resize(-n_tokens);
int check = llama_token_to_str(ctx, token, result.data(), result.size()); int check = llama_token_to_piece(ctx, token, result.data(), result.size());
GGML_ASSERT(check == -n_tokens); GGML_ASSERT(check == -n_tokens);
} else { } else {
result.resize(n_tokens); result.resize(n_tokens);
@ -827,6 +834,7 @@ enum e_model {
MODEL_7B, MODEL_7B,
MODEL_13B, MODEL_13B,
MODEL_30B, MODEL_30B,
MODEL_34B,
MODEL_40B, MODEL_40B,
MODEL_65B, MODEL_65B,
MODEL_70B, MODEL_70B,
@ -952,10 +960,10 @@ struct llama_vocab {
id linefeed_id = 13; id linefeed_id = 13;
int find_bpe_rank(std::string token_left, std::string token_right) const { int find_bpe_rank(std::string token_left, std::string token_right) const {
replace_all(token_left, " ", "Ġ"); replace_all(token_left, " ", "\u0120");
replace_all(token_left, "\n", "Ċ"); replace_all(token_left, "\n", "\u010A");
replace_all(token_right, " ", "Ġ"); replace_all(token_right, " ", "\u0120");
replace_all(token_right, "\n", "Ċ"); replace_all(token_right, "\n", "\u010A");
auto it = bpe_ranks.find(std::make_pair(token_left, token_right)); auto it = bpe_ranks.find(std::make_pair(token_left, token_right));
if (it == bpe_ranks.end()) { if (it == bpe_ranks.end()) {
@ -1141,11 +1149,13 @@ static bool llama_kv_cache_init(
enum llama_fver { enum llama_fver {
GGUF_FILE_VERSION_V1 = 1, GGUF_FILE_VERSION_V1 = 1,
GGUF_FILE_VERSION_V2 = 2,
}; };
static const char * llama_file_version_name(llama_fver version) { static const char * llama_file_version_name(llama_fver version) {
switch (version) { switch (version) {
case GGUF_FILE_VERSION_V1: return "GGUF V1 (latest)"; case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)";
case GGUF_FILE_VERSION_V2: return "GGUF V2 (latest)";
} }
return "unknown"; return "unknown";
@ -1518,6 +1528,7 @@ static const char * llama_model_type_name(e_model type) {
case MODEL_7B: return "7B"; case MODEL_7B: return "7B";
case MODEL_13B: return "13B"; case MODEL_13B: return "13B";
case MODEL_30B: return "30B"; case MODEL_30B: return "30B";
case MODEL_34B: return "34B";
case MODEL_40B: return "40B"; case MODEL_40B: return "40B";
case MODEL_65B: return "65B"; case MODEL_65B: return "65B";
case MODEL_70B: return "70B"; case MODEL_70B: return "70B";
@ -1559,12 +1570,26 @@ static void llm_load_hparams(
hparams.n_head_kv = hparams.n_head; hparams.n_head_kv = hparams.n_head;
GGUF_GET_KEY(ctx, hparams.n_head_kv, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ATTENTION_HEAD_COUNT_KV)); GGUF_GET_KEY(ctx, hparams.n_head_kv, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ATTENTION_HEAD_COUNT_KV));
// TODO: manually setting rope scale should override this // TODO: manually setting rope freq base and scale should override this
// FIXME: partial fix when the param specified is not the default value, but
// will not work for overriding the model value to the params default
llama_context_params defaults = llama_context_default_params();
// rope_freq_base
{
float ropebase = 10000.0f;
GGUF_GET_KEY(ctx, ropebase, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_FREQ_BASE));
if (ropebase != 10000.0f && rope_freq_base == defaults.rope_freq_base) {
rope_freq_base = ropebase;
}
}
// rope_freq_scale (inverse of the kv) is optional // rope_freq_scale (inverse of the kv) is optional
{ {
float ropescale = 1.0f; float ropescale = 1.0f;
GGUF_GET_KEY(ctx, ropescale, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_SCALE_LINEAR)); GGUF_GET_KEY(ctx, ropescale, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_SCALE_LINEAR));
if (ropescale != 1.0f) { if (ropescale != 1.0f && rope_freq_scale == defaults.rope_freq_scale) {
rope_freq_scale = 1.0f/ropescale; rope_freq_scale = 1.0f/ropescale;
} }
} }
@ -1590,6 +1615,7 @@ static void llm_load_hparams(
case 26: model.type = e_model::MODEL_3B; break; case 26: model.type = e_model::MODEL_3B; break;
case 32: model.type = e_model::MODEL_7B; break; case 32: model.type = e_model::MODEL_7B; break;
case 40: model.type = e_model::MODEL_13B; break; case 40: model.type = e_model::MODEL_13B; break;
case 48: model.type = e_model::MODEL_34B; break;
case 60: model.type = e_model::MODEL_30B; break; case 60: model.type = e_model::MODEL_30B; break;
case 80: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_65B : e_model::MODEL_70B; break; case 80: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_65B : e_model::MODEL_70B; break;
default: model.type = e_model::MODEL_UNKNOWN; default: model.type = e_model::MODEL_UNKNOWN;
@ -1616,7 +1642,8 @@ static void llm_load_hparams(
} }
// TODO: This should probably be in llama.h // TODO: This should probably be in llama.h
static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, const std::string & raw_text, bool bos, bool escape); static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool bos);
static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch);
static void llm_load_vocab( static void llm_load_vocab(
llama_model_loader & ml, llama_model_loader & ml,
@ -1718,7 +1745,11 @@ static void llm_load_vocab(
} }
// determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n' // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
vocab.linefeed_id = llama_tokenize_internal(vocab, "\n", false, false)[0]; if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
vocab.linefeed_id = llama_byte_to_token(vocab, '\n');
} else {
vocab.linefeed_id = llama_tokenize_internal(vocab, "\n", false)[0];
}
// special tokens // special tokens
GGUF_GET_KEY(ctx, vocab.special_bos_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_BOS_ID)); GGUF_GET_KEY(ctx, vocab.special_bos_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_BOS_ID));
@ -1817,7 +1848,7 @@ static void llm_load_tensors(
(void) main_gpu; (void) main_gpu;
(void) mul_mat_q; (void) mul_mat_q;
#if defined(GGML_USE_CUBLAS) #if defined(GGML_USE_CUBLAS)
LLAMA_LOG_INFO("%s: using CUDA for GPU acceleration\n", __func__); LLAMA_LOG_INFO("%s: using " GGML_CUDA_NAME " for GPU acceleration\n", __func__);
ggml_cuda_set_main_device(main_gpu); ggml_cuda_set_main_device(main_gpu);
ggml_cuda_set_mul_mat_q(mul_mat_q); ggml_cuda_set_mul_mat_q(mul_mat_q);
#define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU
@ -1939,6 +1970,14 @@ static void llm_load_tensors(
model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm); model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm); model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm);
model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output); model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
if (backend_norm == GGML_BACKEND_GPU) {
vram_weights += ggml_nbytes(model.output_norm);
vram_weights += ggml_nbytes(model.output_norm_b);
}
if (backend_output == GGML_BACKEND_GPU_SPLIT) {
vram_weights += ggml_nbytes(model.output);
}
} }
const uint32_t n_ff = hparams.n_ff; const uint32_t n_ff = hparams.n_ff;
@ -1948,7 +1987,7 @@ static void llm_load_tensors(
model.layers.resize(n_layer); model.layers.resize(n_layer);
for (uint32_t i = 0; i < n_layer; ++i) { for (uint32_t i = 0; i < n_layer; ++i) {
const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
auto & layer = model.layers[i]; auto & layer = model.layers[i];
@ -1959,6 +1998,11 @@ static void llm_load_tensors(
if (gguf_find_tensor(ml.ctx_gguf, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i).c_str()) >= 0) { if (gguf_find_tensor(ml.ctx_gguf, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i).c_str()) >= 0) {
layer.attn_norm_2 = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, backend); layer.attn_norm_2 = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, backend);
layer.attn_norm_2_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, backend); layer.attn_norm_2_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, backend);
if (backend == GGML_BACKEND_GPU) {
vram_weights += ggml_nbytes(layer.attn_norm_2);
vram_weights += ggml_nbytes(layer.attn_norm_2_b);
}
} }
layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split); layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split);
@ -1966,6 +2010,13 @@ static void llm_load_tensors(
layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split); layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split);
layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split); layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
if (backend == GGML_BACKEND_GPU) {
vram_weights +=
ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.attn_norm_b) +
ggml_nbytes(layer.wqkv) + ggml_nbytes(layer.wo) +
ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3);
}
} }
} break; } break;
default: default:
@ -2596,18 +2647,20 @@ static struct ggml_cgraph * llm_build_falcon(
const size_t wsize = ggml_type_size(cur->type); const size_t wsize = ggml_type_size(cur->type);
struct ggml_tensor * tmpq = ggml_view_3d( // TODO: these 2 ggml_conts are technically not needed, but we add them until CUDA support for
// non-contiguous views is added for the rope operator
struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_3d(
ctx0, cur, n_embd_head, n_head, N, ctx0, cur, n_embd_head, n_head, N,
wsize * n_embd_head, wsize * n_embd_head,
wsize * n_embd_head * (n_head + 2 * n_head_kv), wsize * n_embd_head * (n_head + 2 * n_head_kv),
0); 0));
offload_func_kq(tmpq); offload_func_kq(tmpq);
struct ggml_tensor * tmpk = ggml_view_3d( struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_3d(
ctx0, cur, n_embd_head, n_head_kv, N, ctx0, cur, n_embd_head, n_head_kv, N,
wsize * n_embd_head, wsize * n_embd_head,
wsize * n_embd_head * (n_head + 2 * n_head_kv), wsize * n_embd_head * (n_head + 2 * n_head_kv),
wsize * n_embd_head * n_head); wsize * n_embd_head * n_head));
offload_func_kq(tmpk); offload_func_kq(tmpk);
struct ggml_tensor * tmpv = ggml_view_3d( struct ggml_tensor * tmpv = ggml_view_3d(
@ -2704,11 +2757,6 @@ static struct ggml_cgraph * llm_build_falcon(
struct ggml_tensor * inpFF = attn_norm; struct ggml_tensor * inpFF = attn_norm;
cur = ggml_mul_mat(ctx0, model.layers[il].w3, inpFF); cur = ggml_mul_mat(ctx0, model.layers[il].w3, inpFF);
// TODO: this is temporary needed to introduce artificial dependency between FF and ATTN
// adding this, because there seems to be a bug in the Metal concurrency optimization
// without this line, the results are non-deterministic and wrong
cur->src[2] = attn_out;
offload_func(cur); offload_func(cur);
cur = ggml_gelu(ctx0, cur); cur = ggml_gelu(ctx0, cur);
@ -2797,7 +2845,6 @@ static bool llama_eval_internal(
GGML_ASSERT(n_tokens > 0); GGML_ASSERT(n_tokens > 0);
GGML_ASSERT(n_past >= 0); GGML_ASSERT(n_past >= 0);
GGML_ASSERT(n_threads > 0);
// TODO: keep the values of n_batch and n_ctx // TODO: keep the values of n_batch and n_ctx
// GGML_ASSERT(n_tokens <= n_batch); // GGML_ASSERT(n_tokens <= n_batch);
// GGML_ASSERT(n_past + n_tokens <= n_ctx); // GGML_ASSERT(n_past + n_tokens <= n_ctx);
@ -2808,6 +2855,8 @@ static bool llama_eval_internal(
ggml_mpi_eval_init(lctx.ctx_mpi, &n_tokens, &n_past, &n_threads); ggml_mpi_eval_init(lctx.ctx_mpi, &n_tokens, &n_past, &n_threads);
#endif #endif
GGML_ASSERT(n_threads > 0);
const int N = n_tokens; const int N = n_tokens;
const auto & model = lctx.model; const auto & model = lctx.model;
@ -2992,16 +3041,8 @@ static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) {
return vocab.token_to_id.at(buf); return vocab.token_to_id.at(buf);
} }
static std::string llama_escape_whitespace(const std::string& text) { static void llama_escape_whitespace(std::string & text) {
