Add custom kq scaling from Gemma2Attention
This commit is contained in:
parent
6f2464e3dd
commit
a89427908d
4 changed files with 12 additions and 1 deletions
|
@ -2369,6 +2369,9 @@ class Gemma2Model(Model):
|
|||
self.gguf_writer.add_final_logit_softcapping(
|
||||
self.hparams["final_logit_softcapping"]
|
||||
)
|
||||
self.gguf_writer.add_query_pre_attn_scalar(
|
||||
self.hparams["query_pre_attn_scalar"]
|
||||
)
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
del bid # unusem
|
||||
|
|
|
@ -52,6 +52,7 @@ class Keys:
|
|||
DECODER_START_TOKEN_ID = "{arch}.decoder_start_token_id"
|
||||
ATTN_LOGIT_SOFTCAPPING = "{arch}.attn_logit_softcapping"
|
||||
FINAL_LOGIT_SOFTCAPPING = "{arch}.final_logit_softcapping"
|
||||
QUERY_PRE_ATTN_SCALAR = "{arch}.query_pre_attn_scalar"
|
||||
|
||||
class Attention:
|
||||
HEAD_COUNT = "{arch}.attention.head_count"
|
||||
|
|
|
@ -522,6 +522,9 @@ class GGUFWriter:
|
|||
def add_final_logit_softcapping(self, value: float) -> None:
|
||||
self.add_float32(Keys.LLM.FINAL_LOGIT_SOFTCAPPING.format(arch=self.arch), value)
|
||||
|
||||
def add_query_pre_attn_scalar(self, value: float) -> None:
|
||||
self.add_float32(Keys.LLM.QUERY_PRE_ATTN_SCALAR.format(arch=self.arch), value)
|
||||
|
||||
def add_expert_count(self, count: int) -> None:
|
||||
self.add_uint32(Keys.LLM.EXPERT_COUNT.format(arch=self.arch), count)
|
||||
|
||||
|
|
|
@ -304,6 +304,7 @@ enum llm_kv {
|
|||
LLM_KV_DECODER_START_TOKEN_ID,
|
||||
LLM_KV_ATTN_LOGIT_SOFTCAPPING,
|
||||
LLM_KV_FINAL_LOGIT_SOFTCAPPING,
|
||||
LLM_KV_QUERY_PRE_ATTN_SCALAR,
|
||||
|
||||
LLM_KV_ATTENTION_HEAD_COUNT,
|
||||
LLM_KV_ATTENTION_HEAD_COUNT_KV,
|
||||
|
@ -396,6 +397,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
|
|||
{ LLM_KV_DECODER_START_TOKEN_ID, "%s.decoder_start_token_id" },
|
||||
{ LLM_KV_ATTN_LOGIT_SOFTCAPPING, "%s.attn_logit_softcapping" },
|
||||
{ LLM_KV_FINAL_LOGIT_SOFTCAPPING, "%s.final_logit_softcapping" },
|
||||
{ LLM_KV_QUERY_PRE_ATTN_SCALAR, "%s.query_pre_attn_scalar" },
|
||||
|
||||
{ LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
|
||||
{ LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
|
||||
|
@ -2105,6 +2107,7 @@ struct llama_hparams {
|
|||
|
||||
float f_attn_logit_softcapping = 50.0f;
|
||||
float f_final_logit_softcapping = 30.0f;
|
||||
float f_query_pre_attn_scalar = 144.0f;
|
||||
|
||||
float rope_attn_factor = 1.0f;
|
||||
float rope_freq_base_train;
|
||||
|
@ -4712,6 +4715,7 @@ static void llm_load_hparams(
|
|||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
ml.get_key(LLM_KV_ATTN_LOGIT_SOFTCAPPING, hparams.f_attn_logit_softcapping, false);
|
||||
ml.get_key(LLM_KV_FINAL_LOGIT_SOFTCAPPING, hparams.f_final_logit_softcapping, false);
|
||||
ml.get_key(LLM_KV_QUERY_PRE_ATTN_SCALAR, hparams.f_query_pre_attn_scalar, false);
|
||||
hparams.attn_soft_cap = true;
|
||||
|
||||
switch (hparams.n_layer) {
|
||||
|
@ -10948,7 +10952,7 @@ struct llm_build_context {
|
|||
ext_factor, attn_factor, beta_fast, beta_slow);
|
||||
cb(Qcur, "Qcur", il);
|
||||
|
||||
Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
|
||||
Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(hparams.f_query_pre_attn_scalar));
|
||||
cb(Qcur, "Qcur_scaled", il);
|
||||
|
||||
Kcur = ggml_rope_ext(
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue