Merge remote-tracking branch 'origin/master' into grammar-reps
This commit is contained in:
commit
a9a2983630
69 changed files with 3981 additions and 8187 deletions
33
.github/workflows/build.yml
vendored
33
.github/workflows/build.yml
vendored
|
@ -32,6 +32,8 @@ jobs:
|
|||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
|
@ -88,6 +90,8 @@ jobs:
|
|||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
|
@ -206,6 +210,8 @@ jobs:
|
|||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
|
@ -238,6 +244,33 @@ jobs:
|
|||
./bin/convert-llama2c-to-ggml --copy-vocab-from-model ./tok512.bin --llama2c-model stories260K.bin --llama2c-output-model stories260K.gguf
|
||||
./bin/main -m stories260K.gguf -p "One day, Lily met a Shoggoth" -n 500 -c 256
|
||||
|
||||
- name: Determine tag name
|
||||
id: tag
|
||||
shell: bash
|
||||
run: |
|
||||
BUILD_NUMBER="$(git rev-list --count HEAD)"
|
||||
SHORT_HASH="$(git rev-parse --short=7 HEAD)"
|
||||
if [[ "${{ env.BRANCH_NAME }}" == "master" ]]; then
|
||||
echo "name=b${BUILD_NUMBER}" >> $GITHUB_OUTPUT
|
||||
else
|
||||
SAFE_NAME=$(echo "${{ env.BRANCH_NAME }}" | tr '/' '-')
|
||||
echo "name=${SAFE_NAME}-b${BUILD_NUMBER}-${SHORT_HASH}" >> $GITHUB_OUTPUT
|
||||
fi
|
||||
|
||||
- name: Pack artifacts
|
||||
id: pack_artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
run: |
|
||||
cp LICENSE ./build/bin/
|
||||
zip -r llama-${{ steps.tag.outputs.name }}-bin-ubuntu-x64.zip ./build/bin/*
|
||||
|
||||
- name: Upload artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
path: llama-${{ steps.tag.outputs.name }}-bin-ubuntu-x64.zip
|
||||
name: llama-bin-ubuntu-x64.zip
|
||||
|
||||
# ubuntu-latest-cmake-sanitizer:
|
||||
# runs-on: ubuntu-latest
|
||||
#
|
||||
|
|
4
.gitignore
vendored
4
.gitignore
vendored
|
@ -34,6 +34,7 @@ lcov-report/
|
|||
gcovr-report/
|
||||
|
||||
build*
|
||||
!build.zig
|
||||
cmake-build-*
|
||||
out/
|
||||
tmp/
|
||||
|
@ -100,6 +101,9 @@ qnt-*.txt
|
|||
perf-*.txt
|
||||
|
||||
examples/jeopardy/results.txt
|
||||
examples/server/*.html.hpp
|
||||
examples/server/*.js.hpp
|
||||
examples/server/*.mjs.hpp
|
||||
|
||||
poetry.lock
|
||||
poetry.toml
|
||||
|
|
|
@ -43,6 +43,18 @@ else()
|
|||
set(LLAMA_METAL_DEFAULT OFF)
|
||||
endif()
|
||||
|
||||
# TODO: fix this for Android CI
|
||||
# https://github.com/ggerganov/llama.cpp/pull/6716#issuecomment-2061509191
|
||||
#if (CMAKE_SYSTEM_NAME MATCHES "ANDROID")
|
||||
# set(LLAMA_LLAMAFILE_DEFAULT OFF)
|
||||
#else()
|
||||
# set(LLAMA_LLAMAFILE_DEFAULT ON)
|
||||
#endif()
|
||||
|
||||
# TODO: temporary disable until MoE is fixed
|
||||
# https://github.com/ggerganov/llama.cpp/pull/6716
|
||||
set(LLAMA_LLAMAFILE_DEFAULT OFF)
|
||||
|
||||
# general
|
||||
option(BUILD_SHARED_LIBS "build shared libraries" OFF)
|
||||
option(LLAMA_STATIC "llama: static link libraries" OFF)
|
||||
|
@ -88,6 +100,7 @@ endif()
|
|||
# 3rd party libs
|
||||
option(LLAMA_ACCELERATE "llama: enable Accelerate framework" ON)
|
||||
option(LLAMA_BLAS "llama: use BLAS" OFF)
|
||||
option(LLAMA_LLAMAFILE "llama: use llamafile SGEMM" ${LLAMA_LLAMAFILE_DEFAULT})
|
||||
set(LLAMA_BLAS_VENDOR "Generic" CACHE STRING "llama: BLAS library vendor")
|
||||
option(LLAMA_CUDA "llama: use CUDA" OFF)
|
||||
option(LLAMA_CUBLAS "llama: use CUDA (deprecated, use LLAMA_CUDA)" OFF)
|
||||
|
@ -286,6 +299,7 @@ if (LLAMA_METAL)
|
|||
${METALKIT_FRAMEWORK}
|
||||
)
|
||||
endif()
|
||||
|
||||
if (LLAMA_BLAS)
|
||||
if (LLAMA_STATIC)
|
||||
set(BLA_STATIC ON)
|
||||
|
@ -368,6 +382,13 @@ if (LLAMA_BLAS)
|
|||
endif()
|
||||
endif()
|
||||
|
||||
if (LLAMA_LLAMAFILE)
|
||||
add_compile_definitions(GGML_USE_LLAMAFILE)
|
||||
|
||||
set(GGML_HEADERS_LLAMAFILE sgemm.h)
|
||||
set(GGML_SOURCES_LLAMAFILE sgemm.cpp)
|
||||
endif()
|
||||
|
||||
if (LLAMA_QKK_64)
|
||||
add_compile_definitions(GGML_QKK_64)
|
||||
endif()
|
||||
|
@ -1151,15 +1172,16 @@ add_library(ggml OBJECT
|
|||
ggml-backend.h
|
||||
ggml-quants.c
|
||||
ggml-quants.h
|
||||
${GGML_SOURCES_CUDA} ${GGML_HEADERS_CUDA}
|
||||
${GGML_SOURCES_OPENCL} ${GGML_HEADERS_OPENCL}
|
||||
${GGML_SOURCES_METAL} ${GGML_HEADERS_METAL}
|
||||
${GGML_SOURCES_MPI} ${GGML_HEADERS_MPI}
|
||||
${GGML_SOURCES_EXTRA} ${GGML_HEADERS_EXTRA}
|
||||
${GGML_SOURCES_SYCL} ${GGML_HEADERS_SYCL}
|
||||
${GGML_SOURCES_KOMPUTE} ${GGML_HEADERS_KOMPUTE}
|
||||
${GGML_SOURCES_VULKAN} ${GGML_HEADERS_VULKAN}
|
||||
${GGML_SOURCES_ROCM} ${GGML_HEADERS_ROCM}
|
||||
${GGML_SOURCES_CUDA} ${GGML_HEADERS_CUDA}
|
||||
${GGML_SOURCES_OPENCL} ${GGML_HEADERS_OPENCL}
|
||||
${GGML_SOURCES_METAL} ${GGML_HEADERS_METAL}
|
||||
${GGML_SOURCES_MPI} ${GGML_HEADERS_MPI}
|
||||
${GGML_SOURCES_EXTRA} ${GGML_HEADERS_EXTRA}
|
||||
${GGML_SOURCES_SYCL} ${GGML_HEADERS_SYCL}
|
||||
${GGML_SOURCES_KOMPUTE} ${GGML_HEADERS_KOMPUTE}
|
||||
${GGML_SOURCES_VULKAN} ${GGML_HEADERS_VULKAN}
|
||||
${GGML_SOURCES_ROCM} ${GGML_HEADERS_ROCM}
|
||||
${GGML_SOURCES_LLAMAFILE} ${GGML_HEADERS_LLAMAFILE}
|
||||
)
|
||||
|
||||
target_include_directories(ggml PUBLIC . ${LLAMA_EXTRA_INCLUDES})
|
||||
|
|
29
Makefile
29
Makefile
|
@ -384,6 +384,15 @@ ifdef LLAMA_OPENBLAS
|
|||
MK_LDFLAGS += $(shell pkg-config --libs openblas)
|
||||
endif # LLAMA_OPENBLAS
|
||||
|
||||
# TODO: temporary disable until MoE is fixed
|
||||
# https://github.com/ggerganov/llama.cpp/pull/6716
|
||||
LLAMA_NO_LLAMAFILE := 1
|
||||
|
||||
ifndef LLAMA_NO_LLAMAFILE
|
||||
MK_CPPFLAGS += -DGGML_USE_LLAMAFILE
|
||||
OBJS += sgemm.o
|
||||
endif
|
||||
|
||||
ifdef LLAMA_BLIS
|
||||
MK_CPPFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/blis -I/usr/include/blis
|
||||
MK_LDFLAGS += -lblis -L/usr/local/lib
|
||||
|
@ -480,11 +489,9 @@ ggml-cuda/%.o: ggml-cuda/%.cu ggml-cuda/%.cuh ggml.h ggml-common.h ggml-cuda/com
|
|||
|
||||
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h ggml.h ggml-backend.h ggml-backend-impl.h ggml-common.h $(wildcard ggml-cuda/*.cuh)
|
||||
$(NVCC_COMPILE)
|
||||
|
||||
endif # LLAMA_CUDA
|
||||
|
||||
ifdef LLAMA_CLBLAST
|
||||
|
||||
MK_CPPFLAGS += -DGGML_USE_CLBLAST $(shell pkg-config --cflags-only-I clblast OpenCL)
|
||||
MK_CFLAGS += $(shell pkg-config --cflags-only-other clblast OpenCL)
|
||||
MK_CXXFLAGS += $(shell pkg-config --cflags-only-other clblast OpenCL)
|
||||
|
@ -603,6 +610,11 @@ ggml-mpi.o: ggml-mpi.c ggml-mpi.h
|
|||
$(CC) $(CFLAGS) -c $< -o $@
|
||||
endif # LLAMA_MPI
|
||||
|
||||
ifndef LLAMA_NO_LLAMAFILE
|
||||
sgemm.o: sgemm.cpp sgemm.h ggml.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
endif
|
||||
|
||||
GF_CC := $(CC)
|
||||
include scripts/get-flags.mk
|
||||
|
||||
|
@ -687,7 +699,7 @@ OBJS += ggml-alloc.o ggml-backend.o ggml-quants.o unicode.o unicode-data.o
|
|||
llama.o: llama.cpp unicode.h ggml.h ggml-alloc.h ggml-backend.h ggml-cuda.h ggml-metal.h llama.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
COMMON_H_DEPS = common/common.h common/sampling.h common/log.h
|
||||
COMMON_H_DEPS = common/common.h common/sampling.h common/log.h llama.h
|
||||
COMMON_DEPS = common.o sampling.o grammar-parser.o build-info.o json-schema-to-grammar.o
|
||||
|
||||
common.o: common/common.cpp $(COMMON_H_DEPS)
|
||||
|
@ -788,10 +800,19 @@ save-load-state: examples/save-load-state/save-load-state.cpp ggml.o llama.o $(C
|
|||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
server: examples/server/server.cpp examples/server/utils.hpp examples/server/httplib.h common/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp common/stb_image.h ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
|
||||
server: examples/server/server.cpp examples/server/utils.hpp examples/server/httplib.h common/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp examples/server/json-schema-to-grammar.mjs.hpp common/stb_image.h ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h %.hpp $<,$^) -Iexamples/server $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(LWINSOCK2)
|
||||
|
||||
# Portable equivalent of `cd examples/server/public && xxd -i $(notdir $<) ../$(notdir $<).hpp`:
|
||||
examples/server/%.hpp: examples/server/public/% Makefile
|
||||
@( export NAME=$(subst .,_,$(subst -,_,$(notdir $<))) && \
|
||||
echo "unsigned char $${NAME}[] = {" && \
|
||||
cat $< | od -v -t x1 -An | sed -E 's/([0-9a-fA-F]+)/0x\1, /g' && \
|
||||
echo "};" && \
|
||||
echo "unsigned int $${NAME}_len = $(shell cat $< | wc -c );" \
|
||||
) > $@
|
||||
|
||||
gguf: examples/gguf/gguf.cpp ggml.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
|
|
@ -4,6 +4,7 @@ import PackageDescription
|
|||
|
||||
var sources = [
|
||||
"ggml.c",
|
||||
"sgemm.cpp",
|
||||
"llama.cpp",
|
||||
"unicode.cpp",
|
||||
"unicode-data.cpp",
|
||||
|
|
|
@ -229,12 +229,11 @@ source /opt/intel/oneapi/setvars.sh
|
|||
# Build LLAMA with MKL BLAS acceleration for intel GPU
|
||||
mkdir -p build && cd build
|
||||
|
||||
# Option 1: Use FP16 for better performance in long-prompt inference
|
||||
cmake --build .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL_F16=ON
|
||||
# Or without "--build", run "make" next
|
||||
# Option 1: Use FP16 for better performance in long-prompt inference
|
||||
#cmake .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL_F16=ON
|
||||
|
||||
# Option 2: Use FP32 by default
|
||||
cmake --build .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
|
||||
cmake .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
|
||||
|
||||
#build all binary
|
||||
cmake --build . --config Release -j -v
|
||||
|
@ -252,10 +251,10 @@ export CPLUS_INCLUDE_DIR=/path/to/oneMKL/include:$CPLUS_INCLUDE_DIR
|
|||
mkdir -p build && cd build
|
||||
|
||||
# Option 1: Use FP16 for better performance in long-prompt inference
|
||||
cmake --build .. -DLLAMA_SYCL=ON -DLLAMA_SYCL_TARGET=NVIDIA -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL_F16=ON
|
||||
cmake .. -DLLAMA_SYCL=ON -DLLAMA_SYCL_TARGET=NVIDIA -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL_F16=ON
|
||||
|
||||
# Option 2: Use FP32 by default
|
||||
cmake --build .. -DLLAMA_SYCL=ON -DLLAMA_SYCL_TARGET=NVIDIA -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
|
||||
cmake .. -DLLAMA_SYCL=ON -DLLAMA_SYCL_TARGET=NVIDIA -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
|
||||
|
||||
#build all binary
|
||||
cmake --build . --config Release -j -v
|
||||
|
|
14
README.md
14
README.md
|
@ -10,6 +10,7 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others)
|
|||
|
||||
### Recent API changes
|
||||
|
||||
- [2024 Apr 21] `llama_token_to_piece` can now optionally render special tokens https://github.com/ggerganov/llama.cpp/pull/6807
|
||||
- [2024 Apr 4] State and session file functions reorganized under `llama_state_*` https://github.com/ggerganov/llama.cpp/pull/6341
|
||||
- [2024 Mar 26] Logits and embeddings API updated for compactness https://github.com/ggerganov/llama.cpp/pull/6122
|
||||
- [2024 Mar 13] Add `llama_synchronize()` + `llama_context_params.n_ubatch` https://github.com/ggerganov/llama.cpp/pull/6017
|
||||
|
@ -95,7 +96,7 @@ Typically finetunes of the base models below are supported as well.
|
|||
- [X] [Mistral 7B](https://huggingface.co/mistralai/Mistral-7B-v0.1)
|
||||
- [x] [Mixtral MoE](https://huggingface.co/models?search=mistral-ai/Mixtral)
|
||||
- [x] [DBRX](https://huggingface.co/databricks/dbrx-instruct)
|
||||
- [X] Falcon
|
||||
- [X] [Falcon](https://huggingface.co/models?search=tiiuae/falcon)
|
||||
- [X] [Chinese LLaMA / Alpaca](https://github.com/ymcui/Chinese-LLaMA-Alpaca) and [Chinese LLaMA-2 / Alpaca-2](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2)
|
||||
- [X] [Vigogne (French)](https://github.com/bofenghuang/vigogne)
|
||||
- [X] [Koala](https://bair.berkeley.edu/blog/2023/04/03/koala/)
|
||||
|
@ -122,6 +123,7 @@ Typically finetunes of the base models below are supported as well.
|
|||
- [x] [Command-R](https://huggingface.co/CohereForAI/c4ai-command-r-v01)
|
||||
- [x] [SEA-LION](https://huggingface.co/models?search=sea-lion)
|
||||
- [x] [GritLM-7B](https://huggingface.co/GritLM/GritLM-7B) + [GritLM-8x7B](https://huggingface.co/GritLM/GritLM-8x7B)
|
||||
- [x] [OLMo](https://allenai.org/olmo)
|
||||
|
||||
(instructions for supporting more models: [HOWTO-add-model.md](./docs/HOWTO-add-model.md))
|
||||
|
||||
|
@ -189,6 +191,8 @@ Unless otherwise noted these projects are open-source with permissive licensing:
|
|||
- [MindMac](https://mindmac.app) (proprietary)
|
||||
- [KodiBot](https://github.com/firatkiral/kodibot) (GPL)
|
||||
- [eva](https://github.com/ylsdamxssjxxdd/eva) (MIT)
|
||||
- [AI Sublime Text plugin](https://github.com/yaroslavyaroslav/OpenAI-sublime-text) (MIT)
|
||||
|
||||
*(to have a project listed here, it should clearly state that it depends on `llama.cpp`)*
|
||||
|
||||
---
|
||||
|
@ -546,7 +550,7 @@ Building the program with BLAS support may lead to some performance improvements
|
|||
OpenCL acceleration is provided by the matrix multiplication kernels from the [CLBlast](https://github.com/CNugteren/CLBlast) project and custom kernels for ggml that can generate tokens on the GPU.
|
||||
|
||||
You will need the [OpenCL SDK](https://github.com/KhronosGroup/OpenCL-SDK).
|
||||
- For Ubuntu or Debian, the packages `opencl-headers`, `ocl-icd` may be needed.
|
||||
- For Ubuntu, Debian, and Fedora the packages `opencl-headers`, `ocl-icd` may be needed.
|
||||
|
||||
- For Windows, a pre-built SDK is available on the [OpenCL Releases](https://github.com/KhronosGroup/OpenCL-SDK/releases) page.
|
||||
|
||||
|
@ -571,6 +575,12 @@ Building the program with BLAS support may lead to some performance improvements
|
|||
|
||||
Pre-built CLBlast binaries may be found on the [CLBlast Releases](https://github.com/CNugteren/CLBlast/releases) page. For Unix variants, it may also be found in your operating system's packages.
|
||||
|
||||
Linux packaging:
|
||||
Fedora Linux:
|
||||
```bash
|
||||
sudo dnf install clblast
|
||||
```
|
||||
|
||||
Alternatively, they may be built from source.
