diff --git a/ggml-cuda.cu b/ggml-cuda.cu index f2630ec8e..688bcf799 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -42,19 +42,19 @@ typedef void (*dequantize_mul_mat_vec_cuda_t)(const void * vx, const float * y, #define QK4_0 32 #define QR4_0 2 typedef struct { - float d; // delta + half d; // delta uint8_t qs[QK4_0 / 2]; // nibbles / quants } block_q4_0; -static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding"); +static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding"); #define QK4_1 32 #define QR4_1 2 typedef struct { - float d; // delta - float m; // min + half d; // delta + half m; // min uint8_t qs[QK4_1 / 2]; // nibbles / quants } block_q4_1; -static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding"); +static_assert(sizeof(block_q4_1) == sizeof(ggml_fp16_t) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding"); #define QK5_0 32 #define QR5_0 2 @@ -78,10 +78,10 @@ static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + #define QK8_0 32 #define QR8_0 1 typedef struct { - float d; // delta + half d; // delta int8_t qs[QK8_0]; // quants } block_q8_0; -static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding"); +static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding"); #define CUDA_DEQUANTIZE_BLOCK_SIZE 256 #define CUDA_DMMV_BLOCK_SIZE 32 // dmmv = dequantize_mul_mat_vec diff --git a/ggml-opencl.cpp b/ggml-opencl.cpp index 3b5c1511e..1791fb2f6 100644 --- a/ggml-opencl.cpp +++ b/ggml-opencl.cpp @@ -813,7 +813,7 @@ bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tens if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32 && - ((GetQuantsUnshuffled() && GetGPULayers()>0 && ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_CL)) { + ((GetQuantsUnshuffled() && ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_CL)) { return true; } diff --git a/ggml.c b/ggml.c index b521f7932..1cb89636a 100644 --- a/ggml.c +++ b/ggml.c @@ -137,14 +137,15 @@ inline static void* ggml_aligned_malloc(size_t size) { #if defined(GGML_USE_ACCELERATE) #include +#if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions +#include "ggml-opencl.h" +#endif #elif defined(GGML_USE_OPENBLAS) #include #elif defined(GGML_USE_CUBLAS) #include "ggml-cuda.h" -#endif -#if defined(GGML_USE_CLBLAST) +#elif defined(GGML_USE_CLBLAST) #include "ggml-opencl.h" -#include "ggml-opencl-legacy.h" #endif #undef MIN @@ -394,6 +395,7 @@ void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n) { } } + // // timing // @@ -767,18 +769,18 @@ int32x4_t vcvtnq_s32_f32(float32x4_t v) { #define QK4_0 32 typedef struct { - float d; // delta + ggml_fp16_t d; // delta uint8_t qs[QK4_0 / 2]; // nibbles / quants } block_q4_0; -static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding"); +static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding"); #define QK4_1 32 typedef struct { - float d; // delta - float m; // min + ggml_fp16_t d; // delta + ggml_fp16_t m; // min uint8_t qs[QK4_1 / 2]; // nibbles / quants } block_q4_1; -static_assert(sizeof(block_q4_1) == 2 * sizeof(float) + QK4_1 / 2, "wrong q4_1 block size/padding"); +static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding"); #define QK5_0 32 typedef struct { @@ -799,44 +801,19 @@ static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + #define QK8_0 32 typedef struct { - float d; // delta - int8_t qs[QK8_0]; // quants + ggml_fp16_t d; // delta + int8_t qs[QK8_0]; // quants } block_q8_0; -static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding"); +static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding"); #define QK8_1 32 typedef struct { - float d; // delta - float s; // d * sum(qs[i]) - int8_t qs[QK8_1]; // quants + float d; // delta + float s; // d * sum(qs[i]) + int8_t qs[QK8_1]; // quants } block_q8_1; static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding"); -#define QK4_2 16 -typedef struct { - ggml_fp16_t d; // delta - uint8_t qs[QK4_2 / 2]; // nibbles / quants -} block_q4_2; -static_assert(sizeof(block_q4_2) == sizeof(ggml_fp16_t) + QK4_2 / 2, "wrong q4_2 block size/padding"); - -#define QK4_3 16 -typedef struct { - ggml_fp16_t d; // delta - ggml_fp16_t m; // min - uint8_t qs[QK4_3 / 2]; // nibbles / quants -} block_q4_3; -static_assert(sizeof(block_q4_3) == 2 * sizeof(ggml_fp16_t) + QK4_3 / 2, "wrong q4_3 block size/padding"); - -#define QK8_1 32 -typedef struct { - float d; // delta - float s0; // d * sum(qs[i]) low - float s1; // d * sum(qs[i]) high - int8_t qs[QK8_1]; // quants -} block_q8_1_v2; -static_assert(sizeof(block_q8_1_v2) == 3*sizeof(float) + QK8_1, "wrong q8_1 block size/padding"); - - // reference implementation for deterministic creation of model files static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) { static const int qk = QK4_0; @@ -860,7 +837,7 @@ static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * r const float d = max / -8; const float id = d ? 1.0f/d : 0.0f; - y[i].d = d; + y[i].d = GGML_FP32_TO_FP16(d); for (int j = 0; j < qk/2; ++j) { const float x0 = x[i*qk + 0 + j]*id; @@ -900,8 +877,8 @@ static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * r const float d = (max - min) / ((1 << 4) - 1); const float id = d ? 1.0f/d : 0.0f; - y[i].d = d; - y[i].m = min; + y[i].d = GGML_FP32_TO_FP16(d); + y[i].m = GGML_FP32_TO_FP16(min); for (int j = 0; j < qk/2; ++j) { const float x0 = (x[i*qk + 0 + j] - min)*id; @@ -1032,7 +1009,7 @@ static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * r const float d = amax / ((1 << 7) - 1); const float id = d ? 1.0f/d : 0.0f; - y[i].d = d; + y[i].d = GGML_FP32_TO_FP16(d); for (int j = 0; j < QK8_0; ++j) { const float x0 = x[i*QK8_0 + j]*id; @@ -1067,7 +1044,7 @@ static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int const float d = amax / ((1 << 7) - 1); const float id = d ? 1.0f/d : 0.0f; - y[i].d = d; + y[i].d = GGML_FP32_TO_FP16(d); for (int j = 0; j < 8; j++) { const float32x4_t v = vmulq_n_f32(srcv[j], id); @@ -1102,7 +1079,7 @@ static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int // Quantize these floats const float d = maxScalar / 127.f; - y[i].d = d; + y[i].d = GGML_FP32_TO_FP16(d); const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f; const __m256 mul = _mm256_set1_ps( id ); @@ -1201,7 +1178,7 @@ static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * r sum += y[i].qs[QK8_1/2 + j]; } - y[i].s = d * sum; + y[i].s = sum*d; } } @@ -1353,7 +1330,7 @@ static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict const int nb = k / qk; for (int i = 0; i < nb; i++) { - const float d = x[i].d; + const float d = GGML_FP16_TO_FP32(x[i].d); for (int j = 0; j < qk/2; ++j) { const int x0 = (x[i].qs[j] & 0x0F) - 8; @@ -1373,8 +1350,8 @@ static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict const int nb = k / qk; for (int i = 0; i < nb; i++) { - const float d = x[i].d; - const float m = x[i].m; + const float d = GGML_FP16_TO_FP32(x[i].d); + const float m = GGML_FP16_TO_FP32(x[i].m); for (int j = 0; j < qk/2; ++j) { const int x0 = (x[i].qs[j] & 0x0F); @@ -1449,7 +1426,7 @@ static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, in const block_q8_0 * restrict x = vx; for (int i = 0; i < nb; i++) { - const float d = x[i].d; + const float d = GGML_FP16_TO_FP32(x[i].d); for (int j = 0; j < qk; ++j) { y[i*qk + j] = x[i].qs[j]*d; @@ -1520,13 +1497,6 @@ quantize_fns_t ggml_internal_get_quantize_fn(size_t i) { return quantize_fns[i]; } -bool quants_unshuffled = false; //new GGJT_2 is unshuffled, all old ones are shuffled -static const quantize_fns_t quantize_fns_v2[GGML_TYPE_COUNT]; //forward decl -static inline quantize_fns_t get_quantize_fn(size_t i) -{ - return(quants_unshuffled?quantize_fns[i]:quantize_fns_v2[i]); -} - // // simd mappings @@ -1720,8 +1690,9 @@ static inline quantize_fns_t get_quantize_fn(size_t i) static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) { float tmp[8]; - for (int i = 0; i < 8; i++) + for (int i = 0; i < 8; i++) { tmp[i] = GGML_FP16_TO_FP32(x[i]); + } return _mm256_loadu_ps(tmp); } @@ -2141,8 +2112,8 @@ static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * const block_q8_0 * restrict y0 = &y[i + 0]; const block_q8_0 * restrict y1 = &y[i + 1]; - const uint8x16_t m4b = vdupq_n_u8(0x0F); - const int8x16_t s8b = vdupq_n_s8(0x8); + const uint8x16_t m4b = vdupq_n_u8(0x0F); + const int8x16_t s8b = vdupq_n_s8(0x8); const uint8x16_t v0_0 = vld1q_u8(x0->qs); const uint8x16_t v0_1 = vld1q_u8(x1->qs); @@ -2170,8 +2141,8 @@ static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h); const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h); - sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d); - sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d); + sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d)); + sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d)); #else const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l)); const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l)); @@ -2188,8 +2159,8 @@ static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h)); const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h)); - sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d); - sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d); + sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d)); + sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d)); #endif } @@ -2201,7 +2172,7 @@ static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * // Main loop for (int i = 0; i < nb; ++i) { /* Compute combined scale for the block */ - const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) ); + const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) ); __m256i bx = bytes_from_nibbles_32(x[i].qs); @@ -2225,7 +2196,7 @@ static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * // Main loop for (int i = 0; i < nb; ++i) { // Compute combined scale for the block - const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) ); + const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) ); const __m128i lowMask = _mm_set1_epi8(0xF); const __m128i off = _mm_set1_epi8(8); @@ -2267,7 +2238,7 @@ static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0); // Compute combined scale for the block 0 and 1 - const __m128 d_0_1 = _mm_mul_ps( _mm_set1_ps( x[0].d ), _mm_set1_ps( y[0].d ) ); + const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) ); const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs); @@ -2285,7 +2256,7 @@ static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0); // Compute combined scale for the block 2 and 3 - const __m128 d_2_3 = _mm_mul_ps( _mm_set1_ps( x[1].d ), _mm_set1_ps( y[1].d ) ); + const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) ); const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs); @@ -2318,7 +2289,7 @@ static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0); // Compute combined scale for the block 0 and 1 - const __m128 d_0_1 = _mm_mul_ps( _mm_set1_ps( x[i].d ), _mm_set1_ps( y[i].d ) ); + const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) ); const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs); @@ -2336,7 +2307,7 @@ static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0); // Compute combined scale for the block 2 and 3 - const __m128 d_2_3 = _mm_mul_ps( _mm_set1_ps( x[i + 1].d ), _mm_set1_ps( y[i + 1].d ) ); + const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) ); const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs); @@ -2384,7 +2355,7 @@ static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]); } - sumf += (x[i].d*y[i].d)*sumi; + sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d); } *s = sumf; @@ -2414,7 +2385,7 @@ static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * const block_q8_1 * restrict y0 = &y[i + 0]; const block_q8_1 * restrict y1 = &y[i + 1]; - summs += x0->m * y0->s + x1->m * y1->s; + summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s; const uint8x16_t m4b = vdupq_n_u8(0x0F); @@ -2438,8 +2409,8 @@ static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h); const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h); - sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d); - sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d); + sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d); + sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d); #else const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l)); const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l)); @@ -2456,8 +2427,8 @@ static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h)); const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h)); - sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d); - sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d); + sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d); + sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d); #endif } @@ -2470,13 +2441,13 @@ static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * // Main loop for (int i = 0; i < nb; ++i) { - const float * d0 = &x[i].d; - const float * d1 = &y[i].d; + const float d0 = GGML_FP16_TO_FP32(x[i].d); + const float d1 = y[i].d; - summs += x[i].m * y[i].s; + summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s; - const __m256 d0v = _mm256_broadcast_ss( d0 ); - const __m256 d1v = _mm256_broadcast_ss( d1 ); + const __m256 d0v = _mm256_set1_ps( d0 ); + const __m256 d1v = _mm256_set1_ps( d1 ); // Compute combined scales const __m256 d0d1 = _mm256_mul_ps( d0v, d1v ); @@ -2510,7 +2481,7 @@ static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]); } - sumf += (x[i].d*y[i].d)*sumi + x[i].m*y[i].s; + sumf += (GGML_FP16_TO_FP32(x[i]).d*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s; } *s = sumf; @@ -2586,16 +2557,13 @@ static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * const int8x16_t v1_1l = vld1q_s8(y1->qs); const int8x16_t v1_1h = vld1q_s8(y1->qs + 16); - const float x0d = GGML_FP16_TO_FP32(x0->d); - const float x1d = GGML_FP16_TO_FP32(x1->d); - #if defined(__ARM_FEATURE_DOTPROD) sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32( vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l), - vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), x0d*y0->d); + vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d)); sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32( vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l), - vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), x1d*y1->d); + vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d)); #else const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l)); const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l)); @@ -2612,8 +2580,8 @@ static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h)); const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h)); - sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d); - sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1d*y1->d); + sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d)); + sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d)); #endif } @@ -2688,7 +2656,7 @@ static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * // Main loop for (int i = 0; i < nb; i++) { /* Compute combined scale for the block */ - const __m256 d = _mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d)), _mm256_broadcast_ss(&y[i].d)); + const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d)); __m256i bx = bytes_from_nibbles_32(x[i].qs); __m256i bxhi = bytes_from_bits_32(x[i].qh); @@ -2712,7 +2680,7 @@ static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * // Main loop for (int i = 0; i < nb; i++) { /* Compute combined scale for the block */ - const __m256 d = _mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d)), _mm256_broadcast_ss(&y[i].d)); + const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d)); __m256i bx = bytes_from_nibbles_32(x[i].qs); const __m256i bxhi = bytes_from_bits_32(x[i].qh); @@ -2755,7 +2723,7 @@ static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]); } - sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi; + sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi; } *s = sumf; @@ -2837,16 +2805,13 @@ static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * const int8x16_t v1_1l = vld1q_s8(y1->qs); const int8x16_t v1_1h = vld1q_s8(y1->qs + 16); - const float x0d = GGML_FP16_TO_FP32(x0->d); - const float x1d = GGML_FP16_TO_FP32(x1->d); - #if defined(__ARM_FEATURE_DOTPROD) sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32( vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l), - vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), x0d*y0->d); + vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d); sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32( vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l), - vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), x1d*y1->d); + vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d); #else const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l)); const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l)); @@ -2863,8 +2828,8 @@ static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h)); const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h)); - sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d); - sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1d*y1->d); + sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d); + sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d); #endif } @@ -2924,15 +2889,14 @@ static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h); const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h); - const float x0d = GGML_FP16_TO_FP32(x0->d); - // dot product - sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4( - wasm_i32x4_add( - wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll), - wasm_i32x4_dot_i16x8(v0lfh, v1lh)), - wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl), - wasm_i32x4_dot_i16x8(v0hfh, v1hh)))), wasm_f32x4_splat(x0d*y0->d))); + sumv = wasm_f32x4_add(sumv, + wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add( + wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll), + wasm_i32x4_dot_i16x8(v0lfh, v1lh)), + wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl), + wasm_i32x4_dot_i16x8(v0hfh, v1hh)))), + wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)); } *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) + @@ -2954,7 +2918,7 @@ static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10)); bx = _mm256_or_si256(bx, bxhi); - const __m256 dy = _mm256_broadcast_ss(&y[i].d); + const __m256 dy = _mm256_set1_ps(y[i].d); const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs); const __m256 q = mul_sum_us8_pairs_float(bx, by); @@ -2988,7 +2952,7 @@ static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * bxh = _mm_or_si128(bxh, bxhih); bx = _mm256_set_m128i(bxh, bxl); - const __m256 dy = _mm256_broadcast_ss(&y[i].d); + const __m256 dy = _mm256_set1_ps(y[i].d); const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs); const __m256 q = mul_sum_us8_pairs_float(bx, by); @@ -3058,11 +3022,11 @@ static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * #if defined(__ARM_FEATURE_DOTPROD) sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32( vdotq_s32(vdupq_n_s32(0), x0_0, y0_0), - vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), x0->d*y0->d); + vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d)); sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32( vdotq_s32(vdupq_n_s32(0), x1_0, y1_0), - vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), x1->d*y1->d); + vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d)); #else const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0)); @@ -3080,8 +3044,8 @@ static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1)); const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3)); - sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), x0->d*y0->d); - sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), x1->d*y1->d); + sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d)); + sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d)); #endif } @@ -3093,7 +3057,7 @@ static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * // Main loop for (int i = 0; i < nb; ++i) { // Compute combined scale for the block - const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) ); + const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d)); __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs); __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs); @@ -3119,7 +3083,7 @@ static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * sumi += x[i].qs[j]*y[i].qs[j]; } - sumf += (x[i].d*y[i].d)*sumi; + sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)); } *s = sumf; @@ -3404,36 +3368,30 @@ static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = { [GGML_TYPE_F16] = 1, [GGML_TYPE_Q4_0] = QK4_0, [GGML_TYPE_Q4_1] = QK4_1, - [GGML_TYPE_Q4_2] = QK4_2, - [GGML_TYPE_Q4_3] = QK4_3, [GGML_TYPE_Q5_0] = QK5_0, [GGML_TYPE_Q5_1] = QK5_1, [GGML_TYPE_Q8_0] = QK8_0, [GGML_TYPE_Q8_1] = QK8_1, - [GGML_TYPE_Q8_1B] = QK8_1, [GGML_TYPE_I8] = 1, [GGML_TYPE_I16] = 1, [GGML_TYPE_I32] = 1, }; -static_assert(GGML_TYPE_COUNT == 14, "GGML_BLCK_SIZE is outdated"); +static_assert(GGML_TYPE_COUNT == 13, "GGML_BLCK_SIZE is outdated"); static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = { [GGML_TYPE_F32] = sizeof(float), [GGML_TYPE_F16] = sizeof(ggml_fp16_t), [GGML_TYPE_Q4_0] = sizeof(block_q4_0), [GGML_TYPE_Q4_1] = sizeof(block_q4_1), - [GGML_TYPE_Q4_2] = sizeof(block_q4_2), - [GGML_TYPE_Q4_3] = sizeof(block_q4_3), [GGML_TYPE_Q5_0] = sizeof(block_q5_0), [GGML_TYPE_Q5_1] = sizeof(block_q5_1), [GGML_TYPE_Q8_0] = sizeof(block_q8_0), [GGML_TYPE_Q8_1] = sizeof(block_q8_1), - [GGML_TYPE_Q8_1B] = sizeof(block_q8_1_v2), [GGML_TYPE_I8] = sizeof(int8_t), [GGML_TYPE_I16] = sizeof(int16_t), [GGML_TYPE_I32] = sizeof(int32_t), }; -static_assert(GGML_TYPE_COUNT == 14, "GGML_TYPE_SIZE is outdated"); +static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_SIZE is outdated"); static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = { @@ -3441,36 +3399,30 @@ static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = { [GGML_TYPE_F16] = "f16", [GGML_TYPE_Q4_0] = "q4_0", [GGML_TYPE_Q4_1] = "q4_1", - [GGML_TYPE_Q4_2] = "q4_2", - [GGML_TYPE_Q4_3] = "q4_3", [GGML_TYPE_Q5_0] = "q5_0", [GGML_TYPE_Q5_1] = "q5_1", [GGML_TYPE_Q8_0] = "q8_0", [GGML_TYPE_Q8_1] = "q8_1", - [GGML_TYPE_Q8_1B] = "q8_1b", [GGML_TYPE_I8] = "i8", [GGML_TYPE_I16] = "i16", [GGML_TYPE_I32] = "i32", }; -static_assert(GGML_TYPE_COUNT == 14, "GGML_TYPE_NAME is outdated"); +static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_NAME is outdated"); static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = { [GGML_TYPE_F32] = false, [GGML_TYPE_F16] = false, [GGML_TYPE_Q4_0] = true, [GGML_TYPE_Q4_1] = true, - [GGML_TYPE_Q4_2] = true, - [GGML_TYPE_Q4_3] = true, [GGML_TYPE_Q5_0] = true, [GGML_TYPE_Q5_1] = true, [GGML_TYPE_Q8_0] = true, [GGML_TYPE_Q8_1] = true, - [GGML_TYPE_Q8_1B] = true, [GGML_TYPE_I8] = false, [GGML_TYPE_I16] = false, [GGML_TYPE_I32] = false, }; -static_assert(GGML_TYPE_COUNT == 14, "GGML_IS_QUANTIZED is outdated"); +static_assert(GGML_TYPE_COUNT == 13, "GGML_IS_QUANTIZED is outdated"); static const char * GGML_OP_LABEL[GGML_OP_COUNT] = { "NONE", @@ -3768,8 +3720,6 @@ enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) { case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break; case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break; case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break; - case GGML_FTYPE_MOSTLY_Q4_2: wtype = GGML_TYPE_Q4_2; break; - case GGML_FTYPE_MOSTLY_Q4_3: wtype = GGML_TYPE_Q4_3; break; case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break; case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break; case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break; @@ -3895,14 +3845,7 @@ struct ggml_context * ggml_init(struct ggml_init_params params) { #if defined(GGML_USE_CUBLAS) ggml_init_cublas(); #elif defined(GGML_USE_CLBLAST) - if(quants_unshuffled) - { - ggml_cl_init(); - } - else - { - ggml_cl_init_legacy(); - } + ggml_cl_init(); #endif is_first_call = false; @@ -6640,7 +6583,7 @@ static void ggml_compute_forward_dup_f16( } } } else if (ggml_is_quantized(dst->type)) { - quantize_row_q_t const quantize_row_q = get_quantize_fn(dst->type).quantize_row_q; + quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q; float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith; size_t id = 0; @@ -6929,7 +6872,7 @@ static void ggml_compute_forward_dup_f32( } } } else if (ggml_is_quantized(dst->type)) { - quantize_row_q_t const quantize_row_q = get_quantize_fn(dst->type).quantize_row_q; + quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q; size_t id = 0; size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]); @@ -7400,8 +7343,8 @@ static void ggml_compute_forward_add_q_f32( const int nth = params->nth; const enum ggml_type type = src0->type; - dequantize_row_q_t const dequantize_row_q = get_quantize_fn(type).dequantize_row_q; - quantize_row_q_t const quantize_row_q = get_quantize_fn(type).quantize_row_q; + dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q; + quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q; // we don't support permuted src0 or src1 GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]); @@ -7479,8 +7422,6 @@ static void ggml_compute_forward_add( } break; case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: - case GGML_TYPE_Q4_2: - case GGML_TYPE_Q4_3: case GGML_TYPE_Q5_0: case GGML_TYPE_Q5_1: case GGML_TYPE_Q8_0: @@ -7715,8 +7656,8 @@ static void ggml_compute_forward_add1_q_f32( const size_t nb3 = dst->nb[3]; const enum ggml_type type = src0->type; - dequantize_row_q_t const dequantize_row_q = get_quantize_fn(type).dequantize_row_q; - quantize_row_q_t const quantize_row_q = get_quantize_fn(type).quantize_row_q; + dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q; + quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q; // we don't support permuted src0 GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]); @@ -9453,16 +9394,9 @@ static void ggml_compute_forward_mul_mat_f32( } return; } -#elif defined(GGML_USE_CLBLAST) - if (ggml_cl_can_mul_mat(src0, src1, dst)) { - if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) { - ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize); - } - return; - } #endif -#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)|| defined(GGML_USE_CLBLAST) +#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST) if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) { if (params->ith != 0) { return; @@ -9484,24 +9418,12 @@ static void ggml_compute_forward_mul_mat_f32( #if defined(GGML_USE_CLBLAST) // zT = y * xT - if(quants_unshuffled) - { ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T, ne11, ne01, ne10, 1.0f, y, ne10, x, ne10, 0.0f, d, ne01, GGML_TYPE_F32); - } - else - { - ggml_cl_sgemm_wrapper_legacy(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T, - ne11, ne01, ne10, - 1.0f, y, ne10, - x, ne10, - 0.0f, d, ne01, - GGML_TYPE_F32); - } #else cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans, ne11, ne01, ne10, @@ -9647,16 +9569,9 @@ static void ggml_compute_forward_mul_mat_f16_f32( } return; } -#elif defined(GGML_USE_CLBLAST) - if (ggml_cl_can_mul_mat(src0, src1, dst)) { - if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) { - ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize); - } - return; - } #endif -#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)|| defined(GGML_USE_CLBLAST) +#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST) if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) { GGML_ASSERT(nb10 == sizeof(float)); @@ -9693,24 +9608,12 @@ static void ggml_compute_forward_mul_mat_f16_f32( float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); // zT = y * xT - if(quants_unshuffled) - { ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T, ne11, ne01, ne10, 1.0f, y, ne10, x, ne10, 0.0f, d, ne01, GGML_TYPE_F32); - } - else - { - ggml_cl_sgemm_wrapper_legacy(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T, - ne11, ne01, ne10, - 1.0f, y, ne10, - x, ne10, - 0.0f, d, ne01, - GGML_TYPE_F32); - } #else const float * x = wdata; const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13); @@ -9857,9 +9760,9 @@ static void ggml_compute_forward_mul_mat_q_f32( GGML_ASSERT(ne3 == ne13); const enum ggml_type type = src0->type; - quantize_row_q_t const quantize_row_q_dot = get_quantize_fn(type).quantize_row_q_dot; - vec_dot_q_t const vec_dot_q = get_quantize_fn(type).vec_dot_q; - enum ggml_type const vec_dot_type = get_quantize_fn(type).vec_dot_type; + quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot; + vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q; + enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type; // we don't support permuted src0 or src1 GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]); @@ -9886,16 +9789,9 @@ static void ggml_compute_forward_mul_mat_q_f32( } return; } -#elif defined(GGML_USE_CLBLAST) - if (ggml_cl_can_mul_mat(src0, src1, dst)) { - if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) { - ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize); - } - return; - } #endif -#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)|| defined(GGML_USE_CLBLAST) +#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST) if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) { if (params->ith != 0) { return; @@ -9910,7 +9806,7 @@ static void ggml_compute_forward_mul_mat_q_f32( } float * const wdata = params->wdata; - dequantize_row_q_t const dequantize_row_q = get_quantize_fn(type).dequantize_row_q; + dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q; for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i02 = 0; i02 < ne02; i02++) { @@ -9936,24 +9832,12 @@ static void ggml_compute_forward_mul_mat_q_f32( #if defined(GGML_USE_CLBLAST) // zT = y * xT - if(quants_unshuffled) - { ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T, ne11, ne01, ne10, 1.0f, y, ne10, x, ne10, 0.0f, d, ne01, type); - } - else - { - ggml_cl_sgemm_wrapper_legacy(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T, - ne11, ne01, ne10, - 1.0f, y, ne10, - x, ne10, - 0.0f, d, ne01, - type); - } #else cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans, ne11, ne01, ne10, @@ -10051,13 +9935,10 @@ static void ggml_compute_forward_mul_mat( switch (src0->type) { case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: - case GGML_TYPE_Q4_2: - case GGML_TYPE_Q4_3: case GGML_TYPE_Q5_0: case GGML_TYPE_Q5_1: case GGML_TYPE_Q8_0: case GGML_TYPE_Q8_1: - case GGML_TYPE_Q8_1B: { ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst); } break; @@ -10324,7 +10205,7 @@ static void ggml_compute_forward_get_rows_q( const int nc = src0->ne[0]; const int nr = ggml_nelements(src1); const enum ggml_type type = src0->type; - dequantize_row_q_t const dequantize_row_q = get_quantize_fn(type).dequantize_row_q; + dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q; assert( dst->ne[0] == nc); assert( dst->ne[1] == nr); @@ -10402,13 +10283,10 @@ static void ggml_compute_forward_get_rows( switch (src0->type) { case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: - case GGML_TYPE_Q4_2: - case GGML_TYPE_Q4_3: case GGML_TYPE_Q5_0: case GGML_TYPE_Q5_1: case GGML_TYPE_Q8_0: case GGML_TYPE_Q8_1: - case GGML_TYPE_Q8_1B: { ggml_compute_forward_get_rows_q(params, src0, src1, dst); } break; @@ -10948,13 +10826,10 @@ static void ggml_compute_forward_alibi( } break; case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: - case GGML_TYPE_Q4_2: - case GGML_TYPE_Q4_3: case GGML_TYPE_Q5_0: case GGML_TYPE_Q5_1: case GGML_TYPE_Q8_0: case GGML_TYPE_Q8_1: - case GGML_TYPE_Q8_1B: case GGML_TYPE_I8: case GGML_TYPE_I16: case GGML_TYPE_I32: @@ -14066,16 +13941,9 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) cur = ggml_cuda_mul_mat_get_wsize(node->src0, node->src1, node); } else -#elif defined(GGML_USE_CLBLAST) - if (ggml_cl_can_mul_mat(node->src0, node->src1, node)) { - node->n_tasks = 1; // TODO: this actually is doing nothing - // the threads are still spinning - cur = ggml_cl_mul_mat_get_wsize(node->src0, node->src1, node); - } - else #endif if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) { -#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)|| defined(GGML_USE_CLBLAST) +#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST) if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) { node->n_tasks = 1; // TODO: this actually is doing nothing // the threads are still spinning @@ -14102,7 +13970,7 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) } else #endif { - const enum ggml_type type_q = get_quantize_fn(node->src0->type).vec_dot_type; + const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type; cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q]; } } else { @@ -15601,2981 +15469,3 @@ int ggml_cpu_has_vsx(void) { } //////////////////////////////////////////////////////////////////////////////// - -//legacy functions -// quantization -// - -#if __AVX__ || __AVX2__ || __AVX512F__ -// Unpack 16 4-bit fields into 16 bytes -// The output vector contains 16 bytes, each one in [ 0 .. 15 ] interval -static inline __m128i bytes_from_nibbles_16(const uint8_t * rsi) -{ - // Load 8 bytes from memory - __m128i tmp = _mm_loadl_epi64( ( const __m128i* )rsi ); - - // Expand bytes into uint16_t values - __m128i bytes = _mm_cvtepu8_epi16( tmp ); - - // Unpack values into individual bytes - const __m128i lowMask = _mm_set1_epi8( 0xF ); - __m128i high = _mm_andnot_si128( lowMask, bytes ); - __m128i low = _mm_and_si128( lowMask, bytes ); - high = _mm_slli_epi16( high, 4 ); - bytes = _mm_or_si128( low, high ); - return bytes; -} - - - -#if __AVX2__ || __AVX512F__ - -// Unpack 32 4-bit fields into 32 bytes -// The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval -static inline __m256i bytes_from_nibbles_32_v2(const uint8_t * rsi) -{ - // Load 16 bytes from memory - __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi ); - - // Expand bytes into uint16_t values - __m256i bytes = _mm256_cvtepu8_epi16( tmp ); - - // Unpack values into individual bytes - const __m256i lowMask = _mm256_set1_epi8( 0xF ); - __m256i high = _mm256_andnot_si256( lowMask, bytes ); - __m256i low = _mm256_and_si256( lowMask, bytes ); - high = _mm256_slli_epi16( high, 4 ); - bytes = _mm256_or_si256( low, high ); - return bytes; -} -#endif -#endif - - -#if __ARM_NEON -#if !defined(__aarch64__) -int8x8_t vzip1_s8(int8x8_t a, int8x8_t b) { - int8x8_t res; - - res[0] = a[0]; res[1] = b[0]; - res[2] = a[1]; res[3] = b[1]; - res[4] = a[2]; res[5] = b[2]; - res[6] = a[3]; res[7] = b[3]; - - return res; -} - -int8x8_t vzip2_s8(int8x8_t a, int8x8_t b) { - int8x8_t res; - - res[0] = a[4]; res[1] = b[4]; - res[2] = a[5]; res[3] = b[5]; - res[4] = a[6]; res[5] = b[6]; - res[6] = a[7]; res[7] = b[7]; - - return res; -} - -uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) { - uint8x8_t res; - - res[0] = a[0]; res[1] = b[0]; - res[2] = a[1]; res[3] = b[1]; - res[4] = a[2]; res[5] = b[2]; - res[6] = a[3]; res[7] = b[3]; - - return res; -} - -uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) { - uint8x8_t res; - - res[0] = a[4]; res[1] = b[4]; - res[2] = a[5]; res[3] = b[5]; - res[4] = a[6]; res[5] = b[6]; - res[6] = a[7]; res[7] = b[7]; - - return res; -} - -int8x16_t vzip1q_s8(int8x16_t a, int8x16_t b) { - int8x16_t res; - - res[0] = a[0]; res[1] = b[0]; res[2] = a[1]; res[3] = b[1]; - res[4] = a[2]; res[5] = b[2]; res[6] = a[3]; res[7] = b[3]; - res[8] = a[4]; res[9] = b[4]; res[10] = a[5]; res[11] = b[5]; - res[12] = a[6]; res[13] = b[6]; res[14] = a[7]; res[15] = b[7]; - - return res; -} - -int8x16_t vzip2q_s8(int8x16_t a, int8x16_t b) { - int8x16_t res; - - res[0] = a[8]; res[1] = b[8]; res[2] = a[9]; res[3] = b[9]; - res[4] = a[10]; res[5] = b[10]; res[6] = a[11]; res[7] = b[11]; - res[8] = a[12]; res[9] = b[12]; res[10] = a[13]; res[11] = b[13]; - res[12] = a[14]; res[13] = b[14]; res[14] = a[15]; res[15] = b[15]; - - return res; -} - -uint8x16_t vzip1q_u8(uint8x16_t a, uint8x16_t b) { - uint8x16_t res; - - res[0] = a[0]; res[1] = b[0]; res[2] = a[1]; res[3] = b[1]; - res[4] = a[2]; res[5] = b[2]; res[6] = a[3]; res[7] = b[3]; - res[8] = a[4]; res[9] = b[4]; res[10] = a[5]; res[11] = b[5]; - res[12] = a[6]; res[13] = b[6]; res[14] = a[7]; res[15] = b[7]; - - return res; -} - -uint8x16_t vzip2q_u8(uint8x16_t a, uint8x16_t b) { - uint8x16_t res; - - res[0] = a[8]; res[1] = b[8]; res[2] = a[9]; res[3] = b[9]; - res[4] = a[10]; res[5] = b[10]; res[6] = a[11]; res[7] = b[11]; - res[8] = a[12]; res[9] = b[12]; res[10] = a[13]; res[11] = b[13]; - res[12] = a[14]; res[13] = b[14]; res[14] = a[15]; res[15] = b[15]; - - return res; -} -#endif -#endif - - -// reference implementation for deterministic creation of model files -static void quantize_row_q4_0_reference_v2(const float * restrict x, block_q4_0 * restrict y, int k) { - assert(k % QK4_0 == 0); - const int nb = k / QK4_0; - - uint8_t pp[QK4_0/2]; - - for (int i = 0; i < nb; i++) { - float amax = 0.0f; // absolute max - float max = 0.0f; - - for (int l = 0; l < QK4_0; l++) { - const float v = x[i*QK4_0 + l]; - if (amax < fabsf(v)) { - amax = fabsf(v); - max = v; - } - } - - const float d = max / -8; - const float id = d ? 1.0f/d : 0.0f; - - y[i].d = d; - - for (int l = 0; l < QK4_0; l += 2) { - const float v0 = x[i*QK4_0 + l + 0]*id; - const float v1 = x[i*QK4_0 + l + 1]*id; - - const uint8_t vi0 = MIN(15, (int8_t)roundf(v0) + 8); - const uint8_t vi1 = MIN(15, (int8_t)roundf(v1) + 8); - - assert(vi0 < 16); - assert(vi1 < 16); - - pp[l/2] = vi0 | (vi1 << 4); - } - - memcpy(y[i].qs, pp, sizeof(pp)); - } -} - -static void quantize_row_q4_0_v2(const float * restrict x, void * restrict vy, int k) { - assert(k % QK4_0 == 0); - const int nb = k / QK4_0; - - block_q4_0 * restrict y = vy; - -#if defined(__POWER9_VECTOR__) - const vector float v85 = vec_splats(8.5f); - const vector signed int v15 = vec_splats(15); - for (int i = 0; i < nb; i++) { - float max = 0.0f; - float min = 0.0f; - - vector float asrcv [8]; - vector float srcv [8]; - vector float maxv[8]; - vector float minv[8]; - - for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l); - //for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]); - - for (int l = 0; l < 4; l++) maxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]); - //for (int l = 0; l < 2; l++) maxv[4*l] = vec_max(maxv[4*l], maxv[4*l+2]); - maxv[0] = vec_max(maxv[0], maxv[2]); - maxv[4] = vec_max(maxv[4], maxv[6]); - //for (int l = 0; l < 1; l++) maxv[8*l] = vec_max(maxv[8*l], maxv[8*l+4]); - maxv[0] = vec_max(maxv[0], maxv[4]); - - for (int l = 0; l < 4; l++) minv[2*l] = vec_min(asrcv[2*l], asrcv[2*l+1]); - //for (int l = 0; l < 2; l++) minv[4*l] = vec_min(minv[4*l], minv[4*l+2]); - minv[0] = vec_min(minv[0], minv[2]); - minv[4] = vec_min(minv[4], minv[6]); - //for (int l = 0; l < 1; l++) minv[8*l] = vec_min(minv[8*l], minv[8*l+4]); - minv[0] = vec_min(minv[0], minv[4]); - - - max = MAX( - MAX(vec_extract(maxv[0], 0), vec_extract(maxv[0], 1)), - MAX(vec_extract(maxv[0], 2), vec_extract(maxv[0], 3))); - min = MIN( - MIN(vec_extract(minv[0], 0), vec_extract(minv[0], 1)), - MIN(vec_extract(minv[0], 2), vec_extract(minv[0], 3))); - - const float magnitude = max >= fabsf(min) ? max : min; - const float d = magnitude / -8; - const float id = d ? 1.0/d : 0.0; - - y[i].d = d; - - const vector float vid = vec_splats(id); - uint8_t * restrict pb = y[i].qs; - for (int l = 0; l < 8; l++) { - const vector float vf = vec_madd(srcv[l], vid, v85); - const vector signed int vi = vec_signed(vf); - const vector signed int vc = vec_min(vi, v15); - - pb[2*l + 0] = vec_extract(vc, 0) | (vec_extract(vc, 1) << 4); - pb[2*l + 1] = vec_extract(vc, 2) | (vec_extract(vc, 3) << 4); - } - } -#elif __ARM_NEON - for (int i = 0; i < nb; i++) { - float32x4_t srcv [8]; - float32x4_t maxv[8]; - float32x4_t minv[8]; - - for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l); - - for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l+1]); - for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l+2]); - for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l+4]); - - for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l+1]); - for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l+2]); - for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l+4]); - - const float max = vmaxvq_f32(maxv[0]); - const float min = vminvq_f32(minv[0]); - - const float magnitude = max >= fabsf(min) ? max : min; - const float d = magnitude / -8; - const float id = d ? 1.0f/d : 0.0f; - - y[i].d = d; - - for (int l = 0; l < 8; l++) { - const float32x4_t v = vmulq_n_f32(srcv[l], id); - const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f)); - const int32x4_t vi = vcvtq_s32_f32(vf); - const int32x4_t vc = vminq_s32(vi, vdupq_n_s32(15)); - - y[i].qs[2*l + 0] = vgetq_lane_s32(vc, 0) | (vgetq_lane_s32(vc, 1) << 4); - y[i].qs[2*l + 1] = vgetq_lane_s32(vc, 2) | (vgetq_lane_s32(vc, 3) << 4); - } - } -#elif defined(__AVX2__) - for (int i = 0; i < nb; i++) { - // Load elements into 4 AVX vectors - __m256 v0 = _mm256_loadu_ps( x ); - __m256 v1 = _mm256_loadu_ps( x + 8 ); - __m256 v2 = _mm256_loadu_ps( x + 16 ); - __m256 v3 = _mm256_loadu_ps( x + 24 ); - x += 32; - - // Compute max for the block - __m256 max = _mm256_max_ps( v0, v1 ); - __m256 maxTmp = _mm256_max_ps( v2, v3 ); - max = _mm256_max_ps( max, maxTmp ); - - __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( max, 1 ), _mm256_castps256_ps128( max ) ); - max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) ); - max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) ); - const float maxScalar = _mm_cvtss_f32( max4 ); - - // Compute min for the block - __m256 min = _mm256_min_ps( v0, v1 ); - __m256 minTmp = _mm256_min_ps( v2, v3 ); - min = _mm256_min_ps( min, minTmp ); - - __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( min, 1 ), _mm256_castps256_ps128( min ) ); - min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) ); - min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) ); - const float minScalar = _mm_cvtss_f32( min4 ); - - // Quantize these floats - const float magnitude = maxScalar >= fabsf(minScalar) ? maxScalar : minScalar; - const float d = magnitude / -8.0f; - y[i].d = d; - const float id = ( magnitude != 0.0f ) ? -8.0f / magnitude : 0.0f; - const __m256 mul = _mm256_set1_ps( id ); - - // Apply the multiplier - v0 = _mm256_mul_ps( v0, mul ); - v1 = _mm256_mul_ps( v1, mul ); - v2 = _mm256_mul_ps( v2, mul ); - v3 = _mm256_mul_ps( v3, mul ); - - // Round to nearest integer - v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST ); - v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST ); - v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST ); - v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST ); - - // Convert floats to integers - __m256i i0 = _mm256_cvtps_epi32( v0 ); - __m256i i1 = _mm256_cvtps_epi32( v1 ); - __m256i i2 = _mm256_cvtps_epi32( v2 ); - __m256i i3 = _mm256_cvtps_epi32( v3 ); - - // Convert int32 to int16 - i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15 - i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31 - // Convert int16 to int8 - i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 - - // We got our precious signed bytes, but the order is now wrong - // These AVX2 pack instructions process 16-byte pieces independently - // The following instruction is fixing the order - const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 ); - i0 = _mm256_permutevar8x32_epi32( i0, perm ); - - // Apply offset and clamp to translate the range from [ -8 .. +8 ] into [ +0 .. +15 ] - const __m256i off = _mm256_set1_epi8( 8 ); - i0 = _mm256_add_epi8( i0, off ); - const __m256i maxNibble = _mm256_set1_epi8( 15 ); - i0 = _mm256_min_epi8( i0, maxNibble ); - - // Compress the vector into 4 bit/value, and store - __m128i res = packNibbles( i0 ); - _mm_storeu_si128( ( __m128i* )y[i].qs, res ); - } -#elif defined(__AVX__) - for (int i = 0; i < nb; i++) { - // Load elements into 4 AVX vectors - __m256 v0 = _mm256_loadu_ps( x ); - __m256 v1 = _mm256_loadu_ps( x + 8 ); - __m256 v2 = _mm256_loadu_ps( x + 16 ); - __m256 v3 = _mm256_loadu_ps( x + 24 ); - x += 32; - - // Compute max for the block - __m256 max = _mm256_max_ps( v0, v1 ); - __m256 maxTmp = _mm256_max_ps( v2, v3 ); - max = _mm256_max_ps( max, maxTmp ); - - __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( max, 1 ), _mm256_castps256_ps128( max ) ); - max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) ); - max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) ); - const float maxScalar = _mm_cvtss_f32( max4 ); - - // Compute min for the block - __m256 min = _mm256_min_ps( v0, v1 ); - __m256 minTmp = _mm256_min_ps( v2, v3 ); - min = _mm256_min_ps( min, minTmp ); - - __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( min, 1 ), _mm256_castps256_ps128( min ) ); - min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) ); - min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) ); - const float minScalar = _mm_cvtss_f32( min4 ); - - // Quantize these floats - const float magnitude = maxScalar >= fabsf(minScalar) ? maxScalar : minScalar; - const float d = magnitude / -8.0f; - y[i].d = d; - const float id = ( magnitude != 0.0f ) ? -8.0f / magnitude : 0.0f; - const __m256 mul = _mm256_set1_ps( id ); - - // Apply the multiplier - v0 = _mm256_mul_ps( v0, mul ); - v1 = _mm256_mul_ps( v1, mul ); - v2 = _mm256_mul_ps( v2, mul ); - v3 = _mm256_mul_ps( v3, mul ); - - // Round to nearest integer - v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST ); - v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST ); - v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST ); - v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST ); - - // Convert floats to integers - __m256i i0 = _mm256_cvtps_epi32( v0 ); - __m256i i1 = _mm256_cvtps_epi32( v1 ); - __m256i i2 = _mm256_cvtps_epi32( v2 ); - __m256i i3 = _mm256_cvtps_epi32( v3 ); - - // Since we don't have in AVX some necessary functions, - // we split the registers in half and call AVX2 analogs from SSE - __m128i ni0 = _mm256_castsi256_si128( i0 ); - __m128i ni1 = _mm256_extractf128_si256( i0, 1); - __m128i ni2 = _mm256_castsi256_si128( i1 ); - __m128i ni3 = _mm256_extractf128_si256( i1, 1); - __m128i ni4 = _mm256_castsi256_si128( i2 ); - __m128i ni5 = _mm256_extractf128_si256( i2, 1); - __m128i ni6 = _mm256_castsi256_si128( i3 ); - __m128i ni7 = _mm256_extractf128_si256( i3, 1); - - // Convert int32 to int16 - ni0 = _mm_packs_epi32( ni0, ni1 ); - ni2 = _mm_packs_epi32( ni2, ni3 ); - ni4 = _mm_packs_epi32( ni4, ni5 ); - ni6 = _mm_packs_epi32( ni6, ni7 ); - // Convert int16 to int8 - ni0 = _mm_packs_epi16( ni0, ni2 ); - ni4 = _mm_packs_epi16( ni4, ni6 ); - - // Apply offset and clamp to translate the range from [ -8 .. +8 ] into [ +0 .. +15 ] - const __m128i off = _mm_set1_epi8( 8 ); - ni0 = _mm_add_epi8( ni0, off ); - ni4 = _mm_add_epi8( ni4, off ); - const __m128i maxNibble = _mm_set1_epi8( 15 ); - ni0 = _mm_min_epi8( ni0, maxNibble ); - ni4 = _mm_min_epi8( ni4, maxNibble ); - - // Compress the vector into 4 bit/value, and store - __m128i res = packNibbles( ni0, ni4 ); - _mm_storeu_si128( ( __m128i* )y[i].qs, res ); - } -#elif defined(__wasm_simd128__) - for (int i = 0; i < nb; i++) { - float max = 0.0f; - float min = 0.0f; - - v128_t srcv [8]; - v128_t maxv[8]; - v128_t minv[8]; - - for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l); - - for (int l = 0; l < 4; l++) maxv[2*l] = wasm_f32x4_max(srcv[2*l], srcv[2*l+1]); - for (int l = 0; l < 2; l++) maxv[4*l] = wasm_f32x4_max(maxv[4*l], maxv[4*l+2]); - for (int l = 0; l < 1; l++) maxv[8*l] = wasm_f32x4_max(maxv[8*l], maxv[8*l+4]); - - for (int l = 0; l < 4; l++) minv[2*l] = wasm_f32x4_min(srcv[2*l], srcv[2*l+1]); - for (int l = 0; l < 2; l++) minv[4*l] = wasm_f32x4_min(minv[4*l], minv[4*l+2]); - for (int l = 0; l < 1; l++) minv[8*l] = wasm_f32x4_min(minv[8*l], minv[8*l+4]); - - max = MAX( - MAX(wasm_f32x4_extract_lane(maxv[0], 0), wasm_f32x4_extract_lane(maxv[0], 1)), - MAX(wasm_f32x4_extract_lane(maxv[0], 2), wasm_f32x4_extract_lane(maxv[0], 3))); - min = MIN( - MIN(wasm_f32x4_extract_lane(minv[0], 0), wasm_f32x4_extract_lane(minv[0], 1)), - MIN(wasm_f32x4_extract_lane(minv[0], 2), wasm_f32x4_extract_lane(minv[0], 3))); - - const float magnitude = max >= fabsf(min) ? max : min; - const float d = magnitude / -8; - const float id = d ? 1.0/d : 0.0; - - y[i].d = d; - - for (int l = 0; l < 8; l++) { - const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id)); - const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f)); - const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf); - const v128_t vc = wasm_i32x4_min(vi, wasm_i32x4_splat(15)); - - y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vc, 0) | (wasm_i32x4_extract_lane(vc, 1) << 4); - y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vc, 2) | (wasm_i32x4_extract_lane(vc, 3) << 4); - } - } -#else - // scalar - quantize_row_q4_0_reference_v2(x, y, k); -#endif -} - -static void quantize_row_q4_1_reference_v2(const float * restrict x, void * restrict vy, int k) { - assert(k % QK4_1 == 0); - const int nb = k / QK4_1; - - block_q4_1 * restrict y = vy; - - uint8_t pp[QK4_1/2]; - - for (int i = 0; i < nb; i++) { - float min = FLT_MAX; - float max = -FLT_MAX; - - for (int l = 0; l < QK4_1; l++) { - const float v = x[i*QK4_1 + l]; - if (v < min) min = v; - if (v > max) max = v; - } - - const float d = (max - min) / ((1 << 4) - 1); - const float id = d ? 1.0f/d : 0.0f; - - y[i].d = d; - y[i].m = min; - - for (int l = 0; l < QK4_1; l += 2) { - const float v0 = (x[i*QK4_1 + l + 0] - min)*id; - const float v1 = (x[i*QK4_1 + l + 1] - min)*id; - - const uint8_t vi0 = roundf(v0); - const uint8_t vi1 = roundf(v1); - - assert(vi0 < 16); - assert(vi1 < 16); - - pp[l/2] = vi0 | (vi1 << 4); - } - - memcpy(y[i].qs, pp, sizeof(pp)); - } -} - -static void quantize_row_q4_1_v2(const float * restrict x, void * restrict vy, int k) { - assert(k % QK4_1 == 0); - - const int nb = k / QK4_1; - - block_q4_1 * restrict y = vy; - -#if defined(__AVX2__) - for (int i = 0; i < nb; i++) { - // Load elements into 4 AVX vectors - __m256 v0 = _mm256_loadu_ps( x ); - __m256 v1 = _mm256_loadu_ps( x + 8 ); - __m256 v2 = _mm256_loadu_ps( x + 16 ); - __m256 v3 = _mm256_loadu_ps( x + 24 ); - x += 32; - - // Compute max for the block - __m256 vmax; - vmax = _mm256_max_ps( v0, v1 ); - vmax = _mm256_max_ps( vmax, v2 ); - vmax = _mm256_max_ps( vmax, v3 ); - - __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) ); - max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) ); - max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) ); - const float maxScalar = _mm_cvtss_f32( max4 ); - - // Compute min for the block - __m256 vmin; - vmin = _mm256_min_ps( v0, v1 ); - vmin = _mm256_min_ps( vmin, v2 ); - vmin = _mm256_min_ps( vmin, v3 ); - - __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) ); - min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) ); - min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) ); - const float minScalar = _mm_cvtss_f32( min4 ); - - // Quantize these floats - const float d = (maxScalar - minScalar) / ((1 << 4) - 1); - const float id = d ? 1.0f/d : 0.0f; - - y[i].m = minScalar; - y[i].d = d; - - // x = (x-min)*id - const __m256 mul = _mm256_set1_ps( id ); - const __m256 off = _mm256_set1_ps( minScalar ); - v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul ); - v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul ); - v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul ); - v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul ); - - // Round to nearest integer - v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST ); - v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST ); - v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST ); - v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST ); - - // Convert floats to integers - __m256i i0 = _mm256_cvtps_epi32( v0 ); - __m256i i1 = _mm256_cvtps_epi32( v1 ); - __m256i i2 = _mm256_cvtps_epi32( v2 ); - __m256i i3 = _mm256_cvtps_epi32( v3 ); - - // Convert int32 to int16 - i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15 - i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31 - // Convert int16 to int8 - i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 - - // We got our precious signed bytes, but the order is now wrong - // These AVX2 pack instructions process 16-byte pieces independently - // The following instruction is fixing the order - const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 ); - i0 = _mm256_permutevar8x32_epi32( i0, perm ); - - // Compress the vector into 4 bit/value, and store - __m128i res = packNibbles( i0 ); - _mm_storeu_si128( ( __m128i* )y[i].qs, res ); - } -#elif __ARM_NEON - for (int i = 0; i < nb; i++) { - float32x4_t srcv[8]; - float32x4_t minv[8]; - float32x4_t maxv[8]; - - for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*QK4_1 + 4*l); - - for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]); - for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]); - for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]); - - for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]); - for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]); - for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]); - - const float min = vminvq_f32(minv[0]); - const float max = vmaxvq_f32(maxv[0]); - - const float d = (max - min) / ((1 << 4) - 1); - const float id = d ? 1.0f/d : 0.0f; - - y[i].d = d; - y[i].m = min; - - const float32x4_t minv0 = vdupq_n_f32(min); - - for (int l = 0; l < 8; l++) { - const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id); - const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(0.5f)); // needed to round to nearest - const int32x4_t vi = vcvtq_s32_f32(vf); - - y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4); - y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4); - } - } -#else - // scalar - quantize_row_q4_1_reference_v2(x, vy, k); -#endif -} - -// reference implementation for deterministic creation of model files -static void quantize_row_q4_2_reference_v2(const float * restrict x, block_q4_2 * restrict y, int k) { - assert(k % QK4_2 == 0); - - const int nb = k / QK4_2; - - for (int i = 0; i < nb; i++) { - float amax = 0.0f; // absolute max - float max = 0.0f; - - for (int l = 0; l < QK4_2; l++) { - const float v = x[i*QK4_2 + l]; - if (amax < fabsf(v)) { - amax = fabsf(v); - max = v; - } - } - - const float d = max / -8; - - const float id = d ? 1.0f/d : 0.0f; - - y[i].d = GGML_FP32_TO_FP16(d); - - for (int l = 0; l < QK4_2; l += 2) { - const float v0 = x[i*QK4_2 + l + 0]*id; - const float v1 = x[i*QK4_2 + l + 1]*id; - - const uint8_t vi0 = MIN(15, (uint8_t)(v0 + 8.5f)); - const uint8_t vi1 = MIN(15, (uint8_t)(v1 + 8.5f)); - - assert(vi0 < 16); - assert(vi1 < 16); - - y[i].qs[l/2] = vi0 | (vi1 << 4); - } - } -} - -static void quantize_row_q4_2_v2(const float * restrict x, void * restrict vy, int k) { - assert(k % QK4_2 == 0); - - block_q4_2 * restrict y = vy; - - quantize_row_q4_2_reference_v2(x, y, k); -} - -static void quantize_row_q4_3_reference_v2(const float * restrict x, block_q4_3 * restrict y, int k) { - assert(k % QK4_3 == 0); - const int nb = k / QK4_3; - - for (int i = 0; i < nb; i++) { - float min = FLT_MAX; - float max = -FLT_MAX; - - for (int l = 0; l < QK4_3; l++) { - const float v = x[i*QK4_3 + l]; - if (v < min) min = v; - if (v > max) max = v; - } - - const float d = (max - min) / ((1 << 4) - 1); - const float id = d ? 1.0f/d : 0.0f; - - y[i].d = GGML_FP32_TO_FP16(d); - y[i].m = GGML_FP32_TO_FP16(min); - - for (int l = 0; l < QK4_3; l += 2) { - const float v0 = (x[i*QK4_3 + l + 0] - min)*id; - const float v1 = (x[i*QK4_3 + l + 1] - min)*id; - - const uint8_t vi0 = (int) (v0 + 0.5f); - const uint8_t vi1 = (int) (v1 + 0.5f); - - assert(vi0 < 16); - assert(vi1 < 16); - - y[i].qs[l/2] = vi0 | (vi1 << 4); - } - } -} - -static void quantize_row_q4_3_v2(const float * restrict x, void * restrict vy, int k) { - assert(k % QK4_3 == 0); - - block_q4_3 * restrict y = vy; - - quantize_row_q4_3_reference_v2(x, y, k); -} - -static void quantize_row_q5_0_reference_v2(const float * restrict x, block_q5_0 * restrict y, int k) { - assert(k % QK5_0 == 0); - const int nb = k / QK5_0; - - for (int i = 0; i < nb; i++) { - float amax = 0.0f; // absolute max - float max = 0.0f; - - for (int l = 0; l < QK5_0; l++) { - const float v = x[i*QK5_0 + l]; - if (amax < fabsf(v)) { - amax = fabsf(v); - max = v; - } - } - - const float d = max / -16; - const float id = d ? 1.0f/d : 0.0f; - - y[i].d = GGML_FP32_TO_FP16(d); - - uint32_t qh = 0; - - for (int l = 0; l < QK5_0; l += 2) { - const float v0 = x[i*QK5_0 + l + 0]*id; - const float v1 = x[i*QK5_0 + l + 1]*id; - - const uint32_t vi0 = MIN(31, (int) (v0 + 16.5f)); - const uint32_t vi1 = MIN(31, (int) (v1 + 16.5f)); - - y[i].qs[l/2] = (vi0 & 0x0F) | ((vi1 & 0x0F) << 4); - - // get the 5-th bit and store it in qh at the right position - qh |= ((vi0 & 0x10) >> 4) << (l + 0); - qh |= ((vi1 & 0x10) >> 4) << (l + 1); - } - - memcpy(&y[i].qh, &qh, sizeof(y[i].qh)); - } -} - -static void quantize_row_q5_0_v2(const float * restrict x, void * restrict vy, int k) { - assert(k % QK5_0 == 0); - - block_q5_0 * restrict y = vy; - - quantize_row_q5_0_reference_v2(x, y, k); -} - -static void quantize_row_q5_1_reference_v2(const float * restrict x, block_q5_1 * restrict y, int k) { - assert(k % QK5_1 == 0); - const int nb = k / QK5_1; - - for (int i = 0; i < nb; i++) { - float min = FLT_MAX; - float max = -FLT_MAX; - - for (int l = 0; l < QK5_1; l++) { - const float v = x[i*QK5_1 + l]; - if (v < min) min = v; - if (v > max) max = v; - } - - const float d = (max - min) / ((1 << 5) - 1); - const float id = d ? 1.0f/d : 0.0f; - - y[i].d = GGML_FP32_TO_FP16(d); - y[i].m = GGML_FP32_TO_FP16(min); - - uint32_t qh = 0; - - for (int l = 0; l < QK5_1; l += 2) { - const float v0 = (x[i*QK5_1 + l + 0] - min)*id; - const float v1 = (x[i*QK5_1 + l + 1] - min)*id; - - const uint32_t vi0 = (int) (v0 + 0.5f); - const uint32_t vi1 = (int) (v1 + 0.5f); - - y[i].qs[l/2] = (vi0 & 0x0F) | ((vi1 & 0x0F) << 4); - - // get the 5-th bit and store it in qh at the right position - qh |= ((vi0 & 0x10) >> 4) << (l + 0); - qh |= ((vi1 & 0x10) >> 4) << (l + 1); - } - - memcpy(&y[i].qh, &qh, sizeof(y[i].qh)); - } -} - -static void quantize_row_q5_1_v2(const float * restrict x, void * restrict vy, int k) { - assert(k % QK5_1 == 0); - - block_q5_1 * restrict y = vy; - - quantize_row_q5_1_reference_v2(x, y, k); -} - -// reference implementation for deterministic creation of model files -static void quantize_row_q8_0_reference_v2(const float * restrict x, block_q8_0 * restrict y, int k) { - assert(k % QK8_0 == 0); - const int nb = k / QK8_0; - - for (int i = 0; i < nb; i++) { - float amax = 0.0f; // absolute max - - for (int l = 0; l < QK8_0; l++) { - const float v = x[i*QK8_0 + l]; - amax = MAX(amax, fabsf(v)); - } - - const float d = amax / ((1 << 7) - 1); - const float id = d ? 1.0f/d : 0.0f; - - y[i].d = d; - - for (int l = 0; l < QK8_0; ++l) { - const float v0 = x[i*QK8_0 + l]*id; - - y[i].qs[l] = roundf(v0); - } - } -} - -static void quantize_row_q8_0_v2(const float * restrict x, void * restrict vy, int k) { - assert(QK8_0 == 32); - assert(k % QK8_0 == 0); - const int nb = k / QK8_0; - - block_q8_0 * restrict y = vy; - -#if defined(__ARM_NEON) - for (int i = 0; i < nb; i++) { - float32x4_t srcv [8]; - float32x4_t asrcv[8]; - float32x4_t amaxv[8]; - - for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l); - for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]); - - for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]); - for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]); - for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]); - - const float amax = vmaxvq_f32(amaxv[0]); - - const float d = amax / ((1 << 7) - 1); - const float id = d ? 1.0f/d : 0.0f; - - y[i].d = d; - - for (int l = 0; l < 8; l++) { - const float32x4_t v = vmulq_n_f32(srcv[l], id); - const int32x4_t vi = vcvtnq_s32_f32(v); - - y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0); - y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1); - y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2); - y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3); - } - } -#elif defined(__AVX2__) || defined(__AVX__) - for (int i = 0; i < nb; i++) { - // Load elements into 4 AVX vectors - __m256 v0 = _mm256_loadu_ps( x ); - __m256 v1 = _mm256_loadu_ps( x + 8 ); - __m256 v2 = _mm256_loadu_ps( x + 16 ); - __m256 v3 = _mm256_loadu_ps( x + 24 ); - x += 32; - - // Compute max(abs(e)) for the block - const __m256 signBit = _mm256_set1_ps( -0.0f ); - __m256 maxAbs = _mm256_andnot_ps( signBit, v0 ); - maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) ); - maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) ); - maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) ); - - __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) ); - max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) ); - max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) ); - const float maxScalar = _mm_cvtss_f32( max4 ); - - // Quantize these floats - const float d = maxScalar / 127.f; - y[i].d = d; - const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f; - const __m256 mul = _mm256_set1_ps( id ); - - // Apply the multiplier - v0 = _mm256_mul_ps( v0, mul ); - v1 = _mm256_mul_ps( v1, mul ); - v2 = _mm256_mul_ps( v2, mul ); - v3 = _mm256_mul_ps( v3, mul ); - - // Round to nearest integer - v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST ); - v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST ); - v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST ); - v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST ); - - // Convert floats to integers - __m256i i0 = _mm256_cvtps_epi32( v0 ); - __m256i i1 = _mm256_cvtps_epi32( v1 ); - __m256i i2 = _mm256_cvtps_epi32( v2 ); - __m256i i3 = _mm256_cvtps_epi32( v3 ); - -#if defined(__AVX2__) - // Convert int32 to int16 - i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15 - i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31 - // Convert int16 to int8 - i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 - - // We got our precious signed bytes, but the order is now wrong - // These AVX2 pack instructions process 16-byte pieces independently - // The following instruction is fixing the order - const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 ); - i0 = _mm256_permutevar8x32_epi32( i0, perm ); - - _mm256_storeu_si256((__m256i *)y[i].qs, i0); -#else - // Since we don't have in AVX some necessary functions, - // we split the registers in half and call AVX2 analogs from SSE - __m128i ni0 = _mm256_castsi256_si128( i0 ); - __m128i ni1 = _mm256_extractf128_si256( i0, 1); - __m128i ni2 = _mm256_castsi256_si128( i1 ); - __m128i ni3 = _mm256_extractf128_si256( i1, 1); - __m128i ni4 = _mm256_castsi256_si128( i2 ); - __m128i ni5 = _mm256_extractf128_si256( i2, 1); - __m128i ni6 = _mm256_castsi256_si128( i3 ); - __m128i ni7 = _mm256_extractf128_si256( i3, 1); - - // Convert int32 to int16 - ni0 = _mm_packs_epi32( ni0, ni1 ); - ni2 = _mm_packs_epi32( ni2, ni3 ); - ni4 = _mm_packs_epi32( ni4, ni5 ); - ni6 = _mm_packs_epi32( ni6, ni7 ); - // Convert int16 to int8 - ni0 = _mm_packs_epi16( ni0, ni2 ); - ni4 = _mm_packs_epi16( ni4, ni6 ); - - _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0); - _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4); -#endif - } -#else - // scalar - quantize_row_q8_0_reference_v2(x, y, k); -#endif -} - -// reference implementation for deterministic creation of model files -static void quantize_row_q8_1_reference_v2(const float * restrict x, block_q8_1_v2 * restrict y, int k) { - assert(QK8_1 == 32); - assert(k % QK8_1 == 0); - const int nb = k / QK8_1; - - for (int i = 0; i < nb; i++) { - float amax = 0.0f; // absolute max - - for (int l = 0; l < QK8_1; l++) { - const float v = x[i*QK8_1 + l]; - amax = MAX(amax, fabsf(v)); - } - - const float d = amax / ((1 << 7) - 1); - const float id = d ? 1.0f/d : 0.0f; - - y[i].d = d; - - int sum0 = 0; - int sum1 = 0; - - for (int l = 0; l < QK8_1/2; ++l) { - const float v0 = x[i*QK8_1 + l]*id; - const float v1 = x[i*QK8_1 + QK8_1/2 + l]*id; - - y[i].qs[ l] = roundf(v0); - y[i].qs[QK8_1/2 + l] = roundf(v1); - - sum0 += y[i].qs[ l]; - sum1 += y[i].qs[QK8_1/2 + l]; - } - - y[i].s0 = d * sum0; - y[i].s1 = d * sum1; - } -} - -static void quantize_row_q8_1_v2(const float * restrict x, void * restrict vy, int k) { - assert(k % QK8_1 == 0); - const int nb = k / QK8_1; - - block_q8_1_v2 * restrict y = vy; - -#if defined(__ARM_NEON) - for (int i = 0; i < nb; i++) { - float32x4_t srcv [8]; - float32x4_t asrcv[8]; - float32x4_t amaxv[8]; - - for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l); - for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]); - - for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]); - for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]); - for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]); - - const float amax = vmaxvq_f32(amaxv[0]); - - const float d = amax / ((1 << 7) - 1); - const float id = d ? 1.0f/d : 0.0f; - - y[i].d = d; - - int32x4_t accv0 = vdupq_n_s32(0); - int32x4_t accv1 = vdupq_n_s32(0); - - // low half - for (int l = 0; l < 4; l++) { - const float32x4_t v = vmulq_n_f32(srcv[l], id); - const int32x4_t vi = vcvtnq_s32_f32(v); - - y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0); - y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1); - y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2); - y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3); - - accv0 = vaddq_s32(accv0, vi); - } - - // high half - for (int l = 4; l < 8; l++) { - const float32x4_t v = vmulq_n_f32(srcv[l], id); - const int32x4_t vi = vcvtnq_s32_f32(v); - - y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0); - y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1); - y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2); - y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3); - - accv1 = vaddq_s32(accv1, vi); - } - - const int32_t sum0 = vaddvq_s32(accv0); - const int32_t sum1 = vaddvq_s32(accv1); - - y[i].s0 = d * sum0; - y[i].s1 = d * sum1; - } -#elif defined(__AVX2__) || defined(__AVX__) - for (int i = 0; i < nb; i++) { - // Load elements into 4 AVX vectors - __m256 v0 = _mm256_loadu_ps( x ); - __m256 v1 = _mm256_loadu_ps( x + 8 ); - __m256 v2 = _mm256_loadu_ps( x + 16 ); - __m256 v3 = _mm256_loadu_ps( x + 24 ); - x += 32; - - // Compute max(abs(e)) for the block - const __m256 signBit = _mm256_set1_ps( -0.0f ); - __m256 maxAbs = _mm256_andnot_ps( signBit, v0 ); - maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) ); - maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) ); - maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) ); - - __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) ); - max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) ); - max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) ); - const float maxScalar = _mm_cvtss_f32( max4 ); - - // Quantize these floats - const float d = maxScalar / 127.f; - y[i].d = d; - const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f; - const __m256 mul = _mm256_set1_ps( id ); - - // Apply the multiplier - v0 = _mm256_mul_ps( v0, mul ); - v1 = _mm256_mul_ps( v1, mul ); - v2 = _mm256_mul_ps( v2, mul ); - v3 = _mm256_mul_ps( v3, mul ); - - // Round to nearest integer - v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST ); - v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST ); - v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST ); - v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST ); - - // Convert floats to integers - __m256i i0 = _mm256_cvtps_epi32( v0 ); - __m256i i1 = _mm256_cvtps_epi32( v1 ); - __m256i i2 = _mm256_cvtps_epi32( v2 ); - __m256i i3 = _mm256_cvtps_epi32( v3 ); - -#if defined(__AVX2__) - // Compute the sum of the quants and set y[i].s - //y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3))); - y[i].s0 = d * hsum_i32_8(_mm256_add_epi32(i0, i1)); - y[i].s1 = d * hsum_i32_8(_mm256_add_epi32(i2, i3)); - - // Convert int32 to int16 - i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15 - i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31 - // Convert int16 to int8 - i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 - - // We got our precious signed bytes, but the order is now wrong - // These AVX2 pack instructions process 16-byte pieces independently - // The following instruction is fixing the order - const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 ); - i0 = _mm256_permutevar8x32_epi32( i0, perm ); - - _mm256_storeu_si256((__m256i *)y[i].qs, i0); -#else - // Since we don't have in AVX some necessary functions, - // we split the registers in half and call AVX2 analogs from SSE - __m128i ni0 = _mm256_castsi256_si128( i0 ); - __m128i ni1 = _mm256_extractf128_si256( i0, 1); - __m128i ni2 = _mm256_castsi256_si128( i1 ); - __m128i ni3 = _mm256_extractf128_si256( i1, 1); - __m128i ni4 = _mm256_castsi256_si128( i2 ); - __m128i ni5 = _mm256_extractf128_si256( i2, 1); - __m128i ni6 = _mm256_castsi256_si128( i3 ); - __m128i ni7 = _mm256_extractf128_si256( i3, 1); - - // Compute the sum of the quants and set y[i].s - const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3)); - const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7)); - y[i].s0 = d * hsum_i32_4(s0); - y[i].s1 = d * hsum_i32_4(s1); - - // Convert int32 to int16 - ni0 = _mm_packs_epi32( ni0, ni1 ); - ni2 = _mm_packs_epi32( ni2, ni3 ); - ni4 = _mm_packs_epi32( ni4, ni5 ); - ni6 = _mm_packs_epi32( ni6, ni7 ); - // Convert int16 to int8 - ni0 = _mm_packs_epi16( ni0, ni2 ); - ni4 = _mm_packs_epi16( ni4, ni6 ); - - _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0); - _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4); -#endif - } -#else - // scalar - quantize_row_q8_1_reference_v2(x, y, k); -#endif -} - -static void dequantize_row_q4_0_v2(const void * restrict vx, float * restrict y, int k) { - assert(k % QK4_0 == 0); - const int nb = k / QK4_0; - - const block_q4_0 * restrict x = vx; - -#if defined(__AVX2__) - for (int i = 0; i < nb; i++) { - // scale factor - const __m256 d_v = _mm256_broadcast_ss(&x[i].d); - - const uint8_t * restrict pp = x[i].qs; - - for (int l = 0; l < QK4_0; l += 32) { - // Load 32x4-bit integers into 32x8-bit integers - __m256i vx8 = bytes_from_nibbles_32_v2(pp+l/2); - - // Subtract 8 from the integers - vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8)); - - // Convert to 16-bit int - const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0)); - const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1)); - - // Convert to 32-bit int -> float 32 - const __m256 vf[4] = { - _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))), - _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))), - _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))), - _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1))) - }; - - // Scale and store - for (int j = 0; j < 4; j++) { - const __m256 result = _mm256_mul_ps(vf[j], d_v); - _mm256_storeu_ps(y + i * QK4_0 + l + j*8, result); - } - } - } -#elif defined(__ARM_NEON) - for (int i = 0; i < nb; i++) { - const float32x4_t vd = vdupq_n_f32(x[i].d); - - const uint8_t * restrict pp = x[i].qs; - - for (int l = 0; l < QK4_0; l += 16) { - // Load 16x4-bit integers into 8x8-bit integers - const uint8x8_t v8 = vld1_u8(pp + l/2); - - // Expand 4-bit qs to 8-bit bytes - const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0F)); - const uint8x8_t v1 = vshr_n_u8(v8, 4); - - // Convert to signed 8-bit integers - const int8x8_t vs_0 = vreinterpret_s8_u8(v0); - const int8x8_t vs_1 = vreinterpret_s8_u8(v1); - - // Subtract 8 from each byte - const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8)); - const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8)); - - // Interleave and combine - const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1); - const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1); - - const int8x16_t vq = vcombine_s8(vx_0, vx_1); - - // convert to 2x int16x8_t - const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq)); - const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq)); - - // convert to 4x float32x4_t - const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0))); - const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0))); - const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1))); - const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1))); - - // Multiply by d - const float32x4_t r0 = vmulq_f32(vf_0, vd); - const float32x4_t r1 = vmulq_f32(vf_1, vd); - const float32x4_t r2 = vmulq_f32(vf_2, vd); - const float32x4_t r3 = vmulq_f32(vf_3, vd); - - // Store - vst1q_f32(y + i*QK4_0 + l + 0, r0); - vst1q_f32(y + i*QK4_0 + l + 4, r1); - vst1q_f32(y + i*QK4_0 + l + 8, r2); - vst1q_f32(y + i*QK4_0 + l + 12, r3); - } - } -#else - // scalar - for (int i = 0; i < nb; i++) { - const float d = x[i].d; - - const uint8_t * restrict pp = x[i].qs; - - for (int l = 0; l < QK4_0; l += 2) { - const uint8_t vi = pp[l/2]; - - const int8_t vi0 = vi & 0x0F; - const int8_t vi1 = vi >> 4; - - const float v0 = (vi0 - 8)*d; - const float v1 = (vi1 - 8)*d; - - //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1); - - y[i*QK4_0 + l + 0] = v0; - y[i*QK4_0 + l + 1] = v1; - - assert(!isnan(y[i*QK4_0 + l + 0])); - assert(!isnan(y[i*QK4_0 + l + 1])); - } - } -#endif -} - -static void dequantize_row_q4_1_v2(const void * restrict vx, float * restrict y, int k) { - assert(k % QK4_1 == 0); - const int nb = k / QK4_1; - - const block_q4_1 * restrict x = vx; - -#if defined(__AVX2__) - for (int i = 0; i < nb; i++) { - const __m256 d_v = _mm256_broadcast_ss(&x[i].d); - const __m256 d_m = _mm256_broadcast_ss(&x[i].m); - - const uint8_t * restrict pp = x[i].qs; - - for (int l = 0; l < QK4_1; l += 32) { - // Load 32x4-bit integers into 32x8-bit integers - __m256i vx8 = bytes_from_nibbles_32_v2(pp+l/2); - - // Convert to 16-bit int - const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0)); - const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1)); - - // Convert to 32-bit int -> float 32 - const __m256 vf[4] = { - _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))), - _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))), - _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))), - _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1))) - }; - - // Scale, add m and store - for (int j = 0; j < 4; j++) { - const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m); - _mm256_storeu_ps(y + i * QK4_1 + l + j*8, result); - } - } - } -#elif defined(__ARM_NEON) - for (int i = 0; i < nb; i++) { - const float32x4_t vd = vdupq_n_f32(x[i].d); - const float32x4_t vm = vdupq_n_f32(x[i].m); - - const uint8_t * restrict pp = x[i].qs; - - for (int l = 0; l < QK4_1; l += 16) { - // Load 16x4-bit integers into 8x8-bit integers - const uint8x8_t v8 = vld1_u8(pp + l/2); - - // Expand 4-bit qs to 8-bit bytes - const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0F)); - const uint8x8_t v1 = vshr_n_u8(v8, 4); - - // Interleave and combine - const uint8x8_t vx_0 = vzip1_u8(v0, v1); - const uint8x8_t vx_1 = vzip2_u8(v0, v1); - - const uint8x16_t vq = vcombine_u8(vx_0, vx_1); - - // convert to 2x uint16x8_t - const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq)); - const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq)); - - // convert to 4x float32x4_t - const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0))); - const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0))); - const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1))); - const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1))); - - // multiply by d and add m - const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd); - const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd); - const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd); - const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd); - - // Store - vst1q_f32(y + i*QK4_1 + l + 0, r0); - vst1q_f32(y + i*QK4_1 + l + 4, r1); - vst1q_f32(y + i*QK4_1 + l + 8, r2); - vst1q_f32(y + i*QK4_1 + l + 12, r3); - } - } -#else - for (int i = 0; i < nb; i++) { - const float d = x[i].d; - const float m = x[i].m; - - const uint8_t * restrict pp = x[i].qs; - - for (int l = 0; l < QK4_1; l += 2) { - const uint8_t vi = pp[l/2]; - - const int8_t vi0 = vi & 0x0F; - const int8_t vi1 = vi >> 4; - - const float v0 = vi0*d + m; - const float v1 = vi1*d + m; - - y[i*QK4_1 + l + 0] = v0; - y[i*QK4_1 + l + 1] = v1; - - assert(!isnan(y[i*QK4_1 + l + 0])); - assert(!isnan(y[i*QK4_1 + l + 1])); - } - } -#endif -} - -static void dequantize_row_q4_2_v2(const void * restrict vx, float * restrict y, int k) { - assert(k % QK4_2 == 0); - const int nb = k / QK4_2; - - const block_q4_2 * restrict x = vx; - - for (int i = 0; i < nb; i++) { - const float d = GGML_FP16_TO_FP32(x[i].d); - - const uint8_t * restrict pp = x[i].qs; - - for (int l = 0; l < QK4_2; l += 2) { - const uint8_t vi = pp[l/2]; - - const int8_t vi0 = vi & 0x0F; - const int8_t vi1 = vi >> 4; - - const float v0 = (vi0 - 8)*d; - const float v1 = (vi1 - 8)*d; - - y[i*QK4_2 + l + 0] = v0; - y[i*QK4_2 + l + 1] = v1; - - assert(!isnan(y[i*QK4_2 + l + 0])); - assert(!isnan(y[i*QK4_2 + l + 1])); - } - } -} - -static void dequantize_row_q4_3_v2(const void * restrict vx, float * restrict y, int k) { - assert(k % QK4_3 == 0); - const int nb = k / QK4_3; - - const block_q4_3 * restrict x = vx; - - for (int i = 0; i < nb; i++) { - const float d = GGML_FP16_TO_FP32(x[i].d); - const float m = GGML_FP16_TO_FP32(x[i].m); - - const uint8_t * restrict pp = x[i].qs; - - for (int l = 0; l < QK4_3; l += 2) { - const uint8_t vi = pp[l/2]; - - const int8_t vi0 = vi & 0x0F; - const int8_t vi1 = vi >> 4; - - const float v0 = vi0*d + m; - const float v1 = vi1*d + m; - - y[i*QK4_3 + l + 0] = v0; - y[i*QK4_3 + l + 1] = v1; - - assert(!isnan(y[i*QK4_3 + l + 0])); - assert(!isnan(y[i*QK4_3 + l + 1])); - } - } -} - -static void dequantize_row_q5_0_v2(const void * restrict vx, float * restrict y, int k) { - assert(k % QK5_0 == 0); - const int nb = k / QK5_0; - - const block_q5_0 * restrict x = vx; - - for (int i = 0; i < nb; i++) { - const float d = GGML_FP16_TO_FP32(x[i].d); - - const uint8_t * restrict pp = x[i].qs; - - uint32_t qh; - memcpy(&qh, x[i].qh, sizeof(qh)); - - for (int l = 0; l < QK5_0; l += 2) { - const uint8_t vi = pp[l/2]; - - // extract the 5-th bit from qh - const uint8_t vh0 = ((qh & (1u << (l + 0))) >> (l + 0)) << 4; - const uint8_t vh1 = ((qh & (1u << (l + 1))) >> (l + 1)) << 4; - - const int8_t vi0 = (vi & 0x0F) | vh0; - const int8_t vi1 = (vi >> 4) | vh1; - - const float v0 = (vi0 - 16)*d; - const float v1 = (vi1 - 16)*d; - - y[i*QK5_0 + l + 0] = v0; - y[i*QK5_0 + l + 1] = v1; - - assert(!isnan(y[i*QK5_0 + l + 0])); - assert(!isnan(y[i*QK5_0 + l + 1])); - } - } -} - -static void dequantize_row_q5_1_v2(const void * restrict vx, float * restrict y, int k) { - assert(k % QK5_1 == 0); - const int nb = k / QK5_1; - - const block_q5_1 * restrict x = vx; - - for (int i = 0; i < nb; i++) { - const float d = GGML_FP16_TO_FP32(x[i].d); - const float m = GGML_FP16_TO_FP32(x[i].m); - - const uint8_t * restrict pp = x[i].qs; - - uint32_t qh; - memcpy(&qh, x[i].qh, sizeof(qh)); - - for (int l = 0; l < QK5_1; l += 2) { - const uint8_t vi = pp[l/2]; - - // extract the 5-th bit from qh - const uint8_t vh0 = ((qh & (1u << (l + 0))) >> (l + 0)) << 4; - const uint8_t vh1 = ((qh & (1u << (l + 1))) >> (l + 1)) << 4; - - const uint8_t vi0 = (vi & 0x0F) | vh0; - const uint8_t vi1 = (vi >> 4) | vh1; - - const float v0 = vi0*d + m; - const float v1 = vi1*d + m; - - y[i*QK5_1 + l + 0] = v0; - y[i*QK5_1 + l + 1] = v1; - - assert(!isnan(y[i*QK5_1 + l + 0])); - assert(!isnan(y[i*QK5_1 + l + 1])); - } - } -} - -static void dequantize_row_q8_0_v2(const void * restrict vx, float * restrict y, int k) { - assert(k % QK8_0 == 0); - const int nb = k / QK8_0; - - const block_q8_0 * restrict x = vx; - - for (int i = 0; i < nb; i++) { - const float d = x[i].d; - - const int8_t * restrict pp = x[i].qs; - - for (int l = 0; l < QK8_0; ++l) { - y[i*QK8_0 + l] = pp[l]*d; - } - } -} - -static void ggml_vec_dot_q4_0_q8_0_v2(const int n, float * restrict s, const void * restrict vx, const void * restrict vy); -static void ggml_vec_dot_q4_1_q8_1_v2(const int n, float * restrict s, const void * restrict vx, const void * restrict vy); -static void ggml_vec_dot_q4_2_q8_0_v2(const int n, float * restrict s, const void * restrict vx, const void * restrict vy); -static void ggml_vec_dot_q4_3_q8_1_v2(const int n, float * restrict s, const void * restrict vx, const void * restrict vy); -static void ggml_vec_dot_q5_0_q8_0_v2(const int n, float * restrict s, const void * restrict vx, const void * restrict vy); -static void ggml_vec_dot_q5_1_q8_1_v2(const int n, float * restrict s, const void * restrict vx, const void * restrict vy); -static void ggml_vec_dot_q8_0_q8_0_v2(const int n, float * restrict s, const void * restrict vx, const void * restrict vy); - -inline void SetQuantsUnshuffled(bool unshuffle) -{ - quants_unshuffled = unshuffle; -} -inline bool GetQuantsUnshuffled() -{ - return quants_unshuffled; -} - -//TODO: integrate backwards compat -static const quantize_fns_t quantize_fns_v2[GGML_TYPE_COUNT] = { - [GGML_TYPE_Q4_0] = { - .dequantize_row_q = dequantize_row_q4_0_v2, - .quantize_row_q = quantize_row_q4_0_v2, - .