std::string result = "\xe2\x96\x81"; replace_all(text, " ", "\xe2\x96\x81");
for (size_t offs = 0; offs < text.length(); ++offs) {
if (text[offs] == ' ') {
result += "\xe2\x96\x81";
} else {
result += text[offs];
}
}
return result;
} }
static void llama_unescape_whitespace(std::string & word) { static void llama_unescape_whitespace(std::string & word) {
@ -3185,7 +3226,7 @@ struct llm_bigram_bpe {
}; };
struct llm_tokenizer_bpe { struct llm_tokenizer_bpe {
llm_tokenizer_bpe(const llama_vocab & vocab, bool g2ws): vocab(vocab) { flag_g2ws = g2ws; } llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {}
void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) { void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
int final_prev_index = -1; int final_prev_index = -1;
@ -3337,8 +3378,6 @@ private:
return words; return words;
} }
bool flag_g2ws = false;
const llama_vocab & vocab; const llama_vocab & vocab;
std::vector<llm_symbol> symbols; std::vector<llm_symbol> symbols;
@ -3347,9 +3386,18 @@ private:
llm_bigram_bpe::queue work_queue; llm_bigram_bpe::queue work_queue;
}; };
static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, const std::string & raw_text, bool bos, bool escape) { static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool bos) {
std::vector<llama_vocab::id> output; std::vector<llama_vocab::id> output;
// OG tokenizer behavior:
//
// tokenizer.encode('', add_bos=True) returns [1]
// tokenizer.encode('', add_bos=False) returns []
if (bos && vocab.special_bos_id != -1) {
output.push_back(vocab.special_bos_id);
}
if (raw_text.empty()) { if (raw_text.empty()) {
return output; return output;
} }
@ -3357,29 +3405,16 @@ static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab &
switch (vocab.type) { switch (vocab.type) {
case LLAMA_VOCAB_TYPE_SPM: case LLAMA_VOCAB_TYPE_SPM:
{ {
// without adding this leading whitespace, we do not get the same results as the original tokenizer
raw_text = " " + raw_text;
llm_tokenizer_spm tokenizer(vocab); llm_tokenizer_spm tokenizer(vocab);
llama_escape_whitespace(raw_text);
if (bos) { tokenizer.tokenize(raw_text, output);
output.push_back(vocab.special_bos_id);
}
std::string text;
if (escape) {
text = llama_escape_whitespace(raw_text);
} else {
text = raw_text;
}
tokenizer.tokenize(text, output);
} break; } break;
case LLAMA_VOCAB_TYPE_BPE: case LLAMA_VOCAB_TYPE_BPE:
{ {
llm_tokenizer_bpe tokenizer(vocab, escape); llm_tokenizer_bpe tokenizer(vocab);
if (bos && vocab.special_bos_id != -1) {
output.push_back(vocab.special_bos_id);
}
tokenizer.tokenize(raw_text, output); tokenizer.tokenize(raw_text, output);
} break; } break;
}; };
@ -3874,7 +3909,7 @@ void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array *
// Calculate absolute value of second derivatives // Calculate absolute value of second derivatives
for (size_t i = 0; i < second_derivatives.size(); ++i) { for (size_t i = 0; i < second_derivatives.size(); ++i) {
second_derivatives[i] = abs(second_derivatives[i]); second_derivatives[i] = std::abs(second_derivatives[i]);
} }
// Normalize the second derivatives // Normalize the second derivatives
@ -4065,16 +4100,16 @@ void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * c
std::vector<llama_grammar_candidate> candidates_grammar; std::vector<llama_grammar_candidate> candidates_grammar;
for (size_t i = 0; i < candidates->size; ++i) { for (size_t i = 0; i < candidates->size; ++i) {
const llama_token id = candidates->data[i].id; const llama_token id = candidates->data[i].id;
const std::string text = llama_token_to_text(ctx, id); const std::string piece = llama_token_to_str(ctx, id);
if (id == eos) { if (id == eos) {
if (!allow_eos) { if (!allow_eos) {
candidates->data[i].logit = -INFINITY; candidates->data[i].logit = -INFINITY;
} }
} else if (text.empty() || text[0] == 0) { } else if (piece.empty() || piece[0] == 0) {
candidates->data[i].logit = -INFINITY; candidates->data[i].logit = -INFINITY;
} else { } else {
candidates_decoded.push_back(decode_utf8(text.c_str(), grammar->partial_utf8)); candidates_decoded.push_back(decode_utf8(piece.c_str(), grammar->partial_utf8));
candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second }); candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second });
} }
} }
@ -4278,10 +4313,10 @@ void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar
GGML_ASSERT(false); GGML_ASSERT(false);
} }
const std::string text = llama_token_to_text(ctx, token); const std::string piece = llama_token_to_str(ctx, token);
// Note terminating 0 in decoded string // Note terminating 0 in decoded string
const auto decoded = decode_utf8(text.c_str(), grammar->partial_utf8); const auto decoded = decode_utf8(piece.c_str(), grammar->partial_utf8);
const auto & code_points = decoded.first; const auto & code_points = decoded.first;
for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) { for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
grammar->stacks = llama_grammar_accept(grammar->rules, grammar->stacks, *it); grammar->stacks = llama_grammar_accept(grammar->rules, grammar->stacks, *it);
@ -4292,6 +4327,257 @@ void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar
ctx->t_sample_us += ggml_time_us() - t_start_sample_us; ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
} }
//
// Beam search
//
struct llama_beam {
std::vector<llama_token> tokens;
float p; // Cumulative beam probability (renormalized relative to all beams)
bool eob; // Initialize end-of-beam to false. Callback sets this to true.
// Sort beams by probability. In case of ties, prefer beams at eob.
bool operator<(const llama_beam & rhs) const {
return std::make_pair(p, eob) < std::make_pair(rhs.p, rhs.eob);
}
// Shift off first n tokens and discard them.
void shift_tokens(const size_t n) {
if (n) {
std::copy(tokens.begin() + n, tokens.end(), tokens.begin());
tokens.resize(tokens.size() - n);
}
}
llama_beam_view view() const { return {tokens.data(), tokens.size(), p, eob}; }
};
// A struct for calculating logit-related info.
struct llama_logit_info {
const float * const logits;
const int n_vocab;
const float max_l;
const float normalizer;
struct sum_exp {
float max_l;
float operator()(float sum, float l) const { return sum + std::exp(l - max_l); }
};
llama_logit_info(llama_context * ctx)
: logits(llama_get_logits(ctx))
, n_vocab(llama_n_vocab(ctx))
, max_l(*std::max_element(logits, logits + n_vocab))
, normalizer(1.0f / std::accumulate(logits, logits + n_vocab, 0.0f, sum_exp{max_l}))
{ }
llama_token_data get_token_data(const llama_token token_id) const {
constexpr auto p = std::numeric_limits<float>::quiet_NaN(); // never used
return {token_id, logits[token_id], p};
}
// Return top k token_data by logit.
std::vector<llama_token_data> top_k(size_t k) {
std::vector<llama_token_data> min_heap; // min-heap by logit
const llama_token k_min = std::min(static_cast<llama_token>(k), n_vocab);
min_heap.reserve(k_min);
for (llama_token token_id = 0 ; token_id < k_min ; ++token_id) {
min_heap.push_back(get_token_data(token_id));
}
auto comp = [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; };
std::make_heap(min_heap.begin(), min_heap.end(), comp);
for (llama_token token_id = k_min ; token_id < n_vocab ; ++token_id) {
if (min_heap.front().logit < logits[token_id]) {
std::pop_heap(min_heap.begin(), min_heap.end(), comp);
min_heap.back().id = token_id;
min_heap.back().logit = logits[token_id];
std::push_heap(min_heap.begin(), min_heap.end(), comp);
}
}
return min_heap;
}
float probability_from_logit(float logit) {
return normalizer * std::exp(logit - max_l);
}
};
struct llama_beam_search_data {
llama_context * ctx;
size_t n_beams;
int n_past;
int n_predict;
int n_threads;
std::vector<llama_beam> beams;
std::vector<llama_beam> next_beams;
// Re-calculated on each loop iteration
size_t common_prefix_length;
// Used to communicate to/from callback on beams state.
std::vector<llama_beam_view> beam_views;
llama_beam_search_data(llama_context * ctx, size_t n_beams, int n_past, int n_predict, int n_threads)
: ctx(ctx)
, n_beams(n_beams)
, n_past(n_past)
, n_predict(n_predict)
, n_threads(n_threads)
, beam_views(n_beams) {
beams.reserve(n_beams);
next_beams.reserve(n_beams);
}
// Collapse beams to a single beam given by index.
void collapse_beams(const size_t beam_idx) {
if (0u < beam_idx) {
std::swap(beams[0], beams[beam_idx]);
}
beams.resize(1);
}
// Min-heaps are used to efficiently collect the top-k elements (k=n_beams).
// The repetative patterns below reflect the 2 stages of heaps:
// * Gather elements until the vector is full, then call std::make_heap() on it.
// * If the heap is full and a new element is found that should be included, pop the
// least element to the back(), replace it with the new, then push it into the heap.
void fill_next_beams_by_top_probabilities(llama_beam & beam) {
// Min-heaps use a greater-than comparator.
const auto comp = [](const llama_beam & a, const llama_beam & b) { return a.p > b.p; };
if (beam.eob) {
// beam is at end-of-sentence, so just copy it to next_beams if its probability is high enough.
if (next_beams.size() < n_beams) {
next_beams.push_back(std::move(beam));
if (next_beams.size() == n_beams) {
std::make_heap(next_beams.begin(), next_beams.end(), comp);
}
} else if (next_beams.front().p < beam.p) {
std::pop_heap(next_beams.begin(), next_beams.end(), comp);
next_beams.back() = std::move(beam);
std::push_heap(next_beams.begin(), next_beams.end(), comp);
}
} else {
// beam is not at end-of-sentence, so branch with next top_k tokens.
if (!beam.tokens.empty()) {
llama_eval(ctx, beam.tokens.data(), beam.tokens.size(), n_past, n_threads);
}
llama_logit_info logit_info(ctx);
std::vector<llama_token_data> next_tokens = logit_info.top_k(n_beams);
size_t i=0;
if (next_beams.size() < n_beams) {
for (; next_beams.size() < n_beams ; ++i) {
llama_beam next_beam = beam;
next_beam.tokens.push_back(next_tokens[i].id);
next_beam.p *= logit_info.probability_from_logit(next_tokens[i].logit);
next_beams.push_back(std::move(next_beam));
}
std::make_heap(next_beams.begin(), next_beams.end(), comp);
} else {
for (; next_beams.front().p == 0.0f ; ++i) {
std::pop_heap(next_beams.begin(), next_beams.end(), comp);
next_beams.back() = beam;
next_beams.back().tokens.push_back(next_tokens[i].id);
next_beams.back().p *= logit_info.probability_from_logit(next_tokens[i].logit);
std::push_heap(next_beams.begin(), next_beams.end(), comp);
}
}
for (; i < n_beams ; ++i) {
const float next_p = beam.p * logit_info.probability_from_logit(next_tokens[i].logit);
if (next_beams.front().p < next_p) {
std::pop_heap(next_beams.begin(), next_beams.end(), comp);
next_beams.back() = beam;
next_beams.back().tokens.push_back(next_tokens[i].id);
next_beams.back().p = next_p;
std::push_heap(next_beams.begin(), next_beams.end(), comp);
}
}
}
}
// Find common_prefix_length based on beams.
// Requires beams is not empty.
size_t find_common_prefix_length() {
size_t common_prefix_length = beams[0].tokens.size();
for (size_t i = 1 ; i < beams.size() ; ++i) {
common_prefix_length = std::min(common_prefix_length, beams[i].tokens.size());
for (size_t j = 0 ; j < common_prefix_length ; ++j) {
if (beams[0].tokens[j] != beams[i].tokens[j]) {
common_prefix_length = j;
break;
}
}
}
return common_prefix_length;
}
// Construct beams_state to send back to caller via the callback function.
// Side effect: set common_prefix_length = find_common_prefix_length();
llama_beams_state get_beams_state(const bool last_call) {
for (size_t i = 0 ; i < beams.size() ; ++i) {
beam_views[i] = beams[i].view();