|
||||
|
||||
- <details>
|
||||
|
|
44
build.zig
44
build.zig
|
@ -112,6 +112,7 @@ pub fn build(b: *std.build.Builder) !void {
|
|||
make.enable_lto = b.option(bool, "lto", "Enable LTO optimization, (default: false)") orelse false;
|
||||
|
||||
const ggml = make.obj("ggml", "ggml.c");
|
||||
const sgemm = make.obj("sgemm", "sgemm.cpp");
|
||||
const ggml_alloc = make.obj("ggml-alloc", "ggml-alloc.c");
|
||||
const ggml_backend = make.obj("ggml-backend", "ggml-backend.c");
|
||||
const ggml_quants = make.obj("ggml-quants", "ggml-quants.c");
|
||||
|
@ -128,15 +129,44 @@ pub fn build(b: *std.build.Builder) !void {
|
|||
const clip = make.obj("clip", "examples/llava/clip.cpp");
|
||||
const llava = make.obj("llava", "examples/llava/llava.cpp");
|
||||
|
||||
_ = make.exe("main", "examples/main/main.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo, sampling, console, grammar_parser });
|
||||
_ = make.exe("quantize", "examples/quantize/quantize.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo });
|
||||
_ = make.exe("perplexity", "examples/perplexity/perplexity.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo });
|
||||
_ = make.exe("embedding", "examples/embedding/embedding.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo });
|
||||
_ = make.exe("finetune", "examples/finetune/finetune.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo, train });
|
||||
_ = make.exe("train-text-from-scratch", "examples/train-text-from-scratch/train-text-from-scratch.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo, train });
|
||||
_ = make.exe("main", "examples/main/main.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo, sampling, console, grammar_parser });
|
||||
_ = make.exe("quantize", "examples/quantize/quantize.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo });
|
||||
_ = make.exe("perplexity", "examples/perplexity/perplexity.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo });
|
||||
_ = make.exe("embedding", "examples/embedding/embedding.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo });
|
||||
_ = make.exe("finetune", "examples/finetune/finetune.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo, train });
|
||||
_ = make.exe("train-text-from-scratch", "examples/train-text-from-scratch/train-text-from-scratch.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo, train });
|
||||
|
||||
const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo, sampling, grammar_parser, clip, llava });
|
||||
const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo, sampling, grammar_parser, clip, llava });
|
||||
if (server.target.isWindows()) {
|
||||
server.linkSystemLibrary("ws2_32");
|
||||
}
|
||||
|
||||
const server_assets = [_][]const u8{ "index.html", "index.js", "completion.js", "json-schema-to-grammar.mjs" };
|
||||
for (server_assets) |asset| {
|
||||
const input_path = b.fmt("examples/server/public/{s}", .{asset});
|
||||
const output_path = b.fmt("examples/server/{s}.hpp", .{asset});
|
||||
|
||||
// Portable equivalent of `b.addSystemCommand(&.{ "xxd", "-n", asset, "-i", input_path, output_path }) })`:
|
||||
|
||||
const input = try std.fs.cwd().readFileAlloc(b.allocator, input_path, std.math.maxInt(usize));
|
||||
defer b.allocator.free(input);
|
||||
|
||||
var buf = std.ArrayList(u8).init(b.allocator);
|
||||
defer buf.deinit();
|
||||
|
||||
for (input) |byte| {
|
||||
try std.fmt.format(buf.writer(), "0x{X:0>2}, ", .{byte});
|
||||
}
|
||||
|
||||
var name = try std.mem.replaceOwned(u8, b.allocator, asset, "-", "_");
|
||||
defer b.allocator.free(name);
|
||||
std.mem.replaceScalar(u8, name, '.', '_');
|
||||
|
||||
try std.fs.cwd().writeFile(output_path, b.fmt(
|
||||
"unsigned char {s}[] = {{{s}}};\nunsigned int {s}_len = {d};\n",
|
||||
.{ name, buf.items, name, input.len },
|
||||
));
|
||||
|
||||
std.debug.print("Dumped hex of \"{s}\" ({s}) to {s}\n", .{ input_path, name, output_path });
|
||||
}
|
||||
}
|
||||
|
|
|
@ -108,6 +108,79 @@ int32_t get_num_physical_cores() {
|
|||
return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4;
|
||||
}
|
||||
|
||||
#if defined(__x86_64__) && defined(__linux__) && !defined(__ANDROID__)
|
||||
#include <pthread.h>
|
||||
|
||||
static void cpuid(unsigned leaf, unsigned subleaf,
|
||||
unsigned *eax, unsigned *ebx, unsigned *ecx, unsigned *edx) {
|
||||
__asm__("movq\t%%rbx,%%rsi\n\t"
|
||||
"cpuid\n\t"
|
||||
"xchgq\t%%rbx,%%rsi"
|
||||
: "=a"(*eax), "=S"(*ebx), "=c"(*ecx), "=d"(*edx)
|
||||
: "0"(leaf), "2"(subleaf));
|
||||
}
|
||||
|
||||
static int pin_cpu(int cpu) {
|
||||
cpu_set_t mask;
|
||||
CPU_ZERO(&mask);
|
||||
CPU_SET(cpu, &mask);
|
||||
return pthread_setaffinity_np(pthread_self(), sizeof(mask), &mask);
|
||||
}
|
||||
|
||||
static bool is_hybrid_cpu(void) {
|
||||
unsigned eax, ebx, ecx, edx;
|
||||
cpuid(7, 0, &eax, &ebx, &ecx, &edx);
|
||||
return !!(edx & (1u << 15));
|
||||
}
|
||||
|
||||
static bool is_running_on_efficiency_core(void) {
|
||||
unsigned eax, ebx, ecx, edx;
|
||||
cpuid(0x1a, 0, &eax, &ebx, &ecx, &edx);
|
||||
int intel_atom = 0x20;
|
||||
int core_type = (eax & 0xff000000u) >> 24;
|
||||
return core_type == intel_atom;
|
||||
}
|
||||
|
||||
static int count_math_cpus(int cpu_count) {
|
||||
int result = 0;
|
||||
for (int cpu = 0; cpu < cpu_count; ++cpu) {
|
||||
if (pin_cpu(cpu)) {
|
||||
return -1;
|
||||
}
|
||||
if (is_running_on_efficiency_core()) {
|
||||
continue; // efficiency cores harm lockstep threading
|
||||
}
|
||||
++cpu; // hyperthreading isn't useful for linear algebra
|
||||
++result;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
#endif // __x86_64__ && __linux__
|
||||
|
||||
/**
|
||||
* Returns number of CPUs on system that are useful for math.
|
||||
*/
|
||||
int get_math_cpu_count() {
|
||||
#if defined(__x86_64__) && defined(__linux__) && !defined(__ANDROID__)
|
||||
int cpu_count = sysconf(_SC_NPROCESSORS_ONLN);
|
||||
if (cpu_count < 1) {
|
||||
return get_num_physical_cores();
|
||||
}
|
||||
if (is_hybrid_cpu()) {
|
||||
cpu_set_t affinity;
|
||||
if (!pthread_getaffinity_np(pthread_self(), sizeof(affinity), &affinity)) {
|
||||
int result = count_math_cpus(cpu_count);
|
||||
pthread_setaffinity_np(pthread_self(), sizeof(affinity), &affinity);
|
||||
if (result > 0) {
|
||||
return result;
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
return get_num_physical_cores();
|
||||
}
|
||||
|
||||
void process_escapes(std::string & input) {
|
||||
std::size_t input_len = input.length();
|
||||
std::size_t output_idx = 0;
|
||||
|
@ -2255,10 +2328,10 @@ std::vector<llama_token> llama_tokenize(
|
|||
|
||||
std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) {
|
||||
std::vector<char> result(8, 0);
|
||||
const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
|
||||
const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), true);
|
||||
if (n_tokens < 0) {
|
||||
result.resize(-n_tokens);
|
||||
int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
|
||||
int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), true);
|
||||
GGML_ASSERT(check == -n_tokens);
|
||||
} else {
|
||||
result.resize(n_tokens);
|
||||
|
|
|
@ -39,6 +39,7 @@ extern char const *LLAMA_BUILD_TARGET;
|
|||
|
||||
struct llama_control_vector_load_info;
|
||||
|
||||
int get_math_cpu_count();
|
||||
int32_t get_num_physical_cores();
|
||||
|
||||
//
|
||||
|
@ -48,7 +49,7 @@ int32_t get_num_physical_cores();
|
|||
struct gpt_params {
|
||||
uint32_t seed = LLAMA_DEFAULT_SEED; // RNG seed
|
||||
|
||||
int32_t n_threads = get_num_physical_cores();
|
||||
int32_t n_threads = get_math_cpu_count();
|
||||
int32_t n_threads_draft = -1;
|
||||
int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads)
|
||||
int32_t n_threads_batch_draft = -1;
|
||||
|
|
|
@ -1207,9 +1207,91 @@ class StableLMModel(Model):
|
|||
rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
|
||||
self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
|
||||
self.gguf_writer.add_head_count(hparams["num_attention_heads"])
|
||||
self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
|
||||
self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
|
||||
self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
|
||||
|
||||
def write_tensors(self):
|
||||
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
|
||||
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
|
||||
n_head = self.hparams.get("num_attention_heads")
|
||||
n_kv_head = self.hparams.get("num_key_value_heads")
|
||||
q_norms = dict()
|
||||
k_norms = dict()
|
||||
for name, data_torch in self.get_tensors():
|
||||
# we don't need these
|
||||
if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
|
||||
continue
|
||||
|
||||
old_dtype = data_torch.dtype
|
||||
|
||||
# convert any unsupported data types to float32
|
||||
if data_torch.dtype not in (torch.float16, torch.float32):
|
||||
data_torch = data_torch.to(torch.float32)
|
||||
|
||||
data = data_torch.squeeze().numpy()
|
||||
n_dims = len(data.shape)
|
||||
if name.find("q_layernorm.norms") != -1:
|
||||
q_norms[name] = data
|
||||
if len(q_norms) >= (block_count * n_head):
|
||||
self._stack_qk_norm(block_count, name, tensor_map, n_head, q_norms, n_dims, layer_name="q_layernorm")
|
||||
continue
|
||||
if name.find("k_layernorm.norms") != -1:
|
||||
k_norms[name] = data
|
||||
if len(k_norms) >= (block_count * n_kv_head):
|
||||
self._stack_qk_norm(block_count, name, tensor_map, n_kv_head, k_norms, n_dims, layer_name="k_layernorm")
|
||||
continue
|
||||
|
||||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
||||
# if f32 desired, convert any float16 to float32
|
||||
if self.ftype == 0 and data_dtype == np.float16:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||||
if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and not new_name.endswith("_norm.weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
def _stack_qk_norm(self, block_count, name, tensor_map, n_head, norms, n_dims, layer_name="q_layernorm"):
|
||||
for bid in range(block_count):
|
||||
datas = []
|
||||
for xid in range(n_head):
|
||||
ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
|
||||
datas.append(norms[ename])
|
||||
del norms[ename]
|
||||
data = np.stack(datas, axis=0)
|
||||
data_dtype = data.dtype
|
||||
merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
|
||||
new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and not new_name.endswith("_norm.weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
||||
@Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
|
||||
class LlamaModel(Model):
|
||||
|
@ -1219,7 +1301,23 @@ class LlamaModel(Model):
|
|||
try:
|
||||
self. _set_vocab_sentencepiece()
|
||||
except FileNotFoundError:
|
||||
self._set_vocab_llama_hf()
|
||||
try:
|
||||
self._set_vocab_llama_hf()
|
||||
except (FileNotFoundError, TypeError):
|
||||
# Llama 3
|
||||
self._set_vocab_gpt2()
|
||||
|
||||
# Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
|
||||
if self.hparams.get("vocab_size", 32000) == 32016:
|
||||
special_vocab = gguf.SpecialVocab(
|
||||
self.dir_model, load_merges=False,
|
||||
special_token_types = ['prefix', 'suffix', 'middle', 'eot']
|
||||
)
|
||||
special_vocab._set_special_token("prefix", 32007)
|
||||
special_vocab._set_special_token("suffix", 32008)
|
||||
special_vocab._set_special_token("middle", 32009)
|
||||
special_vocab._set_special_token("eot", 32010)
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
|
@ -1692,6 +1790,105 @@ class Qwen2Model(Model):
|
|||
model_arch = gguf.MODEL_ARCH.QWEN2
|
||||
|
||||
|
||||
@Model.register("Qwen2MoeForCausalLM")
|
||||
class Qwen2MoeModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.QWEN2MOE
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
if (n_experts := self.hparams.get("num_experts")) is not None:
|
||||
self.gguf_writer.add_expert_count(n_experts)
|
||||
|
||||
def write_tensors(self):
|
||||
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
|
||||
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
|
||||
n_experts = self.hparams.get("num_experts")
|
||||
experts = dict()
|
||||
for name, data_torch in self.get_tensors():
|
||||
# we don't need these
|
||||
if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
|
||||
continue
|
||||
|
||||
old_dtype = data_torch.dtype
|
||||
|
||||
# convert any unsupported data types to float32
|
||||
if data_torch.dtype not in (torch.float16, torch.float32):
|
||||
data_torch = data_torch.to(torch.float32)
|
||||
|
||||
data = data_torch.squeeze().numpy()
|
||||
|
||||
# process the experts separately
|
||||
if name.find("experts") != -1:
|
||||
experts[name] = data
|
||||
if len(experts) >= n_experts * 3:
|
||||
# merge the experts into a single 3d tensor
|
||||
for bid in range(block_count):
|
||||
for w_name in ["down_proj", "gate_proj", "up_proj"]:
|
||||
full = True
|
||||
for xid in range(n_experts):
|
||||
ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
|
||||
if ename not in experts:
|
||||
full = False
|
||||
break
|
||||
if not full:
|
||||
continue
|
||||
|
||||
datas = []
|
||||
for xid in range(n_experts):
|
||||
ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
|
||||
datas.append(experts[ename])
|
||||
del experts[ename]
|
||||
|
||||
data = np.stack(datas, axis=0)
|
||||
data_dtype = data.dtype
|
||||
|
||||
if self.ftype == 0 and data_dtype == np.float16:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
if self.ftype == 1 and data_dtype == np.float32:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
|
||||
|
||||
new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
|
||||
print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
continue
|
||||
|
||||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
||||
# if f32 desired, convert any float16 to float32
|
||||
if self.ftype == 0 and data_dtype == np.float16:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||||
if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{new_name}, n_dims = {n_dims}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
if len(experts) > 0:
|
||||
raise ValueError(f"Unprocessed experts: {experts.keys()}")
|
||||
|
||||
|
||||
@Model.register("GPT2LMHeadModel")
|
||||
class GPT2Model(Model):
|
||||
model_arch = gguf.MODEL_ARCH.GPT2
|
||||
|
@ -2005,6 +2202,8 @@ class InternLM2Model(Model):
|
|||
old_eos = special_vocab.special_token_ids["eos"]
|
||||
if "chat" in os.path.basename(self.dir_model.absolute()):
|
||||
# For the chat model, we replace the eos with '<|im_end|>'.
|
||||
# TODO: this is a hack, should be fixed
|
||||
# https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
|
||||
special_vocab.special_token_ids["eos"] = self._try_get_sft_eos(tokenizer)
|
||||
print(f"Replace eos:{old_eos} with a special token:{special_vocab.special_token_ids['eos']} \
|
||||
in chat mode so that the conversation can end normally.")
|
||||
|
@ -2241,6 +2440,16 @@ class GemmaModel(Model):
|
|||
def set_vocab(self):
|
||||
self._set_vocab_sentencepiece()
|
||||
|
||||
# TODO: these special tokens should be exported only for the CodeGemma family
|
||||
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
|
||||
special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
|
||||
special_vocab._set_special_token("prefix", 67)
|
||||
special_vocab._set_special_token("suffix", 69)
|
||||
special_vocab._set_special_token("middle", 68)
|
||||
special_vocab._set_special_token("fsep", 70)
|
||||
special_vocab._set_special_token("eot", 107)
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
hparams = self.hparams
|
||||
block_count = hparams["num_hidden_layers"]
|
||||
|
@ -2262,6 +2471,12 @@ class GemmaModel(Model):
|
|||
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
|
||||
|
||||
for name, data_torch in self.get_tensors():