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference_v2, - .quantize_row_q_dot = quantize_row_q8_0_v2, - .vec_dot_q = ggml_vec_dot_q4_0_q8_0_v2, - .vec_dot_type = GGML_TYPE_Q8_0, - }, - [GGML_TYPE_Q4_1] = { - .dequantize_row_q = dequantize_row_q4_1_v2, - .quantize_row_q = quantize_row_q4_1_v2, - .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference_v2, - .quantize_row_q_dot = quantize_row_q8_1_v2, - .vec_dot_q = ggml_vec_dot_q4_1_q8_1_v2, - .vec_dot_type = GGML_TYPE_Q8_1B, - }, - [GGML_TYPE_Q4_2] = { - .dequantize_row_q = dequantize_row_q4_2_v2, - .quantize_row_q = quantize_row_q4_2_v2, - .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_2_reference_v2, - .quantize_row_q_dot = quantize_row_q8_0_v2, - .vec_dot_q = ggml_vec_dot_q4_2_q8_0_v2, - .vec_dot_type = GGML_TYPE_Q8_0, - }, - [GGML_TYPE_Q4_3] = { - .dequantize_row_q = dequantize_row_q4_3_v2, - .quantize_row_q = quantize_row_q4_3_v2, - .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_3_reference_v2, - .quantize_row_q_dot = quantize_row_q8_1_v2, - .vec_dot_q = ggml_vec_dot_q4_3_q8_1_v2, - .vec_dot_type = GGML_TYPE_Q8_1B, - }, - [GGML_TYPE_Q5_0] = { - .dequantize_row_q = dequantize_row_q5_0_v2, - .quantize_row_q = quantize_row_q5_0_v2, - .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference_v2, - .quantize_row_q_dot = quantize_row_q8_0_v2, - .vec_dot_q = ggml_vec_dot_q5_0_q8_0_v2, - .vec_dot_type = GGML_TYPE_Q8_0, - }, - [GGML_TYPE_Q5_1] = { - .dequantize_row_q = dequantize_row_q5_1_v2, - .quantize_row_q = quantize_row_q5_1_v2, - .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference_v2, - .quantize_row_q_dot = quantize_row_q8_1_v2, - .vec_dot_q = ggml_vec_dot_q5_1_q8_1_v2, - .vec_dot_type = GGML_TYPE_Q8_1B, - }, - [GGML_TYPE_Q8_0] = { - .dequantize_row_q = dequantize_row_q8_0_v2, - .quantize_row_q = quantize_row_q8_0_v2, - .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference_v2, - .quantize_row_q_dot = quantize_row_q8_0_v2, - .vec_dot_q = ggml_vec_dot_q8_0_q8_0_v2, - .vec_dot_type = GGML_TYPE_Q8_0, - }, - [GGML_TYPE_Q8_1B] = { - .dequantize_row_q = NULL, // TODO - .quantize_row_q = quantize_row_q8_1_v2, - .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference_v2, - .quantize_row_q_dot = quantize_row_q8_1_v2, - .vec_dot_q = NULL, // TODO - .vec_dot_type = GGML_TYPE_Q8_1B, - }, -}; - - -static void ggml_vec_dot_q4_0_q8_0_v2(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { - const int nb = n / QK8_0; - - assert(n % QK8_0 == 0); - assert(nb % 2 == 0); - - const block_q4_0 * restrict x = vx; - const block_q8_0 * restrict y = vy; - -#if defined(__ARM_NEON) - float32x4_t sumv0 = vdupq_n_f32(0.0f); - float32x4_t sumv1 = vdupq_n_f32(0.0f); - - for (int i = 0; i < nb; i += 2) { - const block_q4_0 * restrict x0 = &x[i + 0]; - const block_q4_0 * restrict x1 = &x[i + 1]; - const block_q8_0 * restrict y0 = &y[i + 0]; - const block_q8_0 * restrict y1 = &y[i + 1]; - - const uint8x16_t m4b = vdupq_n_u8(0x0F); - const int8x16_t s8b = vdupq_n_s8(0x8); - - const uint8x16_t v0_0 = vld1q_u8(x0->qs); - const uint8x16_t v0_1 = vld1q_u8(x1->qs); - - // 4-bit -> 8-bit - const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b)); - const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4)); - const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b)); - const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4)); - - // sub 8 - const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b); - const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b); - const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b); - const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b); - - // interleave - const int8x16_t v0_0lz = vzip1q_s8(v0_0ls, v0_0hs); - const int8x16_t v0_0hz = vzip2q_s8(v0_0ls, v0_0hs); - const int8x16_t v0_1lz = vzip1q_s8(v0_1ls, v0_1hs); - const int8x16_t v0_1hz = vzip2q_s8(v0_1ls, v0_1hs); - - // load y - const int8x16_t v1_0l = vld1q_s8(y0->qs); - const int8x16_t v1_0h = vld1q_s8(y0->qs + 16); - const int8x16_t v1_1l = vld1q_s8(y1->qs); - const int8x16_t v1_1h = vld1q_s8(y1->qs + 16); - -#if defined(__ARM_FEATURE_DOTPROD) - // dot product into int32x4_t - const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l), v0_0hz, v1_0h); - const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l), v0_1hz, v1_1h); - - sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d); - sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d); -#else - const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l)); - const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l)); - const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h)); - const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h)); - - const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l)); - const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l)); - const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h)); - const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h)); - - const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h)); - const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h)); - const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h)); - const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h)); - - sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d); - sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d); -#endif - } - - *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1); -#elif defined(__AVX2__) - // Initialize accumulator with zeros - __m256 acc = _mm256_setzero_ps(); - - // Main loop - for (int i = 0; i < nb; ++i) { - /* Compute combined scale for the block */ - const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) ); - - __m256i bx = bytes_from_nibbles_32_v2(x[i].qs); - - // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. - const __m256i off = _mm256_set1_epi8( 8 ); - bx = _mm256_sub_epi8( bx, off ); - - __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs); - - const __m256 q = mul_sum_i8_pairs_float(bx, by); - - /* Multiply q with scale and accumulate */ - acc = _mm256_fmadd_ps( d, q, acc ); - } - - *s = hsum_float_8(acc); -#elif defined(__AVX__) - // Initialize accumulator with zeros - __m256 acc = _mm256_setzero_ps(); - - // Main loop - for (int i = 0; i < nb; ++i) { - // Compute combined scale for the block - const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) ); - - __m128i i32[2]; - for (int j = 0; j < 2; ++j) { - // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes - __m128i bx = bytes_from_nibbles_16(x[i].qs + 8*j); - __m128i by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16*j)); - - // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. - const __m128i off = _mm_set1_epi8( 8 ); - bx = _mm_sub_epi8( bx, off ); - - // Get absolute values of x vectors - const __m128i ax = _mm_sign_epi8(bx, bx); - - // Sign the values of the y vectors - const __m128i sy = _mm_sign_epi8(by, bx); - - // Perform multiplication and create 16-bit values - const __m128i dot = _mm_maddubs_epi16(ax, sy); - - const __m128i ones = _mm_set1_epi16(1); - i32[j] = _mm_madd_epi16(ones, dot); - } - - // Convert int32_t to float - __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] )); - // Apply the scale, and accumulate - acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc); - } - - *s = hsum_float_8(acc); -#else - // scalar - float sumf = 0.0; - for (int i = 0; i < nb; i++) { - const float d0 = x[i].d; - const float d1 = y[i].d; - - const uint8_t * restrict p0 = x[i].qs; - const int8_t * restrict p1 = y[i].qs; - - int sumi = 0; - for (int j = 0; j < QK8_0/2; j++) { - const uint8_t v0 = p0[j]; - - const int i0 = (int8_t) (v0 & 0x0F) - 8; - const int i1 = (int8_t) (v0 >> 4) - 8; - - const int i2 = p1[2*j + 0]; - const int i3 = p1[2*j + 1]; - - sumi += i0*i2 + i1*i3; - } - sumf += d0*d1*sumi; - } - *s = sumf; -#endif -} - -static void ggml_vec_dot_q4_1_q8_1_v2(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { - const int nb = n / QK8_1; - - assert(n % QK8_1 == 0); - assert(nb % 2 == 0); - - const block_q4_1 * restrict x = vx; - const block_q8_1_v2 * restrict y = vy; - - // TODO: add AVX / WASM SIMD / etc -#if defined(__ARM_NEON) - float32x4_t sumv0 = vdupq_n_f32(0.0f); - float32x4_t sumv1 = vdupq_n_f32(0.0f); - - float summs = 0; - - for (int i = 0; i < nb; i += 2) { - const block_q4_1 * restrict x0 = &x[i + 0]; - const block_q4_1 * restrict x1 = &x[i + 1]; - const block_q8_1_v2 * restrict y0 = &y[i + 0]; - const block_q8_1_v2 * restrict y1 = &y[i + 1]; - - summs += x0->m * (y0->s0 + y0->s1) + x1->m * (y1->s0 + y1->s1); - - const uint8x16_t m4b = vdupq_n_u8(0x0F); - - const uint8x16_t v0_0 = vld1q_u8(x0->qs); - const uint8x16_t v0_1 = vld1q_u8(x1->qs); - - // 4-bit -> 8-bit - const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b)); - const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4)); - const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b)); - const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4)); - - // interleave - const int8x16_t v0_0lz = vzip1q_s8(v0_0l, v0_0h); - const int8x16_t v0_0hz = vzip2q_s8(v0_0l, v0_0h); - const int8x16_t v0_1lz = vzip1q_s8(v0_1l, v0_1h); - const int8x16_t v0_1hz = vzip2q_s8(v0_1l, v0_1h); - - // load y - const int8x16_t v1_0l = vld1q_s8(y0->qs); - const int8x16_t v1_0h = vld1q_s8(y0->qs + 16); - const int8x16_t v1_1l = vld1q_s8(y1->qs); - const int8x16_t v1_1h = vld1q_s8(y1->qs + 16); - -#if defined(__ARM_FEATURE_DOTPROD) - // dot product into int32x4_t - const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l), v0_0hz, v1_0h); - const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l), v0_1hz, v1_1h); - - sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d); - sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d); -#else - const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l)); - const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l)); - const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h)); - const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h)); - - const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l)); - const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l)); - const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h)); - const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h)); - - const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h)); - const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h)); - const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h)); - const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h)); - - sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d); - sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d); -#endif - } - - *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs; -#elif defined(__AVX2__) - // Initialize accumulator with zeros - __m256 acc = _mm256_setzero_ps(); - - float summs = 0; - - // Main loop - for (int i = 0; i < nb; ++i) { - const float * d0 = &x[i].d; - const float * d1 = &y[i].d; - - summs += x[i].m * (y[i].s0 + y[i].s1); - - const __m256 d0v = _mm256_broadcast_ss( d0 ); - const __m256 d1v = _mm256_broadcast_ss( d1 ); - - // Compute combined scales - const __m256 d0d1 = _mm256_mul_ps( d0v, d1v ); - - // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes - const __m256i bx = bytes_from_nibbles_32_v2(x[i].qs); - const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs ); - - const __m256 xy = mul_sum_i8_pairs_float(bx, by); - - // Accumulate d0*d1*x*y - acc = _mm256_fmadd_ps( d0d1, xy, acc ); - } - - *s = hsum_float_8(acc) + summs; -#else - // scalar - float sumf = 0.0; - for (int i = 0; i < nb; i++) { - const float d0 = x[i].d; - const float m0 = x[i].m; - const float d1 = y[i].d; - - const uint8_t * restrict p0 = x[i].qs; - const int8_t * restrict p1 = y[i].qs; - - // TODO: this is very slow .. - for (int j = 0; j < QK8_1/2; j++) { - const uint8_t v0 = p0[j]; - - const float f0 = d0*(v0 & 0x0F) + m0; - const float f1 = d0*(v0 >> 4) + m0; - - const float f2 = d1*p1[2*j + 0]; - const float f3 = d1*p1[2*j + 1]; - - sumf += f0*f2 + f1*f3; - } - } - *s = sumf; -#endif -} - -static void ggml_vec_dot_q4_2_q8_0_v2(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { - const int nb = n / QK8_0; - - assert(n % QK8_0 == 0); - assert(nb % 2 == 0); - assert(QK8_0 == 2*QK4_2); - - const block_q4_2 * restrict x = vx; - const block_q8_0 * restrict y = vy; - -#if defined(__ARM_NEON) - float32x4_t sumv0 = vdupq_n_f32(0.0f); - float32x4_t sumv1 = vdupq_n_f32(0.0f); - - for (int i = 0; i < nb; i += 2) { - const block_q4_2 * restrict x0_0 = &x[2*(i + 0) + 0]; - const block_q4_2 * restrict x0_1 = &x[2*(i + 0) + 1]; - const block_q4_2 * restrict x1_0 = &x[2*(i + 1) + 0]; - const block_q4_2 * restrict x1_1 = &x[2*(i + 1) + 1]; - - const block_q8_0 * restrict y0 = &y[i + 0]; - const block_q8_0 * restrict y1 = &y[i + 1]; - - const uint8x16_t m4b = vdupq_n_u8(0x0F); - const int8x16_t s8b = vdupq_n_s8(0x8); - - const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs)); - const uint8x16_t v0_1 = vcombine_u8(vld1_u8(x1_0->qs), vld1_u8(x1_1->qs)); - - // 4-bit -> 8-bit - const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b)); - const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4)); - const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b)); - const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4)); - - // sub 8 - const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b); - const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b); - const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b); - const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b); - - // interleave - const int8x16_t v0_0lz = vzip1q_s8(v0_0ls, v0_0hs); - const int8x16_t v0_0hz = vzip2q_s8(v0_0ls, v0_0hs); - const int8x16_t v0_1lz = vzip1q_s8(v0_1ls, v0_1hs); - const int8x16_t v0_1hz = vzip2q_s8(v0_1ls, v0_1hs); - - // load y - const int8x16_t v1_0l = vld1q_s8(y0->qs); - const int8x16_t v1_0h = vld1q_s8(y0->qs + 16); - const int8x16_t v1_1l = vld1q_s8(y1->qs); - const int8x16_t v1_1h = vld1q_s8(y1->qs + 16); - -#if defined(__ARM_FEATURE_DOTPROD) - sumv0 = vmlaq_n_f32(sumv0, vaddq_f32( - vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), GGML_FP16_TO_FP32(x0_0->d)), - vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), GGML_FP16_TO_FP32(x0_1->d))), y0->d); - - sumv1 = vmlaq_n_f32(sumv1, vaddq_f32( - vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l)), GGML_FP16_TO_FP32(x1_0->d)), - vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1hz, v1_1h)), GGML_FP16_TO_FP32(x1_1->d))), y1->d); -#else - const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l)); - const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l)); - const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h)); - const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h)); - - const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l)); - const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l)); - const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h)); - const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h)); - - const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h)); - const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h)); - const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h)); - const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h)); - - sumv0 = vmlaq_n_f32(sumv0, vaddq_f32( - vmulq_n_f32(vcvtq_f32_s32(pl0), GGML_FP16_TO_FP32(x0_0->d)), - vmulq_n_f32(vcvtq_f32_s32(ph0), GGML_FP16_TO_FP32(x0_1->d))), y0->d); - - sumv1 = vmlaq_n_f32(sumv1, vaddq_f32( - vmulq_n_f32(vcvtq_f32_s32(pl1), GGML_FP16_TO_FP32(x1_0->d)), - vmulq_n_f32(vcvtq_f32_s32(ph1), GGML_FP16_TO_FP32(x1_1->d))), y1->d); -#endif - } - - *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1); -#elif defined(__AVX2__) - // Initialize accumulator with zeros - __m256 acc = _mm256_setzero_ps(); - - // Main loop - for (int i = 0; i < nb; i++) { - /* Compute combined scale for the block */ - const __m128 d0 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 0].d)); - const __m128 d1 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 1].d)); - const __m256 d = _mm256_mul_ps(_mm256_set_m128(d1, d0), _mm256_broadcast_ss(&y[i].d)); - - __m128i bx0 = bytes_from_nibbles_16(x[2*i + 0].qs); - __m128i bx1 = bytes_from_nibbles_16(x[2*i + 1].qs); - __m256i bx = _mm256_set_m128i(bx1, bx0); - - // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. - const __m256i off = _mm256_set1_epi8(8); - bx = _mm256_sub_epi8(bx, off); - - __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs); - - const __m256 q = mul_sum_i8_pairs_float(bx, by); - - /* Multiply q with scale and accumulate */ - acc = _mm256_fmadd_ps(d, q, acc); - } - - *s = hsum_float_8(acc); -#else - // scalar - float sumf = 0.0; - for (int i = 0; i < nb; i++) { - const uint8_t * restrict x0 = x[2*i + 0].qs; - const uint8_t * restrict x1 = x[2*i + 1].qs; - const int8_t * restrict y0 = y[i].qs; - - const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d); - const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d); - - int sumi_0 = 0; - int sumi_1 = 0; - - for (int j = 0; j < QK8_0/4; j++) { - const uint8_t v0 = x0[j]; - const uint8_t v1 = x1[j]; - - const int i0_0 = (int8_t) (v0 & 0x0F) - 8; - const int i1_0 = (int8_t) (v0 >> 4) - 8; - - const int i0_1 = (int8_t) (v1 & 0x0F) - 8; - const int i1_1 = (int8_t) (v1 >> 4) - 8; - - const int i2_0 = y0[2*j + 0]; - const int i3_0 = y0[2*j + 1]; - - const int i2_1 = y0[2*(j + QK8_0/4) + 0]; - const int i3_1 = y0[2*(j + QK8_0/4) + 1]; - - sumi_0 += i0_0*i2_0 + i1_0*i3_0; - sumi_1 += i0_1*i2_1 + i1_1*i3_1; - } - - sumf += (d0 * y[i].d) * sumi_0; - sumf += (d1 * y[i].d) * sumi_1; - } - *s = sumf; -#endif -} - -static void ggml_vec_dot_q4_3_q8_1_v2(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { - const int nb = n / QK8_1; - - assert(n % QK8_1 == 0); - assert(nb % 2 == 0); - assert(QK8_1 == 2*QK4_3); - - const block_q4_3 * restrict x = vx; - const block_q8_1_v2 * restrict y = vy; - -#if defined(__ARM_NEON) - float32x4_t sumv0 = vdupq_n_f32(0.0f); - float32x4_t sumv1 = vdupq_n_f32(0.0f); - - float summs0 = 0.0f; - float summs1 = 0.0f; - - for (int i = 0; i < nb; ++i) { - const block_q4_3 * restrict x0_0 = &x[2*(i + 0) + 0]; - const block_q4_3 * restrict x0_1 = &x[2*(i + 0) + 1]; - - const block_q8_1_v2 * restrict y0 = &y[i + 0]; - - summs0 += GGML_FP16_TO_FP32(x0_0->m) * y0->s0; - summs1 += GGML_FP16_TO_FP32(x0_1->m) * y0->s1; - - const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs)); - - // 4-bit -> 8-bit - const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, vdupq_n_u8(0x0F))); - const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4)); - - // interleave - const int8x16_t v0_0lz = vzip1q_s8(v0_0l, v0_0h); - const int8x16_t v0_0hz = vzip2q_s8(v0_0l, v0_0h); - - // load y - const int8x16_t v1_0l = vld1q_s8(y0->qs); - const int8x16_t v1_0h = vld1q_s8(y0->qs + 16); - - const float x0_0d = GGML_FP16_TO_FP32(x0_0->d); - const float x0_1d = GGML_FP16_TO_FP32(x0_1->d); - -#if defined(__ARM_FEATURE_DOTPROD) - sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), x0_0d*y0->d); - sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), x0_1d*y0->d); -#else - const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l)); - const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l)); - const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h)); - const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h)); - - const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h)); - const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h)); - - sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(pl0), x0_0d*y0->d); - sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(ph0), x0_1d*y0->d); -#endif - } - - *s = vaddvq_f32(vaddq_f32(sumv0, sumv1)) + summs0 + summs1; -#elif defined(__AVX2__) - // Initialize accumulator with zeros - __m256 acc = _mm256_setzero_ps(); - float summs = 0.0f; - - // Main loop - for (int i = 0; i < nb; i++) { - const __m128 d0 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 0].d)); - const __m128 d1 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 1].d)); - const __m256 dx = _mm256_set_m128(d1, d0); - - summs += GGML_FP16_TO_FP32(x[2*i + 0].m) * y[i].s0 - + GGML_FP16_TO_FP32(x[2*i + 1].m) * y[i].s1; - - const __m128i bx0 = bytes_from_nibbles_16(x[2*i + 0].qs); - const __m128i bx1 = bytes_from_nibbles_16(x[2*i + 1].qs); - const __m256i bx = _mm256_set_m128i(bx1, bx0); - - const __m256 dy = _mm256_broadcast_ss(&y[i].d); - const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs); - - const __m256 q = mul_sum_i8_pairs_float(bx, by); - - acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc); - } - - *s = hsum_float_8(acc) + summs; -#else - // scalar - float sumf = 0.0; - for (int i = 0; i < nb; i++) { - const uint8_t * restrict x0 = x[2*i + 0].qs; - const uint8_t * restrict x1 = x[2*i + 1].qs; - const int8_t * restrict y0 = y[i].qs; - - const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d); - const float m0 = GGML_FP16_TO_FP32(x[2*i + 0].m); - const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d); - const float m1 = GGML_FP16_TO_FP32(x[2*i + 1].m); - - int sxy_0 = 0; - int sxy_1 = 0; - - for (int j = 0; j < QK8_1/4; j++) { - const uint8_t v0 = x0[j]; - const uint8_t v1 = x1[j]; - - const int x0_0 = v0 & 0x0F; - const int x1_0 = v0 >> 4; - - const int x0_1 = v1 & 0x0F; - const int x1_1 = v1 >> 4; - - const int y0_0 = y0[2*j + 0]; - const int y1_0 = y0[2*j + 1]; - - const int y0_1 = y0[2*(j + QK8_1/4) + 0]; - const int y1_1 = y0[2*(j + QK8_1/4) + 1]; - - sxy_0 += x0_0*y0_0 + x1_0*y1_0; - sxy_1 += x0_1*y0_1 + x1_1*y1_1; - } - - sumf += (d0*sxy_0 + d1*sxy_1)*y[i].d + m0*y[i].s0 + m1*y[i].s1; - } - *s = sumf; -#endif -} - -static void ggml_vec_dot_q5_0_q8_0_v2(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { - const int nb = n / QK8_0; - - assert(n % QK8_0 == 0); - assert(nb % 2 == 0); - assert(QK8_0 == QK5_0); - - const block_q5_0 * restrict x = vx; - const block_q8_0 * restrict y = vy; - -#if defined(__ARM_NEON) - float32x4_t sumv = vdupq_n_f32(0.0f); - - uint64_t tmp[4]; - - for (int i = 0; i < nb; ++i) { - const block_q5_0 * restrict x0 = &x[i]; - const block_q8_0 * restrict y0 = &y[i]; - - const uint8x16_t m4b = vdupq_n_u8(0x0F); - const int8x16_t s16b = vdupq_n_s8(0x10); - - // extract the 5th bit - uint32_t qh; - memcpy(&qh, x0->qh, sizeof(qh)); - - tmp[0] = table_b2b_0[(qh >> 0) & 0xFF]; - tmp[1] = table_b2b_0[(qh >> 8) & 0xFF]; - tmp[2] = table_b2b_0[(qh >> 16) & 0xFF]; - tmp[3] = table_b2b_0[(qh >> 24) ]; - - const int8x16_t qhl = vld1q_s8((const int8_t *)(tmp + 0)); - const int8x16_t qhh = vld1q_s8((const int8_t *)(tmp + 2)); - - const uint8x16_t v0 = vld1q_u8(x0->qs); - - // 4-bit -> 8-bit - const int8x16_t v0l = vreinterpretq_s8_u8(vandq_u8 (v0, m4b)); - const int8x16_t v0h = vreinterpretq_s8_u8(vshrq_n_u8(v0, 4)); - - // interleave - const int8x16_t v0lz = vzip1q_s8(v0l, v0h); - const int8x16_t v0hz = vzip2q_s8(v0l, v0h); - - // add high bit and sub 16 - const int8x16_t v0lf = vsubq_s8(vorrq_s8(v0lz, qhl), s16b); - const int8x16_t v0hf = vsubq_s8(vorrq_s8(v0hz, qhh), s16b); - - // load y - const int8x16_t v1l = vld1q_s8(y0->qs); - const int8x16_t v1h = vld1q_s8(y0->qs + 16); - - const float x0d = GGML_FP16_TO_FP32(x0->d); - -#if defined(__ARM_FEATURE_DOTPROD) - sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32( - vdotq_s32(vdupq_n_s32(0), v0lf, v1l), - vdotq_s32(vdupq_n_s32(0), v0hf, v1h))), x0d*y0->d); -#else - const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0lf), vget_low_s8 (v1l)); - const int16x8_t pl0h = vmull_s8(vget_high_s8(v0lf), vget_high_s8(v1l)); - const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0hf), vget_low_s8 (v1h)); - const int16x8_t ph0h = vmull_s8(vget_high_s8(v0hf), vget_high_s8(v1h)); - - const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h)); - const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h)); - - sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d); -#endif - } - - *s = vaddvq_f32(sumv); -#elif defined(__wasm_simd128__) - v128_t sumv = wasm_f32x4_splat(0.0f); - - uint64_t tmp[4]; - - for (int i = 0; i < nb; ++i) { - const block_q5_0 * restrict x0 = &x[i]; - const block_q8_0 * restrict y0 = &y[i]; - - const v128_t m4b = wasm_i8x16_splat(0x0F); - const v128_t s16b = wasm_i8x16_splat(0x10); - - // extract the 5th bit - uint32_t qh; - memcpy(&qh, x0->qh, sizeof(qh)); - - tmp[0] = table_b2b_0[(qh >> 0) & 0xFF]; - tmp[1] = table_b2b_0[(qh >> 8) & 0xFF]; - tmp[2] = table_b2b_0[(qh >> 16) & 0xFF]; - tmp[3] = table_b2b_0[(qh >> 24) ]; - - const v128_t qhl = wasm_v128_load(tmp + 0); - const v128_t qhh = wasm_v128_load(tmp + 2); - - const v128_t v0 = wasm_v128_load(x0->qs); - - // 4-bit -> 8-bit - const v128_t v0l = wasm_v128_and (v0, m4b); - const v128_t v0h = wasm_u8x16_shr(v0, 4); - - // interleave - const v128_t v0lz = wasm_v8x16_shuffle(v0l, v0h, 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23); - const v128_t v0hz = wasm_v8x16_shuffle(v0l, v0h, 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31); - - // add high bit and sub 16 - const v128_t v0lf = wasm_i8x16_sub(wasm_v128_or(v0lz, qhl), s16b); - const v128_t v0hf = wasm_i8x16_sub(wasm_v128_or(v0hz, qhh), s16b); - - // load y - const v128_t v1l = wasm_v128_load(y0->qs); - const v128_t v1h = wasm_v128_load(y0->qs + 16); - - // int8x16 -> int16x8 - const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf); - const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf); - const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf); - const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf); - - const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l); - const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l); - const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h); - const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h); - - const float x0d = GGML_FP16_TO_FP32(x0->d); - - // dot product - sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4( - wasm_i32x4_add( - wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll), - wasm_i32x4_dot_i16x8(v0lfh, v1lh)), - wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl), - wasm_i32x4_dot_i16x8(v0hfh, v1hh)))), wasm_f32x4_splat(x0d*y0->d))); - } - - *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) + - wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3); -#elif defined(__AVX2__) - // Initialize accumulator with zeros - __m256 acc = _mm256_setzero_ps(); - - // Main loop - for (int i = 0; i < nb; i++) { - /* Compute combined scale for the block */ - const __m256 d = _mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d)), _mm256_broadcast_ss(&y[i].d)); - - __m256i bx = bytes_from_nibbles_32_v2(x[i].qs); - __m256i bxhi = bytes_from_bits_32(x[i].qh); - bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0)); - bx = _mm256_or_si256(bx, bxhi); - - __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs); - - const __m256 q = mul_sum_i8_pairs_float(bx, by); - - /* Multiply q with scale and accumulate */ - acc = _mm256_fmadd_ps(d, q, acc); - } - - *s = hsum_float_8(acc); -#else - // scalar - float sumf = 0.0; - for (int i = 0; i < nb; i++) { - const uint8_t * restrict x0 = x[i].qs; - const int8_t * restrict y0 = y[i].qs; - - uint32_t qh; - memcpy(&qh, x[i].qh, sizeof(qh)); - - const float d = GGML_FP16_TO_FP32(x[i].d); - - int sxy = 0; - - for (int j = 0; j < QK8_0/2; j++) { - const uint8_t v0 = x0[j]; - - const int x0_0h = ((qh & (1u << (2*j + 0))) >> (2*j + 0)) << 4; - const int x1_0h = ((qh & (1u << (2*j + 1))) >> (2*j + 1)) << 4; - - const int x0_0 = ((v0 & 0x0F) | x0_0h) - 16; - const int x1_0 = ((v0 >> 4) | x1_0h) - 16; - - const int y0_0 = y0[2*j + 0]; - const int y1_0 = y0[2*j + 1]; - - sxy += x0_0*y0_0 + x1_0*y1_0; - } - - sumf += (d*sxy)*y[i].d; - } - *s = sumf; -#endif -} - -static void ggml_vec_dot_q5_1_q8_1_v2(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { - const int nb = n / QK8_1; - - assert(n % QK8_1 == 0); - assert(nb % 2 == 0); - assert(QK8_1 == QK5_1); - - const block_q5_1 * restrict x = vx; - const block_q8_1_v2 * restrict y = vy; - -#if defined(__ARM_NEON) - float32x4_t sumv = vdupq_n_f32(0.0f); - - float summs = 0.0f; - - uint64_t tmp[4]; - - for (int i = 0; i < nb; ++i) { - const block_q5_1 * restrict x0 = &x[i]; - const block_q8_1_v2 * restrict y0 = &y[i]; - - summs += GGML_FP16_TO_FP32(x0->m) * (y0->s0 + y0->s1); - - // extract the 5th bit - uint32_t qh; - memcpy(&qh, x0->qh, sizeof(qh)); - - tmp[0] = table_b2b_0[(qh >> 0) & 0xFF]; - tmp[1] = table_b2b_0[(qh >> 8) & 0xFF]; - tmp[2] = table_b2b_0[(qh >> 16) & 0xFF]; - tmp[3] = table_b2b_0[(qh >> 24) ]; - - const int8x16_t qhl = vld1q_s8((const int8_t *)(tmp + 0)); - const int8x16_t qhh = vld1q_s8((const int8_t *)(tmp + 2)); - - const uint8x16_t v0 = vld1q_u8(x0->qs); - - // 4-bit -> 8-bit - const int8x16_t v0l = vreinterpretq_s8_u8(vandq_u8 (v0, vdupq_n_u8(0x0F))); - const int8x16_t v0h = vreinterpretq_s8_u8(vshrq_n_u8(v0, 4)); - - // interleave - const int8x16_t v0lz = vzip1q_s8(v0l, v0h); - const int8x16_t v0hz = vzip2q_s8(v0l, v0h); - - // add - const int8x16_t v0lf = vorrq_s8(v0lz, qhl); - const int8x16_t v0hf = vorrq_s8(v0hz, qhh); - - // load y - const int8x16_t v1l = vld1q_s8(y0->qs); - const int8x16_t v1h = vld1q_s8(y0->qs + 16); - - const float x0d = GGML_FP16_TO_FP32(x0->d); - -#if defined(__ARM_FEATURE_DOTPROD) - sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32( - vdotq_s32(vdupq_n_s32(0), v0lf, v1l), - vdotq_s32(vdupq_n_s32(0), v0hf, v1h))), x0d*y0->d); -#else - const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0lf), vget_low_s8 (v1l)); - const int16x8_t pl0h = vmull_s8(vget_high_s8(v0lf), vget_high_s8(v1l)); - const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0hf), vget_low_s8 (v1h)); - const int16x8_t ph0h = vmull_s8(vget_high_s8(v0hf), vget_high_s8(v1h)); - - const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h)); - const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h)); - - sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d); -#endif - } - - *s = vaddvq_f32(sumv) + summs; -#elif defined(__wasm_simd128__) - v128_t sumv = wasm_f32x4_splat(0.0f); - - float summs = 0.0f; - - uint64_t tmp[4]; - - for (int i = 0; i < nb; ++i) { - const block_q5_1 * restrict x0 = &x[i]; - const block_q8_1_v2 * restrict y0 = &y[i]; - - summs += GGML_FP16_TO_FP32(x0->m) * (y0->s0 + y0->s1); - - const v128_t m4b = wasm_i8x16_splat(0x0F); - - // extract the 5th bit - uint32_t qh; - memcpy(&qh, x0->qh, sizeof(qh)); - - tmp[0] = table_b2b_0[(qh >> 0) & 0xFF]; - tmp[1] = table_b2b_0[(qh >> 8) & 0xFF]; - tmp[2] = table_b2b_0[(qh >> 16) & 0xFF]; - tmp[3] = table_b2b_0[(qh >> 24) ]; - - const v128_t qhl = wasm_v128_load(tmp + 0); - const v128_t qhh = wasm_v128_load(tmp + 2); - - const v128_t v0 = wasm_v128_load(x0->qs); - - // 4-bit -> 8-bit - const v128_t v0l = wasm_v128_and (v0, m4b); - const v128_t v0h = wasm_u8x16_shr(v0, 4); - - static bool x = true; - - // interleave - const v128_t v0lz = wasm_v8x16_shuffle(v0l, v0h, 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23); - const v128_t v0hz = wasm_v8x16_shuffle(v0l, v0h, 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31); - - // add high bit - const v128_t v0lf = wasm_v128_or(v0lz, qhl); - const v128_t v0hf = wasm_v128_or(v0hz, qhh); - - // load y - const v128_t v1l = wasm_v128_load(y0->qs); - const v128_t v1h = wasm_v128_load(y0->qs + 16); - - // int8x16 -> int16x8 - const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf); - const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf); - const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf); - const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf); - - const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l); - const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l); - const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h); - const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h); - - const float x0d = GGML_FP16_TO_FP32(x0->d); - - // dot product - sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4( - wasm_i32x4_add( - wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll), - wasm_i32x4_dot_i16x8(v0lfh, v1lh)), - wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl), - wasm_i32x4_dot_i16x8(v0hfh, v1hh)))), wasm_f32x4_splat(x0d*y0->d))); - } - - *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) + - wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs; -#elif defined(__AVX2__) - // Initialize accumulator with zeros - __m256 acc = _mm256_setzero_ps(); - float summs = 0.0f; - - // Main loop - for (int i = 0; i < nb; i++) { - const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d)); - - summs += GGML_FP16_TO_FP32(x[i].m) * (y[i].s0 + y[i].s1); - - __m256i bx = bytes_from_nibbles_32_v2(x[i].qs); - __m256i bxhi = bytes_from_bits_32(x[i].qh); - bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10)); - bx = _mm256_or_si256(bx, bxhi); - - const __m256 dy = _mm256_broadcast_ss(&y[i].d); - const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs); - - const __m256 q = mul_sum_i8_pairs_float(bx, by); - - acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc); - } - - *s = hsum_float_8(acc) + summs; -#else - float sumf = 0.0; - - for (int i = 0; i < nb; i++) { - const uint8_t * restrict x0 = x[i].qs; - const int8_t * restrict y0 = y[i].qs; - - uint32_t qh; - memcpy(&qh, x[i].qh, sizeof(qh)); - - const float d = GGML_FP16_TO_FP32(x[i].d); - const float m = GGML_FP16_TO_FP32(x[i].m); - - int sxy = 0; - - for (int j = 0; j < QK8_1/2; j++) { - const uint8_t v0 = x0[j]; - - const int x0_0h = ((qh & (1u << (2*j + 0))) >> (2*j + 0)) << 4; - const int x1_0h = ((qh & (1u << (2*j + 1))) >> (2*j + 1)) << 4; - - const int x0_0 = (v0 & 0x0F) | x0_0h; - const int x1_0 = (v0 >> 4) | x1_0h; - - const int y0_0 = y0[2*j + 0]; - const int y1_0 = y0[2*j + 1]; - - sxy += x0_0*y0_0 + x1_0*y1_0; - } - - sumf += (d*sxy)*y[i].d + m*(y[i].s0 + y[i].s1); - } - - *s = sumf; -#endif -} - -static void ggml_vec_dot_q8_0_q8_0_v2(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { - const int nb = n / QK8_0; - - assert(n % QK8_0 == 0); - assert(nb % 2 == 0); - assert(QK8_0 == QK8_0); - - const block_q8_0 * restrict x = vx; - const block_q8_0 * restrict y = vy; - -#if defined(__ARM_NEON) - float32x4_t sumv0 = vdupq_n_f32(0.0f); - float32x4_t sumv1 = vdupq_n_f32(0.0f); - - for (int i = 0; i < nb; i += 2) { - const block_q8_0 * restrict x0 = &x[i + 0]; - const block_q8_0 * restrict x1 = &x[i + 1]; - const block_q8_0 * restrict y0 = &y[i + 0]; - const block_q8_0 * restrict y1 = &y[i + 1]; - - const int8x16_t x0_0 = vld1q_s8(x0->qs); - const int8x16_t x0_1 = vld1q_s8(x0->qs + 16); - const int8x16_t x1_0 = vld1q_s8(x1->qs); - const int8x16_t x1_1 = vld1q_s8(x1->qs + 16); - - // load y - const int8x16_t y0_0 = vld1q_s8(y0->qs); - const int8x16_t y0_1 = vld1q_s8(y0->qs + 16); - const int8x16_t y1_0 = vld1q_s8(y1->qs); - const int8x16_t y1_1 = vld1q_s8(y1->qs + 16); - -#if defined(__ARM_FEATURE_DOTPROD) - sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32( - vdotq_s32(vdupq_n_s32(0), x0_0, y0_0), - vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), x0->d*y0->d); - - sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32( - vdotq_s32(vdupq_n_s32(0), x1_0, y1_0), - vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), x1->d*y1->d); - -#else - const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0)); - const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0)); - const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1)); - const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1)); - - const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0)); - const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0)); - const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1)); - const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1)); - - const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1)); - const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3)); - const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1)); - const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3)); - - sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), x0->d*y0->d); - sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), x1->d*y1->d); -#endif - } - - *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1); -#elif defined(__AVX2__) - // Initialize accumulator with zeros - __m256 acc = _mm256_setzero_ps(); - - // Main loop - for (int i = 0; i < nb; ++i) { - // Compute combined scale for the block - const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) ); - __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs); - __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs); - - const __m256 q = mul_sum_i8_pairs_float(bx, by); - - // Multiply q with scale and accumulate - acc = _mm256_fmadd_ps( d, q, acc ); - } - - *s = hsum_float_8(acc); -#else - // scalar - float sumf = 0.0; - - for (int i = 0; i < nb; i++) { - const int8_t * restrict x0 = x[i].qs; - const int8_t * restrict y0 = y[i].qs; - - int sumi = 0; - - for (int j = 0; j < QK8_0; j++) { - const int v0 = x0[j]; - const int v1 = y0[j]; - - sumi += v0*v1; - } - - sumf += (x[i].d*y[i].d)*sumi; - } - - *s = sumf; -#endif -} - - - -//////////////////////////////////////////////////////////////////////////////// - -size_t ggml_quantize_q4_0_v2(const float * src, void * dst, int n, int k, int64_t * hist) { - assert(k % QK4_0 == 0); - const int nb = k / QK4_0; - - for (int j = 0; j < n; j += k) { - block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK4_0; - - quantize_row_q4_0_reference_v2(src + j, y, k); - - for (int i = 0; i < nb; i++) { - for (int l = 0; l < QK4_0; l += 2) { - const uint8_t vi0 = y[i].qs[l/2] & 0x0F; - const uint8_t vi1 = y[i].qs[l/2] >> 4; - - hist[vi0]++; - hist[vi1]++; - } - } - } - - return (n/QK4_0*sizeof(block_q4_0)); -} - -size_t ggml_quantize_q4_1_v2(const float * src, void * dst, int n, int k, int64_t * hist) { - assert(k % QK4_1 == 0); - const int nb = k / QK4_1; - - for (int j = 0; j < n; j += k) { - block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK4_1; - - quantize_row_q4_1_reference_v2(src + j, y, k); - - for (int i = 0; i < nb; i++) { - for (int l = 0; l < QK4_1; l += 2) { - const uint8_t vi0 = y[i].qs[l/2] & 0x0F; - const uint8_t vi1 = y[i].qs[l/2] >> 4; - - hist[vi0]++; - hist[vi1]++; - } - } - } - - return (n/QK4_1*sizeof(block_q4_1)); -} - -size_t ggml_quantize_q4_2_v2(const float * src, void * dst, int n, int k, int64_t * hist) { - assert(k % QK4_2 == 0); - const int nb = k / QK4_2; - - for (int j = 0; j < n; j += k) { - block_q4_2 * restrict y = (block_q4_2 *)dst + j/QK4_2; - - quantize_row_q4_2_reference_v2(src + j, y, k); - - for (int i = 0; i < nb; i++) { - for (int l = 0; l < QK4_2; l += 2) { - const uint8_t vi0 = y[i].qs[l/2] & 0x0F; - const uint8_t vi1 = y[i].qs[l/2] >> 4; - - hist[vi0]++; - hist[vi1]++; - } - } - } - - return (n/QK4_2*sizeof(block_q4_2)); -} - -size_t ggml_quantize_q4_3_v2(const float * src, void * dst, int n, int k, int64_t * hist) { - assert(k % QK4_3 == 0); - const int nb = k / QK4_3; - - for (int j = 0; j < n; j += k) { - block_q4_3 * restrict y = (block_q4_3 *)dst + j/QK4_3; - - quantize_row_q4_3_reference_v2(src + j, y, k); - - for (int i = 0; i < nb; i++) { - for (int l = 0; l < QK4_3; l += 2) { - const uint8_t vi0 = y[i].qs[l/2] & 0x0F; - const uint8_t vi1 = y[i].qs[l/2] >> 4; - - hist[vi0]++; - hist[vi1]++; - } - } - } - - return (n/QK4_3*sizeof(block_q4_3)); -} - -size_t ggml_quantize_q5_0_v2(const float * src, void * dst, int n, int k, int64_t * hist) { - assert(k % QK5_0 == 0); - const int nb = k / QK5_0; - - for (int j = 0; j < n; j += k) { - block_q5_0 * restrict y = (block_q5_0 *)dst + j/QK5_0; - - quantize_row_q5_0_reference_v2(src + j, y, k); - - for (int i = 0; i < nb; i++) { - uint32_t qh; - memcpy(&qh, &y[i].qh, sizeof(qh)); - - for (int l = 0; l < QK5_0; l += 2) { - const uint8_t vh0 = ((qh & (1u << (l + 0))) >> (l + 0)) << 4; - const uint8_t vh1 = ((qh & (1u << (l + 1))) >> (l + 1)) << 4; - - // cast to 16 bins - const uint8_t vi0 = ((y[i].qs[l/2] & 0x0F) | vh0) / 2; - const uint8_t vi1 = ((y[i].qs[l/2] >> 4) | vh1) / 2; - - hist[vi0]++; - hist[vi1]++; - } - } - } - - return (n/QK5_0*sizeof(block_q5_0)); -} - -size_t ggml_quantize_q5_1_v2(const float * src, void * dst, int n, int k, int64_t * hist) { - assert(k % QK5_1 == 0); - const int nb = k / QK5_1; - - for (int j = 0; j < n; j += k) { - block_q5_1 * restrict y = (block_q5_1 *)dst + j/QK5_1; - - quantize_row_q5_1_reference_v2(src + j, y, k); - - for (int i = 0; i < nb; i++) { - uint32_t qh; - memcpy(&qh, &y[i].qh, sizeof(qh)); - - for (int l = 0; l < QK5_1; l += 2) { - const uint8_t vh0 = ((qh & (1u << (l + 0))) >> (l + 0)) << 4; - const uint8_t vh1 = ((qh & (1u << (l + 1))) >> (l + 1)) << 4; - - // cast to 16 bins - const uint8_t vi0 = ((y[i].qs[l/2] & 0x0F) | vh0) / 2; - const uint8_t vi1 = ((y[i].qs[l/2] >> 4) | vh1) / 2; - - hist[vi0]++; - hist[vi1]++; - } - } - } - - return (n/QK5_1*sizeof(block_q5_1)); -} - -size_t ggml_quantize_q8_0_v2(const float * src, void * dst, int n, int k, int64_t * hist) { - assert(k % QK8_0 == 0); - const int nb = k / QK8_0; - - for (int j = 0; j < n; j += k) { - block_q8_0 * restrict y = (block_q8_0 *)dst + j/QK8_0; - - quantize_row_q8_0_reference_v2(src + j, y, k); - - for (int i = 0; i < nb; i++) { - for (int l = 0; l < QK8_0; ++l) { - const int8_t vi = y[i].qs[l]; - - hist[vi/16 + 8]++; - } - } - } - - return (n/QK8_0*sizeof(block_q8_0)); -} - -//TODO: integrate -size_t ggml_quantize_chunk_v2(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) { - size_t result = 0; - switch (type) { - case GGML_TYPE_Q4_0: - { - GGML_ASSERT(start % QK4_0 == 0); - block_q4_0 * block = (block_q4_0*)dst + start / QK4_0; - result = ggml_quantize_q4_0_v2(src + start, block, n, n, hist); - } break; - case GGML_TYPE_Q4_1: - { - GGML_ASSERT(start % QK4_1 == 0); - block_q4_1 * block = (block_q4_1*)dst + start / QK4_1; - result = ggml_quantize_q4_1_v2(src + start, block, n, n, hist); - } break; - case GGML_TYPE_Q4_2: - { - GGML_ASSERT(start % QK4_2 == 0); - block_q4_2 * block = (block_q4_2*)dst + start / QK4_2; - result = ggml_quantize_q4_2_v2(src + start, block, n, n, hist); - } break; - case GGML_TYPE_Q4_3: - { - GGML_ASSERT(start % QK4_3 == 0); - block_q4_3 * block = (block_q4_3*)dst + start / QK4_3; - result = ggml_quantize_q4_3_v2(src + start, block, n, n, hist); - } break; - case GGML_TYPE_Q5_0: - { - GGML_ASSERT(start % QK5_0 == 0); - block_q5_0 * block = (block_q5_0*)dst + start / QK5_0; - result = ggml_quantize_q5_0_v2(src + start, block, n, n, hist); - } break; - case GGML_TYPE_Q5_1: - { - GGML_ASSERT(start % QK5_1 == 0); - block_q5_1 * block = (block_q5_1*)dst + start / QK5_1; - result = ggml_quantize_q5_1_v2(src + start, block, n, n, hist); - } break; - case GGML_TYPE_Q8_0: - { - GGML_ASSERT(start % QK8_0 == 0); - block_q8_0 * block = (block_q8_0*)dst + start / QK8_0; - result = ggml_quantize_q8_0_v2(src + start, block, n, n, hist); - } break; - default: - assert(false); - } - return result; -} - diff --git a/ggml.h b/ggml.h index dffc3ae25..0d6eb5701 100644 --- a/ggml.h +++ b/ggml.h @@ -1094,8 +1094,6 @@ extern "C" { void SetQuantsUnshuffled(bool unshuffled); bool GetQuantsUnshuffled(); - void SetGPULayers(bool layers); - bool GetGPULayers(); GGML_API int ggml_cpu_has_avx (void); GGML_API int ggml_cpu_has_avx2 (void); diff --git a/ggml_v2.c b/ggml_v2.c index e69de29bb..b521f7932 100644 --- a/ggml_v2.c +++ b/ggml_v2.c @@ -0,0 +1,18581 @@ +// Defines CLOCK_MONOTONIC on Linux +#define _GNU_SOURCE + +#include "ggml.h" + +#if defined(_MSC_VER) || defined(__MINGW32__) +#include // using malloc.h with MSC/MINGW +#elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__) +#include +#endif + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +// if C99 - static_assert is noop +// ref: https://stackoverflow.com/a/53923785/4039976 +#ifndef static_assert +#define static_assert(cond, msg) struct global_scope_noop_trick +#endif + +#if defined(_WIN32) + +#include + +typedef volatile LONG atomic_int; +typedef atomic_int atomic_bool; + +static void atomic_store(atomic_int* ptr, LONG val) { + InterlockedExchange(ptr, val); +} +static LONG atomic_load(atomic_int* ptr) { + return InterlockedCompareExchange(ptr, 0, 0); +} +static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) { + return InterlockedExchangeAdd(ptr, inc); +} +static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) { + return atomic_fetch_add(ptr, -(dec)); +} + +typedef HANDLE pthread_t; + +typedef DWORD thread_ret_t; +static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) { + (void) unused; + HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL); + if (handle == NULL) + { + return EAGAIN; + } + + *out = handle; + return 0; +} + +static int pthread_join(pthread_t thread, void* unused) { + (void) unused; + return (int) WaitForSingleObject(thread, INFINITE); +} + +static int sched_yield (void) { + Sleep (0); + return 0; +} +#else +#include +#include + +typedef void* thread_ret_t; +#endif + +// __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512 +#if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__)) +#ifndef __FMA__ +#define __FMA__ +#endif +#ifndef __F16C__ +#define __F16C__ +#endif +#ifndef __SSE3__ +#define __SSE3__ +#endif +#endif + +#ifdef __HAIKU__ +#define static_assert(cond, msg) _Static_assert(cond, msg) +#endif + +/*#define GGML_PERF*/ +#define GGML_DEBUG 0 +#define GGML_GELU_FP16 +#define GGML_SILU_FP16 + +#define GGML_SOFT_MAX_UNROLL 4 +#define GGML_VEC_DOT_UNROLL 2 + +#ifdef GGML_USE_ACCELERATE +// uncomment to use vDSP for soft max computation +// note: not sure if it is actually faster +//#define GGML_SOFT_MAX_ACCELERATE +#endif + +#if UINTPTR_MAX == 0xFFFFFFFF + #define GGML_MEM_ALIGN 4 +#else + #define GGML_MEM_ALIGN 16 +#endif + +#if defined(_MSC_VER) || defined(__MINGW32__) +#define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN) +#define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr) +#else +inline static void* ggml_aligned_malloc(size_t size) { + void* aligned_memory = NULL; + int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size); + if (result != 0) { + // Handle allocation failure + return NULL; + } + return aligned_memory; +} +#define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size) +#define GGML_ALIGNED_FREE(ptr) free(ptr) +#endif + +#define UNUSED(x) (void)(x) +#define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0) + +#if defined(GGML_USE_ACCELERATE) +#include +#elif defined(GGML_USE_OPENBLAS) +#include +#elif defined(GGML_USE_CUBLAS) +#include "ggml-cuda.h" +#endif +#if defined(GGML_USE_CLBLAST) +#include "ggml-opencl.h" +#include "ggml-opencl-legacy.h" +#endif + +#undef MIN +#undef MAX +#define MIN(a, b) ((a) < (b) ? (a) : (b)) +#define MAX(a, b) ((a) > (b) ? (a) : (b)) + +// floating point type used to accumulate sums +typedef double ggml_float; + +// 16-bit float +// on Arm, we use __fp16 +// on x86, we use uint16_t +#ifdef __ARM_NEON + +// if YCM cannot find , make a symbolic link to it, for example: +// +// $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/ +// +#include + +#define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x)) +#define GGML_COMPUTE_FP32_TO_FP16(x) (x) + +#define GGML_FP16_TO_FP32(x) ((float) (x)) +#define GGML_FP32_TO_FP16(x) (x) + +#else + +#ifdef __wasm_simd128__ +#include +#else +#ifdef __POWER9_VECTOR__ +#include +#undef bool +#define bool _Bool +#else +#if defined(_MSC_VER) || defined(__MINGW32__) +#include +#else +#include +#endif +#endif +#endif + +#ifdef __F16C__ + +#ifdef _MSC_VER +#define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x))) +#define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0) +#else +#define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x) +#define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0) +#endif + +#elif defined(__POWER9_VECTOR__) + +#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x) +#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x) +/* the inline asm below is about 12% faster than the lookup method */ +#define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x) +#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x) + +static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) { + register float f; + register double d; + __asm__( + "mtfprd %0,%2\n" + "xscvhpdp %0,%0\n" + "frsp %1,%0\n" : + /* temp */ "=d"(d), + /* out */ "=f"(f): + /* in */ "r"(h)); + return f; +} + +static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) { + register double d; + register ggml_fp16_t r; + __asm__( /* xscvdphp can work on double or single precision */ + "xscvdphp %0,%2\n" + "mffprd %1,%0\n" : + /* temp */ "=d"(d), + /* out */ "=r"(r): + /* in */ "f"(f)); + return r; +} + +#else + +// FP16 <-> FP32 +// ref: https://github.com/Maratyszcza/FP16 + +static inline float fp32_from_bits(uint32_t w) { + union { + uint32_t as_bits; + float as_value; + } fp32; + fp32.as_bits = w; + return fp32.as_value; +} + +static inline uint32_t fp32_to_bits(float f) { + union { + float as_value; + uint32_t as_bits; + } fp32; + fp32.as_value = f; + return fp32.as_bits; +} + +static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) { + const uint32_t w = (uint32_t) h << 16; + const uint32_t sign = w & UINT32_C(0x80000000); + const uint32_t two_w = w + w; + + const uint32_t exp_offset = UINT32_C(0xE0) << 23; +#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__) + const float exp_scale = 0x1.0p-112f; +#else + const float exp_scale = fp32_from_bits(UINT32_C(0x7800000)); +#endif + const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale; + + const uint32_t magic_mask = UINT32_C(126) << 23; + const float magic_bias = 0.5f; + const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias; + + const uint32_t denormalized_cutoff = UINT32_C(1) << 27; + const uint32_t result = sign | + (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value)); + return fp32_from_bits(result); +} + +static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) { +#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__) + const float scale_to_inf = 0x1.0p+112f; + const float scale_to_zero = 0x1.0p-110f; +#else + const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000)); + const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000)); +#endif + float base = (fabsf(f) * scale_to_inf) * scale_to_zero; + + const uint32_t w = fp32_to_bits(f); + const uint32_t shl1_w = w + w; + const uint32_t sign = w & UINT32_C(0x80000000); + uint32_t bias = shl1_w & UINT32_C(0xFF000000); + if (bias < UINT32_C(0x71000000)) { + bias = UINT32_C(0x71000000); + } + + base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base; + const uint32_t bits = fp32_to_bits(base); + const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00); + const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF); + const uint32_t nonsign = exp_bits + mantissa_bits; + return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign); +} + +#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x) +#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x) + +#endif // __F16C__ + +#endif // __ARM_NEON + +// +// global data +// + +// precomputed gelu table for f16 (128 KB) +static ggml_fp16_t table_gelu_f16[1 << 16]; + +// precomputed silu table for f16 (128 KB) +static ggml_fp16_t table_silu_f16[1 << 16]; + +// precomputed exp table for f16 (128 KB) +static ggml_fp16_t table_exp_f16[1 << 16]; + +// precomputed f32 table for f16 (256 KB) +static float table_f32_f16[1 << 16]; + +#if defined(__ARM_NEON) || defined(__wasm_simd128__) +#define B1(c,s,n) 0x ## n ## c , 0x ## n ## s +#define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s) +#define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s) +#define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s) +#define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s) +#define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s) +#define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s) +#define B8(c,s ) B7(c,s, c), B7(c,s, s) + +// precomputed tables for expanding 8bits to 8 bytes: +static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4 +static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4 +#endif + +// On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32, +// so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON. +// This is also true for POWER9. +#if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16) + +inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) { + uint16_t s; + memcpy(&s, &f, sizeof(uint16_t)); + return table_f32_f16[s]; +} + +#define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x) +#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x) + +#endif + +// note: do not use these inside ggml.c +// these are meant to be used via the ggml.h API +float ggml_fp16_to_fp32(ggml_fp16_t x) { + return (float) GGML_FP16_TO_FP32(x); +} + +ggml_fp16_t ggml_fp32_to_fp16(float x) { + return GGML_FP32_TO_FP16(x); +} + +void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n) { + for (size_t i = 0; i < n; i++) { + y[i] = GGML_FP16_TO_FP32(x[i]); + } +} + +void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n) { + size_t i = 0; +#if defined(__F16C__) + for (; i + 7 < n; i += 8) { + __m256 x_vec = _mm256_loadu_ps(x + i); + __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT); + _mm_storeu_si128((__m128i *)(y + i), y_vec); + } + for(; i + 3 < n; i += 4) { + __m128 x_vec = _mm_loadu_ps(x + i); + __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT); + _mm_storel_epi64((__m128i *)(y + i), y_vec); + } +#endif + for (; i < n; i++) { + y[i] = GGML_FP32_TO_FP16(x[i]); + } +} + +// +// timing +// + +#if defined(_MSC_VER) || defined(__MINGW32__) +static int64_t timer_freq; +void ggml_time_init(void) { + LARGE_INTEGER frequency; + QueryPerformanceFrequency(&frequency); + timer_freq = frequency.QuadPart; +} +int64_t ggml_time_ms(void) { + LARGE_INTEGER t; + QueryPerformanceCounter(&t); + return (t.QuadPart * 1000) / timer_freq; +} +int64_t ggml_time_us(void) { + LARGE_INTEGER t; + QueryPerformanceCounter(&t); + return (t.QuadPart * 1000000) / timer_freq; +} +#else +void ggml_time_init(void) {} +int64_t ggml_time_ms(void) { + struct timespec ts; + clock_gettime(CLOCK_MONOTONIC, &ts); + return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000; +} + +int64_t ggml_time_us(void) { + struct timespec ts; + clock_gettime(CLOCK_MONOTONIC, &ts); + return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000; +} +#endif + +int64_t ggml_cycles(void) { + return clock(); +} + +int64_t ggml_cycles_per_ms(void) { + return CLOCKS_PER_SEC/1000; +} + +#ifdef GGML_PERF +#define ggml_perf_time_ms() ggml_time_ms() +#define ggml_perf_time_us() ggml_time_us() +#define ggml_perf_cycles() ggml_cycles() +#define ggml_perf_cycles_per_ms() ggml_cycles_per_ms() +#else +#define ggml_perf_time_ms() 0 +#define ggml_perf_time_us() 0 +#define ggml_perf_cycles() 0 +#define ggml_perf_cycles_per_ms() 0 +#endif + +// +// cache line +// + +#if defined(__cpp_lib_hardware_interference_size) +#define CACHE_LINE_SIZE hardware_destructive_interference_size +#else +#if defined(__POWER9_VECTOR__) +#define CACHE_LINE_SIZE 128 +#else +#define CACHE_LINE_SIZE 64 +#endif +#endif + +static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float); + +// +// quantization +// + +#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) +// multiply int8_t, add results pairwise twice +static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) { + // Get absolute values of x vectors + const __m128i ax = _mm_sign_epi8(x, x); + // Sign the values of the y vectors + const __m128i sy = _mm_sign_epi8(y, x); + // Perform multiplication and create 16-bit values + const __m128i dot = _mm_maddubs_epi16(ax, sy); + const __m128i ones = _mm_set1_epi16(1); + return _mm_madd_epi16(ones, dot); +} + +#if __AVX__ || __AVX2__ || __AVX512F__ +// horizontally add 8 floats +static inline float hsum_float_8(const __m256 x) { + __m128 res = _mm256_extractf128_ps(x, 1); + res = _mm_add_ps(res, _mm256_castps256_ps128(x)); + res = _mm_add_ps(res, _mm_movehl_ps(res, res)); + res = _mm_add_ss(res, _mm_movehdup_ps(res)); + return _mm_cvtss_f32(res); +} + +// horizontally add 8 int32_t +static inline int hsum_i32_8(const __m256i a) { + const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1)); + const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128); + const __m128i sum64 = _mm_add_epi32(hi64, sum128); + const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1)); + return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32)); +} + +// horizontally add 4 int32_t +static inline int hsum_i32_4(const __m128i a) { + const __m128i hi64 = _mm_unpackhi_epi64(a, a); + const __m128i sum64 = _mm_add_epi32(hi64, a); + const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1)); + return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32)); +} + +#if __AVX2__ || __AVX512F__ +// spread 32 bits to 32 bytes { 0x00, 0xFF } +static inline __m256i bytes_from_bits_32(const uint8_t * x) { + uint32_t x32; + memcpy(&x32, x, sizeof(uint32_t)); + const __m256i shuf_mask = _mm256_set_epi64x( + 0x0303030303030303, 0x0202020202020202, + 0x0101010101010101, 0x0000000000000000); + __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask); + const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe); + bytes = _mm256_or_si256(bytes, bit_mask); + return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1)); +} + +// Unpack 32 4-bit fields into 32 bytes +// The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval +static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi) +{ + const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi); + const __m256i bytes = _mm256_set_m128i(_mm_srli_epi16(tmp, 4), tmp); + const __m256i lowMask = _mm256_set1_epi8( 0xF ); + return _mm256_and_si256(lowMask, bytes); +} + +// add int16_t pairwise and return as float vector +static inline __m256 sum_i16_pairs_float(const __m256i x) { + const __m256i ones = _mm256_set1_epi16(1); + const __m256i summed_pairs = _mm256_madd_epi16(ones, x); + return _mm256_cvtepi32_ps(summed_pairs); +} + +static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) { +#if __AVXVNNI__ + const __m256i zero = _mm256_setzero_si256(); + const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy); + return _mm256_cvtepi32_ps(summed_pairs); +#else + // Perform multiplication and create 16-bit values + const __m256i dot = _mm256_maddubs_epi16(ax, sy); + return sum_i16_pairs_float(dot); +#endif +} + +// multiply int8_t, add results pairwise twice and return as float vector +static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) { +#if __AVXVNNIINT8__ + const __m256i zero = _mm256_setzero_si256(); + const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y); + return _mm256_cvtepi32_ps(summed_pairs); +#else + // Get absolute values of x vectors + const __m256i ax = _mm256_sign_epi8(x, x); + // Sign the values of the y vectors + const __m256i sy = _mm256_sign_epi8(y, x); + return mul_sum_us8_pairs_float(ax, sy); +#endif +} + +static inline __m128i packNibbles( __m256i bytes ) +{ + // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh +#if __AVX512F__ + const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000 + bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh + return _mm256_cvtepi16_epi8(bytes); // abcd_efgh +#else + const __m256i lowByte = _mm256_set1_epi16( 0xFF ); + __m256i high = _mm256_andnot_si256( lowByte, bytes ); + __m256i low = _mm256_and_si256( lowByte, bytes ); + high = _mm256_srli_epi16( high, 4 ); + bytes = _mm256_or_si256( low, high ); + + // Compress uint16_t lanes into bytes + __m128i r0 = _mm256_castsi256_si128( bytes ); + __m128i r1 = _mm256_extracti128_si256( bytes, 1 ); + return _mm_packus_epi16( r0, r1 ); +#endif +} +#elif defined(__AVX__) +// spread 32 bits to 32 bytes { 0x00, 0xFF } +static inline __m256i bytes_from_bits_32(const uint8_t * x) { + uint32_t x32; + memcpy(&x32, x, sizeof(uint32_t)); + const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000); + const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202); + __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl); + __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh); + const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe); + bytesl = _mm_or_si128(bytesl, bit_mask); + bytesh = _mm_or_si128(bytesh, bit_mask); + bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1)); + bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1)); + return _mm256_set_m128i(bytesh, bytesl); +} + +// Unpack 32 4-bit fields into 32 bytes +// The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval +static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi) +{ + // Load 16 bytes from memory + __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi); + __m128i tmph = _mm_srli_epi16(tmpl, 4); + const __m128i lowMask = _mm_set1_epi8(0xF); + tmpl = _mm_and_si128(lowMask, tmpl); + tmph = _mm_and_si128(lowMask, tmph); + return _mm256_set_m128i(tmph, tmpl); +} + +// add int16_t pairwise and return as float vector +static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) { + const __m128i ones = _mm_set1_epi16(1); + const __m128i summed_pairsl = _mm_madd_epi16(ones, xl); + const __m128i summed_pairsh = _mm_madd_epi16(ones, xh); + const __m256i summed_pairs = _mm256_set_m128i(summed_pairsh, summed_pairsl); + return _mm256_cvtepi32_ps(summed_pairs); +} + +static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) { + const __m128i axl = _mm256_castsi256_si128(ax); + const __m128i axh = _mm256_extractf128_si256(ax, 1); + const __m128i syl = _mm256_castsi256_si128(sy); + const __m128i syh = _mm256_extractf128_si256(sy, 1); + // Perform multiplication and create 16-bit values + const __m128i dotl = _mm_maddubs_epi16(axl, syl); + const __m128i doth = _mm_maddubs_epi16(axh, syh); + return sum_i16_pairs_float(doth, dotl); +} + +// multiply int8_t, add results pairwise twice and return as float vector +static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) { + const __m128i xl = _mm256_castsi256_si128(x); + const __m128i xh = _mm256_extractf128_si256(x, 1); + const __m128i yl = _mm256_castsi256_si128(y); + const __m128i yh = _mm256_extractf128_si256(y, 1); + // Get absolute values of x vectors + const __m128i axl = _mm_sign_epi8(xl, xl); + const __m128i axh = _mm_sign_epi8(xh, xh); + // Sign the values of the y vectors + const __m128i syl = _mm_sign_epi8(yl, xl); + const __m128i syh = _mm_sign_epi8(yh, xh); + // Perform multiplication and create 16-bit values + const __m128i dotl = _mm_maddubs_epi16(axl, syl); + const __m128i doth = _mm_maddubs_epi16(axh, syh); + return sum_i16_pairs_float(doth, dotl); +} + +static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 ) +{ + // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh + const __m128i lowByte = _mm_set1_epi16( 0xFF ); + __m128i high = _mm_andnot_si128( lowByte, bytes1 ); + __m128i low = _mm_and_si128( lowByte, bytes1 ); + high = _mm_srli_epi16( high, 4 ); + bytes1 = _mm_or_si128( low, high ); + high = _mm_andnot_si128( lowByte, bytes2 ); + low = _mm_and_si128( lowByte, bytes2 ); + high = _mm_srli_epi16( high, 4 ); + bytes2 = _mm_or_si128( low, high ); + + return _mm_packus_epi16( bytes1, bytes2); +} +#endif +#elif defined(__SSSE3__) +// horizontally add 4x4 floats +static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) { + __m128 res_0 =_mm_hadd_ps(a, b); + __m128 res_1 =_mm_hadd_ps(c, d); + __m128 res =_mm_hadd_ps(res_0, res_1); + res =_mm_hadd_ps(res, res); + res =_mm_hadd_ps(res, res); + + return _mm_cvtss_f32(res); +} +#endif // __AVX__ || __AVX2__ || __AVX512F__ +#endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) + +#if __ARM_NEON + +#if !defined(__aarch64__) + +inline static uint16_t vaddvq_u8(uint8x16_t v) { + return + (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) + + (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) + + (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) + + (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) + + (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) + + (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) + + (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) + + (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15); +} + +inline static int16_t vaddvq_s8(int8x16_t v) { + return + (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) + + (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) + + (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) + + (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) + + (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) + + (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) + + (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) + + (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15); +} + +inline static int32_t vaddvq_s16(int16x8_t v) { + return + (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) + + (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) + + (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) + + (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7); +} + +inline static uint32_t vaddvq_u16(uint16x8_t v) { + return + (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) + + (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) + + (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) + + (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7); +} + +inline static int32_t vaddvq_s32(int32x4_t v) { + return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3); +} + +inline static float vaddvq_f32(float32x4_t v) { + return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3); +} + +float vminvq_f32(float32x4_t v) { + return + MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)), + MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3))); +} + +float vmaxvq_f32(float32x4_t v) { + return + MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)), + MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3))); +} + +int32x4_t vcvtnq_s32_f32(float32x4_t v) { + int32x4_t res; + + res[0] = roundf(vgetq_lane_f32(v, 0)); + res[1] = roundf(vgetq_lane_f32(v, 1)); + res[2] = roundf(vgetq_lane_f32(v, 2)); + res[3] = roundf(vgetq_lane_f32(v, 3)); + + return res; +} + +#endif +#endif + + +#define QK4_0 32 +typedef struct { + float d; // delta + uint8_t qs[QK4_0 / 2]; // nibbles / quants +} block_q4_0; +static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding"); + +#define QK4_1 32 +typedef struct { + float d; // delta + float m; // min + uint8_t qs[QK4_1 / 2]; // nibbles / quants +} block_q4_1; +static_assert(sizeof(block_q4_1) == 2 * sizeof(float) + QK4_1 / 2, "wrong q4_1 block size/padding"); + +#define QK5_0 32 +typedef struct { + ggml_fp16_t d; // delta + uint8_t qh[4]; // 5-th bit of quants + uint8_t qs[QK5_0 / 2]; // nibbles / quants +} block_q5_0; +static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding"); + +#define QK5_1 32 +typedef struct { + ggml_fp16_t d; // delta + ggml_fp16_t m; // min + uint8_t qh[4]; // 5-th bit of quants + uint8_t qs[QK5_1 / 2]; // nibbles / quants +} block_q5_1; +static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding"); + +#define QK8_0 32 +typedef struct { + float d; // delta + int8_t qs[QK8_0]; // quants +} block_q8_0; +static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding"); + +#define QK8_1 32 +typedef struct { + float d; // delta + float s; // d * sum(qs[i]) + int8_t qs[QK8_1]; // quants +} block_q8_1; +static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding"); + +#define QK4_2 16 +typedef struct { + ggml_fp16_t d; // delta + uint8_t qs[QK4_2 / 2]; // nibbles / quants +} block_q4_2; +static_assert(sizeof(block_q4_2) == sizeof(ggml_fp16_t) + QK4_2 / 2, "wrong q4_2 block size/padding"); + +#define QK4_3 16 +typedef struct { + ggml_fp16_t d; // delta + ggml_fp16_t m; // min + uint8_t qs[QK4_3 / 2]; // nibbles / quants +} block_q4_3; +static_assert(sizeof(block_q4_3) == 2 * sizeof(ggml_fp16_t) + QK4_3 / 2, "wrong q4_3 block size/padding"); + +#define QK8_1 32 +typedef struct { + float d; // delta + float s0; // d * sum(qs[i]) low + float s1; // d * sum(qs[i]) high + int8_t qs[QK8_1]; // quants +} block_q8_1_v2; +static_assert(sizeof(block_q8_1_v2) == 3*sizeof(float) + QK8_1, "wrong q8_1 block size/padding"); + + +// reference implementation for deterministic creation of model files +static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) { + static const int qk = QK4_0; + + assert(k % qk == 0); + + const int nb = k / qk; + + for (int i = 0; i < nb; i++) { + float amax = 0.0f; // absolute max + float max = 0.0f; + + for (int j = 0; j < qk; j++) { + const float v = x[i*qk + j]; + if (amax < fabsf(v)) { + amax = fabsf(v); + max = v; + } + } + + const float d = max / -8; + const float id = d ? 