}
common_prefix_length = find_common_prefix_length();
return {beam_views.data(), beams.size(), common_prefix_length, last_call};
}
// Loop:
// * while i < n_predict, AND
// * any of the beams have not yet reached end-of-beam (eob), AND
// * the highest probability beam(s) (plural in case of ties) are not at end-of-sentence
// (since all other beam probabilities can only decrease)
void loop(const llama_beam_search_callback_fn_t callback, void * const callback_data) {
beams.push_back({{}, 1.0f, false}); // Start with one empty beam w/ probability = 1.0 and !eob.
const auto not_eob = [](const llama_beam & beam) { return !beam.eob; };
for (int i = 0 ; i < n_predict && std::any_of(beams.begin(),beams.end(),not_eob) &&
!beams[top_beam_index()].eob ; ++i) {
callback(callback_data, get_beams_state(false)); // Sets common_prefix_length
update_beams_from_beam_views(); // Update values (p,eob) that callback may have changed.
if (common_prefix_length) {
llama_eval(ctx, beams[0].tokens.data(), common_prefix_length, n_past, n_threads);
n_past += common_prefix_length;
}
// Zero-out next_beam probabilities to place them last in following min-heap.
std::for_each(next_beams.begin(), next_beams.end(), [](llama_beam & beam) { beam.p = 0.0f; });
for (llama_beam & beam : beams) {
beam.shift_tokens(common_prefix_length);
fill_next_beams_by_top_probabilities(beam);
}
// next_beams become the beams of next/final iteration. Swap them to re-use memory.
beams.swap(next_beams);
renormalize_beam_probabilities(beams);
}
collapse_beams(top_beam_index());
callback(callback_data, get_beams_state(true));
}
// As beams grow, the cumulative probabilities decrease.
// Renormalize them to avoid floating point underflow.
static void renormalize_beam_probabilities(std::vector<llama_beam> & beams) {
const auto sum_p = [](float sum, llama_beam & beam) { return sum + beam.p; };
const float inv_sum = 1.0f / std::accumulate(beams.begin(), beams.end(), 0.0f, sum_p);
std::for_each(beams.begin(), beams.end(), [=](llama_beam & beam) { beam.p *= inv_sum; });
}
// Assumes beams is non-empty. Uses llama_beam::operator<() for ordering.
size_t top_beam_index() {
return std::max_element(beams.begin(), beams.end()) - beams.begin();
}
// Copy (p,eob) for each beam which may have been changed by the callback.
void update_beams_from_beam_views() {
for (size_t i = 0 ; i < beams.size() ; ++i) {
beams[i].p = beam_views[i].p;
beams[i].eob = beam_views[i].eob;
}
}
};
void llama_beam_search(llama_context * ctx,
llama_beam_search_callback_fn_t callback, void * callback_data,
size_t n_beams, int n_past, int n_predict, int n_threads) {
assert(ctx);
const int64_t t_start_sample_us = ggml_time_us();
llama_beam_search_data beam_search_data(ctx, n_beams, n_past, n_predict, n_threads);
beam_search_data.loop(callback, callback_data);
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
ctx->n_sample++;
}
// //
// quantization // quantization
// //
@ -4389,6 +4675,10 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
std::unique_ptr<llama_model_loader> ml(new llama_model_loader(fname_inp, /*use_mmap*/ false)); std::unique_ptr<llama_model_loader> ml(new llama_model_loader(fname_inp, /*use_mmap*/ false));
llama_model model;
llm_load_arch(*ml, model);
llm_load_hparams(*ml, model, 0, 0, 0);
const size_t align = GGUF_DEFAULT_ALIGNMENT; const size_t align = GGUF_DEFAULT_ALIGNMENT;
struct gguf_context * ctx_out = gguf_init_empty(); struct gguf_context * ctx_out = gguf_init_empty();
@ -4414,6 +4704,10 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
++n_feed_forward_w2; ++n_feed_forward_w2;
} }
} }
if (n_attention_wv != n_feed_forward_w2 || (uint32_t)n_attention_wv != model.hparams.n_layer) {
LLAMA_LOG_WARN("%s ============ Strange model: n_attention_wv = %d, n_feed_forward_w2 = %d, hparams.n_layer = %d\n",
__func__, n_attention_wv, n_feed_forward_w2, model.hparams.n_layer);
}
int i_attention_wv = 0; int i_attention_wv = 0;
int i_feed_forward_w2 = 0; int i_feed_forward_w2 = 0;
@ -4490,8 +4784,10 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
if (name == tn(LLM_TENSOR_OUTPUT, "weight")) { if (name == tn(LLM_TENSOR_OUTPUT, "weight")) {
int nx = tensor->ne[0]; int nx = tensor->ne[0];
int ny = tensor->ne[1]; if (model.arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
if (nx % QK_K == 0 && ny % QK_K == 0) { new_type = GGML_TYPE_Q8_0;
}
else if (new_type != GGML_TYPE_Q8_0) {
new_type = GGML_TYPE_Q6_K; new_type = GGML_TYPE_Q6_K;
} }
} else if (name.find("attn_v.weight") != std::string::npos) { } else if (name.find("attn_v.weight") != std::string::npos) {
@ -4505,21 +4801,49 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && i_attention_wv < 4) new_type = GGML_TYPE_Q5_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) && else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) &&
(i_attention_wv < n_attention_wv/8 || i_attention_wv >= 7*n_attention_wv/8)) new_type = GGML_TYPE_Q6_K; (i_attention_wv < n_attention_wv/8 || i_attention_wv >= 7*n_attention_wv/8)) new_type = GGML_TYPE_Q6_K;
if (model.type == MODEL_70B) {
// In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
// 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
// nearly negligible increase in model size by quantizing this tensor with more bits:
if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
}
++i_attention_wv; ++i_attention_wv;
} else if (name.find("ffn_down.weight") != std::string::npos) { } else if (name.find("ffn_down.weight") != std::string::npos) {
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K; if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) { else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
new_type = i_feed_forward_w2 < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K; new_type = i_feed_forward_w2 < 2 ? GGML_TYPE_Q5_K
: model.arch != LLM_ARCH_FALCON || use_more_bits(i_feed_forward_w2, n_feed_forward_w2) ? GGML_TYPE_Q4_K
: GGML_TYPE_Q3_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
new_type = model.arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
if (model.arch == LLM_ARCH_FALCON) {
new_type = i_feed_forward_w2 < 2 ? GGML_TYPE_Q6_K :
use_more_bits(i_feed_forward_w2, n_feed_forward_w2) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
} else {
if (use_more_bits(i_feed_forward_w2, n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K;
}
}
else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_feed_forward_w2, n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && model.arch != LLM_ARCH_FALCON && i_feed_forward_w2 < 4) {
new_type = GGML_TYPE_Q5_K;
} }
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
use_more_bits(i_feed_forward_w2, n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && i_feed_forward_w2 < 4) new_type = GGML_TYPE_Q5_K;
++i_feed_forward_w2; ++i_feed_forward_w2;
} else if (name.find("attn_output.weight") != std::string::npos) { } else if (name.find("attn_output.weight") != std::string::npos) {
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K; if (model.arch != LLM_ARCH_FALCON) {
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) new_type = GGML_TYPE_Q4_K; if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) new_type = GGML_TYPE_Q4_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
} else {
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
}
}
else if (name.find("attn_qkv.weight") != std::string::npos) {
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
} }
else if (name.find("ffn_gate.weight") != std::string::npos || name.find("ffn_up.weight") != std::string::npos) { else if (name.find("ffn_gate.weight") != std::string::npos || name.find("ffn_up.weight") != std::string::npos) {
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K; if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
@ -4534,8 +4858,8 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K) { new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K) {
int nx = tensor->ne[0]; int nx = tensor->ne[0];
int ny = tensor->ne[1]; int ny = tensor->ne[1];
if (nx % QK_K != 0 || ny % QK_K != 0) { if (nx % QK_K != 0) {
LLAMA_LOG_INFO("\n\nTensor sizes %d x %d are not divisible by %d, required for k-quants.\n",nx,ny,QK_K); LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for k-quants\n", __func__, nx, ny, QK_K);
convert_incompatible_tensor = true; convert_incompatible_tensor = true;
} }
} }
@ -5263,13 +5587,29 @@ int llama_model_n_embd(const struct llama_model * model) {
return model->hparams.n_embd; return model->hparams.n_embd;
} }
int llama_model_type(const struct llama_model * model, char * buf, size_t buf_size) { int llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
return snprintf(buf, buf_size, "%s %s %s", return snprintf(buf, buf_size, "%s %s %s",
model->name.c_str(), model->name.c_str(),
llama_model_type_name(model->type), llama_model_type_name(model->type),
llama_model_ftype_name(model->ftype).c_str()); llama_model_ftype_name(model->ftype).c_str());
} }
uint64_t llama_model_size(const struct llama_model * model) {
uint64_t size = 0;
for (const auto & it : model->tensors_by_name) {
size += ggml_nbytes(it.second);
}
return size;
}
uint64_t llama_model_n_params(const struct llama_model * model) {
uint64_t nparams = 0;
for (const auto & it : model->tensors_by_name) {
nparams += ggml_nelements(it.second);
}
return nparams;
}
int llama_model_quantize( int llama_model_quantize(
const char * fname_inp, const char * fname_inp,
const char * fname_out, const char * fname_out,
@ -5794,8 +6134,7 @@ int llama_tokenize_with_model(
llama_token * tokens, llama_token * tokens,
int n_max_tokens, int n_max_tokens,
bool add_bos) { bool add_bos) {
auto escape = llama_vocab_get_type(model->vocab) == LLAMA_VOCAB_TYPE_SPM; auto res = llama_tokenize_internal(model->vocab, text, add_bos);
auto res = llama_tokenize_internal(model->vocab, text, add_bos, escape);
if (n_max_tokens < (int) res.size()) { if (n_max_tokens < (int) res.size()) {
LLAMA_LOG_ERROR("%s: too many tokens\n", __func__); LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
@ -5809,12 +6148,12 @@ int llama_tokenize_with_model(
return res.size(); return res.size();
} }
int llama_token_to_str(const struct llama_context * ctx, llama_token token, char * buf, int length) { int llama_token_to_piece(const struct llama_context * ctx, llama_token token, char * buf, int length) {
return llama_token_to_str_with_model(&ctx->model, token, buf, length); return llama_token_to_piece_with_model(&ctx->model, token, buf, length);
} }
// does not write null-terminator to str // does not write null-terminator to buf
int llama_token_to_str_with_model(const struct llama_model * model, llama_token token, char * buf, int length) { int llama_token_to_piece_with_model(const struct llama_model * model, llama_token token, char * buf, int length) {
if (0 <= token && token < llama_model_n_vocab(model)) { if (0 <= token && token < llama_model_n_vocab(model)) {
if (llama_is_normal_token(model->vocab, token)) { if (llama_is_normal_token(model->vocab, token)) {
std::string result = model->vocab.id_to_token[token].text; std::string result = model->vocab.id_to_token[token].text;
@ -5902,6 +6241,7 @@ const char * llama_print_system_info(void) {
s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | "; s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | "; s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | "; s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | "; s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
return s.c_str(); return s.c_str();