|
||||
# lm_head is not used in llama.cpp, while autoawq will include this tensor in model
|
||||
# To prevent errors, skip loading lm_head.weight.
|
||||
if name == "lm_head.weight":
|
||||
print(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
|
||||
continue
|
||||
|
||||
old_dtype = data_torch.dtype
|
||||
|
||||
# convert any unsupported data types to float32
|
||||
|
@ -2321,28 +2536,34 @@ class MambaModel(Model):
|
|||
|
||||
field = neox_reader.get_field(gguf.Keys.Tokenizer.MODEL)
|
||||
self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]))
|
||||
|
||||
field = neox_reader.get_field(gguf.Keys.Tokenizer.LIST)
|
||||
self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
|
||||
|
||||
field = neox_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
|
||||
self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
|
||||
|
||||
field = neox_reader.get_field(gguf.Keys.Tokenizer.MERGES)
|
||||
self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
|
||||
|
||||
field = neox_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)
|
||||
self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
|
||||
|
||||
field = neox_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)
|
||||
self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
|
||||
|
||||
field = neox_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)
|
||||
self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
d_model = self.find_hparam(["hidden_size", "d_model"])
|
||||
d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
|
||||
d_model = self.find_hparam(["hidden_size", "d_model"])
|
||||
d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
|
||||
d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
|
||||
d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
|
||||
d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
|
||||
# ceiling division
|
||||
# ref: https://stackoverflow.com/a/17511341/22827863
|
||||
# ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
|
||||
dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
|
||||
dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
|
||||
rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
|
||||
|
||||
# Fail early for models which don't have a block expansion factor of 2
|
||||
|
@ -2434,6 +2655,66 @@ class CommandR2Model(Model):
|
|||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
|
||||
|
||||
|
||||
@Model.register("OlmoForCausalLM")
|
||||
@Model.register("OLMoForCausalLM")
|
||||
class OlmoModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.OLMO
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
self.gguf_writer.add_layer_norm_eps(1e-5)
|
||||
if "clip_qkv" in self.hparams is not None:
|
||||
self.gguf_writer.add_clamp_kqv(self.hparams["clip_qkv"])
|
||||
|
||||
# Same as super class, but permuting q_proj, k_proj
|
||||
# Copied from: LlamaModel
|
||||
def write_tensors(self):
|
||||
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
|
||||
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
|
||||
n_head = self.hparams.get("num_attention_heads")
|
||||
n_kv_head = self.hparams.get("num_key_value_heads")
|
||||
for name, data_torch in self.get_tensors():
|
||||
old_dtype = data_torch.dtype
|
||||
|
||||
# convert any unsupported data types to float32
|
||||
if data_torch.dtype not in (torch.float16, torch.float32):
|
||||
data_torch = data_torch.to(torch.float32)
|
||||
|
||||
data = data_torch.numpy()
|
||||
|
||||
if name.endswith("q_proj.weight"):
|
||||
data = permute(data, n_head, n_head)
|
||||
if name.endswith("k_proj.weight"):
|
||||
data = permute(data, n_head, n_kv_head)
|
||||
|
||||
data = data.squeeze()
|
||||
|
||||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
||||
# if f32 desired, convert any float16 to float32
|
||||
if self.ftype == 0 and data_dtype == np.float16:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# 1d tensors need to be converted to float32
|
||||
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||||
if self.ftype == 1 and data_dtype == np.float32 and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
||||
###### CONVERSION LOGIC ######
|
||||
|
||||
|
||||
|
|
|
@ -525,7 +525,14 @@ class LlamaHfVocab(Vocab):
|
|||
|
||||
# pre-check so we know if we need transformers
|
||||
tokenizer_model: dict[str, Any] = tokenizer_json['model']
|
||||
if (
|
||||
is_llama3 = (
|
||||
tokenizer_model['type'] == 'BPE' and tokenizer_model.get('ignore_merges', False)
|
||||
and not tokenizer_model.get('byte_fallback', True)
|
||||
)
|
||||
if is_llama3:
|
||||
raise TypeError('Llama 3 must be converted with BpeVocab')
|
||||
|
||||
if not is_llama3 and (
|
||||
tokenizer_model['type'] != 'BPE' or not tokenizer_model.get('byte_fallback', False)
|
||||
or tokenizer_json['decoder']['type'] != 'Sequence'
|
||||
):
|
||||
|
|
|
@ -153,7 +153,7 @@ while n_cur <= n_len {
|
|||
// const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
|
||||
|
||||
// is it an end of stream? -> mark the stream as finished
|
||||
if new_token_id == llama_token_eos(model) || n_cur == n_len {
|
||||
if llama_token_is_eog(model, new_token_id) || n_cur == n_len {
|
||||
i_batch[i] = -1
|
||||
// print("")
|
||||
if n_parallel > 1 {
|
||||
|
@ -229,7 +229,7 @@ private func tokenize(text: String, add_bos: Bool) -> [llama_token] {
|
|||
|
||||
private func token_to_piece(token: llama_token, buffer: inout [CChar]) -> String? {
|
||||
var result = [CChar](repeating: 0, count: 8)
|
||||
let nTokens = llama_token_to_piece(model, token, &result, Int32(result.count))
|
||||
let nTokens = llama_token_to_piece(model, token, &result, Int32(result.count), false)
|
||||
if nTokens < 0 {
|
||||
let actualTokensCount = -Int(nTokens)
|
||||
result = .init(repeating: 0, count: actualTokensCount)
|
||||
|
@ -237,7 +237,8 @@ private func token_to_piece(token: llama_token, buffer: inout [CChar]) -> String
|
|||
model,
|
||||
token,
|
||||
&result,
|
||||
Int32(result.count)
|
||||
Int32(result.count),
|
||||
false
|
||||
)
|
||||
assert(check == actualTokensCount)
|
||||
} else {
|
||||
|
|
|
@ -191,8 +191,8 @@ int main(int argc, char ** argv) {
|
|||
|
||||
//const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
|
||||
|
||||
// is it an end of stream? -> mark the stream as finished
|
||||
if (new_token_id == llama_token_eos(model) || n_cur == n_len) {
|
||||
// is it an end of generation? -> mark the stream as finished
|
||||
if (llama_token_is_eog(model, new_token_id) || n_cur == n_len) {
|
||||
i_batch[i] = -1;
|
||||
LOG_TEE("\n");
|
||||
if (n_parallel > 1) {
|
||||
|
|
|
@ -47,7 +47,7 @@ struct beam_search_callback_data {
|
|||
// In this case, end-of-beam (eob) is equivalent to end-of-sentence (eos) but this need not always be the same.
|
||||
// For example, eob can be flagged due to maximum token length, stop words, etc.
|
||||
static bool is_at_eob(const beam_search_callback_data & callback_data, const llama_token * tokens, size_t n_tokens) {
|
||||
return n_tokens && tokens[n_tokens-1] == llama_token_eos(llama_get_model(callback_data.ctx));
|
||||
return n_tokens && llama_token_is_eog(llama_get_model(callback_data.ctx), tokens[n_tokens-1]);
|
||||
}
|
||||
|
||||
// Function matching type llama_beam_search_callback_fn_t.
|
||||
|
|
|
@ -21,12 +21,12 @@ not have to be performed at all.
|
|||
### Running the example
|
||||
Download a Grit model:
|
||||
```console
|
||||
$ scripts/hf.sh --repo cohesionet/GritLM-7B_gguf --file gritlm-7b_q4_1.gguf
|
||||
$ scripts/hf.sh --repo cohesionet/GritLM-7B_gguf --file gritlm-7b_q4_1.gguf --outdir models
|
||||
```
|
||||
|
||||
Run the example using the downloaded model:
|
||||
```console
|
||||
$ ./gritlm -m gritlm-7b_q4_1.gguf
|
||||
$ ./gritlm -m models/gritlm-7b_q4_1.gguf
|
||||
|
||||
Cosine similarity between "Bitcoin: A Peer-to-Peer Electronic Cash System" and "A purely peer-to-peer version of electronic cash w" is: 0.605
|
||||
Cosine similarity between "Bitcoin: A Peer-to-Peer Electronic Cash System" and "All text-based language problems can be reduced to" is: 0.103
|
||||
|
|
|
@ -44,7 +44,7 @@ private:
|
|||
std::mutex m_mutex;
|
||||
int m_last_call = 0;
|
||||
std::vector<float> m_src1_data;
|
||||
std::vector<int> m_ids; // the expert ids from ggml_mul_mat_id
|
||||
std::vector<char> m_ids; // the expert ids from ggml_mul_mat_id
|
||||
//
|
||||
void save_imatrix(const char * file_name) const;
|
||||
void keep_imatrix(int ncall) const;
|
||||
|
@ -81,6 +81,7 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
|
|||
if (ask) {
|
||||
if (t->op == GGML_OP_MUL_MAT_ID) return true; // collect all indirect matrix multiplications
|
||||
if (t->op != GGML_OP_MUL_MAT) return false;
|
||||
// why are small batches ignored (<16 tokens)?
|
||||
if (src1->ne[1] < 16 || src1->type != GGML_TYPE_F32) return false;
|
||||
if (!(wname.substr(0, 4) == "blk." || (m_params.collect_output_weight && wname == "output.weight"))) return false;
|
||||
return true;
|
||||
|
@ -101,14 +102,19 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
|
|||
// this has been adapted to the new format of storing merged experts in a single 3d tensor
|
||||
// ref: https://github.com/ggerganov/llama.cpp/pull/6387
|
||||
if (t->op == GGML_OP_MUL_MAT_ID) {
|
||||
const int idx = ((int32_t *) t->op_params)[0];
|
||||
// ids -> [n_experts_used, n_tokens]
|
||||
// src1 -> [cols, n_expert_used, n_tokens]
|
||||
const ggml_tensor * ids = t->src[2];
|
||||
const int n_as = src0->ne[2];
|
||||
const int n_ids = ids->ne[0];
|
||||
|
||||
// the top-k selected expert ids are stored in the ids tensor
|
||||
// for simplicity, always copy ids to host, because it is small
|
||||
GGML_ASSERT(ids->ne[1] == src1->ne[1]);
|
||||
m_ids.resize(ggml_nbytes(ids)/sizeof(int));
|
||||
// take into account that ids is not contiguous!
|
||||
|
||||
GGML_ASSERT(ids->ne[1] == src1->ne[2]);
|
||||
|
||||
m_ids.resize(ggml_nbytes(ids));
|
||||
ggml_backend_tensor_get(ids, m_ids.data(), 0, ggml_nbytes(ids));
|
||||
|
||||
auto & e = m_stats[wname];
|
||||
|
@ -118,26 +124,35 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
|
|||
// using the following line, we can correct for that if needed by replacing the line above with:
|
||||
//if (idx == t->src[0]->ne[0] - 1) ++e.ncall;
|
||||
|
||||
if (e.values.empty()) {
|
||||
e.values.resize(src1->ne[0]*n_as, 0);
|
||||
}
|
||||
else if (e.values.size() != (size_t)src1->ne[0]*n_as) {
|
||||
fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", wname.c_str(), (int)e.values.size(), (int)src1->ne[0]*n_as);
|
||||
exit(1); //GGML_ASSERT(false);
|
||||
}
|
||||
if (m_params.verbosity > 1) {
|
||||
printf("%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[2], (int)src1->type);
|
||||
}
|
||||
// loop over all possible experts, regardless if they are used or not in the batch
|
||||
for (int ex = 0; ex < n_as; ++ex) {
|
||||
size_t e_start = ex*src1->ne[0];
|
||||
if (e.values.empty()) {
|
||||
e.values.resize(src1->ne[0]*n_as, 0);
|
||||
}
|
||||
else if (e.values.size() != (size_t)src1->ne[0]*n_as) {
|
||||
fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", wname.c_str(), (int)e.values.size(), (int)src1->ne[0]*n_as);
|
||||
exit(1); //GGML_ASSERT(false);
|
||||
}
|
||||
if (m_params.verbosity > 1) {
|
||||
printf("%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->type);
|
||||
}
|
||||
for (int row = 0; row < (int)src1->ne[1]; ++row) {
|
||||
const int excur = m_ids[row*n_as + idx];
|
||||
GGML_ASSERT(excur >= 0 && excur < n_as); // sanity check
|
||||
if (excur != ex) continue;
|
||||
const float * x = data + row * src1->ne[0];
|
||||
for (int j = 0; j < (int)src1->ne[0]; ++j) {
|
||||
e.values[e_start + j] += x[j]*x[j];
|
||||
|
||||
for (int idx = 0; idx < n_ids; ++idx) {
|
||||
for (int row = 0; row < (int)src1->ne[2]; ++row) {
|
||||
const int excur = *(const int32_t *) (m_ids.data() + row*ids->nb[1] + idx*ids->nb[0]);
|
||||
|
||||
GGML_ASSERT(excur >= 0 && excur < n_as); // sanity check
|
||||
|
||||
if (excur != ex) continue;
|
||||
|
||||
const int64_t i11 = idx % src1->ne[1];
|
||||
const int64_t i12 = row;
|
||||
const float * x = (const float *)((const char *)data + i11*src1->nb[1] + i12*src1->nb[2]);
|
||||
|
||||
for (int j = 0; j < (int)src1->ne[0]; ++j) {
|
||||
e.values[e_start + j] += x[j]*x[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
if (e.ncall > m_last_call) {
|
||||
|
|
|
@ -586,7 +586,7 @@ int main(int argc, char ** argv) {
|
|||
|
||||
// deal with eot token in infill mode
|
||||
if ((llama_sampling_last(ctx_sampling) == llama_token_eot(model) || is_interacting) && params.interactive){
|
||||
if(is_interacting && !params.interactive_first) {
|
||||
if (is_interacting && !params.interactive_first) {
|
||||
// print an eot token
|
||||
printf("%s", llama_token_to_piece(ctx, llama_token_eot(model)).c_str());
|
||||
}
|
||||
|
@ -651,8 +651,8 @@ int main(int argc, char ** argv) {
|
|||
// LOG_TEE("took new input\n");
|
||||
is_interacting = false;
|
||||
}
|
||||
// deal with end of text token in interactive mode
|
||||
else if (llama_sampling_last(ctx_sampling) == llama_token_eos(model)) {
|
||||
// deal with end of generation tokens in interactive mode
|
||||
else if (llama_token_is_eog(model, llama_sampling_last(ctx_sampling))) {
|
||||
LOG("found EOS token\n");
|
||||
|
||||
if (params.interactive) {
|
||||
|
@ -731,8 +731,8 @@ int main(int argc, char ** argv) {
|
|||
}
|
||||
}
|
||||
|
||||
// end of text token
|
||||
if (!embd.empty() && embd.back() == llama_token_eos(model) && !params.interactive) {
|
||||
// end of generation
|
||||
if (!embd.empty() && llama_token_is_eog(model, embd.back()) && !params.interactive) {
|
||||
break;
|
||||
}
|
||||
|
||||
|
|
|
@ -190,7 +190,7 @@ static const cmd_params cmd_params_defaults = {
|
|||
/* n_ubatch */ {512},
|
||||
/* type_k */ {GGML_TYPE_F16},
|
||||
/* type_v */ {GGML_TYPE_F16},
|
||||
/* n_threads */ {get_num_physical_cores()},
|
||||
/* n_threads */ {get_math_cpu_count()},
|
||||
/* n_gpu_layers */ {99},
|
||||
/* split_mode */ {LLAMA_SPLIT_MODE_LAYER},
|
||||
/* main_gpu */ {0},
|
||||
|
|
|
@ -408,7 +408,7 @@ Java_com_example_llama_Llm_completion_1loop(
|
|||
const auto new_token_id = llama_sample_token_greedy(context, &candidates_p);
|
||||
|
||||
const auto n_cur = env->CallIntMethod(intvar_ncur, la_int_var_value);
|
||||
if (new_token_id == llama_token_eos(model) || n_cur == n_len) {
|
||||
if (llama_token_is_eog(model, new_token_id) || n_cur == n_len) {
|
||||
return env->NewStringUTF("");
|
||||
}
|
||||
|
||||
|
|
|
@ -158,7 +158,7 @@ actor LlamaContext {
|
|||
new_token_id = llama_sample_token_greedy(context, &candidates_p)
|
||||
}
|
||||
|
||||
if new_token_id == llama_token_eos(model) || n_cur == n_len {
|
||||
if llama_token_is_eog(model, new_token_id) || n_cur == n_len {
|
||||
print("\n")
|
||||
let new_token_str = String(cString: temporary_invalid_cchars + [0])
|
||||
temporary_invalid_cchars.removeAll()
|
||||
|
@ -322,7 +322,7 @@ actor LlamaContext {
|
|||
defer {
|
||||
result.deallocate()
|
||||
}
|
||||
let nTokens = llama_token_to_piece(model, token, result, 8)
|
||||
let nTokens = llama_token_to_piece(model, token, result, 8, false)
|
||||
|
||||
if nTokens < 0 {
|
||||
let newResult = UnsafeMutablePointer<Int8>.allocate(capacity: Int(-nTokens))
|
||||
|
@ -330,7 +330,7 @@ actor LlamaContext {
|
|||
defer {
|
||||
newResult.deallocate()
|
||||
}
|
||||
let nNewTokens = llama_token_to_piece(model, token, newResult, -nTokens)
|
||||
let nNewTokens = llama_token_to_piece(model, token, newResult, -nTokens, false)
|
||||
let bufferPointer = UnsafeBufferPointer(start: newResult, count: Int(nNewTokens))
|
||||
return Array(bufferPointer)
|
||||
} else {
|
||||
|
|
|
@ -3,6 +3,7 @@
|
|||
// I'll gradually clean and extend it
|
||||
// Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
|
||||
#include "clip.h"
|
||||
#include "log.h"
|
||||
#include "ggml.h"
|
||||
#include "ggml-alloc.h"
|
||||
#include "ggml-backend.h"
|
||||
|
@ -23,7 +24,6 @@
|
|||
#include <cstdlib>
|
||||
#include <cstring>
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <map>
|
||||
#include <regex>
|
||||
#include <stdexcept>
|
||||
|
@ -145,7 +145,7 @@ static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
|
|||
static int get_key_idx(const gguf_context * ctx, const char * key) {
|
||||
int i = gguf_find_key(ctx, key);
|
||||
if (i == -1) {
|
||||
fprintf(stderr, "key %s not found in file\n", key);
|
||||
LOG_TEE("key %s not found in file\n", key);
|
||||
throw std::runtime_error(format("Missing required key: %s", key));
|
||||
}
|
||||
|
||||
|
@ -247,7 +247,7 @@ static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
|
|||
|
||||
static void print_tensor_info(const ggml_tensor * tensor, const char * prefix = "") {
|
||||
size_t tensor_size = ggml_nbytes(tensor);
|
||||
printf("%s: n_dims = %d, name = %s, tensor_size=%zu, shape:[%" PRId64 ", %" PRId64 ", %" PRId64 ", %" PRId64 "], type = %s\n",
|
||||
LOG_TEE("%s: n_dims = %d, name = %s, tensor_size=%zu, shape:[%" PRId64 ", %" PRId64 ", %" PRId64 ", %" PRId64 "], type = %s\n",
|
||||