1.0f/d : 0.0f; + + y[i].d = d; + + for (int j = 0; j < qk/2; ++j) { + const float x0 = x[i*qk + 0 + j]*id; + const float x1 = x[i*qk + qk/2 + j]*id; + + const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f)); + const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f)); + + y[i].qs[j] = xi0; + y[i].qs[j] |= xi1 << 4; + } + } +} + +static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) { + quantize_row_q4_0_reference(x, y, k); +} + +static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) { + const int qk = QK4_1; + + assert(k % qk == 0); + + const int nb = k / qk; + + for (int i = 0; i < nb; i++) { + float min = FLT_MAX; + float max = -FLT_MAX; + + for (int j = 0; j < qk; j++) { + const float v = x[i*qk + j]; + + if (v < min) min = v; + if (v > max) max = v; + } + + const float d = (max - min) / ((1 << 4) - 1); + const float id = d ? 1.0f/d : 0.0f; + + y[i].d = d; + y[i].m = min; + + for (int j = 0; j < qk/2; ++j) { + const float x0 = (x[i*qk + 0 + j] - min)*id; + const float x1 = (x[i*qk + qk/2 + j] - min)*id; + + const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f)); + const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f)); + + y[i].qs[j] = xi0; + y[i].qs[j] |= xi1 << 4; + } + } +} + +static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) { + quantize_row_q4_1_reference(x, y, k); +} + +static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) { + static const int qk = QK5_0; + + assert(k % qk == 0); + + const int nb = k / qk; + + for (int i = 0; i < nb; i++) { + float amax = 0.0f; // absolute max + float max = 0.0f; + + for (int j = 0; j < qk; j++) { + const float v = x[i*qk + j]; + if (amax < fabsf(v)) { + amax = fabsf(v); + max = v; + } + } + + const float d = max / -16; + const float id = d ? 1.0f/d : 0.0f; + + y[i].d = GGML_FP32_TO_FP16(d); + + uint32_t qh = 0; + + for (int j = 0; j < qk/2; ++j) { + const float x0 = x[i*qk + 0 + j]*id; + const float x1 = x[i*qk + qk/2 + j]*id; + + const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f)); + const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f)); + + y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4); + + // get the 5-th bit and store it in qh at the right position + qh |= ((xi0 & 0x10) >> 4) << (j + 0); + qh |= ((xi1 & 0x10) >> 4) << (j + qk/2); + } + + memcpy(&y[i].qh, &qh, sizeof(qh)); + } +} + +static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) { + quantize_row_q5_0_reference(x, y, k); +} + +static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) { + const int qk = QK5_1; + + assert(k % qk == 0); + + const int nb = k / qk; + + for (int i = 0; i < nb; i++) { + float min = FLT_MAX; + float max = -FLT_MAX; + + for (int j = 0; j < qk; j++) { + const float v = x[i*qk + j]; + + if (v < min) min = v; + if (v > max) max = v; + } + + const float d = (max - min) / ((1 << 5) - 1); + const float id = d ? 1.0f/d : 0.0f; + + y[i].d = GGML_FP32_TO_FP16(d); + y[i].m = GGML_FP32_TO_FP16(min); + + uint32_t qh = 0; + + for (int j = 0; j < qk/2; ++j) { + const float x0 = (x[i*qk + 0 + j] - min)*id; + const float x1 = (x[i*qk + qk/2 + j] - min)*id; + + const uint8_t xi0 = (uint8_t)(x0 + 0.5f); + const uint8_t xi1 = (uint8_t)(x1 + 0.5f); + + y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4); + + // get the 5-th bit and store it in qh at the right position + qh |= ((xi0 & 0x10) >> 4) << (j + 0); + qh |= ((xi1 & 0x10) >> 4) << (j + qk/2); + } + + memcpy(&y[i].qh, &qh, sizeof(y[i].qh)); + } +} + +static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) { + quantize_row_q5_1_reference(x, y, k); +} + +// reference implementation for deterministic creation of model files +static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) { + assert(k % QK8_0 == 0); + const int nb = k / QK8_0; + + for (int i = 0; i < nb; i++) { + float amax = 0.0f; // absolute max + + for (int j = 0; j < QK8_0; j++) { + const float v = x[i*QK8_0 + j]; + amax = MAX(amax, fabsf(v)); + } + + const float d = amax / ((1 << 7) - 1); + const float id = d ? 1.0f/d : 0.0f; + + y[i].d = d; + + for (int j = 0; j < QK8_0; ++j) { + const float x0 = x[i*QK8_0 + j]*id; + + y[i].qs[j] = roundf(x0); + } + } +} + +static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) { + assert(QK8_0 == 32); + assert(k % QK8_0 == 0); + const int nb = k / QK8_0; + + block_q8_0 * restrict y = vy; + +#if defined(__ARM_NEON) + for (int i = 0; i < nb; i++) { + float32x4_t srcv [8]; + float32x4_t asrcv[8]; + float32x4_t amaxv[8]; + + for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j); + for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]); + + for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]); + for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]); + for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]); + + const float amax = vmaxvq_f32(amaxv[0]); + + const float d = amax / ((1 << 7) - 1); + const float id = d ? 1.0f/d : 0.0f; + + y[i].d = d; + + for (int j = 0; j < 8; j++) { + const float32x4_t v = vmulq_n_f32(srcv[j], id); + const int32x4_t vi = vcvtnq_s32_f32(v); + + y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0); + y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1); + y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2); + y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3); + } + } +#elif defined(__AVX2__) || defined(__AVX__) + for (int i = 0; i < nb; i++) { + // Load elements into 4 AVX vectors + __m256 v0 = _mm256_loadu_ps( x ); + __m256 v1 = _mm256_loadu_ps( x + 8 ); + __m256 v2 = _mm256_loadu_ps( x + 16 ); + __m256 v3 = _mm256_loadu_ps( x + 24 ); + x += 32; + + // Compute max(abs(e)) for the block + const __m256 signBit = _mm256_set1_ps( -0.0f ); + __m256 maxAbs = _mm256_andnot_ps( signBit, v0 ); + maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) ); + maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) ); + maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) ); + + __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) ); + max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) ); + max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) ); + const float maxScalar = _mm_cvtss_f32( max4 ); + + // Quantize these floats + const float d = maxScalar / 127.f; + y[i].d = d; + const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f; + const __m256 mul = _mm256_set1_ps( id ); + + // Apply the multiplier + v0 = _mm256_mul_ps( v0, mul ); + v1 = _mm256_mul_ps( v1, mul ); + v2 = _mm256_mul_ps( v2, mul ); + v3 = _mm256_mul_ps( v3, mul ); + + // Round to nearest integer + v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST ); + v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST ); + v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST ); + v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST ); + + // Convert floats to integers + __m256i i0 = _mm256_cvtps_epi32( v0 ); + __m256i i1 = _mm256_cvtps_epi32( v1 ); + __m256i i2 = _mm256_cvtps_epi32( v2 ); + __m256i i3 = _mm256_cvtps_epi32( v3 ); + +#if defined(__AVX2__) + // Convert int32 to int16 + i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15 + i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31 + // Convert int16 to int8 + i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 + + // We got our precious signed bytes, but the order is now wrong + // These AVX2 pack instructions process 16-byte pieces independently + // The following instruction is fixing the order + const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 ); + i0 = _mm256_permutevar8x32_epi32( i0, perm ); + + _mm256_storeu_si256((__m256i *)y[i].qs, i0); +#else + // Since we don't have in AVX some necessary functions, + // we split the registers in half and call AVX2 analogs from SSE + __m128i ni0 = _mm256_castsi256_si128( i0 ); + __m128i ni1 = _mm256_extractf128_si256( i0, 1); + __m128i ni2 = _mm256_castsi256_si128( i1 ); + __m128i ni3 = _mm256_extractf128_si256( i1, 1); + __m128i ni4 = _mm256_castsi256_si128( i2 ); + __m128i ni5 = _mm256_extractf128_si256( i2, 1); + __m128i ni6 = _mm256_castsi256_si128( i3 ); + __m128i ni7 = _mm256_extractf128_si256( i3, 1); + + // Convert int32 to int16 + ni0 = _mm_packs_epi32( ni0, ni1 ); + ni2 = _mm_packs_epi32( ni2, ni3 ); + ni4 = _mm_packs_epi32( ni4, ni5 ); + ni6 = _mm_packs_epi32( ni6, ni7 ); + // Convert int16 to int8 + ni0 = _mm_packs_epi16( ni0, ni2 ); + ni4 = _mm_packs_epi16( ni4, ni6 ); + + _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0); + _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4); +#endif + } +#else + // scalar + quantize_row_q8_0_reference(x, y, k); +#endif +} + +// reference implementation for deterministic creation of model files +static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) { + assert(QK8_1 == 32); + assert(k % QK8_1 == 0); + const int nb = k / QK8_1; + + for (int i = 0; i < nb; i++) { + float amax = 0.0f; // absolute max + + for (int j = 0; j < QK8_1; j++) { + const float v = x[i*QK8_1 + j]; + amax = MAX(amax, fabsf(v)); + } + + const float d = amax / ((1 << 7) - 1); + const float id = d ? 1.0f/d : 0.0f; + + y[i].d = d; + + int sum = 0; + + for (int j = 0; j < QK8_1/2; ++j) { + const float v0 = x[i*QK8_1 + j]*id; + const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id; + + y[i].qs[ j] = roundf(v0); + y[i].qs[QK8_1/2 + j] = roundf(v1); + + sum += y[i].qs[ j]; + sum += y[i].qs[QK8_1/2 + j]; + } + + y[i].s = d * sum; + } +} + +static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) { + assert(k % QK8_1 == 0); + const int nb = k / QK8_1; + + block_q8_1 * restrict y = vy; + +#if defined(__ARM_NEON) + for (int i = 0; i < nb; i++) { + float32x4_t srcv [8]; + float32x4_t asrcv[8]; + float32x4_t amaxv[8]; + + for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j); + for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]); + + for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]); + for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]); + for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]); + + const float amax = vmaxvq_f32(amaxv[0]); + + const float d = amax / ((1 << 7) - 1); + const float id = d ? 1.0f/d : 0.0f; + + y[i].d = d; + + int32x4_t accv = vdupq_n_s32(0); + + for (int j = 0; j < 8; j++) { + const float32x4_t v = vmulq_n_f32(srcv[j], id); + const int32x4_t vi = vcvtnq_s32_f32(v); + + y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0); + y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1); + y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2); + y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3); + + accv = vaddq_s32(accv, vi); + } + + y[i].s = d * vaddvq_s32(accv); + } +#elif defined(__AVX2__) || defined(__AVX__) + for (int i = 0; i < nb; i++) { + // Load elements into 4 AVX vectors + __m256 v0 = _mm256_loadu_ps( x ); + __m256 v1 = _mm256_loadu_ps( x + 8 ); + __m256 v2 = _mm256_loadu_ps( x + 16 ); + __m256 v3 = _mm256_loadu_ps( x + 24 ); + x += 32; + + // Compute max(abs(e)) for the block + const __m256 signBit = _mm256_set1_ps( -0.0f ); + __m256 maxAbs = _mm256_andnot_ps( signBit, v0 ); + maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) ); + maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) ); + maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) ); + + __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) ); + max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) ); + max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) ); + const float maxScalar = _mm_cvtss_f32( max4 ); + + // Quantize these floats + const float d = maxScalar / 127.f; + y[i].d = d; + const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f; + const __m256 mul = _mm256_set1_ps( id ); + + // Apply the multiplier + v0 = _mm256_mul_ps( v0, mul ); + v1 = _mm256_mul_ps( v1, mul ); + v2 = _mm256_mul_ps( v2, mul ); + v3 = _mm256_mul_ps( v3, mul ); + + // Round to nearest integer + v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST ); + v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST ); + v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST ); + v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST ); + + // Convert floats to integers + __m256i i0 = _mm256_cvtps_epi32( v0 ); + __m256i i1 = _mm256_cvtps_epi32( v1 ); + __m256i i2 = _mm256_cvtps_epi32( v2 ); + __m256i i3 = _mm256_cvtps_epi32( v3 ); + +#if defined(__AVX2__) + // Compute the sum of the quants and set y[i].s + y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3))); + + // Convert int32 to int16 + i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15 + i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31 + // Convert int16 to int8 + i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 + + // We got our precious signed bytes, but the order is now wrong + // These AVX2 pack instructions process 16-byte pieces independently + // The following instruction is fixing the order + const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 ); + i0 = _mm256_permutevar8x32_epi32( i0, perm ); + + _mm256_storeu_si256((__m256i *)y[i].qs, i0); +#else + // Since we don't have in AVX some necessary functions, + // we split the registers in half and call AVX2 analogs from SSE + __m128i ni0 = _mm256_castsi256_si128( i0 ); + __m128i ni1 = _mm256_extractf128_si256( i0, 1); + __m128i ni2 = _mm256_castsi256_si128( i1 ); + __m128i ni3 = _mm256_extractf128_si256( i1, 1); + __m128i ni4 = _mm256_castsi256_si128( i2 ); + __m128i ni5 = _mm256_extractf128_si256( i2, 1); + __m128i ni6 = _mm256_castsi256_si128( i3 ); + __m128i ni7 = _mm256_extractf128_si256( i3, 1); + + // Compute the sum of the quants and set y[i].s + const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3)); + const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7)); + y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1)); + + // Convert int32 to int16 + ni0 = _mm_packs_epi32( ni0, ni1 ); + ni2 = _mm_packs_epi32( ni2, ni3 ); + ni4 = _mm_packs_epi32( ni4, ni5 ); + ni6 = _mm_packs_epi32( ni6, ni7 ); + // Convert int16 to int8 + ni0 = _mm_packs_epi16( ni0, ni2 ); + ni4 = _mm_packs_epi16( ni4, ni6 ); + + _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0); + _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4); +#endif + } +#else + // scalar + quantize_row_q8_1_reference(x, y, k); +#endif +} + +static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) { + static const int qk = QK4_0; + + assert(k % qk == 0); + + const int nb = k / qk; + + for (int i = 0; i < nb; i++) { + const float d = x[i].d; + + for (int j = 0; j < qk/2; ++j) { + const int x0 = (x[i].qs[j] & 0x0F) - 8; + const int x1 = (x[i].qs[j] >> 4) - 8; + + y[i*qk + j + 0 ] = x0*d; + y[i*qk + j + qk/2] = x1*d; + } + } +} + +static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) { + static const int qk = QK4_1; + + assert(k % qk == 0); + + const int nb = k / qk; + + for (int i = 0; i < nb; i++) { + const float d = x[i].d; + const float m = x[i].m; + + for (int j = 0; j < qk/2; ++j) { + const int x0 = (x[i].qs[j] & 0x0F); + const int x1 = (x[i].qs[j] >> 4); + + y[i*qk + j + 0 ] = x0*d + m; + y[i*qk + j + qk/2] = x1*d + m; + } + } +} + +static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) { + static const int qk = QK5_0; + + assert(k % qk == 0); + + const int nb = k / qk; + + for (int i = 0; i < nb; i++) { + const float d = GGML_FP16_TO_FP32(x[i].d); + + uint32_t qh; + memcpy(&qh, x[i].qh, sizeof(qh)); + + for (int j = 0; j < qk/2; ++j) { + const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10; + const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10; + + const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16; + const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16; + + y[i*qk + j + 0 ] = x0*d; + y[i*qk + j + qk/2] = x1*d; + } + } +} + +static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) { + static const int qk = QK5_1; + + assert(k % qk == 0); + + const int nb = k / qk; + + for (int i = 0; i < nb; i++) { + const float d = GGML_FP16_TO_FP32(x[i].d); + const float m = GGML_FP16_TO_FP32(x[i].m); + + uint32_t qh; + memcpy(&qh, x[i].qh, sizeof(qh)); + + for (int j = 0; j < qk/2; ++j) { + const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10; + const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10; + + const int x0 = (x[i].qs[j] & 0x0F) | xh_0; + const int x1 = (x[i].qs[j] >> 4) | xh_1; + + y[i*qk + j + 0 ] = x0*d + m; + y[i*qk + j + qk/2] = x1*d + m; + } + } +} + +static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) { + static const int qk = QK8_0; + + assert(k % qk == 0); + + const int nb = k / qk; + + const block_q8_0 * restrict x = vx; + + for (int i = 0; i < nb; i++) { + const float d = x[i].d; + + for (int j = 0; j < qk; ++j) { + y[i*qk + j] = x[i].qs[j]*d; + } + } +} + +static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy); +static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy); +static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy); +static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy); +static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy); + +static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = { + [GGML_TYPE_Q4_0] = { + .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_0, + .quantize_row_q = quantize_row_q4_0, + .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference, + .quantize_row_q_dot = quantize_row_q8_0, + .vec_dot_q = ggml_vec_dot_q4_0_q8_0, + .vec_dot_type = GGML_TYPE_Q8_0, + }, + [GGML_TYPE_Q4_1] = { + .dequantize_row_q = (dequantize_row_q_t)dequantize_row_q4_1, + .quantize_row_q = quantize_row_q4_1, + .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference, + .quantize_row_q_dot = quantize_row_q8_1, + .vec_dot_q = ggml_vec_dot_q4_1_q8_1, + .vec_dot_type = GGML_TYPE_Q8_1, + }, + [GGML_TYPE_Q5_0] = { + .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_0, + .quantize_row_q = quantize_row_q5_0, + .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference, + .quantize_row_q_dot = quantize_row_q8_0, + .vec_dot_q = ggml_vec_dot_q5_0_q8_0, + .vec_dot_type = GGML_TYPE_Q8_0, + }, + [GGML_TYPE_Q5_1] = { + .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_1, + .quantize_row_q = quantize_row_q5_1, + .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference, + .quantize_row_q_dot = quantize_row_q8_1, + .vec_dot_q = ggml_vec_dot_q5_1_q8_1, + .vec_dot_type = GGML_TYPE_Q8_1, + }, + [GGML_TYPE_Q8_0] = { + .dequantize_row_q = dequantize_row_q8_0, + .quantize_row_q = quantize_row_q8_0, + .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference, + .quantize_row_q_dot = quantize_row_q8_0, + .vec_dot_q = ggml_vec_dot_q8_0_q8_0, + .vec_dot_type = GGML_TYPE_Q8_0, + }, + [GGML_TYPE_Q8_1] = { + .dequantize_row_q = NULL, // TODO + .quantize_row_q = quantize_row_q8_1, + .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference, + .quantize_row_q_dot = quantize_row_q8_1, + .vec_dot_q = NULL, // TODO + .vec_dot_type = GGML_TYPE_Q8_1, + }, +}; + +// For internal test use +quantize_fns_t ggml_internal_get_quantize_fn(size_t i) { + GGML_ASSERT(i < GGML_TYPE_COUNT); + return quantize_fns[i]; +} + +bool quants_unshuffled = false; //new GGJT_2 is unshuffled, all old ones are shuffled +static const quantize_fns_t quantize_fns_v2[GGML_TYPE_COUNT]; //forward decl +static inline quantize_fns_t get_quantize_fn(size_t i) +{ + return(quants_unshuffled?quantize_fns[i]:quantize_fns_v2[i]); +} + + +// +// simd mappings +// + +// we define a common set of C macros which map to specific intrinsics based on the current architecture +// we then implement the fundamental computation operations below using only these macros +// adding support for new architectures requires to define the corresponding SIMD macros +// +// GGML_F32_STEP / GGML_F16_STEP +// number of elements to process in a single step +// +// GGML_F32_EPR / GGML_F16_EPR +// number of elements to fit in a single register +// + +#if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA) + +#define GGML_SIMD + +// F32 NEON + +#define GGML_F32_STEP 16 +#define GGML_F32_EPR 4 + +#define GGML_F32x4 float32x4_t +#define GGML_F32x4_ZERO vdupq_n_f32(0.0f) +#define GGML_F32x4_SET1(x) vdupq_n_f32(x) +#define GGML_F32x4_LOAD vld1q_f32 +#define GGML_F32x4_STORE vst1q_f32 +#define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c) +#define GGML_F32x4_ADD vaddq_f32 +#define GGML_F32x4_MUL vmulq_f32 +#define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x) +#define GGML_F32x4_REDUCE(res, x) \ +{ \ + for (int i = 0; i < GGML_F32_ARR/2; ++i) { \ + x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \ + } \ + for (int i = 0; i < GGML_F32_ARR/4; ++i) { \ + x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \ + } \ + for (int i = 0; i < GGML_F32_ARR/8; ++i) { \ + x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \ + } \ + res = GGML_F32x4_REDUCE_ONE(x[0]); \ +} + +#define GGML_F32_VEC GGML_F32x4 +#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO +#define GGML_F32_VEC_SET1 GGML_F32x4_SET1 +#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD +#define GGML_F32_VEC_STORE GGML_F32x4_STORE +#define GGML_F32_VEC_FMA GGML_F32x4_FMA +#define GGML_F32_VEC_ADD GGML_F32x4_ADD +#define GGML_F32_VEC_MUL GGML_F32x4_MUL +#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE + +// F16 NEON + +#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) + #define GGML_F16_STEP 32 + #define GGML_F16_EPR 8 + + #define GGML_F16x8 float16x8_t + #define GGML_F16x8_ZERO vdupq_n_f16(0.0f) + #define GGML_F16x8_SET1(x) vdupq_n_f16(x) + #define GGML_F16x8_LOAD vld1q_f16 + #define GGML_F16x8_STORE vst1q_f16 + #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c) + #define GGML_F16x8_ADD vaddq_f16 + #define GGML_F16x8_MUL vmulq_f16 + #define GGML_F16x8_REDUCE(res, x) \ + { \ + for (int i = 0; i < GGML_F16_ARR/2; ++i) { \ + x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \ + } \ + for (int i = 0; i < GGML_F16_ARR/4; ++i) { \ + x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \ + } \ + for (int i = 0; i < GGML_F16_ARR/8; ++i) { \ + x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \ + } \ + const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \ + const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \ + res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \ + } + + #define GGML_F16_VEC GGML_F16x8 + #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO + #define GGML_F16_VEC_SET1 GGML_F16x8_SET1 + #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p) + #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i]) + #define GGML_F16_VEC_FMA GGML_F16x8_FMA + #define GGML_F16_VEC_ADD GGML_F16x8_ADD + #define GGML_F16_VEC_MUL GGML_F16x8_MUL + #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE +#else + // if FP16 vector arithmetic is not supported, we use FP32 instead + // and take advantage of the vcvt_ functions to convert to/from FP16 + + #define GGML_F16_STEP 16 + #define GGML_F16_EPR 4 + + #define GGML_F32Cx4 float32x4_t + #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f) + #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x) + #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x)) + #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y)) + #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c) + #define GGML_F32Cx4_ADD vaddq_f32 + #define GGML_F32Cx4_MUL vmulq_f32 + #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE + + #define GGML_F16_VEC GGML_F32Cx4 + #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO + #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1 + #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p) + #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i]) + #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA + #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD + #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL + #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE +#endif + +#elif defined(__AVX__) + +#define GGML_SIMD + +// F32 AVX + +#define GGML_F32_STEP 32 +#define GGML_F32_EPR 8 + +#define GGML_F32x8 __m256 +#define GGML_F32x8_ZERO _mm256_setzero_ps() +#define GGML_F32x8_SET1(x) _mm256_set1_ps(x) +#define GGML_F32x8_LOAD _mm256_loadu_ps +#define GGML_F32x8_STORE _mm256_storeu_ps +#if defined(__FMA__) + #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a) +#else + #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a) +#endif +#define GGML_F32x8_ADD _mm256_add_ps +#define GGML_F32x8_MUL _mm256_mul_ps +#define GGML_F32x8_REDUCE(res, x) \ +{ \ + for (int i = 0; i < GGML_F32_ARR/2; ++i) { \ + x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \ + } \ + for (int i = 0; i < GGML_F32_ARR/4; ++i) { \ + x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \ + } \ + for (int i = 0; i < GGML_F32_ARR/8; ++i) { \ + x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \ + } \ + const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \ + _mm256_extractf128_ps(x[0], 1)); \ + const __m128 t1 = _mm_hadd_ps(t0, t0); \ + res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \ +} +// TODO: is this optimal ? + +#define GGML_F32_VEC GGML_F32x8 +#define GGML_F32_VEC_ZERO GGML_F32x8_ZERO +#define GGML_F32_VEC_SET1 GGML_F32x8_SET1 +#define GGML_F32_VEC_LOAD GGML_F32x8_LOAD +#define GGML_F32_VEC_STORE GGML_F32x8_STORE +#define GGML_F32_VEC_FMA GGML_F32x8_FMA +#define GGML_F32_VEC_ADD GGML_F32x8_ADD +#define GGML_F32_VEC_MUL GGML_F32x8_MUL +#define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE + +// F16 AVX + +#define GGML_F16_STEP 32 +#define GGML_F16_EPR 8 + +// F16 arithmetic is not supported by AVX, so we use F32 instead + +#define GGML_F32Cx8 __m256 +#define GGML_F32Cx8_ZERO _mm256_setzero_ps() +#define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x) + +#if defined(__F16C__) +// the _mm256_cvt intrinsics require F16C +#define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x))) +#define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0)) +#else +static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) { + float tmp[8]; + + for (int i = 0; i < 8; i++) + tmp[i] = GGML_FP16_TO_FP32(x[i]); + + return _mm256_loadu_ps(tmp); +} +static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) { + float arr[8]; + + _mm256_storeu_ps(arr, y); + + for (int i = 0; i < 8; i++) + x[i] = GGML_FP32_TO_FP16(arr[i]); +} +#define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x) +#define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y) +#endif + +#define GGML_F32Cx8_FMA GGML_F32x8_FMA +#define GGML_F32Cx8_ADD _mm256_add_ps +#define GGML_F32Cx8_MUL _mm256_mul_ps +#define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE + +#define GGML_F16_VEC GGML_F32Cx8 +#define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO +#define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1 +#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p) +#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i]) +#define GGML_F16_VEC_FMA GGML_F32Cx8_FMA +#define GGML_F16_VEC_ADD GGML_F32Cx8_ADD +#define GGML_F16_VEC_MUL GGML_F32Cx8_MUL +#define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE + +#elif defined(__POWER9_VECTOR__) + +#define GGML_SIMD + +// F32 POWER9 + +#define GGML_F32_STEP 32 +#define GGML_F32_EPR 4 + +#define GGML_F32x4 vector float +#define GGML_F32x4_ZERO 0.0f +#define GGML_F32x4_SET1 vec_splats +#define GGML_F32x4_LOAD(p) vec_xl(0, p) +#define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p) +#define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a) +#define GGML_F32x4_ADD vec_add +#define GGML_F32x4_MUL vec_mul +#define GGML_F32x4_REDUCE(res, x) \ +{ \ + for (int i = 0; i < GGML_F32_ARR/2; ++i) { \ + x[2*i] = vec_add(x[2*i], x[2*i+1]); \ + } \ + for (int i = 0; i < GGML_F32_ARR/4; ++i) { \ + x[4*i] = vec_add(x[4*i], x[4*i+2]); \ + } \ + for (int i = 0; i < GGML_F32_ARR/8; ++i) { \ + x[8*i] = vec_add(x[8*i], x[8*i+4]); \ + } \ + res = vec_extract(x[0], 0) + \ + vec_extract(x[0], 1) + \ + vec_extract(x[0], 2) + \ + vec_extract(x[0], 3); \ +} + +#define GGML_F32_VEC GGML_F32x4 +#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO +#define GGML_F32_VEC_SET1 GGML_F32x4_SET1 +#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD +#define GGML_F32_VEC_STORE GGML_F32x4_STORE +#define GGML_F32_VEC_FMA GGML_F32x4_FMA +#define GGML_F32_VEC_ADD GGML_F32x4_ADD +#define GGML_F32_VEC_MUL GGML_F32x4_MUL +#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE + +// F16 POWER9 +#define GGML_F16_STEP GGML_F32_STEP +#define GGML_F16_EPR GGML_F32_EPR +#define GGML_F16_VEC GGML_F32x4 +#define GGML_F16_VEC_ZERO GGML_F32x4_ZERO +#define GGML_F16_VEC_SET1 GGML_F32x4_SET1 +#define GGML_F16_VEC_FMA GGML_F32x4_FMA +#define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE +// Use vec_xl, not vec_ld, in case the load address is not aligned. +#define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \ + vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \ + vec_extract_fp32_from_shortl(vec_xl(0, p)) +#define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i] +#define GGML_F16_VEC_STORE(p, r, i) \ + if (i & 0x1) \ + vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \ + r[i - GGML_ENDIAN_BYTE(0)]), \ + 0, p - GGML_F16_EPR) + +#elif defined(__wasm_simd128__) + +#define GGML_SIMD + +// F32 WASM + +#define GGML_F32_STEP 16 +#define GGML_F32_EPR 4 + +#define GGML_F32x4 v128_t +#define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f) +#define GGML_F32x4_SET1(x) wasm_f32x4_splat(x) +#define GGML_F32x4_LOAD wasm_v128_load +#define GGML_F32x4_STORE wasm_v128_store +#define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a) +#define GGML_F32x4_ADD wasm_f32x4_add +#define GGML_F32x4_MUL wasm_f32x4_mul +#define GGML_F32x4_REDUCE(res, x) \ +{ \ + for (int i = 0; i < GGML_F32_ARR/2; ++i) { \ + x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \ + } \ + for (int i = 0; i < GGML_F32_ARR/4; ++i) { \ + x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \ + } \ + for (int i = 0; i < GGML_F32_ARR/8; ++i) { \ + x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \ + } \ + res = wasm_f32x4_extract_lane(x[0], 0) + \ + wasm_f32x4_extract_lane(x[0], 1) + \ + wasm_f32x4_extract_lane(x[0], 2) + \ + wasm_f32x4_extract_lane(x[0], 3); \ +} + +#define GGML_F32_VEC GGML_F32x4 +#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO +#define GGML_F32_VEC_SET1 GGML_F32x4_SET1 +#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD +#define GGML_F32_VEC_STORE GGML_F32x4_STORE +#define GGML_F32_VEC_FMA GGML_F32x4_FMA +#define GGML_F32_VEC_ADD GGML_F32x4_ADD +#define GGML_F32_VEC_MUL GGML_F32x4_MUL +#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE + +// F16 WASM + +#define GGML_F16_STEP 16 +#define GGML_F16_EPR 4 + +inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) { + float tmp[4]; + + tmp[0] = GGML_FP16_TO_FP32(p[0]); + tmp[1] = GGML_FP16_TO_FP32(p[1]); + tmp[2] = GGML_FP16_TO_FP32(p[2]); + tmp[3] = GGML_FP16_TO_FP32(p[3]); + + return wasm_v128_load(tmp); +} + +inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) { + float tmp[4]; + + wasm_v128_store(tmp, x); + + p[0] = GGML_FP32_TO_FP16(tmp[0]); + p[1] = GGML_FP32_TO_FP16(tmp[1]); + p[2] = GGML_FP32_TO_FP16(tmp[2]); + p[3] = GGML_FP32_TO_FP16(tmp[3]); +} + +#define GGML_F16x4 v128_t +#define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f) +#define GGML_F16x4_SET1(x) wasm_f32x4_splat(x) +#define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x) +#define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y) +#define GGML_F16x4_FMA GGML_F32x4_FMA +#define GGML_F16x4_ADD wasm_f32x4_add +#define GGML_F16x4_MUL wasm_f32x4_mul +#define GGML_F16x4_REDUCE(res, x) \ +{ \ + for (int i = 0; i < GGML_F16_ARR/2; ++i) { \ + x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \ + } \ + for (int i = 0; i < GGML_F16_ARR/4; ++i) { \ + x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \ + } \ + for (int i = 0; i < GGML_F16_ARR/8; ++i) { \ + x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \ + } \ + res = wasm_f32x4_extract_lane(x[0], 0) + \ + wasm_f32x4_extract_lane(x[0], 1) + \ + wasm_f32x4_extract_lane(x[0], 2) + \ + wasm_f32x4_extract_lane(x[0], 3); \ +} + +#define GGML_F16_VEC GGML_F16x4 +#define GGML_F16_VEC_ZERO GGML_F16x4_ZERO +#define GGML_F16_VEC_SET1 GGML_F16x4_SET1 +#define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p) +#define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i]) +#define GGML_F16_VEC_FMA GGML_F16x4_FMA +#define GGML_F16_VEC_ADD GGML_F16x4_ADD +#define GGML_F16_VEC_MUL GGML_F16x4_MUL +#define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE + +#elif defined(__SSE3__) + +#define GGML_SIMD + +// F32 SSE + +#define GGML_F32_STEP 32 +#define GGML_F32_EPR 4 + +#define GGML_F32x4 __m128 +#define GGML_F32x4_ZERO _mm_setzero_ps() +#define GGML_F32x4_SET1(x) _mm_set1_ps(x) +#define GGML_F32x4_LOAD _mm_loadu_ps +#define GGML_F32x4_STORE _mm_storeu_ps +#if defined(__FMA__) + // TODO: Does this work? + #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a) +#else + #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a) +#endif +#define GGML_F32x4_ADD _mm_add_ps +#define GGML_F32x4_MUL _mm_mul_ps +#define GGML_F32x4_REDUCE(res, x) \ +{ \ + for (int i = 0; i < GGML_F32_ARR/2; ++i) { \ + x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \ + } \ + for (int i = 0; i < GGML_F32_ARR/4; ++i) { \ + x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \ + } \ + for (int i = 0; i < GGML_F32_ARR/8; ++i) { \ + x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \ + } \ + const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \ + res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \ +} +// TODO: is this optimal ? + +#define GGML_F32_VEC GGML_F32x4 +#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO +#define GGML_F32_VEC_SET1 GGML_F32x4_SET1 +#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD +#define GGML_F32_VEC_STORE GGML_F32x4_STORE +#define GGML_F32_VEC_FMA GGML_F32x4_FMA +#define GGML_F32_VEC_ADD GGML_F32x4_ADD +#define GGML_F32_VEC_MUL GGML_F32x4_MUL +#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE + +// F16 SSE + +#define GGML_F16_STEP 32 +#define GGML_F16_EPR 4 + +static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) { + float tmp[4]; + + tmp[0] = GGML_FP16_TO_FP32(x[0]); + tmp[1] = GGML_FP16_TO_FP32(x[1]); + tmp[2] = GGML_FP16_TO_FP32(x[2]); + tmp[3] = GGML_FP16_TO_FP32(x[3]); + + return _mm_loadu_ps(tmp); +} + +static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) { + float arr[4]; + + _mm_storeu_ps(arr, y); + + x[0] = GGML_FP32_TO_FP16(arr[0]); + x[1] = GGML_FP32_TO_FP16(arr[1]); + x[2] = GGML_FP32_TO_FP16(arr[2]); + x[3] = GGML_FP32_TO_FP16(arr[3]); +} + +#define GGML_F32Cx4 __m128 +#define GGML_F32Cx4_ZERO _mm_setzero_ps() +#define GGML_F32Cx4_SET1(x) _mm_set1_ps(x) +#define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x) +#define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y) +#define GGML_F32Cx4_FMA GGML_F32x4_FMA +#define GGML_F32Cx4_ADD _mm_add_ps +#define GGML_F32Cx4_MUL _mm_mul_ps +#define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE + +#define GGML_F16_VEC GGML_F32Cx4 +#define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO +#define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1 +#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p) +#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i]) +#define GGML_F16_VEC_FMA GGML_F32Cx4_FMA +#define GGML_F16_VEC_ADD GGML_F32Cx4_ADD +#define GGML_F16_VEC_MUL GGML_F32Cx4_MUL +#define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE + +#endif + +// GGML_F32_ARR / GGML_F16_ARR +// number of registers to use per step +#ifdef GGML_SIMD +#define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR) +#define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR) +#endif + +// +// fundamental operations +// + +inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; } + +inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; } + +inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; } + +inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; } + +inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; } +inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; } +inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; } +inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; } +inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; } +inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; } +inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; } +inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; } +inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; } +inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; } + +inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) { +#ifdef GGML_SIMD + float sumf = 0.0f; + const int np = (n & ~(GGML_F32_STEP - 1)); + + GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO }; + + GGML_F32_VEC ax[GGML_F32_ARR]; + GGML_F32_VEC ay[GGML_F32_ARR]; + + for (int i = 0; i < np; i += GGML_F32_STEP) { + for (int j = 0; j < GGML_F32_ARR; j++) { + ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR); + ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR); + + sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]); + } + } + + // reduce sum0..sum3 to sum0 + GGML_F32_VEC_REDUCE(sumf, sum); + + // leftovers + for (int i = np; i < n; ++i) { + sumf += x[i]*y[i]; + } +#else + // scalar + ggml_float sumf = 0.0; + for (int i = 0; i < n; ++i) { + sumf += (ggml_float)(x[i]*y[i]); + } +#endif + + *s = sumf; +} + +inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) { + ggml_float sumf = 0.0; + +#if defined(GGML_SIMD) + const int np = (n & ~(GGML_F16_STEP - 1)); + + GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO }; + + GGML_F16_VEC ax[GGML_F16_ARR]; + GGML_F16_VEC ay[GGML_F16_ARR]; + + for (int i = 0; i < np; i += GGML_F16_STEP) { + for (int j = 0; j < GGML_F16_ARR; j++) { + ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j); + ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j); + + sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]); + } + } + + // reduce sum0..sum3 to sum0 + GGML_F16_VEC_REDUCE(sumf, sum); + + // leftovers + for (int i = np; i < n; ++i) { + sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i])); + } +#else + for (int i = 0; i < n; ++i) { + sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i])); + } +#endif + + *s = sumf; +} + +static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { + const int qk = QK8_0; + const int nb = n / qk; + + assert(n % qk == 0); + assert(nb % 2 == 0); + + const block_q4_0 * restrict x = vx; + const block_q8_0 * restrict y = vy; + +#if defined(__ARM_NEON) + float32x4_t sumv0 = vdupq_n_f32(0.0f); + float32x4_t sumv1 = vdupq_n_f32(0.0f); + + for (int i = 0; i < nb; i += 2) { + const block_q4_0 * restrict x0 = &x[i + 0]; + const block_q4_0 * restrict x1 = &x[i + 1]; + const block_q8_0 * restrict y0 = &y[i + 0]; + const block_q8_0 * restrict y1 = &y[i + 1]; + + const uint8x16_t m4b = vdupq_n_u8(0x0F); + const int8x16_t s8b = vdupq_n_s8(0x8); + + const uint8x16_t v0_0 = vld1q_u8(x0->qs); + const uint8x16_t v0_1 = vld1q_u8(x1->qs); + + // 4-bit -> 8-bit + const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b)); + const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4)); + const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b)); + const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4)); + + // sub 8 + const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b); + const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b); + const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b); + const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b); + + // load y + const int8x16_t v1_0l = vld1q_s8(y0->qs); + const int8x16_t v1_0h = vld1q_s8(y0->qs + 16); + const int8x16_t v1_1l = vld1q_s8(y1->qs); + const int8x16_t v1_1h = vld1q_s8(y1->qs + 16); + +#if defined(__ARM_FEATURE_DOTPROD) + // dot product into int32x4_t + const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h); + const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h); + + sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d); + sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d); +#else + const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l)); + const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l)); + const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h)); + const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h)); + + const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l)); + const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l)); + const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h)); + const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h)); + + const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h)); + const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h)); + const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h)); + const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h)); + + sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d); + sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d); +#endif + } + + *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1); +#elif defined(__AVX2__) + // Initialize accumulator with zeros + __m256 acc = _mm256_setzero_ps(); + + // Main loop + for (int i = 0; i < nb; ++i) { + /* Compute combined scale for the block */ + const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) ); + + __m256i bx = bytes_from_nibbles_32(x[i].qs); + + // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. + const __m256i off = _mm256_set1_epi8( 8 ); + bx = _mm256_sub_epi8( bx, off ); + + __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs); + + const __m256 q = mul_sum_i8_pairs_float(bx, by); + + /* Multiply q with scale and accumulate */ + acc = _mm256_fmadd_ps( d, q, acc ); + } + + *s = hsum_float_8(acc); +#elif defined(__AVX__) + // Initialize accumulator with zeros + __m256 acc = _mm256_setzero_ps(); + + // Main loop + for (int i = 0; i < nb; ++i) { + // Compute combined scale for the block + const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) ); + + const __m128i lowMask = _mm_set1_epi8(0xF); + const __m128i off = _mm_set1_epi8(8); + + const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs); + + __m128i bx = _mm_and_si128(lowMask, tmp); + __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs); + bx = _mm_sub_epi8(bx, off); + const __m128i i32_0 = mul_sum_i8_pairs(bx, by); + + bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4)); + by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16)); + bx = _mm_sub_epi8(bx, off); + const __m128i i32_1 = mul_sum_i8_pairs(bx, by); + + // Convert int32_t to float + __m256 p = _mm256_cvtepi32_ps(_mm256_set_m128i(i32_0, i32_1)); + + // Apply the scale, and accumulate + acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc); + } + + *s = hsum_float_8(acc); +#elif defined(__SSSE3__) + // set constants + const __m128i lowMask = _mm_set1_epi8(0xF); + const __m128i off = _mm_set1_epi8(8); + + // Initialize accumulator with zeros + __m128 acc_0 = _mm_setzero_ps(); + __m128 acc_1 = _mm_setzero_ps(); + __m128 acc_2 = _mm_setzero_ps(); + __m128 acc_3 = _mm_setzero_ps(); + + // First round without accumulation + { + _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0); + _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0); + + // Compute combined scale for the block 0 and 1 + const __m128 d_0_1 = _mm_mul_ps( _mm_set1_ps( x[0].d ), _mm_set1_ps( y[0].d ) ); + + const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs); + + __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1); + __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs); + bx_0 = _mm_sub_epi8(bx_0, off); + const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0); + + __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4)); + __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16)); + bx_1 = _mm_sub_epi8(bx_1, off); + const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1); + + _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0); + _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0); + + // Compute combined scale for the block 2 and 3 + const __m128 d_2_3 = _mm_mul_ps( _mm_set1_ps( x[1].d ), _mm_set1_ps( y[1].d ) ); + + const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs); + + __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3); + __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs); + bx_2 = _mm_sub_epi8(bx_2, off); + const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2); + + __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4)); + __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16)); + bx_3 = _mm_sub_epi8(bx_3, off); + const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3); + + // Convert int32_t to float + __m128 p0 = _mm_cvtepi32_ps(i32_0); + __m128 p1 = _mm_cvtepi32_ps(i32_1); + __m128 p2 = _mm_cvtepi32_ps(i32_2); + __m128 p3 = _mm_cvtepi32_ps(i32_3); + + // Apply the scale + acc_0 = _mm_mul_ps( d_0_1, p0 ); + acc_1 = _mm_mul_ps( d_0_1, p1 ); + acc_2 = _mm_mul_ps( d_2_3, p2 ); + acc_3 = _mm_mul_ps( d_2_3, p3 ); + } + + // Main loop + for (int i = 2; i < nb; i+=2) { + _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0); + _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0); + + // Compute combined scale for the block 0 and 1 + const __m128 d_0_1 = _mm_mul_ps( _mm_set1_ps( x[i].d ), _mm_set1_ps( y[i].d ) ); + + const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs); + + __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1); + __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs); + bx_0 = _mm_sub_epi8(bx_0, off); + const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0); + + __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4)); + __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16)); + bx_1 = _mm_sub_epi8(bx_1, off); + const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1); + + _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0); + _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0); + + // Compute combined scale for the block 2 and 3 + const __m128 d_2_3 = _mm_mul_ps( _mm_set1_ps( x[i + 1].d ), _mm_set1_ps( y[i + 1].d ) ); + + const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs); + + __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3); + __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs); + bx_2 = _mm_sub_epi8(bx_2, off); + const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2); + + __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4)); + __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16)); + bx_3 = _mm_sub_epi8(bx_3, off); + const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3); + + // Convert int32_t to float + __m128 p0 = _mm_cvtepi32_ps(i32_0); + __m128 p1 = _mm_cvtepi32_ps(i32_1); + __m128 p2 = _mm_cvtepi32_ps(i32_2); + __m128 p3 = _mm_cvtepi32_ps(i32_3); + + // Apply the scale + __m128 p0_d = _mm_mul_ps( d_0_1, p0 ); + __m128 p1_d = _mm_mul_ps( d_0_1, p1 ); + __m128 p2_d = _mm_mul_ps( d_2_3, p2 ); + __m128 p3_d = _mm_mul_ps( d_2_3, p3 ); + + // Acummulate + acc_0 = _mm_add_ps(p0_d, acc_0); + acc_1 = _mm_add_ps(p1_d, acc_1); + acc_2 = _mm_add_ps(p2_d, acc_2); + acc_3 = _mm_add_ps(p3_d, acc_3); + } + + *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3); +#else + // scalar + float sumf = 0.0; + + for (int i = 0; i < nb; i++) { + int sumi = 0; + + for (int j = 0; j < qk/2; ++j) { + const int v0 = (x[i].qs[j] & 0x0F) - 8; + const int v1 = (x[i].qs[j] >> 4) - 8; + + sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]); + } + + sumf += (x[i].d*y[i].d)*sumi; + } + + *s = sumf; +#endif +} + +static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { + const int qk = QK8_1; + const int nb = n / qk; + + assert(n % qk == 0); + assert(nb % 2 == 0); + + const block_q4_1 * restrict x = vx; + const block_q8_1 * restrict y = vy; + + // TODO: add WASM SIMD +#if defined(__ARM_NEON) + float32x4_t sumv0 = vdupq_n_f32(0.0f); + float32x4_t sumv1 = vdupq_n_f32(0.0f); + + float summs = 0; + + for (int i = 0; i < nb; i += 2) { + const block_q4_1 * restrict x0 = &x[i + 0]; + const block_q4_1 * restrict x1 = &x[i + 1]; + const block_q8_1 * restrict y0 = &y[i + 0]; + const block_q8_1 * restrict y1 = &y[i + 1]; + + summs += x0->m * y0->s + x1->m * y1->s; + + const uint8x16_t m4b = vdupq_n_u8(0x0F); + + const uint8x16_t v0_0 = vld1q_u8(x0->qs); + const uint8x16_t v0_1 = vld1q_u8(x1->qs); + + // 4-bit -> 8-bit + const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b)); + const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4)); + const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b)); + const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4)); + + // load y + const int8x16_t v1_0l = vld1q_s8(y0->qs); + const int8x16_t v1_0h = vld1q_s8(y0->qs + 16); + const int8x16_t v1_1l = vld1q_s8(y1->qs); + const int8x16_t v1_1h = vld1q_s8(y1->qs + 16); + +#if defined(__ARM_FEATURE_DOTPROD) + // dot product into int32x4_t + const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h); + const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h); + + sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d); + sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d); +#else + const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l)); + const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l)); + const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h)); + const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h)); + + const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l)); + const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l)); + const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h)); + const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h)); + + const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h)); + const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h)); + const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h)); + const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h)); + + sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d); + sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d); +#endif + } + + *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs; +#elif defined(__AVX2__) || defined(__AVX__) + // Initialize accumulator with zeros + __m256 acc = _mm256_setzero_ps(); + + float summs = 0; + + // Main loop + for (int i = 0; i < nb; ++i) { + const float * d0 = &x[i].d; + const float * d1 = &y[i].d; + + summs += x[i].m * y[i].s; + + const __m256 d0v = _mm256_broadcast_ss( d0 ); + const __m256 d1v = _mm256_broadcast_ss( d1 ); + + // Compute combined scales + const __m256 d0d1 = _mm256_mul_ps( d0v, d1v ); + + // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes + const __m256i bx = bytes_from_nibbles_32(x[i].qs); + const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs ); + + const __m256 xy = mul_sum_us8_pairs_float(bx, by); + + // Accumulate d0*d1*x*y +#if defined(__AVX2__) + acc = _mm256_fmadd_ps( d0d1, xy, acc ); +#else + acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc ); +#endif + } + + *s = hsum_float_8(acc) + summs; +#else + // scalar + float sumf = 0.0; + + for (int i = 0; i < nb; i++) { + int sumi = 0; + + for (int j = 0; j < qk/2; ++j) { + const int v0 = (x[i].qs[j] & 0x0F); + const int v1 = (x[i].qs[j] >> 4); + + sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]); + } + + sumf += (x[i].d*y[i].d)*sumi + x[i].m*y[i].s; + } + + *s = sumf; +#endif +} + +static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { + const int qk = QK8_0; + const int nb = n / qk; + + assert(n % qk == 0); + assert(nb % 2 == 0); + assert(qk == QK5_0); + + const block_q5_0 * restrict x = vx; + const block_q8_0 * restrict y = vy; + +#if defined(__ARM_NEON) + float32x4_t sumv0 = vdupq_n_f32(0.0f); + float32x4_t sumv1 = vdupq_n_f32(0.0f); + + uint32_t qh0; + uint32_t qh1; + + uint64_t tmp0[4]; + uint64_t tmp1[4]; + + for (int i = 0; i < nb; i += 2) { + const block_q5_0 * restrict x0 = &x[i]; + const block_q5_0 * restrict x1 = &x[i + 1]; + const block_q8_0 * restrict y0 = &y[i]; + const block_q8_0 * restrict y1 = &y[i + 1]; + + const uint8x16_t m4b = vdupq_n_u8(0x0F); + + // extract the 5th bit via lookup table ((!b) << 4) + memcpy(&qh0, x0->qh, sizeof(qh0)); + memcpy(&qh1, x1->qh, sizeof(qh1)); + + tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF]; + tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF]; + tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF]; + tmp0[3] = table_b2b_1[(qh0 >> 24) ]; + + tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF]; + tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF]; + tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF]; + tmp1[3] = table_b2b_1[(qh1 >> 24) ]; + + const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0)); + const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2)); + const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0)); + const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2)); + + const uint8x16_t v0_0 = vld1q_u8(x0->qs); + const uint8x16_t v0_1 = vld1q_u8(x1->qs); + + // 4-bit -> 8-bit + int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b)); + int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4)); + int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b)); + int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4)); + + // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero) + const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0); + const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0); + const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1); + const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1); + + // load y + const int8x16_t v1_0l = vld1q_s8(y0->qs); + const int8x16_t v1_0h = vld1q_s8(y0->qs + 16); + const int8x16_t v1_1l = vld1q_s8(y1->qs); + const int8x16_t v1_1h = vld1q_s8(y1->qs + 16); + + const float x0d = GGML_FP16_TO_FP32(x0->d); + const float x1d = GGML_FP16_TO_FP32(x1->d); + +#if defined(__ARM_FEATURE_DOTPROD) + sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32( + vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l), + vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), x0d*y0->d); + sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32( + vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l), + vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), x1d*y1->d); +#else + const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l)); + const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l)); + const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h)); + const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h)); + + const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l)); + const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l)); + const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h)); + const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h)); + + const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h)); + const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h)); + const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h)); + const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h)); + + sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d); + sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1d*y1->d); +#endif + } + + *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1); +#elif defined(__wasm_simd128__) + v128_t sumv = wasm_f32x4_splat(0.0f); + + uint32_t qh; + uint64_t tmp[4]; + + // TODO: check if unrolling this is better + for (int i = 0; i < nb; ++i) { + const block_q5_0 * restrict x0 = &x[i]; + const block_q8_0 * restrict y0 = &y[i]; + + const v128_t m4b = wasm_i8x16_splat(0x0F); + const v128_t s16b = wasm_i8x16_splat(0x10); + + // extract the 5th bit + memcpy(&qh, x0->qh, sizeof(qh)); + + tmp[0] = table_b2b_1[(qh >> 0) & 0xFF]; + tmp[1] = table_b2b_1[(qh >> 8) & 0xFF]; + tmp[2] = table_b2b_1[(qh >> 16) & 0xFF]; + tmp[3] = table_b2b_1[(qh >> 24) ]; + + const v128_t qhl = wasm_v128_load(tmp + 0); + const v128_t qhh = wasm_v128_load(tmp + 2); + + const v128_t v0 = wasm_v128_load(x0->qs); + + // 4-bit -> 8-bit + const v128_t v0l = wasm_v128_and (v0, m4b); + const v128_t v0h = wasm_u8x16_shr(v0, 4); + + // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero) + const v128_t v0lf = wasm_i8x16_sub(v0l, qhl); + const v128_t v0hf = wasm_i8x16_sub(v0h, qhh); + + // load y + const v128_t v1l = wasm_v128_load(y0->qs); + const v128_t v1h = wasm_v128_load(y0->qs + 16); + + // int8x16 -> int16x8 + const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf); + const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf); + const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf); + const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf); + + const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l); + const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l); + const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h); + const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h); + + const float x0d = GGML_FP16_TO_FP32(x0->d); + + // dot product + sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4( + wasm_i32x4_add( + wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll), + wasm_i32x4_dot_i16x8(v0lfh, v1lh)), + wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl), + wasm_i32x4_dot_i16x8(v0hfh, v1hh)))), wasm_f32x4_splat(x0d*y0->d))); + } + + *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) + + wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3); +#elif defined(__AVX2__) + // Initialize accumulator with zeros + __m256 acc = _mm256_setzero_ps(); + + // Main loop + for (int i = 0; i < nb; i++) { + /* Compute combined scale for the block */ + const __m256 d = _mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d)), _mm256_broadcast_ss(&y[i].d)); + + __m256i bx = bytes_from_nibbles_32(x[i].qs); + __m256i bxhi = bytes_from_bits_32(x[i].qh); + bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0)); + bx = _mm256_or_si256(bx, bxhi); + + __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs); + + const __m256 q = mul_sum_i8_pairs_float(bx, by); + + /* Multiply q with scale and accumulate */ + acc = _mm256_fmadd_ps(d, q, acc); + } + + *s = hsum_float_8(acc); +#elif defined(__AVX__) + // Initialize accumulator with zeros + __m256 acc = _mm256_setzero_ps(); + __m128i mask = _mm_set1_epi8((char)0xF0); + + // Main loop + for (int i = 0; i < nb; i++) { + /* Compute combined scale for the block */ + const __m256 d = _mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d)), _mm256_broadcast_ss(&y[i].d)); + + __m256i bx = bytes_from_nibbles_32(x[i].qs); + const __m256i bxhi = bytes_from_bits_32(x[i].qh); + __m128i bxhil = _mm256_castsi256_si128(bxhi); + __m128i bxhih = _mm256_extractf128_si256(bxhi, 1); + bxhil = _mm_andnot_si128(bxhil, mask); + bxhih = _mm_andnot_si128(bxhih, mask); + __m128i bxl = _mm256_castsi256_si128(bx); + __m128i bxh = _mm256_extractf128_si256(bx, 1); + bxl = _mm_or_si128(bxl, bxhil); + bxh = _mm_or_si128(bxh, bxhih); + bx = _mm256_set_m128i(bxh, bxl); + + const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs); + + const __m256 q = mul_sum_i8_pairs_float(bx, by); + + /* Multiply q with scale and accumulate */ + acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc); + } + + *s = hsum_float_8(acc); +#else + // scalar + float sumf = 0.0; + + for (int i = 0; i < nb; i++) { + uint32_t qh; + memcpy(&qh, x[i].qh, sizeof(qh)); + + int sumi = 0; + + for (int j = 0; j < qk/2; ++j) { + const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4; + const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12)); + + const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16; + const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16; + + sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]); + } + + sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi; + } + + *s = sumf; +#endif +} + +static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { + const int qk = QK8_1; + const int nb = n / qk; + + assert(n % qk == 0); + assert(nb % 2 == 0); + assert(qk == QK5_1); + + const block_q5_1 * restrict x = vx; + const block_q8_1 * restrict y = vy; + +#if defined(__ARM_NEON) + float32x4_t sumv0 = vdupq_n_f32(0.0f); + float32x4_t sumv1 = vdupq_n_f32(0.0f); + + float summs0 = 0.0f; + float summs1 = 0.0f; + + uint32_t qh0; + uint32_t qh1; + + uint64_t tmp0[4]; + uint64_t tmp1[4]; + + for (int i = 0; i < nb; i += 2) { + const block_q5_1 * restrict x0 = &x[i]; + const block_q5_1 * restrict x1 = &x[i + 1]; + const block_q8_1 * restrict y0 = &y[i]; + const block_q8_1 * restrict y1 = &y[i + 1]; + + const uint8x16_t m4b = vdupq_n_u8(0x0F); + + summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s; + summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s; + + // extract the 5th bit via lookup table ((b) << 4) + memcpy(&qh0, x0->qh, sizeof(qh0)); + memcpy(&qh1, x1->qh, sizeof(qh1)); + + tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF]; + tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF]; + tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF]; + tmp0[3] = table_b2b_0[(qh0 >> 24) ]; + + tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF]; + tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF]; + tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF]; + tmp1[3] = table_b2b_0[(qh1 >> 24) ]; + + const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0)); + const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2)); + const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0)); + const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2)); + + const uint8x16_t v0_0 = vld1q_u8(x0->qs); + const uint8x16_t v0_1 = vld1q_u8(x1->qs); + + // 4-bit -> 8-bit + const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b)); + const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4)); + const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b)); + const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4)); + + // add high bit + const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0); + const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0); + const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1); + const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1); + + // load y + const int8x16_t v1_0l = vld1q_s8(y0->qs); + const int8x16_t v1_0h = vld1q_s8(y0->qs + 16); + const int8x16_t v1_1l = vld1q_s8(y1->qs); + const int8x16_t v1_1h = vld1q_s8(y1->qs + 16); + + const float x0d = GGML_FP16_TO_FP32(x0->d); + const float x1d = GGML_FP16_TO_FP32(x1->d); + +#if defined(__ARM_FEATURE_DOTPROD) + sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32( + vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l), + vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), x0d*y0->d); + sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32( + vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l), + vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), x1d*y1->d); +#else + const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l)); + const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l)); + const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h)); + const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h)); + + const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l)); + const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l)); + const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h)); + const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h)); + + const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h)); + const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h)); + const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h)); + const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h)); + + sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d); + sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1d*y1->d); +#endif + } + + *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1; +#elif defined(__wasm_simd128__) + v128_t sumv = wasm_f32x4_splat(0.0f); + + float summs = 0.0f; + + uint32_t qh; + uint64_t tmp[4]; + + // TODO: check if unrolling this is better + for (int i = 0; i < nb; ++i) { + const block_q5_1 * restrict x0 = &x[i]; + const block_q8_1 * restrict y0 = &y[i]; + + summs += GGML_FP16_TO_FP32(x0->m) * y0->s; + + const v128_t m4b = wasm_i8x16_splat(0x0F); + + // extract the 5th bit + memcpy(&qh, x0->qh, sizeof(qh)); + + tmp[0] = table_b2b_0[(qh >> 0) & 0xFF]; + tmp[1] = table_b2b_0[(qh >> 8) & 0xFF]; + tmp[2] = table_b2b_0[(qh >> 16) & 0xFF]; + tmp[3] = table_b2b_0[(qh >> 24) ]; + + const v128_t qhl = wasm_v128_load(tmp + 0); + const v128_t qhh = wasm_v128_load(tmp + 2); + + const v128_t v0 = wasm_v128_load(x0->qs); + + // 4-bit -> 8-bit + const v128_t v0l = wasm_v128_and (v0, m4b); + const v128_t v0h = wasm_u8x16_shr(v0, 4); + + static bool x = true; + + // add high bit + const v128_t v0lf = wasm_v128_or(v0l, qhl); + const v128_t v0hf = wasm_v128_or(v0h, qhh); + + // load y + const v128_t v1l = wasm_v128_load(y0->qs); + const v128_t v1h = wasm_v128_load(y0->qs + 16); + + // int8x16 -> int16x8 + const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf); + const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf); + const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf); + const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf); + + const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l); + const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l); + const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h); + const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h); + + const float x0d = GGML_FP16_TO_FP32(x0->d); + + // dot product + sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4( + wasm_i32x4_add( + wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll), + wasm_i32x4_dot_i16x8(v0lfh, v1lh)), + wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl), + wasm_i32x4_dot_i16x8(v0hfh, v1hh)))), wasm_f32x4_splat(x0d*y0->d))); + } + + *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) + + wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs; +#elif defined(__AVX2__) + // Initialize accumulator with zeros + __m256 acc = _mm256_setzero_ps(); + + float summs = 0.0f; + + // Main loop + for (int i = 0; i < nb; i++) { + const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d)); + + summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s; + + __m256i bx = bytes_from_nibbles_32(x[i].qs); + __m256i bxhi = bytes_from_bits_32(x[i].qh); + bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10)); + bx = _mm256_or_si256(bx, bxhi); + + const __m256 dy = _mm256_broadcast_ss(&y[i].d); + const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs); + + const __m256 q = mul_sum_us8_pairs_float(bx, by); + + acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc); + } + + *s = hsum_float_8(acc) + summs; +#elif defined(__AVX__) + // Initialize accumulator with zeros + __m256 acc = _mm256_setzero_ps(); + __m128i mask = _mm_set1_epi8(0x10); + + float summs = 0.0f; + + // Main loop + for (int i = 0; i < nb; i++) { + const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d)); + + summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s; + + __m256i bx = bytes_from_nibbles_32(x[i].qs); + const __m256i bxhi = bytes_from_bits_32(x[i].qh); + __m128i bxhil = _mm256_castsi256_si128(bxhi); + __m128i bxhih = _mm256_extractf128_si256(bxhi, 1); + bxhil = _mm_and_si128(bxhil, mask); + bxhih = _mm_and_si128(bxhih, mask); + __m128i bxl = _mm256_castsi256_si128(bx); + __m128i bxh = _mm256_extractf128_si256(bx, 1); + bxl = _mm_or_si128(bxl, bxhil); + bxh = _mm_or_si128(bxh, bxhih); + bx = _mm256_set_m128i(bxh, bxl); + + const __m256 dy = _mm256_broadcast_ss(&y[i].d); + const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs); + + const __m256 q = mul_sum_us8_pairs_float(bx, by); + + acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc); + } + + *s = hsum_float_8(acc) + summs; +#else + // scalar + float sumf = 0.0; + + for (int i = 0; i < nb; i++) { + uint32_t qh; + memcpy(&qh, x[i].qh, sizeof(qh)); + + int sumi = 0; + + for (int j = 0; j < qk/2; ++j) { + const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10; + const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10; + + const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0; + const int32_t x1 = (x[i].qs[j] >> 4) | xh_1; + + sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]); + } + + sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s; + } + + *s = sumf; +#endif +} + +static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { + const int qk = QK8_0; + const int nb = n / qk; + + assert(n % qk == 0); + assert(nb % 2 == 0); + + const block_q8_0 * restrict x = vx; + const block_q8_0 * restrict y = vy; + +#if defined(__ARM_NEON) + float32x4_t sumv0 = vdupq_n_f32(0.0f); + float32x4_t sumv1 = vdupq_n_f32(0.0f); + + for (int i = 0; i < nb; i += 2) { + const block_q8_0 * restrict x0 = &x[i + 0]; + const block_q8_0 * restrict x1 = &x[i + 1]; + const block_q8_0 * restrict y0 = &y[i + 0]; + const block_q8_0 * restrict y1 = &y[i + 1]; + + const int8x16_t x0_0 = vld1q_s8(x0->qs); + const int8x16_t x0_1 = vld1q_s8(x0->qs + 16); + const int8x16_t x1_0 = vld1q_s8(x1->qs); + const int8x16_t x1_1 = vld1q_s8(x1->qs + 16); + + // load y + const int8x16_t y0_0 = vld1q_s8(y0->qs); + const int8x16_t y0_1 = vld1q_s8(y0->qs + 16); + const int8x16_t y1_0 = vld1q_s8(y1->qs); + const int8x16_t y1_1 = vld1q_s8(y1->qs + 16); + +#if defined(__ARM_FEATURE_DOTPROD) + sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32( + vdotq_s32(vdupq_n_s32(0), x0_0, y0_0), + vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), x0->d*y0->d); + + sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32( + vdotq_s32(vdupq_n_s32(0), x1_0, y1_0), + vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), x1->d*y1->d); + +#else + const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0)); + const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0)); + const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1)); + const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1)); + + const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0)); + const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0)); + const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1)); + const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1)); + + const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1)); + const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3)); + const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1)); + const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3)); + + sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), x0->d*y0->d); + sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), x1->d*y1->d); +#endif + } + + *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1); +#elif defined(__AVX2__) || defined(__AVX__) + // Initialize accumulator with zeros + __m256 acc = _mm256_setzero_ps(); + + // Main loop + for (int i = 0; i < nb; ++i) { + // Compute combined scale for the block + const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) ); + __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs); + __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs); + + const __m256 q = mul_sum_i8_pairs_float(bx, by); + + // Multiply q with