ggml : multi-threaded get_rows

This commit is contained in:
slaren 2024-01-20 18:36:50 +01:00
parent bc98eda9d5
commit a97198747f

77
ggml.c
View file

@ -10744,8 +10744,6 @@ static void ggml_compute_forward_get_rows_q(
const struct ggml_tensor * src0, const struct ggml_tensor * src0,
const struct ggml_tensor * src1, const struct ggml_tensor * src1,
struct ggml_tensor * dst) { struct ggml_tensor * dst) {
assert(params->ith == 0);
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return; return;
} }
@ -10753,7 +10751,7 @@ static void ggml_compute_forward_get_rows_q(
GGML_TENSOR_BINARY_OP_LOCALS GGML_TENSOR_BINARY_OP_LOCALS
const int64_t nc = ne00; const int64_t nc = ne00;
const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr); const int64_t nr = ggml_nelements(src1);
const enum ggml_type type = src0->type; const enum ggml_type type = src0->type;
ggml_to_float_t const dequantize_row_q = type_traits[type].to_float; ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
@ -10763,18 +10761,26 @@ static void ggml_compute_forward_get_rows_q(
assert(nb00 == ggml_type_size(type)); assert(nb00 == ggml_type_size(type));
assert(ggml_nrows(dst) == nr); assert(ggml_nrows(dst) == nr);
// TODO: multi-thread const int ith = params->ith;
for (int64_t i12 = 0; i12 < ne12; ++i12) { const int nth = params->nth;
for (int64_t i11 = 0; i11 < ne11; ++i11) {
for (int64_t i10 = 0; i10 < ne10; ++i10) { // rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int64_t i = ir0; i < ir1; ++i) {
const int64_t i12 = i/(ne11*ne10);
const int64_t i11 = (i - i12*ne11*ne10)/ne10;
const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12); const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
dequantize_row_q( dequantize_row_q(
(const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03), (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
(float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc); (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
} }
}
}
} }
static void ggml_compute_forward_get_rows_f16( static void ggml_compute_forward_get_rows_f16(
@ -10782,8 +10788,6 @@ static void ggml_compute_forward_get_rows_f16(
const struct ggml_tensor * src0, const struct ggml_tensor * src0,
const struct ggml_tensor * src1, const struct ggml_tensor * src1,
struct ggml_tensor * dst) { struct ggml_tensor * dst) {
assert(params->ith == 0);
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return; return;
} }
@ -10791,25 +10795,33 @@ static void ggml_compute_forward_get_rows_f16(
GGML_TENSOR_BINARY_OP_LOCALS GGML_TENSOR_BINARY_OP_LOCALS
const int64_t nc = ne00; const int64_t nc = ne00;
const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr); const int64_t nr = ggml_nelements(src1);
assert(ne0 == nc); assert(ne0 == nc);
assert(ne02 == ne11); assert(ne02 == ne11);
assert(nb00 == sizeof(ggml_fp16_t)); assert(nb00 == sizeof(ggml_fp16_t));
assert(ggml_nrows(dst) == nr); assert(ggml_nrows(dst) == nr);
// TODO: multi-thread const int ith = params->ith;
for (int64_t i12 = 0; i12 < ne12; ++i12) { const int nth = params->nth;
for (int64_t i11 = 0; i11 < ne11; ++i11) {
for (int64_t i10 = 0; i10 < ne10; ++i10) { // rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int64_t i = ir0; i < ir1; ++i) {
const int64_t i12 = i/(ne11*ne10);
const int64_t i11 = (i - i12*ne11*ne10)/ne10;
const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12); const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
ggml_fp16_to_fp32_row( ggml_fp16_to_fp32_row(
(const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03), (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
(float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc); (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
} }
}
}
} }
static void ggml_compute_forward_get_rows_f32( static void ggml_compute_forward_get_rows_f32(
@ -10817,8 +10829,6 @@ static void ggml_compute_forward_get_rows_f32(
const struct ggml_tensor * src0, const struct ggml_tensor * src0,
const struct ggml_tensor * src1, const struct ggml_tensor * src1,
struct ggml_tensor * dst) { struct ggml_tensor * dst) {
assert(params->ith == 0);
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return; return;
} }
@ -10826,25 +10836,33 @@ static void ggml_compute_forward_get_rows_f32(
GGML_TENSOR_BINARY_OP_LOCALS GGML_TENSOR_BINARY_OP_LOCALS
const int64_t nc = ne00; const int64_t nc = ne00;
const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr); const int64_t nr = ggml_nelements(src1);
assert(ne0 == nc); assert(ne0 == nc);
assert(ne02 == ne11); assert(ne02 == ne11);
assert(nb00 == sizeof(float)); assert(nb00 == sizeof(float));
assert(ggml_nrows(dst) == nr); assert(ggml_nrows(dst) == nr);
// TODO: multi-thread const int ith = params->ith;
for (int64_t i12 = 0; i12 < ne12; ++i12) { const int nth = params->nth;
for (int64_t i11 = 0; i11 < ne11; ++i11) {
for (int64_t i10 = 0; i10 < ne10; ++i10) { // rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int64_t i = ir0; i < ir1; ++i) {
const int64_t i12 = i/(ne11*ne10);
const int64_t i11 = (i - i12*ne11*ne10)/ne10;
const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12); const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
ggml_vec_cpy_f32(nc, ggml_vec_cpy_f32(nc,
(float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
(float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03)); (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
} }
}
}
} }
static void ggml_compute_forward_get_rows( static void ggml_compute_forward_get_rows(
@ -16374,6 +16392,10 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
{ {
n_tasks = n_threads; n_tasks = n_threads;
} break; } break;
case GGML_OP_GET_ROWS:
{
n_tasks = n_threads;
} break;
case GGML_OP_SCALE: case GGML_OP_SCALE:
case GGML_OP_SET: case GGML_OP_SET:
case GGML_OP_CONT: case GGML_OP_CONT:
@ -16381,7 +16403,6 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
case GGML_OP_VIEW: case GGML_OP_VIEW:
case GGML_OP_PERMUTE: case GGML_OP_PERMUTE:
case GGML_OP_TRANSPOSE: case GGML_OP_TRANSPOSE:
case GGML_OP_GET_ROWS:
case GGML_OP_GET_ROWS_BACK: case GGML_OP_GET_ROWS_BACK:
case GGML_OP_DIAG: case GGML_OP_DIAG:
{ {