55
llama.h
View file

@ -254,7 +254,11 @@ extern "C" {
LLAMA_API int llama_model_n_embd (const struct llama_model * model); LLAMA_API int llama_model_n_embd (const struct llama_model * model);
// Get a string describing the model type // Get a string describing the model type
LLAMA_API int llama_model_type(const struct llama_model * model, char * buf, size_t buf_size); LLAMA_API int llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
// Returns the total size of all the tensors in the model in bytes
LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
// Returns the total number of parameters in the model
LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
// Returns 0 on success // Returns 0 on success
LLAMA_API int llama_model_quantize( LLAMA_API int llama_model_quantize(
@ -348,7 +352,7 @@ extern "C" {
LLAMA_API float llama_token_get_score(const struct llama_context * ctx, llama_token token); LLAMA_API float llama_token_get_score(const struct llama_context * ctx, llama_token token);
LLAMA_API llama_token_type llama_token_get_type(const struct llama_context * ctx, llama_token token); LLAMA_API enum llama_token_type llama_token_get_type(const struct llama_context * ctx, llama_token token);
// Special tokens // Special tokens
LLAMA_API llama_token llama_token_bos(const struct llama_context * ctx); // beginning-of-sentence LLAMA_API llama_token llama_token_bos(const struct llama_context * ctx); // beginning-of-sentence
@ -377,15 +381,17 @@ extern "C" {
int n_max_tokens, int n_max_tokens,
bool add_bos); bool add_bos);
// Token Id -> String. Uses the vocabulary in the provided context // Token Id -> Piece.
// Does not write null terminator to the buffer // Uses the vocabulary in the provided context.
LLAMA_API int llama_token_to_str( // Does not write null terminator to the buffer.
// User code is responsible to remove the leading whitespace of the first non-BOS token when decoding multiple tokens.
LLAMA_API int llama_token_to_piece(
const struct llama_context * ctx, const struct llama_context * ctx,
llama_token token, llama_token token,
char * buf, char * buf,
int length); int length);
LLAMA_API int llama_token_to_str_with_model( LLAMA_API int llama_token_to_piece_with_model(
const struct llama_model * model, const struct llama_model * model,
llama_token token, llama_token token,
char * buf, char * buf,
@ -465,6 +471,43 @@ extern "C" {
/// @details Accepts the sampled token into the grammar /// @details Accepts the sampled token into the grammar
LLAMA_API void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token); LLAMA_API void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token);
//
// Beam search
//
struct llama_beam_view {
const llama_token * tokens;
size_t n_tokens;
float p; // Cumulative beam probability (renormalized relative to all beams)
bool eob; // Callback should set this to true when a beam is at end-of-beam.
};
// Passed to beam_search_callback function.
// Whenever 0 < common_prefix_length, this number of tokens should be copied from any of the beams
// (e.g. beams[0]) as they will be removed (shifted) from all beams in all subsequent callbacks.
// These pointers are valid only during the synchronous callback, so should not be saved.
struct llama_beams_state {
struct llama_beam_view * beam_views;
size_t n_beams; // Number of elements in beam_views[].
size_t common_prefix_length; // Current max length of prefix tokens shared by all beams.
bool last_call; // True iff this is the last callback invocation.
};
// Type of pointer to the beam_search_callback function.
// void* callback_data is any custom data passed to llama_beam_search, that is subsequently
// passed back to beam_search_callback. This avoids having to use global variables in the callback.
typedef void (*llama_beam_search_callback_fn_t)(void * callback_data, llama_beams_state);
/// @details Deterministically returns entire sentence constructed by a beam search.
/// @param ctx Pointer to the llama_context.
/// @param callback Invoked for each iteration of the beam_search loop, passing in beams_state.
/// @param callback_data A pointer that is simply passed back to callback.
/// @param n_beams Number of beams to use.
/// @param n_past Number of tokens already evaluated.
/// @param n_predict Maximum number of tokens to predict. EOS may occur earlier.
/// @param n_threads Number of threads as passed to llama_eval().
LLAMA_API void llama_beam_search(struct llama_context * ctx, llama_beam_search_callback_fn_t callback, void * callback_data, size_t n_beams, int n_past, int n_predict, int n_threads);
// Performance information // Performance information
LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx); LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
LLAMA_API void llama_print_timings(struct llama_context * ctx); LLAMA_API void llama_print_timings(struct llama_context * ctx);

View file

@ -1,2 +1,3 @@
numpy==1.24 numpy==1.24
sentencepiece==0.1.98 sentencepiece==0.1.98
gguf>=0.1.0

26
scripts/convert-gg.sh Executable file
View file

@ -0,0 +1,26 @@
#!/bin/bash
set -e
# LLaMA v1
python3 convert.py ../llama1/7B --outfile models/llama-7b/ggml-model-f16.gguf --outtype f16
python3 convert.py ../llama1/13B --outfile models/llama-13b/ggml-model-f16.gguf --outtype f16
python3 convert.py ../llama1/30B --outfile models/llama-30b/ggml-model-f16.gguf --outtype f16
python3 convert.py ../llama1/65B --outfile models/llama-65b/ggml-model-f16.gguf --outtype f16
# LLaMA v2
python3 convert.py ../llama2/llama-2-7b --outfile models/llama-7b-v2/ggml-model-f16.gguf --outtype f16
python3 convert.py ../llama2/llama-2-13b --outfile models/llama-13b-v2/ggml-model-f16.gguf --outtype f16
python3 convert.py ../llama2/llama-2-70b --outfile models/llama-70b-v2/ggml-model-f16.gguf --outtype f16
# Code Llama
python3 convert.py ../codellama/CodeLlama-7b/ --outfile models/codellama-7b/ggml-model-f16.gguf --outtype f16
python3 convert.py ../codellama/CodeLlama-13b/ --outfile models/codellama-13b/ggml-model-f16.gguf --outtype f16
python3 convert.py ../codellama/CodeLlama-34b/ --outfile models/codellama-34b/ggml-model-f16.gguf --outtype f16
# Falcon
python3 convert-falcon-hf-to-gguf.py ../falcon/falcon-7b 1
mv -v ../falcon/falcon-7b/ggml-model-f16.gguf models/falcon-7b/ggml-model-f16.gguf
python3 convert-falcon-hf-to-gguf.py ../falcon/falcon-40b 1
mv -v ../falcon/falcon-40b/ggml-model-f16.gguf models/falcon-40b/ggml-model-f16.gguf