scale and accumulate +#if defined(__AVX2__) + acc = _mm256_fmadd_ps( d, q, acc ); +#else + acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc ); +#endif + } + + *s = hsum_float_8(acc); +#else + // scalar + float sumf = 0.0; + + for (int i = 0; i < nb; i++) { + int sumi = 0; + + for (int j = 0; j < qk; j++) { + sumi += x[i].qs[j]*y[i].qs[j]; + } + + sumf += (x[i].d*y[i].d)*sumi; + } + + *s = sumf; +#endif +} + +// compute GGML_VEC_DOT_UNROLL dot products at once +// xs - x row stride in bytes +inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) { + ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 }; + + ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL]; + + for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) { + x[i] = (ggml_fp16_t *) ((char *) xv + i*xs); + } + +#if defined(GGML_SIMD) + const int np = (n & ~(GGML_F16_STEP - 1)); + + GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } }; + + GGML_F16_VEC ax[GGML_F16_ARR]; + GGML_F16_VEC ay[GGML_F16_ARR]; + + for (int i = 0; i < np; i += GGML_F16_STEP) { + for (int j = 0; j < GGML_F16_ARR; j++) { + ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j); + + for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) { + ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j); + + sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]); + } + } + } + + // reduce sum0..sum3 to sum0 + for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) { + GGML_F16_VEC_REDUCE(sumf[k], sum[k]); + } + + // leftovers + for (int i = np; i < n; ++i) { + for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) { + sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i])); + } + } +#else + for (int i = 0; i < n; ++i) { + for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) { + sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i])); + } + } +#endif + + for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) { + s[i] = sumf[i]; + } +} + +inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) { +#if defined(GGML_SIMD) + const int np = (n & ~(GGML_F32_STEP - 1)); + + GGML_F32_VEC vx = GGML_F32_VEC_SET1(v); + + GGML_F32_VEC ax[GGML_F32_ARR]; + GGML_F32_VEC ay[GGML_F32_ARR]; + + for (int i = 0; i < np; i += GGML_F32_STEP) { + for (int j = 0; j < GGML_F32_ARR; j++) { + ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR); + ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR); + ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx); + + GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]); + } + } + + // leftovers + for (int i = np; i < n; ++i) { + y[i] += x[i]*v; + } +#else + // scalar + for (int i = 0; i < n; ++i) { + y[i] += x[i]*v; + } +#endif +} + +//inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; } +inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { +#if defined(GGML_SIMD) + const int np = (n & ~(GGML_F32_STEP - 1)); + + GGML_F32_VEC vx = GGML_F32_VEC_SET1(v); + + GGML_F32_VEC ay[GGML_F32_ARR]; + + for (int i = 0; i < np; i += GGML_F32_STEP) { + for (int j = 0; j < GGML_F32_ARR; j++) { + ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR); + ay[j] = GGML_F32_VEC_MUL(ay[j], vx); + + GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]); + } + } + + // leftovers + for (int i = np; i < n; ++i) { + y[i] *= v; + } +#else + // scalar + for (int i = 0; i < n; ++i) { + y[i] *= v; + } +#endif +} + +inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); } +inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; } +inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); } +inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); } +inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); } +inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); } +inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; } +inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; } + +static const float GELU_COEF_A = 0.044715f; +static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f; + +inline static float ggml_gelu_f32(float x) { + return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x))); +} + +inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) { + const uint16_t * i16 = (const uint16_t *) x; + for (int i = 0; i < n; ++i) { + y[i] = table_gelu_f16[i16[i]]; + } +} + +#ifdef GGML_GELU_FP16 +inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) { + uint16_t t; + for (int i = 0; i < n; ++i) { + ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]); + memcpy(&t, &fp16, sizeof(uint16_t)); + y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]); + } +} +#else +inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) { + for (int i = 0; i < n; ++i) { + y[i] = ggml_gelu_f32(x[i]); + } +} +#endif + +// Sigmoid Linear Unit (SiLU) function +inline static float ggml_silu_f32(float x) { + return x/(1.0f + expf(-x)); +} + +//inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) { +// const uint16_t * i16 = (const uint16_t *) x; +// for (int i = 0; i < n; ++i) { +// y[i] = table_silu_f16[i16[i]]; +// } +//} + +#ifdef GGML_SILU_FP16 +inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) { + uint16_t t; + for (int i = 0; i < n; ++i) { + ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]); + memcpy(&t, &fp16, sizeof(uint16_t)); + y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]); + } +} +#else +inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) { + for (int i = 0; i < n; ++i) { + y[i] = ggml_silu_f32(x[i]); + } +} +#endif + +inline static float ggml_silu_backward_f32(float x, float dy) { + const float s = 1.0f/(1.0f + expf(-x)); + return dy*s*(1.0f + x*(1.0f - s)); +} + +#ifdef GGML_SILU_FP16 +inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) { + for (int i = 0; i < n; ++i) { + // we did not use x[i] to compute forward silu but its f16 equivalent + // take derivative at f16 of x[i]: + ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]); + float usedx = GGML_FP16_TO_FP32(fp16); + dx[i] = ggml_silu_backward_f32(usedx, dy[i]); + } +} +#else +inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) { + for (int i = 0; i < n; ++i) { + dx[i] = ggml_silu_backward_f32(x[i], dy[i]); + } +} +#endif + +inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) { +#ifndef GGML_USE_ACCELERATE + ggml_float sum = 0.0; + for (int i = 0; i < n; ++i) { + sum += (ggml_float)x[i]; + } + *s = sum; +#else + vDSP_sve(x, 1, s, n); +#endif +} + +inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) { + ggml_float sum = 0.0; + for (int i = 0; i < n; ++i) { + sum += (ggml_float)x[i]; + } + *s = sum; +} + +inline static void ggml_vec_max_f32(const int n, float * s, const float * x) { +#ifndef GGML_USE_ACCELERATE + float max = -INFINITY; + for (int i = 0; i < n; ++i) { + max = MAX(max, x[i]); + } + *s = max; +#else + vDSP_maxv(x, 1, s, n); +#endif +} + +inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) { + ggml_vec_norm_f32(n, s, x); + *s = 1.f/(*s); +} + +// +// logging +// + +#if (GGML_DEBUG >= 1) +#define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__) +#else +#define GGML_PRINT_DEBUG(...) +#endif + +#if (GGML_DEBUG >= 5) +#define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__) +#else +#define GGML_PRINT_DEBUG_5(...) +#endif + +#if (GGML_DEBUG >= 10) +#define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__) +#else +#define GGML_PRINT_DEBUG_10(...) +#endif + +#define GGML_PRINT(...) printf(__VA_ARGS__) + +// +// data types +// + +static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = { + [GGML_TYPE_F32] = 1, + [GGML_TYPE_F16] = 1, + [GGML_TYPE_Q4_0] = QK4_0, + [GGML_TYPE_Q4_1] = QK4_1, + [GGML_TYPE_Q4_2] = QK4_2, + [GGML_TYPE_Q4_3] = QK4_3, + [GGML_TYPE_Q5_0] = QK5_0, + [GGML_TYPE_Q5_1] = QK5_1, + [GGML_TYPE_Q8_0] = QK8_0, + [GGML_TYPE_Q8_1] = QK8_1, + [GGML_TYPE_Q8_1B] = QK8_1, + [GGML_TYPE_I8] = 1, + [GGML_TYPE_I16] = 1, + [GGML_TYPE_I32] = 1, +}; +static_assert(GGML_TYPE_COUNT == 14, "GGML_BLCK_SIZE is outdated"); + +static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = { + [GGML_TYPE_F32] = sizeof(float), + [GGML_TYPE_F16] = sizeof(ggml_fp16_t), + [GGML_TYPE_Q4_0] = sizeof(block_q4_0), + [GGML_TYPE_Q4_1] = sizeof(block_q4_1), + [GGML_TYPE_Q4_2] = sizeof(block_q4_2), + [GGML_TYPE_Q4_3] = sizeof(block_q4_3), + [GGML_TYPE_Q5_0] = sizeof(block_q5_0), + [GGML_TYPE_Q5_1] = sizeof(block_q5_1), + [GGML_TYPE_Q8_0] = sizeof(block_q8_0), + [GGML_TYPE_Q8_1] = sizeof(block_q8_1), + [GGML_TYPE_Q8_1B] = sizeof(block_q8_1_v2), + [GGML_TYPE_I8] = sizeof(int8_t), + [GGML_TYPE_I16] = sizeof(int16_t), + [GGML_TYPE_I32] = sizeof(int32_t), +}; +static_assert(GGML_TYPE_COUNT == 14, "GGML_TYPE_SIZE is outdated"); + + +static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = { + [GGML_TYPE_F32] = "f32", + [GGML_TYPE_F16] = "f16", + [GGML_TYPE_Q4_0] = "q4_0", + [GGML_TYPE_Q4_1] = "q4_1", + [GGML_TYPE_Q4_2] = "q4_2", + [GGML_TYPE_Q4_3] = "q4_3", + [GGML_TYPE_Q5_0] = "q5_0", + [GGML_TYPE_Q5_1] = "q5_1", + [GGML_TYPE_Q8_0] = "q8_0", + [GGML_TYPE_Q8_1] = "q8_1", + [GGML_TYPE_Q8_1B] = "q8_1b", + [GGML_TYPE_I8] = "i8", + [GGML_TYPE_I16] = "i16", + [GGML_TYPE_I32] = "i32", +}; +static_assert(GGML_TYPE_COUNT == 14, "GGML_TYPE_NAME is outdated"); + +static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = { + [GGML_TYPE_F32] = false, + [GGML_TYPE_F16] = false, + [GGML_TYPE_Q4_0] = true, + [GGML_TYPE_Q4_1] = true, + [GGML_TYPE_Q4_2] = true, + [GGML_TYPE_Q4_3] = true, + [GGML_TYPE_Q5_0] = true, + [GGML_TYPE_Q5_1] = true, + [GGML_TYPE_Q8_0] = true, + [GGML_TYPE_Q8_1] = true, + [GGML_TYPE_Q8_1B] = true, + [GGML_TYPE_I8] = false, + [GGML_TYPE_I16] = false, + [GGML_TYPE_I32] = false, +}; +static_assert(GGML_TYPE_COUNT == 14, "GGML_IS_QUANTIZED is outdated"); + +static const char * GGML_OP_LABEL[GGML_OP_COUNT] = { + "NONE", + + "DUP", + "ADD", + "ADD1", + "ACC", + "SUB", + "MUL", + "DIV", + "SQR", + "SQRT", + "LOG", + "SUM", + "SUM_ROWS", + "MEAN", + "REPEAT", + "ABS", + "SGN", + "NEG", + "STEP", + "RELU", + "GELU", + "SILU", + "SILU_BACK", + "NORM", + "RMS_NORM", + "RMS_NORM_BACK", + + "MUL_MAT", + + "SCALE", + "SET", + "CPY", + "CONT", + "RESHAPE", + "VIEW", + "PERMUTE", + "TRANSPOSE", + "GET_ROWS", + "GET_ROWS_BACK", + "DIAG", + "DIAG_MASK_INF", + "DIAG_MASK_ZERO", + "SOFT_MAX", + "ROPE", + "ROPE_BACK", + "ALIBI", + "CONV_1D_1S", + "CONV_1D_2S", + + "FLASH_ATTN", + "FLASH_FF", + + "MAP_UNARY", + "MAP_BINARY", +}; + +static_assert(GGML_OP_COUNT == 50, "GGML_OP_COUNT != 50"); + +static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { + "none", + + "x", + "x+y", + "x+y", + "view(x,nb,offset)+=y->x", + "x-y", + "x*y", + "x/y", + "x^2", + "√x", + "log(x)", + "Σx", + "Σx_k", + "Σx/n", + "repeat(x)", + "abs(x)", + "sgn(x)", + "-x", + "step(x)", + "relu(x)", + "gelu(x)", + "silu(x)", + "silu_back(x)", + "norm(x)", + "rms_norm(x)", + "rms_norm_back(x)", + + "X*Y", + + "x*v", + "y-\\>view(x)", + "x-\\>y", + "cont(x)", + "reshape(x)", + "view(x)", + "permute(x)", + "transpose(x)", + "get_rows(x)", + "get_rows_back(x)", + "diag(x)", + "diag_mask_inf(x)", + "diag_mask_zero(x)", + "soft_max(x)", + "rope(x)", + "rope_back(x)", + "alibi(x)", + "conv_1d_1s(x)", + "conv_1d_2s(x)", + + "flash_attn(x)", + "flash_ff(x)", + + "f(x)", + "f(x,y)", +}; + +static_assert(GGML_OP_COUNT == 50, "GGML_OP_COUNT != 50"); + +static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN"); +static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN"); + +// +// ggml context +// + +struct ggml_context { + size_t mem_size; + void * mem_buffer; + bool mem_buffer_owned; + bool no_alloc; + + int n_objects; + + struct ggml_object * objects_begin; + struct ggml_object * objects_end; + + struct ggml_scratch scratch; + struct ggml_scratch scratch_save; +}; + +struct ggml_context_container { + bool used; + + struct ggml_context context; +}; + +// +// compute types +// + +enum ggml_task_type { + GGML_TASK_INIT = 0, + GGML_TASK_COMPUTE, + GGML_TASK_FINALIZE, +}; + +struct ggml_compute_params { + enum ggml_task_type type; + + int ith, nth; + + // work buffer for all threads + size_t wsize; + void * wdata; +}; + +// +// ggml state +// + +struct ggml_state { + struct ggml_context_container contexts[GGML_MAX_CONTEXTS]; +}; + +// global state +static struct ggml_state g_state; +static atomic_int g_state_barrier = 0; + +// barrier via spin lock +inline static void ggml_critical_section_start(void) { + int processing = atomic_fetch_add(&g_state_barrier, 1); + + while (processing > 0) { + // wait for other threads to finish + atomic_fetch_sub(&g_state_barrier, 1); + sched_yield(); // TODO: reconsider this + processing = atomic_fetch_add(&g_state_barrier, 1); + } +} + +// TODO: make this somehow automatically executed +// some sort of "sentry" mechanism +inline static void ggml_critical_section_end(void) { + atomic_fetch_sub(&g_state_barrier, 1); +} + +//////////////////////////////////////////////////////////////////////////////// + +void ggml_print_object(const struct ggml_object * obj) { + GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n", + obj->offs, obj->size, (const void *) obj->next); +} + +void ggml_print_objects(const struct ggml_context * ctx) { + struct ggml_object * obj = ctx->objects_begin; + + GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx); + + while (obj != NULL) { + ggml_print_object(obj); + obj = obj->next; + } + + GGML_PRINT("%s: --- end ---\n", __func__); +} + +int64_t ggml_nelements(const struct ggml_tensor * tensor) { + static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); + + return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3]; +} + +int ggml_nrows(const struct ggml_tensor * tensor) { + static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); + + return tensor->ne[1]*tensor->ne[2]*tensor->ne[3]; +} + +size_t ggml_nbytes(const struct ggml_tensor * tensor) { + static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); + + return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type]; +} + +int ggml_blck_size(enum ggml_type type) { + return GGML_BLCK_SIZE[type]; +} + +size_t ggml_type_size(enum ggml_type type) { + return GGML_TYPE_SIZE[type]; +} + +float ggml_type_sizef(enum ggml_type type) { + return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type]; +} + +const char * ggml_type_name(enum ggml_type type) { + return GGML_TYPE_NAME[type]; +} + + +size_t ggml_element_size(const struct ggml_tensor * tensor) { + return GGML_TYPE_SIZE[tensor->type]; +} + +static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) { + static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); + + return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1; +} + +static inline bool ggml_is_vector(const struct ggml_tensor * tensor) { + static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); + + return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1; +} + +static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) { + static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); + + return tensor->ne[2] == 1 && tensor->ne[3] == 1; +} + +static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) { + static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); + + return + (t0->ne[0] == t1->ne[0]) && + (t0->ne[2] == t1->ne[2]) && + (t0->ne[3] == t1->ne[3]); +} + +bool ggml_is_quantized(enum ggml_type type) { + return GGML_IS_QUANTIZED[type]; +} + +enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) { + enum ggml_type wtype = GGML_TYPE_COUNT; + + switch (ftype) { + case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break; + case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break; + case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break; + case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break; + case GGML_FTYPE_MOSTLY_Q4_2: wtype = GGML_TYPE_Q4_2; break; + case GGML_FTYPE_MOSTLY_Q4_3: wtype = GGML_TYPE_Q4_3; break; + case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break; + case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break; + case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break; + case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break; + case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break; + } + + GGML_ASSERT(wtype != GGML_TYPE_COUNT); + + return wtype; +} + +static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) { + return tensor->nb[0] > tensor->nb[1]; +} + +static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) { + static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); + + return + tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] && + tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] && + tensor->nb[2] == tensor->nb[1]*tensor->ne[1] && + tensor->nb[3] == tensor->nb[2]*tensor->ne[2]; +} + +static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) { + static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); + + return + tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] && + tensor->nb[2] == tensor->nb[1]*tensor->ne[1] && + tensor->nb[3] == tensor->nb[2]*tensor->ne[2]; +} + +static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) { + static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); + + return + (t0->ne[0] == t1->ne[0] ) && + (t0->ne[1] == t1->ne[1] ) && + (t0->ne[2] == t1->ne[2] ) && + (t0->ne[3] == t1->ne[3] ); +} + +// check if t1 can be represented as a repeatition of t0 +static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) { + static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); + + return + (t1->ne[0]%t0->ne[0] == 0) && + (t1->ne[1]%t0->ne[1] == 0) && + (t1->ne[2]%t0->ne[2] == 0) && + (t1->ne[3]%t0->ne[3] == 0); +} + +static inline int ggml_up32(int n) { + return (n + 31) & ~31; +} + +//static inline int ggml_up64(int n) { +// return (n + 63) & ~63; +//} + +static inline int ggml_up(int n, int m) { + // assert m is a power of 2 + GGML_ASSERT((m & (m - 1)) == 0); + return (n + m - 1) & ~(m - 1); +} + +// assert that pointer is aligned to GGML_MEM_ALIGN +#define ggml_assert_aligned(ptr) \ + GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0) + +//////////////////////////////////////////////////////////////////////////////// + +struct ggml_context * ggml_init(struct ggml_init_params params) { + // make this function thread safe + ggml_critical_section_start(); + + static bool is_first_call = true; + + if (is_first_call) { + // initialize time system (required on Windows) + ggml_time_init(); + + // initialize GELU, SILU and EXP F32 tables + { + const uint64_t t_start = ggml_time_us(); UNUSED(t_start); + + ggml_fp16_t ii; + for (int i = 0; i < (1 << 16); ++i) { + uint16_t ui = i; + memcpy(&ii, &ui, sizeof(ii)); + const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii); + table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f)); + table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f)); + table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f)); + } + + const uint64_t t_end = ggml_time_us(); UNUSED(t_end); + + GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f); + } + + // initialize g_state + { + const uint64_t t_start = ggml_time_us(); UNUSED(t_start); + + g_state = (struct ggml_state) { + /*.contexts =*/ { { 0 } }, + }; + + for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) { + g_state.contexts[i].used = false; + } + + const uint64_t t_end = ggml_time_us(); UNUSED(t_end); + + GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f); + } + +#if defined(GGML_USE_CUBLAS) + ggml_init_cublas(); +#elif defined(GGML_USE_CLBLAST) + if(quants_unshuffled) + { + ggml_cl_init(); + } + else + { + ggml_cl_init_legacy(); + } +#endif + + is_first_call = false; + } + + // find non-used context in g_state + struct ggml_context * ctx = NULL; + + for (int i = 0; i < GGML_MAX_CONTEXTS; i++) { + if (!g_state.contexts[i].used) { + g_state.contexts[i].used = true; + ctx = &g_state.contexts[i].context; + + GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i); + break; + } + } + + if (ctx == NULL) { + GGML_PRINT_DEBUG("%s: no unused context found\n", __func__); + + ggml_critical_section_end(); + + return NULL; + } + + const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1); + + *ctx = (struct ggml_context) { + /*.mem_size =*/ mem_size, + /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size), + /*.mem_buffer_owned =*/ params.mem_buffer ? false : true, + /*.no_alloc =*/ params.no_alloc, + /*.n_objects =*/ 0, + /*.objects_begin =*/ NULL, + /*.objects_end =*/ NULL, + /*.scratch =*/ { 0, 0, NULL, }, + /*.scratch_save =*/ { 0, 0, NULL, }, + }; + + GGML_ASSERT(ctx->mem_buffer != NULL); + + ggml_assert_aligned(ctx->mem_buffer); + + GGML_PRINT_DEBUG("%s: context initialized\n", __func__); + + ggml_critical_section_end(); + + return ctx; +} + +void ggml_free(struct ggml_context * ctx) { + // make this function thread safe + ggml_critical_section_start(); + + bool found = false; + + for (int i = 0; i < GGML_MAX_CONTEXTS; i++) { + if (&g_state.contexts[i].context == ctx) { + g_state.contexts[i].used = false; + + GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n", + __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size); + + if (ctx->mem_buffer_owned) { + GGML_ALIGNED_FREE(ctx->mem_buffer); + } + + found = true; + break; + } + } + + if (!found) { + GGML_PRINT_DEBUG("%s: context not found\n", __func__); + } + + ggml_critical_section_end(); +} + +size_t ggml_used_mem(const struct ggml_context * ctx) { + return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size; +} + +size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) { + const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0; + + ctx->scratch = scratch; + + return result; +} + +// IMPORTANT: +// when creating "opt" tensors, always save and load the scratch buffer +// this is an error prone process, but it is necessary to support inplace +// operators when using scratch buffers +// TODO: implement a better way +void ggml_scratch_save(struct ggml_context * ctx) { + ctx->scratch_save = ctx->scratch; + ctx->scratch.data = NULL; +} + +void ggml_scratch_load(struct ggml_context * ctx) { + ctx->scratch = ctx->scratch_save; +} + +//////////////////////////////////////////////////////////////////////////////// + +struct ggml_tensor * ggml_new_tensor_impl( + struct ggml_context * ctx, + enum ggml_type type, + int n_dims, + const int64_t* ne, + void* data) { + // always insert objects at the end of the context's memory pool + struct ggml_object * obj_cur = ctx->objects_end; + + const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs; + const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size; + const size_t cur_end = cur_offs + cur_size; + + size_t size_needed = 0; + + if (data == NULL && !ctx->no_alloc) { + size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]); + for (int i = 1; i < n_dims; i++) { + size_needed *= ne[i]; + } + // align to GGML_MEM_ALIGN + size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN; + } + + char * const mem_buffer = ctx->mem_buffer; + struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end); + + if (ctx->scratch.data == NULL || data != NULL) { + size_needed += sizeof(struct ggml_tensor); + + if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) { + GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n", + __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size); + assert(false); + return NULL; + } + + *obj_new = (struct ggml_object) { + .offs = cur_end + GGML_OBJECT_SIZE, + .size = size_needed, + .next = NULL, + }; + } else { + if (ctx->scratch.offs + size_needed > ctx->scratch.size) { + GGML_PRINT("%s: not enough space in the scratch memory\n", __func__); + assert(false); + return NULL; + } + + if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) { + GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n", + __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size); + assert(false); + return NULL; + } + + data = (char * const) ctx->scratch.data + ctx->scratch.offs; + + *obj_new = (struct ggml_object) { + .offs = cur_end + GGML_OBJECT_SIZE, + .size = sizeof(struct ggml_tensor), + .next = NULL, + }; + + //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed); + + ctx->scratch.offs += size_needed; + } + + if (obj_cur != NULL) { + obj_cur->next = obj_new; + } else { + // this is the first object in this context + ctx->objects_begin = obj_new; + } + + ctx->objects_end = obj_new; + + //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size); + + struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs); + + ggml_assert_aligned(result); + + *result = (struct ggml_tensor) { + /*.type =*/ type, + /*.backend =*/ GGML_BACKEND_CPU, + /*.n_dims =*/ n_dims, + /*.ne =*/ { 1, 1, 1, 1 }, + /*.nb =*/ { 0, 0, 0, 0 }, + /*.op =*/ GGML_OP_NONE, + /*.is_param =*/ false, + /*.grad =*/ NULL, + /*.src0 =*/ NULL, + /*.src1 =*/ NULL, + /*.opt =*/ { NULL }, + /*.n_tasks =*/ 0, + /*.perf_runs =*/ 0, + /*.perf_cycles =*/ 0, + /*.perf_time_us =*/ 0, + /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data, + /*.name =*/ { 0 }, + /*.pad =*/ { 0 }, + }; + + // TODO: this should not be needed as long as we don't rely on aligned SIMD loads + //ggml_assert_aligned(result->data); + + for (int i = 0; i < n_dims; i++) { + result->ne[i] = ne[i]; + } + + result->nb[0] = GGML_TYPE_SIZE[type]; + result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]); + for (int i = 2; i < GGML_MAX_DIMS; i++) { + result->nb[i] = result->nb[i - 1]*result->ne[i - 1]; + } + + ctx->n_objects++; + + return result; +} + +struct ggml_tensor * ggml_new_tensor( + struct ggml_context * ctx, + enum ggml_type type, + int n_dims, + const int64_t * ne) { + return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL); +} + +struct ggml_tensor * ggml_new_tensor_1d( + struct ggml_context * ctx, + enum ggml_type type, + int64_t ne0) { + return ggml_new_tensor(ctx, type, 1, &ne0); +} + +struct ggml_tensor * ggml_new_tensor_2d( + struct ggml_context * ctx, + enum ggml_type type, + int64_t ne0, + int64_t ne1) { + const int64_t ne[2] = { ne0, ne1 }; + return ggml_new_tensor(ctx, type, 2, ne); +} + +struct ggml_tensor * ggml_new_tensor_3d( + struct ggml_context * ctx, + enum ggml_type type, + int64_t ne0, + int64_t ne1, + int64_t ne2) { + const int64_t ne[3] = { ne0, ne1, ne2 }; + return ggml_new_tensor(ctx, type, 3, ne); +} + +struct ggml_tensor * ggml_new_tensor_4d( + struct ggml_context * ctx, + enum ggml_type type, + int64_t ne0, + int64_t ne1, + int64_t ne2, + int64_t ne3) { + const int64_t ne[4] = { ne0, ne1, ne2, ne3 }; + return ggml_new_tensor(ctx, type, 4, ne); +} + +struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) { + ggml_scratch_save(ctx); + + struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1); + + ggml_scratch_load(ctx); + + ggml_set_i32(result, value); + + return result; +} + +struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) { + ggml_scratch_save(ctx); + + struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1); + + ggml_scratch_load(ctx); + + ggml_set_f32(result, value); + + return result; +} + +struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) { + return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL); +} + +struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) { + memset(tensor->data, 0, ggml_nbytes(tensor)); + return tensor; +} + +struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) { + const int n = ggml_nrows(tensor); + const int nc = tensor->ne[0]; + const size_t n1 = tensor->nb[1]; + + char * const data = tensor->data; + + switch (tensor->type) { + case GGML_TYPE_I8: + { + assert(tensor->nb[0] == sizeof(int8_t)); + for (int i = 0; i < n; i++) { + ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value); + } + } break; + case GGML_TYPE_I16: + { + assert(tensor->nb[0] == sizeof(int16_t)); + for (int i = 0; i < n; i++) { + ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value); + } + } break; + case GGML_TYPE_I32: + { + assert(tensor->nb[0] == sizeof(int32_t)); + for (int i = 0; i < n; i++) { + ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value); + } + } break; + case GGML_TYPE_F16: + { + assert(tensor->nb[0] == sizeof(ggml_fp16_t)); + for (int i = 0; i < n; i++) { + ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value); + } + } break; + case GGML_TYPE_F32: + { + assert(tensor->nb[0] == sizeof(float)); + for (int i = 0; i < n; i++) { + ggml_vec_set_f32(nc, (float *)(data + i*n1), value); + } + } break; + default: + { + GGML_ASSERT(false); + } break; + } + + return tensor; +} + +struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) { + const int n = ggml_nrows(tensor); + const int nc = tensor->ne[0]; + const size_t n1 = tensor->nb[1]; + + char * const data = tensor->data; + + switch (tensor->type) { + case GGML_TYPE_I8: + { + assert(tensor->nb[0] == sizeof(int8_t)); + for (int i = 0; i < n; i++) { + ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value); + } + } break; + case GGML_TYPE_I16: + { + assert(tensor->nb[0] == sizeof(int16_t)); + for (int i = 0; i < n; i++) { + ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value); + } + } break; + case GGML_TYPE_I32: + { + assert(tensor->nb[0] == sizeof(int32_t)); + for (int i = 0; i < n; i++) { + ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value); + } + } break; + case GGML_TYPE_F16: + { + assert(tensor->nb[0] == sizeof(ggml_fp16_t)); + for (int i = 0; i < n; i++) { + ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value); + } + } break; + case GGML_TYPE_F32: + { + assert(tensor->nb[0] == sizeof(float)); + for (int i = 0; i < n; i++) { + ggml_vec_set_f32(nc, (float *)(data + i*n1), value); + } + } break; + default: + { + GGML_ASSERT(false); + } break; + } + + return tensor; +} + +int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) { + switch (tensor->type) { + case GGML_TYPE_I8: + { + GGML_ASSERT(tensor->nb[0] == sizeof(int8_t)); + return ((int8_t *)(tensor->data))[i]; + } break; + case GGML_TYPE_I16: + { + GGML_ASSERT(tensor->nb[0] == sizeof(int16_t)); + return ((int16_t *)(tensor->data))[i]; + } break; + case GGML_TYPE_I32: + { + GGML_ASSERT(tensor->nb[0] == sizeof(int32_t)); + return ((int32_t *)(tensor->data))[i]; + } break; + case GGML_TYPE_F16: + { + GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t)); + return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]); + } break; + case GGML_TYPE_F32: + { + GGML_ASSERT(tensor->nb[0] == sizeof(float)); + return ((float *)(tensor->data))[i]; + } break; + default: + { + GGML_ASSERT(false); + } break; + } + + return 0.0f; +} + +void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) { + switch (tensor->type) { + case GGML_TYPE_I8: + { + GGML_ASSERT(tensor->nb[0] == sizeof(int8_t)); + ((int8_t *)(tensor->data))[i] = value; + } break; + case GGML_TYPE_I16: + { + GGML_ASSERT(tensor->nb[0] == sizeof(int16_t)); + ((int16_t *)(tensor->data))[i] = value; + } break; + case GGML_TYPE_I32: + { + GGML_ASSERT(tensor->nb[0] == sizeof(int32_t)); + ((int32_t *)(tensor->data))[i] = value; + } break; + case GGML_TYPE_F16: + { + GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t)); + ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value); + } break; + case GGML_TYPE_F32: + { + GGML_ASSERT(tensor->nb[0] == sizeof(float)); + ((float *)(tensor->data))[i] = value; + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) { + switch (tensor->type) { + case GGML_TYPE_I8: + { + GGML_ASSERT(tensor->nb[0] == sizeof(int8_t)); + return ((int8_t *)(tensor->data))[i]; + } break; + case GGML_TYPE_I16: + { + GGML_ASSERT(tensor->nb[0] == sizeof(int16_t)); + return ((int16_t *)(tensor->data))[i]; + } break; + case GGML_TYPE_I32: + { + GGML_ASSERT(tensor->nb[0] == sizeof(int32_t)); + return ((int32_t *)(tensor->data))[i]; + } break; + case GGML_TYPE_F16: + { + GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t)); + return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]); + } break; + case GGML_TYPE_F32: + { + GGML_ASSERT(tensor->nb[0] == sizeof(float)); + return ((float *)(tensor->data))[i]; + } break; + default: + { + GGML_ASSERT(false); + } break; + } + + return 0.0f; +} + +void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) { + switch (tensor->type) { + case GGML_TYPE_I8: + { + GGML_ASSERT(tensor->nb[0] == sizeof(int8_t)); + ((int8_t *)(tensor->data))[i] = value; + } break; + case GGML_TYPE_I16: + { + GGML_ASSERT(tensor->nb[0] == sizeof(int16_t)); + ((int16_t *)(tensor->data))[i] = value; + } break; + case GGML_TYPE_I32: + { + GGML_ASSERT(tensor->nb[0] == sizeof(int32_t)); + ((int32_t *)(tensor->data))[i] = value; + } break; + case GGML_TYPE_F16: + { + GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t)); + ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value); + } break; + case GGML_TYPE_F32: + { + GGML_ASSERT(tensor->nb[0] == sizeof(float)); + ((float *)(tensor->data))[i] = value; + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +void * ggml_get_data(const struct ggml_tensor * tensor) { + return tensor->data; +} + +float * ggml_get_data_f32(const struct ggml_tensor * tensor) { + assert(tensor->type == GGML_TYPE_F32); + return (float *)(tensor->data); +} + +const char * ggml_get_name(const struct ggml_tensor * tensor) { + return tensor->name; +} + +void ggml_set_name(struct ggml_tensor * tensor, const char * name) { + strncpy(tensor->name, name, sizeof(tensor->name)); + tensor->name[sizeof(tensor->name) - 1] = '\0'; +} + +struct ggml_tensor * ggml_view_tensor( + struct ggml_context * ctx, + const struct ggml_tensor * src) { + struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data); + + result->nb[0] = src->nb[0]; + result->nb[1] = src->nb[1]; + result->nb[2] = src->nb[2]; + result->nb[3] = src->nb[3]; + + return result; +} + +//////////////////////////////////////////////////////////////////////////////// + +// ggml_dup + +struct ggml_tensor * ggml_dup_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + bool inplace) { + bool is_node = false; + + if (!inplace && (a->grad)) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_DUP; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + + return result; +} + +struct ggml_tensor * ggml_dup( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_dup_impl(ctx, a, false); +} + +struct ggml_tensor * ggml_dup_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_dup_impl(ctx, a, true); +} + +// ggml_add + +struct ggml_tensor * ggml_add_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + bool inplace) { + GGML_ASSERT(ggml_are_same_shape(a, b)); + + bool is_node = false; + + if (!inplace && (a->grad || b->grad)) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_ADD; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = b; + + return result; +} + +struct ggml_tensor * ggml_add( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + return ggml_add_impl(ctx, a, b, false); +} + +struct ggml_tensor * ggml_add_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + return ggml_add_impl(ctx, a, b, true); +} + +// ggml_add1 + +struct ggml_tensor * ggml_add1_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + bool inplace) { + GGML_ASSERT(ggml_is_scalar(b)); + GGML_ASSERT(ggml_is_padded_1d(a)); + + bool is_node = false; + + if (!inplace && (a->grad || b->grad)) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_ADD1; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = b; + + return result; +} + +struct ggml_tensor * ggml_add1( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + return ggml_add1_impl(ctx, a, b, false); +} + +struct ggml_tensor * ggml_add1_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + return ggml_add1_impl(ctx, a, b, true); +} + +// ggml_acc + +struct ggml_tensor * ggml_acc_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + size_t nb1, + size_t nb2, + size_t nb3, + size_t offset, + bool inplace) { + GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a)); + GGML_ASSERT(ggml_is_contiguous(a)); + GGML_ASSERT(a->type == GGML_TYPE_F32); + GGML_ASSERT(b->type == GGML_TYPE_F32); + + bool is_node = false; + + if (!inplace && (a->grad || b->grad)) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + ggml_scratch_save(ctx); + + struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5); + + ((int32_t *) c->data)[0] = nb1; + ((int32_t *) c->data)[1] = nb2; + ((int32_t *) c->data)[2] = nb3; + ((int32_t *) c->data)[3] = offset; + ((int32_t *) c->data)[4] = inplace ? 1 : 0; + + ggml_scratch_load(ctx); + + result->op = GGML_OP_ACC; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = b; + result->opt[0] = c; + + return result; +} + +struct ggml_tensor * ggml_acc( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + size_t nb1, + size_t nb2, + size_t nb3, + size_t offset) { + return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false); +} + +struct ggml_tensor * ggml_acc_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + size_t nb1, + size_t nb2, + size_t nb3, + size_t offset) { + return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true); +} + +// ggml_sub + +struct ggml_tensor * ggml_sub_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + bool inplace) { + GGML_ASSERT(ggml_are_same_shape(a, b)); + + bool is_node = false; + + if (!inplace && (a->grad || b->grad)) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_SUB; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = b; + + return result; +} + +struct ggml_tensor * ggml_sub( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + return ggml_sub_impl(ctx, a, b, false); +} + +struct ggml_tensor * ggml_sub_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + return ggml_sub_impl(ctx, a, b, true); +} + +// ggml_mul + +struct ggml_tensor * ggml_mul_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + bool inplace) { + GGML_ASSERT(ggml_are_same_shape(a, b)); + + bool is_node = false; + + if (!inplace && (a->grad || b->grad)) { + is_node = true; + } + + if (inplace) { + GGML_ASSERT(is_node == false); + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_MUL; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = b; + + return result; +} + +struct ggml_tensor * ggml_mul( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + return ggml_mul_impl(ctx, a, b, false); +} + +struct ggml_tensor * ggml_mul_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + return ggml_mul_impl(ctx, a, b, true); +} + +// ggml_div + +struct ggml_tensor * ggml_div_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + bool inplace) { + GGML_ASSERT(ggml_are_same_shape(a, b)); + + bool is_node = false; + + if (!inplace && (a->grad || b->grad)) { + is_node = true; + } + + if (inplace) { + GGML_ASSERT(is_node == false); + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_DIV; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = b; + + return result; +} + +struct ggml_tensor * ggml_div( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + return ggml_div_impl(ctx, a, b, false); +} + +struct ggml_tensor * ggml_div_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + return ggml_div_impl(ctx, a, b, true); +} + +// ggml_sqr + +struct ggml_tensor * ggml_sqr_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + bool inplace) { + bool is_node = false; + + if (!inplace && (a->grad)) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_SQR; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + + return result; +} + +struct ggml_tensor * ggml_sqr( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_sqr_impl(ctx, a, false); +} + +struct ggml_tensor * ggml_sqr_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_sqr_impl(ctx, a, true); +} + +// ggml_sqrt + +struct ggml_tensor * ggml_sqrt_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + bool inplace) { + bool is_node = false; + + if (!inplace && (a->grad)) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_SQRT; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + + return result; +} + +struct ggml_tensor * ggml_sqrt( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_sqrt_impl(ctx, a, false); +} + +struct ggml_tensor * ggml_sqrt_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_sqrt_impl(ctx, a, true); +} + + +// ggml_log + +struct ggml_tensor * ggml_log_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + bool inplace) { + bool is_node = false; + + if (!inplace && (a->grad)) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_LOG; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + + return result; +} + +struct ggml_tensor * ggml_log( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_log_impl(ctx, a, false); +} + +struct ggml_tensor * ggml_log_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_log_impl(ctx, a, true); +} + +// ggml_sum + +struct ggml_tensor * ggml_sum( + struct ggml_context * ctx, + struct ggml_tensor * a) { + bool is_node = false; + + if (a->grad) { + is_node = true; + } + + struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1); + + result->op = GGML_OP_SUM; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + + return result; +} + + +// ggml_sum_rows + +struct ggml_tensor * ggml_sum_rows( + struct ggml_context * ctx, + struct ggml_tensor * a) { + bool is_node = false; + + if (a->grad) { + is_node = true; + } + + int64_t ne[4] = {1,1,1,1}; + for (int i=1; in_dims; ++i) { + ne[i] = a->ne[i]; + } + + struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne); + + result->op = GGML_OP_SUM_ROWS; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + + return result; +} + +// ggml_mean + +struct ggml_tensor * ggml_mean( + struct ggml_context * ctx, + struct ggml_tensor * a) { + bool is_node = false; + + if (a->grad) { + GGML_ASSERT(false); // TODO: implement + is_node = true; + } + + int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] }; + struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne); + + result->op = GGML_OP_MEAN; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + + return result; +} + +// ggml_repeat + +struct ggml_tensor * ggml_repeat( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + GGML_ASSERT(ggml_can_repeat(a, b)); + + bool is_node = false; + + if (a->grad) { + is_node = true; + } + + if (ggml_are_same_shape(a, b) && !is_node) { + return a; + } + + struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne); + + result->op = GGML_OP_REPEAT; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = b; + + return result; +} + +// ggml_abs + +struct ggml_tensor * ggml_abs_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + bool inplace) { + bool is_node = false; + + if (!inplace && (a->grad)) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_ABS; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + + return result; +} + +struct ggml_tensor * ggml_abs( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_abs_impl(ctx, a, false); +} + +struct ggml_tensor * ggml_abs_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_abs_impl(ctx, a, true); +} + + +// ggml_sgn + +struct ggml_tensor * ggml_sgn_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + bool inplace) { + bool is_node = false; + + if (!inplace && (a->grad)) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_SGN; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + + return result; +} + +struct ggml_tensor * ggml_sgn( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_sgn_impl(ctx, a, false); +} + +struct ggml_tensor * ggml_sgn_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_sgn_impl(ctx, a, true); +} + +// ggml_neg + +struct ggml_tensor * ggml_neg_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + bool inplace) { + bool is_node = false; + + if (!inplace && (a->grad)) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_NEG; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + + return result; +} + +struct ggml_tensor * ggml_neg( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_neg_impl(ctx, a, false); +} + +struct ggml_tensor * ggml_neg_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_neg_impl(ctx, a, true); +} + +// ggml_step + +struct ggml_tensor * ggml_step_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + bool inplace) { + bool is_node = false; + + if (!inplace && (a->grad)) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_STEP; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + + return result; +} + +struct ggml_tensor * ggml_step( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_step_impl(ctx, a, false); +} + +struct ggml_tensor * ggml_step_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_step_impl(ctx, a, true); +} + +// ggml_relu + +struct ggml_tensor * ggml_relu_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + bool inplace) { + bool is_node = false; + + if (!inplace && (a->grad)) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_RELU; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + + return result; +} + +struct ggml_tensor * ggml_relu( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_relu_impl(ctx, a, false); +} + +struct ggml_tensor * ggml_relu_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_relu_impl(ctx, a, true); +} + +// ggml_gelu + +struct ggml_tensor * ggml_gelu_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + bool inplace) { + bool is_node = false; + + if (!inplace && (a->grad)) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_GELU; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + + return result; +} + +struct ggml_tensor * ggml_gelu( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_gelu_impl(ctx, a, false); +} + +struct ggml_tensor * ggml_gelu_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_gelu_impl(ctx, a, true); +} + +// ggml_silu + +struct ggml_tensor * ggml_silu_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + bool inplace) { + bool is_node = false; + + if (!inplace && (a->grad)) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_SILU; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + + return result; +} + +struct ggml_tensor * ggml_silu( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_silu_impl(ctx, a, false); +} + +struct ggml_tensor * ggml_silu_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_silu_impl(ctx, a, true); +} + +// ggml_silu_back + +struct ggml_tensor * ggml_silu_back( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + bool is_node = false; + + if (a->grad || b->grad) { + // TODO: implement backward + is_node = true; + } + + struct ggml_tensor * result = ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_SILU_BACK; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = b; + + return result; +} + +// ggml_norm + +struct ggml_tensor * ggml_norm_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + bool inplace) { + bool is_node = false; + + if (!inplace && (a->grad)) { + GGML_ASSERT(false); // TODO: implement backward + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_NORM; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; // TODO: maybe store epsilon here? + + return result; +} + +struct ggml_tensor * ggml_norm( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_norm_impl(ctx, a, false); +} + +struct ggml_tensor * ggml_norm_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_norm_impl(ctx, a, true); +} + +struct ggml_tensor * ggml_rms_norm_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + bool inplace) { + bool is_node = false; + + if (!inplace && (a->grad)) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_RMS_NORM; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; // TODO: maybe store epsilon here? + + return result; +} + +struct ggml_tensor * ggml_rms_norm( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_rms_norm_impl(ctx, a, false); +} + +struct ggml_tensor * ggml_rms_norm_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_rms_norm_impl(ctx, a, true); +} + +struct ggml_tensor * ggml_rms_norm_back( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + bool is_node = false; + + if (a->grad) { + // TODO: implement backward + is_node = true; + } + + struct ggml_tensor * result = ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_RMS_NORM_BACK; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = b; + + return result; +} + + +// ggml_mul_mat + +struct ggml_tensor * ggml_mul_mat( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + GGML_ASSERT(ggml_can_mul_mat(a, b)); + GGML_ASSERT(!ggml_is_transposed(a)); + + bool is_node = false; + + if (a->grad || b->grad) { + is_node = true; + } + + const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] }; + struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne); + + result->op = GGML_OP_MUL_MAT; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = b; + + return result; +} + +// ggml_scale + +struct ggml_tensor * ggml_scale_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + bool inplace) { + GGML_ASSERT(ggml_is_scalar(b)); + GGML_ASSERT(ggml_is_padded_1d(a)); + + bool is_node = false; + + if (!inplace && (a->grad || b->grad)) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_SCALE; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = b; + + return result; +} + +struct ggml_tensor * ggml_scale( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + return ggml_scale_impl(ctx, a, b, false); +} + +struct ggml_tensor * ggml_scale_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + return ggml_scale_impl(ctx, a, b, true); +} + +// ggml_set + +struct ggml_tensor * ggml_set_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + size_t nb1, + size_t nb2, + size_t nb3, + size_t offset, + bool inplace) { + GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b)); + + bool is_node = false; + + if (!inplace && (a->grad || b->grad)) { + is_node = true; + } + + // make a view of the destination + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + ggml_scratch_save(ctx); + + struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5); + + (( int32_t * ) c->data)[0] = nb1; + (( int32_t * ) c->data)[1] = nb2; + (( int32_t * ) c->data)[2] = nb3; + (( int32_t * ) c->data)[3] = offset; + (( int32_t * ) c->data)[4] = inplace ? 1 : 0; + + ggml_scratch_load(ctx); + + result->op = GGML_OP_SET; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = b; + result->opt[0] = c; + + return result; +} + +struct ggml_tensor * ggml_set( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + size_t nb1, + size_t nb2, + size_t nb3, + size_t offset) { + return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false); +} + +struct ggml_tensor * ggml_set_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + size_t nb1, + size_t nb2, + size_t nb3, + size_t offset) { + return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true); +} + +struct ggml_tensor * ggml_set_1d( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + size_t offset) { + return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false); +} + +struct ggml_tensor * ggml_set_1d_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + size_t offset) { + return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true); +} + +struct ggml_tensor * ggml_set_2d( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + size_t nb1, + size_t offset) { + return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false); +} + +struct ggml_tensor * ggml_set_2d_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + size_t nb1, + size_t offset) { + return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false); +} + + +// ggml_cpy + +struct ggml_tensor * ggml_cpy_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + bool inplace) { + GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b)); + + bool is_node = false; + + if (!inplace && (a->grad || b->grad)) { + is_node = true; + } + + // make a view of the destination + struct ggml_tensor * result = ggml_view_tensor(ctx, b); + + result->op = GGML_OP_CPY; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = b; + + return result; +} + +struct ggml_tensor * ggml_cpy( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + return ggml_cpy_impl(ctx, a, b, false); +} + +struct ggml_tensor * ggml_cpy_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + return ggml_cpy_impl(ctx, a, b, true); +} + +// ggml_cont + +struct ggml_tensor * ggml_cont_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + bool inplace) { + bool is_node = false; + + if (!inplace && a->grad) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_CONT; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + + return result; +} + +struct ggml_tensor * ggml_cont( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_cont_impl(ctx, a, false); +} + +struct ggml_tensor * ggml_cont_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_cont_impl(ctx, a, true); +} + +// ggml_reshape + +struct ggml_tensor * ggml_reshape( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + GGML_ASSERT(ggml_is_contiguous(a)); + GGML_ASSERT(ggml_is_contiguous(b)); + GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b)); + + bool is_node = false; + + if (a->grad) { + is_node = true; + } + + if (b->grad) { + // gradient propagation is not supported + //GGML_ASSERT(false); + } + + struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data); + + result->op = GGML_OP_RESHAPE; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + + return result; +} + +struct ggml_tensor * ggml_reshape_1d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0) { + GGML_ASSERT(ggml_is_contiguous(a)); + GGML_ASSERT(ggml_nelements(a) == ne0); + + bool is_node = false; + + if (a->grad) { + is_node = true; + } + + const int64_t ne[1] = { ne0 }; + struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data); + + result->op = GGML_OP_RESHAPE; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + + return result; +} + +struct ggml_tensor * ggml_reshape_2d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0, + int64_t ne1) { + GGML_ASSERT(ggml_is_contiguous(a)); + GGML_ASSERT(ggml_nelements(a) == ne0*ne1); + + bool is_node = false; + + if (a->grad) { + is_node = true; + } + + const int64_t ne[2] = { ne0, ne1 }; + struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data); + + result->op = GGML_OP_RESHAPE; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + + return result; +} + +struct ggml_tensor * ggml_reshape_3d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0, + int64_t ne1, + int64_t ne2) { + GGML_ASSERT(ggml_is_contiguous(a)); + GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2); + + bool is_node = false; + + if (a->grad) { + is_node = true; + } + + const int64_t ne[3] = { ne0, ne1, ne2 }; + struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data); + + result->op = GGML_OP_RESHAPE; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + + return result; +} + + +struct ggml_tensor * ggml_reshape_4d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0, + int64_t ne1, + int64_t ne2, + int64_t ne3) { + GGML_ASSERT(ggml_is_contiguous(a)); + GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3); + + bool is_node = false; + + if (a->grad) { + is_node = true; + } + + const int64_t ne[4] = { ne0, ne1, ne2, ne3 }; + struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data); + + result->op = GGML_OP_RESHAPE; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + + return result; +} + +// ggml_view_1d + +struct ggml_tensor * ggml_view_1d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0, + size_t offset) { + + bool is_node = false; + + if (a->grad) { + is_node = true; + } + + struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset); + + result->op = GGML_OP_VIEW; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + + if (is_node) { + memcpy(result->padding, &offset, sizeof(offset)); + } + + return result; +} + +// ggml_view_2d + +struct ggml_tensor * ggml_view_2d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0, + int64_t ne1, + size_t nb1, + size_t offset) { + + bool is_node = false; + + if (a->grad) { + is_node = true; + } + + const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 }; + + struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset); + + result->nb[1] = nb1; + result->nb[2] = result->nb[1]*ne1; + result->nb[3] = result->nb[2]; + + result->op = GGML_OP_VIEW; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + + if (is_node) { + memcpy(result->padding, &offset, sizeof(offset)); + } + + return result; +} + +// ggml_view_3d + +struct ggml_tensor * ggml_view_3d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0, + int64_t ne1, + int64_t ne2, + size_t nb1, + size_t nb2, + size_t offset) { + + bool is_node = false; + + if (a->grad) { + is_node = true; + } + + const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 }; + + struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset); + + result->nb[1] = nb1; + result->nb[2] = nb2; + result->nb[3] = result->nb[2]*ne2; + + result->op = GGML_OP_VIEW; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + + if (is_node) { + memcpy(result->padding, &offset, sizeof(offset)); + } + + return result; +} + +// ggml_view_4d + +struct ggml_tensor * ggml_view_4d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0, + int64_t ne1, + int64_t ne2, + int64_t ne3, + size_t nb1, + size_t nb2, + size_t nb3, + size_t offset) { + + bool is_node = false; + + if (a->grad) { + is_node = true; + } + + const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 }; + + struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, (char *) a->data + offset); + + result->nb[1] = nb1; + result->nb[2] = nb2; + result->nb[3] = nb3; + + result->op = GGML_OP_VIEW; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + + if (is_node) { + memcpy(result->padding, &offset, sizeof(offset)); + } + + return result; +} + +// ggml_permute + +struct ggml_tensor * ggml_permute( + struct ggml_context * ctx, + struct ggml_tensor * a, + int axis0, + int axis1, + int axis2, + int axis3) { + GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS); + GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS); + GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS); + GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS); + + GGML_ASSERT(axis0 != axis1); + GGML_ASSERT(axis0 != axis2); + GGML_ASSERT(axis0 != axis3); + GGML_ASSERT(axis1 != axis2); + GGML_ASSERT(axis1 != axis3); + GGML_ASSERT(axis2 != axis3); + + bool is_node = false; + + if (a->grad) { + is_node = true; + } + + struct ggml_tensor * result = ggml_view_tensor(ctx, a); + + int ne[GGML_MAX_DIMS]; + int nb[GGML_MAX_DIMS]; + + ne[axis0] = a->ne[0]; + ne[axis1] = a->ne[1]; + ne[axis2] = a->ne[2]; + ne[axis3] = a->ne[3]; + + nb[axis0] = a->nb[0]; + nb[axis1] = a->nb[1]; + nb[axis2] = a->nb[2]; + nb[axis3] = a->nb[3]; + + result->ne[0] = ne[0]; + result->ne[1] = ne[1]; + result->ne[2] = ne[2]; + result->ne[3] = ne[3]; + + result->nb[0] = nb[0]; + result->nb[1] = nb[1]; + result->nb[2] = nb[2]; + result->nb[3] = nb[3]; + + result->op = GGML_OP_PERMUTE; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + + if (is_node) { + result->padding[0] = axis0; + result->padding[1] = axis1; + result->padding[2] = axis2; + result->padding[3] = axis3; + } + + return result; +} + +// ggml_transpose + +struct ggml_tensor * ggml_transpose( + struct ggml_context * ctx, + struct ggml_tensor * a) { + bool is_node = false; + + if (a->grad) { + is_node = true; + } + + struct ggml_tensor * result = ggml_view_tensor(ctx, a); + + result->ne[0] = a->ne[1]; + result->ne[1] = a->ne[0]; + + result->nb[0] = a->nb[1]; + result->nb[1] = a->nb[0]; + + result->op = GGML_OP_TRANSPOSE; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + + return result; +} + +// ggml_get_rows + +struct ggml_tensor * ggml_get_rows( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32); + + bool is_node = false; + + if (a->grad || b->grad) { + is_node = true; + } + + // TODO: implement non F32 return + //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]); + struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]); + + result->op = GGML_OP_GET_ROWS; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = b; + + return result; +} + +// ggml_get_rows_back + +struct ggml_tensor * ggml_get_rows_back( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + struct ggml_tensor * c) { + GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32); + GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0])); + + bool is_node = false; + + if (a->grad || b->grad) { + is_node = true; + } + + // TODO: implement non F32 return + //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]); + struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]); + + result->op = GGML_OP_GET_ROWS_BACK; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = b; + result->opt[0] = c; + + return result; +} + +// ggml_diag + +struct ggml_tensor * ggml_diag( + struct ggml_context * ctx, + struct ggml_tensor * a) { + GGML_ASSERT(a->ne[1] == 1); + bool is_node = false; + + if (a->grad) { + is_node = true; + } + + const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] }; + struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne); + + result->op = GGML_OP_DIAG; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + + return result; +} + + +// ggml_diag_mask_inf + +struct ggml_tensor * ggml_diag_mask_inf_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + int n_past, + bool inplace) { + bool is_node = false; + + if (a->grad) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + ggml_scratch_save(ctx); + + struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2); + + ((int32_t *) b->data)[0] = n_past; + ((int32_t *) b->data)[1] = inplace ? 1 : 0; + + ggml_scratch_load(ctx); + + result->op = GGML_OP_DIAG_MASK_INF; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = b; + + return result; +} + +struct ggml_tensor * ggml_diag_mask_inf( + struct ggml_context * ctx, + struct ggml_tensor * a, + int n_past) { + return ggml_diag_mask_inf_impl(ctx, a, n_past, false); +} + + +struct ggml_tensor * ggml_diag_mask_inf_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + int n_past) { + return ggml_diag_mask_inf_impl(ctx, a, n_past, true); +} + +// ggml_diag_mask_zero + +struct ggml_tensor * ggml_diag_mask_zero_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + int n_past, + bool inplace) { + bool is_node = false; + + if (a->grad) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + ggml_scratch_save(ctx); + + struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2); + ggml_set_name(b, "n_past, inplace"); + + ((int32_t *) b->data)[0] = n_past; + ((int32_t *) b->data)[1] = inplace ? 1 : 0; + + ggml_scratch_load(ctx); + + result->op = GGML_OP_DIAG_MASK_ZERO; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = b; + + return result; +} + +struct ggml_tensor * ggml_diag_mask_zero( + struct ggml_context * ctx, + struct ggml_tensor * a, + int n_past) { + return ggml_diag_mask_zero_impl(ctx, a, n_past, false); +} + +struct ggml_tensor * ggml_diag_mask_zero_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + int n_past) { + return ggml_diag_mask_zero_impl(ctx, a, n_past, true); +} + +// ggml_soft_max + +struct ggml_tensor * ggml_soft_max_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + bool inplace) { + bool is_node = false; + + if (a->grad) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_SOFT_MAX; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + + return result; +} + +struct ggml_tensor * ggml_soft_max( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_soft_max_impl(ctx, a, false); +} + +struct ggml_tensor * ggml_soft_max_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_soft_max_impl(ctx, a, true); +} + +// ggml_rope + +struct ggml_tensor * ggml_rope_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + int n_past, + int n_dims, + int mode, + bool inplace) { + GGML_ASSERT(n_past >= 0); + bool is_node = false; + + if (!inplace && a->grad) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + ggml_scratch_save(ctx); + + struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3); + + ((int32_t *) b->data)[0] = n_past; + ((int32_t *) b->data)[1] = n_dims; + ((int32_t *) b->data)[2] = mode; + + ggml_scratch_load(ctx); + + result->op = GGML_OP_ROPE; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = b; + + return result; +} + +struct ggml_tensor * ggml_rope( + struct ggml_context * ctx, + struct ggml_tensor * a, + int n_past, + int n_dims, + int mode) { + return ggml_rope_impl(ctx, a, n_past, n_dims, mode, false); +} + +struct ggml_tensor * ggml_rope_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + int n_past, + int n_dims, + int mode) { + return ggml_rope_impl(ctx, a, n_past, n_dims, mode, true); +} + +// ggml_rope_back + +struct ggml_tensor * ggml_rope_back( + struct ggml_context * ctx, + struct ggml_tensor * a, + int n_past, + int n_dims, + int mode) { + GGML_ASSERT(n_past >= 0); + bool is_node = false; + + if (a->grad) { + GGML_ASSERT(false); // TODO: implement backward + is_node = true; + } + + struct ggml_tensor * result = ggml_dup_tensor(ctx, a); + + ggml_scratch_save(ctx); + + struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3); + ggml_set_name(b, "n_past, n_dims, mode"); + + ((int32_t *) b->data)[0] = n_past; + ((int32_t *) b->data)[1] = n_dims; + ((int32_t *) b->data)[2] = mode; + + ggml_scratch_load(ctx); + + result->op = GGML_OP_ROPE_BACK; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = b; + + return result; +} + +// ggml_alibi + +struct ggml_tensor * ggml_alibi( + struct ggml_context * ctx, + struct ggml_tensor * a, + int n_past, + int n_head) { + GGML_ASSERT(n_past >= 0); + bool is_node = false; + + if (a->grad) { + GGML_ASSERT(false); // TODO: implement backward + is_node = true; + } + + // TODO: when implement backward, fix this: + //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + struct ggml_tensor * result = ggml_view_tensor(ctx, a); + + ggml_scratch_save(ctx); + + struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2); + + ((int32_t *) b->data)[0] = n_past; + ((int32_t *) b->data)[1] = n_head; + + ggml_scratch_load(ctx); + + result->op = GGML_OP_ALIBI; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = b; + + return result; +} + +// ggml_conv_1d_1s + +struct ggml_tensor * ggml_conv_1d_1s( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + GGML_ASSERT(ggml_is_matrix(b)); + GGML_ASSERT(a->ne[1] == b->ne[1]); + GGML_ASSERT(a->ne[3] == 1); + bool is_node = false; + + if (a->grad || b->grad) { + GGML_ASSERT(false); // TODO: implement backward + is_node = true; + } + + const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, }; + struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne); + + result->op = GGML_OP_CONV_1D_1S; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = b; + + return result; +} + +// ggml_conv_1d_2s + +struct ggml_tensor * ggml_conv_1d_2s( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + GGML_ASSERT(ggml_is_matrix(b)); + GGML_ASSERT(a->ne[1] == b->ne[1]); + GGML_ASSERT(a->ne[3] == 1); + bool is_node = false; + + if (a->grad || b->grad) { + GGML_ASSERT(false); // TODO: implement backward + is_node = true; + } + + const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, }; + struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne); + + result->op = GGML_OP_CONV_1D_2S; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = b; + + return result; +} + +// ggml_flash_attn + +struct ggml_tensor * ggml_flash_attn( + struct ggml_context * ctx, + struct ggml_tensor * q, + struct ggml_tensor * k, + struct ggml_tensor * v, + bool masked) { + GGML_ASSERT(ggml_can_mul_mat(k, q)); + // TODO: check if vT can be multiplied by (k*qT) + + bool is_node = false; + + if (q->grad || k->grad || v->grad) { + GGML_ASSERT(false); // TODO: implement backward + is_node = true; + } + + //struct ggml_tensor * result = ggml_dup_tensor(ctx, q); + struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne); + + result->op = GGML_OP_FLASH_ATTN; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = q; + result->src1 = k; + result->opt[0] = v; + result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0); + + return result; +} + +// ggml_flash_ff + +struct ggml_tensor * ggml_flash_ff( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b0, + struct ggml_tensor * b1, + struct ggml_tensor * c0, + struct ggml_tensor * c1) { + GGML_ASSERT(ggml_can_mul_mat(b0, a)); + // TODO: more checks + + bool is_node = false; + + if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) { + GGML_ASSERT(false); // TODO: implement backward + is_node = true; + } + + //struct ggml_tensor * result = ggml_dup_tensor(ctx, a); + struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne); + + result->op = GGML_OP_FLASH_FF; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = b0; + result->opt[0] = b1; + result->opt[1] = c0; + result->opt[2] = c1; + + return result; +} + +// ggml_map_unary + +struct ggml_tensor * ggml_map_unary_impl_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + const ggml_unary_op_f32_t fun, + bool inplace) { + bool is_node = false; + + if (!inplace && a->grad) { + is_node = true; + } + + struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t)); + *((void (**)(void))addr_tensor->data) = (void (*)(void))fun; + struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_MAP_UNARY; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->opt[0] = addr_tensor; + + return result; +} + +struct ggml_tensor * ggml_map_unary_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + const ggml_unary_op_f32_t fun) { + return ggml_map_unary_impl_f32(ctx, a, fun, false); +} + +struct ggml_tensor * ggml_map_unary_inplace_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + const ggml_unary_op_f32_t fun) { + return ggml_map_unary_impl_f32(ctx, a, fun, true); +} + +// ggml_map_binary + +struct ggml_tensor * ggml_map_binary_impl_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + const ggml_binary_op_f32_t fun, + bool inplace) { + GGML_ASSERT(ggml_are_same_shape(a, b)); + + bool is_node = false; + + if (!inplace && (a->grad || b->grad)) { + is_node = true; + } + + struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t)); + *((void (**)(void))addr_tensor->data) = (void (*)(void))fun; + struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_MAP_BINARY; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = b; + result->opt[0] = addr_tensor; + + return result; +} + +struct ggml_tensor * ggml_map_binary_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + const ggml_binary_op_f32_t fun) { + return ggml_map_binary_impl_f32(ctx, a, b, fun, false); +} + +struct ggml_tensor * ggml_map_binary_inplace_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + const ggml_binary_op_f32_t fun) { + return ggml_map_binary_impl_f32(ctx, a, b, fun, true); +} + +//////////////////////////////////////////////////////////////////////////////// + +void ggml_set_param( + struct ggml_context * ctx, + struct ggml_tensor * tensor) { + tensor->is_param = true; + + GGML_ASSERT(tensor->grad == NULL); + tensor->grad = ggml_dup_tensor(ctx, tensor); +} + +// ggml_compute_forward_dup + +static void ggml_compute_forward_dup_same_cont( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0)); + GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0)); + GGML_ASSERT(src0->type == dst->type); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const size_t nb00 = src0->nb[0]; + const size_t nb0 = dst->nb[0]; + + const int ith = params->ith; // thread index + const int nth = params->nth; // number of threads + + // parallelize by elements + const int ne = ggml_nelements(dst); + const int dr = (ne + nth - 1) / nth; + const int ie0 = dr * ith; + const int ie1 = MIN(ie0 + dr, ne); + + if (ie0 < ie1) { + memcpy( + ((char *) dst->data + ie0*nb0), + ((char *) src0->data + ie0*nb00), + (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]); + } + +} +static void ggml_compute_forward_dup_f16( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; + const int64_t ne03 = src0->ne[3]; + + const int64_t ne0 = dst->ne[0]; + const int64_t ne1 = dst->ne[1]; + const int64_t ne2 = dst->ne[2]; + const int64_t ne3 = dst->ne[3]; + + const size_t nb00 = src0->nb[0]; + const size_t nb01 = src0->nb[1]; + const size_t nb02 = src0->nb[2]; + const size_t nb03 = src0->nb[3]; + + const size_t nb0 = dst->nb[0]; + const size_t nb1 = dst->nb[1]; + const size_t nb2 = dst->nb[2]; + const size_t nb3 = dst->nb[3]; + + const int ith = params->ith; // thread index + const int nth = params->nth; // number of threads + + if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) { + ggml_compute_forward_dup_same_cont(params, src0, dst); + return; + } + + // parallelize by rows + const int nr = ne01; + // number of rows per thread + const int dr = (nr + nth - 1) / nth; + // row range for this thread + const int ir0 = dr * ith; + const int ir1 = MIN(ir0 + dr, nr); + + if (src0->type == dst->type && + ne00 == ne0 && + nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) { + // copy by rows + const size_t rs = ne00*nb00; + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + for (int64_t i01 = ir0; i01 < ir1; i01++) { + memcpy( + ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3), + ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03), + rs); + } + } + } + return; + } + + // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy + + if (ggml_is_contiguous(dst)) { + if (nb00 == sizeof(ggml_fp16_t)) { + if (dst->type == GGML_TYPE_F16) { + size_t id = 0; + const size_t rs = ne00 * nb00; + char * dst_ptr = (char *) dst->data; + + for (int i03 = 0; i03 < ne03; i03++) { + for (int i02 = 0; i02 < ne02; i02++) { + id += rs * ir0; + for (int i01 = ir0; i01 < ir1; i01++) { + const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03; + memcpy(dst_ptr + id, src0_ptr, rs); + id += rs; + } + id += rs * (ne01 - ir1); + } + } + } else if (dst->type == GGML_TYPE_F32) { + size_t id = 0; + float * dst_ptr = (float *) dst->data; + + for (int i03 = 0; i03 < ne03; i03++) { + for (int i02 = 0; i02 < ne02; i02++) { + id += ne00 * ir0; + for (int i01 = ir0; i01 < ir1; i01++) { + const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03); + for (int i00 = 0; i00 < ne00; i00++) { + dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]); + id++; + } + } + id += ne00 * (ne01 - ir1); + } + } + } else if (ggml_is_quantized(dst->type)) { + quantize_row_q_t const quantize_row_q = get_quantize_fn(dst->type).quantize_row_q; + float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith; + + size_t