prefix, ggml_n_dims(tensor), tensor->name, tensor_size,
|
||||
tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3], ggml_type_name(tensor->type));
|
||||
}
|
||||
|
@ -265,7 +265,7 @@ static projector_type clip_projector_type_from_string(const std::string & name)
|
|||
static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) {
|
||||
std::ofstream file(filename, std::ios::binary);
|
||||
if (!file.is_open()) {
|
||||
std::cerr << "Failed to open file for writing: " << filename << std::endl;
|
||||
LOG_TEE("Failed to open file for writing: %s\n", filename.c_str());
|
||||
return;
|
||||
}
|
||||
|
||||
|
@ -284,7 +284,7 @@ static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::s
|
|||
static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) {
|
||||
std::ofstream file(filename, std::ios::binary);
|
||||
if (!file.is_open()) {
|
||||
std::cerr << "Failed to open file for writing: " << filename << std::endl;
|
||||
LOG_TEE("Failed to open file for writing: %s\n", filename.c_str());
|
||||
return;
|
||||
}
|
||||
|
||||
|
@ -515,7 +515,7 @@ struct clip_ctx {
|
|||
|
||||
static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch * imgs) {
|
||||
if (!ctx->has_vision_encoder) {
|
||||
printf("This gguf file seems to have no vision encoder\n");
|
||||
LOG_TEE("This gguf file seems to have no vision encoder\n");
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
|
@ -879,21 +879,21 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
|||
const int idx_name = gguf_find_key(ctx, KEY_NAME);
|
||||
if (idx_name != -1) { // make name optional temporarily as some of the uploaded models missing it due to a bug
|
||||
const std::string name = gguf_get_val_str(ctx, idx_name);
|
||||
printf("%s: model name: %s\n", __func__, name.c_str());
|
||||
LOG_TEE("%s: model name: %s\n", __func__, name.c_str());
|
||||
}
|
||||
printf("%s: description: %s\n", __func__, description.c_str());
|
||||
printf("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx));
|
||||
printf("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx));
|
||||
printf("%s: n_tensors: %d\n", __func__, n_tensors);
|
||||
printf("%s: n_kv: %d\n", __func__, n_kv);
|
||||
printf("%s: ftype: %s\n", __func__, ftype_str.c_str());
|
||||
printf("\n");
|
||||
LOG_TEE("%s: description: %s\n", __func__, description.c_str());
|
||||
LOG_TEE("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx));
|
||||
LOG_TEE("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx));
|
||||
LOG_TEE("%s: n_tensors: %d\n", __func__, n_tensors);
|
||||
LOG_TEE("%s: n_kv: %d\n", __func__, n_kv);
|
||||
LOG_TEE("%s: ftype: %s\n", __func__, ftype_str.c_str());
|
||||
LOG_TEE("\n");
|
||||
}
|
||||
const int n_tensors = gguf_get_n_tensors(ctx);
|
||||
|
||||
// kv
|
||||
const int n_kv = gguf_get_n_kv(ctx);
|
||||
printf("%s: loaded meta data with %d key-value pairs and %d tensors from %s\n",
|
||||
LOG_TEE("%s: loaded meta data with %d key-value pairs and %d tensors from %s\n",
|
||||
__func__, n_kv, n_tensors, fname);
|
||||
{
|
||||
std::map<enum ggml_type, uint32_t> n_type;
|
||||
|
@ -904,7 +904,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
|||
n_type[type]++;
|
||||
}
|
||||
|
||||
printf("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
|
||||
LOG_TEE("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
|
||||
for (int i = 0; i < n_kv; i++) {
|
||||
const char * name = gguf_get_key(ctx, i);
|
||||
const enum gguf_type type = gguf_get_kv_type(ctx, i);
|
||||
|
@ -920,7 +920,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
|||
}
|
||||
replace_all(value, "\n", "\\n");
|
||||
|
||||
printf("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
|
||||
LOG_TEE("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
|
||||
}
|
||||
|
||||
// print type counts
|
||||
|
@ -929,7 +929,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
|||
continue;
|
||||
}
|
||||
|
||||
printf("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
|
||||
LOG_TEE("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -944,7 +944,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
|||
size_t tensor_size = ggml_nbytes(cur);
|
||||
model_size += tensor_size;
|
||||
if (verbosity >= 3) {
|
||||
printf("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
|
||||
LOG_TEE("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
|
||||
__func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
|
||||
}
|
||||
}
|
||||
|
@ -971,18 +971,18 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
|||
|
||||
#ifdef GGML_USE_CUDA
|
||||
new_clip->backend = ggml_backend_cuda_init(0);
|
||||
printf("%s: CLIP using CUDA backend\n", __func__);
|
||||
LOG_TEE("%s: CLIP using CUDA backend\n", __func__);
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_METAL
|
||||
new_clip->backend = ggml_backend_metal_init();
|
||||
printf("%s: CLIP using Metal backend\n", __func__);
|
||||
LOG_TEE("%s: CLIP using Metal backend\n", __func__);
|
||||
#endif
|
||||
|
||||
|
||||
if (!new_clip->backend) {
|
||||
new_clip->backend = ggml_backend_cpu_init();
|
||||
printf("%s: CLIP using CPU backend\n", __func__);
|
||||
LOG_TEE("%s: CLIP using CPU backend\n", __func__);
|
||||
}
|
||||
|
||||
// model size and capabilities
|
||||
|
@ -1006,15 +1006,15 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
|||
new_clip->use_gelu = gguf_get_val_bool(ctx, idx);
|
||||
|
||||
if (verbosity >= 1) {
|
||||
printf("%s: text_encoder: %d\n", __func__, new_clip->has_text_encoder);
|
||||
printf("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder);
|
||||
printf("%s: llava_projector: %d\n", __func__, new_clip->has_llava_projector);
|
||||
printf("%s: model size: %.2f MB\n", __func__, model_size / 1024.0 / 1024.0);
|
||||
printf("%s: metadata size: %.2f MB\n", __func__, ggml_get_mem_size(meta) / 1024.0 / 1024.0);
|
||||
LOG_TEE("%s: text_encoder: %d\n", __func__, new_clip->has_text_encoder);
|
||||
LOG_TEE("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder);
|
||||
LOG_TEE("%s: llava_projector: %d\n", __func__, new_clip->has_llava_projector);
|
||||
LOG_TEE("%s: model size: %.2f MB\n", __func__, model_size / 1024.0 / 1024.0);
|
||||
LOG_TEE("%s: metadata size: %.2f MB\n", __func__, ggml_get_mem_size(meta) / 1024.0 / 1024.0);
|
||||
}
|
||||
}
|
||||
|
||||
printf("%s: params backend buffer size = % 6.2f MB (%i tensors)\n", __func__, model_size / (1024.0 * 1024.0), n_tensors);
|
||||
LOG_TEE("%s: params backend buffer size = % 6.2f MB (%i tensors)\n", __func__, model_size / (1024.0 * 1024.0), n_tensors);
|
||||
|
||||
// load tensors
|
||||
{
|
||||
|
@ -1027,7 +1027,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
|||
|
||||
new_clip->ctx_data = ggml_init(params);
|
||||
if (!new_clip->ctx_data) {
|
||||
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
|
||||
LOG_TEE("%s: ggml_init() failed\n", __func__);
|
||||
clip_free(new_clip);
|
||||
gguf_free(ctx);
|
||||
return nullptr;
|
||||
|
@ -1035,7 +1035,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
|||
|
||||
auto fin = std::ifstream(fname, std::ios::binary);
|
||||
if (!fin) {
|
||||
printf("cannot open model file for loading tensors\n");
|
||||
LOG_TEE("cannot open model file for loading tensors\n");
|
||||
clip_free(new_clip);
|
||||
gguf_free(ctx);
|
||||
return nullptr;
|
||||
|
@ -1057,7 +1057,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
|||
const size_t offset = gguf_get_data_offset(ctx) + gguf_get_tensor_offset(ctx, i);
|
||||
fin.seekg(offset, std::ios::beg);
|
||||
if (!fin) {
|
||||
printf("%s: failed to seek for tensor %s\n", __func__, name);
|
||||
LOG_TEE("%s: failed to seek for tensor %s\n", __func__, name);
|
||||
clip_free(new_clip);
|
||||
gguf_free(ctx);
|
||||
return nullptr;
|
||||
|
@ -1128,23 +1128,23 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
|||
}
|
||||
|
||||
if (verbosity >= 2) {
|
||||
printf("\n%s: vision model hparams\n", __func__);
|
||||
printf("image_size %d\n", hparams.image_size);
|
||||
printf("patch_size %d\n", hparams.patch_size);
|
||||
printf("v_hidden_size %d\n", hparams.hidden_size);
|
||||
printf("v_n_intermediate %d\n", hparams.n_intermediate);
|
||||
printf("v_projection_dim %d\n", hparams.projection_dim);
|
||||
printf("v_n_head %d\n", hparams.n_head);
|
||||
printf("v_n_layer %d\n", hparams.n_layer);
|
||||
printf("v_eps %f\n", hparams.eps);
|
||||
printf("v_image_mean %f %f %f\n", new_clip->image_mean[0], new_clip->image_mean[1], new_clip->image_mean[2]);
|
||||
printf("v_image_std %f %f %f\n", new_clip->image_std[0], new_clip->image_std[1], new_clip->image_std[2]);
|
||||
printf("v_image_grid_pinpoints: ");
|
||||
LOG_TEE("\n%s: vision model hparams\n", __func__);
|
||||
LOG_TEE("image_size %d\n", hparams.image_size);
|
||||
LOG_TEE("patch_size %d\n", hparams.patch_size);
|
||||
LOG_TEE("v_hidden_size %d\n", hparams.hidden_size);
|
||||
LOG_TEE("v_n_intermediate %d\n", hparams.n_intermediate);
|
||||
LOG_TEE("v_projection_dim %d\n", hparams.projection_dim);
|
||||
LOG_TEE("v_n_head %d\n", hparams.n_head);
|
||||
LOG_TEE("v_n_layer %d\n", hparams.n_layer);
|
||||
LOG_TEE("v_eps %f\n", hparams.eps);
|
||||
LOG_TEE("v_image_mean %f %f %f\n", new_clip->image_mean[0], new_clip->image_mean[1], new_clip->image_mean[2]);
|
||||
LOG_TEE("v_image_std %f %f %f\n", new_clip->image_std[0], new_clip->image_std[1], new_clip->image_std[2]);
|
||||
LOG_TEE("v_image_grid_pinpoints: ");
|
||||
for (int i = 0; i < 32 && (hparams.image_grid_pinpoints[i] != 0); ++i) {
|
||||
printf("%d ", hparams.image_grid_pinpoints[i]);
|
||||
LOG_TEE("%d ", hparams.image_grid_pinpoints[i]);
|
||||
}
|
||||
printf("\n");
|
||||
printf("v_mm_patch_merge_type: %s\n", hparams.mm_patch_merge_type);
|
||||
LOG_TEE("\n");
|
||||
LOG_TEE("v_mm_patch_merge_type: %s\n", hparams.mm_patch_merge_type);
|
||||
|
||||
}
|
||||
|
||||
|
@ -1155,7 +1155,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
|||
vision_model.pre_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "weight"));
|
||||
vision_model.pre_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "bias"));
|
||||
} catch(const std::exception& e) {
|
||||
fprintf(stderr, "%s: failed to load vision model tensors\n", __func__);
|
||||
LOG_TEE("%s: failed to load vision model tensors\n", __func__);
|
||||
}
|
||||
|
||||
// LLaVA projection
|
||||
|
@ -1184,7 +1184,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
|||
} catch (std::runtime_error & e) { }
|
||||
try {
|
||||
vision_model.image_newline = get_tensor(new_clip->ctx_data, TN_IMAGE_NEWLINE);
|
||||
// fprintf(stderr, "%s: image_newline tensor (llava-1.6) found\n", __func__);
|
||||
// LOG_TEE("%s: image_newline tensor (llava-1.6) found\n", __func__);
|
||||
} catch (std::runtime_error & e) { }
|
||||
} else if (new_clip->proj_type == PROJECTOR_TYPE_LDP) {
|
||||
// MobileVLM projection
|
||||
|
@ -1264,7 +1264,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
|||
ggml_cgraph * gf = clip_image_build_graph(new_clip, &batch);
|
||||
ggml_gallocr_reserve(new_clip->compute_alloc, gf);
|
||||
size_t compute_memory_buffer_size = ggml_gallocr_get_buffer_size(new_clip->compute_alloc, 0);
|
||||
printf("%s: compute allocated memory: %.2f MB\n", __func__, compute_memory_buffer_size /1024.0/1024.0);
|
||||
LOG_TEE("%s: compute allocated memory: %.2f MB\n", __func__, compute_memory_buffer_size /1024.0/1024.0);
|
||||
}
|
||||
|
||||
return new_clip;
|
||||
|
@ -1304,7 +1304,7 @@ bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) {
|
|||
int nx, ny, nc;
|
||||
auto * data = stbi_load(fname, &nx, &ny, &nc, 3);
|
||||
if (!data) {
|
||||
fprintf(stderr, "%s: failed to load image '%s'\n", __func__, fname);
|
||||
LOG_TEE("%s: failed to load image '%s'\n", __func__, fname);
|
||||
return false;
|
||||
}
|
||||
build_clip_img_from_data(data, nx, ny, img);
|
||||
|
@ -1316,7 +1316,7 @@ bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length
|
|||
int nx, ny, nc;
|
||||
auto * data = stbi_load_from_memory(bytes, bytes_length, &nx, &ny, &nc, 3);
|
||||
if (!data) {
|
||||
fprintf(stderr, "%s: failed to decode image bytes\n", __func__);
|
||||
LOG_TEE("%s: failed to decode image bytes\n", __func__);
|
||||
return false;
|
||||
}
|
||||
build_clip_img_from_data(data, nx, ny, img);
|
||||
|
@ -1506,7 +1506,7 @@ static std::pair<int, int> select_best_resolution(const std::pair<int, int> & or
|
|||
int downscaled_height = static_cast<int>(original_height * scale);
|
||||
int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height);
|
||||
int wasted_resolution = (width * height) - effective_resolution;
|
||||
// fprintf(stderr, "resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
|
||||
// LOG_TEE("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
|
||||
if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) {
|
||||
max_effective_resolution = effective_resolution;
|
||||
min_wasted_resolution = wasted_resolution;
|
||||
|
@ -1545,7 +1545,7 @@ static std::vector<clip_image_u8*> divide_to_patches_u8(const clip_image_u8 & im
|
|||
bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, clip_image_f32_batch * res_imgs) {
|
||||
bool pad_to_square = true;
|
||||
if (!ctx->has_vision_encoder) {
|
||||
printf("This gguf file seems to have no vision encoder\n");
|
||||
LOG_TEE("This gguf file seems to have no vision encoder\n");
|
||||
return false;
|
||||
}
|
||||
auto & params = ctx->vision_model.hparams;
|
||||
|
@ -1622,7 +1622,7 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, cli
|
|||
}
|
||||
|
||||
for (size_t i = 0; i < patches.size(); i++) {
|
||||
// printf("patch %d: %d %d\n", i, patches[i]->nx, patches[i]->ny);
|
||||
// LOG_TEE("patch %d: %d %d\n", i, patches[i]->nx, patches[i]->ny);
|
||||
clip_image_u8_free(patches[i]);
|
||||
}
|
||||
|
||||
|
@ -1765,7 +1765,7 @@ int clip_n_patches(const struct clip_ctx * ctx) {
|
|||
|
||||
bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
|
||||
if (!ctx->has_vision_encoder) {
|
||||
printf("This gguf file seems to have no vision encoder\n");
|
||||
LOG_TEE("This gguf file seems to have no vision encoder\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
|
@ -1777,7 +1777,7 @@ bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f3
|
|||
|
||||
bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs, float * vec) {
|
||||
if (!ctx->has_vision_encoder) {
|
||||
printf("This gguf file seems to have no vision encoder\n");
|
||||
LOG_TEE("This gguf file seems to have no vision encoder\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
|
@ -1939,7 +1939,7 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
|
|||
new_type = type;
|
||||
if (new_type >= GGML_TYPE_Q2_K && name.find("embd") != std::string::npos) {
|
||||
new_type = GGML_TYPE_Q8_0; // ggml_get_rows needs non K type
|
||||
// fprintf(stderr, "%s: quantizing %s to %s\n", __func__, name.c_str(), ggml_type_name(new_type));
|
||||
// LOG_TEE("%s: quantizing %s to %s\n", __func__, name.c_str(), ggml_type_name(new_type));
|
||||
}
|
||||
const size_t n_elms = ggml_nelements(cur);
|
||||
float * f32_data;
|
||||
|
@ -1958,7 +1958,7 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
|
|||
f32_data = (float *)conv_buf.data();
|
||||
break;
|
||||
default:
|
||||
printf("Please use an input file in f32 or f16\n");
|
||||
LOG_TEE("Please use an input file in f32 or f16\n");
|
||||
gguf_free(ctx_out);
|
||||
return false;
|
||||
}
|
||||
|
@ -1985,7 +1985,7 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
|
|||
fout.put(0);
|
||||
}
|
||||
|
||||
printf("%s: n_dims = %d | quantize=%d | size = %f MB -> %f MB\n", name.c_str(), ggml_n_dims(cur), quantize,
|
||||
LOG_TEE("%s: n_dims = %d | quantize=%d | size = %f MB -> %f MB\n", name.c_str(), ggml_n_dims(cur), quantize,
|
||||
orig_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
|
||||
}
|
||||
|
||||
|
@ -2001,8 +2001,8 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
|
|||
gguf_free(ctx_out);
|
||||
|
||||
{
|
||||
printf("%s: original size = %8.2f MB\n", __func__, total_size_org / 1024.0 / 1024.0);
|
||||
printf("%s: quantized size = %8.2f MB\n", __func__, total_size_new / 1024.0 / 1024.0);
|
||||
LOG_TEE("%s: original size = %8.2f MB\n", __func__, total_size_org / 1024.0 / 1024.0);
|
||||
LOG_TEE("%s: quantized size = %8.2f MB\n", __func__, total_size_new / 1024.0 / 1024.0);
|
||||
}
|
||||
|
||||
return true;
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
#include "ggml.h"
|
||||
#include "log.h"
|
||||
#include "common.h"
|
||||
#include "clip.h"
|
||||
#include "llava.h"
|
||||
|
@ -18,7 +19,7 @@ static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_toke
|
|||
n_eval = n_batch;
|
||||
}
|
||||
if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval, *n_past, 0))) {
|
||||
fprintf(stderr, "%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past);
|
||||
LOG_TEE("%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past);
|
||||
return false;
|
||||
}
|
||||
*n_past += n_eval;
|
||||
|
@ -45,7 +46,7 @@ static const char * sample(struct llama_sampling_context * ctx_sampling,
|
|||
const llama_token id = llama_sampling_sample(ctx_sampling, ctx_llama, NULL);
|
||||
