llama : add OLMo November 2024 support (#10394)

* Add OLMo November 2024 constants

* Add OLMo November 2024 converter

* Add loading of OLMo November 2024 tensors and hyper parameters

* Add building of OLMo November 2024 model
This commit is contained in:
Shane A 2024-11-19 01:04:08 -08:00 committed by GitHub
parent 2a1507c162
commit a88ad007de
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
4 changed files with 223 additions and 14 deletions

View file

@ -243,6 +243,7 @@ class MODEL_ARCH(IntEnum):
COMMAND_R = auto()
DBRX = auto()
OLMO = auto()
OLMO_1124 = auto()
OLMOE = auto()
OPENELM = auto()
ARCTIC = auto()
@ -404,6 +405,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.COMMAND_R: "command-r",
MODEL_ARCH.DBRX: "dbrx",
MODEL_ARCH.OLMO: "olmo",
MODEL_ARCH.OLMO_1124: "olmo_1124",
MODEL_ARCH.OLMOE: "olmoe",
MODEL_ARCH.OPENELM: "openelm",
MODEL_ARCH.ARCTIC: "arctic",
@ -1069,6 +1071,22 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.OLMO_1124: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.ATTN_POST_NORM,
MODEL_TENSOR.ATTN_Q_NORM,
MODEL_TENSOR.ATTN_K_NORM,
MODEL_TENSOR.FFN_POST_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.OLMOE: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,