id = 0; + size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]); + char * dst_ptr = (char *) dst->data; + + for (int i03 = 0; i03 < ne03; i03++) { + for (int i02 = 0; i02 < ne02; i02++) { + id += rs * ir0; + for (int i01 = ir0; i01 < ir1; i01++) { + const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03); + + for (int i00 = 0; i00 < ne00; i00++) { + src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]); + } + + quantize_row_q(src0_f32, dst_ptr + id, ne00); + id += rs; + } + id += rs * (ne01 - ir1); + } + } + } else { + GGML_ASSERT(false); // TODO: implement + } + } else { + //printf("%s: this is not optimal - fix me\n", __func__); + + if (dst->type == GGML_TYPE_F32) { + size_t id = 0; + float * dst_ptr = (float *) dst->data; + + for (int i03 = 0; i03 < ne03; i03++) { + for (int i02 = 0; i02 < ne02; i02++) { + id += ne00 * ir0; + for (int i01 = ir0; i01 < ir1; i01++) { + for (int i00 = 0; i00 < ne00; i00++) { + const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); + + dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr); + id++; + } + } + id += ne00 * (ne01 - ir1); + } + } + } else if (dst->type == GGML_TYPE_F16) { + size_t id = 0; + ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data; + + for (int i03 = 0; i03 < ne03; i03++) { + for (int i02 = 0; i02 < ne02; i02++) { + id += ne00 * ir0; + for (int i01 = ir0; i01 < ir1; i01++) { + for (int i00 = 0; i00 < ne00; i00++) { + const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); + + dst_ptr[id] = *src0_ptr; + id++; + } + } + id += ne00 * (ne01 - ir1); + } + } + } else { + GGML_ASSERT(false); // TODO: implement + } + } + return; + } + + // dst counters + int64_t i10 = 0; + int64_t i11 = 0; + int64_t i12 = 0; + int64_t i13 = 0; + + if (dst->type == GGML_TYPE_F16) { + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + i10 += ne00 * ir0; + while (i10 >= ne0) { + i10 -= ne0; + if (++i11 == ne1) { + i11 = 0; + if (++i12 == ne2) { + i12 = 0; + if (++i13 == ne3) { + i13 = 0; + } + } + } + } + for (int64_t i01 = ir0; i01 < ir1; i01++) { + for (int64_t i00 = 0; i00 < ne00; i00++) { + const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); + char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3); + + memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t)); + + if (++i10 == ne00) { + i10 = 0; + if (++i11 == ne01) { + i11 = 0; + if (++i12 == ne02) { + i12 = 0; + if (++i13 == ne03) { + i13 = 0; + } + } + } + } + } + } + i10 += ne00 * (ne01 - ir1); + while (i10 >= ne0) { + i10 -= ne0; + if (++i11 == ne1) { + i11 = 0; + if (++i12 == ne2) { + i12 = 0; + if (++i13 == ne3) { + i13 = 0; + } + } + } + } + } + } + } else if (dst->type == GGML_TYPE_F32) { + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + i10 += ne00 * ir0; + while (i10 >= ne0) { + i10 -= ne0; + if (++i11 == ne1) { + i11 = 0; + if (++i12 == ne2) { + i12 = 0; + if (++i13 == ne3) { + i13 = 0; + } + } + } + } + for (int64_t i01 = ir0; i01 < ir1; i01++) { + for (int64_t i00 = 0; i00 < ne00; i00++) { + const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); + char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3); + + *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr); + + if (++i10 == ne0) { + i10 = 0; + if (++i11 == ne1) { + i11 = 0; + if (++i12 == ne2) { + i12 = 0; + if (++i13 == ne3) { + i13 = 0; + } + } + } + } + } + } + i10 += ne00 * (ne01 - ir1); + while (i10 >= ne0) { + i10 -= ne0; + if (++i11 == ne1) { + i11 = 0; + if (++i12 == ne2) { + i12 = 0; + if (++i13 == ne3) { + i13 = 0; + } + } + } + } + } + } + } else { + GGML_ASSERT(false); // TODO: implement + } +} + +static void ggml_compute_forward_dup_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; + const int64_t ne03 = src0->ne[3]; + + const int64_t ne0 = dst->ne[0]; + const int64_t ne1 = dst->ne[1]; + const int64_t ne2 = dst->ne[2]; + const int64_t ne3 = dst->ne[3]; + + const size_t nb00 = src0->nb[0]; + const size_t nb01 = src0->nb[1]; + const size_t nb02 = src0->nb[2]; + const size_t nb03 = src0->nb[3]; + + const size_t nb0 = dst->nb[0]; + const size_t nb1 = dst->nb[1]; + const size_t nb2 = dst->nb[2]; + const size_t nb3 = dst->nb[3]; + + const int ith = params->ith; // thread index + const int nth = params->nth; // number of threads + + if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) { + ggml_compute_forward_dup_same_cont(params, src0, dst); + return; + } + + // parallelize by rows + const int nr = ne01; + // number of rows per thread + const int dr = (nr + nth - 1) / nth; + // row range for this thread + const int ir0 = dr * ith; + const int ir1 = MIN(ir0 + dr, nr); + + if (src0->type == dst->type && + ne00 == ne0 && + nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) { + // copy by rows + const size_t rs = ne00*nb00; + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + for (int64_t i01 = ir0; i01 < ir1; i01++) { + memcpy( + ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3), + ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03), + rs); + } + } + } + return; + } + + if (ggml_is_contiguous(dst)) { + // TODO: simplify + if (nb00 == sizeof(float)) { + if (dst->type == GGML_TYPE_F32) { + size_t id = 0; + const size_t rs = ne00 * nb00; + char * dst_ptr = (char *) dst->data; + + for (int i03 = 0; i03 < ne03; i03++) { + for (int i02 = 0; i02 < ne02; i02++) { + id += rs * ir0; + for (int i01 = ir0; i01 < ir1; i01++) { + const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03; + memcpy(dst_ptr + id, src0_ptr, rs); + id += rs; + } + id += rs * (ne01 - ir1); + } + } + } else if (dst->type == GGML_TYPE_F16) { + size_t id = 0; + ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data; + + for (int i03 = 0; i03 < ne03; i03++) { + for (int i02 = 0; i02 < ne02; i02++) { + id += ne00 * ir0; + for (int i01 = ir0; i01 < ir1; i01++) { + for (int i00 = 0; i00 < ne00; i00++) { + const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); + + dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr); + id++; + } + } + id += ne00 * (ne01 - ir1); + } + } + } else if (ggml_is_quantized(dst->type)) { + quantize_row_q_t const quantize_row_q = get_quantize_fn(dst->type).quantize_row_q; + + size_t id = 0; + size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]); + char * dst_ptr = (char *) dst->data; + + for (int i03 = 0; i03 < ne03; i03++) { + for (int i02 = 0; i02 < ne02; i02++) { + id += rs * ir0; + for (int i01 = ir0; i01 < ir1; i01++) { + const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03); + quantize_row_q(src0_ptr, dst_ptr + id, ne00); + id += rs; + } + id += rs * (ne01 - ir1); + } + } + } else { + GGML_ASSERT(false); // TODO: implement + } + } else { + //printf("%s: this is not optimal - fix me\n", __func__); + + if (dst->type == GGML_TYPE_F32) { + size_t id = 0; + float * dst_ptr = (float *) dst->data; + + for (int i03 = 0; i03 < ne03; i03++) { + for (int i02 = 0; i02 < ne02; i02++) { + id += ne00 * ir0; + for (int i01 = ir0; i01 < ir1; i01++) { + for (int i00 = 0; i00 < ne00; i00++) { + const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); + + dst_ptr[id] = *src0_ptr; + id++; + } + } + id += ne00 * (ne01 - ir1); + } + } + } else if (dst->type == GGML_TYPE_F16) { + size_t id = 0; + ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data; + + for (int i03 = 0; i03 < ne03; i03++) { + for (int i02 = 0; i02 < ne02; i02++) { + id += ne00 * ir0; + for (int i01 = ir0; i01 < ir1; i01++) { + for (int i00 = 0; i00 < ne00; i00++) { + const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); + + dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr); + id++; + } + } + id += ne00 * (ne01 - ir1); + } + } + } else { + GGML_ASSERT(false); // TODO: implement + } + } + + return; + } + + // dst counters + + int64_t i10 = 0; + int64_t i11 = 0; + int64_t i12 = 0; + int64_t i13 = 0; + + if (dst->type == GGML_TYPE_F32) { + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + i10 += ne00 * ir0; + while (i10 >= ne0) { + i10 -= ne0; + if (++i11 == ne1) { + i11 = 0; + if (++i12 == ne2) { + i12 = 0; + if (++i13 == ne3) { + i13 = 0; + } + } + } + } + for (int64_t i01 = ir0; i01 < ir1; i01++) { + for (int64_t i00 = 0; i00 < ne00; i00++) { + const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); + char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3); + + memcpy(dst_ptr, src0_ptr, sizeof(float)); + + if (++i10 == ne0) { + i10 = 0; + if (++i11 == ne1) { + i11 = 0; + if (++i12 == ne2) { + i12 = 0; + if (++i13 == ne3) { + i13 = 0; + } + } + } + } + } + } + i10 += ne00 * (ne01 - ir1); + while (i10 >= ne0) { + i10 -= ne0; + if (++i11 == ne1) { + i11 = 0; + if (++i12 == ne2) { + i12 = 0; + if (++i13 == ne3) { + i13 = 0; + } + } + } + } + } + } + } else if (dst->type == GGML_TYPE_F16) { + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + i10 += ne00 * ir0; + while (i10 >= ne0) { + i10 -= ne0; + if (++i11 == ne1) { + i11 = 0; + if (++i12 == ne2) { + i12 = 0; + if (++i13 == ne3) { + i13 = 0; + } + } + } + } + for (int64_t i01 = ir0; i01 < ir1; i01++) { + for (int64_t i00 = 0; i00 < ne00; i00++) { + const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); + char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3); + + *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr); + + if (++i10 == ne0) { + i10 = 0; + if (++i11 == ne1) { + i11 = 0; + if (++i12 == ne2) { + i12 = 0; + if (++i13 == ne3) { + i13 = 0; + } + } + } + } + } + } + i10 += ne00 * (ne01 - ir1); + while (i10 >= ne0) { + i10 -= ne0; + if (++i11 == ne1) { + i11 = 0; + if (++i12 == ne2) { + i12 = 0; + if (++i13 == ne3) { + i13 = 0; + } + } + } + } + } + } + } else { + GGML_ASSERT(false); // TODO: implement + } +} + +static void ggml_compute_forward_dup( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) { + ggml_compute_forward_dup_same_cont(params, src0, dst); + return; + } + switch (src0->type) { + case GGML_TYPE_F16: + { + ggml_compute_forward_dup_f16(params, src0, dst); + } break; + case GGML_TYPE_F32: + { + ggml_compute_forward_dup_f32(params, src0, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_add + +static void ggml_compute_forward_add_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int ith = params->ith; + const int nth = params->nth; + + const int nr = ggml_nrows(src0); + const int64_t ne0 = src0->ne[0]; + const int64_t ne1 = src0->ne[1]; + const int64_t ne2 = src0->ne[2]; + + const size_t nb00 = src0->nb[0]; + const size_t nb01 = src0->nb[1]; + const size_t nb02 = src0->nb[2]; + const size_t nb03 = src0->nb[3]; + + const size_t nb10 = src1->nb[0]; + const size_t nb11 = src1->nb[1]; + const size_t nb12 = src1->nb[2]; + const size_t nb13 = src1->nb[3]; + + const size_t nb0 = dst->nb[0]; + const size_t nb1 = dst->nb[1]; + const size_t nb2 = dst->nb[2]; + const size_t nb3 = dst->nb[3]; + + GGML_ASSERT( nb0 == sizeof(float)); + GGML_ASSERT(nb00 == sizeof(float)); + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + if (nb10 == sizeof(float)) { + for (int ir = ir0; ir < ir1; ++ir) { + // src0, src1 and dst are same shape => same indices + const int i3 = ir/(ne2*ne1); + const int i2 = (ir - i3*ne2*ne1)/ne1; + const int i1 = (ir - i3*ne2*ne1 - i2*ne1); + + +#ifdef GGML_USE_ACCELERATE + vDSP_vadd( + (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1, + (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1, + (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1, + ne0); +#else + ggml_vec_add_f32(ne0, + (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), + (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), + (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11)); +#endif + // } + // } + } + } else { + // src1 is not contiguous + for (int ir = ir0; ir < ir1; ++ir) { + // src0, src1 and dst are same shape => same indices + const int i3 = ir/(ne2*ne1); + const int i2 = (ir - i3*ne2*ne1)/ne1; + const int i1 = (ir - i3*ne2*ne1 - i2*ne1); + + float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ); + float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01); + for (int i0 = 0; i0 < ne0; i0++) { + float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10); + + dst_ptr[i0] = src0_ptr[i0] + *src1_ptr; + } + } + } +} + +static void ggml_compute_forward_add_f16_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int ith = params->ith; + const int nth = params->nth; + + const int nr = ggml_nrows(src0); + const int64_t ne0 = src0->ne[0]; + const int64_t ne1 = src0->ne[1]; + const int64_t ne2 = src0->ne[2]; + + const size_t nb00 = src0->nb[0]; + const size_t nb01 = src0->nb[1]; + const size_t nb02 = src0->nb[2]; + const size_t nb03 = src0->nb[3]; + + const size_t nb10 = src1->nb[0]; + const size_t nb11 = src1->nb[1]; + const size_t nb12 = src1->nb[2]; + const size_t nb13 = src1->nb[3]; + + const size_t nb0 = dst->nb[0]; + const size_t nb1 = dst->nb[1]; + const size_t nb2 = dst->nb[2]; + const size_t nb3 = dst->nb[3]; + + GGML_ASSERT(src0->type == GGML_TYPE_F16); + GGML_ASSERT(src1->type == GGML_TYPE_F32); + GGML_ASSERT(dst->type == GGML_TYPE_F16); + + GGML_ASSERT( nb0 == sizeof(ggml_fp16_t)); + GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + if (nb10 == sizeof(float)) { + for (int ir = ir0; ir < ir1; ++ir) { + // src0, src1 and dst are same shape => same indices + const int i3 = ir/(ne2*ne1); + const int i2 = (ir - i3*ne2*ne1)/ne1; + const int i1 = (ir - i3*ne2*ne1 - i2*ne1); + + ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1); + ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01); + float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11); + + for (int i = 0; i < ne0; i++) { + dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]); + } + } + } + else { + // src1 is not contiguous + GGML_ASSERT(false); + } +} + +static void ggml_compute_forward_add_f16_f16( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int ith = params->ith; + const int nth = params->nth; + + const int nr = ggml_nrows(src0); + const int64_t ne0 = src0->ne[0]; + const int64_t ne1 = src0->ne[1]; + const int64_t ne2 = src0->ne[2]; + + const size_t nb00 = src0->nb[0]; + const size_t nb01 = src0->nb[1]; + const size_t nb02 = src0->nb[2]; + const size_t nb03 = src0->nb[3]; + + const size_t nb10 = src1->nb[0]; + const size_t nb11 = src1->nb[1]; + const size_t nb12 = src1->nb[2]; + const size_t nb13 = src1->nb[3]; + + const size_t nb0 = dst->nb[0]; + const size_t nb1 = dst->nb[1]; + const size_t nb2 = dst->nb[2]; + const size_t nb3 = dst->nb[3]; + + GGML_ASSERT(src0->type == GGML_TYPE_F16); + GGML_ASSERT(src1->type == GGML_TYPE_F16); + GGML_ASSERT(dst->type == GGML_TYPE_F16); + + GGML_ASSERT( nb0 == sizeof(ggml_fp16_t)); + GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + if (nb10 == sizeof(ggml_fp16_t)) { + for (int ir = ir0; ir < ir1; ++ir) { + // src0, src1 and dst are same shape => same indices + const int i3 = ir/(ne2*ne1); + const int i2 = (ir - i3*ne2*ne1)/ne1; + const int i1 = (ir - i3*ne2*ne1 - i2*ne1); + + ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1); + ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01); + ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11); + + for (int i = 0; i < ne0; i++) { + dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i])); + } + } + } + else { + // src1 is not contiguous + GGML_ASSERT(false); + } +} + +static void ggml_compute_forward_add_q_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int nr = ggml_nrows(src0); + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; + //const int64_t ne03 = src0->ne[3]; + + const size_t nb00 = src0->nb[0]; + const size_t nb01 = src0->nb[1]; + const size_t nb02 = src0->nb[2]; + const size_t nb03 = src0->nb[3]; + + const size_t nb10 = src1->nb[0]; + const size_t nb11 = src1->nb[1]; + const size_t nb12 = src1->nb[2]; + const size_t nb13 = src1->nb[3]; + + const size_t nb0 = dst->nb[0]; + const size_t nb1 = dst->nb[1]; + const size_t nb2 = dst->nb[2]; + const size_t nb3 = dst->nb[3]; + + const int ith = params->ith; + const int nth = params->nth; + + const enum ggml_type type = src0->type; + dequantize_row_q_t const dequantize_row_q = get_quantize_fn(type).dequantize_row_q; + quantize_row_q_t const quantize_row_q = get_quantize_fn(type).quantize_row_q; + + // we don't support permuted src0 or src1 + GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]); + GGML_ASSERT(nb10 == sizeof(float)); + + // dst cannot be transposed or permuted + GGML_ASSERT(nb0 <= nb1); + GGML_ASSERT(nb1 <= nb2); + GGML_ASSERT(nb2 <= nb3); + + GGML_ASSERT(ggml_is_quantized(src0->type)); + GGML_ASSERT(dst->type == src0->type); + GGML_ASSERT(src1->type == GGML_TYPE_F32); + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith; + + for (int ir = ir0; ir < ir1; ++ir) { + // src0 indices + const int i03 = ir/(ne02*ne01); + const int i02 = (ir - i03*ne02*ne01)/ne01; + const int i01 = (ir - i03*ne02*ne01 - i02*ne01); + + // src1 and dst are same shape as src0 => same indices + const int i13 = i03; + const int i12 = i02; + const int i11 = i01; + + const int i3 = i03; + const int i2 = i02; + const int i1 = i01; + + void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)); + float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)); + void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0)); + + assert(ne00 % 32 == 0); + + // unquantize row from src0 to temp buffer + dequantize_row_q(src0_row, wdata, ne00); + // add src1 + ggml_vec_acc_f32(ne00, wdata, src1_row); + // quantize row to dst + quantize_row_q(wdata, dst_row, ne00); + } +} + +static void ggml_compute_forward_add( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_add_f32(params, src0, src1, dst); + } break; + case GGML_TYPE_F16: + { + if (src1->type == GGML_TYPE_F16) { + ggml_compute_forward_add_f16_f16(params, src0, src1, dst); + } + else if (src1->type == GGML_TYPE_F32) { + ggml_compute_forward_add_f16_f32(params, src0, src1, dst); + } + else { + GGML_ASSERT(false); + } + } break; + case GGML_TYPE_Q4_0: + case GGML_TYPE_Q4_1: + case GGML_TYPE_Q4_2: + case GGML_TYPE_Q4_3: + case GGML_TYPE_Q5_0: + case GGML_TYPE_Q5_1: + case GGML_TYPE_Q8_0: + { + ggml_compute_forward_add_q_f32(params, src0, src1, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_add1 + +static void ggml_compute_forward_add1_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + GGML_ASSERT(ggml_are_same_shape(src0, dst)); + GGML_ASSERT(ggml_is_scalar(src1)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int ith = params->ith; + const int nth = params->nth; + + const int nr = ggml_nrows(src0); + const int64_t ne0 = src0->ne[0]; + const int64_t ne1 = src0->ne[1]; + const int64_t ne2 = src0->ne[2]; + + const size_t nb00 = src0->nb[0]; + const size_t nb01 = src0->nb[1]; + const size_t nb02 = src0->nb[2]; + const size_t nb03 = src0->nb[3]; + + const size_t nb0 = dst->nb[0]; + const size_t nb1 = dst->nb[1]; + const size_t nb2 = dst->nb[2]; + const size_t nb3 = dst->nb[3]; + + GGML_ASSERT( nb0 == sizeof(float)); + GGML_ASSERT(nb00 == sizeof(float)); + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + for (int ir = ir0; ir < ir1; ++ir) { + // src0 and dst are same shape => same indices + const int i3 = ir/(ne2*ne1); + const int i2 = (ir - i3*ne2*ne1)/ne1; + const int i1 = (ir - i3*ne2*ne1 - i2*ne1); + +#ifdef GGML_USE_ACCELERATE + UNUSED(ggml_vec_add1_f32); + + vDSP_vadd( + (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1, + (float *) ((char *) src1->data), 0, + (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1, + ne0); +#else + ggml_vec_add1_f32(ne0, + (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), + (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), + *(float *) src1->data); +#endif + } +} + +static void ggml_compute_forward_add1_f16_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + GGML_ASSERT(ggml_are_same_shape(src0, dst)); + GGML_ASSERT(ggml_is_scalar(src1)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + // scalar to add + const float v = *(float *) src1->data; + + const int ith = params->ith; + const int nth = params->nth; + + const int nr = ggml_nrows(src0); + const int64_t ne0 = src0->ne[0]; + const int64_t ne1 = src0->ne[1]; + const int64_t ne2 = src0->ne[2]; + + const size_t nb00 = src0->nb[0]; + const size_t nb01 = src0->nb[1]; + const size_t nb02 = src0->nb[2]; + const size_t nb03 = src0->nb[3]; + + const size_t nb0 = dst->nb[0]; + const size_t nb1 = dst->nb[1]; + const size_t nb2 = dst->nb[2]; + const size_t nb3 = dst->nb[3]; + + GGML_ASSERT(src0->type == GGML_TYPE_F16); + GGML_ASSERT(src1->type == GGML_TYPE_F32); + GGML_ASSERT(dst->type == GGML_TYPE_F16); + + GGML_ASSERT( nb0 == sizeof(ggml_fp16_t)); + GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + for (int ir = ir0; ir < ir1; ++ir) { + // src0 and dst are same shape => same indices + const int i3 = ir/(ne2*ne1); + const int i2 = (ir - i3*ne2*ne1)/ne1; + const int i1 = (ir - i3*ne2*ne1 - i2*ne1); + + ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ); + ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01); + for (int i = 0; i < ne0; i++) { + dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v); + } + } +} + +static void ggml_compute_forward_add1_f16_f16( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + GGML_ASSERT(ggml_are_same_shape(src0, dst)); + GGML_ASSERT(ggml_is_scalar(src1)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + // scalar to add + const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data); + + const int ith = params->ith; + const int nth = params->nth; + + const int nr = ggml_nrows(src0); + const int64_t ne0 = src0->ne[0]; + const int64_t ne1 = src0->ne[1]; + const int64_t ne2 = src0->ne[2]; + + const size_t nb00 = src0->nb[0]; + const size_t nb01 = src0->nb[1]; + const size_t nb02 = src0->nb[2]; + const size_t nb03 = src0->nb[3]; + + const size_t nb0 = dst->nb[0]; + const size_t nb1 = dst->nb[1]; + const size_t nb2 = dst->nb[2]; + const size_t nb3 = dst->nb[3]; + + GGML_ASSERT(src0->type == GGML_TYPE_F16); + GGML_ASSERT(src1->type == GGML_TYPE_F16); + GGML_ASSERT(dst->type == GGML_TYPE_F16); + + GGML_ASSERT( nb0 == sizeof(ggml_fp16_t)); + GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + for (int ir = ir0; ir < ir1; ++ir) { + // src0 and dst are same shape => same indices + const int i3 = ir/(ne2*ne1); + const int i2 = (ir - i3*ne2*ne1)/ne1; + const int i1 = (ir - i3*ne2*ne1 - i2*ne1); + + ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ); + ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01); + for (int i = 0; i < ne0; i++) { + dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v); + } + } +} + +static void ggml_compute_forward_add1_q_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + GGML_ASSERT(ggml_are_same_shape(src0, dst)); + GGML_ASSERT(ggml_is_scalar(src1)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + // scalar to add + const float v = *(float *) src1->data; + + const int ith = params->ith; + const int nth = params->nth; + + const int nr = ggml_nrows(src0); + const int64_t ne0 = src0->ne[0]; + const int64_t ne1 = src0->ne[1]; + const int64_t ne2 = src0->ne[2]; + + const size_t nb00 = src0->nb[0]; + const size_t nb01 = src0->nb[1]; + const size_t nb02 = src0->nb[2]; + const size_t nb03 = src0->nb[3]; + + const size_t nb0 = dst->nb[0]; + const size_t nb1 = dst->nb[1]; + const size_t nb2 = dst->nb[2]; + const size_t nb3 = dst->nb[3]; + + const enum ggml_type type = src0->type; + dequantize_row_q_t const dequantize_row_q = get_quantize_fn(type).dequantize_row_q; + quantize_row_q_t const quantize_row_q = get_quantize_fn(type).quantize_row_q; + + // we don't support permuted src0 + GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]); + + // dst cannot be transposed or permuted + GGML_ASSERT(nb0 <= nb1); + GGML_ASSERT(nb1 <= nb2); + GGML_ASSERT(nb2 <= nb3); + + GGML_ASSERT(ggml_is_quantized(src0->type)); + GGML_ASSERT(dst->type == src0->type); + GGML_ASSERT(src1->type == GGML_TYPE_F32); + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith; + + for (int ir = ir0; ir < ir1; ++ir) { + // src0 and dst are same shape => same indices + const int i3 = ir/(ne2*ne1); + const int i2 = (ir - i3*ne2*ne1)/ne1; + const int i1 = (ir - i3*ne2*ne1 - i2*ne1); + + void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03)); + void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 )); + + assert(ne0 % 32 == 0); + + // unquantize row from src0 to temp buffer + dequantize_row_q(src0_row, wdata, ne0); + // add src1 + ggml_vec_acc1_f32(ne0, wdata, v); + // quantize row to dst + quantize_row_q(wdata, dst_row, ne0); + } +} + +static void ggml_compute_forward_add1( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_add1_f32(params, src0, src1, dst); + } break; + case GGML_TYPE_F16: + { + if (src1->type == GGML_TYPE_F16) { + ggml_compute_forward_add1_f16_f16(params, src0, src1, dst); + } + else if (src1->type == GGML_TYPE_F32) { + ggml_compute_forward_add1_f16_f32(params, src0, src1, dst); + } + else { + GGML_ASSERT(false); + } + } break; + case GGML_TYPE_Q4_0: + case GGML_TYPE_Q4_1: + case GGML_TYPE_Q5_0: + case GGML_TYPE_Q5_1: + case GGML_TYPE_Q8_0: + case GGML_TYPE_Q8_1: + { + ggml_compute_forward_add1_q_f32(params, src0, src1, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + + +// ggml_compute_forward_acc + +static void ggml_compute_forward_acc_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + const struct ggml_tensor * opt0, + struct ggml_tensor * dst) { + GGML_ASSERT(ggml_are_same_shape(src0, dst)); + GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0)); + + GGML_ASSERT(opt0->type == GGML_TYPE_I32); + GGML_ASSERT(ggml_nelements(opt0) == 5); + + // view src0 and dst with these strides and data offset inbytes during acc + // nb0 is implicitely element_size because src0 and dst are contiguous + size_t nb1 = ((int32_t *) opt0->data)[0]; + size_t nb2 = ((int32_t *) opt0->data)[1]; + size_t nb3 = ((int32_t *) opt0->data)[2]; + size_t offset = ((int32_t *) opt0->data)[3]; + bool inplace = (bool) ((int32_t *) opt0->data)[4]; + + if (!inplace && (params->type == GGML_TASK_INIT)) { + // memcpy needs to be synchronized across threads to avoid race conditions. + // => do it in INIT phase + memcpy( + ((char *) dst->data), + ((char *) src0->data), + ggml_nbytes(dst)); + } + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int ith = params->ith; + const int nth = params->nth; + + const int nr = ggml_nrows(src1); + const int nc = src1->ne[0]; + + const int64_t ne10 = src1->ne[0]; + const int64_t ne11 = src1->ne[1]; + const int64_t ne12 = src1->ne[2]; + const int64_t ne13 = src1->ne[3]; + + const size_t nb10 = src1->nb[0]; + const size_t nb11 = src1->nb[1]; + const size_t nb12 = src1->nb[2]; + const size_t nb13 = src1->nb[3]; + + // src0 and dst as viewed during acc + const size_t nb0 = ggml_element_size(src0); + + const size_t nb00 = nb0; + const size_t nb01 = nb1; + const size_t nb02 = nb2; + const size_t nb03 = nb3; + + GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst)); + GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0)); + + GGML_ASSERT(nb10 == sizeof(float)); + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + for (int ir = ir0; ir < ir1; ++ir) { + // src0 and dst are viewed with shape of src1 and offset + // => same indices + const int i3 = ir/(ne12*ne11); + const int i2 = (ir - i3*ne12*ne11)/ne11; + const int i1 = (ir - i3*ne12*ne11 - i2*ne11); + +#ifdef GGML_USE_ACCELERATE + vDSP_vadd( + (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1, + (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1, + (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc); +#else + ggml_vec_add_f32(nc, + (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), + (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), + (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11)); +#endif + } +} + +static void ggml_compute_forward_acc( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + const struct ggml_tensor * opt0, + struct ggml_tensor * dst) { + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_acc_f32(params, src0, src1, opt0, dst); + } break; + case GGML_TYPE_F16: + case GGML_TYPE_Q4_0: + case GGML_TYPE_Q4_1: + case GGML_TYPE_Q5_0: + case GGML_TYPE_Q5_1: + case GGML_TYPE_Q8_0: + case GGML_TYPE_Q8_1: + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_sub + +static void ggml_compute_forward_sub_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + assert(params->ith == 0); + assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int nr = ggml_nrows(src0); + const int64_t ne0 = src0->ne[0]; + const int64_t ne1 = src0->ne[1]; + const int64_t ne2 = src0->ne[2]; + + const size_t nb00 = src0->nb[0]; + const size_t nb01 = src0->nb[1]; + const size_t nb02 = src0->nb[2]; + const size_t nb03 = src0->nb[3]; + + const size_t nb10 = src1->nb[0]; + const size_t nb11 = src1->nb[1]; + const size_t nb12 = src1->nb[2]; + const size_t nb13 = src1->nb[3]; + + const size_t nb0 = dst->nb[0]; + const size_t nb1 = dst->nb[1]; + const size_t nb2 = dst->nb[2]; + const size_t nb3 = dst->nb[3]; + + GGML_ASSERT( nb0 == sizeof(float)); + GGML_ASSERT(nb00 == sizeof(float)); + + if (nb10 == sizeof(float)) { + for (int ir = 0; ir < nr; ++ir) { + // src0, src1 and dst are same shape => same indices + const int i3 = ir/(ne2*ne1); + const int i2 = (ir - i3*ne2*ne1)/ne1; + const int i1 = (ir - i3*ne2*ne1 - i2*ne1); + + +#ifdef GGML_USE_ACCELERATE + vDSP_vsub( + (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1, + (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1, + (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1, + ne0); +#else + ggml_vec_sub_f32(ne0, + (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), + (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), + (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11)); +#endif + // } + // } + } + } else { + // src1 is not contiguous + for (int ir = 0; ir < nr; ++ir) { + // src0, src1 and dst are same shape => same indices + const int i3 = ir/(ne2*ne1); + const int i2 = (ir - i3*ne2*ne1)/ne1; + const int i1 = (ir - i3*ne2*ne1 - i2*ne1); + + float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ); + float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01); + for (int i0 = 0; i0 < ne0; i0++) { + float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10); + + dst_ptr[i0] = src0_ptr[i0] - *src1_ptr; + } + } + } +} + +static void ggml_compute_forward_sub( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_sub_f32(params, src0, src1, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_mul + +static void ggml_compute_forward_mul_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + const int ith = params->ith; + const int nth = params->nth; + + const int nr = ggml_nrows(src0); + const int64_t ne0 = src0->ne[0]; + const int64_t ne1 = src0->ne[1]; + const int64_t ne2 = src0->ne[2]; + + const size_t nb00 = src0->nb[0]; + const size_t nb01 = src0->nb[1]; + const size_t nb02 = src0->nb[2]; + const size_t nb03 = src0->nb[3]; + + const size_t nb10 = src1->nb[0]; + const size_t nb11 = src1->nb[1]; + const size_t nb12 = src1->nb[2]; + const size_t nb13 = src1->nb[3]; + + const size_t nb0 = dst->nb[0]; + const size_t nb1 = dst->nb[1]; + const size_t nb2 = dst->nb[2]; + const size_t nb3 = dst->nb[3]; + + GGML_ASSERT( nb0 == sizeof(float)); + GGML_ASSERT(nb00 == sizeof(float)); + + if (nb10 == sizeof(float)) { + for (int ir = ith; ir < nr; ir += nth) { + // src0, src1 and dst are same shape => same indices + const int i3 = ir/(ne2*ne1); + const int i2 = (ir - i3*ne2*ne1)/ne1; + const int i1 = (ir - i3*ne2*ne1 - i2*ne1); + + +#ifdef GGML_USE_ACCELERATE + UNUSED(ggml_vec_mul_f32); + + vDSP_vmul( + (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1, + (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1, + (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1, + ne0); +#else + ggml_vec_mul_f32(ne0, + (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), + (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), + (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11)); +#endif + // } + // } + } + } else { + // src1 is not contiguous + for (int ir = ith; ir < nr; ir += nth) { + // src0, src1 and dst are same shape => same indices + const int i3 = ir/(ne2*ne1); + const int i2 = (ir - i3*ne2*ne1)/ne1; + const int i1 = (ir - i3*ne2*ne1 - i2*ne1); + + float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ); + float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01); + for (int i0 = 0; i0 < ne0; i0++) { + float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10); + + dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr); + } + } + } +} + +static void ggml_compute_forward_mul( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_mul_f32(params, src0, src1, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_div + +static void ggml_compute_forward_div_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + assert(params->ith == 0); + assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int nr = ggml_nrows(src0); + const int64_t ne0 = src0->ne[0]; + const int64_t ne1 = src0->ne[1]; + const int64_t ne2 = src0->ne[2]; + + const size_t nb00 = src0->nb[0]; + const size_t nb01 = src0->nb[1]; + const size_t nb02 = src0->nb[2]; + const size_t nb03 = src0->nb[3]; + + const size_t nb10 = src1->nb[0]; + const size_t nb11 = src1->nb[1]; + const size_t nb12 = src1->nb[2]; + const size_t nb13 = src1->nb[3]; + + const size_t nb0 = dst->nb[0]; + const size_t nb1 = dst->nb[1]; + const size_t nb2 = dst->nb[2]; + const size_t nb3 = dst->nb[3]; + + GGML_ASSERT( nb0 == sizeof(float)); + GGML_ASSERT(nb00 == sizeof(float)); + + if (nb10 == sizeof(float)) { + for (int ir = 0; ir < nr; ++ir) { + // src0, src1 and dst are same shape => same indices + const int i3 = ir/(ne2*ne1); + const int i2 = (ir - i3*ne2*ne1)/ne1; + const int i1 = (ir - i3*ne2*ne1 - i2*ne1); + + +#ifdef GGML_USE_ACCELERATE + vDSP_vdiv( + (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1, + (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1, + (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1, + ne0); +#else + ggml_vec_div_f32(ne0, + (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), + (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), + (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11)); +#endif + // } + // } + } + } else { + // src1 is not contiguous + for (int ir = 0; ir < nr; ++ir) { + // src0, src1 and dst are same shape => same indices + const int i3 = ir/(ne2*ne1); + const int i2 = (ir - i3*ne2*ne1)/ne1; + const int i1 = (ir - i3*ne2*ne1 - i2*ne1); + + float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ); + float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01); + for (int i0 = 0; i0 < ne0; i0++) { + float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10); + + dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr); + } + } + } +} + +static void ggml_compute_forward_div( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_div_f32(params, src0, src1, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_sqr + +static void ggml_compute_forward_sqr_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + assert(params->ith == 0); + assert(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int n = ggml_nrows(src0); + const int nc = src0->ne[0]; + + assert( dst->nb[0] == sizeof(float)); + assert(src0->nb[0] == sizeof(float)); + + for (int i = 0; i < n; i++) { + ggml_vec_sqr_f32(nc, + (float *) ((char *) dst->data + i*( dst->nb[1])), + (float *) ((char *) src0->data + i*(src0->nb[1]))); + } +} + +static void ggml_compute_forward_sqr( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_sqr_f32(params, src0, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_sqrt + +static void ggml_compute_forward_sqrt_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + assert(params->ith == 0); + assert(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int n = ggml_nrows(src0); + const int nc = src0->ne[0]; + + assert( dst->nb[0] == sizeof(float)); + assert(src0->nb[0] == sizeof(float)); + + for (int i = 0; i < n; i++) { + ggml_vec_sqrt_f32(nc, + (float *) ((char *) dst->data + i*( dst->nb[1])), + (float *) ((char *) src0->data + i*(src0->nb[1]))); + } +} + +static void ggml_compute_forward_sqrt( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_sqrt_f32(params, src0, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + + +// ggml_compute_forward_log + +static void ggml_compute_forward_log_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + GGML_ASSERT(params->ith == 0); + GGML_ASSERT(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int n = ggml_nrows(src0); + const int nc = src0->ne[0]; + + GGML_ASSERT( dst->nb[0] == sizeof(float)); + GGML_ASSERT(src0->nb[0] == sizeof(float)); + + for (int i = 0; i < n; i++) { + ggml_vec_log_f32(nc, + (float *) ((char *) dst->data + i*( dst->nb[1])), + (float *) ((char *) src0->data + i*(src0->nb[1]))); + } +} + +static void ggml_compute_forward_log( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_log_f32(params, src0, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_sum + +static void ggml_compute_forward_sum_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + assert(params->ith == 0); + assert(ggml_is_scalar(dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + assert(ggml_is_scalar(dst)); + assert(src0->nb[0] == sizeof(float)); + + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; + const int64_t ne03 = src0->ne[3]; + + const size_t nb01 = src0->nb[1]; + const size_t nb02 = src0->nb[2]; + const size_t nb03 = src0->nb[3]; + + ggml_float sum = 0; + ggml_float row_sum = 0; + + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + for (int64_t i01 = 0; i01 < ne01; i01++) { + ggml_vec_sum_ggf(ne00, + &row_sum, + (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03)); + sum += row_sum; + } + } + } + ((float *) dst->data)[0] = sum; +} + +static void ggml_compute_forward_sum( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_sum_f32(params, src0, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_sum_rows + +static void ggml_compute_forward_sum_rows_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + GGML_ASSERT(params->ith == 0); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + GGML_ASSERT(src0->nb[0] == sizeof(float)); + GGML_ASSERT(dst->nb[0] == sizeof(float)); + + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; + const int64_t ne03 = src0->ne[3]; + + const int64_t ne0 = dst->ne[0]; + const int64_t ne1 = dst->ne[1]; + const int64_t ne2 = dst->ne[2]; + const int64_t ne3 = dst->ne[3]; + + GGML_ASSERT(ne0 == 1); + GGML_ASSERT(ne1 == ne01); + GGML_ASSERT(ne2 == ne02); + GGML_ASSERT(ne3 == ne03); + + const size_t nb01 = src0->nb[1]; + const size_t nb02 = src0->nb[2]; + const size_t nb03 = src0->nb[3]; + + const size_t nb1 = dst->nb[1]; + const size_t nb2 = dst->nb[2]; + const size_t nb3 = dst->nb[3]; + + for (int64_t i3 = 0; i3 < ne03; i3++) { + for (int64_t i2 = 0; i2 < ne02; i2++) { + for (int64_t i1 = 0; i1 < ne01; i1++) { + float* src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03); + float* dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3); + float row_sum = 0; + ggml_vec_sum_f32(ne00, &row_sum, src_row); + dst_row[0] = row_sum; + } + } + } +} + +static void ggml_compute_forward_sum_rows( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_sum_rows_f32(params, src0, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_mean + +static void ggml_compute_forward_mean_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + assert(params->ith == 0); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + assert(src0->nb[0] == sizeof(float)); + + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; + const int64_t ne03 = src0->ne[3]; + + const size_t nb01 = src0->nb[1]; + const size_t nb02 = src0->nb[2]; + const size_t nb03 = src0->nb[3]; + + const int64_t ne0 = dst->ne[0]; + const int64_t ne1 = dst->ne[1]; + const int64_t ne2 = dst->ne[2]; + const int64_t ne3 = dst->ne[3]; + + assert(ne0 == 1); + assert(ne1 == ne01); + assert(ne2 == ne02); + assert(ne3 == ne03); + + UNUSED(ne0); + UNUSED(ne1); + UNUSED(ne2); + UNUSED(ne3); + + const size_t nb1 = dst->nb[1]; + const size_t nb2 = dst->nb[2]; + const size_t nb3 = dst->nb[3]; + + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + for (int64_t i01 = 0; i01 < ne01; i01++) { + ggml_vec_sum_f32(ne00, + (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3), + (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03)); + + *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00; + } + } + } +} + +static void ggml_compute_forward_mean( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_mean_f32(params, src0, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_repeat + +static void ggml_compute_forward_repeat_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + GGML_ASSERT(params->ith == 0); + GGML_ASSERT(ggml_can_repeat(src0, dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int64_t ne0 = dst->ne[0]; + const int64_t ne1 = dst->ne[1]; + const int64_t ne2 = dst->ne[2]; + const int64_t ne3 = dst->ne[3]; + + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; + const int64_t ne03 = src0->ne[3]; + + const size_t nb0 = dst->nb[0]; + const size_t nb1 = dst->nb[1]; + const size_t nb2 = dst->nb[2]; + const size_t nb3 = dst->nb[3]; + + const size_t nb00 = src0->nb[0]; + const size_t nb01 = src0->nb[1]; + const size_t nb02 = src0->nb[2]; + const size_t nb03 = src0->nb[3]; + + // guaranteed to be an integer due to the check in ggml_can_repeat + const int nr0 = (int)(ne0/ne00); + const int nr1 = (int)(ne1/ne01); + const int nr2 = (int)(ne2/ne02); + const int nr3 = (int)(ne3/ne03); + + // TODO: support for transposed / permuted tensors + GGML_ASSERT(nb0 == sizeof(float)); + GGML_ASSERT(nb00 == sizeof(float)); + + // TODO: maybe this is not optimal? + for (int i3 = 0; i3 < nr3; i3++) { + for (int k3 = 0; k3 < ne03; k3++) { + for (int i2 = 0; i2 < nr2; i2++) { + for (int k2 = 0; k2 < ne02; k2++) { + for (int i1 = 0; i1 < nr1; i1++) { + for (int k1 = 0; k1 < ne01; k1++) { + for (int i0 = 0; i0 < nr0; i0++) { + ggml_vec_cpy_f32(ne00, + (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0), + (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01)); + } + } + } + } + } + } + } +} + +static void ggml_compute_forward_repeat( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_repeat_f32(params, src0, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_abs + +static void ggml_compute_forward_abs_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + assert(params->ith == 0); + assert(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int n = ggml_nrows(src0); + const int nc = src0->ne[0]; + + assert(dst->nb[0] == sizeof(float)); + assert(src0->nb[0] == sizeof(float)); + + for (int i = 0; i < n; i++) { + ggml_vec_abs_f32(nc, + (float *) ((char *) dst->data + i*( dst->nb[1])), + (float *) ((char *) src0->data + i*(src0->nb[1]))); + } +} + +static void ggml_compute_forward_abs( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_abs_f32(params, src0, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_sgn + +static void ggml_compute_forward_sgn_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + assert(params->ith == 0); + assert(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int n = ggml_nrows(src0); + const int nc = src0->ne[0]; + + assert(dst->nb[0] == sizeof(float)); + assert(src0->nb[0] == sizeof(float)); + + for (int i = 0; i < n; i++) { + ggml_vec_sgn_f32(nc, + (float *) ((char *) dst->data + i*( dst->nb[1])), + (float *) ((char *) src0->data + i*(src0->nb[1]))); + } +} + +static void ggml_compute_forward_sgn( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_sgn_f32(params, src0, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_neg + +static void ggml_compute_forward_neg_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + assert(params->ith == 0); + assert(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int n = ggml_nrows(src0); + const int nc = src0->ne[0]; + + assert(dst->nb[0] == sizeof(float)); + assert(src0->nb[0] == sizeof(float)); + + for (int i = 0; i < n; i++) { + ggml_vec_neg_f32(nc, + (float *) ((char *) dst->data + i*( dst->nb[1])), + (float *) ((char *) src0->data + i*(src0->nb[1]))); + } +} + +static void ggml_compute_forward_neg( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_neg_f32(params, src0, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_step + +static void ggml_compute_forward_step_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + assert(params->ith == 0); + assert(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int n = ggml_nrows(src0); + const int nc = src0->ne[0]; + + assert(dst->nb[0] == sizeof(float)); + assert(src0->nb[0] == sizeof(float)); + + for (int i = 0; i < n; i++) { + ggml_vec_step_f32(nc, + (float *) ((char *) dst->data + i*( dst->nb[1])), + (float *) ((char *) src0->data + i*(src0->nb[1]))); + } +} + +static void ggml_compute_forward_step( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_step_f32(params, src0, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_relu + +static void ggml_compute_forward_relu_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + assert(params->ith == 0); + assert(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int n = ggml_nrows(src0); + const int nc = src0->ne[0]; + + assert(dst->nb[0] == sizeof(float)); + assert(src0->nb[0] == sizeof(float)); + + for (int i = 0; i < n; i++) { + ggml_vec_relu_f32(nc, + (float *) ((char *) dst->data + i*( dst->nb[1])), + (float *) ((char *) src0->data + i*(src0->nb[1]))); + } +} + +static void ggml_compute_forward_relu( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_relu_f32(params, src0, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_gelu + +static void ggml_compute_forward_gelu_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + GGML_ASSERT(ggml_is_contiguous(src0)); + GGML_ASSERT(ggml_is_contiguous(dst)); + GGML_ASSERT(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int ith = params->ith; + const int nth = params->nth; + + const int nc = src0->ne[0]; + const int nr = ggml_nrows(src0); + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + for (int i1 = ir0; i1 < ir1; i1++) { + ggml_vec_gelu_f32(nc, + (float *) ((char *) dst->data + i1*( dst->nb[1])), + (float *) ((char *) src0->data + i1*(src0->nb[1]))); + +#ifndef NDEBUG + for (int k = 0; k < nc; k++) { + const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k]; + UNUSED(x); + assert(!isnan(x)); + assert(!isinf(x)); + } +#endif + } +} + +static void ggml_compute_forward_gelu( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_gelu_f32(params, src0, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } + + //printf("XXXXXXXX gelu\n"); +} + +// ggml_compute_forward_silu + +static void ggml_compute_forward_silu_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + GGML_ASSERT(ggml_is_contiguous(src0)); + GGML_ASSERT(ggml_is_contiguous(dst)); + GGML_ASSERT(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int ith = params->ith; + const int nth = params->nth; + + const int nc = src0->ne[0]; + const int nr = ggml_nrows(src0); + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + for (int i1 = ir0; i1 < ir1; i1++) { + ggml_vec_silu_f32(nc, + (float *) ((char *) dst->data + i1*( dst->nb[1])), + (float *) ((char *) src0->data + i1*(src0->nb[1]))); + +#ifndef NDEBUG + for (int k = 0; k < nc; k++) { + const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k]; + UNUSED(x); + assert(!isnan(x)); + assert(!isinf(x)); + } +#endif + } +} + +static void ggml_compute_forward_silu( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_silu_f32(params, src0, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + + +// ggml_compute_forward_silu_back + +static void ggml_compute_forward_silu_back_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * grad, + struct ggml_tensor * dst) { + GGML_ASSERT(ggml_is_contiguous(grad)); + GGML_ASSERT(ggml_is_contiguous(src0)); + GGML_ASSERT(ggml_is_contiguous(dst)); + GGML_ASSERT(ggml_are_same_shape(src0, dst)); + GGML_ASSERT(ggml_are_same_shape(src0, grad)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int ith = params->ith; + const int nth = params->nth; + + const int nc = src0->ne[0]; + const int nr = ggml_nrows(src0); + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + for (int i1 = ir0; i1 < ir1; i1++) { + ggml_vec_silu_backward_f32(nc, + (float *) ((char *) dst->data + i1*( dst->nb[1])), + (float *) ((char *) src0->data + i1*(src0->nb[1])), + (float *) ((char *) grad->data + i1*(grad->nb[1]))); + +#ifndef NDEBUG + for (int k = 0; k < nc; k++) { + const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k]; + UNUSED(x); + assert(!isnan(x)); + assert(!isinf(x)); + } +#endif + } +} + +static void ggml_compute_forward_silu_back( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * grad, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_silu_back_f32(params, src0, grad, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_norm + +static void ggml_compute_forward_norm_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + GGML_ASSERT(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + GGML_ASSERT(src0->nb[0] == sizeof(float)); + + const int ith = params->ith; + const int nth = params->nth; + + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; + const int64_t ne03 = src0->ne[3]; + + const size_t nb01 = src0->nb[1]; + const size_t nb02 = src0->nb[2]; + const size_t nb03 = src0->nb[3]; + + const size_t nb1 = dst->nb[1]; + const size_t nb2 = dst->nb[2]; + const size_t nb3 = dst->nb[3]; + + const float eps = 1e-5f; // TODO: make this a parameter + + // TODO: optimize + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + for (int64_t i01 = ith; i01 < ne01; i01 += nth) { + const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03); + + ggml_float sum = 0.0; + for (int64_t i00 = 0; i00 < ne00; i00++) { + sum += (ggml_float)x[i00]; + } + + float mean = sum/ne00; + + float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3); + + ggml_float sum2 = 0.0; + for (int64_t i00 = 0; i00 < ne00; i00++) { + float v = x[i00] - mean; + y[i00] = v; + sum2 += (ggml_float)(v*v); + } + + float variance = sum2/ne00; + const float scale = 1.0f/sqrtf(variance + eps); + + ggml_vec_scale_f32(ne00, y, scale); + } + } + } +} + +static void ggml_compute_forward_norm( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_norm_f32(params, src0, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +static void ggml_compute_forward_rms_norm_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + GGML_ASSERT(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + GGML_ASSERT(src0->nb[0] == sizeof(float)); + + const int ith = params->ith; + const int nth = params->nth; + + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; + const int64_t ne03 = src0->ne[3]; + + const size_t nb01 = src0->nb[1]; + const size_t nb02 = src0->nb[2]; + const size_t nb03 = src0->nb[3]; + + const size_t nb1 = dst->nb[1]; + const size_t nb2 = dst->nb[2]; + const size_t nb3 = dst->nb[3]; + + const float eps = 1e-6f; // TODO: make this a parameter + + // TODO: optimize + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + for (int64_t i01 = ith; i01 < ne01; i01 += nth) { + const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03); + + ggml_float sum = 0.0; + for (int64_t i00 = 0; i00 < ne00; i00++) { + sum += (ggml_float)(x[i00] * x[i00]); + } + + float mean = sum/ne00; + + float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3); + + memcpy(y, x, ne00 * sizeof(float)); + // for (int i00 = 0; i00 < ne00; i00++) { + // y[i00] = x[i00]; + // } + + const float scale = 1.0f/sqrtf(mean + eps); + + ggml_vec_scale_f32(ne00, y, scale); + } + } + } +} + +static void ggml_compute_forward_rms_norm( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_rms_norm_f32(params, src0, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + + +static void ggml_compute_forward_rms_norm_back_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + GGML_ASSERT(src0->nb[0] == sizeof(float)); + + const int ith = params->ith; + const int nth = params->nth; + + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; + const int64_t ne03 = src0->ne[3]; + + const size_t nb01 = src0->nb[1]; + const size_t nb02 = src0->nb[2]; + const size_t nb03 = src0->nb[3]; + + const size_t nb11 = src1->nb[1]; + const size_t nb12 = src1->nb[2]; + const size_t nb13 = src1->nb[3]; + + const size_t nb1 = dst->nb[1]; + const size_t nb2 = dst->nb[2]; + const size_t nb3 = dst->nb[3]; + + const float eps = 1e-6f; // TODO: make this a parameter + + // TODO: optimize + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + for (int64_t i01 = ith; i01 < ne01; i01 += nth) { + // src1 is same shape as src0 => same indices + const int64_t i11 = i01; + const int64_t i12 = i02; + const int64_t i13 = i03; + + const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03); + const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13); + + ggml_float sum_xx = 0.0; + ggml_float sum_xdz = 0.0; + + for (int64_t i00 = 0; i00 < ne00; i00++) { + sum_xx += (ggml_float)(x[i00] * x[i00]); + sum_xdz += (ggml_float)(x[i00] * dz[i00]); + } + + //const float mean = (float)(sum_xx)/ne00; + const float mean_eps = (float)(sum_xx)/ne00 + eps; + const float sum_eps = (float)(sum_xx) + eps*ne00; + //const float mean_xdz = (float)(sum_xdz)/ne00; + // we could cache rms from forward pass to improve performance. + // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms. + //const float rms = sqrtf(mean_eps); + const float rrms = 1.0f / sqrtf(mean_eps); + //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3) + + { + // z = rms_norm(x) + // + // rms_norm(src0) = + // scale( + // src0, + // div( + // 1, + // sqrt( + // add( + // scale( + // sum( + // sqr( + // src0)), + // (1.0/N)), + // eps)))); + + // postorder: + // ## op args grad + // 00 param src0 grad[#00] + // 01 const 1 + // 02 sqr (#00) grad[#02] + // 03 sum (#02) grad[#03] + // 04 const 1/N + // 05 scale (#03, #04) grad[#05] + // 06 const eps + // 07 add (#05, #06) grad[#07] + // 08 sqrt (#07) grad[#08] + // 09 div (#01,#08) grad[#09] + // 10 scale (#00,#09) grad[#10] + // + // backward pass, given grad[#10] + // #10: scale + // grad[#00] += scale(grad[#10],#09) + // grad[#09] += sum(mul(grad[#10],#00)) + // #09: div + // grad[#08] += neg(mul(grad[#09], div(#09,#08))) + // #08: sqrt + // grad[#07] += mul(grad[#08], div(0.5, #08)) + // #07: add + // grad[#05] += grad[#07] + // #05: scale + // grad[#03] += scale(grad[#05],#04) + // #03: sum + // grad[#02] += repeat(grad[#03], #02) + // #02: + // grad[#00] += scale(mul(#00, grad[#02]), 2.0) + // + // substitute and simplify: + // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0) + // grad[#02] = repeat(grad[#03], #02) + // grad[#02] = repeat(scale(grad[#05],#04), #02) + // grad[#02] = repeat(scale(grad[#07],#04), #02) + // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02) + // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02) + // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02) + // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02) + // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02) + // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02) + // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02) + // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0) + // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0) + // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0) + // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N))) + // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N)) + // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N)) + // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N)) + // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps)) + // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps))) + // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps)) + // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps)) + // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps)) + // a = b*c + d*e + // a = b*c*f/f + d*e*f/f + // a = (b*c*f + d*e*f)*(1/f) + // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c)) + // a = (b + d*e/c)*c + // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps) + // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms + // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms + // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms + // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms + // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms + // a = (dz + x*div(-mean_xdz,mean_eps))*rrms + // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms) + // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms) + // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms) + } + // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms) + // post-order: + // dx := x + // dx := scale(dx,-mean_xdz/mean_eps) + // dx := add(dx, dz) + // dx := scale(dx, rrms) + float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3); + + ggml_vec_cpy_f32 (ne00, dx, x); + // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps); + ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps); + ggml_vec_acc_f32 (ne00, dx, dz); + ggml_vec_scale_f32(ne00, dx, rrms); + } + } + } +} + +static void ggml_compute_forward_rms_norm_back( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + + +// ggml_compute_forward_mul_mat + +#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST) +// helper function to determine if it is better to use BLAS or not +// for large matrices, BLAS is faster +static bool ggml_compute_forward_mul_mat_use_blas( + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + //const int64_t ne00 = src0->ne[0]; + //const int64_t ne01 = src0->ne[1]; + + const int64_t ne10 = src1->ne[0]; + + const int64_t ne0 = dst->ne[0]; + const int64_t ne1 = dst->ne[1]; + + // TODO: find the optimal values for these + if (ggml_is_contiguous(src0) && + ggml_is_contiguous(src1) && + (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) { + + /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/ + return true; + } + + return false; +} +#endif + +static void ggml_compute_forward_mul_mat_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + int64_t t0 = ggml_perf_time_us(); + UNUSED(t0); + + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; + const int64_t ne03 = src0->ne[3]; + +#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST) + const int64_t ne10 = src1->ne[0]; +#endif + const int64_t ne11 = src1->ne[1]; +#ifndef NDEBUG + const int64_t ne12 = src1->ne[2]; + const int64_t ne13 = src1->ne[3]; + + const int64_t ne0 = dst->ne[0]; + const int64_t ne1 = dst->ne[1]; + const int64_t ne2 = dst->ne[2]; + const int64_t ne3 = dst->ne[3]; + + const int nb00 = src0->nb[0]; +#endif + const int nb01 = src0->nb[1]; + const int nb02 = src0->nb[2]; + const int nb03 = src0->nb[3]; + +#ifndef NDEBUG + const int nb10 = src1->nb[0]; +#endif + const int nb11 = src1->nb[1]; + const int nb12 = src1->nb[2]; + const int nb13 = src1->nb[3]; + + const int nb0 = dst->nb[0]; + const int nb1 = dst->nb[1]; + const int nb2 = dst->nb[2]; + const int nb3 = dst->nb[3]; + + const int ith = params->ith; + const int nth = params->nth; + + assert(ne02 == ne12); + assert(ne03 == ne13); + assert(ne2 == ne12); + assert(ne3 == ne13); + + // we don't support permuted src0 or src1 + assert(nb00 == sizeof(float)); + assert(nb10 == sizeof(float)); + + // dst cannot be transposed or permuted + assert(nb0 == sizeof(float)); + assert(nb0 <= nb1); + assert(nb1 <= nb2); + assert(nb2 <= nb3); + + assert(ne0 == ne01); + assert(ne1 == ne11); + assert(ne2 == ne02); + assert(ne3 == ne03); + + // nb01 >= nb00 - src0 is not transposed + // compute by src0 rows + +#if defined(GGML_USE_CUBLAS) + if (ggml_cuda_can_mul_mat(src0, src1, dst)) { + if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) { + ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize); + } + return; + } +#elif defined(GGML_USE_CLBLAST) + if (ggml_cl_can_mul_mat(src0, src1, dst)) { + if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) { + ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize); + } + return; + } +#endif + +#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)|| defined(GGML_USE_CLBLAST) + if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) { + if (params->ith != 0) { + return; + } + + if (params->type == GGML_TASK_INIT) { + return; + } + + if (params->type == GGML_TASK_FINALIZE) { + return; + } + + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03); + const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13); + float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); + +#if defined(GGML_USE_CLBLAST) + // zT = y * xT + if(quants_unshuffled) + { + ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T, + ne11, ne01, ne10, + 1.0f, y, ne10, + x, ne10, + 0.0f, d, ne01, + GGML_TYPE_F32); + } + else + { + ggml_cl_sgemm_wrapper_legacy(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T, + ne11, ne01, ne10, + 1.0f, y, ne10, + x, ne10, + 0.0f, d, ne01, + GGML_TYPE_F32); + } +#else + cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans, + ne11, ne01, ne10, + 1.0f, y, ne10, + x, ne00, + 0.0f, d, ne01); +#endif + } + } + //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3); + + return; + } +#endif + + if (params->type == GGML_TASK_INIT) { + return; + } + + if (params->type == GGML_TASK_FINALIZE) { + return; + } + + // parallelize by src0 rows using ggml_vec_dot_f32 + + // total rows in src0 + const int nr = ne01*ne02*ne03; + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + for (int ir = ir0; ir < ir1; ++ir) { + // src0 indices + const int i03 = ir/(ne02*ne01); + const int i02 = (ir - i03*ne02*ne01)/ne01; + const int i01 = (ir - i03*ne02*ne01 - i02*ne01); + + for (int64_t ic = 0; ic < ne11; ++ic) { + // src1 indices + const int i13 = i03; + const int i12 = i02; + const int i11 = ic; + + // dst indices + const int i0 = i01; + const int i1 = i11; + const int i2 = i02; + const int i3 = i03; + + ggml_vec_dot_f32(ne00, + (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), + (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)), + (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13))); + } + } + + //int64_t t1 = ggml_perf_time_us(); + //static int64_t acc = 0; + //acc += t1 - t0; + //if (t1 - t0 > 10) { + // printf("\n"); + // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03); + // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03); + // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13); + // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13); + + // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc); + //} +} + +static void ggml_compute_forward_mul_mat_f16_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + int64_t t0 = ggml_perf_time_us(); + UNUSED(t0); + + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; + const int64_t ne03 = src0->ne[3]; + + const int64_t ne10 = src1->ne[0]; + const int64_t ne11 = src1->ne[1]; + const int64_t ne12 = src1->ne[2]; + const int64_t ne13 = src1->ne[3]; + + const int64_t ne0 = dst->ne[0]; + const int64_t ne1 = dst->ne[1]; + const int64_t ne2 = dst->ne[2]; + const int64_t ne3 = dst->ne[3]; + //const int64_t ne = ne0*ne1*ne2*ne3; + + const int nb00 = src0->nb[0]; + const int nb01 = src0->nb[1]; + const int nb02 = src0->nb[2]; + const int nb03 = src0->nb[3]; + + const int nb10 = src1->nb[0]; + const int nb11 = src1->nb[1]; + const int nb12 = src1->nb[2]; + const int nb13 = src1->nb[3]; + + const int nb0 = dst->nb[0]; + const int nb1 = dst->nb[1]; + const int nb2 = dst->nb[2]; + const int nb3 = dst->nb[3]; + + const int ith = params->ith; + const int nth = params->nth; + + GGML_ASSERT(ne02 == ne12); + GGML_ASSERT(ne03 == ne13); + GGML_ASSERT(ne2 == ne12); + GGML_ASSERT(ne3 == ne13); + + // TODO: we don't support permuted src0 + GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); + + // dst cannot be transposed or permuted + GGML_ASSERT(nb0 == sizeof(float)); + GGML_ASSERT(nb0 <= nb1); + GGML_ASSERT(nb1 <= nb2); + GGML_ASSERT(nb2 <= nb3); + + GGML_ASSERT(ne0 == ne01); + GGML_ASSERT(ne1 == ne11); + GGML_ASSERT(ne2 == ne02); + GGML_ASSERT(ne3 == ne03); + + // nb01 >= nb00 - src0 is not transposed + // compute by src0 rows + +#if defined(GGML_USE_CUBLAS) + if (ggml_cuda_can_mul_mat(src0, src1, dst)) { + if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) { + ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize); + } + return; + } +#elif defined(GGML_USE_CLBLAST) + if (ggml_cl_can_mul_mat(src0, src1, dst)) { + if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) { + ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize); + } + return; + } +#endif + +#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)|| defined(GGML_USE_CLBLAST) + if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) { + GGML_ASSERT(nb10 == sizeof(float)); + + if (params->ith != 0) { + return; + } + + if (params->type == GGML_TASK_INIT) { + return; + } + + if (params->type == GGML_TASK_FINALIZE) { + return; + } + + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + float * const wdata = params->wdata; + { + size_t id = 0; + for (int64_t i01 = 0; i01 < ne01; ++i01) { + for (int64_t i00 = 0; i00 < ne00; ++i00) { + wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00)); + } + } + + assert(id*sizeof(float) <= params->wsize); + } + +#if defined(GGML_USE_CLBLAST) + const float * x = wdata; + const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13); + + float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); + + // zT = y * xT + if(quants_unshuffled) + { + ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T, + ne11, ne01, ne10, + 1.0f, y, ne10, + x, ne10, + 0.0f, d, ne01, + GGML_TYPE_F32); + } + else + { + ggml_cl_sgemm_wrapper_legacy(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T, + ne11, ne01, ne10, + 1.0f, y, ne10, + x, ne10, + 0.0f, d, ne01, + GGML_TYPE_F32); + } +#else + const float * x = wdata; + const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13); + + float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); + + // zT = y * xT + cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans, + ne11, ne01, ne10, + 1.0f, y, ne10, + x, ne00, + 0.0f, d, ne01); +#endif + } + } + + /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/ + + return; + } +#endif + + if (params->type == GGML_TASK_INIT) { + ggml_fp16_t * const wdata = params->wdata; + + size_t id = 0; + for (int64_t i13 = 0; i13 < ne13; ++i13) { + for (int64_t i12 = 0; i12 < ne12; ++i12) { + for (int64_t i11 = 0; i11 < ne11; ++i11) { + for (int64_t i10 = 0; i10 < ne10; ++i10) { + wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10)); + } + } + } + } + + GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize); + + return; + } + + if (params->type == GGML_TASK_FINALIZE) { + return; + } + + // fp16 -> half the size, so divide by 2 + // TODO: do not support transposed src1 + assert(nb10/2 == sizeof(ggml_fp16_t)); + + // parallelize by src0 rows using ggml_vec_dot_f16 + + // total rows in src0 + const int nr = ne01*ne02*ne03; + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + ggml_fp16_t * wdata = params->wdata; + + for (int ir = ir0; ir < ir1; ++ir) { + // src0 indices + const int i03 = ir/(ne02*ne01); + const int i02 = (ir - i03*ne02*ne01)/ne01; + const int i01 = (ir - i03*ne02*ne01 - i02*ne01); + + const int i13 = i03; + const int i12 = i02; + + const int i0 = i01; + const int i2 = i02; + const int i3 = i03; + + ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)); + ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00; + + float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3)); + + for (int64_t ic = 0; ic < ne11; ++ic) { + ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00); + } + } + + //int64_t t1 = ggml_time_us(); + //static int64_t acc = 0; + //acc += t1 - t0; + //if (t1 - t0 > 10) { + // printf("\n"); + // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03); + // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03); + // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13); + + // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc); + //} +} + +static void ggml_compute_forward_mul_mat_q_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + int64_t t0 = ggml_perf_time_us(); + UNUSED(t0); + + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; + const int64_t ne03 = src0->ne[3]; + + const int64_t ne10 = src1->ne[0]; + const int64_t ne11 = src1->ne[1]; + const int64_t ne12 = src1->ne[2]; + const int64_t ne13 = src1->ne[3]; + + const int64_t ne0 = dst->ne[0]; + const int64_t ne1 = dst->ne[1]; + const int64_t ne2 = dst->ne[2]; + const int64_t ne3 = dst->ne[3]; + + const int nb00 = src0->nb[0]; + const int nb01 = src0->nb[1]; + const int nb02 = src0->nb[2]; + const int nb03 = src0->nb[3]; + + const int nb10 = src1->nb[0]; + const int nb11 = src1->nb[1]; + const int nb12 = src1->nb[2]; + const int nb13 = src1->nb[3]; + + const int nb0 = dst->nb[0]; + const int nb1 = dst->nb[1]; + const int nb2 = dst->nb[2]; + const int nb3 = dst->nb[3]; + + const int ith = params->ith; + const int nth = params->nth; + + GGML_ASSERT(ne02 == ne12); + GGML_ASSERT(ne03 == ne13); + GGML_ASSERT(ne2 == ne12); + GGML_ASSERT(ne3 == ne13); + + const enum ggml_type type = src0->type; + quantize_row_q_t const quantize_row_q_dot = get_quantize_fn(type).quantize_row_q_dot; + vec_dot_q_t const vec_dot_q = get_quantize_fn(type).vec_dot_q; + enum ggml_type const vec_dot_type = get_quantize_fn(type).vec_dot_type; + + // we don't support permuted src0 or src1 + GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]); + GGML_ASSERT(nb10 == sizeof(float)); + + // dst cannot be transposed or permuted + GGML_ASSERT(nb0 == sizeof(float)); + GGML_ASSERT(nb0 <= nb1); + GGML_ASSERT(nb1 <= nb2); + GGML_ASSERT(nb2 <= nb3); + + GGML_ASSERT(ne0 == ne01); + GGML_ASSERT(ne1 == ne11); + GGML_ASSERT(ne2 == ne02); + GGML_ASSERT(ne3 == ne03); + + // nb01 >= nb00 - src0 is not transposed + // compute by src0 rows + +#if defined(GGML_USE_CUBLAS) + if (ggml_cuda_can_mul_mat(src0, src1, dst)) { + if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) { + ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize); + } + return; + } +#elif defined(GGML_USE_CLBLAST) + if (ggml_cl_can_mul_mat(src0, src1, dst)) { + if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) { + ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize); + } + return; + } +#endif + +#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)|| defined(GGML_USE_CLBLAST) + if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) { + if (params->ith != 0) { + return; + } + + if (params->type == GGML_TASK_INIT) { + return; + } + + if (params->type == GGML_TASK_FINALIZE) { + return; + } + + float * const wdata = params->wdata; + dequantize_row_q_t const dequantize_row_q = get_quantize_fn(type).dequantize_row_q; + + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13); + + float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); + +#if defined(GGML_USE_CLBLAST) + const void* x = (char *) src0->data + i03*nb03 + i02*nb02; +#else + { + size_t id = 0; + for (int64_t i01 = 0; i01 < ne01; ++i01) { + dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00); + id += ne00; + } + + assert(id*sizeof(float) <= params->wsize); + } + + const float * x = wdata; +#endif + +#if defined(GGML_USE_CLBLAST) + // zT = y * xT + if(quants_unshuffled) + { + ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T, + ne11, ne01, ne10, + 1.0f, y, ne10, + x, ne10, + 0.0f, d, ne01, + type); + } + else + { + ggml_cl_sgemm_wrapper_legacy(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T, + ne11, ne01, ne10, + 1.0f, y, ne10, + x, ne10, + 0.0f, d, ne01, + type); + } +#else + cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans, + ne11, ne01, ne10, + 1.0f, y, ne10, + x, ne00, + 0.0f, d, ne01); +#endif + } + } + + //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3); + + return; + } +#endif + + if (params->type == GGML_TASK_INIT) { + char * wdata = params->wdata; + const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type]; + + for (int64_t i13 = 0; i13 < ne13; ++i13) { + for (int64_t i12 = 0; i12 < ne12; ++i12) { + for (int64_t i11 = 0; i11 < ne11; ++i11) { + quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10); + wdata += row_size; + } + } + } + + return; + } + + if (params->type == GGML_TASK_FINALIZE) { + return; + } + + // parallelize by src0 rows using ggml_vec_dot_q + + // total rows in src0 + const int nr = ne01*ne02*ne03; + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + void * wdata = params->wdata; + const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type]; + + for (int ir = ir0; ir < ir1; ++ir) { + // src0 indices + const int i03 = ir/(ne02*ne01); + const int i02 = (ir - i03*ne02*ne01)/ne01; + const int i01 = (ir - i03*ne02*ne01 - i02*ne01); + + const int i13 = i03; + const int i12 = i02; + + const int i0 = i01; + const int i2 = i02; + const int i3 = i03; + + void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)); + char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size)); + + float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3)); + + assert(ne00 % 32 == 0); + + for (int64_t ic = 0; ic < ne11; ++ic) { + vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size)); + } + } + + //int64_t t1 = ggml_time_us(); + //static int64_t acc = 0; + //acc += t1 - t0; + //if (t1 - t0 > 10) { + // printf("\n"); + // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03); + // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03); + // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13); + + // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc); + //} +} + +static void ggml_compute_forward_mul_mat( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_Q4_0: + case GGML_TYPE_Q4_1: + case GGML_TYPE_Q4_2: + case GGML_TYPE_Q4_3: + case GGML_TYPE_Q5_0: + case GGML_TYPE_Q5_1: + case GGML_TYPE_Q8_0: + case GGML_TYPE_Q8_1: + case GGML_TYPE_Q8_1B: + { + ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst); + } break; + case GGML_TYPE_F16: + { + ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst); + } break; + case GGML_TYPE_F32: + { + ggml_compute_forward_mul_mat_f32(params, src0, src1, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_scale + +static void ggml_compute_forward_scale_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + GGML_ASSERT(ggml_is_contiguous(src0)); + GGML_ASSERT(ggml_is_contiguous(dst)); + GGML_ASSERT(ggml_are_same_shape(src0, dst)); + GGML_ASSERT(ggml_is_scalar(src1)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + // scale factor + const float v = *(float *) src1->data; + + const int ith = params->ith; + const int nth = params->nth; + + const int nc = src0->ne[0]; + const int nr = ggml_nrows(src0); + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + const size_t nb01 = src0->nb[1]; + + const size_t nb1 = dst->nb[1]; + + + for (int i1 = ir0; i1 < ir1; i1++) { + if (dst->data != src0->data) { + // src0 is same shape as dst => same indices + memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float)); + } + ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v); + } +} + +static void ggml_compute_forward_scale( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_scale_f32(params, src0, src1, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_set + +static void ggml_compute_forward_set_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + const struct ggml_tensor * opt0, + struct ggml_tensor * dst) { + GGML_ASSERT(ggml_are_same_shape(src0, dst)); + GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0)); + + GGML_ASSERT(opt0->type == GGML_TYPE_I32); + GGML_ASSERT(ggml_nelements(opt0) == 5); + + // view src0 and dst with these strides and data offset inbytes during set + // nb0 is implicitely element_size because src0 and dst are contiguous + size_t nb1 = ((int32_t *) opt0->data)[0]; + size_t nb2 = ((int32_t *) opt0->data)[1]; + size_t nb3 = ((int32_t *) opt0->data)[2]; + size_t offset = ((int32_t *) opt0->data)[3]; + bool inplace = (bool) ((int32_t *) opt0->data)[4]; + + if (!inplace && (params->type == GGML_TASK_INIT)) { + // memcpy needs to be synchronized across threads to avoid race conditions. + // => do it in INIT phase + memcpy( + ((char *) dst->data), + ((char *) src0->data), + ggml_nbytes(dst)); + } + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int ith = params->ith; + const int nth = params->nth; + + const int nr = ggml_nrows(src1); + const int nc = src1->ne[0]; + + const int64_t ne10 = src1->ne[0]; + const int64_t ne11 = src1->ne[1]; + const int64_t ne12 = src1->ne[2]; + const int64_t ne13 = src1->ne[3]; + + const size_t nb10 = src1->nb[0]; + const size_t nb11 = src1->nb[1]; + const size_t nb12 = src1->nb[2]; + const size_t nb13 = src1->nb[3]; + + // src0 and dst as viewed during set + const size_t nb0 = ggml_element_size(src0); + + const int im0 = (ne10 == 0 ? 