llama_sampling_accept(ctx_sampling, ctx_llama, id, true);
|
||||
static std::string ret;
|
||||
if (id == llama_token_eos(llama_get_model(ctx_llama))) {
|
||||
if (llama_token_is_eog(llama_get_model(ctx_llama), id)) {
|
||||
ret = "</s>";
|
||||
} else {
|
||||
ret = llama_token_to_piece(ctx_llama, id);
|
||||
|
@ -73,7 +74,7 @@ static llava_image_embed * llava_image_embed_make_with_prompt_base64(struct clip
|
|||
size_t img_base64_str_start, img_base64_str_end;
|
||||
find_image_tag_in_prompt(prompt, img_base64_str_start, img_base64_str_end);
|
||||
if (img_base64_str_start == std::string::npos || img_base64_str_end == std::string::npos) {
|
||||
fprintf(stderr, "%s: invalid base64 image tag. must be %s<base64 byte string>%s\n", __func__, IMG_BASE64_TAG_BEGIN, IMG_BASE64_TAG_END);
|
||||
LOG_TEE("%s: invalid base64 image tag. must be %s<base64 byte string>%s\n", __func__, IMG_BASE64_TAG_BEGIN, IMG_BASE64_TAG_END);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
|
@ -87,7 +88,7 @@ static llava_image_embed * llava_image_embed_make_with_prompt_base64(struct clip
|
|||
|
||||
auto embed = llava_image_embed_make_with_bytes(ctx_clip, n_threads, img_bytes.data(), img_bytes.size());
|
||||
if (!embed) {
|
||||
fprintf(stderr, "%s: could not load image from base64 string.\n", __func__);
|
||||
LOG_TEE("%s: could not load image from base64 string.\n", __func__);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
|
@ -112,8 +113,8 @@ struct llava_context {
|
|||
};
|
||||
|
||||
static void show_additional_info(int /*argc*/, char ** argv) {
|
||||
fprintf(stderr, "\n example usage: %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
|
||||
fprintf(stderr, " note: a lower temperature value like 0.1 is recommended for better quality.\n");
|
||||
LOG_TEE("\n example usage: %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
|
||||
LOG_TEE(" note: a lower temperature value like 0.1 is recommended for better quality.\n");
|
||||
}
|
||||
|
||||
static struct llava_image_embed * load_image(llava_context * ctx_llava, gpt_params * params) {
|
||||
|
@ -123,18 +124,18 @@ static struct llava_image_embed * load_image(llava_context * ctx_llava, gpt_para
|
|||
auto prompt = params->prompt;
|
||||
if (prompt_contains_image(prompt)) {
|
||||
if (!params->image.empty()) {
|
||||
fprintf(stderr, "using base64 encoded image instead of command line image path\n");
|
||||
LOG_TEE("using base64 encoded image instead of command line image path\n");
|
||||
}
|
||||
embed = llava_image_embed_make_with_prompt_base64(ctx_llava->ctx_clip, params->n_threads, prompt);
|
||||
if (!embed) {
|
||||
fprintf(stderr, "%s: can't load image from prompt\n", __func__);
|
||||
LOG_TEE("%s: can't load image from prompt\n", __func__);
|
||||
return NULL;
|
||||
}
|
||||
params->prompt = remove_image_from_prompt(prompt);
|
||||
} else {
|
||||
embed = llava_image_embed_make_with_filename(ctx_llava->ctx_clip, params->n_threads, params->image.c_str());
|
||||
if (!embed) {
|
||||
fprintf(stderr, "%s: is %s really an image file?\n", __func__, params->image.c_str());
|
||||
LOG_TEE("%s: is %s really an image file?\n", __func__, params->image.c_str());
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
|
@ -153,18 +154,18 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
|
|||
// new templating mode: Provide the full prompt including system message and use <image> as a placeholder for the image
|
||||
system_prompt = prompt.substr(0, image_pos);
|
||||
user_prompt = prompt.substr(image_pos + std::string("<image>").length());
|
||||
printf("system_prompt: %s\n", system_prompt.c_str());
|
||||
LOG_TEE("system_prompt: %s\n", system_prompt.c_str());
|
||||
if (params->verbose_prompt) {
|
||||
auto tmp = ::llama_tokenize(ctx_llava->ctx_llama, system_prompt, true, true);
|
||||
for (int i = 0; i < (int) tmp.size(); i++) {
|
||||
printf("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
|
||||
LOG_TEE("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
|
||||
}
|
||||
}
|
||||
printf("user_prompt: %s\n", user_prompt.c_str());
|
||||
LOG_TEE("user_prompt: %s\n", user_prompt.c_str());
|
||||
if (params->verbose_prompt) {
|
||||
auto tmp = ::llama_tokenize(ctx_llava->ctx_llama, user_prompt, true, true);
|
||||
for (int i = 0; i < (int) tmp.size(); i++) {
|
||||
printf("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
|
||||
LOG_TEE("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
|
||||
}
|
||||
}
|
||||
} else {
|
||||
|
@ -174,7 +175,7 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
|
|||
if (params->verbose_prompt) {
|
||||
auto tmp = ::llama_tokenize(ctx_llava->ctx_llama, user_prompt, true, true);
|
||||
for (int i = 0; i < (int) tmp.size(); i++) {
|
||||
printf("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
|
||||
LOG_TEE("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -185,7 +186,7 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
|
|||
|
||||
// generate the response
|
||||
|
||||
fprintf(stderr, "\n");
|
||||
LOG_TEE("\n");
|
||||
|
||||
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params->sparams);
|
||||
std::string response = "";
|
||||
|
@ -224,7 +225,7 @@ static struct llava_context * llava_init(gpt_params * params) {
|
|||
|
||||
llama_model * model = llama_load_model_from_file(params->model.c_str(), model_params);
|
||||
if (model == NULL) {
|
||||
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
|
||||
LOG_TEE("%s: error: unable to load model\n" , __func__);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
|
@ -234,7 +235,7 @@ static struct llava_context * llava_init(gpt_params * params) {
|
|||
llama_context * ctx_llama = llama_new_context_with_model(model, ctx_params);
|
||||
|
||||
if (ctx_llama == NULL) {
|
||||
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
|
||||
LOG_TEE("%s: error: failed to create the llama_context\n" , __func__);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
|
@ -257,6 +258,12 @@ static void llava_free(struct llava_context * ctx_llava) {
|
|||
llama_backend_free();
|
||||
}
|
||||
|
||||
static void llama_log_callback_logTee(ggml_log_level level, const char * text, void * user_data) {
|
||||
(void) level;
|
||||
(void) user_data;
|
||||
LOG_TEE("%s", text);
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
ggml_time_init();
|
||||
|
||||
|
@ -266,6 +273,14 @@ int main(int argc, char ** argv) {
|
|||
show_additional_info(argc, argv);
|
||||
return 1;
|
||||
}
|
||||
|
||||
#ifndef LOG_DISABLE_LOGS
|
||||
log_set_target(log_filename_generator("llava", "log"));
|
||||
LOG_TEE("Log start\n");
|
||||
log_dump_cmdline(argc, argv);
|
||||
llama_log_set(llama_log_callback_logTee, nullptr);
|
||||
#endif // LOG_DISABLE_LOGS
|
||||
|
||||
if (params.mmproj.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) {
|
||||
gpt_print_usage(argc, argv, params);
|
||||
show_additional_info(argc, argv);
|
||||
|
@ -274,7 +289,7 @@ int main(int argc, char ** argv) {
|
|||
|
||||
auto ctx_llava = llava_init(¶ms);
|
||||
if (ctx_llava == NULL) {
|
||||
fprintf(stderr, "%s: error: failed to init llava\n", __func__);
|
||||
LOG_TEE("%s: error: failed to init llava\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
|
|
@ -54,7 +54,7 @@ static std::pair<int, int> select_best_resolution(const std::pair<int, int>& ori
|
|||
int downscaled_height = static_cast<int>(original_height * scale);
|
||||
int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height);
|
||||
int wasted_resolution = (width * height) - effective_resolution;
|
||||
// fprintf(stderr, "resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
|
||||
// LOG_TEE("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
|
||||
if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) {
|
||||
max_effective_resolution = effective_resolution;
|
||||
min_wasted_resolution = wasted_resolution;
|
||||
|
@ -154,13 +154,13 @@ static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *>
|
|||
model.newline = ggml_new_tensor_1d(model.ctx, GGML_TYPE_F32, newline_tmp->ne[0]);
|
||||
if (newline_tmp->backend != GGML_BACKEND_TYPE_CPU) {
|
||||
if (newline_tmp->buffer == NULL) {
|
||||
printf("newline_tmp tensor buffer is NULL\n");
|
||||
LOG_TEE("newline_tmp tensor buffer is NULL\n");
|
||||
}
|
||||
ggml_backend_tensor_get(newline_tmp, model.newline->data, 0, ggml_nbytes(newline_tmp));
|
||||
} else {
|
||||
model.newline->data = newline_tmp->data;
|
||||
if (model.newline->data == NULL) {
|
||||
printf("newline_tmp tensor data is NULL\n");
|
||||
LOG_TEE("newline_tmp tensor data is NULL\n");
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -224,7 +224,7 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
|
|||
img_res_v.size = 0;
|
||||
img_res_v.data = nullptr;
|
||||
if (!clip_image_preprocess(ctx_clip, img, &img_res_v)) {
|
||||
fprintf(stderr, "%s: unable to preprocess image\n", __func__);
|
||||
LOG_TEE("%s: unable to preprocess image\n", __func__);
|
||||
delete[] img_res_v.data;
|
||||
return false;
|
||||
}
|
||||
|
@ -239,7 +239,7 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
|
|||
bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[0], image_embd); // image_embd shape is 576 x 4096
|
||||
delete[] img_res_v.data;
|
||||
if (!encoded) {
|
||||
fprintf(stderr, "Unable to encode image\n");
|
||||
LOG_TEE("Unable to encode image\n");
|
||||
|
||||
return false;
|
||||
}
|
||||
|
@ -252,12 +252,12 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
|
|||
image_embd_v[i] = (float *)malloc(clip_embd_nbytes(ctx_clip)); // 576 patches * 4096 embeddings * 4 bytes = 9437184
|
||||
const bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]); // image data is in 3x336x336 format and will be converted to 336x336x3 inside
|
||||
if (!encoded) {
|
||||
fprintf(stderr, "Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size);
|
||||
LOG_TEE("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
const int64_t t_img_enc_batch_us = ggml_time_us();
|
||||
printf("%s: %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
|
||||
LOG_TEE("%s: %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
|
||||
|
||||
const int32_t * image_grid = clip_image_grid(ctx_clip);
|
||||
|
||||
|
@ -290,12 +290,12 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
|
|||
// clip_image_save_to_bmp(*tmp, "image_feature.bmp");
|
||||
}
|
||||
|
||||
printf("%s: image embedding created: %d tokens\n", __func__, *n_img_pos);
|
||||
LOG_TEE("%s: image embedding created: %d tokens\n", __func__, *n_img_pos);
|
||||
|
||||
const int64_t t_img_enc_end_us = ggml_time_us();
|
||||
float t_img_enc_ms = (t_img_enc_end_us - t_img_enc_start_us) / 1000.0;
|
||||
|
||||
printf("\n%s: image encoded in %8.2f ms by CLIP (%8.2f ms per image patch)\n", __func__, t_img_enc_ms, t_img_enc_ms / *n_img_pos);
|
||||
LOG_TEE("\n%s: image encoded in %8.2f ms by CLIP (%8.2f ms per image patch)\n", __func__, t_img_enc_ms, t_img_enc_ms / *n_img_pos);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
@ -305,7 +305,7 @@ bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx *
|
|||
int n_llama_embd = llama_n_embd(llama_get_model(ctx_llama));
|
||||
auto n_image_embd = clip_n_mmproj_embd(ctx_clip);
|
||||
if (n_image_embd != n_llama_embd) {
|
||||
printf("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_image_embd, n_llama_embd);
|
||||
LOG_TEE("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_image_embd, n_llama_embd);
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
|
@ -314,13 +314,13 @@ bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx *
|
|||
bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) {
|
||||
float * image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)*6); // TODO: base on gridsize/llava model
|
||||
if (!image_embd) {
|
||||
fprintf(stderr, "Unable to allocate memory for image embeddings\n");
|
||||
LOG_TEE("Unable to allocate memory for image embeddings\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
int n_img_pos;
|
||||
if (!encode_image_with_clip(ctx_clip, n_threads, img, image_embd, &n_img_pos)) {
|
||||
fprintf(stderr, "%s: cannot encode image, aborting\n", __func__);
|
||||
LOG_TEE("%s: cannot encode image, aborting\n", __func__);
|
||||
free(image_embd);
|
||||
return false;
|
||||
}
|
||||
|
@ -340,7 +340,7 @@ bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_
|
|||
}
|
||||
llama_batch batch = {int32_t(n_eval), nullptr, (image_embed->embed+i*n_embd), nullptr, nullptr, nullptr, nullptr, *n_past, 1, 0, };
|
||||
if (llama_decode(ctx_llama, batch)) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
LOG_TEE("%s : failed to eval\n", __func__);
|
||||
return false;
|
||||
}
|
||||
*n_past += n_eval;
|
||||
|
@ -352,7 +352,7 @@ struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * c
|
|||
clip_image_u8 * img = clip_image_u8_init();
|
||||
if (!clip_image_load_from_bytes(image_bytes, image_bytes_length, img)) {
|
||||
clip_image_u8_free(img);
|
||||
fprintf(stderr, "%s: can't load image from bytes, is it a valid image?", __func__);
|
||||
LOG_TEE("%s: can't load image from bytes, is it a valid image?", __func__);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
|
@ -361,7 +361,7 @@ struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * c
|
|||
bool image_embed_result = llava_image_embed_make_with_clip_img(ctx_clip, n_threads, img, &image_embed, &n_image_pos);
|
||||
if (!image_embed_result) {
|
||||
clip_image_u8_free(img);
|
||||
fprintf(stderr, "%s: coulnd't embed the image\n", __func__);
|
||||
LOG_TEE("%s: coulnd't embed the image\n", __func__);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
|
@ -375,7 +375,7 @@ struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * c
|
|||
static bool load_file_to_bytes(const char* path, unsigned char** bytesOut, long *sizeOut) {
|
||||
auto file = fopen(path, "rb");
|
||||
if (file == NULL) {
|
||||
fprintf(stderr, "%s: can't read file %s\n", __func__, path);
|
||||
LOG_TEE("%s: can't read file %s\n", __func__, path);
|
||||
return false;
|
||||
}
|
||||
|
||||
|
@ -385,7 +385,7 @@ static bool load_file_to_bytes(const char* path, unsigned char** bytesOut, long
|
|||
|
||||
auto buffer = (unsigned char *)malloc(fileSize); // Allocate memory to hold the file data
|
||||
if (buffer == NULL) {
|
||||
fprintf(stderr, "%s: failed to alloc %ld bytes for file %s\n", __func__, fileSize, path);
|
||||
LOG_TEE("%s: failed to alloc %ld bytes for file %s\n", __func__, fileSize, path);
|
||||
perror("Memory allocation error");
|
||||
fclose(file);
|
||||
return false;
|
||||
|
@ -410,7 +410,7 @@ struct llava_image_embed * llava_image_embed_make_with_filename(struct clip_ctx
|
|||
long image_bytes_length;
|
||||
auto loaded = load_file_to_bytes(image_path, &image_bytes, &image_bytes_length);
|
||||
if (!loaded) {
|
||||
fprintf(stderr, "%s: failed to load %s\n", __func__, image_path);
|
||||
LOG_TEE("%s: failed to load %s\n", __func__, image_path);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
|
|
|
@ -299,7 +299,7 @@ int main(int argc, char ** argv) {
|
|||
}
|
||||
fflush(stdout);
|
||||
|
||||
if (id == llama_token_eos(model)) {
|
||||
if (llama_token_is_eog(model, id)) {
|
||||
has_eos = true;
|
||||
}
|
||||
|
||||
|
|
|
@ -141,7 +141,7 @@ int main(int argc, char ** argv){
|
|||
printf("%s", token_str.c_str());
|
||||
}
|
||||
|
||||
if (id == llama_token_eos(model)) {
|
||||
if (llama_token_is_eog(model, id)) {
|
||||
has_eos = true;
|
||||
}
|
||||
|
||||
|
|
|
@ -795,8 +795,8 @@ int main(int argc, char ** argv) {
|
|||
}
|
||||
}
|
||||
|
||||
// deal with end of text token in interactive mode
|
||||
if (llama_sampling_last(ctx_sampling) == llama_token_eos(model)) {
|
||||
// deal with end of generation tokens in interactive mode
|
||||
if (llama_token_is_eog(model, llama_sampling_last(ctx_sampling))) {
|
||||
LOG("found EOS token\n");
|
||||
|
||||
if (params.interactive) {
|
||||
|
@ -920,8 +920,8 @@ int main(int argc, char ** argv) {
|
|||
}
|
||||
}
|
||||
|
||||
// end of text token
|
||||
if (!embd.empty() && embd.back() == llama_token_eos(model) && !(params.instruct || params.interactive || params.chatml)) {
|
||||
// end of generation
|
||||
if (!embd.empty() && llama_token_is_eog(model, embd.back()) && !(params.instruct || params.interactive || params.chatml)) {
|
||||
LOG_TEE(" [end of text]\n");
|
||||
break;
|
||||
}
|
||||
|
|
|
@ -359,7 +359,7 @@ int main(int argc, char ** argv) {
|
|||
// client.id, client.seq_id, id, client.n_decoded, client.i_batch, token_str.c_str());
|
||||
|
||||
if (client.n_decoded > 2 &&
|
||||
(id == llama_token_eos(model) ||
|
||||
(llama_token_is_eog(model, id) ||
|
||||
(params.n_predict > 0 && client.n_decoded + client.n_prompt >= params.n_predict) ||
|
||||
client.response.find("User:") != std::string::npos ||
|
||||
client.response.find('\n') != std::string::npos)) {
|
||||
|
|
|
@ -252,8 +252,8 @@ int main(int argc, char ** argv) {
|
|||
// sample the most likely token
|
||||
const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
|
||||
|
||||
// is it an end of stream?
|
||||
if (new_token_id == llama_token_eos(model) || n_cur == n_len) {
|
||||
// is it an end of generation?