View file

@ -1,93 +0,0 @@
#!/bin/bash
#
# Measure the performance (time per token) of the various quantization techniques
#
QUANTIZE=0
if [ "$1" != "" ]; then
echo "Quantizing"
QUANTIZE=1
fi
if [ "$QUANTIZE" != "0" ]; then
#
# quantize
#
# 7B
time ./bin/quantize ../models/7B/ggml-model-f16.bin ../models/7B/ggml-model-q4_0.bin q4_0 2>&1 | tee ../qnt-7b-q4_0.txt
time ./bin/quantize ../models/7B/ggml-model-f16.bin ../models/7B/ggml-model-q4_1.bin q4_1 2>&1 | tee ../qnt-7b-q4_1.txt
time ./bin/quantize ../models/7B/ggml-model-f16.bin ../models/7B/ggml-model-q5_0.bin q5_0 2>&1 | tee ../qnt-7b-q5_0.txt
time ./bin/quantize ../models/7B/ggml-model-f16.bin ../models/7B/ggml-model-q5_1.bin q5_1 2>&1 | tee ../qnt-7b-q5_1.txt
time ./bin/quantize ../models/7B/ggml-model-f16.bin ../models/7B/ggml-model-q8_0.bin q8_0 2>&1 | tee ../qnt-7b-q8_0.txt
# 13B
time ./bin/quantize ../models/13B/ggml-model-f16.bin ../models/13B/ggml-model-q4_0.bin q4_0 2>&1 | tee ../qnt-13b-q4_0.txt
time ./bin/quantize ../models/13B/ggml-model-f16.bin ../models/13B/ggml-model-q4_1.bin q4_1 2>&1 | tee ../qnt-13b-q4_1.txt
time ./bin/quantize ../models/13B/ggml-model-f16.bin ../models/13B/ggml-model-q5_0.bin q5_0 2>&1 | tee ../qnt-13b-q5_0.txt
time ./bin/quantize ../models/13B/ggml-model-f16.bin ../models/13B/ggml-model-q5_1.bin q5_1 2>&1 | tee ../qnt-13b-q5_1.txt
time ./bin/quantize ../models/13B/ggml-model-f16.bin ../models/13B/ggml-model-q8_0.bin q8_0 2>&1 | tee ../qnt-13b-q8_0.txt
fi
#
# perf
# run each command twice
#
set -x
# 7B - 4 threads
./bin/main -m ../models/7B/ggml-model-f16.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 4 2>&1 | grep "I believe"
time ./bin/main -m ../models/7B/ggml-model-f16.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 4 2>&1 | tee ../perf-7b-f16.txt | grep llama_print_timings
./bin/main -m ../models/7B/ggml-model-q4_0.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 4 2>&1 | grep "I believe"
time ./bin/main -m ../models/7B/ggml-model-q4_0.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 4 2>&1 | tee ../perf-7b-q4_0.txt | grep llama_print_timings
./bin/main -m ../models/7B/ggml-model-q4_1.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 4 2>&1 | grep "I believe"
time ./bin/main -m ../models/7B/ggml-model-q4_1.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 4 2>&1 | tee ../perf-7b-q4_1.txt | grep llama_print_timings
./bin/main -m ../models/7B/ggml-model-q5_0.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 4 2>&1 | grep "I believe"
time ./bin/main -m ../models/7B/ggml-model-q5_0.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 4 2>&1 | tee ../perf-7b-q5_0.txt | grep llama_print_timings
./bin/main -m ../models/7B/ggml-model-q5_1.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 4 2>&1 | grep "I believe"
time ./bin/main -m ../models/7B/ggml-model-q5_1.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 4 2>&1 | tee ../perf-7b-q5_1.txt | grep llama_print_timings
./bin/main -m ../models/7B/ggml-model-q8_0.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 4 2>&1 | grep "I believe"
time ./bin/main -m ../models/7B/ggml-model-q8_0.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 4 2>&1 | tee ../perf-7b-q8_0.txt | grep llama_print_timings
# 7B - 8 threads
./bin/main -m ../models/7B/ggml-model-f16.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 8 2>&1 | grep "I believe"
time ./bin/main -m ../models/7B/ggml-model-f16.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 8 2>&1 | tee ../perf-7b-f16.txt | grep llama_print_timings
./bin/main -m ../models/7B/ggml-model-q4_0.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 8 2>&1 | grep "I believe"
time ./bin/main -m ../models/7B/ggml-model-q4_0.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 8 2>&1 | tee ../perf-7b-q4_0.txt | grep llama_print_timings
./bin/main -m ../models/7B/ggml-model-q4_1.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 8 2>&1 | grep "I believe"
time ./bin/main -m ../models/7B/ggml-model-q4_1.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 8 2>&1 | tee ../perf-7b-q4_1.txt | grep llama_print_timings
./bin/main -m ../models/7B/ggml-model-q5_0.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 8 2>&1 | grep "I believe"
time ./bin/main -m ../models/7B/ggml-model-q5_0.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 8 2>&1 | tee ../perf-7b-q5_0.txt | grep llama_print_timings
./bin/main -m ../models/7B/ggml-model-q5_1.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 8 2>&1 | grep "I believe"
time ./bin/main -m ../models/7B/ggml-model-q5_1.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 8 2>&1 | tee ../perf-7b-q5_1.txt | grep llama_print_timings
./bin/main -m ../models/7B/ggml-model-q8_0.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 8 2>&1 | grep "I believe"
time ./bin/main -m ../models/7B/ggml-model-q8_0.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 8 2>&1 | tee ../perf-7b-q8_0.txt | grep llama_print_timings
# 13B - 4 threads
./bin/main -m ../models/13B/ggml-model-f16.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 4 2>&1 | grep "I believe"
time ./bin/main -m ../models/13B/ggml-model-f16.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 4 2>&1 | tee ../perf-13b-f16.txt | grep llama_print_timings
./bin/main -m ../models/13B/ggml-model-q4_0.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 4 2>&1 | grep "I believe"
time ./bin/main -m ../models/13B/ggml-model-q4_0.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 4 2>&1 | tee ../perf-13b-q4_0.txt | grep llama_print_timings
./bin/main -m ../models/13B/ggml-model-q4_1.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 4 2>&1 | grep "I believe"
time ./bin/main -m ../models/13B/ggml-model-q4_1.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 4 2>&1 | tee ../perf-13b-q4_1.txt | grep llama_print_timings
./bin/main -m ../models/13B/ggml-model-q5_0.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 4 2>&1 | grep "I believe"
time ./bin/main -m ../models/13B/ggml-model-q5_0.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 4 2>&1 | tee ../perf-13b-q5_0.txt | grep llama_print_timings
./bin/main -m ../models/13B/ggml-model-q5_1.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 4 2>&1 | grep "I believe"
time ./bin/main -m ../models/13B/ggml-model-q5_1.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 4 2>&1 | tee ../perf-13b-q5_1.txt | grep llama_print_timings
./bin/main -m ../models/13B/ggml-model-q8_0.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 4 2>&1 | grep "I believe"
time ./bin/main -m ../models/13B/ggml-model-q8_0.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 4 2>&1 | tee ../perf-13b-q8_0.txt | grep llama_print_timings
# 13B - 8 threads
./bin/main -m ../models/13B/ggml-model-f16.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 8 2>&1 | grep "I believe"
time ./bin/main -m ../models/13B/ggml-model-f16.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 8 2>&1 | tee ../perf-13b-f16.txt | grep llama_print_timings
./bin/main -m ../models/13B/ggml-model-q4_0.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 8 2>&1 | grep "I believe"
time ./bin/main -m ../models/13B/ggml-model-q4_0.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 8 2>&1 | tee ../perf-13b-q4_0.txt | grep llama_print_timings
./bin/main -m ../models/13B/ggml-model-q4_1.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 8 2>&1 | grep "I believe"
time ./bin/main -m ../models/13B/ggml-model-q4_1.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 8 2>&1 | tee ../perf-13b-q4_1.txt | grep llama_print_timings
./bin/main -m ../models/13B/ggml-model-q5_0.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 8 2>&1 | grep "I believe"
time ./bin/main -m ../models/13B/ggml-model-q5_0.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 8 2>&1 | tee ../perf-13b-q5_0.txt | grep llama_print_timings
./bin/main -m ../models/13B/ggml-model-q5_1.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 8 2>&1 | grep "I believe"
time ./bin/main -m ../models/13B/ggml-model-q5_1.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 8 2>&1 | tee ../perf-13b-q5_1.txt | grep llama_print_timings
./bin/main -m ../models/13B/ggml-model-q8_0.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 8 2>&1 | grep "I believe"
time ./bin/main -m ../models/13B/ggml-model-q8_0.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 8 2>&1 | tee ../perf-13b-q8_0.txt | grep llama_print_timings