0 : ne10-1); + const int im1 = (ne11 == 0 ? 0 : ne11-1); + const int im2 = (ne12 == 0 ? 0 : ne12-1); + const int im3 = (ne13 == 0 ? 0 : ne13-1); + + GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 < ggml_nbytes(dst)); + + GGML_ASSERT(nb10 == sizeof(float)); + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + for (int ir = ir0; ir < ir1; ++ir) { + // src0 and dst are viewed with shape of src1 and offset + // => same indices + const int i3 = ir/(ne12*ne11); + const int i2 = (ir - i3*ne12*ne11)/ne11; + const int i1 = (ir - i3*ne12*ne11 - i2*ne11); + + ggml_vec_cpy_f32(nc, + (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), + (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11)); + } +} + +static void ggml_compute_forward_set( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + const struct ggml_tensor * opt0, + struct ggml_tensor * dst) { + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_set_f32(params, src0, src1, opt0, dst); + } break; + case GGML_TYPE_F16: + case GGML_TYPE_Q4_0: + case GGML_TYPE_Q4_1: + case GGML_TYPE_Q5_0: + case GGML_TYPE_Q5_1: + case GGML_TYPE_Q8_0: + case GGML_TYPE_Q8_1: + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_cpy + +static void ggml_compute_forward_cpy( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + ggml_compute_forward_dup(params, src0, dst); +} + +// ggml_compute_forward_cont + +static void ggml_compute_forward_cont( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + ggml_compute_forward_dup(params, src0, dst); +} + +// ggml_compute_forward_reshape + +static void ggml_compute_forward_reshape( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + // NOP + UNUSED(params); + UNUSED(src0); + UNUSED(dst); +} + +// ggml_compute_forward_view + +static void ggml_compute_forward_view( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0) { + // NOP + UNUSED(params); + UNUSED(src0); +} + +// ggml_compute_forward_permute + +static void ggml_compute_forward_permute( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0) { + // NOP + UNUSED(params); + UNUSED(src0); +} + +// ggml_compute_forward_transpose + +static void ggml_compute_forward_transpose( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0) { + // NOP + UNUSED(params); + UNUSED(src0); +} + +// ggml_compute_forward_get_rows + +static void ggml_compute_forward_get_rows_q( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + assert(params->ith == 0); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int nc = src0->ne[0]; + const int nr = ggml_nelements(src1); + const enum ggml_type type = src0->type; + dequantize_row_q_t const dequantize_row_q = get_quantize_fn(type).dequantize_row_q; + + assert( dst->ne[0] == nc); + assert( dst->ne[1] == nr); + assert(src0->nb[0] == GGML_TYPE_SIZE[type]); + + for (int i = 0; i < nr; ++i) { + const int r = ((int32_t *) src1->data)[i]; + + dequantize_row_q( + (const void *) ((char *) src0->data + r*src0->nb[1]), + (float *) ((char *) dst->data + i*dst->nb[1]), nc); + } +} + +static void ggml_compute_forward_get_rows_f16( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + assert(params->ith == 0); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int nc = src0->ne[0]; + const int nr = ggml_nelements(src1); + + assert( dst->ne[0] == nc); + assert( dst->ne[1] == nr); + assert(src0->nb[0] == sizeof(ggml_fp16_t)); + + for (int i = 0; i < nr; ++i) { + const int r = ((int32_t *) src1->data)[i]; + + for (int j = 0; j < nc; ++j) { + ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j]; + ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v); + } + } +} + +static void ggml_compute_forward_get_rows_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + assert(params->ith == 0); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int nc = src0->ne[0]; + const int nr = ggml_nelements(src1); + + assert( dst->ne[0] == nc); + assert( dst->ne[1] == nr); + assert(src0->nb[0] == sizeof(float)); + + for (int i = 0; i < nr; ++i) { + const int r = ((int32_t *) src1->data)[i]; + + ggml_vec_cpy_f32(nc, + (float *) ((char *) dst->data + i*dst->nb[1]), + (float *) ((char *) src0->data + r*src0->nb[1])); + } +} + +static void ggml_compute_forward_get_rows( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_Q4_0: + case GGML_TYPE_Q4_1: + case GGML_TYPE_Q4_2: + case GGML_TYPE_Q4_3: + case GGML_TYPE_Q5_0: + case GGML_TYPE_Q5_1: + case GGML_TYPE_Q8_0: + case GGML_TYPE_Q8_1: + case GGML_TYPE_Q8_1B: + { + ggml_compute_forward_get_rows_q(params, src0, src1, dst); + } break; + case GGML_TYPE_F16: + { + ggml_compute_forward_get_rows_f16(params, src0, src1, dst); + } break; + case GGML_TYPE_F32: + { + ggml_compute_forward_get_rows_f32(params, src0, src1, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } + + //static bool first = true; + //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]); + //if (first) { + // first = false; + //} else { + // for (int k = 0; k < dst->ne[1]; ++k) { + // for (int j = 0; j < dst->ne[0]/16; ++j) { + // for (int i = 0; i < 16; ++i) { + // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]); + // } + // printf("\n"); + // } + // printf("\n"); + // } + // printf("\n"); + // exit(0); + //} +} + +// ggml_compute_forward_get_rows_back + +static void ggml_compute_forward_get_rows_back_f32_f16( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + const struct ggml_tensor * opt0, + struct ggml_tensor * dst) { + GGML_ASSERT(params->ith == 0); + GGML_ASSERT(ggml_are_same_shape(opt0, dst)); + GGML_ASSERT(ggml_is_contiguous(opt0)); + GGML_ASSERT(ggml_is_contiguous(dst)); + + ggml_compute_forward_dup_same_cont(params, opt0, dst); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int nc = src0->ne[0]; + const int nr = ggml_nelements(src1); + + GGML_ASSERT( dst->ne[0] == nc); + GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t)); + + for (int i = 0; i < nr; ++i) { + const int r = ((int32_t *) src1->data)[i]; + + for (int j = 0; j < nc; ++j) { + ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j]; + ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v); + } + } +} + +static void ggml_compute_forward_get_rows_back_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + const struct ggml_tensor * opt0, + struct ggml_tensor * dst) { + GGML_ASSERT(params->ith == 0); + GGML_ASSERT(ggml_are_same_shape(opt0, dst)); + GGML_ASSERT(ggml_is_contiguous(opt0)); + GGML_ASSERT(ggml_is_contiguous(dst)); + + ggml_compute_forward_dup_same_cont(params, opt0, dst); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int nc = src0->ne[0]; + const int nr = ggml_nelements(src1); + + GGML_ASSERT( dst->ne[0] == nc); + GGML_ASSERT(src0->nb[0] == sizeof(float)); + + for (int i = 0; i < nr; ++i) { + const int r = ((int32_t *) src1->data)[i]; + + ggml_vec_add_f32(nc, + (float *) ((char *) dst->data + r*dst->nb[1]), + (float *) ((char *) dst->data + r*dst->nb[1]), + (float *) ((char *) src0->data + i*src0->nb[1])); + } +} + + +static void ggml_compute_forward_get_rows_back( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + const struct ggml_tensor * opt0, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F16: + { + ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst); + } break; + case GGML_TYPE_F32: + { + ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } + + //static bool first = true; + //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]); + //if (first) { + // first = false; + //} else { + // for (int k = 0; k < dst->ne[1]; ++k) { + // for (int j = 0; j < dst->ne[0]/16; ++j) { + // for (int i = 0; i < 16; ++i) { + // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]); + // } + // printf("\n"); + // } + // printf("\n"); + // } + // printf("\n"); + // exit(0); + //} +} + +// ggml_compute_forward_diag + +static void ggml_compute_forward_diag_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + GGML_ASSERT(params->ith == 0); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + // TODO: handle transposed/permuted matrices + + const int ne00 = src0->ne[0]; + const int ne01 = src0->ne[1]; + const int ne02 = src0->ne[2]; + const int ne03 = src0->ne[3]; + const int ne0 = dst->ne[0]; + const int ne1 = dst->ne[1]; + const int ne2 = dst->ne[2]; + const int ne3 = dst->ne[3]; + GGML_ASSERT(ne00 == ne0); + GGML_ASSERT(ne00 == ne1); + GGML_ASSERT(ne01 == 1); + GGML_ASSERT(ne02 == ne2); + GGML_ASSERT(ne03 == ne3); + + const int nb00 = src0->nb[0]; + //const int nb01 = src0->nb[1]; + const int nb02 = src0->nb[2]; + const int nb03 = src0->nb[3]; + const int nb0 = dst->nb[0]; + const int nb1 = dst->nb[1]; + const int nb2 = dst->nb[2]; + const int nb3 = dst->nb[3]; + + GGML_ASSERT(nb00 == sizeof(float)); + GGML_ASSERT(nb0 == sizeof(float)); + + for (int i3 = 0; i3 < ne3; i3++) { + for (int i2 = 0; i2 < ne2; i2++) { + for (int i1 = 0; i1 < ne1; i1++) { + float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1); + float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02); + for (int i0 = 0; i0 < i1; i0++) { + d[i0] = 0; + } + d[i1] = s[i1]; + for (int i0 = i1+1; i0 < ne0; i0++) { + d[i0] = 0; + } + } + } + } +} + +static void ggml_compute_forward_diag( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_diag_f32(params, src0, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_diag_mask_inf + +static void ggml_compute_forward_diag_mask_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst, + const float value) { + assert(src1->type == GGML_TYPE_I32); + assert(ggml_nelements(src1) == 2); + + const int ith = params->ith; + const int nth = params->nth; + + const int n_past = ((int32_t *) src1->data)[0]; + const bool inplace = (bool)((int32_t *) src1->data)[1]; + assert(n_past >= 0); + + if (!inplace && (params->type == GGML_TASK_INIT)) { + // memcpy needs to be synchronized across threads to avoid race conditions. + // => do it in INIT phase + GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0)); + GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0)); + memcpy( + ((char *) dst->data), + ((char *) src0->data), + ggml_nbytes(dst)); + } + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + // TODO: handle transposed/permuted matrices + + const int n = ggml_nrows(src0); + const int nc = src0->ne[0]; + const int nr = src0->ne[1]; + const int nz = n/nr; + + assert( dst->nb[0] == sizeof(float)); + assert(src0->nb[0] == sizeof(float)); + + for (int k = 0; k < nz; k++) { + for (int j = ith; j < nr; j += nth) { + for (int i = n_past; i < nc; i++) { + if (i > n_past + j) { + *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value; + } + } + } + } +} + +static void ggml_compute_forward_diag_mask_inf( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, -INFINITY); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +static void ggml_compute_forward_diag_mask_zero( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, 0); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_soft_max + +static void ggml_compute_forward_soft_max_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + GGML_ASSERT(ggml_is_contiguous(src0)); + GGML_ASSERT(ggml_is_contiguous(dst)); + GGML_ASSERT(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + // TODO: handle transposed/permuted matrices + + const int ith = params->ith; + const int nth = params->nth; + + const int nc = src0->ne[0]; + const int nr = ggml_nrows(src0); + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + for (int i1 = ir0; i1 < ir1; i1++) { + float *sp = (float *)((char *) src0->data + i1*src0->nb[1]); + float *dp = (float *)((char *) dst->data + i1*dst->nb[1]); + +#ifndef NDEBUG + for (int i = 0; i < nc; ++i) { + //printf("p[%d] = %f\n", i, p[i]); + assert(!isnan(sp[i])); + } +#endif + + float max = -INFINITY; + ggml_vec_max_f32(nc, &max, sp); + + ggml_float sum = 0.0; + + uint16_t scvt; + for (int i = 0; i < nc; i++) { + if (sp[i] == -INFINITY) { + dp[i] = 0.0f; + } else { + // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max); + ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max); + memcpy(&scvt, &s, sizeof(scvt)); + const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]); + sum += (ggml_float)val; + dp[i] = val; + } + } + + assert(sum > 0.0); + + sum = 1.0/sum; + ggml_vec_scale_f32(nc, dp, sum); + +#ifndef NDEBUG + for (int i = 0; i < nc; ++i) { + assert(!isnan(dp[i])); + assert(!isinf(dp[i])); + } +#endif + } +} + +static void ggml_compute_forward_soft_max( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_soft_max_f32(params, src0, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_alibi + +static void ggml_compute_forward_alibi_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + assert(params->ith == 0); + assert(src1->type == GGML_TYPE_I32); + assert(ggml_nelements(src1) == 2); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int n_past = ((int32_t *) src1->data)[0]; + const int n_head = ((int32_t *) src1->data)[1]; + + assert(n_past >= 0); + + const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1 + const int ne1 = src0->ne[1]; // seq_len_without_past + //const int ne2 = src0->ne[2]; // n_head -> this is k + //const int ne3 = src0->ne[3]; // 1 -> bsz + + const int n = ggml_nrows(src0); + const int ne2_ne3 = n/ne1; // ne2*ne3 + + const int nb0 = src0->nb[0]; + const int nb1 = src0->nb[1]; + const int nb2 = src0->nb[2]; + //const int nb3 = src0->nb[3]; + + assert(nb0 == sizeof(float)); + assert(ne1 + n_past == ne0); (void) n_past; + + // add alibi to src0 (KQ_scaled) + const int n_heads_log2_floor = 1 << (int) floor(log2(n_head)); + + const float m0 = powf(2.0f, -8.0f / n_heads_log2_floor); + const float m1 = powf(2.0f, -4.0f / n_heads_log2_floor); + + for (int i = 0; i < ne0; i++) { + for (int j = 0; j < ne1; j++) { + for (int k = 0; k < ne2_ne3; k++) { + float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2); + float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2); + + // TODO: k*nb2 or k*nb3 + + float m_k; + + if (k < n_heads_log2_floor) { + m_k = powf(m0, k + 1); + } else { + m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1); + } + + pdst[0] = i * m_k + src[0]; + } + } + } +} + + +static void ggml_compute_forward_alibi_f16( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + assert(params->ith == 0); + assert(src1->type == GGML_TYPE_I32); + assert(ggml_nelements(src1) == 2); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int n_past = ((int32_t *) src1->data)[0]; + const int n_head = ((int32_t *) src1->data)[1]; + + assert(n_past >= 0); + + const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1 + const int ne1 = src0->ne[1]; // seq_len_without_past + //const int ne2 = src0->ne[2]; // n_head -> this is k + //const int ne3 = src0->ne[3]; // 1 -> bsz + + const int n = ggml_nrows(src0); + const int ne2_ne3 = n/ne1; // ne2*ne3 + + const int nb0 = src0->nb[0]; + const int nb1 = src0->nb[1]; + const int nb2 = src0->nb[2]; + //const int nb3 = src0->nb[3]; + + assert(nb0 == sizeof(ggml_fp16_t)); + assert(ne1 + n_past == ne0); (void) n_past; + + // add alibi to src0 (KQ_scaled) + const int n_heads_log2_floor = 1 << (int) floor(log2(n_head)); + + const float m0 = powf(2.0f, -8.0f / n_heads_log2_floor); + const float m1 = powf(2.0f, -4.0f / n_heads_log2_floor); + + for (int i = 0; i < ne0; i++) { + for (int j = 0; j < ne1; j++) { + for (int k = 0; k < ne2_ne3; k++) { + ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2); + float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2); + + // TODO: k*nb2 or k*nb3 + + float m_k; + + if (k < n_heads_log2_floor) { + m_k = powf(m0, k + 1); + } else { + m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1); + } + + // we return F32 + pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]); + } + } + } +} + +static void ggml_compute_forward_alibi( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F16: + { + ggml_compute_forward_alibi_f16(params, src0, src1, dst); + } break; + case GGML_TYPE_F32: + { + ggml_compute_forward_alibi_f32(params, src0, src1, dst); + } break; + case GGML_TYPE_Q4_0: + case GGML_TYPE_Q4_1: + case GGML_TYPE_Q4_2: + case GGML_TYPE_Q4_3: + case GGML_TYPE_Q5_0: + case GGML_TYPE_Q5_1: + case GGML_TYPE_Q8_0: + case GGML_TYPE_Q8_1: + case GGML_TYPE_Q8_1B: + case GGML_TYPE_I8: + case GGML_TYPE_I16: + case GGML_TYPE_I32: + case GGML_TYPE_COUNT: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_rope + +static void ggml_compute_forward_rope_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + GGML_ASSERT(src1->type == GGML_TYPE_I32); + GGML_ASSERT(ggml_nelements(src1) == 3); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int n_past = ((int32_t *) src1->data)[0]; + const int n_dims = ((int32_t *) src1->data)[1]; + const int mode = ((int32_t *) src1->data)[2]; + + assert(n_past >= 0); + + const size_t nb00 = src0->nb[0]; + const size_t nb01 = src0->nb[1]; + const size_t nb02 = src0->nb[2]; + const size_t nb03 = src0->nb[3]; + + const int64_t ne0 = dst->ne[0]; + const int64_t ne1 = dst->ne[1]; + const int64_t ne2 = dst->ne[2]; + const int64_t ne3 = dst->ne[3]; + + const size_t nb0 = dst->nb[0]; + const size_t nb1 = dst->nb[1]; + const size_t nb2 = dst->nb[2]; + const size_t nb3 = dst->nb[3]; + + //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3); + //printf("n_past = %d, ne2 = %d\n", n_past, ne2); + + GGML_ASSERT(nb00 == sizeof(float)); + + const int ith = params->ith; + const int nth = params->nth; + + const int nr = ggml_nrows(dst); + + GGML_ASSERT(n_dims <= ne0); + GGML_ASSERT(n_dims % 2 == 0); + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + // row index used to determine which thread to use + int ir = 0; + + const float theta_scale = powf(10000.0, -2.0f/n_dims); + + const bool is_neox = mode & 2; + + for (int64_t i3 = 0; i3 < ne3; i3++) { + for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) { + const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2); + for (int64_t i1 = 0; i1 < ne1; i1++) { + if (ir++ < ir0) continue; + if (ir > ir1) break; + + float theta = (float)p; + + if (!is_neox) { + for (int64_t i0 = 0; i0 < ne0; i0 += 2) { + const float cos_theta = cosf(theta); + const float sin_theta = sinf(theta); + + theta *= theta_scale; + + const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); + float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + const float x0 = src[0]; + const float x1 = src[1]; + + dst_data[0] = x0*cos_theta - x1*sin_theta; + dst_data[1] = x0*sin_theta + x1*cos_theta; + } + } else { + // TODO: this is probably wrong, but I can't figure it out .. + // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28 + for (int64_t ib = 0; ib < ne0/n_dims; ++ib) { + for (int64_t ic = 0; ic < n_dims; ic += 2) { + const float cos_theta = cosf(theta); + const float sin_theta = sinf(theta); + + theta *= theta_scale; + + const int64_t i0 = ib*n_dims + ic/2; + + const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); + float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + const float x0 = src[0]; + const float x1 = src[n_dims/2]; + + dst_data[0] = x0*cos_theta - x1*sin_theta; + dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta; + } + } + } + } + } + } +} + +static void ggml_compute_forward_rope_f16( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + GGML_ASSERT(src1->type == GGML_TYPE_I32); + GGML_ASSERT(ggml_nelements(src1) == 3); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int n_past = ((int32_t *) src1->data)[0]; + const int n_dims = ((int32_t *) src1->data)[1]; + const int mode = ((int32_t *) src1->data)[2]; + + assert(n_past >= 0); + + const size_t nb00 = src0->nb[0]; + const size_t nb01 = src0->nb[1]; + const size_t nb02 = src0->nb[2]; + const size_t nb03 = src0->nb[3]; + + const int64_t ne0 = dst->ne[0]; + const int64_t ne1 = dst->ne[1]; + const int64_t ne2 = dst->ne[2]; + const int64_t ne3 = dst->ne[3]; + + const size_t nb0 = dst->nb[0]; + const size_t nb1 = dst->nb[1]; + const size_t nb2 = dst->nb[2]; + const size_t nb3 = dst->nb[3]; + + //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3); + //printf("n_past = %d, ne2 = %d\n", n_past, ne2); + + GGML_ASSERT(nb0 == sizeof(ggml_fp16_t)); + + const int ith = params->ith; + const int nth = params->nth; + + const int nr = ggml_nrows(dst); + + GGML_ASSERT(n_dims <= ne0); + GGML_ASSERT(n_dims % 2 == 0); + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + // row index used to determine which thread to use + int ir = 0; + + const float theta_scale = powf(10000.0, -2.0f/n_dims); + + const bool is_neox = mode & 2; + + for (int64_t i3 = 0; i3 < ne3; i3++) { + for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) { + const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2); + for (int64_t i1 = 0; i1 < ne1; i1++) { + if (ir++ < ir0) continue; + if (ir > ir1) break; + + float theta = (float)p; + + if (!is_neox) { + for (int64_t i0 = 0; i0 < ne0; i0 += 2) { + const float cos_theta = cosf(theta); + const float sin_theta = sinf(theta); + + theta *= theta_scale; + + const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); + ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + const float x0 = GGML_FP16_TO_FP32(src[0]); + const float x1 = GGML_FP16_TO_FP32(src[1]); + + dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta); + dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta); + } + } else { + // TODO: this is probably wrong, but I can't figure it out .. + // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28 + for (int64_t ib = 0; ib < ne0/n_dims; ++ib) { + for (int64_t ic = 0; ic < n_dims; ic += 2) { + const float cos_theta = cosf(theta); + const float sin_theta = sinf(theta); + + theta *= theta_scale; + + const int64_t i0 = ib*n_dims + ic/2; + + const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); + ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + const float x0 = GGML_FP16_TO_FP32(src[0]); + const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]); + + dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta); + dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta); + } + } + } + } + } + } +} + +static void ggml_compute_forward_rope( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F16: + { + ggml_compute_forward_rope_f16(params, src0, src1, dst); + } break; + case GGML_TYPE_F32: + { + ggml_compute_forward_rope_f32(params, src0, src1, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_rope_back + +static void ggml_compute_forward_rope_back_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + assert(src1->type == GGML_TYPE_I32); + assert(ggml_nelements(src1) == 3); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + // y = rope(x, src1) + // dx = rope_back(dy, src1) + // src0 is dy, src1 contains options + + const int n_past = ((int32_t *) src1->data)[0]; + const int n_dims = ((int32_t *) src1->data)[1]; + const int mode = ((int32_t *) src1->data)[2]; + + assert(n_past >= 0); + + const size_t nb00 = src0->nb[0]; + const size_t nb01 = src0->nb[1]; + const size_t nb02 = src0->nb[2]; + const size_t nb03 = src0->nb[3]; + + const int64_t ne0 = dst->ne[0]; + const int64_t ne1 = dst->ne[1]; + const int64_t ne2 = dst->ne[2]; + const int64_t ne3 = dst->ne[3]; + + const size_t nb0 = dst->nb[0]; + const size_t nb1 = dst->nb[1]; + const size_t nb2 = dst->nb[2]; + const size_t nb3 = dst->nb[3]; + + + //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3); + //printf("n_past = %d, ne2 = %d\n", n_past, ne2); + + assert(nb0 == sizeof(float)); + + const int ith = params->ith; + const int nth = params->nth; + + const int nr = ggml_nrows(dst); + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + // row index used to determine which thread to use + int ir = 0; + + const float theta_scale = powf(10000.0, -2.0f/n_dims); + + const bool is_neox = mode & 2; + + for (int64_t i3 = 0; i3 < ne3; i3++) { + for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) { + const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2); + for (int64_t i1 = 0; i1 < ne1; i1++) { + if (ir++ < ir0) continue; + if (ir > ir1) break; + + float theta = (float)p; + + if (!is_neox) { + for (int64_t i0 = 0; i0 < ne0; i0 += 2) { + const float cos_theta = cosf(theta); + const float sin_theta = sinf(theta); + + theta *= theta_scale; + + const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); + float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + const float dy0 = dy[0]; + const float dy1 = dy[1]; + + dx[0] = dy0*cos_theta + dy1*sin_theta; + dx[1] = - dy0*sin_theta + dy1*cos_theta; + } + } else { + for (int64_t ib = 0; ib < ne0/n_dims; ++ib) { + for (int64_t ic = 0; ic < n_dims; ic += 2) { + const float cos_theta = cosf(theta); + const float sin_theta = sinf(theta); + + theta *= theta_scale; + + const int64_t i0 = ib*n_dims + ic/2; + + const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); + float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + const float dy0 = dy[0]; + const float dy1 = dy[n_dims/2]; + + dx[0] = dy0*cos_theta + dy1*sin_theta; + dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta; + } + } + } + } + } + } +} + +static void ggml_compute_forward_rope_back_f16( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + assert(src1->type == GGML_TYPE_I32); + assert(ggml_nelements(src1) == 3); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + // y = rope(x, src1) + // dx = rope_back(dy, src1) + // src0 is dy, src1 contains options + + const int n_past = ((int32_t *) src1->data)[0]; + const int n_dims = ((int32_t *) src1->data)[1]; + const int mode = ((int32_t *) src1->data)[2]; + + assert(n_past >= 0); + + const size_t nb00 = src0->nb[0]; + const size_t nb01 = src0->nb[1]; + const size_t nb02 = src0->nb[2]; + const size_t nb03 = src0->nb[3]; + + const int64_t ne0 = dst->ne[0]; + const int64_t ne1 = dst->ne[1]; + const int64_t ne2 = dst->ne[2]; + const int64_t ne3 = dst->ne[3]; + + const size_t nb0 = dst->nb[0]; + const size_t nb1 = dst->nb[1]; + const size_t nb2 = dst->nb[2]; + const size_t nb3 = dst->nb[3]; + + + //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3); + //printf("n_past = %d, ne2 = %d\n", n_past, ne2); + + assert(nb0 == sizeof(ggml_fp16_t)); + + const int ith = params->ith; + const int nth = params->nth; + + const int nr = ggml_nrows(dst); + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + // row index used to determine which thread to use + int ir = 0; + + const float theta_scale = powf(10000.0, -2.0f/n_dims); + + const bool is_neox = mode & 2; + + for (int64_t i3 = 0; i3 < ne3; i3++) { + for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) { + const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2); + for (int64_t i1 = 0; i1 < ne1; i1++) { + if (ir++ < ir0) continue; + if (ir > ir1) break; + + float theta = (float)p; + + if (!is_neox) { + for (int64_t i0 = 0; i0 < ne0; i0 += 2) { + const float cos_theta = cosf(theta); + const float sin_theta = sinf(theta); + + theta *= theta_scale; + + const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); + ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + const float dy0 = GGML_FP16_TO_FP32(dy[0]); + const float dy1 = GGML_FP16_TO_FP32(dy[1]); + + dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta); + dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta); + } + } else { + for (int64_t ib = 0; ib < ne0/n_dims; ++ib) { + for (int64_t ic = 0; ic < n_dims; ic += 2) { + const float cos_theta = cosf(theta); + const float sin_theta = sinf(theta); + + theta *= theta_scale; + + const int64_t i0 = ib*n_dims + ic/2; + + const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); + ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + const float dy0 = GGML_FP16_TO_FP32(dy[0]); + const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]); + + dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta); + dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta); + } + } + } + } + } + } +} + +static void ggml_compute_forward_rope_back( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F16: + { + ggml_compute_forward_rope_back_f16(params, src0, src1, dst); + } break; + case GGML_TYPE_F32: + { + ggml_compute_forward_rope_back_f32(params, src0, src1, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_conv_1d_1s + +static void ggml_compute_forward_conv_1d_1s_f16_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + GGML_ASSERT(src0->type == GGML_TYPE_F16); + GGML_ASSERT(src1->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_F32); + + int64_t t0 = ggml_perf_time_us(); + UNUSED(t0); + + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; + //const int64_t ne03 = src0->ne[3]; + + const int64_t ne10 = src1->ne[0]; + const int64_t ne11 = src1->ne[1]; + //const int64_t ne12 = src1->ne[2]; + //const int64_t ne13 = src1->ne[3]; + + //const int64_t ne0 = dst->ne[0]; + //const int64_t ne1 = dst->ne[1]; + //const int64_t ne2 = dst->ne[2]; + //const int64_t ne3 = dst->ne[3]; + //const int64_t ne = ne0*ne1*ne2*ne3; + + const int nb00 = src0->nb[0]; + const int nb01 = src0->nb[1]; + const int nb02 = src0->nb[2]; + //const int nb03 = src0->nb[3]; + + const int nb10 = src1->nb[0]; + const int nb11 = src1->nb[1]; + //const int nb12 = src1->nb[2]; + //const int nb13 = src1->nb[3]; + + //const int nb0 = dst->nb[0]; + const int nb1 = dst->nb[1]; + //const int nb2 = dst->nb[2]; + //const int nb3 = dst->nb[3]; + + const int ith = params->ith; + const int nth = params->nth; + + const int nk = ne00; + const int nh = nk/2; + + const int ew0 = ggml_up32(ne01); + + GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes + GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); + GGML_ASSERT(nb10 == sizeof(float)); + + if (params->type == GGML_TASK_INIT) { + // TODO: fix this memset (wsize is overestimated) + memset(params->wdata, 0, params->wsize); + + // prepare kernel data (src0) + { + ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0; + + for (int64_t i02 = 0; i02 < ne02; i02++) { + for (int64_t i01 = 0; i01 < ne01; i01++) { + const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01); + ggml_fp16_t * dst_data = wdata + i02*ew0*ne00; + for (int64_t i00 = 0; i00 < ne00; i00++) { + dst_data[i00*ew0 + i01] = src[i00]; + } + } + } + } + + // prepare source data (src1) + { + ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00; + + for (int64_t i11 = 0; i11 < ne11; i11++) { + const float * const src = (float *)((char *) src1->data + i11*nb11); + ggml_fp16_t * dst_data = wdata; + for (int64_t i10 = 0; i10 < ne10; i10++) { + dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]); + } + } + } + + return; + } + + if (params->type == GGML_TASK_FINALIZE) { + return; + } + + // total rows in dst + const int nr = ne02; + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + for (int i1 = ir0; i1 < ir1; i1++) { + float * dst_data = (float *)((char *) dst->data + i1*nb1); + for (int64_t i0 = 0; i0 < ne10; ++i0) { + dst_data[i0] = 0; + for (int k = -nh; k <= nh; k++) { + float v = 0.0f; + ggml_vec_dot_f16(ew0, &v, + (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0, + (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0); + + dst_data[i0] += v; + } + } + } +} + +static void ggml_compute_forward_conv_1d_1s_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + GGML_ASSERT(src0->type == GGML_TYPE_F32); + GGML_ASSERT(src1->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_F32); + + int64_t t0 = ggml_perf_time_us(); + UNUSED(t0); + + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; + //const int64_t ne03 = src0->ne[3]; + + const int64_t ne10 = src1->ne[0]; + const int64_t ne11 = src1->ne[1]; + //const int64_t ne12 = src1->ne[2]; + //const int64_t ne13 = src1->ne[3]; + + //const int64_t ne0 = dst->ne[0]; + //const int64_t ne1 = dst->ne[1]; + //const int64_t ne2 = dst->ne[2]; + //const int64_t ne3 = dst->ne[3]; + //const int64_t ne = ne0*ne1*ne2*ne3; + + const int nb00 = src0->nb[0]; + const int nb01 = src0->nb[1]; + const int nb02 = src0->nb[2]; + //const int nb03 = src0->nb[3]; + + const int nb10 = src1->nb[0]; + const int nb11 = src1->nb[1]; + //const int nb12 = src1->nb[2]; + //const int nb13 = src1->nb[3]; + + //const int nb0 = dst->nb[0]; + const int nb1 = dst->nb[1]; + //const int nb2 = dst->nb[2]; + //const int nb3 = dst->nb[3]; + + const int ith = params->ith; + const int nth = params->nth; + + const int nk = ne00; + const int nh = nk/2; + + const int ew0 = ggml_up32(ne01); + + GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes + GGML_ASSERT(nb00 == sizeof(float)); + GGML_ASSERT(nb10 == sizeof(float)); + + if (params->type == GGML_TASK_INIT) { + // TODO: fix this memset (wsize is overestimated) + memset(params->wdata, 0, params->wsize); + + // prepare kernel data (src0) + { + float * const wdata = (float *) params->wdata + 0; + + for (int64_t i02 = 0; i02 < ne02; i02++) { + for (int64_t i01 = 0; i01 < ne01; i01++) { + const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01); + float * dst_data = wdata + i02*ew0*ne00; + for (int64_t i00 = 0; i00 < ne00; i00++) { + dst_data[i00*ew0 + i01] = src[i00]; + } + } + } + } + + // prepare source data (src1) + { + float * const wdata = (float *) params->wdata + ne02*ew0*ne00; + + for (int64_t i11 = 0; i11 < ne11; i11++) { + const float * const src = (float *)((char *) src1->data + i11*nb11); + float * dst_data = wdata; + for (int64_t i10 = 0; i10 < ne10; i10++) { + dst_data[(i10 + nh)*ew0 + i11] = src[i10]; + } + } + } + + return; + } + + if (params->type == GGML_TASK_FINALIZE) { + return; + } + + // total rows in dst + const int nr = ne02; + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + for (int i1 = ir0; i1 < ir1; i1++) { + float * dst_data = (float *)((char *) dst->data + i1*nb1); + for (int64_t i0 = 0; i0 < ne10; ++i0) { + dst_data[i0] = 0; + for (int k = -nh; k <= nh; k++) { + float v = 0.0f; + ggml_vec_dot_f32(ew0, &v, + (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0, + (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0); + + dst_data[i0] += v; + } + } + } +} + +static void ggml_compute_forward_conv_1d_1s( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F16: + { + ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst); + } break; + case GGML_TYPE_F32: + { + ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_conv_1d_2s + +static void ggml_compute_forward_conv_1d_2s_f16_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + GGML_ASSERT(src0->type == GGML_TYPE_F16); + GGML_ASSERT(src1->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_F32); + + int64_t t0 = ggml_perf_time_us(); + UNUSED(t0); + + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; + //const int64_t ne03 = src0->ne[3]; + + const int64_t ne10 = src1->ne[0]; + const int64_t ne11 = src1->ne[1]; + //const int64_t ne12 = src1->ne[2]; + //const int64_t ne13 = src1->ne[3]; + + //const int64_t ne0 = dst->ne[0]; + //const int64_t ne1 = dst->ne[1]; + //const int64_t ne2 = dst->ne[2]; + //const int64_t ne3 = dst->ne[3]; + //const int64_t ne = ne0*ne1*ne2*ne3; + + const int nb00 = src0->nb[0]; + const int nb01 = src0->nb[1]; + const int nb02 = src0->nb[2]; + //const int nb03 = src0->nb[3]; + + const int nb10 = src1->nb[0]; + const int nb11 = src1->nb[1]; + //const int nb12 = src1->nb[2]; + //const int nb13 = src1->nb[3]; + + //const int nb0 = dst->nb[0]; + const int nb1 = dst->nb[1]; + //const int nb2 = dst->nb[2]; + //const int nb3 = dst->nb[3]; + + const int ith = params->ith; + const int nth = params->nth; + + const int nk = ne00; + const int nh = nk/2; + + const int ew0 = ggml_up32(ne01); + + GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes + GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); + GGML_ASSERT(nb10 == sizeof(float)); + + if (params->type == GGML_TASK_INIT) { + // TODO: fix this memset (wsize is overestimated) + memset(params->wdata, 0, params->wsize); + + // prepare kernel data (src0) + { + ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0; + + for (int64_t i02 = 0; i02 < ne02; i02++) { + for (int64_t i01 = 0; i01 < ne01; i01++) { + const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01); + ggml_fp16_t * dst_data = wdata + i02*ew0*ne00; + for (int64_t i00 = 0; i00 < ne00; i00++) { + dst_data[i00*ew0 + i01] = src[i00]; + } + } + } + } + + // prepare source data (src1) + { + ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00; + + for (int64_t i11 = 0; i11 < ne11; i11++) { + const float * const src = (float *)((char *) src1->data + i11*nb11); + ggml_fp16_t * dst_data = wdata; + for (int64_t i10 = 0; i10 < ne10; i10++) { + dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]); + } + } + } + + return; + } + + if (params->type == GGML_TASK_FINALIZE) { + return; + } + + // total rows in dst + const int nr = ne02; + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + for (int i1 = ir0; i1 < ir1; i1++) { + float * dst_data = (float *)((char *) dst->data + i1*nb1); + for (int64_t i0 = 0; i0 < ne10; i0 += 2) { + dst_data[i0/2] = 0; + for (int k = -nh; k <= nh; k++) { + float v = 0.0f; + ggml_vec_dot_f16(ew0, &v, + (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0, + (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0); + + dst_data[i0/2] += v; + } + } + } +} + +static void ggml_compute_forward_conv_1d_2s_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + GGML_ASSERT(src0->type == GGML_TYPE_F32); + GGML_ASSERT(src1->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_F32); + + int64_t t0 = ggml_perf_time_us(); + UNUSED(t0); + + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; + //const int64_t ne03 = src0->ne[3]; + + const int64_t ne10 = src1->ne[0]; + const int64_t ne11 = src1->ne[1]; + //const int64_t ne12 = src1->ne[2]; + //const int64_t ne13 = src1->ne[3]; + + //const int64_t ne0 = dst->ne[0]; + //const int64_t ne1 = dst->ne[1]; + //const int64_t ne2 = dst->ne[2]; + //const int64_t ne3 = dst->ne[3]; + //const int64_t ne = ne0*ne1*ne2*ne3; + + const int nb00 = src0->nb[0]; + const int nb01 = src0->nb[1]; + const int nb02 = src0->nb[2]; + //const int nb03 = src0->nb[3]; + + const int nb10 = src1->nb[0]; + const int nb11 = src1->nb[1]; + //const int nb12 = src1->nb[2]; + //const int nb13 = src1->nb[3]; + + //const int nb0 = dst->nb[0]; + const int nb1 = dst->nb[1]; + //const int nb2 = dst->nb[2]; + //const int nb3 = dst->nb[3]; + + const int ith = params->ith; + const int nth = params->nth; + + const int nk = ne00; + const int nh = nk/2; + + const int ew0 = ggml_up32(ne01); + + GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes + GGML_ASSERT(nb00 == sizeof(float)); + GGML_ASSERT(nb10 == sizeof(float)); + + if (params->type == GGML_TASK_INIT) { + // TODO: fix this memset (wsize is overestimated) + memset(params->wdata, 0, params->wsize); + + // prepare kernel data (src0) + { + float * const wdata = (float *) params->wdata + 0; + + for (int64_t i02 = 0; i02 < ne02; i02++) { + for (int64_t i01 = 0; i01 < ne01; i01++) { + const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01); + float * dst_data = wdata + i02*ew0*ne00; + for (int64_t i00 = 0; i00 < ne00; i00++) { + dst_data[i00*ew0 + i01] = src[i00]; + } + } + } + } + + // prepare source data (src1) + { + float * const wdata = (float *) params->wdata + ne02*ew0*ne00; + + for (int64_t i11 = 0; i11 < ne11; i11++) { + const float * const src = (float *)((char *) src1->data + i11*nb11); + float * dst_data = wdata; + for (int64_t i10 = 0; i10 < ne10; i10++) { + dst_data[(i10 + nh)*ew0 + i11] = src[i10]; + } + } + } + + return; + } + + if (params->type == GGML_TASK_FINALIZE) { + return; + } + + // total rows in dst + const int nr = ne02; + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + for (int i1 = ir0; i1 < ir1; i1++) { + float * dst_data = (float *)((char *) dst->data + i1*nb1); + for (int64_t i0 = 0; i0 < ne10; i0 += 2) { + dst_data[i0/2] = 0; + for (int k = -nh; k <= nh; k++) { + float v = 0.0f; + ggml_vec_dot_f32(ew0, &v, + (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0, + (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0); + + dst_data[i0/2] += v; + } + } + } +} + +static void ggml_compute_forward_conv_1d_2s( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F16: + { + ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst); + } break; + case GGML_TYPE_F32: + { + ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_flash_attn + +static void ggml_compute_forward_flash_attn_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * q, + const struct ggml_tensor * k, + const struct ggml_tensor * v, + const bool masked, + struct ggml_tensor * dst) { + int64_t t0 = ggml_perf_time_us(); + UNUSED(t0); + + const int64_t neq0 = q->ne[0]; + const int64_t neq1 = q->ne[1]; + const int64_t neq2 = q->ne[2]; + const int64_t neq3 = q->ne[3]; + + const int64_t nek0 = k->ne[0]; + const int64_t nek1 = k->ne[1]; + //const int64_t nek2 = k->ne[2]; + //const int64_t nek3 = k->ne[3]; + + //const int64_t nev0 = v->ne[0]; + const int64_t nev1 = v->ne[1]; + //const int64_t nev2 = v->ne[2]; + //const int64_t nev3 = v->ne[3]; + + const int64_t ne0 = dst->ne[0]; + const int64_t ne1 = dst->ne[1]; + //const int64_t ne2 = dst->ne[2]; + //const int64_t ne3 = dst->ne[3]; + + const int nbk0 = k->nb[0]; + const int nbk1 = k->nb[1]; + const int nbk2 = k->nb[2]; + const int nbk3 = k->nb[3]; + + const int nbq0 = q->nb[0]; + const int nbq1 = q->nb[1]; + const int nbq2 = q->nb[2]; + const int nbq3 = q->nb[3]; + + const int nbv0 = v->nb[0]; + const int nbv1 = v->nb[1]; + const int nbv2 = v->nb[2]; + const int nbv3 = v->nb[3]; + + const int nb0 = dst->nb[0]; + const int nb1 = dst->nb[1]; + const int nb2 = dst->nb[2]; + const int nb3 = dst->nb[3]; + + const int ith = params->ith; + const int nth = params->nth; + + const int64_t D = neq0; + const int64_t N = neq1; + const int64_t P = nek1 - N; + const int64_t M = P + N; + + const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL); + + GGML_ASSERT(ne0 == D); + GGML_ASSERT(ne1 == N); + GGML_ASSERT(P >= 0); + + GGML_ASSERT(nbq0 == sizeof(float)); + GGML_ASSERT(nbk0 == sizeof(float)); + GGML_ASSERT(nbv0 == sizeof(float)); + + GGML_ASSERT(neq0 == D); + GGML_ASSERT(nek0 == D); + GGML_ASSERT(nev1 == D); + + GGML_ASSERT(neq1 == N); + GGML_ASSERT(nek1 == N + P); + GGML_ASSERT(nev1 == D); + + // dst cannot be transposed or permuted + GGML_ASSERT(nb0 == sizeof(float)); + GGML_ASSERT(nb0 <= nb1); + GGML_ASSERT(nb1 <= nb2); + GGML_ASSERT(nb2 <= nb3); + + if (params->type == GGML_TASK_INIT) { + return; + } + + if (params->type == GGML_TASK_FINALIZE) { + return; + } + + // parallelize by q rows using ggml_vec_dot_f32 + + // total rows in q + const int nr = neq1*neq2*neq3; + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + const float scale = 1.0f/sqrtf(D); + + //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale); + + for (int ir = ir0; ir < ir1; ++ir) { + // q indices + const int iq3 = ir/(neq2*neq1); + const int iq2 = (ir - iq3*neq2*neq1)/neq1; + const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1); + + float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32); + + for (int i = M; i < Mup; ++i) { + S[i] = -INFINITY; + } + + for (int64_t ic = 0; ic < nek1; ++ic) { + // k indices + const int ik3 = iq3; + const int ik2 = iq2; + const int ik1 = ic; + + // S indices + const int i1 = ik1; + + ggml_vec_dot_f32(neq0, + S + i1, + (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), + (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3))); + } + + // scale + ggml_vec_scale_f32(nek1, S, scale); + + if (masked) { + for (int64_t i = P; i < M; i++) { + if (i > P + iq1) { + S[i] = -INFINITY; + } + } + } + + // softmax + { + float max = -INFINITY; + ggml_vec_max_f32(M, &max, S); + + ggml_float sum = 0.0; + { +#ifdef GGML_SOFT_MAX_ACCELERATE + max = -max; + vDSP_vsadd(S, 1, &max, S, 1, Mup); + vvexpf(S, S, &Mup); + ggml_vec_sum_f32(Mup, &sum, S); +#else + uint16_t scvt[GGML_SOFT_MAX_UNROLL]; + ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 }; + + for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) { + float * SS = S + i; + + for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) { + if (SS[j] == -INFINITY) { + SS[j] = 0.0f; + } else { + ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max); + memcpy(&scvt[j], &s, sizeof(uint16_t)); + const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]); + sump[j] += (ggml_float)val; + SS[j] = val; + } + } + } + + for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) { + sum += sump[i]; + } +#endif + } + + assert(sum > 0.0); + + sum = 1.0/sum; + ggml_vec_scale_f32(M, S, sum); + +#ifndef NDEBUG + for (int i = 0; i < M; ++i) { + assert(!isnan(S[i])); + assert(!isinf(S[i])); + } +#endif + } + + for (int64_t ic = 0; ic < nev1; ++ic) { + // dst indices + const int i1 = iq1; + const int i2 = iq2; + const int i3 = iq3; + + ggml_vec_dot_f32(nek1, + (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), + (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)), + S); + } + } +} + +static void ggml_compute_forward_flash_attn_f16( + const struct ggml_compute_params * params, + const struct ggml_tensor * q, + const struct ggml_tensor * k, + const struct ggml_tensor * v, + const bool masked, + struct ggml_tensor * dst) { + int64_t t0 = ggml_perf_time_us(); + UNUSED(t0); + + const int64_t neq0 = q->ne[0]; + const int64_t neq1 = q->ne[1]; + const int64_t neq2 = q->ne[2]; + const int64_t neq3 = q->ne[3]; + + const int64_t nek0 = k->ne[0]; + const int64_t nek1 = k->ne[1]; + //const int64_t nek2 = k->ne[2]; + //const int64_t nek3 = k->ne[3]; + + //const int64_t nev0 = v->ne[0]; + const int64_t nev1 = v->ne[1]; + //const int64_t nev2 = v->ne[2]; + //const int64_t nev3 = v->ne[3]; + + const int64_t ne0 = dst->ne[0]; + const int64_t ne1 = dst->ne[1]; + //const int64_t ne2 = dst->ne[2]; + //const int64_t ne3 = dst->ne[3]; + + const int nbk0 = k->nb[0]; + const int nbk1 = k->nb[1]; + const int nbk2 = k->nb[2]; + const int nbk3 = k->nb[3]; + + const int nbq0 = q->nb[0]; + const int nbq1 = q->nb[1]; + const int nbq2 = q->nb[2]; + const int nbq3 = q->nb[3]; + + const int nbv0 = v->nb[0]; + const int nbv1 = v->nb[1]; + const int nbv2 = v->nb[2]; + const int nbv3 = v->nb[3]; + + const int nb0 = dst->nb[0]; + const int nb1 = dst->nb[1]; + const int nb2 = dst->nb[2]; + const int nb3 = dst->nb[3]; + + const int ith = params->ith; + const int nth = params->nth; + + const int64_t D = neq0; + const int64_t N = neq1; + const int64_t P = nek1 - N; + const int64_t M = P + N; + + const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL); + + GGML_ASSERT(ne0 == D); + GGML_ASSERT(ne1 == N); + GGML_ASSERT(P >= 0); + + GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t)); + GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t)); + GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t)); + + GGML_ASSERT(neq0 == D); + GGML_ASSERT(nek0 == D); + GGML_ASSERT(nev1 == D); + + GGML_ASSERT(neq1 == N); + GGML_ASSERT(nek1 == N + P); + GGML_ASSERT(nev1 == D); + + // dst cannot be transposed or permuted + GGML_ASSERT(nb0 == sizeof(float)); + GGML_ASSERT(nb0 <= nb1); + GGML_ASSERT(nb1 <= nb2); + GGML_ASSERT(nb2 <= nb3); + + if (params->type == GGML_TASK_INIT) { + return; + } + + if (params->type == GGML_TASK_FINALIZE) { + return; + } + + // parallelize by q rows using ggml_vec_dot_f32 + + // total rows in q + const int nr = neq1*neq2*neq3; + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + const float scale = 1.0f/sqrtf(D); + + //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale); + + for (int ir = ir0; ir < ir1; ++ir) { + // q indices + const int iq3 = ir/(neq2*neq1); + const int iq2 = (ir - iq3*neq2*neq1)/neq1; + const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1); + + float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32); + + for (int i = M; i < Mup; ++i) { + S[i] = -INFINITY; + } + + if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) { + for (int64_t ic = 0; ic < nek1; ++ic) { + // k indices + const int ik3 = iq3; + const int ik2 = iq2; + const int ik1 = ic; + + // S indices + const int i1 = ik1; + + ggml_vec_dot_f16(neq0, + S + i1, + (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), + (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3))); + } + } else { + for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) { + // k indices + const int ik3 = iq3; + const int ik2 = iq2; + const int ik1 = ic; + + // S indices + const int i1 = ik1; + + ggml_vec_dot_f16_unroll(neq0, nbk1, + S + i1, + ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), + (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3))); + } + } + + // scale + ggml_vec_scale_f32(nek1, S, scale); + + if (masked) { + for (int64_t i = P; i < M; i++) { + if (i > P + iq1) { + S[i] = -INFINITY; + } + } + } + + // softmax + { + float max = -INFINITY; + ggml_vec_max_f32(M, &max, S); + + ggml_float sum = 0.0; + { +#ifdef GGML_SOFT_MAX_ACCELERATE + max = -max; + vDSP_vsadd(S, 1, &max, S, 1, Mup); + vvexpf(S, S, &Mup); + ggml_vec_sum_f32(Mup, &sum, S); +#else + uint16_t scvt[GGML_SOFT_MAX_UNROLL]; + ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 }; + + for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) { + float * SS = S + i; + + for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) { + if (SS[j] == -INFINITY) { + SS[j] = 0.0f; + } else { + ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max); + memcpy(&scvt[j], &s, sizeof(uint16_t)); + const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]); + sump[j] += (ggml_float)val; + SS[j] = val; + } + } + } + + for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) { + sum += sump[i]; + } +#endif + } + + assert(sum > 0.0); + + sum = 1.0/sum; + ggml_vec_scale_f32(M, S, sum); + +#ifndef NDEBUG + for (int i = 0; i < M; ++i) { + assert(!isnan(S[i])); + assert(!isinf(S[i])); + } +#endif + } + + ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup); + + for (int64_t i = 0; i < M; i++) { + S16[i] = GGML_FP32_TO_FP16(S[i]); + } + + if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) { + for (int64_t ic = 0; ic < nev1; ++ic) { + // dst indices + const int i1 = iq1; + const int i2 = iq2; + const int i3 = iq3; + + ggml_vec_dot_f16(nek1, + (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), + (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)), + S16); + } + } else { + for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) { + // dst indices + const int i1 = iq1; + const int i2 = iq2; + const int i3 = iq3; + + ggml_vec_dot_f16_unroll(nek1, nbv1, + (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), + ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)), + S16); + } + } + } +} + +static void ggml_compute_forward_flash_attn( + const struct ggml_compute_params * params, + const struct ggml_tensor * q, + const struct ggml_tensor * k, + const struct ggml_tensor * v, + const bool masked, + struct ggml_tensor * dst) { + switch (q->type) { + case GGML_TYPE_F16: + { + ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst); + } break; + case GGML_TYPE_F32: + { + ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_flash_ff + +static void ggml_compute_forward_flash_ff_f16( + const struct ggml_compute_params * params, + const struct ggml_tensor * a, // F16 + const struct ggml_tensor * b0, // F16 fc_w + const struct ggml_tensor * b1, // F32 fc_b + const struct ggml_tensor * c0, // F16 proj_w + const struct ggml_tensor * c1, // F32 proj_b + struct ggml_tensor * dst) { + int64_t t0 = ggml_perf_time_us(); + UNUSED(t0); + + const int64_t nea0 = a->ne[0]; + const int64_t nea1 = a->ne[1]; + const int64_t nea2 = a->ne[2]; + const int64_t nea3 = a->ne[3]; + + const int64_t neb00 = b0->ne[0]; + const int64_t neb01 = b0->ne[1]; + //const int64_t neb02 = b0->ne[2]; + //const int64_t neb03 = b0->ne[3]; + + const int64_t neb10 = b1->ne[0]; + const int64_t neb11 = b1->ne[1]; + //const int64_t neb12 = b1->ne[2]; + //const int64_t neb13 = b1->ne[3]; + + const int64_t nec00 = c0->ne[0]; + const int64_t nec01 = c0->ne[1]; + //const int64_t nec02 = c0->ne[2]; + //const int64_t nec03 = c0->ne[3]; + + const int64_t nec10 = c1->ne[0]; + const int64_t nec11 = c1->ne[1]; + //const int64_t nec12 = c1->ne[2]; + //const int64_t nec13 = c1->ne[3]; + + const int64_t ne0 = dst->ne[0]; + const int64_t ne1 = dst->ne[1]; + const int64_t ne2 = dst->ne[2]; + //const int64_t ne3 = dst->ne[3]; + + const int nba0 = a->nb[0]; + const int nba1 = a->nb[1]; + const int nba2 = a->nb[2]; + const int nba3 = a->nb[3]; + + const int nbb00 = b0->nb[0]; + const int nbb01 = b0->nb[1]; + const int nbb02 = b0->nb[2]; + const int nbb03 = b0->nb[3]; + + const int nbb10 = b1->nb[0]; + //const int nbb11 = b1->nb[1]; + //const int nbb12 = b1->nb[2]; + //const int nbb13 = b1->nb[3]; + + const int nbc00 = c0->nb[0]; + const int nbc01 = c0->nb[1]; + const int nbc02 = c0->nb[2]; + const int nbc03 = c0->nb[3]; + + const int nbc10 = c1->nb[0]; + //const int nbc11 = c1->nb[1]; + //const int nbc12 = c1->nb[2]; + //const int nbc13 = c1->nb[3]; + + const int nb0 = dst->nb[0]; + const int nb1 = dst->nb[1]; + const int nb2 = dst->nb[2]; + const int nb3 = dst->nb[3]; + + const int ith = params->ith; + const int nth = params->nth; + + const int64_t D = nea0; + //const int64_t N = nea1; + const int64_t M = neb01; + + GGML_ASSERT(ne0 == nea0); + GGML_ASSERT(ne1 == nea1); + GGML_ASSERT(ne2 == nea2); + + GGML_ASSERT(nba0 == sizeof(ggml_fp16_t)); + GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t)); + GGML_ASSERT(nbb10 == sizeof(float)); + GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t)); + GGML_ASSERT(nbc10 == sizeof(float)); + + GGML_ASSERT(neb00 == D); + GGML_ASSERT(neb01 == M); + GGML_ASSERT(neb10 == M); + GGML_ASSERT(neb11 == 1); + + GGML_ASSERT(nec00 == M); + GGML_ASSERT(nec01 == D); + GGML_ASSERT(nec10 == D); + GGML_ASSERT(nec11 == 1); + + // dst cannot be transposed or permuted + GGML_ASSERT(nb0 == sizeof(float)); + GGML_ASSERT(nb0 <= nb1); + GGML_ASSERT(nb1 <= nb2); + GGML_ASSERT(nb2 <= nb3); + + if (params->type == GGML_TASK_INIT) { + return; + } + + if (params->type == GGML_TASK_FINALIZE) { + return; + } + + // parallelize by a rows using ggml_vec_dot_f32 + + // total rows in a + const int nr = nea1*nea2*nea3; + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + for (int ir = ir0; ir < ir1; ++ir) { + // a indices + const int ia3 = ir/(nea2*nea1); + const int ia2 = (ir - ia3*nea2*nea1)/nea1; + const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1); + + float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32); + + for (int64_t ic = 0; ic < neb01; ++ic) { + // b0 indices + const int ib03 = ia3; + const int ib02 = ia2; + const int ib01 = ic; + + // S indices + const int i1 = ib01; + + ggml_vec_dot_f16(nea0, + S + i1, + (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)), + (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3))); + } + + ggml_vec_add_f32(neb01, S, S, (float *) b1->data); + //ggml_vec_gelu_f32(neb01, S, S); + + ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M); + + for (int64_t i = 0; i < M; i++) { + S16[i] = GGML_FP32_TO_FP16(S[i]); + } + + ggml_vec_gelu_f16(neb01, S16, S16); + + { + // dst indices + const int i1 = ia1; + const int i2 = ia2; + const int i3 = ia3; + + for (int64_t ic = 0; ic < nec01; ++ic) { + + ggml_vec_dot_f16(neb01, + (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), + (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)), + S16); + } + + ggml_vec_add_f32(nec01, + (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)), + (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)), + (float *) c1->data); + } + } +} + +static void ggml_compute_forward_flash_ff( + const struct ggml_compute_params * params, + const struct ggml_tensor * a, + const struct ggml_tensor * b0, + const struct ggml_tensor * b1, + const struct ggml_tensor * c0, + const struct ggml_tensor * c1, + struct ggml_tensor * dst) { + switch (b0->type) { + case GGML_TYPE_F16: + { + ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst); + } break; + case GGML_TYPE_F32: + { + GGML_ASSERT(false); // TODO + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_map_unary + +static void ggml_compute_forward_map_unary_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst, + const ggml_unary_op_f32_t fun) { + GGML_ASSERT(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int n = ggml_nrows(src0); + const int nc = src0->ne[0]; + + assert( dst->nb[0] == sizeof(float)); + assert(src0->nb[0] == sizeof(float)); + + for (int i = 0; i < n; i++) { + fun(nc, + (float *) ((char *) dst->data + i*( dst->nb[1])), + (float *) ((char *) src0->data + i*(src0->nb[1]))); + } +} + + +static void ggml_compute_forward_map_unary( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst, + const ggml_unary_op_f32_t fun) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_map_unary_f32(params, src0, dst, fun); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_map_binary + +static void ggml_compute_forward_map_binary_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst, + const ggml_binary_op_f32_t fun) { + assert(params->ith == 0); + assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int n = ggml_nrows(src0); + const int nc = src0->ne[0]; + + assert( dst->nb[0] == sizeof(float)); + assert(src0->nb[0] == sizeof(float)); + assert(src1->nb[0] == sizeof(float)); + + for (int i = 0; i < n; i++) { + fun(nc, + (float *) ((char *) dst->data + i*( dst->nb[1])), + (float *) ((char *) src0->data + i*(src0->nb[1])), + (float *) ((char *) src1->data + i*(src1->nb[1]))); + } +} + + +static void ggml_compute_forward_map_binary( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst, + const ggml_binary_op_f32_t fun) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +///////////////////////////////// + +static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) { + GGML_ASSERT(params); + + switch (tensor->op) { + case GGML_OP_DUP: + { + ggml_compute_forward_dup(params, tensor->src0, tensor); + } break; + case GGML_OP_ADD: + { + ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor); + } break; + case GGML_OP_ADD1: + { + ggml_compute_forward_add1(params, tensor->src0, tensor->src1, tensor); + } break; + case GGML_OP_ACC: + { + ggml_compute_forward_acc(params, tensor->src0, tensor->src1, tensor->opt[0], tensor); + } break; + case GGML_OP_SUB: + { + ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor); + } break; + case GGML_OP_MUL: + { + ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor); + } break; + case GGML_OP_DIV: + { + ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor); + } break; + case GGML_OP_SQR: + { + ggml_compute_forward_sqr(params, tensor->src0, tensor); + } break; + case GGML_OP_SQRT: + { + ggml_compute_forward_sqrt(params, tensor->src0, tensor); + } break; + case GGML_OP_LOG: + { + ggml_compute_forward_log(params, tensor->src0, tensor); + } break; + case GGML_OP_SUM: + { + ggml_compute_forward_sum(params, tensor->src0, tensor); + } break; + case GGML_OP_SUM_ROWS: + { + ggml_compute_forward_sum_rows(params, tensor->src0, tensor); + } break; + case GGML_OP_MEAN: + { + ggml_compute_forward_mean(params, tensor->src0, tensor); + } break; + case GGML_OP_REPEAT: + { + ggml_compute_forward_repeat(params, tensor->src0, tensor); + } break; + case GGML_OP_ABS: + { + ggml_compute_forward_abs(params, tensor->src0, tensor); + } break; + case GGML_OP_SGN: + { + ggml_compute_forward_sgn(params, tensor->src0, tensor); + } break; + case GGML_OP_NEG: + { + ggml_compute_forward_neg(params, tensor->src0, tensor); + } break; + case GGML_OP_STEP: + { + ggml_compute_forward_step(params, tensor->src0, tensor); + } break; + case GGML_OP_RELU: + { + ggml_compute_forward_relu(params, tensor->src0, tensor); + } break; + case GGML_OP_GELU: + { + ggml_compute_forward_gelu(params, tensor->src0, tensor); + } break; + case GGML_OP_SILU: + { + ggml_compute_forward_silu(params, tensor->src0, tensor); + } break; + case GGML_OP_SILU_BACK: + { + ggml_compute_forward_silu_back(params, tensor->src0, tensor->src1, tensor); + } break; + case GGML_OP_NORM: + { + ggml_compute_forward_norm(params, tensor->src0, tensor); + } break; + case GGML_OP_RMS_NORM: + { + ggml_compute_forward_rms_norm(params, tensor->src0, tensor); + } break; + case GGML_OP_RMS_NORM_BACK: + { + ggml_compute_forward_rms_norm_back(params, tensor->src0, tensor->src1, tensor); + } break; + case GGML_OP_MUL_MAT: + { + ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor); + } break; + case GGML_OP_SCALE: + { + ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor); + } break; + case GGML_OP_SET: + { + ggml_compute_forward_set(params, tensor->src0, tensor->src1, tensor->opt[0], tensor); + } break; + case GGML_OP_CPY: + { + ggml_compute_forward_cpy(params, tensor->src0, tensor); + } break; + case GGML_OP_CONT: + { + ggml_compute_forward_cont(params, tensor->src0, tensor); + } break; + case GGML_OP_RESHAPE: + { + ggml_compute_forward_reshape(params, tensor->src0, tensor); + } break; + case GGML_OP_VIEW: + { + ggml_compute_forward_view(params, tensor->src0); + } break; + case GGML_OP_PERMUTE: + { + ggml_compute_forward_permute(params, tensor->src0); + } break; + case GGML_OP_TRANSPOSE: + { + ggml_compute_forward_transpose(params, tensor->src0); + } break; + case GGML_OP_GET_ROWS: + { + ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor); + } break; + case GGML_OP_GET_ROWS_BACK: + { + ggml_compute_forward_get_rows_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor); + } break; + case GGML_OP_DIAG: + { + ggml_compute_forward_diag(params, tensor->src0, tensor); + } break; + case GGML_OP_DIAG_MASK_INF: + { + ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor); + } break; + case GGML_OP_DIAG_MASK_ZERO: + { + ggml_compute_forward_diag_mask_zero(params, tensor->src0, tensor->src1, tensor); + } break; + case GGML_OP_SOFT_MAX: + { + ggml_compute_forward_soft_max(params, tensor->src0, tensor); + } break; + case GGML_OP_ROPE: + { + ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor); + } break; + case GGML_OP_ROPE_BACK: + { + ggml_compute_forward_rope_back(params, tensor->src0, tensor->src1, tensor); + } break; + case GGML_OP_ALIBI: + { + ggml_compute_forward_alibi(params, tensor->src0, tensor->src1, tensor); + } break; + case GGML_OP_CONV_1D_1S: + { + ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor); + } break; + case GGML_OP_CONV_1D_2S: + { + ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor); + } break; + case GGML_OP_FLASH_ATTN: + { + int32_t t = ggml_get_i32_1d(tensor->opt[1], 0); + GGML_ASSERT(t == 0 || t == 1); + bool masked = t != 0; + ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor); + } break; + case GGML_OP_FLASH_FF: + { + ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor); + } break; + case GGML_OP_MAP_UNARY: + { + const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data); + ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun); + } + break; + case GGML_OP_MAP_BINARY: + { + const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data); + ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun); + } + break; + case GGML_OP_NONE: + { + // nop + } break; + case GGML_OP_COUNT: + { + GGML_ASSERT(false); + } break; + } +} + +//////////////////////////////////////////////////////////////////////////////// + +static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) { + struct ggml_tensor * src0 = tensor->src0; + struct ggml_tensor * src1 = tensor->src1; + + switch (tensor->op) { + case GGML_OP_DUP: + { + if (src0->grad) { + src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace); + } + } break; + case GGML_OP_ADD: + { + if (src0->grad) { + src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace); + } + if (src1->grad) { + src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace); + } + } break; + case GGML_OP_ADD1: + { + if (src0->grad) { + src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace); + } + if (src1->grad) { + src1->grad = ggml_add_impl(ctx, + src1->grad, + ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean + inplace); + } + } break; + case GGML_OP_ACC: + { + if (src0->grad) { + src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace); + } + if (src1->grad) { + GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5); + GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32); + const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0]; + const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1]; + const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2]; + const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3]; + + struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx, + tensor->grad, + src1->grad->ne[0], + src1->grad->ne[1], + src1->grad->ne[2], + src1->grad->ne[3], + nb1, nb2, nb3, offset); + + src1->grad = + ggml_add_impl(ctx, + src1->grad, + ggml_reshape(ctx, + ggml_cont(ctx, tensor_grad_view), + src1->grad), + inplace); + } + } break; + case GGML_OP_SUB: + { + if (src0->grad) { + src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace); + } + if (src1->grad) { + src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace); + } + } break; + case GGML_OP_MUL: + { + if (src0->grad) { + src0->grad = + ggml_add_impl(ctx, + src0->grad, + ggml_mul(ctx, src1, tensor->grad), + inplace); + } + if (src1->grad) { + src1->grad = + ggml_add_impl(ctx, + src1->grad, + ggml_mul(ctx, src0, tensor->grad), + inplace); + } + } break; + case GGML_OP_DIV: + { + if (src0->grad) { + src0->grad = + ggml_add_impl(ctx, + src0->grad, + ggml_div(ctx, tensor->grad, src1), + inplace); + } + if (src1->grad) { + src1->grad = + ggml_sub_impl(ctx, + src1->grad, + ggml_mul(ctx, + tensor->grad, + ggml_div(ctx, tensor, src1)), + inplace); + } + } break; + case GGML_OP_SQR: + { + if (src0->grad) { + src0->grad = + ggml_add_impl(ctx, + src0->grad, + ggml_scale(ctx, + ggml_mul(ctx, src0, tensor->grad), + ggml_new_f32(ctx, 2.0f)), + inplace); + } + } break; + case GGML_OP_SQRT: + { + if (src0->grad) { + src0->grad = + ggml_add_impl(ctx, + src0->grad, + ggml_mul(ctx, + tensor->grad, // this was not catched by test_grad because in test_grad tensor->grad is 1 + ggml_div(ctx, + ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor), + tensor)), + inplace); + } + } break; + case GGML_OP_LOG: + { + if (src0->grad) { + src0->grad = + ggml_add_impl(ctx, + src0->grad, + ggml_div(ctx, + tensor->grad, + src0), + inplace); + } + } break; + case GGML_OP_SUM: + { + if (src0->grad) { + src0->grad = + ggml_add1_impl(ctx, + src0->grad, + tensor->grad, + inplace); + } + } break; + case GGML_OP_SUM_ROWS: + { + if (src0->grad) { + src0->grad = + ggml_add_impl(ctx, + src0->grad, + ggml_repeat(ctx, + tensor->grad, + src0->grad), + inplace); + } + } break; + case GGML_OP_MEAN: + { + GGML_ASSERT(false); // TODO: implement + } break; + case GGML_OP_REPEAT: + { + // necessary for llama + if (src0->grad) { + GGML_ASSERT(src0->n_dims == 1 || src0->n_dims == 2); + const int nc = tensor->ne[0]; + const int nr = tensor->ne[1]; + const int nc0 = src0->ne[0]; + const int nr0 = src0->ne[1]; + const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat + const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat + // tensor->grad [nc,nr,1,1] + // reshape [nc0,nc/nc0,nr0,nr/nr0] + // permute [nc0,nr0,nc/nc0,nr/nr0] + // substitute [nc0,nr0,ncr,nrr] + // reshape [nc0*nr0,ncr*nrr,1,1] + // transpose [ncr*nrr,nc0*nr0,1,1] + // sum rows [1,nc0*nr0,1,1] + // transpose [nc0*nr0,1,1] + // reshape [nc0,nr0,1,1] reshape_1d or reshape_2d + // add to src0->grad + + int64_t ne[4] = {nc0,ncr,nr0,nrr}; + + struct ggml_tensor* F00 = tensor->grad; + struct ggml_tensor* F01 = ggml_reshape (ctx, F00, ggml_new_tensor(ctx,tensor->grad->type,4,ne)); + struct ggml_tensor* F02 = ggml_permute (ctx, F01, 0,2,1,3); + struct ggml_tensor* F03 = ggml_cont (ctx, F02); + struct ggml_tensor* F04 = ggml_reshape_2d(ctx, F03, nc0*nr0, ncr*nrr); + struct ggml_tensor* F05 = ggml_transpose (ctx, F04); + struct ggml_tensor* F06 = ggml_cont (ctx, F05); + struct ggml_tensor* F07 = ggml_sum_rows (ctx, F06); + struct ggml_tensor* F08 = ggml_transpose (ctx, F07); + struct ggml_tensor* F09 = ggml_cont (ctx, F08); + struct ggml_tensor* F10 = ggml_reshape (ctx, F09, src0->grad); + + src0->grad = + ggml_add_impl(ctx, + src0->grad, + F10, + inplace); + } + } break; + case GGML_OP_ABS: + { + if (src0->grad) { + src0->grad = + ggml_add_impl(ctx, + src0->grad, + ggml_mul(ctx, + ggml_sgn(ctx, src0), + tensor->grad), + inplace); + } + } break; + case GGML_OP_SGN: + { + if (src0->grad) { + // noop + } + } break; + case GGML_OP_NEG: + { + if (src0->grad) { + src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace); + } + } break; + case GGML_OP_STEP: + { + if (src0->grad) { + // noop + } + } break; + case GGML_OP_RELU: + { + if (src0->grad) { + src0->grad = ggml_sub_impl(ctx, + src0->grad, + ggml_mul(ctx, + ggml_step(ctx, src0), + tensor->grad), + inplace); + } + } break; + case GGML_OP_GELU: + { + GGML_ASSERT(false); // TODO: not implemented + } break; + case GGML_OP_ALIBI: + { + GGML_ASSERT(false); // TODO: not implemented + } break; + case GGML_OP_SILU: + { + // necessary for llama + if (src0->grad) { + src0->grad = ggml_add_impl(ctx, + src0->grad, + ggml_silu_back(ctx, src0, tensor->grad), + inplace); + } + } break; + case GGML_OP_SILU_BACK: + { + GGML_ASSERT(false); // TODO: not implemented + } break; + case GGML_OP_NORM: + { + GGML_ASSERT(false); // TODO: not implemented + } break; + case GGML_OP_RMS_NORM: + { + // necessary for llama + if (src0->grad) { + src0->grad = ggml_add_impl(ctx, + src0->grad, + ggml_rms_norm_back(ctx, src0, tensor->grad), + inplace); + } + } break; + case GGML_OP_RMS_NORM_BACK: + { + GGML_ASSERT(false); // TODO: not implemented + } break; + case GGML_OP_MUL_MAT: + { + // https://cs231n.github.io/optimization-2/#staged + // # forward pass + // s0 = np.random.randn(5, 10) + // s1 = np.random.randn(10, 3) + // t = s0.dot(s1) + + // # now suppose we had the gradient on t from above in the circuit + // dt = np.random.randn(*t.shape) # same shape as t + // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix + // ds1 = t.T.dot(dt) + + // tensor.shape [m,p] + // src0.shape [n,m] + // src1.shape [n,p] + + // necessary for llama + if (src0->grad) { + // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad); + src0->grad = + ggml_add_impl(ctx, + src0->grad, + // ds0 = dt.dot(s1.T) + // ggml_out_prod(ctx, // [n,m] + // src1, // [n,p] + // tensor->grad), // [m,p] + // for now just using A*B==(B.T*A.T).T + ggml_cont(ctx, // [n,m] + ggml_transpose(ctx, // [n,m] + ggml_mul_mat(ctx, // [m,n] + ggml_cont(ctx, // [p,m] + ggml_transpose(ctx, // [p,m] + tensor->grad)), // [m,p] + ggml_cont(ctx, // [p,n] + ggml_transpose(ctx, // [p,n] + src1))))), // [n,p] + inplace); + } + if (src1->grad) { + src1->grad = + ggml_add_impl(ctx, + src1->grad, + // ds1 = s0.T.dot(dt): + ggml_mul_mat(ctx, // [n,p] + ggml_cont(ctx, // [m,n] + ggml_transpose(ctx, src0)), // [m,n] + tensor->grad), // [m,p] + inplace); + } + } break; + case GGML_OP_SCALE: + { + // necessary for llama + if (src0->grad) { + src0->grad = + ggml_add_impl(ctx, + src0->grad, + ggml_scale_impl(ctx, tensor->grad, src1, false), + inplace); + } + if (src1->grad) { + src1->grad = + ggml_add_impl(ctx, + src1->grad, + ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)), + inplace); + } + } break; + case GGML_OP_SET: + { + GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5); + GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32); + const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0]; + const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1]; + const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2]; + const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3]; + + struct ggml_tensor * tensor_grad_view = NULL; + + if (src0->grad || src1->grad) { + GGML_ASSERT(src0->type == tensor->type); + GGML_ASSERT(tensor->grad->type == tensor->type); + GGML_ASSERT(tensor->grad->type == src1->grad->type); + + tensor_grad_view = ggml_view_4d(ctx, + tensor->grad, + src1->grad->ne[0], + src1->grad->ne[1], + src1->grad->ne[2], + src1->grad->ne[3], + nb1, nb2, nb3, offset); + } + + if (src0->grad) { + src0->grad = ggml_add_impl(ctx, + src0->grad, + ggml_acc_impl(ctx, + tensor->grad, + ggml_neg(ctx, tensor_grad_view), + nb1, nb2, nb3, offset, false), + inplace); + } + + if (src1->grad) { + src1->grad = + ggml_add_impl(ctx, + src1->grad, + ggml_reshape(ctx, + ggml_cont(ctx, tensor_grad_view), + src1->grad), + inplace); + } + } break; + case GGML_OP_CPY: + { + // necessary for llama + // cpy overwrites value of src1 by src0 and returns view(src1) + // the overwriting is mathematically equivalent to: + // tensor = src0 * 1 + src1 * 0 + if (src0->grad) { + // dsrc0 = dtensor * 1 + src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace); + } + if (src1->grad) { + // dsrc1 = dtensor * 0 -> noop + } + } break; + case GGML_OP_CONT: + { + // same as cpy + if (src0->grad) { + GGML_ASSERT(ggml_is_contiguous(src0->grad)); + GGML_ASSERT(ggml_is_contiguous(tensor->grad)); + src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace); + } + } break; + case GGML_OP_RESHAPE: + { + // necessary for llama + if (src0->grad) { + src0->grad = + ggml_add_impl(ctx, src0->grad, + ggml_reshape(ctx, tensor->grad, src0->grad), + inplace); + } + } break; + case GGML_OP_VIEW: + { + // necessary for llama + if (src0->grad) { + size_t offset; + memcpy(&offset, tensor->padding, sizeof(offset)); + + size_t nb1 = tensor->nb[1]; + size_t nb2 = tensor->nb[2]; + size_t nb3 = tensor->nb[3]; + + if (src0->type != src0->grad->type) { + // gradient is typically F32, but src0 could be other type + size_t ng = ggml_element_size(src0->grad); + size_t n0 = ggml_element_size(src0); + GGML_ASSERT(offset % n0 == 0); + GGML_ASSERT(nb1 % n0 == 0); + GGML_ASSERT(nb2 % n0 == 0); + GGML_ASSERT(nb3 % n0 == 0); + offset = (offset / n0) * ng; + nb1 = (nb1 / n0) * ng; + nb2 = (nb2 / n0) * ng; + nb3 = (nb3 / n0) * ng; + } + + src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace); + } + } break; + case GGML_OP_PERMUTE: + { + // necessary for llama + if (src0->grad) { + int axis0 = tensor->padding[0] & 0x3; + int axis1 = tensor->padding[1] & 0x3; + int axis2 = tensor->padding[2] & 0x3; + int axis3 = tensor->padding[3] & 0x3; + int axes_backward[4] = {0,0,0,0}; + axes_backward[axis0] = 0; + axes_backward[axis1] = 1; + axes_backward[axis2] = 2; + axes_backward[axis3] = 3; + src0->grad = + ggml_add_impl(ctx, src0->grad, + ggml_permute(ctx, + tensor->grad, + axes_backward[0], + axes_backward[1], + axes_backward[2], + axes_backward[3]), + inplace); + } + } break; + case GGML_OP_TRANSPOSE: + { + // necessary for llama + if (src0->grad) { + src0->grad = + ggml_add_impl(ctx, src0->grad, + ggml_transpose(ctx, tensor->grad), + inplace); + } + } break; + case GGML_OP_GET_ROWS: + { + // necessary for llama (only for tokenizer) + if (src0->grad) { + src0->grad = + ggml_add_impl(ctx, src0->grad, + ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad), + inplace); + } + if (src1->grad) { + // noop + } + } break; + case GGML_OP_GET_ROWS_BACK: + { + GGML_ASSERT(false); // TODO: not implemented + } break; + case GGML_OP_DIAG: + { + GGML_ASSERT(false); // TODO: not implemented + } break; + case GGML_OP_DIAG_MASK_INF: + { + // necessary for llama + if (src0->grad) { + assert(src1->type == GGML_TYPE_I32); + assert(ggml_nelements(src1) == 2); + const int n_past = ((int32_t *) src1->data)[0]; + src0->grad = + ggml_add_impl(ctx, src0->grad, + ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false), + inplace); + } + if (src1->grad) { + // noop + } + } break; + case GGML_OP_DIAG_MASK_ZERO: + { + // necessary for llama + if (src0->grad) { + assert(src1->type == GGML_TYPE_I32); + assert(ggml_nelements(src1) == 2); + const int n_past = ((int32_t *) src1->data)[0]; + src0->grad = + ggml_add_impl(ctx, src0->grad, + ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false), + inplace); + } + if (src1->grad) { + // noop + } + } break; + case GGML_OP_SOFT_MAX: + { + // necessary for llama + if (src0->grad) { + // y = softmax(x) + // + // Jii = yi - yi*yi + // Jij = -yi*yj + // J = diag(y)-y.