|
||||
if (llama_token_is_eog(model, new_token_id) || n_cur == n_len) {
|
||||
LOG_TEE("\n");
|
||||
|
||||
break;
|
||||
|
|
|
@ -1852,12 +1852,20 @@ int main(int argc, char ** argv) {
|
|||
|
||||
const int32_t n_ctx = params.n_ctx;
|
||||
|
||||
if (n_ctx <= 0) {
|
||||
fprintf(stderr, "%s: perplexity tool requires '--ctx-size' > 0\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
const bool ppl = !params.hellaswag && !params.winogrande && !params.multiple_choice && !params.kl_divergence;
|
||||
|
||||
if (ppl) {
|
||||
int n_seq = std::max(1, params.n_batch / n_ctx);
|
||||
int32_t n_kv = n_seq * n_ctx;
|
||||
const int32_t n_seq = std::max(1, params.n_batch / n_ctx);
|
||||
const int32_t n_kv = n_seq * n_ctx;
|
||||
|
||||
params.n_parallel = n_seq;
|
||||
params.n_ctx = n_kv;
|
||||
params.n_ctx = n_kv;
|
||||
|
||||
params.n_batch = std::min(params.n_batch, n_kv);
|
||||
} else {
|
||||
params.n_batch = std::min(params.n_batch, params.n_ctx);
|
||||
|
|
|
@ -1,12 +1,29 @@
|
|||
set(TARGET server)
|
||||
option(LLAMA_SERVER_VERBOSE "Build verbose logging option for Server" ON)
|
||||
option(LLAMA_SERVER_SSL "Build SSL support for the server" OFF)
|
||||
include_directories(${CMAKE_CURRENT_SOURCE_DIR})
|
||||
add_executable(${TARGET}
|
||||
include_directories(${CMAKE_CURRENT_SOURCE_DIR} ${CMAKE_CURRENT_BINARY_DIR})
|
||||
set(TARGET_SRCS
|
||||
server.cpp
|
||||
utils.hpp
|
||||
httplib.h
|
||||
)
|
||||
set(PUBLIC_ASSETS
|
||||
index.html
|
||||
index.js
|
||||
completion.js
|
||||
json-schema-to-grammar.mjs
|
||||
)
|
||||
foreach(asset ${PUBLIC_ASSETS})
|
||||
set(input "${CMAKE_CURRENT_SOURCE_DIR}/public/${asset}")
|
||||
set(output "${CMAKE_CURRENT_BINARY_DIR}/${asset}.hpp")
|
||||
list(APPEND TARGET_SRCS ${output})
|
||||
add_custom_command(
|
||||
DEPENDS "${input}"
|
||||
OUTPUT "${output}"
|
||||
COMMAND "${CMAKE_COMMAND}" "-DINPUT=${input}" "-DOUTPUT=${output}" -P "${PROJECT_SOURCE_DIR}/scripts/xxd.cmake"
|
||||
)
|
||||
endforeach()
|
||||
add_executable(${TARGET} ${TARGET_SRCS})
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_compile_definitions(${TARGET} PRIVATE
|
||||
SERVER_VERBOSE=$<BOOL:${LLAMA_SERVER_VERBOSE}>
|
||||
|
|
|
@ -1,496 +0,0 @@
|
|||
unsigned char completion_js[] = {
|
||||
0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x44,
|
||||
0x65, 0x66, 0x61, 0x75, 0x6c, 0x74, 0x73, 0x20, 0x3d, 0x20, 0x7b, 0x0a,
|
||||
0x20, 0x20, 0x73, 0x74, 0x72, 0x65, 0x61, 0x6d, 0x3a, 0x20, 0x74, 0x72,
|
||||
0x75, 0x65, 0x2c, 0x0a, 0x20, 0x20, 0x6e, 0x5f, 0x70, 0x72, 0x65, 0x64,
|
||||
0x69, 0x63, 0x74, 0x3a, 0x20, 0x35, 0x30, 0x30, 0x2c, 0x0a, 0x20, 0x20,
|
||||
0x74, 0x65, 0x6d, 0x70, 0x65, 0x72, 0x61, 0x74, 0x75, 0x72, 0x65, 0x3a,
|
||||
0x20, 0x30, 0x2e, 0x32, 0x2c, 0x0a, 0x20, 0x20, 0x73, 0x74, 0x6f, 0x70,
|
||||
0x3a, 0x20, 0x5b, 0x22, 0x3c, 0x2f, 0x73, 0x3e, 0x22, 0x5d, 0x0a, 0x7d,
|
||||
0x3b, 0x0a, 0x0a, 0x6c, 0x65, 0x74, 0x20, 0x67, 0x65, 0x6e, 0x65, 0x72,
|
||||
0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e,
|
||||
0x67, 0x73, 0x20, 0x3d, 0x20, 0x6e, 0x75, 0x6c, 0x6c, 0x3b, 0x0a, 0x0a,
|
||||
0x0a, 0x2f, 0x2f, 0x20, 0x43, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x65,
|
||||
0x73, 0x20, 0x74, 0x68, 0x65, 0x20, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74,
|
||||
0x20, 0x61, 0x73, 0x20, 0x61, 0x20, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61,
|
||||
0x74, 0x6f, 0x72, 0x2e, 0x20, 0x52, 0x65, 0x63, 0x6f, 0x6d, 0x6d, 0x65,
|
||||
0x6e, 0x64, 0x65, 0x64, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x6d, 0x6f, 0x73,
|
||||
0x74, 0x20, 0x75, 0x73, 0x65, 0x20, 0x63, 0x61, 0x73, 0x65, 0x73, 0x2e,
|
||||
0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x45, 0x78, 0x61, 0x6d, 0x70,
|
||||
0x6c, 0x65, 0x3a, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20,
|
||||
0x20, 0x69, 0x6d, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x7b, 0x20, 0x6c, 0x6c,
|
||||
0x61, 0x6d, 0x61, 0x20, 0x7d, 0x20, 0x66, 0x72, 0x6f, 0x6d, 0x20, 0x27,
|
||||
0x2f, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x2e,
|
||||
0x6a, 0x73, 0x27, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20,
|
||||
0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72, 0x65, 0x71, 0x75, 0x65,
|
||||
0x73, 0x74, 0x20, 0x3d, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x28, 0x22,
|
||||
0x54, 0x65, 0x6c, 0x6c, 0x20, 0x6d, 0x65, 0x20, 0x61, 0x20, 0x6a, 0x6f,
|
||||
0x6b, 0x65, 0x22, 0x2c, 0x20, 0x7b, 0x6e, 0x5f, 0x70, 0x72, 0x65, 0x64,
|
||||
0x69, 0x63, 0x74, 0x3a, 0x20, 0x38, 0x30, 0x30, 0x7d, 0x29, 0x0a, 0x2f,
|
||||
0x2f, 0x20, 0x20, 0x20, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x61, 0x77, 0x61,
|
||||
0x69, 0x74, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x68,
|
||||
0x75, 0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20, 0x72, 0x65, 0x71, 0x75, 0x65,
|
||||
0x73, 0x74, 0x29, 0x20, 0x7b, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x64, 0x6f, 0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74, 0x2e, 0x77,
|
||||
0x72, 0x69, 0x74, 0x65, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64,
|
||||
0x61, 0x74, 0x61, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29,
|
||||
0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x2f, 0x2f, 0x0a,
|
||||
0x65, 0x78, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x61, 0x73, 0x79, 0x6e, 0x63,
|
||||
0x20, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x2a, 0x20, 0x6c,
|
||||
0x6c, 0x61, 0x6d, 0x61, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c,
|
||||
0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x20, 0x3d, 0x20, 0x7b, 0x7d,
|
||||
0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x20, 0x3d, 0x20, 0x7b,
|
||||
0x7d, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x63,
|
||||
0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x20, 0x3d, 0x20,
|
||||
0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x72,
|
||||
0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x3b, 0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e,
|
||||
0x73, 0x74, 0x20, 0x61, 0x70, 0x69, 0x5f, 0x75, 0x72, 0x6c, 0x20, 0x3d,
|
||||
0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x2e, 0x61, 0x70, 0x69, 0x5f,
|
||||
0x75, 0x72, 0x6c, 0x20, 0x7c, 0x7c, 0x20, 0x22, 0x22, 0x3b, 0x0a, 0x0a,
|
||||
0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x21, 0x63, 0x6f, 0x6e, 0x74, 0x72,
|
||||
0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x20,
|
||||
0x3d, 0x20, 0x6e, 0x65, 0x77, 0x20, 0x41, 0x62, 0x6f, 0x72, 0x74, 0x43,
|
||||
0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x28, 0x29, 0x3b,
|
||||
0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73,
|
||||
0x74, 0x20, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e,
|
||||
0x50, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x20, 0x3d, 0x20, 0x7b, 0x20, 0x2e,
|
||||
0x2e, 0x2e, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x44, 0x65, 0x66, 0x61, 0x75,
|
||||
0x6c, 0x74, 0x73, 0x2c, 0x20, 0x2e, 0x2e, 0x2e, 0x70, 0x61, 0x72, 0x61,
|
||||
0x6d, 0x73, 0x2c, 0x20, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x20, 0x7d,
|
||||
0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72,
|
||||
0x65, 0x73, 0x70, 0x6f, 0x6e, 0x73, 0x65, 0x20, 0x3d, 0x20, 0x61, 0x77,
|
||||
0x61, 0x69, 0x74, 0x20, 0x66, 0x65, 0x74, 0x63, 0x68, 0x28, 0x60, 0x24,
|
||||
0x7b, 0x61, 0x70, 0x69, 0x5f, 0x75, 0x72, 0x6c, 0x7d, 0x2f, 0x63, 0x6f,
|
||||
0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x60, 0x2c, 0x20, 0x7b,
|
||||
0x0a, 0x20, 0x20, 0x20, 0x20, 0x6d, 0x65, 0x74, 0x68, 0x6f, 0x64, 0x3a,
|
||||
0x20, 0x27, 0x50, 0x4f, 0x53, 0x54, 0x27, 0x2c, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x62, 0x6f, 0x64, 0x79, 0x3a, 0x20, 0x4a, 0x53, 0x4f, 0x4e, 0x2e,
|
||||
0x73, 0x74, 0x72, 0x69, 0x6e, 0x67, 0x69, 0x66, 0x79, 0x28, 0x63, 0x6f,
|
||||
0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x50, 0x61, 0x72, 0x61,
|
||||
0x6d, 0x73, 0x29, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x68, 0x65, 0x61,
|
||||
0x64, 0x65, 0x72, 0x73, 0x3a, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x27, 0x43, 0x6f, 0x6e, 0x6e, 0x65, 0x63, 0x74, 0x69, 0x6f,
|
||||
0x6e, 0x27, 0x3a, 0x20, 0x27, 0x6b, 0x65, 0x65, 0x70, 0x2d, 0x61, 0x6c,
|
||||
0x69, 0x76, 0x65, 0x27, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x27, 0x43, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x2d, 0x54, 0x79, 0x70,
|
||||
0x65, 0x27, 0x3a, 0x20, 0x27, 0x61, 0x70, 0x70, 0x6c, 0x69, 0x63, 0x61,
|
||||
0x74, 0x69, 0x6f, 0x6e, 0x2f, 0x6a, 0x73, 0x6f, 0x6e, 0x27, 0x2c, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x27, 0x41, 0x63, 0x63, 0x65, 0x70,
|
||||
0x74, 0x27, 0x3a, 0x20, 0x27, 0x74, 0x65, 0x78, 0x74, 0x2f, 0x65, 0x76,
|
||||
0x65, 0x6e, 0x74, 0x2d, 0x73, 0x74, 0x72, 0x65, 0x61, 0x6d, 0x27, 0x2c,
|
||||
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2e, 0x2e, 0x2e, 0x28, 0x70,
|
||||
0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x61, 0x70, 0x69, 0x5f, 0x6b, 0x65,
|
||||
0x79, 0x20, 0x3f, 0x20, 0x7b, 0x27, 0x41, 0x75, 0x74, 0x68, 0x6f, 0x72,
|
||||
0x69, 0x7a, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x27, 0x3a, 0x20, 0x60, 0x42,
|
||||
0x65, 0x61, 0x72, 0x65, 0x72, 0x20, 0x24, 0x7b, 0x70, 0x61, 0x72, 0x61,
|
||||
0x6d, 0x73, 0x2e, 0x61, 0x70, 0x69, 0x5f, 0x6b, 0x65, 0x79, 0x7d, 0x60,
|
||||
0x7d, 0x20, 0x3a, 0x20, 0x7b, 0x7d, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||
0x7d, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x73, 0x69, 0x67, 0x6e, 0x61,
|
||||
0x6c, 0x3a, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65,
|
||||
0x72, 0x2e, 0x73, 0x69, 0x67, 0x6e, 0x61, 0x6c, 0x2c, 0x0a, 0x20, 0x20,
|
||||
0x7d, 0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74,
|
||||
0x20, 0x72, 0x65, 0x61, 0x64, 0x65, 0x72, 0x20, 0x3d, 0x20, 0x72, 0x65,
|
||||
0x73, 0x70, 0x6f, 0x6e, 0x73, 0x65, 0x2e, 0x62, 0x6f, 0x64, 0x79, 0x2e,
|
||||
0x67, 0x65, 0x74, 0x52, 0x65, 0x61, 0x64, 0x65, 0x72, 0x28, 0x29, 0x3b,
|
||||
0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x64, 0x65, 0x63,
|
||||
0x6f, 0x64, 0x65, 0x72, 0x20, 0x3d, 0x20, 0x6e, 0x65, 0x77, 0x20, 0x54,
|
||||
0x65, 0x78, 0x74, 0x44, 0x65, 0x63, 0x6f, 0x64, 0x65, 0x72, 0x28, 0x29,
|
||||
0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x63, 0x6f, 0x6e,
|
||||
0x74, 0x65, 0x6e, 0x74, 0x20, 0x3d, 0x20, 0x22, 0x22, 0x3b, 0x0a, 0x20,
|
||||
0x20, 0x6c, 0x65, 0x74, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76, 0x65,
|
||||
0x72, 0x20, 0x3d, 0x20, 0x22, 0x22, 0x3b, 0x20, 0x2f, 0x2f, 0x20, 0x42,
|
||||
0x75, 0x66, 0x66, 0x65, 0x72, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x70, 0x61,
|
||||
0x72, 0x74, 0x69, 0x61, 0x6c, 0x6c, 0x79, 0x20, 0x72, 0x65, 0x61, 0x64,
|
||||
0x20, 0x6c, 0x69, 0x6e, 0x65, 0x73, 0x0a, 0x0a, 0x20, 0x20, 0x74, 0x72,
|
||||
0x79, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20,
|
||||
0x63, 0x6f, 0x6e, 0x74, 0x20, 0x3d, 0x20, 0x74, 0x72, 0x75, 0x65, 0x3b,
|
||||
0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x77, 0x68, 0x69, 0x6c, 0x65, 0x20,
|
||||
0x28, 0x63, 0x6f, 0x6e, 0x74, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72, 0x65, 0x73,
|
||||
0x75, 0x6c, 0x74, 0x20, 0x3d, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20,
|
||||
0x72, 0x65, 0x61, 0x64, 0x65, 0x72, 0x2e, 0x72, 0x65, 0x61, 0x64, 0x28,
|
||||
0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20,
|
||||
0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x6f, 0x6e, 0x65,
|
||||
0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x62, 0x72, 0x65, 0x61, 0x6b, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f,
|
||||
0x20, 0x41, 0x64, 0x64, 0x20, 0x61, 0x6e, 0x79, 0x20, 0x6c, 0x65, 0x66,
|
||||
0x74, 0x6f, 0x76, 0x65, 0x72, 0x20, 0x64, 0x61, 0x74, 0x61, 0x20, 0x74,
|
||||
0x6f, 0x20, 0x74, 0x68, 0x65, 0x20, 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e,
|
||||
0x74, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20, 0x64,
|
||||
0x61, 0x74, 0x61, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f,
|
||||
0x6e, 0x73, 0x74, 0x20, 0x74, 0x65, 0x78, 0x74, 0x20, 0x3d, 0x20, 0x6c,
|
||||
0x65, 0x66, 0x74, 0x6f, 0x76, 0x65, 0x72, 0x20, 0x2b, 0x20, 0x64, 0x65,
|
||||
0x63, 0x6f, 0x64, 0x65, 0x72, 0x2e, 0x64, 0x65, 0x63, 0x6f, 0x64, 0x65,
|
||||
0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x76, 0x61, 0x6c, 0x75,
|
||||
0x65, 0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f,
|
||||
0x2f, 0x20, 0x43, 0x68, 0x65, 0x63, 0x6b, 0x20, 0x69, 0x66, 0x20, 0x74,
|
||||
0x68, 0x65, 0x20, 0x6c, 0x61, 0x73, 0x74, 0x20, 0x63, 0x68, 0x61, 0x72,
|
||||
0x61, 0x63, 0x74, 0x65, 0x72, 0x20, 0x69, 0x73, 0x20, 0x61, 0x20, 0x6c,
|
||||
0x69, 0x6e, 0x65, 0x20, 0x62, 0x72, 0x65, 0x61, 0x6b, 0x0a, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x65, 0x6e,
|
||||
0x64, 0x73, 0x57, 0x69, 0x74, 0x68, 0x4c, 0x69, 0x6e, 0x65, 0x42, 0x72,
|
||||
0x65, 0x61, 0x6b, 0x20, 0x3d, 0x20, 0x74, 0x65, 0x78, 0x74, 0x2e, 0x65,
|
||||
0x6e, 0x64, 0x73, 0x57, 0x69, 0x74, 0x68, 0x28, 0x27, 0x5c, 0x6e, 0x27,
|
||||
0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f,
|
||||
0x20, 0x53, 0x70, 0x6c, 0x69, 0x74, 0x20, 0x74, 0x68, 0x65, 0x20, 0x74,
|
||||
0x65, 0x78, 0x74, 0x20, 0x69, 0x6e, 0x74, 0x6f, 0x20, 0x6c, 0x69, 0x6e,
|
||||
0x65, 0x73, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74,
|
||||
0x20, 0x6c, 0x69, 0x6e, 0x65, 0x73, 0x20, 0x3d, 0x20, 0x74, 0x65, 0x78,
|
||||
0x74, 0x2e, 0x73, 0x70, 0x6c, 0x69, 0x74, 0x28, 0x27, 0x5c, 0x6e, 0x27,
|
||||
0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f,
|
||||
0x20, 0x49, 0x66, 0x20, 0x74, 0x68, 0x65, 0x20, 0x74, 0x65, 0x78, 0x74,
|
||||
0x20, 0x64, 0x6f, 0x65, 0x73, 0x6e, 0x27, 0x74, 0x20, 0x65, 0x6e, 0x64,
|
||||
0x20, 0x77, 0x69, 0x74, 0x68, 0x20, 0x61, 0x20, 0x6c, 0x69, 0x6e, 0x65,
|
||||
0x20, 0x62, 0x72, 0x65, 0x61, 0x6b, 0x2c, 0x20, 0x74, 0x68, 0x65, 0x6e,
|
||||
0x20, 0x74, 0x68, 0x65, 0x20, 0x6c, 0x61, 0x73, 0x74, 0x20, 0x6c, 0x69,
|
||||
0x6e, 0x65, 0x20, 0x69, 0x73, 0x20, 0x69, 0x6e, 0x63, 0x6f, 0x6d, 0x70,
|
||||
0x6c, 0x65, 0x74, 0x65, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f,
|
||||
0x2f, 0x20, 0x53, 0x74, 0x6f, 0x72, 0x65, 0x20, 0x69, 0x74, 0x20, 0x69,
|
||||
0x6e, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76, 0x65, 0x72, 0x20, 0x74,
|
||||
0x6f, 0x20, 0x62, 0x65, 0x20, 0x61, 0x64, 0x64, 0x65, 0x64, 0x20, 0x74,
|
||||
0x6f, 0x20, 0x74, 0x68, 0x65, 0x20, 0x6e, 0x65, 0x78, 0x74, 0x20, 0x63,
|
||||
0x68, 0x75, 0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20, 0x64, 0x61, 0x74, 0x61,
|
||||
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x21,
|
||||
0x65, 0x6e, 0x64, 0x73, 0x57, 0x69, 0x74, 0x68, 0x4c, 0x69, 0x6e, 0x65,
|
||||
0x42, 0x72, 0x65, 0x61, 0x6b, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76, 0x65,
|
||||
0x72, 0x20, 0x3d, 0x20, 0x6c, 0x69, 0x6e, 0x65, 0x73, 0x2e, 0x70, 0x6f,
|
||||
0x70, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d,
|
||||
0x20, 0x65, 0x6c, 0x73, 0x65, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76, 0x65, 0x72,
|
||||
0x20, 0x3d, 0x20, 0x22, 0x22, 0x3b, 0x20, 0x2f, 0x2f, 0x20, 0x52, 0x65,
|
||||
0x73, 0x65, 0x74, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76, 0x65, 0x72,
|
||||
0x20, 0x69, 0x66, 0x20, 0x77, 0x65, 0x20, 0x68, 0x61, 0x76, 0x65, 0x20,
|
||||
0x61, 0x20, 0x6c, 0x69, 0x6e, 0x65, 0x20, 0x62, 0x72, 0x65, 0x61, 0x6b,
|
||||
0x20, 0x61, 0x74, 0x20, 0x74, 0x68, 0x65, 0x20, 0x65, 0x6e, 0x64, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x50, 0x61, 0x72, 0x73, 0x65, 0x20,
|
||||
0x61, 0x6c, 0x6c, 0x20, 0x73, 0x73, 0x65, 0x20, 0x65, 0x76, 0x65, 0x6e,
|
||||
0x74, 0x73, 0x20, 0x61, 0x6e, 0x64, 0x20, 0x61, 0x64, 0x64, 0x20, 0x74,
|
||||
0x68, 0x65, 0x6d, 0x20, 0x74, 0x6f, 0x20, 0x72, 0x65, 0x73, 0x75, 0x6c,
|
||||
0x74, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73,
|
||||
0x74, 0x20, 0x72, 0x65, 0x67, 0x65, 0x78, 0x20, 0x3d, 0x20, 0x2f, 0x5e,
|
||||
0x28, 0x5c, 0x53, 0x2b, 0x29, 0x3a, 0x5c, 0x73, 0x28, 0x2e, 0x2a, 0x29,
|
||||
0x24, 0x2f, 0x67, 0x6d, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x66, 0x6f, 0x72, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6c,
|
||||
0x69, 0x6e, 0x65, 0x20, 0x6f, 0x66, 0x20, 0x6c, 0x69, 0x6e, 0x65, 0x73,
|
||||
0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6d, 0x61, 0x74, 0x63, 0x68, 0x20,
|
||||
0x3d, 0x20, 0x72, 0x65, 0x67, 0x65, 0x78, 0x2e, 0x65, 0x78, 0x65, 0x63,
|
||||