View file

@ -13,7 +13,7 @@ class TensorNameMap:
"transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais exaone
"transformer.word_embeddings", # falcon
"word_embeddings", # bloom
"model.embed_tokens", # llama-hf nemotron olmoe
"model.embed_tokens", # llama-hf nemotron olmoe olmo_1124
"tok_embeddings", # llama-pth
"embeddings.word_embeddings", # bert nomic-bert
"language_model.embedding.word_embeddings", # persimmon
@ -54,7 +54,7 @@ class TensorNameMap:
# Output
MODEL_TENSOR.OUTPUT: (
"embed_out", # gptneox
"lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe
"lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe olmo_1124
"output", # llama-pth bloom internlm2
"word_embeddings_for_head", # persimmon
"lm_head.linear", # phi2
@ -66,7 +66,7 @@ class TensorNameMap:
MODEL_TENSOR.OUTPUT_NORM: (
"gpt_neox.final_layer_norm", # gptneox
"transformer.ln_f", # gpt2 gpt-j falcon jais exaone
"model.norm", # llama-hf baichuan internlm2 olmoe
"model.norm", # llama-hf baichuan internlm2 olmoe olmo_1124
"norm", # llama-pth
"transformer.norm_f", # mpt dbrx
"ln_f", # refact bloom qwen gpt2
@ -145,7 +145,7 @@ class TensorNameMap:
# Attention query
MODEL_TENSOR.ATTN_Q: (
"model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron olmoe
"model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron olmoe olmo_1124
"layers.{bid}.attention.wq", # llama-pth
"encoder.layer.{bid}.attention.self.query", # bert
"transformer.h.{bid}.attn.q_proj", # gpt-j
@ -157,7 +157,7 @@ class TensorNameMap:
# Attention key
MODEL_TENSOR.ATTN_K: (
"model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron olmoe
"model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron olmoe olmo_1124
"layers.{bid}.attention.wk", # llama-pth
"encoder.layer.{bid}.attention.self.key", # bert
"transformer.h.{bid}.attn.k_proj", # gpt-j
@ -170,7 +170,7 @@ class TensorNameMap:
# Attention value
MODEL_TENSOR.ATTN_V: (
"model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe
"model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe olmo_1124
"layers.{bid}.attention.wv", # llama-pth
"encoder.layer.{bid}.attention.self.value", # bert
"transformer.h.{bid}.attn.v_proj", # gpt-j
@ -188,7 +188,7 @@ class TensorNameMap:
"transformer.blocks.{bid}.attn.out_proj", # mpt
"transformer.h.{bid}.self_attention.dense", # falcon
"h.{bid}.self_attention.dense", # bloom
"model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe
"model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe olmo_1124
"layers.{bid}.attention.wo", # llama-pth
"encoder.layer.{bid}.attention.output.dense", # bert
"transformer.h.{bid}.attn.out_proj", # gpt-j
@ -215,7 +215,7 @@ class TensorNameMap:
),
MODEL_TENSOR.ATTN_POST_NORM: (
"model.layers.{bid}.post_attention_layernorm", # gemma2
"model.layers.{bid}.post_attention_layernorm", # gemma2 olmo_1124
),
# Rotary embeddings
@ -250,7 +250,7 @@ class TensorNameMap:
# Post feed-forward norm
MODEL_TENSOR.FFN_POST_NORM: (
"model.layers.{bid}.post_feedforward_layernorm", # gemma2
"model.layers.{bid}.post_feedforward_layernorm", # gemma2 olmo_1124
),
MODEL_TENSOR.FFN_GATE_INP: (
@ -273,7 +273,7 @@ class TensorNameMap:
"transformer.blocks.{bid}.ffn.up_proj", # mpt
"transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
"h.{bid}.mlp.dense_h_to_4h", # bloom
"model.layers.{bid}.mlp.up_proj", # llama-hf refact nemotron
"model.layers.{bid}.mlp.up_proj", # llama-hf refact nemotron olmo_1124
"layers.{bid}.feed_forward.w3", # llama-pth
"encoder.layer.{bid}.intermediate.dense", # bert
"transformer.h.{bid}.mlp.fc_in", # gpt-j
@ -314,7 +314,7 @@ class TensorNameMap:
# Feed-forward gate
MODEL_TENSOR.FFN_GATE: (
"model.layers.{bid}.mlp.gate_proj", # llama-hf refact
"model.layers.{bid}.mlp.gate_proj", # llama-hf refact olmo_1124
"layers.{bid}.feed_forward.w1", # llama-pth
"transformer.h.{bid}.mlp.w2", # qwen
"transformer.h.{bid}.mlp.c_fc2", # jais
@ -346,7 +346,7 @@ class TensorNameMap:
"transformer.blocks.{bid}.ffn.down_proj", # mpt
"transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
"h.{bid}.mlp.dense_4h_to_h", # bloom
"model.layers.{bid}.mlp.down_proj", # llama-hf nemotron
"model.layers.{bid}.mlp.down_proj", # llama-hf nemotron olmo_1124
"layers.{bid}.feed_forward.w2", # llama-pth
"encoder.layer.{bid}.output.dense", # bert
"transformer.h.{bid}.mlp.fc_out", # gpt-j
@ -383,7 +383,7 @@ class TensorNameMap:
MODEL_TENSOR.ATTN_Q_NORM: (
"language_model.encoder.layers.{bid}.self_attention.q_layernorm",
"model.layers.{bid}.self_attn.q_layernorm", # persimmon
"model.layers.{bid}.self_attn.q_norm", # cohere olmoe chameleon
"model.layers.{bid}.self_attn.q_norm", # cohere olmoe chameleon olmo_1124
"transformer.blocks.{bid}.attn.q_ln", # sea-lion
"encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2
"transformer.layers.{bid}.attn.q_norm", # openelm
@ -392,7 +392,7 @@ class TensorNameMap:
MODEL_TENSOR.ATTN_K_NORM: (
"language_model.encoder.layers.{bid}.self_attention.k_layernorm",
"model.layers.{bid}.self_attn.k_layernorm", # persimmon
"model.layers.{bid}.self_attn.k_norm", # cohere olmoe chameleon
"model.layers.{bid}.self_attn.k_norm", # cohere olmoe chameleon olmo_1124
"transformer.blocks.{bid}.attn.k_ln", # sea-lion
"encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2
"transformer.layers.{bid}.attn.k_norm", # openelm