*y + // dx = J * dy + // dxk = sum(Jkj * dyk) + + int64_t ne2[4] = { + tensor->ne[0], + 1, + tensor->ne[1]*tensor->ne[2], + tensor->ne[3] + }; + struct ggml_tensor * tensor2 = ggml_cont(ctx, + ggml_reshape_4d(ctx, + ggml_cont(ctx, tensor), + ne2[0], ne2[1], ne2[2], ne2[3])); + + struct ggml_tensor * grad2 = ggml_cont(ctx, + ggml_reshape_4d(ctx, + ggml_cont(ctx, tensor->grad), + ne2[0], ne2[1], ne2[2], ne2[3])); + + struct ggml_tensor * tensor2_t = ggml_cont(ctx, // [1,ne0,ne1*ne2,ne3] + ggml_permute(ctx, // [1,ne0,ne1*ne2,ne3] + tensor2, // [ne0,1,ne1*ne2,ne3] + 1, 0, 2, 3)); + + src0->grad = + ggml_add_impl(ctx, + src0->grad, // [ne0,ne1,ne2,ne3] + ggml_reshape(ctx, // [ne0,ne1,ne2,ne3] + ggml_mul_mat(ctx, // [ne0,1,ne1*ne2,ne3] + ggml_sub(ctx, // [ne0,ne0,ne1*ne2,ne3] + ggml_diag(ctx, // [ne0,ne0,ne1*ne2,ne3] + tensor2), // [ne0,1,ne1*ne2,ne3] + ggml_mul_mat(ctx, // [ne0,ne0,ne1*ne2,ne3] + tensor2_t, // [1,ne0,ne1*ne2,ne3] + tensor2_t)), // [1,ne0,ne1*ne2,ne3] + grad2), // [ne0,1,ne1*ne2,ne3] + src0->grad), + inplace); + } + } break; + case GGML_OP_ROPE: + { + // necessary for llama + if (src0->grad) { + assert(src1->type == GGML_TYPE_I32); + assert(ggml_nelements(src1) == 3); + const int n_past = ((int32_t *) src1->data)[0]; + const int n_dims = ((int32_t *) src1->data)[1]; + const int mode = ((int32_t *) src1->data)[2]; + src0->grad = ggml_add_impl(ctx, + src0->grad, + ggml_rope_back(ctx, + tensor->grad, + n_past, + n_dims, + mode), + inplace); + } + if (src1->grad) { + // noop + } + } break; + case GGML_OP_ROPE_BACK: + { + if (src0->grad) { + assert(src1->type == GGML_TYPE_I32); + assert(ggml_nelements(src1) == 3); + const int n_past = ((int32_t *) src1->data)[0]; + const int n_dims = ((int32_t *) src1->data)[1]; + const int mode = ((int32_t *) src1->data)[2]; + src0->grad = ggml_add_impl(ctx, + src0->grad, + ggml_rope(ctx, + tensor->grad, + n_past, + n_dims, + mode), + inplace); + } + if (src1->grad) { + // noop + } + } break; + case GGML_OP_CONV_1D_1S: + { + GGML_ASSERT(false); // TODO: not implemented + } break; + case GGML_OP_CONV_1D_2S: + { + GGML_ASSERT(false); // TODO: not implemented + } break; + case GGML_OP_FLASH_ATTN: + { + GGML_ASSERT(false); // not supported + } break; + case GGML_OP_FLASH_FF: + { + GGML_ASSERT(false); // not supported + } break; + case GGML_OP_MAP_UNARY: + case GGML_OP_MAP_BINARY: + { + GGML_ASSERT(false); // not supported + } break; + case GGML_OP_NONE: + { + // nop + } break; + case GGML_OP_COUNT: + { + GGML_ASSERT(false); + } break; + } +} + +static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) { + if (node->grad == NULL) { + // this usually happens when we generate intermediate nodes from constants in the backward pass + // it can also happen during forward pass, if the user performs computations with constants + if (node->op != GGML_OP_NONE) { + //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op); + } + } + + // check if already visited + for (int i = 0; i < cgraph->n_nodes; i++) { + if (cgraph->nodes[i] == node) { + return; + } + } + + for (int i = 0; i < cgraph->n_leafs; i++) { + if (cgraph->leafs[i] == node) { + return; + } + } + + if (node->src0) { + ggml_visit_parents(cgraph, node->src0); + } + + if (node->src1) { + ggml_visit_parents(cgraph, node->src1); + } + + for (int i = 0; i < GGML_MAX_OPT; ++i) { + if (node->opt[i]) { + ggml_visit_parents(cgraph, node->opt[i]); + } + } + + if (node->op == GGML_OP_NONE && node->grad == NULL) { + // reached a leaf node, not part of the gradient graph (e.g. a constant) + GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES); + + cgraph->leafs[cgraph->n_leafs] = node; + cgraph->n_leafs++; + } else { + GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES); + + cgraph->nodes[cgraph->n_nodes] = node; + cgraph->grads[cgraph->n_nodes] = node->grad; + cgraph->n_nodes++; + } +} + +static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) { + if (!expand) { + cgraph->n_nodes = 0; + cgraph->n_leafs = 0; + } + + const int n0 = cgraph->n_nodes; + UNUSED(n0); + + ggml_visit_parents(cgraph, tensor); + + const int n_new = cgraph->n_nodes - n0; + GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new); + + if (n_new > 0) { + // the last added node should always be starting point + GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor); + } +} + +void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) { + ggml_build_forward_impl(cgraph, tensor, true); +} + +struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) { + struct ggml_cgraph result = { + /*.n_nodes =*/ 0, + /*.n_leafs =*/ 0, + /*.n_threads =*/ GGML_DEFAULT_N_THREADS, + /*.work_size =*/ 0, + /*.work =*/ NULL, + /*.nodes =*/ { NULL }, + /*.grads =*/ { NULL }, + /*.leafs =*/ { NULL }, + /*.perf_runs =*/ 0, + /*.perf_cycles =*/ 0, + /*.perf_time_us =*/ 0, + }; + + ggml_build_forward_impl(&result, tensor, false); + + return result; +} + +struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) { + struct ggml_cgraph result = *gf; + + GGML_ASSERT(gf->n_nodes > 0); + + // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph + if (keep) { + for (int i = 0; i < gf->n_nodes; i++) { + struct ggml_tensor * node = gf->nodes[i]; + + if (node->grad) { + node->grad = ggml_dup_tensor(ctx, node); + gf->grads[i] = node->grad; + } + } + } + + for (int i = gf->n_nodes - 1; i >= 0; i--) { + struct ggml_tensor * node = gf->nodes[i]; + + // because we detached the grad nodes from the original graph, we can afford inplace operations + if (node->grad) { + ggml_compute_backward(ctx, node, keep); + } + } + + for (int i = gf->n_nodes - 1; i >= 0; i--) { + struct ggml_tensor * node = gf->nodes[i]; + + if (node->is_param) { + GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node); + ggml_build_forward_impl(&result, node->grad, true); + } + } + + return result; +} + +// +// thread data +// +// synchronization is done via busy loops +// I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops +// + +#ifdef __APPLE__ + +//#include +// +//typedef os_unfair_lock ggml_lock_t; +// +//#define ggml_lock_init(x) UNUSED(x) +//#define ggml_lock_destroy(x) UNUSED(x) +//#define ggml_lock_lock os_unfair_lock_lock +//#define ggml_lock_unlock os_unfair_lock_unlock +// +//#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT + +typedef int ggml_lock_t; + +#define ggml_lock_init(x) UNUSED(x) +#define ggml_lock_destroy(x) UNUSED(x) +#define ggml_lock_lock(x) UNUSED(x) +#define ggml_lock_unlock(x) UNUSED(x) + +#define GGML_LOCK_INITIALIZER 0 + +typedef pthread_t ggml_thread_t; + +#define ggml_thread_create pthread_create +#define ggml_thread_join pthread_join + +#else + +//typedef pthread_spinlock_t ggml_lock_t; + +//#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE) +//#define ggml_lock_destroy pthread_spin_destroy +//#define ggml_lock_lock pthread_spin_lock +//#define ggml_lock_unlock pthread_spin_unlock + +typedef int ggml_lock_t; + +#define ggml_lock_init(x) UNUSED(x) +#define ggml_lock_destroy(x) UNUSED(x) +#if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64)) +#define ggml_lock_lock(x) _mm_pause() +#else +#define ggml_lock_lock(x) UNUSED(x) +#endif +#define ggml_lock_unlock(x) UNUSED(x) + +#define GGML_LOCK_INITIALIZER 0 + +typedef pthread_t ggml_thread_t; + +#define ggml_thread_create pthread_create +#define ggml_thread_join pthread_join + +#endif + +struct ggml_compute_state_shared { + ggml_lock_t spin; + + int n_threads; + + // synchronization primitives + atomic_int n_ready; + atomic_bool has_work; + atomic_bool stop; // stop all threads +}; + +struct ggml_compute_state { + ggml_thread_t thrd; + + struct ggml_compute_params params; + struct ggml_tensor * node; + + struct ggml_compute_state_shared * shared; +}; + +static thread_ret_t ggml_graph_compute_thread(void * data) { + struct ggml_compute_state * state = (struct ggml_compute_state *) data; + + const int n_threads = state->shared->n_threads; + + while (true) { + if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) { + atomic_store(&state->shared->has_work, false); + } else { + while (atomic_load(&state->shared->has_work)) { + if (atomic_load(&state->shared->stop)) { + return 0; + } + ggml_lock_lock (&state->shared->spin); + ggml_lock_unlock(&state->shared->spin); + } + } + + atomic_fetch_sub(&state->shared->n_ready, 1); + + // wait for work + while (!atomic_load(&state->shared->has_work)) { + if (atomic_load(&state->shared->stop)) { + return 0; + } + ggml_lock_lock (&state->shared->spin); + ggml_lock_unlock(&state->shared->spin); + } + + // check if we should stop + if (atomic_load(&state->shared->stop)) { + break; + } + + if (state->node) { + if (state->params.ith < state->params.nth) { + ggml_compute_forward(&state->params, state->node); + } + + state->node = NULL; + } else { + break; + } + } + + return 0; +} + +void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) { + const int n_threads = cgraph->n_threads; + + struct ggml_compute_state_shared state_shared = { + /*.spin =*/ GGML_LOCK_INITIALIZER, + /*.n_threads =*/ n_threads, + /*.n_ready =*/ 0, + /*.has_work =*/ false, + /*.stop =*/ false, + }; + struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL; + + // create thread pool + if (n_threads > 1) { + ggml_lock_init(&state_shared.spin); + + atomic_store(&state_shared.has_work, true); + + for (int j = 0; j < n_threads - 1; j++) { + workers[j] = (struct ggml_compute_state) { + .thrd = 0, + .params = { + .type = GGML_TASK_COMPUTE, + .ith = j + 1, + .nth = n_threads, + .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0, + .wdata = cgraph->work ? cgraph->work->data : NULL, + }, + .node = NULL, + .shared = &state_shared, + }; + + int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]); + GGML_ASSERT(rc == 0); + UNUSED(rc); + } + } + + // initialize tasks + work buffer + { + size_t work_size = 0; + + // thread scheduling for the different operations + for (int i = 0; i < cgraph->n_nodes; i++) { + struct ggml_tensor * node = cgraph->nodes[i]; + + switch (node->op) { + case GGML_OP_CPY: + case GGML_OP_DUP: + { + node->n_tasks = n_threads; + + size_t cur = 0; + if (ggml_is_quantized(node->type)) { + cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads; + } + + work_size = MAX(work_size, cur); + } break; + case GGML_OP_ADD: + case GGML_OP_ADD1: + { + node->n_tasks = n_threads; + + size_t cur = 0; + + if (ggml_is_quantized(node->src0->type)) { + cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads; + } + + work_size = MAX(work_size, cur); + } break; + case GGML_OP_ACC: + { + node->n_tasks = n_threads; + + size_t cur = 0; + + if (ggml_is_quantized(node->src0->type)) { + cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src1->ne[0] * n_threads; + } + + work_size = MAX(work_size, cur); + } break; + case GGML_OP_SUB: + case GGML_OP_DIV: + case GGML_OP_SQR: + case GGML_OP_SQRT: + case GGML_OP_LOG: + case GGML_OP_SUM: + case GGML_OP_SUM_ROWS: + case GGML_OP_MEAN: + case GGML_OP_REPEAT: + case GGML_OP_ABS: + case GGML_OP_SGN: + case GGML_OP_NEG: + case GGML_OP_STEP: + case GGML_OP_RELU: + { + node->n_tasks = 1; + } break; + case GGML_OP_MUL: + case GGML_OP_GELU: + case GGML_OP_SILU: + case GGML_OP_SILU_BACK: + case GGML_OP_NORM: + case GGML_OP_RMS_NORM: + case GGML_OP_RMS_NORM_BACK: + { + node->n_tasks = n_threads; + } break; + case GGML_OP_MUL_MAT: + { + node->n_tasks = n_threads; + + // TODO: use different scheduling for different matrix sizes + //const int nr0 = ggml_nrows(node->src0); + //const int nr1 = ggml_nrows(node->src1); + + //node->n_tasks = MIN(n_threads, MAX(1, nr0/128)); + //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks); + + size_t cur = 0; + +#if defined(GGML_USE_CUBLAS) + if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) { + node->n_tasks = 1; // TODO: this actually is doing nothing + // the threads are still spinning + cur = ggml_cuda_mul_mat_get_wsize(node->src0, node->src1, node); + } + else +#elif defined(GGML_USE_CLBLAST) + if (ggml_cl_can_mul_mat(node->src0, node->src1, node)) { + node->n_tasks = 1; // TODO: this actually is doing nothing + // the threads are still spinning + cur = ggml_cl_mul_mat_get_wsize(node->src0, node->src1, node); + } + else +#endif + if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) { +#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)|| defined(GGML_USE_CLBLAST) + if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) { + node->n_tasks = 1; // TODO: this actually is doing nothing + // the threads are still spinning + // here we need memory just for single 2D matrix from src0 + cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]); + } else { + cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1); + } +#else + cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1); +#endif + } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) { + cur = 0; +#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST) + if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) { + node->n_tasks = 1; + } +#endif + } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) { +#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST) + if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) { + node->n_tasks = 1; + cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]); + } else +#endif + { + const enum ggml_type type_q = get_quantize_fn(node->src0->type).vec_dot_type; + cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q]; + } + } else { + GGML_ASSERT(false); + } + + work_size = MAX(work_size, cur); + } break; + case GGML_OP_SCALE: + { + node->n_tasks = n_threads; + } break; + case GGML_OP_SET: + case GGML_OP_CONT: + case GGML_OP_RESHAPE: + case GGML_OP_VIEW: + case GGML_OP_PERMUTE: + case GGML_OP_TRANSPOSE: + case GGML_OP_GET_ROWS: + case GGML_OP_GET_ROWS_BACK: + case GGML_OP_DIAG: + case GGML_OP_DIAG_MASK_ZERO: + { + node->n_tasks = 1; + } break; + case GGML_OP_DIAG_MASK_INF: + case GGML_OP_SOFT_MAX: + case GGML_OP_ROPE: + case GGML_OP_ROPE_BACK: + { + node->n_tasks = n_threads; + } break; + case GGML_OP_ALIBI: + { + node->n_tasks = 1; //TODO + } break; + case GGML_OP_CONV_1D_1S: + case GGML_OP_CONV_1D_2S: + { + node->n_tasks = n_threads; + + GGML_ASSERT(node->src0->ne[3] == 1); + GGML_ASSERT(node->src1->ne[2] == 1); + GGML_ASSERT(node->src1->ne[3] == 1); + + size_t cur = 0; + const int nk = node->src0->ne[0]; + + if (node->src0->type == GGML_TYPE_F16 && + node->src1->type == GGML_TYPE_F32) { + cur = sizeof(ggml_fp16_t)*( + nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] + + ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1] + ); + } else if (node->src0->type == GGML_TYPE_F32 && + node->src1->type == GGML_TYPE_F32) { + cur = sizeof(float)*( + nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] + + ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1] + ); + } else { + GGML_ASSERT(false); + } + + work_size = MAX(work_size, cur); + } break; + case GGML_OP_FLASH_ATTN: + { + node->n_tasks = n_threads; + + size_t cur = 0; + + const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL); + + if (node->src1->type == GGML_TYPE_F32) { + cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1) + cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2 + } + + if (node->src1->type == GGML_TYPE_F16) { + cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1) + cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2 + } + + work_size = MAX(work_size, cur); + } break; + case GGML_OP_FLASH_FF: + { + node->n_tasks = n_threads; + + size_t cur = 0; + + if (node->src1->type == GGML_TYPE_F32) { + cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1) + cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2 + } + + if (node->src1->type == GGML_TYPE_F16) { + cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1) + cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2 + } + + work_size = MAX(work_size, cur); + } break; + case GGML_OP_MAP_UNARY: + case GGML_OP_MAP_BINARY: + { + node->n_tasks = 1; + } break; + case GGML_OP_NONE: + { + node->n_tasks = 1; + } break; + case GGML_OP_COUNT: + { + GGML_ASSERT(false); + } break; + } + } + + if (cgraph->work != NULL && work_size > cgraph->work_size) { + GGML_ASSERT(false); // TODO: better handling + } + + if (work_size > 0 && cgraph->work == NULL) { + cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1); + + GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size); + cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size); + } + } + + const int64_t perf_start_cycles = ggml_perf_cycles(); + const int64_t perf_start_time_us = ggml_perf_time_us(); + + for (int i = 0; i < cgraph->n_nodes; i++) { + GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes); + + struct ggml_tensor * node = cgraph->nodes[i]; + + // TODO: this could be used to avoid unnecessary computations, but it needs to be improved + //if (node->grad == NULL && node->perf_runs > 0) { + // continue; + //} + + const int64_t perf_node_start_cycles = ggml_perf_cycles(); + const int64_t perf_node_start_time_us = ggml_perf_time_us(); + + // INIT + struct ggml_compute_params params = { + /*.type =*/ GGML_TASK_INIT, + /*.ith =*/ 0, + /*.nth =*/ node->n_tasks, + /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0, + /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL, + }; + + ggml_compute_forward(¶ms, node); + + // COMPUTE + if (node->n_tasks > 1) { + if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) { + atomic_store(&state_shared.has_work, false); + } + + while (atomic_load(&state_shared.has_work)) { + ggml_lock_lock (&state_shared.spin); + ggml_lock_unlock(&state_shared.spin); + } + + // launch thread pool + for (int j = 0; j < n_threads - 1; j++) { + workers[j].params = (struct ggml_compute_params) { + .type = GGML_TASK_COMPUTE, + .ith = j + 1, + .nth = node->n_tasks, + .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0, + .wdata = cgraph->work ? cgraph->work->data : NULL, + }; + workers[j].node = node; + } + + atomic_fetch_sub(&state_shared.n_ready, 1); + + while (atomic_load(&state_shared.n_ready) > 0) { + ggml_lock_lock (&state_shared.spin); + ggml_lock_unlock(&state_shared.spin); + } + + atomic_store(&state_shared.has_work, true); + } + + params.type = GGML_TASK_COMPUTE; + ggml_compute_forward(¶ms, node); + + // wait for thread pool + if (node->n_tasks > 1) { + if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) { + atomic_store(&state_shared.has_work, false); + } + + while (atomic_load(&state_shared.has_work)) { + ggml_lock_lock (&state_shared.spin); + ggml_lock_unlock(&state_shared.spin); + } + + atomic_fetch_sub(&state_shared.n_ready, 1); + + while (atomic_load(&state_shared.n_ready) != 0) { + ggml_lock_lock (&state_shared.spin); + ggml_lock_unlock(&state_shared.spin); + } + } + + // FINALIZE + if (node->n_tasks > 1) { + if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) { + atomic_store(&state_shared.has_work, false); + } + + while (atomic_load(&state_shared.has_work)) { + ggml_lock_lock (&state_shared.spin); + ggml_lock_unlock(&state_shared.spin); + } + + // launch thread pool + for (int j = 0; j < n_threads - 1; j++) { + workers[j].params = (struct ggml_compute_params) { + .type = GGML_TASK_FINALIZE, + .ith = j + 1, + .nth = node->n_tasks, + .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0, + .wdata = cgraph->work ? cgraph->work->data : NULL, + }; + workers[j].node = node; + } + + atomic_fetch_sub(&state_shared.n_ready, 1); + + while (atomic_load(&state_shared.n_ready) > 0) { + ggml_lock_lock (&state_shared.spin); + ggml_lock_unlock(&state_shared.spin); + } + + atomic_store(&state_shared.has_work, true); + } + + params.type = GGML_TASK_FINALIZE; + ggml_compute_forward(¶ms, node); + + // wait for thread pool + if (node->n_tasks > 1) { + if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) { + atomic_store(&state_shared.has_work, false); + } + + while (atomic_load(&state_shared.has_work)) { + ggml_lock_lock (&state_shared.spin); + ggml_lock_unlock(&state_shared.spin); + } + + atomic_fetch_sub(&state_shared.n_ready, 1); + + while (atomic_load(&state_shared.n_ready) != 0) { + ggml_lock_lock (&state_shared.spin); + ggml_lock_unlock(&state_shared.spin); + } + } + + // performance stats (node) + { + int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles; + int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us; + + node->perf_runs++; + node->perf_cycles += perf_cycles_cur; + node->perf_time_us += perf_time_us_cur; + } + } + + // join thread pool + if (n_threads > 1) { + atomic_store(&state_shared.stop, true); + atomic_store(&state_shared.has_work, true); + + for (int j = 0; j < n_threads - 1; j++) { + int rc = ggml_thread_join(workers[j].thrd, NULL); + GGML_ASSERT(rc == 0); + UNUSED(rc); + } + + ggml_lock_destroy(&state_shared.spin); + } + + // performance stats (graph) + { + int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles; + int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us; + + cgraph->perf_runs++; + cgraph->perf_cycles += perf_cycles_cur; + cgraph->perf_time_us += perf_time_us_cur; + + GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n", + __func__, cgraph->perf_runs, + (double) perf_cycles_cur / (double) ggml_cycles_per_ms(), + (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs, + (double) perf_time_us_cur / 1000.0, + (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs); + } +} + +void ggml_graph_reset(struct ggml_cgraph * cgraph) { + for (int i = 0; i < cgraph->n_nodes; i++) { + struct ggml_tensor * grad = cgraph->grads[i]; + + if (grad) { + ggml_set_zero(grad); + } + } +} + +void ggml_graph_print(const struct ggml_cgraph * cgraph) { + int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0}; + + GGML_PRINT("=== GRAPH ===\n"); + + GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads); + GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size); + + GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes); + for (int i = 0; i < cgraph->n_nodes; i++) { + struct ggml_tensor * node = cgraph->nodes[i]; + + perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us); + + GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n", + i, + node->ne[0], node->ne[1], node->ne[2], + GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs, + (double) node->perf_cycles / (double) ggml_cycles_per_ms(), + (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs, + (double) node->perf_time_us / 1000.0, + (double) node->perf_time_us / 1000.0 / node->perf_runs); + } + + GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs); + for (int i = 0; i < cgraph->n_leafs; i++) { + struct ggml_tensor * node = cgraph->leafs[i]; + + GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n", + i, + node->ne[0], node->ne[1], + GGML_OP_LABEL[node->op]); + } + + for (int i = 0; i < GGML_OP_COUNT; i++) { + if (perf_total_per_op_us[i] == 0) { + continue; + } + + GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0); + } + + GGML_PRINT("========================================\n"); +} + +// check if node is part of the graph +static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) { + if (cgraph == NULL) { + return true; + } + + for (int i = 0; i < cgraph->n_nodes; i++) { + if (cgraph->nodes[i] == node) { + return true; + } + } + + return false; +} + +static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) { + for (int i = 0; i < cgraph->n_nodes; i++) { + struct ggml_tensor * parent = cgraph->nodes[i]; + + if (parent->grad == node) { + return parent; + } + } + + return NULL; +} + +void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) { + char color[16]; + + FILE * fp = fopen(filename, "w"); + GGML_ASSERT(fp); + + fprintf(fp, "digraph G {\n"); + fprintf(fp, " newrank = true;\n"); + fprintf(fp, " rankdir = LR;\n"); + + for (int i = 0; i < gb->n_nodes; i++) { + struct ggml_tensor * node = gb->nodes[i]; + + if (ggml_graph_get_parent(gb, node) != NULL) { + continue; + } + + if (node->is_param) { + snprintf(color, sizeof(color), "yellow"); + } else if (node->grad) { + if (ggml_graph_find(gf, node)) { + snprintf(color, sizeof(color), "green"); + } else { + snprintf(color, sizeof(color), "lightblue"); + } + } else { + snprintf(color, sizeof(color), "white"); + } + + fprintf(fp, " \"%p\" [ " + "style = filled; fillcolor = %s; shape = record; " + "label=\"", + (void *) node, color); + + if (strlen(node->name) > 0) { + fprintf(fp, "%s |", node->name); + } + + fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | %s", + i, node->ne[0], node->ne[1], + GGML_OP_SYMBOL[node->op]); + + if (node->grad) { + fprintf(fp, " | %s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]); + } else { + fprintf(fp, "\"; ]\n"); + } + } + + for (int i = 0; i < gb->n_leafs; i++) { + struct ggml_tensor * node = gb->leafs[i]; + + snprintf(color, sizeof(color), "pink"); + + fprintf(fp, " \"%p\" [ " + "style = filled; fillcolor = %s; shape = record; " + "label=\"", + (void *) node, color); + + if (strlen(node->name) > 0) { + fprintf(fp, "%s | ", node->name); + } + if (ggml_nelements(node) == 1) { + if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) { + fprintf(fp, "%d", ggml_get_i32_1d(node, 0)); + } + else { + fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, 0)); + } + } + else { + fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]); + } + fprintf(fp, "\"; ]\n"); + } + + for (int i = 0; i < gb->n_nodes; i++) { + struct ggml_tensor * node = gb->nodes[i]; + + struct ggml_tensor * parent = ggml_graph_get_parent(gb, node); + + if (node->src0) { + struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0); + + fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n", + parent0 ? (void *) parent0 : (void *) node->src0, + parent0 ? "g" : "x", + parent ? (void *) parent : (void *) node, + parent ? "g" : "x", + parent ? "empty" : "vee", + parent ? "dashed" : "solid"); + } + + if (node->src1) { + struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1); + + fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n", + parent1 ? (void *) parent1 : (void *) node->src1, + parent1 ? "g" : "x", + parent ? (void *) parent : (void *) node, + parent ? "g" : "x", + parent ? "empty" : "vee", + parent ? "dashed" : "solid"); + } + } + + for (int i = 0; i < gb->n_leafs; i++) { + struct ggml_tensor * node = gb->leafs[i]; + + if (node->src0) { + fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n", + (void *) node->src0, "x", + (void *) node, "x"); + } + + if (node->src1) { + fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n", + (void *) node->src1, "x", + (void *) node, "x"); + } + } + + fprintf(fp, "}\n"); + + fclose(fp); + + GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename); +} + +//////////////////////////////////////////////////////////////////////////////// + +static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) { + int i = 0; + for (int p = 0; p < np; ++p) { + const int64_t ne = ggml_nelements(ps[p]) ; + // TODO: add function to set tensor from array + for (int64_t j = 0; j < ne; ++j) { + ggml_set_f32_1d(ps[p], j, x[i++]); + } + } +} + +static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) { + int i = 0; + for (int p = 0; p < np; ++p) { + const int64_t ne = ggml_nelements(ps[p]) ; + // TODO: add function to get all elements at once + for (int64_t j = 0; j < ne; ++j) { + x[i++] = ggml_get_f32_1d(ps[p], j); + } + } +} + +static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) { + int i = 0; + for (int p = 0; p < np; ++p) { + const int64_t ne = ggml_nelements(ps[p]) ; + // TODO: add function to get all elements at once + for (int64_t j = 0; j < ne; ++j) { + g[i++] = ggml_get_f32_1d(ps[p]->grad, j); + } + } +} + +// +// ADAM +// +// ref: https://arxiv.org/pdf/1412.6980.pdf +// + +static enum ggml_opt_result ggml_opt_adam( + struct ggml_context * ctx, + struct ggml_opt_params params, + struct ggml_tensor * f, + struct ggml_cgraph * gf, + struct ggml_cgraph * gb) { + GGML_ASSERT(ggml_is_scalar(f)); + + gf->n_threads = params.n_threads; + gb->n_threads = params.n_threads; + + // these will store the parameters we want to optimize + struct ggml_tensor * ps[GGML_MAX_PARAMS]; + + int np = 0; + int nx = 0; + for (int i = 0; i < gf->n_nodes; ++i) { + if (gf->nodes[i]->is_param) { + GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op); + + GGML_ASSERT(np < GGML_MAX_PARAMS); + + ps[np++] = gf->nodes[i]; + nx += ggml_nelements(gf->nodes[i]); + } + } + + // constants + const float alpha = params.adam.alpha; + const float beta1 = params.adam.beta1; + const float beta2 = params.adam.beta2; + const float eps = params.adam.eps; + + float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters + float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient + float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared + float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment + float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment + float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat + float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat + + float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values + + // initialize + ggml_vec_set_f32(nx, m, 0.0f); + ggml_vec_set_f32(nx, v, 0.0f); + + // update view + ggml_opt_get_params(np, ps, x); + + // compute the function value + ggml_graph_reset (gf); + ggml_set_f32 (f->grad, 1.0f); + ggml_graph_compute(ctx, gb); + + float fx_prev = ggml_get_f32_1d(f, 0); + if (pf) { + pf[0] = fx_prev; + } + + int n_no_improvement = 0; + float fx_best = fx_prev; + + // run the optimizer + for (int t = 0; t < params.adam.n_iter; ++t) { + GGML_PRINT_DEBUG ("=== iter %d ===\n", t); + + GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0)); + GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0)); + GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0)); + + for (int i = 0; i < np; ++i) { + GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i, + ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0)); + } + + const int64_t t_start_wall = ggml_time_us(); + const int64_t t_start_cpu = ggml_cycles(); + UNUSED(t_start_wall); + UNUSED(t_start_cpu); + + { + // update the gradient + ggml_opt_get_grad(np, ps, g1); + + // m_t = beta1*m_t-1 + (1 - beta1)*g_t + ggml_vec_scale_f32(nx, m, beta1); + ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1); + + // g2 = g1^2 + ggml_vec_sqr_f32 (nx, g2, g1); + + // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2 + ggml_vec_scale_f32(nx, v, beta2); + ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2); + + // m^hat = m_t / (1 - beta1^t) + // v^hat = v_t / (1 - beta2^t) + // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps) + ggml_vec_cpy_f32 (nx, mh, m); + ggml_vec_cpy_f32 (nx, vh, v); + + ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1))); + ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1))); + + ggml_vec_sqrt_f32 (nx, vh, vh); + ggml_vec_acc1_f32 (nx, vh, eps); + + ggml_vec_div_f32 (nx, mh, mh, vh); + ggml_vec_sub_f32 (nx, x, x, mh); + + // update the parameters + ggml_opt_set_params(np, ps, x); + } + + ggml_graph_reset (gf); + ggml_set_f32 (f->grad, 1.0f); + ggml_graph_compute(ctx, gb); + + const float fx = ggml_get_f32_1d(f, 0); + + // check convergence + if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) { + GGML_PRINT_DEBUG("converged\n"); + + return GGML_OPT_OK; + } + + // delta-based convergence test + if (pf != NULL) { + // need at least params.past iterations to start checking for convergence + if (params.past <= t) { + const float rate = (pf[t%params.past] - fx)/fx; + + if (fabsf(rate) < params.delta) { + return GGML_OPT_OK; + } + } + + pf[t%params.past] = fx; + } + + // check for improvement + if (params.max_no_improvement > 0) { + if (fx_best > fx) { + fx_best = fx; + n_no_improvement = 0; + } else { + ++n_no_improvement; + + if (n_no_improvement >= params.max_no_improvement) { + return GGML_OPT_OK; + } + } + } + + fx_prev = fx; + + { + const int64_t t_end_cpu = ggml_cycles(); + GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC); + UNUSED(t_end_cpu); + + const int64_t t_end_wall = ggml_time_us(); + GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6); + UNUSED(t_end_wall); + } + } + + return GGML_OPT_DID_NOT_CONVERGE; +} + +// +// L-BFGS +// +// the L-BFGS implementation below is based on the following implementation: +// +// https://github.com/chokkan/liblbfgs +// + +struct ggml_lbfgs_iteration_data { + float alpha; + float ys; + float * s; + float * y; +}; + +static enum ggml_opt_result linesearch_backtracking( + struct ggml_context * ctx, + const struct ggml_opt_params * params, + int nx, + float * x, + float * fx, + float * g, + float * d, + float * step, + const float * xp, + struct ggml_tensor * f, + struct ggml_cgraph * gf, + struct ggml_cgraph * gb, + const int np, + struct ggml_tensor * ps[]) { + int count = 0; + + float width = 0.0f; + float dg = 0.0f; + float finit = 0.0f; + float dginit = 0.0f; + float dgtest = 0.0f; + + const float dec = 0.5f; + const float inc = 2.1f; + + if (*step <= 0.f) { + return GGML_LINESEARCH_INVALID_PARAMETERS; + } + + // compute the initial gradient in the search direction + ggml_vec_dot_f32(nx, &dginit, g, d); + + // make sure that d points to a descent direction + if (0 < dginit) { + return GGML_LINESEARCH_FAIL; + } + + // initialize local variables + finit = *fx; + dgtest = params->lbfgs.ftol*dginit; + + while (true) { + ggml_vec_cpy_f32(nx, x, xp); + ggml_vec_mad_f32(nx, x, d, *step); + + // evaluate the function and gradient values + { + ggml_opt_set_params(np, ps, x); + + ggml_graph_reset (gf); + ggml_set_f32 (f->grad, 1.0f); + ggml_graph_compute(ctx, gb); + + ggml_opt_get_grad(np, ps, g); + + *fx = ggml_get_f32_1d(f, 0); + } + + ++count; + + if (*fx > finit + (*step)*dgtest) { + width = dec; + } else { + // Armijo condition is satisfied + if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) { + return count; + } + + ggml_vec_dot_f32(nx, &dg, g, d); + + // check the Wolfe condition + if (dg < params->lbfgs.wolfe * dginit) { + width = inc; + } else { + if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) { + // regular Wolfe conditions + return count; + } + + if(dg > -params->lbfgs.wolfe*dginit) { + width = dec; + } else { + // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) + return count; + } + return count; + } + } + + if (*step < params->lbfgs.min_step) { + return GGML_LINESEARCH_MINIMUM_STEP; + } + if (*step > params->lbfgs.max_step) { + return GGML_LINESEARCH_MAXIMUM_STEP; + } + if (params->lbfgs.max_linesearch <= count) { + return GGML_LINESEARCH_MAXIMUM_ITERATIONS; + } + + (*step) *= width; + } + + return GGML_LINESEARCH_FAIL; +} + +static enum ggml_opt_result ggml_opt_lbfgs( + struct ggml_context * ctx, + struct ggml_opt_params params, + struct ggml_tensor * f, + struct ggml_cgraph * gf, + struct ggml_cgraph * gb) { + if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE || + params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) { + if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) { + return GGML_OPT_INVALID_WOLFE; + } + } + + gf->n_threads = params.n_threads; + gb->n_threads = params.n_threads; + + const int m = params.lbfgs.m; + + // these will store the parameters we want to optimize + struct ggml_tensor * ps[GGML_MAX_PARAMS]; + + int np = 0; + int nx = 0; + for (int i = 0; i < gf->n_nodes; ++i) { + if (gf->nodes[i]->is_param) { + GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op); + + GGML_ASSERT(np < GGML_MAX_PARAMS); + + ps[np++] = gf->nodes[i]; + nx += ggml_nelements(gf->nodes[i]); + } + } + + float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters + float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters + float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient + float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient + float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction + + float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values + + float fx = 0.0f; // cost function value + float xnorm = 0.0f; // ||x|| + float gnorm = 0.0f; // ||g|| + float step = 0.0f; + + // initialize x from the graph nodes + ggml_opt_get_params(np, ps, x); + + // the L-BFGS memory + struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m); + + for (int i = 0; i < m; ++i) { + lm[i].alpha = 0.0f; + lm[i].ys = 0.0f; + lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; + lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; + } + + // evaluate the function value and its gradient + { + ggml_opt_set_params(np, ps, x); + + ggml_graph_reset (gf); + ggml_set_f32 (f->grad, 1.0f); + ggml_graph_compute(ctx, gb); + + ggml_opt_get_grad(np, ps, g); + + fx = ggml_get_f32_1d(f, 0); + } + + if (pf) { + pf[0] = fx; + } + + float fx_best = fx; + + // search direction = -gradient + ggml_vec_neg_f32(nx, d, g); + + // ||x||, ||g|| + ggml_vec_norm_f32(nx, &xnorm, x); + ggml_vec_norm_f32(nx, &gnorm, g); + + if (xnorm < 1.0f) { + xnorm = 1.0f; + } + + // already optimized + if (gnorm/xnorm <= params.lbfgs.eps) { + return GGML_OPT_OK; + } + + // initial step + ggml_vec_norm_inv_f32(nx, &step, d); + + int j = 0; + int k = 1; + int ls = 0; + int end = 0; + int bound = 0; + int n_no_improvement = 0; + + float ys = 0.0f; + float yy = 0.0f; + float beta = 0.0f; + + while (true) { + // store the current position and gradient vectors + ggml_vec_cpy_f32(nx, xp, x); + ggml_vec_cpy_f32(nx, gp, g); + + ls = linesearch_backtracking(ctx, ¶ms, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps); + + if (ls < 0) { + // linesearch failed - go back to the previous point and return + ggml_vec_cpy_f32(nx, x, xp); + ggml_vec_cpy_f32(nx, g, gp); + + return ls; + } + + ggml_vec_norm_f32(nx, &xnorm, x); + ggml_vec_norm_f32(nx, &gnorm, g); + + GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0)); + + if (xnorm < 1.0f) { + xnorm = 1.0f; + } + if (gnorm/xnorm <= params.lbfgs.eps) { + // converged + return GGML_OPT_OK; + } + + // delta-based convergence test + if (pf != NULL) { + // need at least params.past iterations to start checking for convergence + if (params.past <= k) { + const float rate = (pf[k%params.past] - fx)/fx; + + if (fabsf(rate) < params.delta) { + return GGML_OPT_OK; + } + } + + pf[k%params.past] = fx; + } + + // check for improvement + if (params.max_no_improvement > 0) { + if (fx < fx_best) { + fx_best = fx; + n_no_improvement = 0; + } else { + n_no_improvement++; + + if (n_no_improvement >= params.max_no_improvement) { + return GGML_OPT_OK; + } + } + } + + if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) { + // reached the maximum number of iterations + return GGML_OPT_DID_NOT_CONVERGE; + } + + // update vectors s and y: + // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}. + // y_{k+1} = g_{k+1} - g_{k}. + // + ggml_vec_sub_f32(nx, lm[end].s, x, xp); + ggml_vec_sub_f32(nx, lm[end].y, g, gp); + + // compute scalars ys and yy: + // ys = y^t \cdot s -> 1 / \rho. + // yy = y^t \cdot y. + // + ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s); + ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y); + + lm[end].ys = ys; + + // find new search direction + // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS + + bound = (m <= k) ? m : k; + k++; + end = (end + 1)%m; + + // initialize search direction with -g + ggml_vec_neg_f32(nx, d, g); + + j = end; + for (int i = 0; i < bound; ++i) { + j = (j + m - 1) % m; + // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1} + ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d); + lm[j].alpha /= lm[j].ys; + // q_{i} = q_{i+1} - \alpha_{i} y_{i} + ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha); + } + + ggml_vec_scale_f32(nx, d, ys/yy); + + for (int i = 0; i < bound; ++i) { + // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i} + ggml_vec_dot_f32(nx, &beta, lm[j].y, d); + beta /= lm[j].ys; + // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j} + ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta); + j = (j + 1)%m; + } + + step = 1.0; + } + + return GGML_OPT_DID_NOT_CONVERGE; +} + +struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) { + struct ggml_opt_params result; + + switch (type) { + case GGML_OPT_ADAM: + { + result = (struct ggml_opt_params) { + .type = GGML_OPT_ADAM, + .n_threads = 1, + .past = 0, + .delta = 1e-5f, + + .max_no_improvement = 100, + + .print_forward_graph = true, + .print_backward_graph = true, + + .adam = { + .n_iter = 10000, + .alpha = 0.001f, + .beta1 = 0.9f, + .beta2 = 0.999f, + .eps = 1e-8f, + .eps_f = 1e-5f, + .eps_g = 1e-3f, + }, + }; + } break; + case GGML_OPT_LBFGS: + { + result = (struct ggml_opt_params) { + .type = GGML_OPT_LBFGS, + .n_threads = 1, + .past = 0, + .delta = 1e-5f, + + .max_no_improvement = 0, + + .print_forward_graph = true, + .print_backward_graph = true, + + .lbfgs = { + .m = 6, + .n_iter = 100, + .max_linesearch = 20, + + .eps = 1e-5f, + .ftol = 1e-4f, + .wolfe = 0.9f, + .min_step = 1e-20f, + .max_step = 1e+20f, + + .linesearch = GGML_LINESEARCH_DEFAULT, + }, + }; + } break; + } + + return result; +} + +enum ggml_opt_result ggml_opt( + struct ggml_context * ctx, + struct ggml_opt_params params, + struct ggml_tensor * f) { + bool free_ctx = false; + if (ctx == NULL) { + struct ggml_init_params params_ctx = { + .mem_size = 16*1024*1024, + .mem_buffer = NULL, + .no_alloc = false, + }; + + ctx = ggml_init(params_ctx); + if (ctx == NULL) { + return GGML_OPT_NO_CONTEXT; + } + + free_ctx = true; + } + + enum ggml_opt_result result = GGML_OPT_OK; + + // build forward + backward compute graphs + struct ggml_cgraph gf = ggml_build_forward (f); + struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, true); + + switch (params.type) { + case GGML_OPT_ADAM: + { + result = ggml_opt_adam(ctx, params, f, &gf, &gb); + } break; + case GGML_OPT_LBFGS: + { + result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb); + } break; + } + + if (params.print_forward_graph) { + ggml_graph_print (&gf); + ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot"); + } + + if (params.print_backward_graph) { + ggml_graph_print (&gb); + ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot"); + } + + if (free_ctx) { + ggml_free(ctx); + } + + return result; +} + +//////////////////////////////////////////////////////////////////////////////// + +size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) { + assert(k % QK4_0 == 0); + const int nb = k / QK4_0; + + for (int b = 0; b < n; b += k) { + block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0; + + quantize_row_q4_0_reference(src + b, y, k); + + for (int i = 0; i < nb; i++) { + for (int j = 0; j < QK4_0; j += 2) { + const uint8_t vi0 = y[i].qs[j/2] & 0x0F; + const uint8_t vi1 = y[i].qs[j/2] >> 4; + + hist[vi0]++; + hist[vi1]++; + } + } + } + + return (n/QK4_0*sizeof(block_q4_0)); +} + +size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) { + assert(k % QK4_1 == 0); + const int nb = k / QK4_1; + + for (int b = 0; b < n; b += k) { + block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1; + + quantize_row_q4_1_reference(src + b, y, k); + + for (int i = 0; i < nb; i++) { + for (int j = 0; j < QK4_1; j += 2) { + const uint8_t vi0 = y[i].qs[j/2] & 0x0F; + const uint8_t vi1 = y[i].qs[j/2] >> 4; + + hist[vi0]++; + hist[vi1]++; + } + } + } + + return (n/QK4_1*sizeof(block_q4_1)); +} + +size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) { + assert(k % QK5_0 == 0); + const int nb = k / QK5_0; + + for (int b = 0; b < n; b += k) { + block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0; + + quantize_row_q5_0_reference(src + b, y, k); + + for (int i = 0; i < nb; i++) { + uint32_t qh; + memcpy(&qh, &y[i].qh, sizeof(qh)); + + for (int j = 0; j < QK5_0; j += 2) { + const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4; + const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12)); + + // cast to 16 bins + const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2; + const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2; + + hist[vi0]++; + hist[vi1]++; + } + } + } + + return (n/QK5_0*sizeof(block_q5_0)); +} + +size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) { + assert(k % QK5_1 == 0); + const int nb = k / QK5_1; + + for (int b = 0; b < n; b += k) { + block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1; + + quantize_row_q5_1_reference(src + b, y, k); + + for (int i = 0; i < nb; i++) { + uint32_t qh; + memcpy(&qh, &y[i].qh, sizeof(qh)); + + for (int j = 0; j < QK5_1; j += 2) { + const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4; + const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12)); + + // cast to 16 bins + const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2; + const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2; + + hist[vi0]++; + hist[vi1]++; + } + } + } + + return (n/QK5_1*sizeof(block_q5_1)); +} + +size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) { + assert(k % QK8_0 == 0); + const int nb = k / QK8_0; + + for (int b = 0; b < n; b += k) { + block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0; + + quantize_row_q8_0_reference(src + b, y, k); + + for (int i = 0; i < nb; i++) { + for (int j = 0; j < QK8_0; ++j) { + const int8_t vi = y[i].qs[j]; + + hist[vi/16 + 8]++; + } + } + } + + return (n/QK8_0*sizeof(block_q8_0)); +} + +size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) { + size_t result = 0; + switch (type) { + case GGML_TYPE_Q4_0: + { + GGML_ASSERT(start % QK4_0 == 0); + block_q4_0 * block = (block_q4_0*)dst + start / QK4_0; + result = ggml_quantize_q4_0(src + start, block, n, n, hist); + } break; + case GGML_TYPE_Q4_1: + { + GGML_ASSERT(start % QK4_1 == 0); + block_q4_1 * block = (block_q4_1*)dst + start / QK4_1; + result = ggml_quantize_q4_1(src + start, block, n, n, hist); + } break; + case GGML_TYPE_Q5_0: + { + GGML_ASSERT(start % QK5_0 == 0); + block_q5_0 * block = (block_q5_0*)dst + start / QK5_0; + result = ggml_quantize_q5_0(src + start, block, n, n, hist); + } break; + case GGML_TYPE_Q5_1: + { + GGML_ASSERT(start % QK5_1 == 0); + block_q5_1 * block = (block_q5_1*)dst + start / QK5_1; + result = ggml_quantize_q5_1(src + start, block, n, n, hist); + } break; + case GGML_TYPE_Q8_0: + { + GGML_ASSERT(start % QK8_0 == 0); + block_q8_0 * block = (block_q8_0*)dst + start / QK8_0; + result = ggml_quantize_q8_0(src + start, block, n, n, hist); + } break; + default: + assert(false); + } + return result; +} + +//////////////////////////////////////////////////////////////////////////////// + +int ggml_cpu_has_avx(void) { +#if defined(__AVX__) + return 1; +#else + return 0; +#endif +} + +int ggml_cpu_has_avx2(void) { +#if defined(__AVX2__) + return 1; +#else + return 0; +#endif +} + +int ggml_cpu_has_avx512(void) { +#if defined(__AVX512F__) + return 1; +#else + return 0; +#endif +} + +int ggml_cpu_has_avx512_vbmi(void) { +#if defined(__AVX512VBMI__) + return 1; +#else + return 0; +#endif +} + +int ggml_cpu_has_avx512_vnni(void) { +#if defined(__AVX512VNNI__) + return 1; +#else + return 0; +#endif +} + +int ggml_cpu_has_fma(void) { +#if defined(__FMA__) + return 1; +#else + return 0; +#endif +} + +int ggml_cpu_has_neon(void) { +#if defined(__ARM_NEON) + return 1; +#else + return 0; +#endif +} + +int ggml_cpu_has_arm_fma(void) { +#if defined(__ARM_FEATURE_FMA) + return 1; +#else + return 0; +#endif +} + +int ggml_cpu_has_f16c(void) { +#if defined(__F16C__) + return 1; +#else + return 0; +#endif +} + +int ggml_cpu_has_fp16_va(void) { +#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) + return 1; +#else + return 0; +#endif +} + +int ggml_cpu_has_wasm_simd(void) { +#if defined(__wasm_simd128__) + return 1; +#else + return 0; +#endif +} + +int ggml_cpu_has_blas(void) { +#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) + return 1; +#else + return 0; +#endif +} + +int ggml_cpu_has_cublas(void) { +#if defined(GGML_USE_CUBLAS) + return 1; +#else + return 0; +#endif +} + +int ggml_cpu_has_clblast(void) { +#if defined(GGML_USE_CLBLAST) + return 1; +#else + return 0; +#endif +} + +int ggml_cpu_has_gpublas(void) { + return ggml_cpu_has_cublas() || ggml_cpu_has_clblast(); +} + +int ggml_cpu_has_sse3(void) { +#if defined(__SSE3__) + return 1; +#else + return 0; +#endif +} + +int ggml_cpu_has_vsx(void) { +#if defined(__POWER9_VECTOR__) + return 1; +#else + return 0; +#endif +} + +//////////////////////////////////////////////////////////////////////////////// + +//legacy functions +// quantization +// + +#if __AVX__ || __AVX2__ || __AVX512F__ +// Unpack 16 4-bit fields into 16 bytes +// The output vector contains 16 bytes, each one in [ 0 .. 15 ] interval +static inline __m128i bytes_from_nibbles_16(const uint8_t * rsi) +{ + // Load 8 bytes from memory + __m128i tmp = _mm_loadl_epi64( ( const __m128i* )rsi ); + + // Expand bytes into uint16_t values + __m128i bytes = _mm_cvtepu8_epi16( tmp ); + + // Unpack values into individual bytes + const __m128i lowMask = _mm_set1_epi8( 0xF ); + __m128i high = _mm_andnot_si128( lowMask, bytes ); + __m128i low = _mm_and_si128( lowMask, bytes ); + high = _mm_slli_epi16( high, 4 ); + bytes = _mm_or_si128( low, high ); + return bytes; +} + + + +#if __AVX2__ || __AVX512F__ + +// Unpack 32 4-bit fields into 32 bytes +// The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval +static inline __m256i bytes_from_nibbles_32_v2(const uint8_t * rsi) +{ + // Load 16 bytes from memory + __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi ); + + // Expand bytes into uint16_t values + __m256i bytes = _mm256_cvtepu8_epi16( tmp ); + + // Unpack values into individual bytes + const __m256i lowMask = _mm256_set1_epi8( 0xF ); + __m256i high = _mm256_andnot_si256( lowMask, bytes ); + __m256i low = _mm256_and_si256( lowMask, bytes ); + high = _mm256_slli_epi16( high, 4 ); + bytes = _mm256_or_si256( low, high ); + return bytes; +} +#endif +#endif + + +#if __ARM_NEON +#if !defined(__aarch64__) +int8x8_t vzip1_s8(int8x8_t a, int8x8_t b) { + int8x8_t res; + + res[0] = a[0]; res[1] = b[0]; + res[2] = a[1]; res[3] = b[1]; + res[4] = a[2]; res[5] = b[2]; + res[6] = a[3]; res[7] = b[3]; + + return res; +} + +int8x8_t vzip2_s8(int8x8_t a, int8x8_t b) { + int8x8_t res; + + res[0] = a[4]; res[1] = b[4]; + res[2] = a[5]; res[3] = b[5]; + res[4] = a[6]; res[5] = b[6]; + res[6] = a[7]; res[7] = b[7]; + + return res; +} + +uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) { + uint8x8_t res; + + res[0] = a[0]; res[1] = b[0]; + res[2] = a[1]; res[3] = b[1]; + res[4] = a[2]; res[5] = b[2]; + res[6] = a[3]; res[7] = b[3]; + + return res; +} + +uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) { + uint8x8_t res; + + res[0] = a[4]; res[1] = b[4]; + res[2] = a[5]; res[3] = b[5]; + res[4] = a[6]; res[5] = b[6]; + res[6] = a[7]; res[7] = b[7]; + + return res; +} + +int8x16_t vzip1q_s8(int8x16_t a, int8x16_t b) { + int8x16_t res; + + res[0] = a[0]; res[1] = b[0]; res[2] = a[1]; res[3] = b[1]; + res[4] = a[2]; res[5] = b[2]; res[6] = a[3]; res[7] = b[3]; + res[8] = a[4]; res[9] = b[4]; res[10] = a[5]; res[11] = b[5]; + res[12] = a[6]; res[13] = b[6]; res[14] = a[7]; res[15] = b[7]; + + return res; +} + +int8x16_t vzip2q_s8(int8x16_t a, int8x16_t b) { + int8x16_t res; + + res[0] = a[8]; res[1] = b[8]; res[2] = a[9]; res[3] = b[9]; + res[4] = a[10]; res[5] = b[10]; res[6] = a[11]; res[7] = b[11]; + res[8] = a[12]; res[9] = b[12]; res[10] = a[13]; res[11] = b[13]; + res[12] = a[14]; res[13] = b[14]; res[14] = a[15]; res[15] = b[15]; + + return res; +} + +uint8x16_t vzip1q_u8(uint8x16_t a, uint8x16_t b) { + uint8x16_t res; + + res[0] = a[0]; res[1] = b[0]; res[2] = a[1]; res[3] = b[1]; + res[4] = a[2]; res[5] = b[2]; res[6] = a[3]; res[7] = b[3]; + res[8] = a[4]; res[9] = b[4]; res[10] = a[5]; res[11] = b[5]; + res[12] = a[6]; res[13] = b[6]; res[14] = a[7]; res[15] = b[7]; + + return res; +} + +uint8x16_t vzip2q_u8(uint8x16_t a, uint8x16_t b) { + uint8x16_t res; + + res[0] = a[8]; res[1] = b[8]; res[2] = a[9]; res[3] = b[9]; + res[4] = a[10]; res[5] = b[10]; res[6] = a[11]; res[7] = b[11]; + res[8] = a[12]; res[9] = b[12]; res[10] = a[13]; res[11] = b[13]; + res[12] = a[14]; res[13] = b[14]; res[14] = a[15]; res[15] = b[15]; + + return res; +} +#endif +#endif + + +// reference implementation for deterministic creation of model files +static void quantize_row_q4_0_reference_v2(const float * restrict x, block_q4_0 * restrict y, int k) { + assert(k % QK4_0 == 0); + const int nb = k / QK4_0; + + uint8_t pp[QK4_0/2]; + + for (int i = 0; i < nb; i++) { + float amax = 0.0f; // absolute max + float max = 0.0f; + + for (int l = 0; l < QK4_0; l++) { + const float v = x[i*QK4_0 + l]; + if (amax < fabsf(v)) { + amax = fabsf(v); + max = v; + } + } + + const float d = max / -8; + const float id = d ? 1.0f/d : 0.0f; + + y[i].d = d; + + for (int l = 0; l < QK4_0; l += 2) { + const float v0 = x[i*QK4_0 + l + 0]*id; + const float v1 = x[i*QK4_0 + l + 1]*id; + + const uint8_t vi0 = MIN(15, (int8_t)roundf(v0) + 8); + const uint8_t vi1 = MIN(15, (int8_t)roundf(v1) + 8); + + assert(vi0 < 16); + assert(vi1 < 16); + + pp[l/2] = vi0 | (vi1 << 4); + } + + memcpy(y[i].qs, pp, sizeof(pp)); + } +} + +static void quantize_row_q4_0_v2(const float * restrict x, void * restrict vy, int k) { + assert(k % QK4_0 == 0); + const int nb = k / QK4_0; + + block_q4_0 * restrict y = vy; + +#if defined(__POWER9_VECTOR__) + const vector float v85 = vec_splats(8.5f); + const vector signed int v15 = vec_splats(15); + for (int i = 0; i < nb; i++) { + float max = 0.0f; + float min = 0.0f; + + vector float asrcv [8]; + vector float srcv [8]; + vector float maxv[8]; + vector float minv[8]; + + for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l); + //for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]); + + for (int l = 0; l < 4; l++) maxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]); + //for (int l = 0; l < 2; l++) maxv[4*l] = vec_max(maxv[4*l], maxv[4*l+2]); + maxv[0] = vec_max(maxv[0], maxv[2]); + maxv[4] = vec_max(maxv[4], maxv[6]); + //for (int l = 0; l < 1; l++) maxv[8*l] = vec_max(maxv[8*l], maxv[8*l+4]); + maxv[0] = vec_max(maxv[0], maxv[4]); + + for (int l = 0; l < 4; l++) minv[2*l] = vec_min(asrcv[2*l], asrcv[2*l+1]); + //for (int l = 0; l < 2; l++) minv[4*l] = vec_min(minv[4*l], minv[4*l+2]); + minv[0] = vec_min(minv[0], minv[2]); + minv[4] = vec_min(minv[4], minv[6]); + //for (int l = 0; l < 1; l++) minv[8*l] = vec_min(minv[8*l], minv[8*l+4]); + minv[0] = vec_min(minv[0], minv[4]); + + + max = MAX( + MAX(vec_extract(maxv[0], 0), vec_extract(maxv[0], 1)), + MAX(vec_extract(maxv[0], 2), vec_extract(maxv[0], 3))); + min = MIN( + MIN(vec_extract(minv[0], 0), vec_extract(minv[0], 1)), + MIN(vec_extract(minv[0], 2), vec_extract(minv[0], 3))); + + const float magnitude = max >= fabsf(min) ? max : min; + const float d = magnitude / -8; + const float id = d ? 1.0/d : 0.0; + + y[i].d = d; + + const vector float vid = vec_splats(id); + uint8_t * restrict pb = y[i].qs; + for (int l = 0; l < 8; l++) { + const vector float vf = vec_madd(srcv[l], vid, v85); + const vector signed int vi = vec_signed(vf); + const vector signed int vc = vec_min(vi, v15); + + pb[2*l + 0] = vec_extract(vc, 0) | (vec_extract(vc, 1) << 4); + pb[2*l + 1] = vec_extract(vc, 2) | (vec_extract(vc, 3) << 4); + } + } +#elif __ARM_NEON + for (int i = 0; i < nb; i++) { + float32x4_t srcv [8]; + float32x4_t maxv[8]; + float32x4_t minv[8]; + + for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l); + + for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l+1]); + for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l+2]); + for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l+4]); + + for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l+1]); + for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l+2]); + for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l+4]); + + const float max = vmaxvq_f32(maxv[0]); + const float min = vminvq_f32(minv[0]); + + const float magnitude = max >= fabsf(min) ? max : min; + const float d = magnitude / -8; + const float id = d ? 1.0f/d : 0.0f; + + y[i].d = d; + + for (int l = 0; l < 8; l++) { + const float32x4_t v = vmulq_n_f32(srcv[l], id); + const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f)); + const int32x4_t vi = vcvtq_s32_f32(vf); + const int32x4_t vc = vminq_s32(vi, vdupq_n_s32(15)); + + y[i].qs[2*l + 0] = vgetq_lane_s32(vc, 0) | (vgetq_lane_s32(vc, 1) << 4); + y[i].qs[2*l + 1] = vgetq_lane_s32(vc, 2) | (vgetq_lane_s32(vc, 3) << 4); + } + } +#elif defined(__AVX2__) + for (int i = 0; i < nb; i++) { + // Load elements into 4 AVX vectors + __m256 v0 = _mm256_loadu_ps( x ); + __m256 v1 = _mm256_loadu_ps( x + 8 ); + __m256 v2 = _mm256_loadu_ps( x + 16 ); + __m256 v3 = _mm256_loadu_ps( x + 24 ); + x += 32; + + // Compute max for the block + __m256 max = _mm256_max_ps( v0, v1 ); + __m256 maxTmp = _mm256_max_ps( v2, v3 ); + max = _mm256_max_ps( max, maxTmp ); + + __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( max, 1 ), _mm256_castps256_ps128( max ) ); + max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) ); + max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) ); + const float maxScalar = _mm_cvtss_f32( max4 ); + + // Compute min for the block + __m256 min = _mm256_min_ps( v0, v1 ); + __m256 minTmp = _mm256_min_ps( v2, v3 ); + min = _mm256_min_ps( min, minTmp ); + + __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( min, 1 ), _mm256_castps256_ps128( min ) ); + min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) ); + min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) ); + const float minScalar = _mm_cvtss_f32( min4 ); + + // Quantize these floats + const float magnitude = maxScalar >= fabsf(minScalar) ? maxScalar : minScalar; + const float d = magnitude / -8.0f; + y[i].d = d; + const float id = ( magnitude != 0.0f ) ? -8.0f / magnitude : 0.0f; + const __m256 mul = _mm256_set1_ps( id ); + + // Apply the multiplier + v0 = _mm256_mul_ps( v0, mul ); + v1 = _mm256_mul_ps( v1, mul ); + v2 = _mm256_mul_ps( v2, mul ); + v3 = _mm256_mul_ps( v3, mul ); + + // Round to nearest integer + v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST ); + v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST ); + v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST ); + v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST ); + + // Convert floats to integers + __m256i i0 = _mm256_cvtps_epi32( v0 ); + __m256i i1 = _mm256_cvtps_epi32( v1 ); + __m256i i2 = _mm256_cvtps_epi32( v2 ); + __m256i i3 = _mm256_cvtps_epi32( v3 ); + + // Convert int32 to int16 + i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15 + i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31 + // Convert int16 to int8 + i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 + + // We got our precious signed bytes, but the order is now wrong + // These AVX2 pack instructions process 16-byte pieces independently + // The following instruction is fixing the order + const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 ); + i0 = _mm256_permutevar8x32_epi32( i0, perm ); + + // Apply offset and clamp to translate the range from [ -8 .. +8 ] into [ +0 .. +15 ] + const __m256i off = _mm256_set1_epi8( 8 ); + i0 = _mm256_add_epi8( i0, off ); + const __m256i maxNibble = _mm256_set1_epi8( 15 ); + i0 = _mm256_min_epi8( i0, maxNibble ); + + // Compress the vector into 4 bit/value, and store + __m128i res = packNibbles( i0 ); + _mm_storeu_si128( ( __m128i* )y[i].qs, res ); + } +#elif defined(__AVX__) + for (int i = 0; i < nb; i++) { + // Load elements into 4 AVX vectors + __m256 v0 = _mm256_loadu_ps( x ); + __m256 v1 = _mm256_loadu_ps( x + 8 ); + __m256 v2 = _mm256_loadu_ps( x + 16 ); + __m256 v3 = _mm256_loadu_ps( x + 24 ); + x += 32; + + // Compute max for the block + __m256 max = _mm256_max_ps( v0, v1 ); + __m256 maxTmp = _mm256_max_ps( v2, v3 ); + max = _mm256_max_ps( max, maxTmp ); + + __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( max, 1 ), _mm256_castps256_ps128( max ) ); + max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) ); + max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) ); + const float maxScalar = _mm_cvtss_f32( max4 ); + + // Compute min for the block + __m256 min = _mm256_min_ps( v0, v1 ); + __m256 minTmp = _mm256_min_ps( v2, v3 ); + min = _mm256_min_ps( min, minTmp ); + + __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( min, 1 ), _mm256_castps256_ps128( min ) ); + min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) ); + min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) ); + const float minScalar = _mm_cvtss_f32( min4 ); + + // Quantize these floats + const float magnitude = maxScalar >= fabsf(minScalar) ? maxScalar : minScalar; + const float d = magnitude / -8.0f; + y[i].d = d; + const float id = ( magnitude != 0.0f ) ? -8.0f / magnitude : 0.0f; + const __m256 mul = _mm256_set1_ps( id ); + + // Apply the multiplier + v0 = _mm256_mul_ps( v0, mul ); + v1 = _mm256_mul_ps( v1, mul ); + v2 = _mm256_mul_ps( v2, mul ); + v3 = _mm256_mul_ps( v3, mul ); + + // Round to nearest integer + v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST ); + v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST ); + v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST ); + v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST ); + + // Convert floats to integers + __m256i i0 = _mm256_cvtps_epi32( v0 ); + __m256i i1 = _mm256_cvtps_epi32( v1 ); + __m256i i2 = _mm256_cvtps_epi32( v2 ); + __m256i i3 = _mm256_cvtps_epi32( v3 ); + + // Since we don't have in AVX some necessary functions, + // we split the registers in half and call AVX2 analogs from SSE + __m128i ni0 = _mm256_castsi256_si128( i0 ); + __m128i ni1 = _mm256_extractf128_si256( i0, 1); + __m128i ni2 = _mm256_castsi256_si128( i1 ); + __m128i ni3 = _mm256_extractf128_si256( i1, 1); + __m128i ni4 = _mm256_castsi256_si128( i2 ); + __m128i ni5 = _mm256_extractf128_si256( i2, 1); + __m128i ni6 = _mm256_castsi256_si128( i3 ); + __m128i ni7 = _mm256_extractf128_si256( i3, 1); + + // Convert int32 to int16 + ni0 = _mm_packs_epi32( ni0, ni1 ); + ni2 = _mm_packs_epi32( ni2, ni3 ); + ni4 = _mm_packs_epi32( ni4, ni5 ); + ni6 = _mm_packs_epi32( ni6, ni7 ); + // Convert int16 to int8 + ni0 = _mm_packs_epi16( ni0, ni2 ); + ni4 = _mm_packs_epi16( ni4, ni6 ); + + // Apply offset and clamp to translate the range from [ -8 .. +8 ] into [ +0 .. +15 ] + const __m128i off = _mm_set1_epi8( 8 ); + ni0 = _mm_add_epi8( ni0, off ); + ni4 = _mm_add_epi8( ni4, off ); + const __m128i maxNibble = _mm_set1_epi8( 15 ); + ni0 = _mm_min_epi8( ni0, maxNibble ); + ni4 = _mm_min_epi8( ni4, maxNibble ); + + // Compress the vector into 4 bit/value, and store + __m128i res = packNibbles( ni0, ni4 ); + _mm_storeu_si128( ( __m128i* )y[i].qs, res ); + } +#elif defined(__wasm_simd128__) + for (int i = 0; i < nb; i++) { + float max = 0.0f; + float min = 0.0f; + + v128_t srcv [8]; + v128_t maxv[8]; + v128_t minv[8]; + + for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l); + + for (int l = 0; l < 4; l++) maxv[2*l] = wasm_f32x4_max(srcv[2*l], srcv[2*l+1]); + for (int l = 0; l < 2; l++) maxv[4*l] = wasm_f32x4_max(maxv[4*l], maxv[4*l+2]); + for (int l = 0; l < 1; l++) maxv[8*l] = wasm_f32x4_max(maxv[8*l], maxv[8*l+4]); + + for (int l = 0; l < 4; l++) minv[2*l] = wasm_f32x4_min(srcv[2*l], srcv[2*l+1]); + for (int l = 0; l < 2; l++) minv[4*l] = wasm_f32x4_min(minv[4*l], minv[4*l+2]); + for (int l = 0; l < 1; l++) minv[8*l] = wasm_f32x4_min(minv[8*l], minv[8*l+4]); + + max = MAX( + MAX(wasm_f32x4_extract_lane(maxv[0], 0), wasm_f32x4_extract_lane(maxv[0], 1)), + MAX(wasm_f32x4_extract_lane(maxv[0], 2), wasm_f32x4_extract_lane(maxv[0], 3))); + min = MIN( + MIN(wasm_f32x4_extract_lane(minv[0], 0), wasm_f32x4_extract_lane(minv[0], 1)), + MIN(wasm_f32x4_extract_lane(minv[0], 2), wasm_f32x4_extract_lane(minv[0], 3))); + + const float magnitude = max >= fabsf(min) ? max : min; + const float d = magnitude / -8; + const float id = d ? 1.0/d : 0.0; + + y[i].d = d; + + for (int l = 0; l < 8; l++) { + const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id)); + const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f)); + const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf); + const v128_t vc = wasm_i32x4_min(vi, wasm_i32x4_splat(15)); + + y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vc, 0) | (wasm_i32x4_extract_lane(vc, 1) << 4); + y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vc, 2) | (wasm_i32x4_extract_lane(vc, 3) << 4); + } + } +#else + // scalar + quantize_row_q4_0_reference_v2(x, y, k); +#endif +} + +static void quantize_row_q4_1_reference_v2(const float * restrict x, void * restrict vy, int k) { + assert(k % QK4_1 == 0); + const int nb = k / QK4_1; + + block_q4_1 * restrict y = vy; + + uint8_t pp[QK4_1/2]; + + for (int i = 0; i < nb; i++) { + float min = FLT_MAX; + float max = -FLT_MAX; + + for (int l = 0; l < QK4_1; l++) { + const float v = x[i*QK4_1 + l]; + if (v < min) min = v; + if (v > max) max = v; + } + + const float d = (max - min) / ((1 << 4) - 1); + const float id = d ? 1.0f/d : 0.0f; + + y[i].d = d; + y[i].m = min; + + for (int l = 0; l < QK4_1; l += 2) { + const float v0 = (x[i*QK4_1 + l + 0] - min)*id; + const float v1 = (x[i*QK4_1 + l + 1] - min)*id; + + const uint8_t vi0 = roundf(v0); + const uint8_t vi1 = roundf(v1); + + assert(vi0 < 16); + assert(vi1 < 16); + + pp[l/2] = vi0 | (vi1 << 4); + } + + memcpy(y[i].qs, pp, sizeof(pp)); + } +} + +static void quantize_row_q4_1_v2(const float * restrict x, void * restrict vy, int k) { + assert(k % QK4_1 == 0); + + const int nb = k / QK4_1; + + block_q4_1 * restrict y = vy; + +#if defined(__AVX2__) + for (int i = 0; i < nb; i++) { + // Load elements into 4 AVX vectors + __m256 v0 = _mm256_loadu_ps( x ); + __m256 v1 = _mm256_loadu_ps( x + 8 ); + __m256 v2 = _mm256_loadu_ps( x + 16 ); + __m256 v3 = _mm256_loadu_ps( x + 24 ); + x += 32; + + // Compute max for the block + __m256 vmax; + vmax = _mm256_max_ps( v0, v1 ); + vmax = _mm256_max_ps( vmax, v2 ); + vmax = _mm256_max_ps( vmax, v3 ); + + __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) ); + max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) ); + max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) ); + const float maxScalar = _mm_cvtss_f32( max4 ); + + // Compute min for the block + __m256 vmin; + vmin = _mm256_min_ps( v0, v1 ); + vmin = _mm256_min_ps( vmin, v2 ); + vmin = _mm256_min_ps( vmin, v3 ); + + __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) ); + min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) ); + min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) ); + const float minScalar = _mm_cvtss_f32( min4 ); + + // Quantize these floats + const float d = (maxScalar - minScalar) / ((1 << 4) - 1); + const float id = d ? 1.0f/d : 0.0f; + + y[i].m = minScalar; + y[i].d = d; + + // x = (x-min)*id + const __m256 mul = _mm256_set1_ps( id ); + const __m256 off = _mm256_set1_ps( minScalar ); + v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul ); + v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul ); + v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul ); + v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul ); + + // Round to nearest integer + v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST ); + v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST ); + v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST ); + v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST ); + + // Convert floats to integers + __m256i i0 = _mm256_cvtps_epi32( v0 ); + __m256i i1 = _mm256_cvtps_epi32( v1 ); + __m256i i2 = _mm256_cvtps_epi32( v2 ); + __m256i i3 = _mm256_cvtps_epi32( v3 ); + + // Convert int32 to int16 + i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15 + i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31 + // Convert int16 to int8 + i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 + + // We got our precious signed bytes, but the order is now wrong + // These AVX2 pack instructions process 16-byte pieces independently + // The following instruction is fixing the order + const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 ); + i0 = _mm256_permutevar8x32_epi32( i0, perm ); + + // Compress the vector into 4 bit/value, and store + __m128i res = packNibbles( i0 ); + _mm_storeu_si128( ( __m128i* )y[i].qs, res ); + } +#elif __ARM_NEON + for (int i = 0; i < nb; i++) { + float32x4_t srcv[8]; + float32x4_t minv[8]; + float32x4_t maxv[8]; + + for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*QK4_1 + 4*l); + + for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]); + for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]); + for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]); + + for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]); + for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]); + for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]); + + const float min = vminvq_f32(minv[0]); + const float max = vmaxvq_f32(maxv[0]); + + const float d = (max - min) / ((1 << 4) - 1); + const float id = d ? 1.0f/d : 0.0f; + + y[i].d = d; + y[i].m = min; + + const float32x4_t minv0 = vdupq_n_f32(min); + + for (int l = 0; l < 8; l++) { + const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id); + const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(0.5f)); // needed to round to nearest + const int32x4_t vi = vcvtq_s32_f32(vf); + + y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4); + y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4); + } + } +#else + // scalar + quantize_row_q4_1_reference_v2(x, vy, k); +#endif +} + +// reference implementation for deterministic creation of model files +static void quantize_row_q4_2_reference_v2(const float * restrict x, block_q4_2 * restrict y, int k) { + assert(k % QK4_2 == 0); + + const int nb = k / QK4_2; + + for (int i = 0; i < nb; i++) { + float amax = 0.0f; // absolute max + float max = 0.0f; + + for (int l = 0; l < QK4_2; l++) { + const float v = x[i*QK4_2 + l]; + if (amax < fabsf(v)) { + amax = fabsf(v); + max = v; + } + } + + const float d = max / -8; + + const float id = d ? 