0x28, 0x6c, 0x69, 0x6e, 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x6d, 0x61, 0x74, 0x63,
|
||||
0x68, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x5b, 0x6d, 0x61,
|
||||
0x74, 0x63, 0x68, 0x5b, 0x31, 0x5d, 0x5d, 0x20, 0x3d, 0x20, 0x6d, 0x61,
|
||||
0x74, 0x63, 0x68, 0x5b, 0x32, 0x5d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x73, 0x69, 0x6e, 0x63,
|
||||
0x65, 0x20, 0x77, 0x65, 0x20, 0x6b, 0x6e, 0x6f, 0x77, 0x20, 0x74, 0x68,
|
||||
0x69, 0x73, 0x20, 0x69, 0x73, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2e,
|
||||
0x63, 0x70, 0x70, 0x2c, 0x20, 0x6c, 0x65, 0x74, 0x27, 0x73, 0x20, 0x6a,
|
||||
0x75, 0x73, 0x74, 0x20, 0x64, 0x65, 0x63, 0x6f, 0x64, 0x65, 0x20, 0x74,
|
||||
0x68, 0x65, 0x20, 0x6a, 0x73, 0x6f, 0x6e, 0x20, 0x69, 0x6e, 0x20, 0x64,
|
||||
0x61, 0x74, 0x61, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74,
|
||||
0x2e, 0x64, 0x61, 0x74, 0x61, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x73,
|
||||
0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x20, 0x3d, 0x20, 0x4a,
|
||||
0x53, 0x4f, 0x4e, 0x2e, 0x70, 0x61, 0x72, 0x73, 0x65, 0x28, 0x72, 0x65,
|
||||
0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x29, 0x3b, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x2b, 0x3d, 0x20, 0x72,
|
||||
0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x63,
|
||||
0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20,
|
||||
0x79, 0x69, 0x65, 0x6c, 0x64, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x79, 0x69, 0x65, 0x6c, 0x64, 0x20,
|
||||
0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20,
|
||||
0x69, 0x66, 0x20, 0x77, 0x65, 0x20, 0x67, 0x6f, 0x74, 0x20, 0x61, 0x20,
|
||||
0x73, 0x74, 0x6f, 0x70, 0x20, 0x74, 0x6f, 0x6b, 0x65, 0x6e, 0x20, 0x66,
|
||||
0x72, 0x6f, 0x6d, 0x20, 0x73, 0x65, 0x72, 0x76, 0x65, 0x72, 0x2c, 0x20,
|
||||
0x77, 0x65, 0x20, 0x77, 0x69, 0x6c, 0x6c, 0x20, 0x62, 0x72, 0x65, 0x61,
|
||||
0x6b, 0x20, 0x68, 0x65, 0x72, 0x65, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x72,
|
||||
0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x73,
|
||||
0x74, 0x6f, 0x70, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20,
|
||||
0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61,
|
||||
0x2e, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f,
|
||||
0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69,
|
||||
0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x20,
|
||||
0x3d, 0x20, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74,
|
||||
0x61, 0x2e, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e,
|
||||
0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x3b, 0x0a, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x20, 0x3d, 0x20,
|
||||
0x66, 0x61, 0x6c, 0x73, 0x65, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x62, 0x72, 0x65,
|
||||
0x61, 0x6b, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x72, 0x65, 0x73, 0x75,
|
||||
0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x29, 0x20, 0x7b, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x74, 0x72, 0x79, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x73, 0x75,
|
||||
0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x20, 0x3d, 0x20, 0x4a,
|
||||
0x53, 0x4f, 0x4e, 0x2e, 0x70, 0x61, 0x72, 0x73, 0x65, 0x28, 0x72, 0x65,
|
||||
0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x29, 0x3b,
|
||||
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x72, 0x65, 0x73, 0x75, 0x6c,
|
||||
0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x2e, 0x6d, 0x65, 0x73, 0x73,
|
||||
0x61, 0x67, 0x65, 0x2e, 0x69, 0x6e, 0x63, 0x6c, 0x75, 0x64, 0x65, 0x73,
|
||||
0x28, 0x27, 0x73, 0x6c, 0x6f, 0x74, 0x20, 0x75, 0x6e, 0x61, 0x76, 0x61,
|
||||
0x69, 0x6c, 0x61, 0x62, 0x6c, 0x65, 0x27, 0x29, 0x29, 0x20, 0x7b, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x54, 0x68, 0x72, 0x6f, 0x77,
|
||||
0x20, 0x61, 0x6e, 0x20, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x20, 0x74, 0x6f,
|
||||
0x20, 0x62, 0x65, 0x20, 0x63, 0x61, 0x75, 0x67, 0x68, 0x74, 0x20, 0x62,
|
||||
0x79, 0x20, 0x75, 0x70, 0x73, 0x74, 0x72, 0x65, 0x61, 0x6d, 0x20, 0x63,
|
||||
0x61, 0x6c, 0x6c, 0x65, 0x72, 0x73, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74,
|
||||
0x68, 0x72, 0x6f, 0x77, 0x20, 0x6e, 0x65, 0x77, 0x20, 0x45, 0x72, 0x72,
|
||||
0x6f, 0x72, 0x28, 0x27, 0x73, 0x6c, 0x6f, 0x74, 0x20, 0x75, 0x6e, 0x61,
|
||||
0x76, 0x61, 0x69, 0x6c, 0x61, 0x62, 0x6c, 0x65, 0x27, 0x29, 0x3b, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x7d, 0x20, 0x65, 0x6c, 0x73, 0x65, 0x20, 0x7b, 0x0a, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f, 0x6c, 0x65, 0x2e, 0x65,
|
||||
0x72, 0x72, 0x6f, 0x72, 0x28, 0x60, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2e,
|
||||
0x63, 0x70, 0x70, 0x20, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x20, 0x5b, 0x24,
|
||||
0x7b, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f,
|
||||
0x72, 0x2e, 0x63, 0x6f, 0x64, 0x65, 0x7d, 0x20, 0x2d, 0x20, 0x24, 0x7b,
|
||||
0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72,
|
||||
0x2e, 0x74, 0x79, 0x70, 0x65, 0x7d, 0x5d, 0x3a, 0x20, 0x24, 0x7b, 0x72,
|
||||
0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x2e,
|
||||
0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x7d, 0x60, 0x29, 0x3b, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x7d, 0x20, 0x63, 0x61, 0x74, 0x63, 0x68, 0x28,
|
||||
0x65, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f,
|
||||
0x6c, 0x65, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x28, 0x60, 0x6c, 0x6c,
|
||||
0x61, 0x6d, 0x61, 0x2e, 0x63, 0x70, 0x70, 0x20, 0x65, 0x72, 0x72, 0x6f,
|
||||
0x72, 0x20, 0x24, 0x7b, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65,
|
||||
0x72, 0x72, 0x6f, 0x72, 0x7d, 0x60, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20,
|
||||
0x7d, 0x20, 0x63, 0x61, 0x74, 0x63, 0x68, 0x20, 0x28, 0x65, 0x29, 0x20,
|
||||
0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x65, 0x2e,
|
||||
0x6e, 0x61, 0x6d, 0x65, 0x20, 0x21, 0x3d, 0x3d, 0x20, 0x27, 0x41, 0x62,
|
||||
0x6f, 0x72, 0x74, 0x45, 0x72, 0x72, 0x6f, 0x72, 0x27, 0x29, 0x20, 0x7b,
|
||||
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f,
|
||||
0x6c, 0x65, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x28, 0x22, 0x6c, 0x6c,
|
||||
0x61, 0x6d, 0x61, 0x20, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x3a, 0x20, 0x22,
|
||||
0x2c, 0x20, 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x74, 0x68, 0x72, 0x6f, 0x77, 0x20, 0x65, 0x3b,
|
||||
0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x66, 0x69, 0x6e, 0x61, 0x6c,
|
||||
0x6c, 0x79, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e,
|
||||
0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2e, 0x61, 0x62, 0x6f, 0x72,
|
||||
0x74, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20,
|
||||
0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65,
|
||||
0x6e, 0x74, 0x3b, 0x0a, 0x7d, 0x0a, 0x0a, 0x2f, 0x2f, 0x20, 0x43, 0x61,
|
||||
0x6c, 0x6c, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2c, 0x20, 0x72, 0x65,
|
||||
0x74, 0x75, 0x72, 0x6e, 0x20, 0x61, 0x6e, 0x20, 0x65, 0x76, 0x65, 0x6e,
|
||||
0x74, 0x20, 0x74, 0x61, 0x72, 0x67, 0x65, 0x74, 0x20, 0x74, 0x68, 0x61,
|
||||
0x74, 0x20, 0x79, 0x6f, 0x75, 0x20, 0x63, 0x61, 0x6e, 0x20, 0x73, 0x75,
|
||||
0x62, 0x73, 0x63, 0x72, 0x69, 0x62, 0x65, 0x20, 0x74, 0x6f, 0x0a, 0x2f,
|
||||
0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x45, 0x78, 0x61, 0x6d, 0x70, 0x6c, 0x65,
|
||||
0x3a, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x69,
|
||||
0x6d, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x7b, 0x20, 0x6c, 0x6c, 0x61, 0x6d,
|
||||
0x61, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74,
|
||||
0x20, 0x7d, 0x20, 0x66, 0x72, 0x6f, 0x6d, 0x20, 0x27, 0x2f, 0x63, 0x6f,
|
||||
0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x2e, 0x6a, 0x73, 0x27,
|
||||
0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f,
|
||||
0x6e, 0x73, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x6e, 0x20, 0x3d, 0x20, 0x6c,
|
||||
0x6c, 0x61, 0x6d, 0x61, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72,
|
||||
0x67, 0x65, 0x74, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x29, 0x0a,
|
||||
0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x6e, 0x2e, 0x61,
|
||||
0x64, 0x64, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x4c, 0x69, 0x73, 0x74, 0x65,
|
||||
0x6e, 0x65, 0x72, 0x28, 0x22, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65,
|
||||
0x22, 0x2c, 0x20, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x29, 0x20, 0x3d,
|
||||
0x3e, 0x20, 0x7b, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x64, 0x6f, 0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74, 0x2e, 0x77, 0x72, 0x69,
|
||||
0x74, 0x65, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x65, 0x74,
|
||||
0x61, 0x69, 0x6c, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29,
|
||||
0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x29, 0x0a, 0x2f, 0x2f,
|
||||
0x0a, 0x65, 0x78, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x73,
|
||||
0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x45, 0x76, 0x65, 0x6e, 0x74,
|
||||
0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x20, 0x3d, 0x20, 0x28, 0x70, 0x72,
|
||||
0x6f, 0x6d, 0x70, 0x74, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73,
|
||||
0x20, 0x3d, 0x20, 0x7b, 0x7d, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69,
|
||||
0x67, 0x20, 0x3d, 0x20, 0x7b, 0x7d, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b,
|
||||
0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x65, 0x76, 0x65,
|
||||
0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x20, 0x3d, 0x20, 0x6e,
|
||||
0x65, 0x77, 0x20, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67,
|
||||
0x65, 0x74, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x28, 0x61, 0x73, 0x79,
|
||||
0x6e, 0x63, 0x20, 0x28, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20,
|
||||
0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65,
|
||||
0x6e, 0x74, 0x20, 0x3d, 0x20, 0x22, 0x22, 0x3b, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x66, 0x6f, 0x72, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x28,
|
||||
0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x20,
|
||||
0x6f, 0x66, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x28, 0x70, 0x72, 0x6f,
|
||||
0x6d, 0x70, 0x74, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c,
|
||||
0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x29, 0x29, 0x20, 0x7b, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x63, 0x68,
|
||||
0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x29, 0x20, 0x7b, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74,
|
||||
0x65, 0x6e, 0x74, 0x20, 0x2b, 0x3d, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b,
|
||||
0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e,
|
||||
0x74, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x65,
|
||||
0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x64,
|
||||
0x69, 0x73, 0x70, 0x61, 0x74, 0x63, 0x68, 0x45, 0x76, 0x65, 0x6e, 0x74,
|
||||
0x28, 0x6e, 0x65, 0x77, 0x20, 0x43, 0x75, 0x73, 0x74, 0x6f, 0x6d, 0x45,
|
||||
0x76, 0x65, 0x6e, 0x74, 0x28, 0x22, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67,
|
||||
0x65, 0x22, 0x2c, 0x20, 0x7b, 0x20, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c,
|
||||
0x3a, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61,
|
||||
0x20, 0x7d, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28,
|
||||
0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x67,
|
||||
0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65,
|
||||
0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54,
|
||||
0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x64, 0x69, 0x73, 0x70, 0x61, 0x74,
|
||||
0x63, 0x68, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x6e, 0x65, 0x77, 0x20,
|
||||
0x43, 0x75, 0x73, 0x74, 0x6f, 0x6d, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28,
|
||||
0x22, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f,
|
||||
0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x22, 0x2c, 0x20, 0x7b,
|
||||
0x20, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c, 0x3a, 0x20, 0x63, 0x68, 0x75,
|
||||
0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x67, 0x65, 0x6e, 0x65,
|
||||
0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69,
|
||||
0x6e, 0x67, 0x73, 0x20, 0x7d, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69,
|
||||
0x66, 0x20, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74,
|
||||
0x61, 0x2e, 0x74, 0x69, 0x6d, 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b,
|
||||
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x65, 0x76, 0x65,
|
||||
0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x64, 0x69, 0x73,
|
||||
0x70, 0x61, 0x74, 0x63, 0x68, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x6e,
|
||||
0x65, 0x77, 0x20, 0x43, 0x75, 0x73, 0x74, 0x6f, 0x6d, 0x45, 0x76, 0x65,
|
||||
0x6e, 0x74, 0x28, 0x22, 0x74, 0x69, 0x6d, 0x69, 0x6e, 0x67, 0x73, 0x22,
|
||||
0x2c, 0x20, 0x7b, 0x20, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c, 0x3a, 0x20,
|
||||
0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x74,
|
||||
0x69, 0x6d, 0x69, 0x6e, 0x67, 0x73, 0x20, 0x7d, 0x29, 0x29, 0x3b, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||
0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54,
|
||||
0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x64, 0x69, 0x73, 0x70, 0x61, 0x74,
|
||||
0x63, 0x68, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x6e, 0x65, 0x77, 0x20,
|
||||
0x43, 0x75, 0x73, 0x74, 0x6f, 0x6d, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28,
|
||||
0x22, 0x64, 0x6f, 0x6e, 0x65, 0x22, 0x2c, 0x20, 0x7b, 0x20, 0x64, 0x65,
|
||||
0x74, 0x61, 0x69, 0x6c, 0x3a, 0x20, 0x7b, 0x20, 0x63, 0x6f, 0x6e, 0x74,
|
||||
0x65, 0x6e, 0x74, 0x20, 0x7d, 0x20, 0x7d, 0x29, 0x29, 0x3b, 0x0a, 0x20,
|
||||
0x20, 0x7d, 0x29, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x72, 0x65, 0x74,
|
||||
0x75, 0x72, 0x6e, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72,
|
||||
0x67, 0x65, 0x74, 0x3b, 0x0a, 0x7d, 0x0a, 0x0a, 0x2f, 0x2f, 0x20, 0x43,
|
||||
0x61, 0x6c, 0x6c, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2c, 0x20, 0x72,
|
||||
0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x61, 0x20, 0x70, 0x72, 0x6f, 0x6d,
|
||||
0x69, 0x73, 0x65, 0x20, 0x74, 0x68, 0x61, 0x74, 0x20, 0x72, 0x65, 0x73,
|
||||
0x6f, 0x6c, 0x76, 0x65, 0x73, 0x20, 0x74, 0x6f, 0x20, 0x74, 0x68, 0x65,
|
||||
0x20, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x65, 0x64, 0x20, 0x74,
|
||||
0x65, 0x78, 0x74, 0x2e, 0x20, 0x54, 0x68, 0x69, 0x73, 0x20, 0x64, 0x6f,
|
||||
0x65, 0x73, 0x20, 0x6e, 0x6f, 0x74, 0x20, 0x73, 0x75, 0x70, 0x70, 0x6f,
|
||||
0x72, 0x74, 0x20, 0x73, 0x74, 0x72, 0x65, 0x61, 0x6d, 0x69, 0x6e, 0x67,
|
||||
0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x45, 0x78, 0x61, 0x6d, 0x70,
|
||||
0x6c, 0x65, 0x3a, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x50, 0x72, 0x6f, 0x6d, 0x69,
|
||||
0x73, 0x65, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x29, 0x2e, 0x74,
|
||||
0x68, 0x65, 0x6e, 0x28, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74,
|
||||
0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x64, 0x6f, 0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74,
|
||||
0x2e, 0x77, 0x72, 0x69, 0x74, 0x65, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65,
|
||||
0x6e, 0x74, 0x29, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d,
|
||||
0x29, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x6f, 0x72, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65,
|
||||
0x6e, 0x74, 0x20, 0x3d, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x6c,
|
||||
0x6c, 0x61, 0x6d, 0x61, 0x50, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x28,
|
||||
0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x29, 0x0a, 0x2f, 0x2f, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x64, 0x6f, 0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74, 0x2e,
|
||||
0x77, 0x72, 0x69, 0x74, 0x65, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e,
|
||||
0x74, 0x29, 0x0a, 0x2f, 0x2f, 0x0a, 0x65, 0x78, 0x70, 0x6f, 0x72, 0x74,
|
||||
0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61,
|
||||
0x50, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x20, 0x3d, 0x20, 0x28, 0x70,
|
||||
0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d,
|
||||