View file

@ -1,39 +0,0 @@
#!/bin/bash
#
# quantize
#
# 7B
time ./bin/quantize ../models/7B/ggml-model-f16.bin ../models/7B/ggml-model-q4_0.bin q4_0 2>&1 | tee ../qnt-7b-q4_0.txt
time ./bin/quantize ../models/7B/ggml-model-f16.bin ../models/7B/ggml-model-q4_1.bin q4_1 2>&1 | tee ../qnt-7b-q4_1.txt
time ./bin/quantize ../models/7B/ggml-model-f16.bin ../models/7B/ggml-model-q5_0.bin q5_0 2>&1 | tee ../qnt-7b-q5_0.txt
time ./bin/quantize ../models/7B/ggml-model-f16.bin ../models/7B/ggml-model-q5_1.bin q5_1 2>&1 | tee ../qnt-7b-q5_1.txt
time ./bin/quantize ../models/7B/ggml-model-f16.bin ../models/7B/ggml-model-q8_0.bin q8_0 2>&1 | tee ../qnt-7b-q8_0.txt
# 13B
time ./bin/quantize ../models/13B/ggml-model-f16.bin ../models/13B/ggml-model-q4_0.bin q4_0 2>&1 | tee ../qnt-13b-q4_0.txt
time ./bin/quantize ../models/13B/ggml-model-f16.bin ../models/13B/ggml-model-q4_1.bin q4_1 2>&1 | tee ../qnt-13b-q4_1.txt
time ./bin/quantize ../models/13B/ggml-model-f16.bin ../models/13B/ggml-model-q5_0.bin q5_0 2>&1 | tee ../qnt-13b-q5_0.txt
time ./bin/quantize ../models/13B/ggml-model-f16.bin ../models/13B/ggml-model-q5_1.bin q5_1 2>&1 | tee ../qnt-13b-q5_1.txt
time ./bin/quantize ../models/13B/ggml-model-f16.bin ../models/13B/ggml-model-q8_0.bin q8_0 2>&1 | tee ../qnt-13b-q8_0.txt
#
# perplexity
#
# 7B
time ./bin/perplexity -m ../models/7B/ggml-model-f16.bin -f ./wiki.test.raw --no-mmap -t 12 2>&1 | tee ../ppl-7b-f16.txt
time ./bin/perplexity -m ../models/7B/ggml-model-q4_0.bin -f ./wiki.test.raw --no-mmap -t 12 2>&1 | tee ../ppl-7b-q4_0.txt
time ./bin/perplexity -m ../models/7B/ggml-model-q4_1.bin -f ./wiki.test.raw --no-mmap -t 12 2>&1 | tee ../ppl-7b-q4_1.txt
time ./bin/perplexity -m ../models/7B/ggml-model-q5_0.bin -f ./wiki.test.raw --no-mmap -t 12 2>&1 | tee ../ppl-7b-q5_0.txt
time ./bin/perplexity -m ../models/7B/ggml-model-q5_1.bin -f ./wiki.test.raw --no-mmap -t 12 2>&1 | tee ../ppl-7b-q5_1.txt
time ./bin/perplexity -m ../models/7B/ggml-model-q8_0.bin -f ./wiki.test.raw --no-mmap -t 12 2>&1 | tee ../ppl-7b-q8_0.txt
# 13B
time ./bin/perplexity -m ../models/13B/ggml-model-f16.bin -f ./wiki.test.raw --no-mmap -t 12 2>&1 | tee ../ppl-13b-f16.txt
time ./bin/perplexity -m ../models/13B/ggml-model-q4_0.bin -f ./wiki.test.raw --no-mmap -t 12 2>&1 | tee ../ppl-13b-q4_0.txt
time ./bin/perplexity -m ../models/13B/ggml-model-q4_1.bin -f ./wiki.test.raw --no-mmap -t 12 2>&1 | tee ../ppl-13b-q4_1.txt
time ./bin/perplexity -m ../models/13B/ggml-model-q5_0.bin -f ./wiki.test.raw --no-mmap -t 12 2>&1 | tee ../ppl-13b-q5_0.txt
time ./bin/perplexity -m ../models/13B/ggml-model-q5_1.bin -f ./wiki.test.raw --no-mmap -t 12 2>&1 | tee ../ppl-13b-q5_1.txt
time ./bin/perplexity -m ../models/13B/ggml-model-q8_0.bin -f ./wiki.test.raw --no-mmap -t 12 2>&1 | tee ../ppl-13b-q8_0.txt

29
scripts/qnt-all.sh Executable file
View file

@ -0,0 +1,29 @@
#!/bin/bash
qnt=(q8_0 q6_k q5_k q5_1 q5_0 q4_k q4_1 q4_0 q3_k q2_k)
args=""
if [ -z "$1" ]; then
echo "usage: $0 <model> [qnt] [args]"
echo "default: $0 <model> \"${qnt[@]}\" \"${args}\""
exit 1
fi
if [ ! -z "$2" ]; then
qnt=($2)
fi
if [ ! -z "$3" ]; then
args="$3"
fi
model="$1"
out="../tmp/results-${model}"
set -e
mkdir -p ${out}
for q in ${qnt[@]}; do
time ./bin/quantize ../models/${model}/ggml-model-f16.gguf ../models/${model}/ggml-model-${q}.gguf ${q} 2>&1 ${args} | tee ${out}/qnt-${q}.txt
done

33
scripts/run-all-perf.sh Executable file
View file

@ -0,0 +1,33 @@
#!/bin/bash
qnt=(f16 q8_0 q6_k q5_k q5_1 q5_0 q4_k q4_1 q4_0 q3_k q2_k)
args="-ngl 999 -n 64 -p 512"
if [ -z "$1" ]; then
echo "usage: $0 <model> [qnt] [args]"
echo "default: $0 <model> \"${qnt[@]}\" \"${args}\""
exit 1
fi
if [ ! -z "$2" ]; then
qnt=($2)
fi
if [ ! -z "$3" ]; then
args="$3"
fi
model="$1"
out="../tmp/results-${model}"
set -e
mkdir -p ${out}
mstr=""
for q in ${qnt[@]}; do
mstr="${mstr} -m ../models/${model}/ggml-model-${q}.gguf"
done
./bin/llama-bench ${mstr} ${args} 2> /dev/null

29
scripts/run-all-ppl.sh Executable file
View file

@ -0,0 +1,29 @@
#!/bin/bash
qnt=(f16 q8_0 q6_k q5_k q5_1 q5_0 q4_k q4_1 q4_0 q3_k q2_k)
args="-ngl 999 -t 8"
if [ -z "$1" ]; then
echo "usage: $0 <model> [qnt] [args]"
echo "default: $0 <model> \"${qnt[@]}\" \"${args}\""
exit 1
fi
if [ ! -z "$2" ]; then
qnt=($2)
fi
if [ ! -z "$3" ]; then
args="$3"
fi
set -e
model="$1"
out="../tmp/results-${model}"
mkdir -p ${out}
for q in ${qnt[@]}; do
time ./bin/perplexity -m ../models/${model}/ggml-model-f16.gguf -f ./wiki.test.raw ${args} 2>&1 | tee ${out}/ppl-${q}.txt
done

View file

@ -25,8 +25,10 @@ endfunction()
llama_build_and_test_executable(test-quantize-fns.cpp) llama_build_and_test_executable(test-quantize-fns.cpp)
llama_build_and_test_executable(test-quantize-perf.cpp) llama_build_and_test_executable(test-quantize-perf.cpp)
llama_build_and_test_executable(test-sampling.cpp) llama_build_and_test_executable(test-sampling.cpp)
llama_build_executable(test-tokenizer-0.cpp) llama_build_executable(test-tokenizer-0-llama.cpp)
llama_test_executable (test-tokenizer-0.llama test-tokenizer-0.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-llama.gguf) llama_test_executable (test-tokenizer-0-llama test-tokenizer-0-llama.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-llama.gguf)
llama_build_executable(test-tokenizer-0-falcon.cpp)
#llama_test_executable (test-tokenizer-0-falcon test-tokenizer-0-falcon.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-falcon.gguf)
llama_build_executable(test-tokenizer-1.cpp) llama_build_executable(test-tokenizer-1.cpp)
# test-tokenizer-1 requires a BPE vocab. re-enable when we have one. # test-tokenizer-1 requires a BPE vocab. re-enable when we have one.
#llama_test_executable (test-tokenizer-1.llama test-tokenizer-1.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-falcon.gguf) #llama_test_executable (test-tokenizer-1.llama test-tokenizer-1.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-falcon.gguf)

View file

@ -0,0 +1,178 @@
#include "llama.h"
#include "common.h"
#include <cstdio>
#include <string>
#include <map>
#include <vector>
#include <fstream>
// generate using test-tokenizer-0-falcon.py
static const std::map<std::string, std::vector<llama_token>> & k_tests() {
static std::map<std::string, std::vector<llama_token>> _k_tests = {
{ "" , { }, },
{ " " , { 204, }, },
{ " " , { 258, }, },
{ " " , { 466, }, },
{ "\t" , { 192, }, },
{ "\n" , { 193, }, },
{ "\t\n" , { 19125, }, },
{ "Hello world" , { 9856, 1079, }, },
{ " Hello world" , { 23090, 1079, }, },
{ "Hello World" , { 9856, 2889, }, },
{ " Hello World" , { 23090, 2889, }, },
{ " Hello World!" , { 23090, 2889, 12, }, },
{ "Hello, world!" , { 9856, 23, 1079, 12, }, },
{ " Hello, world!" , { 23090, 23, 1079, 12, }, },
{ " this is 🦙.cpp" , { 414, 304, 3346, 111, 231, 25, 29247, }, },
{ "w048 7tuijk dsdfhu" , { 98, 55866, 204, 34, 16682, 7149, 36190, 6869, 11481, }, },
{ "нещо на Български" , { 150, 133, 6207, 151, 215, 150, 134, 5052, 133, 6279, 5052, 223, 151, 216, 49679, 123, 53110, 47043, 7795, }, },
{ "កាន់តែពិសេសអាចខលចេញ" , { 38154, 206, 38154, 126, 38154, 225, 167, 237, 217, 38154, 221, 167, 237, 208, 38154, 228, 38154, 127, 38154, 237, 167, 237, 207, 38154, 237, 38154, 107, 38154, 126, 38154, 211, 38154, 207, 38154, 233, 38154, 211, 167, 237, 207, 38154, 215, }, },
{ "🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)", { 2571, 232, 206, 204, 19, 11003, 20, 8196, 126, 283, 219, 48778, 116, 13392, 204, 19, 51831, 732, 63209, 1741, 7955, 522, 20, 22438, 211, 204, 19, 7927, 53360, 325, 504, 701, 946, 10930, 20, }, },
{ "Hello" , { 9856, }, },
{ " Hello" , { 23090, }, },
{ " Hello" , { 204, 23090, }, },
{ " Hello" , { 258, 23090, }, },
{ " Hello" , { 466, 23090, }, },
{ " Hello\n Hello" , { 466, 23090, 742, 23090, }, },
};
return _k_tests;
}
int main(int argc, char **argv) {
if (argc < 2) {
fprintf(stderr, "Usage: %s vocab-file [text-file]\n", argv[0]);
return 1;
}
const std::string fname = argv[1];
std::string fname_text;
if (argc > 2) {
fname_text = argv[2];
}
fprintf(stderr, "%s : reading vocab from: '%s'\n", __func__, fname.c_str());
llama_model * model;
llama_context * ctx;
llama_backend_init(false);
// load the vocab
{
auto lparams = llama_context_default_params();
lparams.vocab_only = true;
model = llama_load_model_from_file(fname.c_str(), lparams);
if (model == NULL) {
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
return 1;
}
ctx = llama_new_context_with_model(model, lparams);
if (ctx == NULL) {
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
llama_free_model(model);
return 1;
}
}
if (llama_vocab_type(ctx) != LLAMA_VOCAB_TYPE_BPE) {
fprintf(stderr, "%s : error: vocab type is not SPM\n", __func__);
llama_free_model(model);
llama_free(ctx);
return 2;
}
bool success = true;
for (const auto & test_kv : k_tests()) {
const std::vector<llama_token> res = llama_tokenize(ctx, test_kv.first, false);
printf("\n");
printf("src: '%s'\n", test_kv.first.c_str());
printf("res: '%s'\n", llama_detokenize_bpe(ctx, res).c_str());
printf("tok: ");
for (const auto & tok : res) {
printf("%d ", tok);
}
printf("\n");
bool correct = res.size() == test_kv.second.size();
for (int i = 0; i < (int) res.size() && correct; ++i) {
if (test_kv.second[i] != res[i]) {
correct = false;
}
}
if (!correct) {
fprintf(stderr, "%s : failed test: '%s'\n", __func__, test_kv.first.c_str());
fprintf(stderr, "%s : detokenized to: '%s' instead of '%s'\n", __func__,
llama_detokenize_bpe(ctx, res).c_str(),
llama_detokenize_bpe(ctx, test_kv.second).c_str());
fprintf(stderr, "%s : expected tokens: ", __func__);
for (const auto & t : test_kv.second) {
fprintf(stderr, "%6d, ", t);
}
fprintf(stderr, "\n");
fprintf(stderr, "%s : got tokens: ", __func__);
for (const auto & t : res) {
fprintf(stderr, "%6d, ", t);
}
fprintf(stderr, "\n");
success = false;
}
}
if (!fname_text.empty()) {
fprintf(stderr, "%s : tokenizing: '%s'\n", __func__, fname_text.c_str());
std::string text;
{
std::ifstream ifs(fname_text);
if (!ifs) {
fprintf(stderr, "%s : error: could not open file '%s'\n", __func__, fname_text.c_str());
return 1;
}
text = std::string(std::istreambuf_iterator<char>(ifs), std::istreambuf_iterator<char>());
}
fprintf(stderr, "%s : text size: %zu\n", __func__, text.size());
const std::vector<llama_token> res = llama_tokenize(ctx, text, true);
fprintf(stderr, "%s : tokens: %zu\n", __func__, res.size());
{
const std::string fname_out = fname_text + ".tokcpp";
std::ofstream ofs(fname_out);
if (!ofs) {
fprintf(stderr, "%s : error: could not open file '%s'\n", __func__, fname_out.c_str());
return 1;
}
for (const auto & tok : res) {
ofs << tok << " ";
}
ofs << "\n";
}
fprintf(stderr, "%s : tokens written to '%s'\n", __func__, (fname_text + ".tokcpp").c_str());
}
llama_free_model(model);
llama_free(ctx);
llama_backend_free();
return success ? 0 : 3;
}

