llama : optimize vector use in quantize -> 179% faster

This commit is contained in:
Cebtenzzre 2023-09-09 13:43:41 -04:00
parent 0c6496840c
commit a95aa21dad

View file

@ -4639,7 +4639,10 @@ void llama_beam_search(llama_context * ctx,
// quantization
//
static void llama_convert_tensor_internal(struct ggml_tensor * tensor, std::vector<float> & output, const size_t nelements, const int nthread) {
static void llama_convert_tensor_internal(
struct ggml_tensor * tensor, std::vector<float> & output, std::vector<std::thread> & workers,
const size_t nelements, const int nthread
) {
if (output.size() < nelements) {
output.resize(nelements);
}
@ -4674,7 +4677,6 @@ static void llama_convert_tensor_internal(struct ggml_tensor * tensor, std::vect
auto blocks_per_thread = nblocks / nthread;
auto spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
std::vector<std::thread> workers;
for (auto tnum = 0, in_buff_offs = 0, out_buff_offs = 0; tnum < nthread; tnum++) {
auto thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
auto thr_elems = thr_blocks * block_size; // number of elements for this thread
@ -4687,13 +4689,12 @@ static void llama_convert_tensor_internal(struct ggml_tensor * tensor, std::vect
qtype.to_float(inbuf, outbuf, nels);
}
};
workers.push_back(std::thread(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems));
workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
in_buff_offs += thr_block_bytes;
out_buff_offs += thr_elems;
}
for (auto & worker : workers) {
worker.join();
}
for (auto & w : workers) { w.join(); }
workers.clear();
}
#ifdef GGML_USE_K_QUANTS
@ -4889,12 +4890,14 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
std::vector<int64_t> hist_all(1 << 4, 0);
std::vector<std::thread> workers;
workers.reserve(nthread);
std::mutex mutex;
int idx = 0;
std::vector<uint8_t> read_data;
std::vector<uint8_t> work;
std::vector<float> f32_conv_buf;
// populate the original tensors so we get an initial meta data
for (int i = 0; i < ml->n_tensors; ++i) {
@ -4916,7 +4919,9 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
const std::string name = ggml_get_name(tensor);
if (read_data.size() < ggml_nbytes(tensor)) {
read_data.resize(ggml_nbytes(tensor));
}
tensor->data = read_data.data();
ml->load_data_for(tensor);
@ -4958,23 +4963,24 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
const size_t nelements = ggml_nelements(tensor);
float * f32_data;
std::vector<float> f32_conv_buf;
if (tensor->type == GGML_TYPE_F32) {
f32_data = (float *) tensor->data;
} else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
} else {
llama_convert_tensor_internal(tensor, f32_conv_buf, nelements, nthread);
llama_convert_tensor_internal(tensor, f32_conv_buf, workers, nelements, nthread);
f32_data = (float *) f32_conv_buf.data();
}
LLAMA_LOG_INFO("quantizing to %s .. ", ggml_type_name(new_type));
fflush(stdout);
if (work.size() < nelements * 4) {
work.resize(nelements * 4); // upper bound on size
}
new_data = work.data();
std::vector<int64_t> hist_cur(1 << 4, 0);
std::array<int64_t, 1 << 4> hist_cur = {};
static const int chunk_size = 32 * 512;
const int nchunk = (nelements + chunk_size - 1)/chunk_size;
@ -4985,13 +4991,13 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
size_t counter = 0;
new_size = 0;
auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, nelements]() {
std::vector<int64_t> local_hist;
std::array<int64_t, 1 << 4> local_hist = {};
size_t local_size = 0;
while (true) {
std::unique_lock<std::mutex> lock(mutex);
size_t first = counter; counter += chunk_size;
if (first >= nelements) {
if (!local_hist.empty()) {
if (local_size > 0) {
for (int j=0; j<int(local_hist.size()); ++j) {
hist_cur[j] += local_hist[j];
}
@ -5001,22 +5007,15 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
}
lock.unlock();
size_t last = std::min(nelements, first + chunk_size);
if (local_hist.empty()) {
local_hist.resize(hist_cur.size(), 0);
}
local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first, last - first, local_hist.data());
}
};
if ((int) workers.size() < nthread_use - 1) {
workers.resize(nthread_use - 1);
}
for (int it = 0; it < nthread_use - 1; ++it) {
workers[it] = std::thread(compute);
workers.emplace_back(compute);
}
compute();
for (int it = 0; it < nthread_use - 1; ++it) {
workers[it].join();
}
for (auto & w : workers) { w.join(); }
workers.clear();
}
LLAMA_LOG_INFO("size = %8.2f MB -> %8.2f MB | hist: ", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);