1.0f/d : 0.0f; + + y[i].d = GGML_FP32_TO_FP16(d); + + for (int l = 0; l < QK4_2; l += 2) { + const float v0 = x[i*QK4_2 + l + 0]*id; + const float v1 = x[i*QK4_2 + l + 1]*id; + + const uint8_t vi0 = MIN(15, (uint8_t)(v0 + 8.5f)); + const uint8_t vi1 = MIN(15, (uint8_t)(v1 + 8.5f)); + + assert(vi0 < 16); + assert(vi1 < 16); + + y[i].qs[l/2] = vi0 | (vi1 << 4); + } + } +} + +static void quantize_row_q4_2_v2(const float * restrict x, void * restrict vy, int k) { + assert(k % QK4_2 == 0); + + block_q4_2 * restrict y = vy; + + quantize_row_q4_2_reference_v2(x, y, k); +} + +static void quantize_row_q4_3_reference_v2(const float * restrict x, block_q4_3 * restrict y, int k) { + assert(k % QK4_3 == 0); + const int nb = k / QK4_3; + + for (int i = 0; i < nb; i++) { + float min = FLT_MAX; + float max = -FLT_MAX; + + for (int l = 0; l < QK4_3; l++) { + const float v = x[i*QK4_3 + l]; + if (v < min) min = v; + if (v > max) max = v; + } + + const float d = (max - min) / ((1 << 4) - 1); + const float id = d ? 1.0f/d : 0.0f; + + y[i].d = GGML_FP32_TO_FP16(d); + y[i].m = GGML_FP32_TO_FP16(min); + + for (int l = 0; l < QK4_3; l += 2) { + const float v0 = (x[i*QK4_3 + l + 0] - min)*id; + const float v1 = (x[i*QK4_3 + l + 1] - min)*id; + + const uint8_t vi0 = (int) (v0 + 0.5f); + const uint8_t vi1 = (int) (v1 + 0.5f); + + assert(vi0 < 16); + assert(vi1 < 16); + + y[i].qs[l/2] = vi0 | (vi1 << 4); + } + } +} + +static void quantize_row_q4_3_v2(const float * restrict x, void * restrict vy, int k) { + assert(k % QK4_3 == 0); + + block_q4_3 * restrict y = vy; + + quantize_row_q4_3_reference_v2(x, y, k); +} + +static void quantize_row_q5_0_reference_v2(const float * restrict x, block_q5_0 * restrict y, int k) { + assert(k % QK5_0 == 0); + const int nb = k / QK5_0; + + for (int i = 0; i < nb; i++) { + float amax = 0.0f; // absolute max + float max = 0.0f; + + for (int l = 0; l < QK5_0; l++) { + const float v = x[i*QK5_0 + l]; + if (amax < fabsf(v)) { + amax = fabsf(v); + max = v; + } + } + + const float d = max / -16; + const float id = d ? 1.0f/d : 0.0f; + + y[i].d = GGML_FP32_TO_FP16(d); + + uint32_t qh = 0; + + for (int l = 0; l < QK5_0; l += 2) { + const float v0 = x[i*QK5_0 + l + 0]*id; + const float v1 = x[i*QK5_0 + l + 1]*id; + + const uint32_t vi0 = MIN(31, (int) (v0 + 16.5f)); + const uint32_t vi1 = MIN(31, (int) (v1 + 16.5f)); + + y[i].qs[l/2] = (vi0 & 0x0F) | ((vi1 & 0x0F) << 4); + + // get the 5-th bit and store it in qh at the right position + qh |= ((vi0 & 0x10) >> 4) << (l + 0); + qh |= ((vi1 & 0x10) >> 4) << (l + 1); + } + + memcpy(&y[i].qh, &qh, sizeof(y[i].qh)); + } +} + +static void quantize_row_q5_0_v2(const float * restrict x, void * restrict vy, int k) { + assert(k % QK5_0 == 0); + + block_q5_0 * restrict y = vy; + + quantize_row_q5_0_reference_v2(x, y, k); +} + +static void quantize_row_q5_1_reference_v2(const float * restrict x, block_q5_1 * restrict y, int k) { + assert(k % QK5_1 == 0); + const int nb = k / QK5_1; + + for (int i = 0; i < nb; i++) { + float min = FLT_MAX; + float max = -FLT_MAX; + + for (int l = 0; l < QK5_1; l++) { + const float v = x[i*QK5_1 + l]; + if (v < min) min = v; + if (v > max) max = v; + } + + const float d = (max - min) / ((1 << 5) - 1); + const float id = d ? 1.0f/d : 0.0f; + + y[i].d = GGML_FP32_TO_FP16(d); + y[i].m = GGML_FP32_TO_FP16(min); + + uint32_t qh = 0; + + for (int l = 0; l < QK5_1; l += 2) { + const float v0 = (x[i*QK5_1 + l + 0] - min)*id; + const float v1 = (x[i*QK5_1 + l + 1] - min)*id; + + const uint32_t vi0 = (int) (v0 + 0.5f); + const uint32_t vi1 = (int) (v1 + 0.5f); + + y[i].qs[l/2] = (vi0 & 0x0F) | ((vi1 & 0x0F) << 4); + + // get the 5-th bit and store it in qh at the right position + qh |= ((vi0 & 0x10) >> 4) << (l + 0); + qh |= ((vi1 & 0x10) >> 4) << (l + 1); + } + + memcpy(&y[i].qh, &qh, sizeof(y[i].qh)); + } +} + +static void quantize_row_q5_1_v2(const float * restrict x, void * restrict vy, int k) { + assert(k % QK5_1 == 0); + + block_q5_1 * restrict y = vy; + + quantize_row_q5_1_reference_v2(x, y, k); +} + +// reference implementation for deterministic creation of model files +static void quantize_row_q8_0_reference_v2(const float * restrict x, block_q8_0 * restrict y, int k) { + assert(k % QK8_0 == 0); + const int nb = k / QK8_0; + + for (int i = 0; i < nb; i++) { + float amax = 0.0f; // absolute max + + for (int l = 0; l < QK8_0; l++) { + const float v = x[i*QK8_0 + l]; + amax = MAX(amax, fabsf(v)); + } + + const float d = amax / ((1 << 7) - 1); + const float id = d ? 1.0f/d : 0.0f; + + y[i].d = d; + + for (int l = 0; l < QK8_0; ++l) { + const float v0 = x[i*QK8_0 + l]*id; + + y[i].qs[l] = roundf(v0); + } + } +} + +static void quantize_row_q8_0_v2(const float * restrict x, void * restrict vy, int k) { + assert(QK8_0 == 32); + assert(k % QK8_0 == 0); + const int nb = k / QK8_0; + + block_q8_0 * restrict y = vy; + +#if defined(__ARM_NEON) + for (int i = 0; i < nb; i++) { + float32x4_t srcv [8]; + float32x4_t asrcv[8]; + float32x4_t amaxv[8]; + + for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l); + for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]); + + for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]); + for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]); + for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]); + + const float amax = vmaxvq_f32(amaxv[0]); + + const float d = amax / ((1 << 7) - 1); + const float id = d ? 1.0f/d : 0.0f; + + y[i].d = d; + + for (int l = 0; l < 8; l++) { + const float32x4_t v = vmulq_n_f32(srcv[l], id); + const int32x4_t vi = vcvtnq_s32_f32(v); + + y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0); + y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1); + y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2); + y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3); + } + } +#elif defined(__AVX2__) || defined(__AVX__) + for (int i = 0; i < nb; i++) { + // Load elements into 4 AVX vectors + __m256 v0 = _mm256_loadu_ps( x ); + __m256 v1 = _mm256_loadu_ps( x + 8 ); + __m256 v2 = _mm256_loadu_ps( x + 16 ); + __m256 v3 = _mm256_loadu_ps( x + 24 ); + x += 32; + + // Compute max(abs(e)) for the block + const __m256 signBit = _mm256_set1_ps( -0.0f ); + __m256 maxAbs = _mm256_andnot_ps( signBit, v0 ); + maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) ); + maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) ); + maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) ); + + __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) ); + max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) ); + max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) ); + const float maxScalar = _mm_cvtss_f32( max4 ); + + // Quantize these floats + const float d = maxScalar / 127.f; + y[i].d = d; + const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f; + const __m256 mul = _mm256_set1_ps( id ); + + // Apply the multiplier + v0 = _mm256_mul_ps( v0, mul ); + v1 = _mm256_mul_ps( v1, mul ); + v2 = _mm256_mul_ps( v2, mul ); + v3 = _mm256_mul_ps( v3, mul ); + + // Round to nearest integer + v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST ); + v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST ); + v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST ); + v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST ); + + // Convert floats to integers + __m256i i0 = _mm256_cvtps_epi32( v0 ); + __m256i i1 = _mm256_cvtps_epi32( v1 ); + __m256i i2 = _mm256_cvtps_epi32( v2 ); + __m256i i3 = _mm256_cvtps_epi32( v3 ); + +#if defined(__AVX2__) + // Convert int32 to int16 + i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15 + i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31 + // Convert int16 to int8 + i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 + + // We got our precious signed bytes, but the order is now wrong + // These AVX2 pack instructions process 16-byte pieces independently + // The following instruction is fixing the order + const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 ); + i0 = _mm256_permutevar8x32_epi32( i0, perm ); + + _mm256_storeu_si256((__m256i *)y[i].qs, i0); +#else + // Since we don't have in AVX some necessary functions, + // we split the registers in half and call AVX2 analogs from SSE + __m128i ni0 = _mm256_castsi256_si128( i0 ); + __m128i ni1 = _mm256_extractf128_si256( i0, 1); + __m128i ni2 = _mm256_castsi256_si128( i1 ); + __m128i ni3 = _mm256_extractf128_si256( i1, 1); + __m128i ni4 = _mm256_castsi256_si128( i2 ); + __m128i ni5 = _mm256_extractf128_si256( i2, 1); + __m128i ni6 = _mm256_castsi256_si128( i3 ); + __m128i ni7 = _mm256_extractf128_si256( i3, 1); + + // Convert int32 to int16 + ni0 = _mm_packs_epi32( ni0, ni1 ); + ni2 = _mm_packs_epi32( ni2, ni3 ); + ni4 = _mm_packs_epi32( ni4, ni5 ); + ni6 = _mm_packs_epi32( ni6, ni7 ); + // Convert int16 to int8 + ni0 = _mm_packs_epi16( ni0, ni2 ); + ni4 = _mm_packs_epi16( ni4, ni6 ); + + _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0); + _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4); +#endif + } +#else + // scalar + quantize_row_q8_0_reference_v2(x, y, k); +#endif +} + +// reference implementation for deterministic creation of model files +static void quantize_row_q8_1_reference_v2(const float * restrict x, block_q8_1_v2 * restrict y, int k) { + assert(QK8_1 == 32); + assert(k % QK8_1 == 0); + const int nb = k / QK8_1; + + for (int i = 0; i < nb; i++) { + float amax = 0.0f; // absolute max + + for (int l = 0; l < QK8_1; l++) { + const float v = x[i*QK8_1 + l]; + amax = MAX(amax, fabsf(v)); + } + + const float d = amax / ((1 << 7) - 1); + const float id = d ? 1.0f/d : 0.0f; + + y[i].d = d; + + int sum0 = 0; + int sum1 = 0; + + for (int l = 0; l < QK8_1/2; ++l) { + const float v0 = x[i*QK8_1 + l]*id; + const float v1 = x[i*QK8_1 + QK8_1/2 + l]*id; + + y[i].qs[ l] = roundf(v0); + y[i].qs[QK8_1/2 + l] = roundf(v1); + + sum0 += y[i].qs[ l]; + sum1 += y[i].qs[QK8_1/2 + l]; + } + + y[i].s0 = d * sum0; + y[i].s1 = d * sum1; + } +} + +static void quantize_row_q8_1_v2(const float * restrict x, void * restrict vy, int k) { + assert(k % QK8_1 == 0); + const int nb = k / QK8_1; + + block_q8_1_v2 * restrict y = vy; + +#if defined(__ARM_NEON) + for (int i = 0; i < nb; i++) { + float32x4_t srcv [8]; + float32x4_t asrcv[8]; + float32x4_t amaxv[8]; + + for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l); + for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]); + + for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]); + for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]); + for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]); + + const float amax = vmaxvq_f32(amaxv[0]); + + const float d = amax / ((1 << 7) - 1); + const float id = d ? 1.0f/d : 0.0f; + + y[i].d = d; + + int32x4_t accv0 = vdupq_n_s32(0); + int32x4_t accv1 = vdupq_n_s32(0); + + // low half + for (int l = 0; l < 4; l++) { + const float32x4_t v = vmulq_n_f32(srcv[l], id); + const int32x4_t vi = vcvtnq_s32_f32(v); + + y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0); + y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1); + y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2); + y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3); + + accv0 = vaddq_s32(accv0, vi); + } + + // high half + for (int l = 4; l < 8; l++) { + const float32x4_t v = vmulq_n_f32(srcv[l], id); + const int32x4_t vi = vcvtnq_s32_f32(v); + + y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0); + y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1); + y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2); + y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3); + + accv1 = vaddq_s32(accv1, vi); + } + + const int32_t sum0 = vaddvq_s32(accv0); + const int32_t sum1 = vaddvq_s32(accv1); + + y[i].s0 = d * sum0; + y[i].s1 = d * sum1; + } +#elif defined(__AVX2__) || defined(__AVX__) + for (int i = 0; i < nb; i++) { + // Load elements into 4 AVX vectors + __m256 v0 = _mm256_loadu_ps( x ); + __m256 v1 = _mm256_loadu_ps( x + 8 ); + __m256 v2 = _mm256_loadu_ps( x + 16 ); + __m256 v3 = _mm256_loadu_ps( x + 24 ); + x += 32; + + // Compute max(abs(e)) for the block + const __m256 signBit = _mm256_set1_ps( -0.0f ); + __m256 maxAbs = _mm256_andnot_ps( signBit, v0 ); + maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) ); + maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) ); + maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) ); + + __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) ); + max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) ); + max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) ); + const float maxScalar = _mm_cvtss_f32( max4 ); + + // Quantize these floats + const float d = maxScalar / 127.f; + y[i].d = d; + const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f; + const __m256 mul = _mm256_set1_ps( id ); + + // Apply the multiplier + v0 = _mm256_mul_ps( v0, mul ); + v1 = _mm256_mul_ps( v1, mul ); + v2 = _mm256_mul_ps( v2, mul ); + v3 = _mm256_mul_ps( v3, mul ); + + // Round to nearest integer + v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST ); + v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST ); + v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST ); + v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST ); + + // Convert floats to integers + __m256i i0 = _mm256_cvtps_epi32( v0 ); + __m256i i1 = _mm256_cvtps_epi32( v1 ); + __m256i i2 = _mm256_cvtps_epi32( v2 ); + __m256i i3 = _mm256_cvtps_epi32( v3 ); + +#if defined(__AVX2__) + // Compute the sum of the quants and set y[i].s + //y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3))); + y[i].s0 = d * hsum_i32_8(_mm256_add_epi32(i0, i1)); + y[i].s1 = d * hsum_i32_8(_mm256_add_epi32(i2, i3)); + + // Convert int32 to int16 + i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15 + i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31 + // Convert int16 to int8 + i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 + + // We got our precious signed bytes, but the order is now wrong + // These AVX2 pack instructions process 16-byte pieces independently + // The following instruction is fixing the order + const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 ); + i0 = _mm256_permutevar8x32_epi32( i0, perm ); + + _mm256_storeu_si256((__m256i *)y[i].qs, i0); +#else + // Since we don't have in AVX some necessary functions, + // we split the registers in half and call AVX2 analogs from SSE + __m128i ni0 = _mm256_castsi256_si128( i0 ); + __m128i ni1 = _mm256_extractf128_si256( i0, 1); + __m128i ni2 = _mm256_castsi256_si128( i1 ); + __m128i ni3 = _mm256_extractf128_si256( i1, 1); + __m128i ni4 = _mm256_castsi256_si128( i2 ); + __m128i ni5 = _mm256_extractf128_si256( i2, 1); + __m128i ni6 = _mm256_castsi256_si128( i3 ); + __m128i ni7 = _mm256_extractf128_si256( i3, 1); + + // Compute the sum of the quants and set y[i].s + const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3)); + const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7)); + y[i].s0 = d * hsum_i32_4(s0); + y[i].s1 = d * hsum_i32_4(s1); + + // Convert int32 to int16 + ni0 = _mm_packs_epi32( ni0, ni1 ); + ni2 = _mm_packs_epi32( ni2, ni3 ); + ni4 = _mm_packs_epi32( ni4, ni5 ); + ni6 = _mm_packs_epi32( ni6, ni7 ); + // Convert int16 to int8 + ni0 = _mm_packs_epi16( ni0, ni2 ); + ni4 = _mm_packs_epi16( ni4, ni6 ); + + _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0); + _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4); +#endif + } +#else + // scalar + quantize_row_q8_1_reference_v2(x, y, k); +#endif +} + +static void dequantize_row_q4_0_v2(const void * restrict vx, float * restrict y, int k) { + assert(k % QK4_0 == 0); + const int nb = k / QK4_0; + + const block_q4_0 * restrict x = vx; + +#if defined(__AVX2__) + for (int i = 0; i < nb; i++) { + // scale factor + const __m256 d_v = _mm256_broadcast_ss(&x[i].d); + + const uint8_t * restrict pp = x[i].qs; + + for (int l = 0; l < QK4_0; l += 32) { + // Load 32x4-bit integers into 32x8-bit integers + __m256i vx8 = bytes_from_nibbles_32_v2(pp+l/2); + + // Subtract 8 from the integers + vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8)); + + // Convert to 16-bit int + const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0)); + const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1)); + + // Convert to 32-bit int -> float 32 + const __m256 vf[4] = { + _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))), + _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))), + _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))), + _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1))) + }; + + // Scale and store + for (int j = 0; j < 4; j++) { + const __m256 result = _mm256_mul_ps(vf[j], d_v); + _mm256_storeu_ps(y + i * QK4_0 + l + j*8, result); + } + } + } +#elif defined(__ARM_NEON) + for (int i = 0; i < nb; i++) { + const float32x4_t vd = vdupq_n_f32(x[i].d); + + const uint8_t * restrict pp = x[i].qs; + + for (int l = 0; l < QK4_0; l += 16) { + // Load 16x4-bit integers into 8x8-bit integers + const uint8x8_t v8 = vld1_u8(pp + l/2); + + // Expand 4-bit qs to 8-bit bytes + const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0F)); + const uint8x8_t v1 = vshr_n_u8(v8, 4); + + // Convert to signed 8-bit integers + const int8x8_t vs_0 = vreinterpret_s8_u8(v0); + const int8x8_t vs_1 = vreinterpret_s8_u8(v1); + + // Subtract 8 from each byte + const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8)); + const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8)); + + // Interleave and combine + const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1); + const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1); + + const int8x16_t vq = vcombine_s8(vx_0, vx_1); + + // convert to 2x int16x8_t + const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq)); + const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq)); + + // convert to 4x float32x4_t + const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0))); + const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0))); + const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1))); + const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1))); + + // Multiply by d + const float32x4_t r0 = vmulq_f32(vf_0, vd); + const float32x4_t r1 = vmulq_f32(vf_1, vd); + const float32x4_t r2 = vmulq_f32(vf_2, vd); + const float32x4_t r3 = vmulq_f32(vf_3, vd); + + // Store + vst1q_f32(y + i*QK4_0 + l + 0, r0); + vst1q_f32(y + i*QK4_0 + l + 4, r1); + vst1q_f32(y + i*QK4_0 + l + 8, r2); + vst1q_f32(y + i*QK4_0 + l + 12, r3); + } + } +#else + // scalar + for (int i = 0; i < nb; i++) { + const float d = x[i].d; + + const uint8_t * restrict pp = x[i].qs; + + for (int l = 0; l < QK4_0; l += 2) { + const uint8_t vi = pp[l/2]; + + const int8_t vi0 = vi & 0x0F; + const int8_t vi1 = vi >> 4; + + const float v0 = (vi0 - 8)*d; + const float v1 = (vi1 - 8)*d; + + //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1); + + y[i*QK4_0 + l + 0] = v0; + y[i*QK4_0 + l + 1] = v1; + + assert(!isnan(y[i*QK4_0 + l + 0])); + assert(!isnan(y[i*QK4_0 + l + 1])); + } + } +#endif +} + +static void dequantize_row_q4_1_v2(const void * restrict vx, float * restrict y, int k) { + assert(k % QK4_1 == 0); + const int nb = k / QK4_1; + + const block_q4_1 * restrict x = vx; + +#if defined(__AVX2__) + for (int i = 0; i < nb; i++) { + const __m256 d_v = _mm256_broadcast_ss(&x[i].d); + const __m256 d_m = _mm256_broadcast_ss(&x[i].m); + + const uint8_t * restrict pp = x[i].qs; + + for (int l = 0; l < QK4_1; l += 32) { + // Load 32x4-bit integers into 32x8-bit integers + __m256i vx8 = bytes_from_nibbles_32_v2(pp+l/2); + + // Convert to 16-bit int + const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0)); + const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1)); + + // Convert to 32-bit int -> float 32 + const __m256 vf[4] = { + _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))), + _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))), + _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))), + _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1))) + }; + + // Scale, add m and store + for (int j = 0; j < 4; j++) { + const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m); + _mm256_storeu_ps(y + i * QK4_1 + l + j*8, result); + } + } + } +#elif defined(__ARM_NEON) + for (int i = 0; i < nb; i++) { + const float32x4_t vd = vdupq_n_f32(x[i].d); + const float32x4_t vm = vdupq_n_f32(x[i].m); + + const uint8_t * restrict pp = x[i].qs; + + for (int l = 0; l < QK4_1; l += 16) { + // Load 16x4-bit integers into 8x8-bit integers + const uint8x8_t v8 = vld1_u8(pp + l/2); + + // Expand 4-bit qs to 8-bit bytes + const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0F)); + const uint8x8_t v1 = vshr_n_u8(v8, 4); + + // Interleave and combine + const uint8x8_t vx_0 = vzip1_u8(v0, v1); + const uint8x8_t vx_1 = vzip2_u8(v0, v1); + + const uint8x16_t vq = vcombine_u8(vx_0, vx_1); + + // convert to 2x uint16x8_t + const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq)); + const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq)); + + // convert to 4x float32x4_t + const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0))); + const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0))); + const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1))); + const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1))); + + // multiply by d and add m + const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd); + const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd); + const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd); + const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd); + + // Store + vst1q_f32(y + i*QK4_1 + l + 0, r0); + vst1q_f32(y + i*QK4_1 + l + 4, r1); + vst1q_f32(y + i*QK4_1 + l + 8, r2); + vst1q_f32(y + i*QK4_1 + l + 12, r3); + } + } +#else + for (int i = 0; i < nb; i++) { + const float d = x[i].d; + const float m = x[i].m; + + const uint8_t * restrict pp = x[i].qs; + + for (int l = 0; l < QK4_1; l += 2) { + const uint8_t vi = pp[l/2]; + + const int8_t vi0 = vi & 0x0F; + const int8_t vi1 = vi >> 4; + + const float v0 = vi0*d + m; + const float v1 = vi1*d + m; + + y[i*QK4_1 + l + 0] = v0; + y[i*QK4_1 + l + 1] = v1; + + assert(!isnan(y[i*QK4_1 + l + 0])); + assert(!isnan(y[i*QK4_1 + l + 1])); + } + } +#endif +} + +static void dequantize_row_q4_2_v2(const void * restrict vx, float * restrict y, int k) { + assert(k % QK4_2 == 0); + const int nb = k / QK4_2; + + const block_q4_2 * restrict x = vx; + + for (int i = 0; i < nb; i++) { + const float d = GGML_FP16_TO_FP32(x[i].d); + + const uint8_t * restrict pp = x[i].qs; + + for (int l = 0; l < QK4_2; l += 2) { + const uint8_t vi = pp[l/2]; + + const int8_t vi0 = vi & 0x0F; + const int8_t vi1 = vi >> 4; + + const float v0 = (vi0 - 8)*d; + const float v1 = (vi1 - 8)*d; + + y[i*QK4_2 + l + 0] = v0; + y[i*QK4_2 + l + 1] = v1; + + assert(!isnan(y[i*QK4_2 + l + 0])); + assert(!isnan(y[i*QK4_2 + l + 1])); + } + } +} + +static void dequantize_row_q4_3_v2(const void * restrict vx, float * restrict y, int k) { + assert(k % QK4_3 == 0); + const int nb = k / QK4_3; + + const block_q4_3 * restrict x = vx; + + for (int i = 0; i < nb; i++) { + const float d = GGML_FP16_TO_FP32(x[i].d); + const float m = GGML_FP16_TO_FP32(x[i].m); + + const uint8_t * restrict pp = x[i].qs; + + for (int l = 0; l < QK4_3; l += 2) { + const uint8_t vi = pp[l/2]; + + const int8_t vi0 = vi & 0x0F; + const int8_t vi1 = vi >> 4; + + const float v0 = vi0*d + m; + const float v1 = vi1*d + m; + + y[i*QK4_3 + l + 0] = v0; + y[i*QK4_3 + l + 1] = v1; + + assert(!isnan(y[i*QK4_3 + l + 0])); + assert(!isnan(y[i*QK4_3 + l + 1])); + } + } +} + +static void dequantize_row_q5_0_v2(const void * restrict vx, float * restrict y, int k) { + assert(k % QK5_0 == 0); + const int nb = k / QK5_0; + + const block_q5_0 * restrict x = vx; + + for (int i = 0; i < nb; i++) { + const float d = GGML_FP16_TO_FP32(x[i].d); + + const uint8_t * restrict pp = x[i].qs; + + uint32_t qh; + memcpy(&qh, x[i].qh, sizeof(qh)); + + for (int l = 0; l < QK5_0; l += 2) { + const uint8_t vi = pp[l/2]; + + // extract the 5-th bit from qh + const uint8_t vh0 = ((qh & (1u << (l + 0))) >> (l + 0)) << 4; + const uint8_t vh1 = ((qh & (1u << (l + 1))) >> (l + 1)) << 4; + + const int8_t vi0 = (vi & 0x0F) | vh0; + const int8_t vi1 = (vi >> 4) | vh1; + + const float v0 = (vi0 - 16)*d; + const float v1 = (vi1 - 16)*d; + + y[i*QK5_0 + l + 0] = v0; + y[i*QK5_0 + l + 1] = v1; + + assert(!isnan(y[i*QK5_0 + l + 0])); + assert(!isnan(y[i*QK5_0 + l + 1])); + } + } +} + +static void dequantize_row_q5_1_v2(const void * restrict vx, float * restrict y, int k) { + assert(k % QK5_1 == 0); + const int nb = k / QK5_1; + + const block_q5_1 * restrict x = vx; + + for (int i = 0; i < nb; i++) { + const float d = GGML_FP16_TO_FP32(x[i].d); + const float m = GGML_FP16_TO_FP32(x[i].m); + + const uint8_t * restrict pp = x[i].qs; + + uint32_t qh; + memcpy(&qh, x[i].qh, sizeof(qh)); + + for (int l = 0; l < QK5_1; l += 2) { + const uint8_t vi = pp[l/2]; + + // extract the 5-th bit from qh + const uint8_t vh0 = ((qh & (1u << (l + 0))) >> (l + 0)) << 4; + const uint8_t vh1 = ((qh & (1u << (l + 1))) >> (l + 1)) << 4; + + const uint8_t vi0 = (vi & 0x0F) | vh0; + const uint8_t vi1 = (vi >> 4) | vh1; + + const float v0 = vi0*d + m; + const float v1 = vi1*d + m; + + y[i*QK5_1 + l + 0] = v0; + y[i*QK5_1 + l + 1] = v1; + + assert(!isnan(y[i*QK5_1 + l + 0])); + assert(!isnan(y[i*QK5_1 + l + 1])); + } + } +} + +static void dequantize_row_q8_0_v2(const void * restrict vx, float * restrict y, int k) { + assert(k % QK8_0 == 0); + const int nb = k / QK8_0; + + const block_q8_0 * restrict x = vx; + + for (int i = 0; i < nb; i++) { + const float d = x[i].d; + + const int8_t * restrict pp = x[i].qs; + + for (int l = 0; l < QK8_0; ++l) { + y[i*QK8_0 + l] = pp[l]*d; + } + } +} + +static void ggml_vec_dot_q4_0_q8_0_v2(const int n, float * restrict s, const void * restrict vx, const void * restrict vy); +static void ggml_vec_dot_q4_1_q8_1_v2(const int n, float * restrict s, const void * restrict vx, const void * restrict vy); +static void ggml_vec_dot_q4_2_q8_0_v2(const int n, float * restrict s, const void * restrict vx, const void * restrict vy); +static void ggml_vec_dot_q4_3_q8_1_v2(const int n, float * restrict s, const void * restrict vx, const void * restrict vy); +static void ggml_vec_dot_q5_0_q8_0_v2(const int n, float * restrict s, const void * restrict vx, const void * restrict vy); +static void ggml_vec_dot_q5_1_q8_1_v2(const int n, float * restrict s, const void * restrict vx, const void * restrict vy); +static void ggml_vec_dot_q8_0_q8_0_v2(const int n, float * restrict s, const void * restrict vx, const void * restrict vy); + +inline void SetQuantsUnshuffled(bool unshuffle) +{ + quants_unshuffled = unshuffle; +} +inline bool GetQuantsUnshuffled() +{ + return quants_unshuffled; +} + +//TODO: integrate backwards compat +static const quantize_fns_t quantize_fns_v2[GGML_TYPE_COUNT] = { + [GGML_TYPE_Q4_0] = { + .dequantize_row_q = dequantize_row_q4_0_v2, + .quantize_row_q = quantize_row_q4_0_v2, + .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference_v2, + .quantize_row_q_dot = quantize_row_q8_0_v2, + .vec_dot_q = ggml_vec_dot_q4_0_q8_0_v2, + .vec_dot_type = GGML_TYPE_Q8_0, + }, + [GGML_TYPE_Q4_1] = { + .dequantize_row_q = dequantize_row_q4_1_v2, + .quantize_row_q = quantize_row_q4_1_v2, + .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference_v2, + .quantize_row_q_dot = quantize_row_q8_1_v2, + .vec_dot_q = ggml_vec_dot_q4_1_q8_1_v2, + .vec_dot_type = GGML_TYPE_Q8_1B, + }, + [GGML_TYPE_Q4_2] = { + .dequantize_row_q = dequantize_row_q4_2_v2, + .quantize_row_q = quantize_row_q4_2_v2, + .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_2_reference_v2, + .quantize_row_q_dot = quantize_row_q8_0_v2, + .vec_dot_q = ggml_vec_dot_q4_2_q8_0_v2, + .vec_dot_type = GGML_TYPE_Q8_0, + }, + [GGML_TYPE_Q4_3] = { + .dequantize_row_q = dequantize_row_q4_3_v2, + .quantize_row_q = quantize_row_q4_3_v2, + .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_3_reference_v2, + .quantize_row_q_dot = quantize_row_q8_1_v2, + .vec_dot_q = ggml_vec_dot_q4_3_q8_1_v2, + .vec_dot_type = GGML_TYPE_Q8_1B, + }, + [GGML_TYPE_Q5_0] = { + .dequantize_row_q = dequantize_row_q5_0_v2, + .quantize_row_q = quantize_row_q5_0_v2, + .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference_v2, + .quantize_row_q_dot = quantize_row_q8_0_v2, + .vec_dot_q = ggml_vec_dot_q5_0_q8_0_v2, + .vec_dot_type = GGML_TYPE_Q8_0, + }, + [GGML_TYPE_Q5_1] = { + .dequantize_row_q = dequantize_row_q5_1_v2, + .quantize_row_q = quantize_row_q5_1_v2, + .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference_v2, + .quantize_row_q_dot = quantize_row_q8_1_v2, + .vec_dot_q = ggml_vec_dot_q5_1_q8_1_v2, + .vec_dot_type = GGML_TYPE_Q8_1B, + }, + [GGML_TYPE_Q8_0] = { + .dequantize_row_q = dequantize_row_q8_0_v2, + .quantize_row_q = quantize_row_q8_0_v2, + .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference_v2, + .quantize_row_q_dot = quantize_row_q8_0_v2, + .vec_dot_q = ggml_vec_dot_q8_0_q8_0_v2, + .vec_dot_type = GGML_TYPE_Q8_0, + }, + [GGML_TYPE_Q8_1B] = { + .dequantize_row_q = NULL, // TODO + .quantize_row_q = quantize_row_q8_1_v2, + .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference_v2, + .quantize_row_q_dot = quantize_row_q8_1_v2, + .vec_dot_q = NULL, // TODO + .vec_dot_type = GGML_TYPE_Q8_1B, + }, +}; + + +static void ggml_vec_dot_q4_0_q8_0_v2(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { + const int nb = n / QK8_0; + + assert(n % QK8_0 == 0); + assert(nb % 2 == 0); + + const block_q4_0 * restrict x = vx; + const block_q8_0 * restrict y = vy; + +#if defined(__ARM_NEON) + float32x4_t sumv0 = vdupq_n_f32(0.0f); + float32x4_t sumv1 = vdupq_n_f32(0.0f); + + for (int i = 0; i < nb; i += 2) { + const block_q4_0 * restrict x0 = &x[i + 0]; + const block_q4_0 * restrict x1 = &x[i + 1]; + const block_q8_0 * restrict y0 = &y[i + 0]; + const block_q8_0 * restrict y1 = &y[i + 1]; + + const uint8x16_t m4b = vdupq_n_u8(0x0F); + const int8x16_t s8b = vdupq_n_s8(0x8); + + const uint8x16_t v0_0 = vld1q_u8(x0->qs); + const uint8x16_t v0_1 = vld1q_u8(x1->qs); + + // 4-bit -> 8-bit + const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b)); + const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4)); + const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b)); + const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4)); + + // sub 8 + const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b); + const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b); + const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b); + const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b); + + // interleave + const int8x16_t v0_0lz = vzip1q_s8(v0_0ls, v0_0hs); + const int8x16_t v0_0hz = vzip2q_s8(v0_0ls, v0_0hs); + const int8x16_t v0_1lz = vzip1q_s8(v0_1ls, v0_1hs); + const int8x16_t v0_1hz = vzip2q_s8(v0_1ls, v0_1hs); + + // load y + const int8x16_t v1_0l = vld1q_s8(y0->qs); + const int8x16_t v1_0h = vld1q_s8(y0->qs + 16); + const int8x16_t v1_1l = vld1q_s8(y1->qs); + const int8x16_t v1_1h = vld1q_s8(y1->qs + 16); + +#if defined(__ARM_FEATURE_DOTPROD) + // dot product into int32x4_t + const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l), v0_0hz, v1_0h); + const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l), v0_1hz, v1_1h); + + sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d); + sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d); +#else + const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l)); + const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l)); + const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h)); + const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h)); + + const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l)); + const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l)); + const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h)); + const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h)); + + const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h)); + const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h)); + const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h)); + const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h)); + + sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d); + sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d); +#endif + } + + *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1); +#elif defined(__AVX2__) + // Initialize accumulator with zeros + __m256 acc = _mm256_setzero_ps(); + + // Main loop + for (int i = 0; i < nb; ++i) { + /* Compute combined scale for the block */ + const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) ); + + __m256i bx = bytes_from_nibbles_32_v2(x[i].qs); + + // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. + const __m256i off = _mm256_set1_epi8( 8 ); + bx = _mm256_sub_epi8( bx, off ); + + __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs); + + const __m256 q = mul_sum_i8_pairs_float(bx, by); + + /* Multiply q with scale and accumulate */ + acc = _mm256_fmadd_ps( d, q, acc ); + } + + *s = hsum_float_8(acc); +#elif defined(__AVX__) + // Initialize accumulator with zeros + __m256 acc = _mm256_setzero_ps(); + + // Main loop + for (int i = 0; i < nb; ++i) { + // Compute combined scale for the block + const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) ); + + __m128i i32[2]; + for (int j = 0; j < 2; ++j) { + // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes + __m128i bx = bytes_from_nibbles_16(x[i].qs + 8*j); + __m128i by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16*j)); + + // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. + const __m128i off = _mm_set1_epi8( 8 ); + bx = _mm_sub_epi8( bx, off ); + + // Get absolute values of x vectors + const __m128i ax = _mm_sign_epi8(bx, bx); + + // Sign the values of the y vectors + const __m128i sy = _mm_sign_epi8(by, bx); + + // Perform multiplication and create 16-bit values + const __m128i dot = _mm_maddubs_epi16(ax, sy); + + const __m128i ones = _mm_set1_epi16(1); + i32[j] = _mm_madd_epi16(ones, dot); + } + + // Convert int32_t to float + __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] )); + // Apply the scale, and accumulate + acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc); + } + + *s = hsum_float_8(acc); +#else + // scalar + float sumf = 0.0; + for (int i = 0; i < nb; i++) { + const float d0 = x[i].d; + const float d1 = y[i].d; + + const uint8_t * restrict p0 = x[i].qs; + const int8_t * restrict p1 = y[i].qs; + + int sumi = 0; + for (int j = 0; j < QK8_0/2; j++) { + const uint8_t v0 = p0[j]; + + const int i0 = (int8_t) (v0 & 0x0F) - 8; + const int i1 = (int8_t) (v0 >> 4) - 8; + + const int i2 = p1[2*j + 0]; + const int i3 = p1[2*j + 1]; + + sumi += i0*i2 + i1*i3; + } + sumf += d0*d1*sumi; + } + *s = sumf; +#endif +} + +static void ggml_vec_dot_q4_1_q8_1_v2(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { + const int nb = n / QK8_1; + + assert(n % QK8_1 == 0); + assert(nb % 2 == 0); + + const block_q4_1 * restrict x = vx; + const block_q8_1_v2 * restrict y = vy; + + // TODO: add AVX / WASM SIMD / etc +#if defined(__ARM_NEON) + float32x4_t sumv0 = vdupq_n_f32(0.0f); + float32x4_t sumv1 = vdupq_n_f32(0.0f); + + float summs = 0; + + for (int i = 0; i < nb; i += 2) { + const block_q4_1 * restrict x0 = &x[i + 0]; + const block_q4_1 * restrict x1 = &x[i + 1]; + const block_q8_1_v2 * restrict y0 = &y[i + 0]; + const block_q8_1_v2 * restrict y1 = &y[i + 1]; + + summs += x0->m * (y0->s0 + y0->s1) + x1->m * (y1->s0 + y1->s1); + + const uint8x16_t m4b = vdupq_n_u8(0x0F); + + const uint8x16_t v0_0 = vld1q_u8(x0->qs); + const uint8x16_t v0_1 = vld1q_u8(x1->qs); + + // 4-bit -> 8-bit + const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b)); + const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4)); + const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b)); + const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4)); + + // interleave + const int8x16_t v0_0lz = vzip1q_s8(v0_0l, v0_0h); + const int8x16_t v0_0hz = vzip2q_s8(v0_0l, v0_0h); + const int8x16_t v0_1lz = vzip1q_s8(v0_1l, v0_1h); + const int8x16_t v0_1hz = vzip2q_s8(v0_1l, v0_1h); + + // load y + const int8x16_t v1_0l = vld1q_s8(y0->qs); + const int8x16_t v1_0h = vld1q_s8(y0->qs + 16); + const int8x16_t v1_1l = vld1q_s8(y1->qs); + const int8x16_t v1_1h = vld1q_s8(y1->qs + 16); + +#if defined(__ARM_FEATURE_DOTPROD) + // dot product into int32x4_t + const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l), v0_0hz, v1_0h); + const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l), v0_1hz, v1_1h); + + sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d); + sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d); +#else + const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l)); + const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l)); + const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h)); + const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h)); + + const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l)); + const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l)); + const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h)); + const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h)); + + const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h)); + const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h)); + const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h)); + const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h)); + + sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d); + sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d); +#endif + } + + *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs; +#elif defined(__AVX2__) + // Initialize accumulator with zeros + __m256 acc = _mm256_setzero_ps(); + + float summs = 0; + + // Main loop + for (int i = 0; i < nb; ++i) { + const float * d0 = &x[i].d; + const float * d1 = &y[i].d; + + summs += x[i].m * (y[i].s0 + y[i].s1); + + const __m256 d0v = _mm256_broadcast_ss( d0 ); + const __m256 d1v = _mm256_broadcast_ss( d1 ); + + // Compute combined scales + const __m256 d0d1 = _mm256_mul_ps( d0v, d1v ); + + // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes + const __m256i bx = bytes_from_nibbles_32_v2(x[i].qs); + const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs ); + + const __m256 xy = mul_sum_i8_pairs_float(bx, by); + + // Accumulate d0*d1*x*y + acc = _mm256_fmadd_ps( d0d1, xy, acc ); + } + + *s = hsum_float_8(acc) + summs; +#else + // scalar + float sumf = 0.0; + for (int i = 0; i < nb; i++) { + const float d0 = x[i].d; + const float m0 = x[i].m; + const float d1 = y[i].d; + + const uint8_t * restrict p0 = x[i].qs; + const int8_t * restrict p1 = y[i].qs; + + // TODO: this is very slow .. + for (int j = 0; j < QK8_1/2; j++) { + const uint8_t v0 = p0[j]; + + const float f0 = d0*(v0 & 0x0F) + m0; + const float f1 = d0*(v0 >> 4) + m0; + + const float f2 = d1*p1[2*j + 0]; + const float f3 = d1*p1[2*j + 1]; + + sumf += f0*f2 + f1*f3; + } + } + *s = sumf; +#endif +} + +static void ggml_vec_dot_q4_2_q8_0_v2(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { + const int nb = n / QK8_0; + + assert(n % QK8_0 == 0); + assert(nb % 2 == 0); + assert(QK8_0 == 2*QK4_2); + + const block_q4_2 * restrict x = vx; + const block_q8_0 * restrict y = vy; + +#if defined(__ARM_NEON) + float32x4_t sumv0 = vdupq_n_f32(0.0f); + float32x4_t sumv1 = vdupq_n_f32(0.0f); + + for (int i = 0; i < nb; i += 2) { + const block_q4_2 * restrict x0_0 = &x[2*(i + 0) + 0]; + const block_q4_2 * restrict x0_1 = &x[2*(i + 0) + 1]; + const block_q4_2 * restrict x1_0 = &x[2*(i + 1) + 0]; + const block_q4_2 * restrict x1_1 = &x[2*(i + 1) + 1]; + + const block_q8_0 * restrict y0 = &y[i + 0]; + const block_q8_0 * restrict y1 = &y[i + 1]; + + const uint8x16_t m4b = vdupq_n_u8(0x0F); + const int8x16_t s8b = vdupq_n_s8(0x8); + + const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs)); + const uint8x16_t v0_1 = vcombine_u8(vld1_u8(x1_0->qs), vld1_u8(x1_1->qs)); + + // 4-bit -> 8-bit + const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b)); + const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4)); + const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b)); + const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4)); + + // sub 8 + const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b); + const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b); + const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b); + const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b); + + // interleave + const int8x16_t v0_0lz = vzip1q_s8(v0_0ls, v0_0hs); + const int8x16_t v0_0hz = vzip2q_s8(v0_0ls, v0_0hs); + const int8x16_t v0_1lz = vzip1q_s8(v0_1ls, v0_1hs); + const int8x16_t v0_1hz = vzip2q_s8(v0_1ls, v0_1hs); + + // load y + const int8x16_t v1_0l = vld1q_s8(y0->qs); + const int8x16_t v1_0h = vld1q_s8(y0->qs + 16); + const int8x16_t v1_1l = vld1q_s8(y1->qs); + const int8x16_t v1_1h = vld1q_s8(y1->qs + 16); + +#if defined(__ARM_FEATURE_DOTPROD) + sumv0 = vmlaq_n_f32(sumv0, vaddq_f32( + vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), GGML_FP16_TO_FP32(x0_0->d)), + vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), GGML_FP16_TO_FP32(x0_1->d))), y0->d); + + sumv1 = vmlaq_n_f32(sumv1, vaddq_f32( + vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l)), GGML_FP16_TO_FP32(x1_0->d)), + vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1hz, v1_1h)), GGML_FP16_TO_FP32(x1_1->d))), y1->d); +#else + const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l)); + const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l)); + const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h)); + const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h)); + + const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l)); + const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l)); + const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h)); + const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h)); + + const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h)); + const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h)); + const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h)); + const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h)); + + sumv0 = vmlaq_n_f32(sumv0, vaddq_f32( + vmulq_n_f32(vcvtq_f32_s32(pl0), GGML_FP16_TO_FP32(x0_0->d)), + vmulq_n_f32(vcvtq_f32_s32(ph0), GGML_FP16_TO_FP32(x0_1->d))), y0->d); + + sumv1 = vmlaq_n_f32(sumv1, vaddq_f32( + vmulq_n_f32(vcvtq_f32_s32(pl1), GGML_FP16_TO_FP32(x1_0->d)), + vmulq_n_f32(vcvtq_f32_s32(ph1), GGML_FP16_TO_FP32(x1_1->d))), y1->d); +#endif + } + + *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1); +#elif defined(__AVX2__) + // Initialize accumulator with zeros + __m256 acc = _mm256_setzero_ps(); + + // Main loop + for (int i = 0; i < nb; i++) { + /* Compute combined scale for the block */ + const __m128 d0 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 0].d)); + const __m128 d1 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 1].d)); + const __m256 d = _mm256_mul_ps(_mm256_set_m128(d1, d0), _mm256_broadcast_ss(&y[i].d)); + + __m128i bx0 = bytes_from_nibbles_16(x[2*i + 0].qs); + __m128i bx1 = bytes_from_nibbles_16(x[2*i + 1].qs); + __m256i bx = _mm256_set_m128i(bx1, bx0); + + // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. + const __m256i off = _mm256_set1_epi8(8); + bx = _mm256_sub_epi8(bx, off); + + __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs); + + const __m256 q = mul_sum_i8_pairs_float(bx, by); + + /* Multiply q with scale and accumulate */ + acc = _mm256_fmadd_ps(d, q, acc); + } + + *s = hsum_float_8(acc); +#else + // scalar + float sumf = 0.0; + for (int i = 0; i < nb; i++) { + const uint8_t * restrict x0 = x[2*i + 0].qs; + const uint8_t * restrict x1 = x[2*i + 1].qs; + const int8_t * restrict y0 = y[i].qs; + + const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d); + const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d); + + int sumi_0 = 0; + int sumi_1 = 0; + + for (int j = 0; j < QK8_0/4; j++) { + const uint8_t v0 = x0[j]; + const uint8_t v1 = x1[j]; + + const int i0_0 = (int8_t) (v0 & 0x0F) - 8; + const int i1_0 = (int8_t) (v0 >> 4) - 8; + + const int i0_1 = (int8_t) (v1 & 0x0F) - 8; + const int i1_1 = (int8_t) (v1 >> 4) - 8; + + const int i2_0 = y0[2*j + 0]; + const int i3_0 = y0[2*j + 1]; + + const int i2_1 = y0[2*(j + QK8_0/4) + 0]; + const int i3_1 = y0[2*(j + QK8_0/4) + 1]; + + sumi_0 += i0_0*i2_0 + i1_0*i3_0; + sumi_1 += i0_1*i2_1 + i1_1*i3_1; + } + + sumf += (d0 * y[i].d) * sumi_0; + sumf += (d1 * y[i].d) * sumi_1; + } + *s = sumf; +#endif +} + +static void ggml_vec_dot_q4_3_q8_1_v2(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { + const int nb = n / QK8_1; + + assert(n % QK8_1 == 0); + assert(nb % 2 == 0); + assert(QK8_1 == 2*QK4_3); + + const block_q4_3 * restrict x = vx; + const block_q8_1_v2 * restrict y = vy; + +#if defined(__ARM_NEON) + float32x4_t sumv0 = vdupq_n_f32(0.0f); + float32x4_t sumv1 = vdupq_n_f32(0.0f); + + float summs0 = 0.0f; + float summs1 = 0.0f; + + for (int i = 0; i < nb; ++i) { + const block_q4_3 * restrict x0_0 = &x[2*(i + 0) + 0]; + const block_q4_3 * restrict x0_1 = &x[2*(i + 0) + 1]; + + const block_q8_1_v2 * restrict y0 = &y[i + 0]; + + summs0 += GGML_FP16_TO_FP32(x0_0->m) * y0->s0; + summs1 += GGML_FP16_TO_FP32(x0_1->m) * y0->s1; + + const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs)); + + // 4-bit -> 8-bit + const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, vdupq_n_u8(0x0F))); + const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4)); + + // interleave + const int8x16_t v0_0lz = vzip1q_s8(v0_0l, v0_0h); + const int8x16_t v0_0hz = vzip2q_s8(v0_0l, v0_0h); + + // load y + const int8x16_t v1_0l = vld1q_s8(y0->qs); + const int8x16_t v1_0h = vld1q_s8(y0->qs + 16); + + const float x0_0d = GGML_FP16_TO_FP32(x0_0->d); + const float x0_1d = GGML_FP16_TO_FP32(x0_1->d); + +#if defined(__ARM_FEATURE_DOTPROD) + sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), x0_0d*y0->d); + sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), x0_1d*y0->d); +#else + const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l)); + const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l)); + const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h)); + const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h)); + + const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h)); + const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h)); + + sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(pl0), x0_0d*y0->d); + sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(ph0), x0_1d*y0->d); +#endif + } + + *s = vaddvq_f32(vaddq_f32(sumv0, sumv1)) + summs0 + summs1; +#elif defined(__AVX2__) + // Initialize accumulator with zeros + __m256 acc = _mm256_setzero_ps(); + float summs = 0.0f; + + // Main loop + for (int i = 0; i < nb; i++) { + const __m128 d0 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 0].d)); + const __m128 d1 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 1].d)); + const __m256 dx = _mm256_set_m128(d1, d0); + + summs += GGML_FP16_TO_FP32(x[2*i + 0].m) * y[i].s0 + + GGML_FP16_TO_FP32(x[2*i + 1].m) * y[i].s1; + + const __m128i bx0 = bytes_from_nibbles_16(x[2*i + 0].qs); + const __m128i bx1 = bytes_from_nibbles_16(x[2*i + 1].qs); + const __m256i bx = _mm256_set_m128i(bx1, bx0); + + const __m256 dy = _mm256_broadcast_ss(&y[i].d); + const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs); + + const __m256 q = mul_sum_i8_pairs_float(bx, by); + + acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc); + } + + *s = hsum_float_8(acc) + summs; +#else + // scalar + float sumf = 0.0; + for (int i = 0; i < nb; i++) { + const uint8_t * restrict x0 = x[2*i + 0].qs; + const uint8_t * restrict x1 = x[2*i + 1].qs; + const int8_t * restrict y0 = y[i].qs; + + const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d); + const float m0 = GGML_FP16_TO_FP32(x[2*i + 0].m); + const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d); + const float m1 = GGML_FP16_TO_FP32(x[2*i + 1].m); + + int sxy_0 = 0; + int sxy_1 = 0; + + for (int j = 0; j < QK8_1/4; j++) { + const uint8_t v0 = x0[j]; + const uint8_t v1 = x1[j]; + + const int x0_0 = v0 & 0x0F; + const int x1_0 = v0 >> 4; + + const int x0_1 = v1 & 0x0F; + const int x1_1 = v1 >> 4; + + const int y0_0 = y0[2*j + 0]; + const int y1_0 = y0[2*j + 1]; + + const int y0_1 = y0[2*(j + QK8_1/4) + 0]; + const int y1_1 = y0[2*(j + QK8_1/4) + 1]; + + sxy_0 += x0_0*y0_0 + x1_0*y1_0; + sxy_1 += x0_1*y0_1 + x1_1*y1_1; + } + + sumf += (d0*sxy_0 + d1*sxy_1)*y[i].d + m0*y[i].s0 + m1*y[i].s1; + } + *s = sumf; +#endif +} + +static void ggml_vec_dot_q5_0_q8_0_v2(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { + const int nb = n / QK8_0; + + assert(n % QK8_0 == 0); + assert(nb % 2 == 0); + assert(QK8_0 == QK5_0); + + const block_q5_0 * restrict x = vx; + const block_q8_0 * restrict y = vy; + +#if defined(__ARM_NEON) + float32x4_t sumv = vdupq_n_f32(0.0f); + + uint64_t tmp[4]; + + for (int i = 0; i < nb; ++i) { + const block_q5_0 * restrict x0 = &x[i]; + const block_q8_0 * restrict y0 = &y[i]; + + const uint8x16_t m4b = vdupq_n_u8(0x0F); + const int8x16_t s16b = vdupq_n_s8(0x10); + + // extract the 5th bit + uint32_t qh; + memcpy(&qh, x0->qh, sizeof(qh)); + + tmp[0] = table_b2b_0[(qh >> 0) & 0xFF]; + tmp[1] = table_b2b_0[(qh >> 8) & 0xFF]; + tmp[2] = table_b2b_0[(qh >> 16) & 0xFF]; + tmp[3] = table_b2b_0[(qh >> 24) ]; + + const int8x16_t qhl = vld1q_s8((const int8_t *)(tmp + 0)); + const int8x16_t qhh = vld1q_s8((const int8_t *)(tmp + 2)); + + const uint8x16_t v0 = vld1q_u8(x0->qs); + + // 4-bit -> 8-bit + const int8x16_t v0l = vreinterpretq_s8_u8(vandq_u8 (v0, m4b)); + const int8x16_t v0h = vreinterpretq_s8_u8(vshrq_n_u8(v0, 4)); + + // interleave + const int8x16_t v0lz = vzip1q_s8(v0l, v0h); + const int8x16_t v0hz = vzip2q_s8(v0l, v0h); + + // add high bit and sub 16 + const int8x16_t v0lf = vsubq_s8(vorrq_s8(v0lz, qhl), s16b); + const int8x16_t v0hf = vsubq_s8(vorrq_s8(v0hz, qhh), s16b); + + // load y + const int8x16_t v1l = vld1q_s8(y0->qs); + const int8x16_t v1h = vld1q_s8(y0->qs + 16); + + const float x0d = GGML_FP16_TO_FP32(x0->d); + +#if defined(__ARM_FEATURE_DOTPROD) + sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32( + vdotq_s32(vdupq_n_s32(0), v0lf, v1l), + vdotq_s32(vdupq_n_s32(0), v0hf, v1h))), x0d*y0->d); +#else + const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0lf), vget_low_s8 (v1l)); + const int16x8_t pl0h = vmull_s8(vget_high_s8(v0lf), vget_high_s8(v1l)); + const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0hf), vget_low_s8 (v1h)); + const int16x8_t ph0h = vmull_s8(vget_high_s8(v0hf), vget_high_s8(v1h)); + + const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h)); + const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h)); + + sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d); +#endif + } + + *s = vaddvq_f32(sumv); +#elif defined(__wasm_simd128__) + v128_t sumv = wasm_f32x4_splat(0.0f); + + uint64_t tmp[4]; + + for (int i = 0; i < nb; ++i) { + const block_q5_0 * restrict x0 = &x[i]; + const block_q8_0 * restrict y0 = &y[i]; + + const v128_t m4b = wasm_i8x16_splat(0x0F); + const v128_t s16b = wasm_i8x16_splat(0x10); + + // extract the 5th bit + uint32_t qh; + memcpy(&qh, x0->qh, sizeof(qh)); + + tmp[0] = table_b2b_0[(qh >> 0) & 0xFF]; + tmp[1] = table_b2b_0[(qh >> 8) & 0xFF]; + tmp[2] = table_b2b_0[(qh >> 16) & 0xFF]; + tmp[3] = table_b2b_0[(qh >> 24) ]; + + const v128_t qhl = wasm_v128_load(tmp + 0); + const v128_t qhh = wasm_v128_load(tmp + 2); + + const v128_t v0 = wasm_v128_load(x0->qs); + + // 4-bit -> 8-bit + const v128_t v0l = wasm_v128_and (v0, m4b); + const v128_t v0h = wasm_u8x16_shr(v0, 4); + + // interleave + const v128_t v0lz = wasm_v8x16_shuffle(v0l, v0h, 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23); + const v128_t v0hz = wasm_v8x16_shuffle(v0l, v0h, 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31); + + // add high bit and sub 16 + const v128_t v0lf = wasm_i8x16_sub(wasm_v128_or(v0lz, qhl), s16b); + const v128_t v0hf = wasm_i8x16_sub(wasm_v128_or(v0hz, qhh), s16b); + + // load y + const v128_t v1l = wasm_v128_load(y0->qs); + const v128_t v1h = wasm_v128_load(y0->qs + 16); + + // int8x16 -> int16x8 + const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf); + const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf); + const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf); + const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf); + + const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l); + const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l); + const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h); + const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h); + + const float x0d = GGML_FP16_TO_FP32(x0->d); + + // dot product + sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4( + wasm_i32x4_add( + wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll), + wasm_i32x4_dot_i16x8(v0lfh, v1lh)), + wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl), + wasm_i32x4_dot_i16x8(v0hfh, v1hh)))), wasm_f32x4_splat(x0d*y0->d))); + } + + *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) + + wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3); +#elif defined(__AVX2__) + // Initialize accumulator with zeros + __m256 acc = _mm256_setzero_ps(); + + // Main loop + for (int i = 0; i < nb; i++) { + /* Compute combined scale for the block */ + const __m256 d = _mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d)), _mm256_broadcast_ss(&y[i].d)); + + __m256i bx = bytes_from_nibbles_32_v2(x[i].qs); + __m256i bxhi = bytes_from_bits_32(x[i].qh); + bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0)); + bx = _mm256_or_si256(bx, bxhi); + + __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs); + + const __m256 q = mul_sum_i8_pairs_float(bx, by); + + /* Multiply q with scale and accumulate */ + acc = _mm256_fmadd_ps(d, q, acc); + } + + *s = hsum_float_8(acc); +#else + // scalar + float sumf = 0.0; + for (int i = 0; i < nb; i++) { + const uint8_t * restrict x0 = x[i].qs; + const int8_t * restrict y0 = y[i].qs; + + uint32_t qh; + memcpy(&qh, x[i].qh, sizeof(qh)); + + const float d = GGML_FP16_TO_FP32(x[i].d); + + int sxy = 0; + + for (int j = 0; j < QK8_0/2; j++) { + const uint8_t v0 = x0[j]; + + const int x0_0h = ((qh & (1u << (2*j + 0))) >> (2*j + 0)) << 4; + const int x1_0h = ((qh & (1u << (2*j + 1))) >> (2*j + 1)) << 4; + + const int x0_0 = ((v0 & 0x0F) | x0_0h) - 16; + const int x1_0 = ((v0 >> 4) | x1_0h) - 16; + + const int y0_0 = y0[2*j + 0]; + const int y1_0 = y0[2*j + 1]; + + sxy += x0_0*y0_0 + x1_0*y1_0; + } + + sumf += (d*sxy)*y[i].d; + } + *s = sumf; +#endif +} + +static void ggml_vec_dot_q5_1_q8_1_v2(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { + const int nb = n / QK8_1; + + assert(n % QK8_1 == 0); + assert(nb % 2 == 0); + assert(QK8_1 == QK5_1); + + const block_q5_1 * restrict x = vx; + const block_q8_1_v2 * restrict y = vy; + +#if defined(__ARM_NEON) + float32x4_t sumv = vdupq_n_f32(0.0f); + + float summs = 0.0f; + + uint64_t tmp[4]; + + for (int i = 0; i < nb; ++i) { + const block_q5_1 * restrict x0 = &x[i]; + const block_q8_1_v2 * restrict y0 = &y[i]; + + summs += GGML_FP16_TO_FP32(x0->m) * (y0->s0 + y0->s1); + + // extract the 5th bit + uint32_t qh; + memcpy(&qh, x0->qh, sizeof(qh)); + + tmp[0] = table_b2b_0[(qh >> 0) & 0xFF]; + tmp[1] = table_b2b_0[(qh >> 8) & 0xFF]; + tmp[2] = table_b2b_0[(qh >> 16) & 0xFF]; + tmp[3] = table_b2b_0[(qh >> 24) ]; + + const int8x16_t qhl = vld1q_s8((const int8_t *)(tmp + 0)); + const int8x16_t qhh = vld1q_s8((const int8_t *)(tmp + 2)); + + const uint8x16_t v0 = vld1q_u8(x0->qs); + + // 4-bit -> 8-bit + const int8x16_t v0l = vreinterpretq_s8_u8(vandq_u8 (v0, vdupq_n_u8(0x0F))); + const int8x16_t v0h = vreinterpretq_s8_u8(vshrq_n_u8(v0, 4)); + + // interleave + const int8x16_t v0lz = vzip1q_s8(v0l, v0h); + const int8x16_t v0hz = vzip2q_s8(v0l, v0h); + + // add + const int8x16_t v0lf = vorrq_s8(v0lz, qhl); + const int8x16_t v0hf = vorrq_s8(v0hz, qhh); + + // load y + const int8x16_t v1l = vld1q_s8(y0->qs); + const int8x16_t v1h = vld1q_s8(y0->qs + 16); + + const float x0d = GGML_FP16_TO_FP32(x0->d); + +#if defined(__ARM_FEATURE_DOTPROD) + sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32( + vdotq_s32(vdupq_n_s32(0), v0lf, v1l), + vdotq_s32(vdupq_n_s32(0), v0hf, v1h))), x0d*y0->d); +#else + const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0lf), vget_low_s8 (v1l)); + const int16x8_t pl0h = vmull_s8(vget_high_s8(v0lf), vget_high_s8(v1l)); + const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0hf), vget_low_s8 (v1h)); + const int16x8_t ph0h = vmull_s8(vget_high_s8(v0hf), vget_high_s8(v1h)); + + const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h)); + const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h)); + + sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d); +#endif + } + + *s = vaddvq_f32(sumv) + summs; +#elif defined(__wasm_simd128__) + v128_t sumv = wasm_f32x4_splat(0.0f); + + float summs = 0.0f; + + uint64_t tmp[4]; + + for (int i = 0; i < nb; ++i) { + const block_q5_1 * restrict x0 = &x[i]; + const block_q8_1_v2 * restrict y0 = &y[i]; + + summs += GGML_FP16_TO_FP32(x0->m) * (y0->s0 + y0->s1); + + const v128_t m4b = wasm_i8x16_splat(0x0F); + + // extract the 5th bit + uint32_t qh; + memcpy(&qh, x0->qh, sizeof(qh)); + + tmp[0] = table_b2b_0[(qh >> 0) & 0xFF]; + tmp[1] = table_b2b_0[(qh >> 8) & 0xFF]; + tmp[2] = table_b2b_0[(qh >> 16) & 0xFF]; + tmp[3] = table_b2b_0[(qh >> 24) ]; + + const v128_t qhl = wasm_v128_load(tmp + 0); + const v128_t qhh = wasm_v128_load(tmp + 2); + + const v128_t v0 = wasm_v128_load(x0->qs); + + // 4-bit -> 8-bit + const v128_t v0l = wasm_v128_and (v0, m4b); + const v128_t v0h = wasm_u8x16_shr(v0, 4); + + static bool x = true; + + // interleave + const v128_t v0lz = wasm_v8x16_shuffle(v0l, v0h, 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23); + const v128_t v0hz = wasm_v8x16_shuffle(v0l, v0h, 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31); + + // add high bit + const v128_t v0lf = wasm_v128_or(v0lz, qhl); + const v128_t v0hf = wasm_v128_or(v0hz, qhh); + + // load y + const v128_t v1l = wasm_v128_load(y0->qs); + const v128_t v1h = wasm_v128_load(y0->qs + 16); + + // int8x16 -> int16x8 + const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf); + const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf); + const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf); + const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf); + + const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l); + const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l); + const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h); + const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h); + + const float x0d = GGML_FP16_TO_FP32(x0->d); + + // dot product + sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4( + wasm_i32x4_add( + wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll), + wasm_i32x4_dot_i16x8(v0lfh, v1lh)), + wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl), + wasm_i32x4_dot_i16x8(v0hfh, v1hh)))), wasm_f32x4_splat(x0d*y0->d))); + } + + *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) + + wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs; +#elif defined(__AVX2__) + // Initialize accumulator with zeros + __m256 acc = _mm256_setzero_ps(); + float summs = 0.0f; + + // Main loop + for (int i = 0; i < nb; i++) { + const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d)); + + summs += GGML_FP16_TO_FP32(x[i].m) * (y[i].s0 + y[i].s1); + + __m256i bx = bytes_from_nibbles_32_v2(x[i].qs); + __m256i bxhi = bytes_from_bits_32(x[i].qh); + bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10)); + bx = _mm256_or_si256(bx, bxhi); + + const __m256 dy = _mm256_broadcast_ss(&y[i].d); + const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs); + + const __m256 q = mul_sum_i8_pairs_float(bx, by); + + acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc); + } + + *s = hsum_float_8(acc) + summs; +#else + float sumf = 0.0; + + for (int i = 0; i < nb; i++) { + const uint8_t * restrict x0 = x[i].qs; + const int8_t * restrict y0 = y[i].qs; + + uint32_t qh; + memcpy(&qh, x[i].qh, sizeof(qh)); + + const float d = GGML_FP16_TO_FP32(x[i].d); + const float m = GGML_FP16_TO_FP32(x[i].m); + + int sxy = 0; + + for (int j = 0; j < QK8_1/2; j++) { + const uint8_t v0 = x0[j]; + + const int x0_0h = ((qh & (1u << (2*j + 0))) >> (2*j + 0)) << 4; + const int x1_0h = ((qh & (1u << (2*j + 1))) >> (2*j + 1)) << 4; + + const int x0_0 = (v0 & 0x0F) | x0_0h; + const int x1_0 = (v0 >> 4) | x1_0h; + + const int y0_0 = y0[2*j + 0]; + const int y1_0 = y0[2*j + 1]; + + sxy += x0_0*y0_0 + x1_0*y1_0; + } + + sumf += (d*sxy)*y[i].d + m*(y[i].s0 + y[i].s1); + } + + *s = sumf; +#endif +} + +static void ggml_vec_dot_q8_0_q8_0_v2(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { + const int nb = n / QK8_0; + + assert(n % QK8_0 == 0); + assert(nb % 2 == 0); + assert(QK8_0 == QK8_0); + + const block_q8_0 * restrict x = vx; + const block_q8_0 * restrict y = vy; + +#if defined(__ARM_NEON) + float32x4_t sumv0 = vdupq_n_f32(0.0f); + float32x4_t sumv1 = vdupq_n_f32(0.0f); + + for (int i = 0; i < nb; i += 2) { + const block_q8_0 * restrict x0 = &x[i + 0]; + const block_q8_0 * restrict x1 = &x[i + 1]; + const block_q8_0 * restrict y0 = &y[i + 0]; + const block_q8_0 * restrict y1 = &y[i + 1]; + + const int8x16_t x0_0 = vld1q_s8(x0->qs); + const int8x16_t x0_1 = vld1q_s8(x0->qs + 16); + const int8x16_t x1_0 = vld1q_s8(x1->qs); + const int8x16_t x1_1 = vld1q_s8(x1->qs + 16); + + // load y + const int8x16_t y0_0 = vld1q_s8(y0->qs); + const int8x16_t y0_1 = vld1q_s8(y0->qs + 16); + const int8x16_t y1_0 = vld1q_s8(y1->qs); + const int8x16_t y1_1 = vld1q_s8(y1->qs + 16); + +#if defined(__ARM_FEATURE_DOTPROD) + sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32( + vdotq_s32(vdupq_n_s32(0), x0_0, y0_0), + vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), x0->d*y0->d); + + sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32( + vdotq_s32(vdupq_n_s32(0), x1_0, y1_0), + vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), x1->d*y1->d); + +#else + const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0)); + const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0)); + const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1)); + const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1)); + + const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0)); + const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0)); + const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1)); + const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1)); + + const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1)); + const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3)); + const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1)); + const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3)); + + sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), x0->d*y0->d); + sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), x1->d*y1->d); +#endif + } + + *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1); +#elif defined(__AVX2__) + // Initialize accumulator with zeros + __m256 acc = _mm256_setzero_ps(); + + // Main loop + for (int i = 0; i < nb; ++i) { + // Compute combined scale for the block + const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) ); + __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs); + __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs); + + const __m256 q = mul_sum_i8_pairs_float(bx, by); + + // Multiply q with scale and accumulate + acc = _mm256_fmadd_ps( d, q, acc ); + } + + *s = hsum_float_8(acc); +#else + // scalar + float sumf = 0.0; + + for (int i = 0; i < nb; i++) { + const int8_t * restrict x0 = x[i].qs; + const int8_t * restrict y0 = y[i].qs; + + int sumi = 0; + + for (int j = 0; j < QK8_0; j++) { + const int v0 = x0[j]; + const int v1 = y0[j]; + + sumi += v0*v1; + } + + sumf += (x[i].d*y[i].d)*sumi; + } + + *s = sumf; +#endif +} + + + +//////////////////////////////////////////////////////////////////////////////// + +size_t ggml_quantize_q4_0_v2(const float * src, void * dst, int n, int k, int64_t * hist) { + assert(k % QK4_0 == 0); + const int nb = k / QK4_0; + + for (int j = 0; j < n; j += k) { + block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK4_0; + + quantize_row_q4_0_reference_v2(src + j, y, k); + + for (int i = 0; i < nb; i++) { + for (int l = 0; l < QK4_0; l += 2) { + const uint8_t vi0 = y[i].qs[l/2] & 0x0F; + const uint8_t vi1 = y[i].qs[l/2] >> 4; + + hist[vi0]++; + hist[vi1]++; + } + } + } + + return (n/QK4_0*sizeof(block_q4_0)); +} + +size_t ggml_quantize_q4_1_v2(const float * src, void * dst, int n, int k, int64_t * hist) { + assert(k % QK4_1 == 0); + const int nb = k / QK4_1; + + for (int j = 0; j < n; j += k) { + block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK4_1; + + quantize_row_q4_1_reference_v2(src + j, y, k); + + for (int i = 0; i < nb; i++) { + for (int l = 0; l < QK4_1; l += 2) { + const uint8_t vi0 = y[i].qs[l/2] & 0x0F; + const uint8_t vi1 = y[i].qs[l/2] >> 4; + + hist[vi0]++; + hist[vi1]++; + } + } + } + + return (n/QK4_1*sizeof(block_q4_1)); +} + +size_t ggml_quantize_q4_2_v2(const float * src, void * dst, int n, int k, int64_t * hist) { + assert(k % QK4_2 == 0); + const int nb = k / QK4_2; + + for (int j = 0; j < n; j += k) { + block_q4_2 * restrict y = (block_q4_2 *)dst + j/QK4_2; + + quantize_row_q4_2_reference_v2(src + j, y, k); + + for (int i = 0; i < nb; i++) { + for (int l = 0; l < QK4_2; l += 2) { + const uint8_t vi0 = y[i].qs[l/2] & 0x0F; + const uint8_t vi1 = y[i].qs[l/2] >> 4; + + hist[vi0]++; + hist[vi1]++; + } + } + } + + return (n/QK4_2*sizeof(block_q4_2)); +} + +size_t ggml_quantize_q4_3_v2(const float * src, void * dst, int n, int k, int64_t * hist) { + assert(k % QK4_3 == 0); + const int nb = k / QK4_3; + + for (int j = 0; j < n; j += k) { + block_q4_3 * restrict y = (block_q4_3 *)dst + j/QK4_3; + + quantize_row_q4_3_reference_v2(src + j, y, k); + + for (int i = 0; i < nb; i++) { + for (int l = 0; l < QK4_3; l += 2) { + const uint8_t vi0 = y[i].qs[l/2] & 0x0F; + const uint8_t vi1 = y[i].qs[l/2] >> 4; + + hist[vi0]++; + hist[vi1]++; + } + } + } + + return (n/QK4_3*sizeof(block_q4_3)); +} + +size_t ggml_quantize_q5_0_v2(const float * src, void * dst, int n, int k, int64_t * hist) { + assert(k % QK5_0 == 0); + const int nb = k / QK5_0; + + for (int j = 0; j < n; j += k) { + block_q5_0 * restrict y = (block_q5_0 *)dst + j/QK5_0; + + quantize_row_q5_0_reference_v2(src + j, y, k); + + for (int i = 0; i < nb; i++) { + uint32_t qh; + memcpy(&qh, &y[i].qh, sizeof(qh)); + + for (int l = 0; l < QK5_0; l += 2) { + const uint8_t vh0 = ((qh & (1u << (l + 0))) >> (l + 0)) << 4; + const uint8_t vh1 = ((qh & (1u << (l + 1))) >> (l + 1)) << 4; + + // cast to 16 bins + const uint8_t vi0 = ((y[i].qs[l/2] & 0x0F) | vh0) / 2; + const uint8_t vi1 = ((y[i].qs[l/2] >> 4) | vh1) / 2; + + hist[vi0]++; + hist[vi1]++; + } + } + } + + return (n/QK5_0*sizeof(block_q5_0)); +} + +size_t ggml_quantize_q5_1_v2(const float * src, void * dst, int n, int k, int64_t * hist) { + assert(k % QK5_1 == 0); + const int nb = k / QK5_1; + + for (int j = 0; j < n; j += k) { + block_q5_1 * restrict y = (block_q5_1 *)dst + j/QK5_1; + + quantize_row_q5_1_reference_v2(src + j, y, k); + + for (int i = 0; i < nb; i++) { + uint32_t qh; + memcpy(&qh, &y[i].qh, sizeof(qh)); + + for (int l = 0; l < QK5_1; l += 2) { + const uint8_t vh0 = ((qh & (1u << (l + 0))) >> (l + 0)) << 4; + const uint8_t vh1 = ((qh & (1u << (l + 1))) >> (l + 1)) << 4; + + // cast to 16 bins + const uint8_t vi0 = ((y[i].qs[l/2] & 0x0F) | vh0) / 2; + const uint8_t vi1 = ((y[i].qs[l/2] >> 4) | vh1) / 2; + + hist[vi0]++; + hist[vi1]++; + } + } + } + + return (n/QK5_1*sizeof(block_q5_1)); +} + +size_t ggml_quantize_q8_0_v2(const float * src, void * dst, int n, int k, int64_t * hist) { + assert(k % QK8_0 == 0); + const int nb = k / QK8_0; + + for (int j = 0; j < n; j += k) { + block_q8_0 * restrict y = (block_q8_0 *)dst + j/QK8_0; + + quantize_row_q8_0_reference_v2(src + j, y, k); + + for (int i = 0; i < nb; i++) { + for (int l = 0; l < QK8_0; ++l) { + const int8_t vi = y[i].qs[l]; + + hist[vi/16 + 8]++; + } + } + } + + return (n/QK8_0*sizeof(block_q8_0)); +} + +//TODO: integrate +size_t ggml_quantize_chunk_v2(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) { + size_t result = 0; + switch (type) { + case GGML_TYPE_Q4_0: + { + GGML_ASSERT(start % QK4_0 == 0); + block_q4_0 * block = (block_q4_0*)dst + start / QK4_0; + result = ggml_quantize_q4_0_v2(src + start, block, n, n, hist); + } break; + case GGML_TYPE_Q4_1: + { + GGML_ASSERT(start % QK4_1 == 0); + block_q4_1 * block = (block_q4_1*)dst + start / QK4_1; + result = ggml_quantize_q4_1_v2(src + start, block, n, n, hist); + } break; + case GGML_TYPE_Q4_2: + { + GGML_ASSERT(start % QK4_2 == 0); + block_q4_2 * block = (block_q4_2*)dst + start / QK4_2; + result = ggml_quantize_q4_2_v2(src + start, block, n, n, hist); + } break; + case GGML_TYPE_Q4_3: + { + GGML_ASSERT(start % QK4_3 == 0); + block_q4_3 * block = (block_q4_3*)dst + start / QK4_3; + result = ggml_quantize_q4_3_v2(src + start, block, n, n, hist); + } break; + case GGML_TYPE_Q5_0: + { + GGML_ASSERT(start % QK5_0 == 0); + block_q5_0 * block = (block_q5_0*)dst + start / QK5_0; + result = ggml_quantize_q5_0_v2(src + start, block, n, n, hist); + } break; + case GGML_TYPE_Q5_1: + { + GGML_ASSERT(start % QK5_1 == 0); + block_q5_1 * block = (block_q5_1*)dst + start / QK5_1; + result = ggml_quantize_q5_1_v2(src + start, block, n, n, hist); + } break; + case GGML_TYPE_Q8_0: + { + GGML_ASSERT(start % QK8_0 == 0); + block_q8_0 * block = (block_q8_0*)dst + start / QK8_0; + result = ggml_quantize_q8_0_v2(src + start, block, n, n, hist); + } break; + default: + assert(false); + } + return result; +} + diff --git a/gpttype_adapter.cpp b/gpttype_adapter.cpp index 8a29fdcb1..9daa971bf 100644 --- a/gpttype_adapter.cpp +++ b/gpttype_adapter.cpp @@ -20,8 +20,8 @@ #include "gptj_v2.cpp" #include "gpt2_v1.cpp" #include "gpt2_v2.cpp" -#include "rwkv.cpp" -#include "neox.cpp" +#include "rwkv_v2.cpp" +#include "neox_v2.cpp" //return val: 0=fail, 1=(original ggml, alpaca), 2=(ggmf), 3=(ggjt) diff --git a/llama.cpp b/llama.cpp index 584e7ffc9..c8d90d3d7 100644 --- a/llama.cpp +++ b/llama.cpp @@ -412,6 +412,7 @@ enum llama_file_version { LLAMA_FILE_VERSION_GGMF_V1, // added version field and scores in vocab LLAMA_FILE_VERSION_GGJT_V1, // added padding LLAMA_FILE_VERSION_GGJT_V2, // changed quantization format + LLAMA_FILE_VERSION_GGJT_V3, // changed Q4 and Q8 quantization format }; struct llama_file_loader { @@ -444,6 +445,8 @@ struct llama_file_loader { file_version = LLAMA_FILE_VERSION_GGJT_V1; } else if (magic == 'ggjt' && version == 2) { file_version = LLAMA_FILE_VERSION_GGJT_V2; + } else if (magic == 'ggjt' && version == 3) { + file_version = LLAMA_FILE_VERSION_GGJT_V3; } else { throw format("unknown (magic, version) combination: %08x, %08x; is this really a GGML file?", magic, version); @@ -861,7 +864,8 @@ static const char *llama_file_version_name(llama_file_version version) { case LLAMA_FILE_VERSION_GGML: return "'ggml' (old version with low tokenizer quality and no mmap support)"; case LLAMA_FILE_VERSION_GGMF_V1: return "ggmf v1 (old version with no mmap support)"; case LLAMA_FILE_VERSION_GGJT_V1: return "ggjt v1 (pre #1405)"; - case LLAMA_FILE_VERSION_GGJT_V2: return "ggjt v2 (latest)"; + case LLAMA_FILE_VERSION_GGJT_V2: return "ggjt v2 (pre #1508)"; + case LLAMA_FILE_VERSION_GGJT_V3: return "ggjt v3 (latest)"; } return "unknown"; @@ -946,12 +950,19 @@ static void llama_model_load_internal( fprintf(stderr, "%s: model size = %s\n", __func__, llama_model_type_name(model.type)); } - if (file_version != LLAMA_FILE_VERSION_GGJT_V2) { + if (file_version < LLAMA_FILE_VERSION_GGJT_V2) { if (hparams.ftype != LLAMA_FTYPE_ALL_F32 && hparams.ftype != LLAMA_FTYPE_MOSTLY_F16 && hparams.ftype != LLAMA_FTYPE_MOSTLY_Q8_0) { - printf("\nLegacy LLAMA GGJT compatability changes triggered.\n"); - //throw format("this format is no longer supported (see https://github.com/ggerganov/llama.cpp/pull/1305)"); + printf("\nLegacy LLAMA GGJT v1 compatability changes triggered.\n"); + } + } + + if (file_version < LLAMA_FILE_VERSION_GGJT_V3) { + if (hparams.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || + hparams.ftype == LLAMA_FTYPE_MOSTLY_Q4_1 || + hparams.ftype == LLAMA_FTYPE_MOSTLY_Q8_0) { + printf("\nLegacy LLAMA GGJT v2 compatability changes triggered.\n"); } } diff --git a/llama.h b/llama.h index 0fa514aeb..953a4d969 100644 --- a/llama.h +++ b/llama.h @@ -19,7 +19,7 @@ # define LLAMA_API #endif -#define LLAMA_FILE_VERSION 2 +#define LLAMA_FILE_VERSION 3 #define LLAMA_FILE_MAGIC 'ggjt' #define LLAMA_FILE_MAGIC_UNVERSIONED 'ggml' #define LLAMA_SESSION_MAGIC 'ggsn' diff --git a/otherarch/neox.cpp b/otherarch/neox_v2.cpp similarity index 100% rename from otherarch/neox.cpp rename to otherarch/neox_v2.cpp diff --git a/otherarch/rwkv.cpp b/otherarch/rwkv_v2.cpp similarity index 99% rename from otherarch/rwkv.cpp rename to otherarch/rwkv_v2.cpp index 99849c7f7..6aa25e9f1 100644 --- a/otherarch/rwkv.cpp +++ b/otherarch/rwkv_v2.cpp @@ -3,7 +3,7 @@ #include "otherarch.h" -#include "rwkv.h" +#include "rwkv_v2.h" #include "ggml.h" #include diff --git a/otherarch/rwkv.h b/otherarch/rwkv_v2.h similarity index 100% rename from otherarch/rwkv.h rename to otherarch/rwkv_v2.h