View file

@ -0,0 +1,83 @@
# tests with BPE tokenizer
import os
import sys
import argparse
from transformers import AutoTokenizer
parser = argparse.ArgumentParser()
parser.add_argument("dir_tokenizer", help="directory containing 'tokenizer.model' file")
parser.add_argument("--fname-tok", help="path to a text file to tokenize")
args = parser.parse_args()
dir_tokenizer = args.dir_tokenizer
tokenizer = AutoTokenizer.from_pretrained(dir_tokenizer)
tests = [
"",
" ",
" ",
" ",
"\t",
"\n",
"\t\n",
"Hello world",
" Hello world",
"Hello World",
" Hello World",
" Hello World!",
"Hello, world!",
" Hello, world!",
" this is 🦙.cpp",
"w048 7tuijk dsdfhu",
"нещо на Български",
"កាន់តែពិសេសអាចខលចេញ",
"🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)",
"Hello",
" Hello",
" Hello",
" Hello",
" Hello",
" Hello\n Hello",
]
for text in tests:
print('text: ', text)
print(tokenizer.encode(text))
print(tokenizer.decode(tokenizer.encode(text)))
print("\n\ntests for C++:\n")
for text in tests:
res = tokenizer.encode(text)
k = text.replace('\n', '\\n')
k = k.replace('\t', '\\t')
k = '"' + k + '"'
print("{ %-24s, { " % k, end='')
for x in res:
print("%7d," % x, end='')
print(" }, },")
print(tokenizer.encode('hello'))
print(tokenizer.encode('world'))
print(tokenizer.encode(' world'))
print(tokenizer.encode('hello world'))
fname_tok = args.fname_tok
if fname_tok:
print('tokenizing file: ', fname_tok)
fname_out = fname_tok + '.tok'
with open(fname_tok, 'r') as f:
lines = f.readlines()
s = ''.join(lines)
res = tokenizer.encode(s)
# write to file
with open(fname_out, 'w') as f:
for x in res:
f.write(str(x) + ' ')
f.write('\n')
print('len(res): ', len(res))
print('len(lines): ', len(lines))
print('results written to: ', fname_out)

View file

@ -0,0 +1,182 @@
#include "llama.h"
#include "common.h"
#include <cstdio>
#include <string>
#include <map>
#include <vector>
#include <fstream>
// generate using test-tokenizer-0-llama.py
static const std::map<std::string, std::vector<llama_token>> & k_tests() {
static std::map<std::string, std::vector<llama_token>> _k_tests = {
{ "" , { }, },
{ " " , { 259, }, },
{ " " , { 1678, }, },
{ " " , { 268, }, },
{ "\t" , { 29871, 12, }, },
{ "\n" , { 29871, 13, }, },
{ "\t\n" , { 29871, 12, 13, }, },
{ "Hello world" , { 15043, 3186, }, },
{ " Hello world" , { 29871, 15043, 3186, }, },
{ "Hello World" , { 15043, 2787, }, },
{ " Hello World" , { 29871, 15043, 2787, }, },
{ " Hello World!" , { 29871, 15043, 2787, 29991, }, },
{ "Hello, world!" , { 15043, 29892, 3186, 29991, }, },
{ " Hello, world!" , { 29871, 15043, 29892, 3186, 29991, }, },
{ " this is 🦙.cpp" , { 29871, 445, 338, 29871, 243, 162, 169, 156, 29889, 8223, }, },
{ "w048 7tuijk dsdfhu" , { 281, 29900, 29946, 29947, 29871, 29955, 9161, 13535, 18031, 2176, 6905, }, },
{ "нещо на Български" , { 1538, 4851, 665, 1386, 29713, 1305, }, },
{ "កាន់តែពិសេសអាចខលចេញ" , { 29871, 31849, 31324, 31934, 228, 162, 142, 228, 161, 146, 228, 162, 133, 228, 161, 153, 228, 161, 186, 31708, 228, 162, 132, 31708, 228, 161, 165, 31324, 228, 161, 136, 228, 161, 132, 228, 161, 158, 228, 161, 136, 228, 162, 132, 228, 161, 140, }, },
{ "🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)", { 29871, 243, 162, 157, 131, 313, 8945, 29897, 29871, 243, 162, 155, 185, 30722, 243, 162, 143, 174, 30598, 313, 20787, 953, 3848, 275, 16125, 630, 29897, 29871, 31681, 313, 6194, 953, 29877, 2397, 393, 756, 967, 1914, 5993, 29897, }, },
{ "Hello" , { 15043, }, },
{ " Hello" , { 29871, 15043, }, },
{ " Hello" , { 259, 15043, }, },
{ " Hello" , { 1678, 15043, }, },
{ " Hello" , { 268, 15043, }, },
{ " Hello\n Hello" , { 268, 15043, 13, 1678, 15043, }, },
};
return _k_tests;
}
int main(int argc, char **argv) {
if (argc < 2) {
fprintf(stderr, "Usage: %s vocab-file [text-file]\n", argv[0]);
return 1;
}
const std::string fname = argv[1];
std::string fname_text;
if (argc > 2) {
fname_text = argv[2];
}
fprintf(stderr, "%s : reading vocab from: '%s'\n", __func__, fname.c_str());
llama_model * model;
llama_context * ctx;
llama_backend_init(false);
// load the vocab
{
auto lparams = llama_context_default_params();
lparams.vocab_only = true;
model = llama_load_model_from_file(fname.c_str(), lparams);
if (model == NULL) {
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
return 1;
}
ctx = llama_new_context_with_model(model, lparams);
if (ctx == NULL) {
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
llama_free_model(model);
return 1;
}
}
if (llama_vocab_type(ctx) != LLAMA_VOCAB_TYPE_SPM) {
fprintf(stderr, "%s : error: vocab type is not SPM\n", __func__);
llama_free_model(model);
llama_free(ctx);
return 2;
}
bool success = true;
for (const auto & test_kv : k_tests()) {
const std::vector<llama_token> res_bos = llama_tokenize(ctx, test_kv.first, true);
const std::vector<llama_token> res_nobos = llama_tokenize(ctx, test_kv.first, false);
printf("\n");
printf("src: '%s'\n", test_kv.first.c_str());
printf("res: '%s'\n", llama_detokenize_spm(ctx, res_bos).c_str());
printf("tok: ");
for (const auto & tok : res_bos) {
printf("%d ", tok);
}
printf("\n");
bool correct = res_nobos.size() == test_kv.second.size() && res_bos.size() == res_nobos.size() + 1 && res_bos[0] == 1;
for (int i = 0; i < (int) res_nobos.size() && correct; ++i) {
if (test_kv.second[i] != res_bos[i + 1]) {
correct = false;
}
if (test_kv.second[i] != res_nobos[i]) {
correct = false;
}
}
if (!correct) {
fprintf(stderr, "%s : failed test: '%s'\n", __func__, test_kv.first.c_str());
fprintf(stderr, "%s : detokenized to: '%s' instead of '%s'\n", __func__,
llama_detokenize_spm(ctx, res_nobos).c_str(),
llama_detokenize_spm(ctx, test_kv.second).c_str());
fprintf(stderr, "%s : expected tokens: ", __func__);
for (const auto & t : test_kv.second) {
fprintf(stderr, "%6d, ", t);
}
fprintf(stderr, "\n");
fprintf(stderr, "%s : got tokens: ", __func__);
for (const auto & t : res_nobos) {
fprintf(stderr, "%6d, ", t);
}
fprintf(stderr, "\n");
success = false;
}
}
if (!fname_text.empty()) {
fprintf(stderr, "%s : tokenizing: '%s'\n", __func__, fname_text.c_str());
std::string text;
{
std::ifstream ifs(fname_text);
if (!ifs) {
fprintf(stderr, "%s : error: could not open file '%s'\n", __func__, fname_text.c_str());
return 1;
}
text = std::string(std::istreambuf_iterator<char>(ifs), std::istreambuf_iterator<char>());
}
fprintf(stderr, "%s : text size: %zu\n", __func__, text.size());
const std::vector<llama_token> res = llama_tokenize(ctx, text, true);
fprintf(stderr, "%s : tokens: %zu\n", __func__, res.size());
{
const std::string fname_out = fname_text + ".tokcpp";
std::ofstream ofs(fname_out);
if (!ofs) {
fprintf(stderr, "%s : error: could not open file '%s'\n", __func__, fname_out.c_str());
return 1;
}
for (const auto & tok : res) {
ofs << tok << " ";
}
ofs << "\n";
}
fprintf(stderr, "%s : tokens written to '%s'\n", __func__, (fname_text + ".tokcpp").c_str());
}
llama_free_model(model);
llama_free(ctx);
llama_backend_free();
return success ? 0 : 3;
}

View file

@ -0,0 +1,95 @@
# tests with SPM tokenizer
import os
import sys
import argparse
from sentencepiece import SentencePieceProcessor
parser = argparse.ArgumentParser()
parser.add_argument("dir_tokenizer", help="directory containing 'tokenizer.model' file")
parser.add_argument("--fname-tok", help="path to a text file to tokenize")
args = parser.parse_args()
dir_tokenizer = args.dir_tokenizer
tokenizer = SentencePieceProcessor(dir_tokenizer + '/tokenizer.model')
tests = [
"",
" ",
" ",
" ",
"\t",
"\n",
"\t\n",
"Hello world",
" Hello world",
"Hello World",
" Hello World",
" Hello World!",
"Hello, world!",
" Hello, world!",
" this is 🦙.cpp",
"w048 7tuijk dsdfhu",
"нещо на Български",
"កាន់តែពិសេសអាចខលចេញ",
"🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)",
"Hello",
" Hello",
" Hello",
" Hello",
" Hello",
" Hello\n Hello",
]
for text in tests:
print('text: ', text)
print('\nwith bos:')
print(tokenizer.encode(text, add_bos=True))
print(tokenizer.decode(tokenizer.encode(text, add_bos=True)))
print('\nwithout bos:')
print(tokenizer.encode(text, add_bos=False))
print(tokenizer.decode(tokenizer.encode(text, add_bos=False)))
print("'" + tokenizer.id_to_piece(15043) + "'") # '_Hello'
print("'" + tokenizer.id_to_piece(29871) + "'") # '_'
print("'" + tokenizer.decode([15043]) + "'") # 'Hello'
print("'" + tokenizer.decode([15043, 15043]) + "'") # 'Hello Hello'
print("'" + tokenizer.decode([29871, 15043]) + "'") # ' Hello'
print("'" + tokenizer.decode([29871, 15043, 29871, 15043]) + "'") # ' Hello Hello'
print("\n\ntests for C++:\n")
for text in tests:
res = tokenizer.encode(text, add_bos=False)
k = text.replace('\n', '\\n')
k = k.replace('\t', '\\t')
k = '"' + k + '"'
print("{ %-24s, { " % k, end='')
for x in res:
print("%7d," % x, end='')
print(" }, },")
print(tokenizer.encode('hello'))
print(tokenizer.encode('world'))
print(tokenizer.encode(' world'))
print(tokenizer.encode('hello world'))
fname_tok = args.fname_tok
if fname_tok:
print('tokenizing file: ', fname_tok)
fname_out = fname_tok + '.tok'
with open(fname_tok, 'r') as f:
lines = f.readlines()
s = ''.join(lines)
res = tokenizer.encode(s, add_bos=True)
# write to file
with open(fname_out, 'w') as f:
for x in res:
f.write(str(x) + ' ')
f.write('\n')
print('len(res): ', len(res))
print('len(lines): ', len(lines))
print('results written to: ', fname_out)

View file

@ -1,140 +0,0 @@
#include "llama.h"
#include "common.h"
#include <cstdio>
#include <string>
#include <map>
#include <vector>
static std::string unescape_whitespace(llama_context* ctx, const std::vector<llama_token>& tokens) {
std::string result;
for (size_t i = 0; i < tokens.size(); ++i) {
result += llama_token_to_str(ctx, tokens[i]);
}
return result;
}
static const std::map<std::string, std::vector<llama_token>> & k_tests() {
static std::map<std::string, std::vector<llama_token>> _k_tests = {
{ " ", {1, 259, }, },
{ " ", { 1, 1678, }, },
{ " ", { 1, 268, }, },
{ "\t", { 1, 29871, 12, }, },
{ "\n", { 1, 29871, 13, }, },
{ "\t\n", { 1, 29871, 12, 13, }, },
{ "Hello world", { 1, 15043, 3186, }, },
{ " Hello world", { 1, 29871, 15043, 3186, }, },
{ "Hello World", { 1, 15043, 2787, }, },
{ " Hello World", { 1, 29871, 15043, 2787, }, },
{ " Hello World!", { 1, 29871, 15043, 2787, 29991, }, },
{ " this is 🦙.cpp", { 1, 29871, 445, 338, 29871, 243, 162, 169, 156, 29889, 8223, }, },
{ "w048 7tuijk dsdfhu", { 1, 281, 29900, 29946, 29947, 29871, 29955, 9161, 13535, 18031, 2176, 6905, }, },
{ "нещо на Български", { 1, 1538, 4851, 665, 1386, 29713, 1305, }, },
{ "កាន់តែពិសេសអាចខលចេញ", { 1, 29871, 31849, 31324, 31934, 228, 162, 142, 228, 161,
146, 228, 162, 133, 228, 161, 153, 228, 161, 186,
31708, 228, 162, 132, 31708, 228, 161, 165, 31324, 228,
161, 136, 228, 161, 132, 228, 161, 158, 228, 161,
136, 228, 162, 132, 228, 161, 140, }, },
{ "🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)",
{ 1, 29871, 243, 162, 157, 131, 313, 8945, 29897, 29871,
243, 162, 155, 185, 30722, 243, 162, 143, 174, 30598,
313, 20787, 953, 3848, 275, 16125, 630, 29897, 29871, 31681,
313, 6194, 953, 29877, 2397, 393, 756, 967, 1914, 5993, 29897, }, },
{ "Hello", { 1, 15043 }, },
{ " Hello", { 1, 29871, 15043 }, },
{ " Hello", { 1, 259, 15043 }, },
{ " Hello", { 1, 1678, 15043 }, },
{ " Hello", { 1, 268, 15043 }, },
{ " Hello\n Hello", { 1, 268, 15043, 13, 1678, 15043 }, },
};
return _k_tests;
}
int main(int argc, char **argv) {
if (argc < 2) {
fprintf(stderr, "Usage: %s <vocab-file>\n", argv[0]);
return 1;
}
const std::string fname = argv[1];
fprintf(stderr, "%s : reading vocab from: '%s'\n", __func__, fname.c_str());
llama_model * model;
llama_context * ctx;
llama_backend_init(false);
// load the vocab
{
auto lparams = llama_context_default_params();
lparams.vocab_only = true;
model = llama_load_model_from_file(fname.c_str(), lparams);
if (model == NULL) {
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
return 1;
}
ctx = llama_new_context_with_model(model, lparams);
if (ctx == NULL) {
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
llama_free_model(model);
return 1;
}
}
const int n_vocab = llama_n_vocab(ctx);
if (n_vocab != 32000) {
fprintf(stderr, "%s : expected 32000 tokens, got %d\n", __func__, n_vocab);
llama_free_model(model);
llama_free(ctx);
return 2;
}
bool success = true;
for (const auto & test_kv : k_tests()) {
std::vector<llama_token> res = llama_tokenize(ctx, test_kv.first, true);
fprintf(stderr, "%s : '%s' tokenized to '%s'\n",
__func__, test_kv.first.c_str(), unescape_whitespace(ctx, res).c_str());
bool correct = res.size() == test_kv.second.size();
for (int i = 0; i < (int) res.size() && correct; ++i) {
if (res[i] != test_kv.second[i]) {
correct = false;
}
}
if (!correct) {
fprintf(stderr, "%s : failed test: '%s'\n", __func__, test_kv.first.c_str());
fprintf(stderr, "%s : detokenized to: '%s' instead of '%s'\n", __func__,
unescape_whitespace(ctx, res).c_str(), unescape_whitespace(ctx, test_kv.second).c_str());
fprintf(stderr, "%s : expected tokens: ", __func__);
for (const auto & t : test_kv.second) {
fprintf(stderr, "%6d, ", t);
}
fprintf(stderr, "\n");
fprintf(stderr, "%s : got tokens: ", __func__);
for (const auto & t : res) {
fprintf(stderr, "%6d, ", t);
}
fprintf(stderr, "\n");
success = false;
}
}
llama_free_model(model);
llama_free(ctx);
llama_backend_free();
return success ? 0 : 3;
}

View file

@ -22,14 +22,6 @@ static std::string escape_whitespace(const std::string& text) {
return result; return result;
} }
static std::string unescape_whitespace(llama_context * ctx, const std::vector<llama_token> & tokens) {
std::string result;
for (size_t i = 0; i < tokens.size(); ++i) {
result += llama_token_to_str(ctx, tokens[i]);
}
return result;
}
int main(int argc, char **argv) { int main(int argc, char **argv) {
if (argc < 2) { if (argc < 2) {
fprintf(stderr, "Usage: %s <vocab-file>\n", argv[0]); fprintf(stderr, "Usage: %s <vocab-file>\n", argv[0]);
@ -72,13 +64,13 @@ int main(int argc, char **argv) {
const int n_vocab = llama_n_vocab(ctx); const int n_vocab = llama_n_vocab(ctx);
for (int i = 0; i < n_vocab; ++i) { for (int i = 0; i < n_vocab; ++i) {
std::string forward = llama_token_to_str(ctx, i); std::string forward = llama_token_to_piece(ctx, i);
std::vector<llama_token> tokens = llama_tokenize(ctx, forward, false); std::vector<llama_token> tokens = llama_tokenize(ctx, forward, false);
if (tokens.size() == 1) { if (tokens.size() == 1) {
if (i != tokens[0]) { if (i != tokens[0]) {
std::string backward = llama_token_to_str(ctx, tokens[0]); std::string backward = llama_token_to_piece(ctx, tokens[0]);
fprintf(stderr, "%s : error: token %d is string %s but bpe returns token %d %s\n", fprintf(stderr, "%s : error: token %d is string %s but bpe returns token %d %s\n",
__func__, i, llama_token_to_str(ctx, i).c_str(), tokens[0], backward.c_str()); __func__, i, llama_token_to_piece(ctx, i).c_str(), tokens[0], backward.c_str());
return 2; return 2;
} }
} }