0x73, 0x20, 0x3d, 0x20, 0x7b, 0x7d, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x66,
|
||||
0x69, 0x67, 0x20, 0x3d, 0x20, 0x7b, 0x7d, 0x29, 0x20, 0x3d, 0x3e, 0x20,
|
||||
0x7b, 0x0a, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x6e,
|
||||
0x65, 0x77, 0x20, 0x50, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x28, 0x61,
|
||||
0x73, 0x79, 0x6e, 0x63, 0x20, 0x28, 0x72, 0x65, 0x73, 0x6f, 0x6c, 0x76,
|
||||
0x65, 0x2c, 0x20, 0x72, 0x65, 0x6a, 0x65, 0x63, 0x74, 0x29, 0x20, 0x3d,
|
||||
0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20,
|
||||
0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x3d, 0x20, 0x22, 0x22,
|
||||
0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x74, 0x72, 0x79, 0x20, 0x7b, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x61, 0x77,
|
||||
0x61, 0x69, 0x74, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63,
|
||||
0x68, 0x75, 0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20, 0x6c, 0x6c, 0x61, 0x6d,
|
||||
0x61, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c, 0x20, 0x70, 0x61,
|
||||
0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67,
|
||||
0x29, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x2b, 0x3d, 0x20,
|
||||
0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x63,
|
||||
0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65,
|
||||
0x73, 0x6f, 0x6c, 0x76, 0x65, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e,
|
||||
0x74, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x20, 0x63, 0x61,
|
||||
0x74, 0x63, 0x68, 0x20, 0x28, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x29, 0x20,
|
||||
0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x6a, 0x65,
|
||||
0x63, 0x74, 0x28, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x29, 0x3b, 0x0a, 0x20,
|
||||
0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x7d, 0x29, 0x3b, 0x0a, 0x7d,
|
||||
0x3b, 0x0a, 0x0a, 0x2f, 0x2a, 0x2a, 0x0a, 0x20, 0x2a, 0x20, 0x28, 0x64,
|
||||
0x65, 0x70, 0x72, 0x65, 0x63, 0x61, 0x74, 0x65, 0x64, 0x29, 0x0a, 0x20,
|
||||
0x2a, 0x2f, 0x0a, 0x65, 0x78, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x63, 0x6f,
|
||||
0x6e, 0x73, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x43, 0x6f, 0x6d,
|
||||
0x70, 0x6c, 0x65, 0x74, 0x65, 0x20, 0x3d, 0x20, 0x61, 0x73, 0x79, 0x6e,
|
||||
0x63, 0x20, 0x28, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20, 0x63,
|
||||
0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2c, 0x20, 0x63,
|
||||
0x61, 0x6c, 0x6c, 0x62, 0x61, 0x63, 0x6b, 0x29, 0x20, 0x3d, 0x3e, 0x20,
|
||||
0x7b, 0x0a, 0x20, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x61, 0x77, 0x61, 0x69,
|
||||
0x74, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x68, 0x75,
|
||||
0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x28,
|
||||
0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x70, 0x72, 0x6f, 0x6d, 0x70,
|
||||
0x74, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20, 0x7b,
|
||||
0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x20,
|
||||
0x7d, 0x29, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x61,
|
||||
0x6c, 0x6c, 0x62, 0x61, 0x63, 0x6b, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b,
|
||||
0x29, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x7d, 0x0a, 0x0a, 0x2f, 0x2f,
|
||||
0x20, 0x47, 0x65, 0x74, 0x20, 0x74, 0x68, 0x65, 0x20, 0x6d, 0x6f, 0x64,
|
||||
0x65, 0x6c, 0x20, 0x69, 0x6e, 0x66, 0x6f, 0x20, 0x66, 0x72, 0x6f, 0x6d,
|
||||
0x20, 0x74, 0x68, 0x65, 0x20, 0x73, 0x65, 0x72, 0x76, 0x65, 0x72, 0x2e,
|
||||
0x20, 0x54, 0x68, 0x69, 0x73, 0x20, 0x69, 0x73, 0x20, 0x75, 0x73, 0x65,
|
||||
0x66, 0x75, 0x6c, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x67, 0x65, 0x74, 0x74,
|
||||
0x69, 0x6e, 0x67, 0x20, 0x74, 0x68, 0x65, 0x20, 0x63, 0x6f, 0x6e, 0x74,
|
||||
0x65, 0x78, 0x74, 0x20, 0x77, 0x69, 0x6e, 0x64, 0x6f, 0x77, 0x20, 0x61,
|
||||
0x6e, 0x64, 0x20, 0x73, 0x6f, 0x20, 0x6f, 0x6e, 0x2e, 0x0a, 0x65, 0x78,
|
||||
0x70, 0x6f, 0x72, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6c,
|
||||
0x6c, 0x61, 0x6d, 0x61, 0x4d, 0x6f, 0x64, 0x65, 0x6c, 0x49, 0x6e, 0x66,
|
||||
0x6f, 0x20, 0x3d, 0x20, 0x61, 0x73, 0x79, 0x6e, 0x63, 0x20, 0x28, 0x63,
|
||||
0x6f, 0x6e, 0x66, 0x69, 0x67, 0x20, 0x3d, 0x20, 0x7b, 0x7d, 0x29, 0x20,
|
||||
0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x21,
|
||||
0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73,
|
||||
0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20,
|
||||
0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x61, 0x70, 0x69,
|
||||
0x5f, 0x75, 0x72, 0x6c, 0x20, 0x3d, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69,
|
||||
0x67, 0x2e, 0x61, 0x70, 0x69, 0x5f, 0x75, 0x72, 0x6c, 0x20, 0x7c, 0x7c,
|
||||
0x20, 0x22, 0x22, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e,
|
||||
0x73, 0x74, 0x20, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x20, 0x3d, 0x20, 0x61,
|
||||
0x77, 0x61, 0x69, 0x74, 0x20, 0x66, 0x65, 0x74, 0x63, 0x68, 0x28, 0x60,
|
||||
0x24, 0x7b, 0x61, 0x70, 0x69, 0x5f, 0x75, 0x72, 0x6c, 0x7d, 0x2f, 0x70,
|
||||
0x72, 0x6f, 0x70, 0x73, 0x60, 0x29, 0x2e, 0x74, 0x68, 0x65, 0x6e, 0x28,
|
||||
0x72, 0x20, 0x3d, 0x3e, 0x20, 0x72, 0x2e, 0x6a, 0x73, 0x6f, 0x6e, 0x28,
|
||||
0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x67, 0x65, 0x6e, 0x65,
|
||||
0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69,
|
||||
0x6e, 0x67, 0x73, 0x20, 0x3d, 0x20, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x2e,
|
||||
0x64, 0x65, 0x66, 0x61, 0x75, 0x6c, 0x74, 0x5f, 0x67, 0x65, 0x6e, 0x65,
|
||||
0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69,
|
||||
0x6e, 0x67, 0x73, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x72,
|
||||
0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61,
|
||||
0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67,
|
||||
0x73, 0x3b, 0x0a, 0x7d, 0x0a
|
||||
};
|
||||
unsigned int completion_js_len = 5909;
|
|
@ -8,13 +8,3 @@ PUBLIC=$DIR/public
|
|||
echo "download js bundle files"
|
||||
curl https://npm.reversehttp.com/@preact/signals-core,@preact/signals,htm/preact,preact,preact/hooks > $PUBLIC/index.js
|
||||
echo >> $PUBLIC/index.js # add newline
|
||||
|
||||
FILES=$(ls $PUBLIC)
|
||||
|
||||
cd $PUBLIC
|
||||
for FILE in $FILES; do
|
||||
echo "generate $FILE.hpp"
|
||||
|
||||
# use simple flag for old version of xxd
|
||||
xxd -i $FILE > $DIR/$FILE.hpp
|
||||
done
|
||||
|
|
File diff suppressed because it is too large
Load diff
File diff suppressed because it is too large
Load diff
File diff suppressed because it is too large
Load diff
|
@ -1201,7 +1201,7 @@ struct server_context {
|
|||
});
|
||||
}
|
||||
|
||||
if (result.tok == llama_token_eos(model)) {
|
||||
if (llama_token_is_eog(model, result.tok)) {
|
||||
slot.stopped_eos = true;
|
||||
slot.has_next_token = false;
|
||||
|
||||
|
|
|
@ -29,7 +29,7 @@ To mitigate it, you can increase values in `n_predict`, `kv_size`.
|
|||
cd ../../..
|
||||
mkdir build
|
||||
cd build
|
||||
cmake ../
|
||||
cmake -DLLAMA_CURL=ON ../
|
||||
cmake --build . --target server
|
||||
```
|
||||
|
||||
|
|
|
@ -381,10 +381,6 @@ static json oaicompat_completion_params_parse(
|
|||
} else {
|
||||
llama_params["stop"] = json_value(body, "stop", json::array());
|
||||
}
|
||||
// Some chat templates don't use EOS token to stop generation
|
||||
// We must add their end sequences to list of stop words
|
||||
llama_params["stop"].push_back("<|im_end|>"); // chatml
|
||||
llama_params["stop"].push_back("<end_of_turn>"); // gemma
|
||||
|
||||
// Handle "response_format" field
|
||||
if (body.contains("response_format")) {
|
||||
|
|
|
@ -133,8 +133,8 @@ int main(int argc, char ** argv) {
|
|||
// sample the most likely token
|
||||
const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
|
||||
|
||||
// is it an end of stream?
|
||||
if (new_token_id == llama_token_eos(model) || n_cur == n_len) {
|
||||
// is it an end of generation?
|
||||
if (llama_token_is_eog(model, new_token_id) || n_cur == n_len) {
|
||||
LOG_TEE("\n");
|
||||
|
||||
break;
|
||||
|
|
|
@ -360,7 +360,7 @@ int main(int argc, char ** argv) {
|
|||
}
|
||||
}
|
||||
|
||||
if (token_id == llama_token_eos(model_tgt)) {
|
||||
if (llama_token_is_eog(model_tgt, token_id)) {
|
||||
has_eos = true;
|
||||
}
|
||||
++n_predict;
|
||||
|
|
|
@ -73,6 +73,7 @@ struct my_llama_model {
|
|||
static const char * LLM_KV_TRAINING_TYPE_TRAIN_MODEL = "train_model";
|
||||
static const char * LLM_KV_TRAINING_TYPE = "training.type";
|
||||
|
||||
static const char * LLM_KV_GENERAL_NAME = "general.name";
|
||||
static const char * LLM_KV_GENERAL_ARCHITECTURE = "general.architecture";
|
||||
static const char * LLM_KV_GENERAL_FILE_TYPE = "general.file_type";
|
||||
|
||||
|
@ -529,6 +530,7 @@ static void load_llama_model_gguf(struct gguf_context * fctx, struct ggml_contex
|
|||
|
||||
static void save_llama_model_gguf(struct gguf_context * fctx, const char * fn_vocab_model, struct my_llama_model * model) {
|
||||
const char * arch = "llama";
|
||||
|
||||
enum llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
|
||||
|
||||
std::vector<char> keybuf;
|
||||
|
@ -540,6 +542,7 @@ static void save_llama_model_gguf(struct gguf_context * fctx, const char * fn_vo
|
|||
|
||||
// set arch
|
||||
gguf_set_val_str(fctx, LLM_KV_GENERAL_ARCHITECTURE, arch);
|
||||
gguf_set_val_str(fctx, LLM_KV_GENERAL_NAME, arch);
|
||||
gguf_set_val_u32(fctx, LLM_KV_GENERAL_FILE_TYPE, ftype);
|
||||
|
||||
// set hparams
|
||||
|
|
|
@ -822,7 +822,11 @@ GGML_CALL static enum ggml_status ggml_backend_cpu_graph_compute(ggml_backend_t
|
|||
GGML_CALL static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
|
||||
switch (op->op) {
|
||||
case GGML_OP_CPY:
|
||||
return op->type != GGML_TYPE_IQ2_XXS && op->type != GGML_TYPE_IQ2_XS && op->type != GGML_TYPE_IQ1_S; // missing type_traits.from_float
|
||||
return
|
||||
op->type != GGML_TYPE_IQ2_XXS &&
|
||||
op->type != GGML_TYPE_IQ2_XS &&
|
||||
op->type != GGML_TYPE_IQ1_S &&
|
||||
op->type != GGML_TYPE_IQ1_M; // missing type_traits.from_float
|
||||
case GGML_OP_MUL_MAT:
|
||||
return op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == ggml_internal_get_type_traits(op->src[0]->type).vec_dot_type;
|
||||
default:
|
||||
|
|
181
ggml-cuda.cu
181
ggml-cuda.cu
|
@ -1231,7 +1231,7 @@ static void ggml_cuda_op_mul_mat_cublas(
|
|||
|
||||
if (compute_capability >= CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) {
|
||||
// convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32
|
||||
ggml_cuda_pool_alloc<half> src0_as_f16(ctx.pool());
|
||||
ggml_cuda_pool_alloc<half> src0_as_f16(ctx.pool(id));
|
||||
if (src0->type != GGML_TYPE_F16) {
|
||||
const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src0->type);
|
||||
GGML_ASSERT(to_fp16_cuda != nullptr);
|
||||
|
@ -1241,7 +1241,7 @@ static void ggml_cuda_op_mul_mat_cublas(
|
|||
}
|
||||
const half * src0_ptr = src0->type == GGML_TYPE_F16 ? (const half *) src0_dd_i : src0_as_f16.get();
|
||||
|
||||
ggml_cuda_pool_alloc<half> src1_as_f16(ctx.pool());
|
||||
ggml_cuda_pool_alloc<half> src1_as_f16(ctx.pool(id));
|
||||
if (src1->type != GGML_TYPE_F16) {
|
||||
const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
|
||||
GGML_ASSERT(to_fp16_cuda != nullptr);
|
||||
|
@ -1250,7 +1250,7 @@ static void ggml_cuda_op_mul_mat_cublas(
|
|||
to_fp16_cuda(src1_ddf_i, src1_as_f16.get(), ne, stream);
|
||||
}
|
||||
const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddf_i : src1_as_f16.get();
|
||||
ggml_cuda_pool_alloc<half> dst_f16(ctx.pool(), row_diff*src1_ncols);
|
||||
ggml_cuda_pool_alloc<half> dst_f16(ctx.pool(id), row_diff*src1_ncols);
|
||||
|
||||
const half alpha_f16 = 1.0f;
|
||||
const half beta_f16 = 0.0f;
|
||||
|
@ -1960,20 +1960,73 @@ static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor
|
|||
}
|
||||
}
|
||||
|
||||
struct mmid_row_mapping {
|
||||
int32_t i1;
|
||||
int32_t i2;
|
||||
};
|
||||
|
||||
static __global__ void k_copy_src1_to_contiguous(const char * __restrict__ src1_original, char * __restrict__ src1_contiguous,
|
||||
int * __restrict__ cur_src1_row, mmid_row_mapping * __restrict__ row_mapping,
|
||||
const char * __restrict ids, int64_t i02, size_t ids_nb1, size_t ids_nb0,
|
||||
int64_t ne11, int64_t ne10,
|
||||
size_t nb11, size_t nb12) {
|
||||
int32_t iid1 = blockIdx.x;
|
||||
int32_t id = blockIdx.y;
|
||||
|
||||
const int32_t row_id_i = *(const int32_t *) (ids + iid1*ids_nb1 + id*ids_nb0);
|
||||
|
||||
if (row_id_i != i02) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int64_t i11 = id % ne11;
|
||||
const int64_t i12 = iid1;
|
||||
|
||||
__shared__ int src1_row;
|
||||
if (threadIdx.x == 0) {
|
||||
src1_row = atomicAdd(cur_src1_row, 1);
|
||||
row_mapping[src1_row] = {id, iid1};
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
const float * src1_row_original = (const float *)(src1_original + i11*nb11 + i12*nb12);
|
||||
float * src1_row_contiguous = (float *)(src1_contiguous + src1_row*nb11);
|
||||
|
||||
for (int i = threadIdx.x; i < ne10; i += blockDim.x) {
|
||||
src1_row_contiguous[i] = src1_row_original[i];
|
||||
}
|
||||
}
|
||||
|
||||
static __global__ void k_copy_dst_from_contiguous(char * __restrict__ dst_original, const char * __restrict__ dst_contiguous,
|
||||
const mmid_row_mapping * __restrict__ row_mapping,
|
||||
int64_t ne0,
|
||||
size_t nb1, size_t nb2) {
|
||||
int32_t i = blockIdx.x;
|
||||
|
||||
const int32_t i1 = row_mapping[i].i1;
|
||||
const int32_t i2 = row_mapping[i].i2;
|
||||
|
||||
const float * dst_row_contiguous = (const float *)(dst_contiguous + i*nb1);
|
||||
float * dst_row_original = (float *)(dst_original + i1*nb1 + i2*nb2);
|
||||
|
||||
for (int j = threadIdx.x; j < ne0; j += blockDim.x) {
|
||||
dst_row_original[j] = dst_row_contiguous[j];
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
const ggml_tensor * ids = dst->src[2];
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
GGML_ASSERT(!ggml_backend_buffer_is_cuda_split(src0->buffer) && "mul_mat_id does not support split buffers");
|
||||
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
const size_t nb11 = src1->nb[1];
|
||||
const size_t nb1 = dst->nb[1];
|
||||
|
||||
const int32_t id = ((int32_t *) dst->op_params)[0];
|
||||
const int32_t n_as = src0->ne[2];
|
||||
const int64_t n_as = ne02;
|
||||
const int64_t n_ids = ids->ne[0];
|
||||
|
||||
std::vector<char> ids_host(ggml_nbytes(ids));
|
||||
const char * ids_dev = (const char *) ids->data;
|
||||
|
@ -1982,7 +2035,7 @@ static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor *
|
|||
|
||||
ggml_tensor src0_row = *src0;
|
||||
ggml_tensor src1_row = *src1;
|
||||
ggml_tensor dst_row = *dst;
|
||||
ggml_tensor dst_row = *dst;
|
||||
|
||||
char * src0_original = (char *) src0->data;
|
||||
char * src1_original = (char *) src1->data;
|
||||
|
@ -1990,19 +2043,39 @@ static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor *
|
|||
|
||||
src0_row.ne[2] = 1;
|
||||
src0_row.ne[3] = 1;
|
||||
src0_row.nb[3] = src0->nb[2];
|
||||
src0_row.nb[3] = nb02;
|
||||
|
||||
if (src1->ne[1] == 1) {
|
||||
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
|
||||
const int32_t row_id = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
|
||||
src1_row.ne[1] = 1;
|
||||
src1_row.ne[2] = 1;
|
||||
src1_row.ne[3] = 1;
|
||||
src1_row.nb[2] = nb11;
|
||||
src1_row.nb[3] = nb11;
|
||||
|
||||
GGML_ASSERT(row_id >= 0 && row_id < n_as);
|
||||
dst_row.ne[1] = 1;
|
||||
dst_row.ne[2] = 1;
|
||||
dst_row.ne[3] = 1;
|
||||
dst_row.nb[2] = nb1;
|
||||
dst_row.nb[3] = nb1;
|
||||
|
||||
src0_row.data = src0_original + row_id*src0->nb[2];
|
||||
src1_row.data = src1_original + i01*src1->nb[1];
|
||||
dst_row.data = dst_original + i01*dst->nb[1];
|
||||
if (ne12 == 1) {
|
||||
for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
|
||||
for (int64_t id = 0; id < n_ids; id++) {
|
||||
const int32_t i02 = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
|
||||
|
||||
ggml_cuda_mul_mat(ctx, &src0_row, &src1_row, &dst_row);
|
||||
GGML_ASSERT(i02 >= 0 && i02 < n_as);
|
||||
|
||||
const int64_t i11 = id % ne11;
|
||||
const int64_t i12 = iid1;
|
||||
|
||||
const int64_t i1 = id;
|
||||
const int64_t i2 = i12;
|
||||
|
||||
src0_row.data = src0_original + i02*nb02;
|
||||
src1_row.data = src1_original + i11*nb11 + i12*nb12;
|
||||
dst_row.data = dst_original + i1*nb1 + i2*nb2;
|
||||
|
||||
ggml_cuda_mul_mat(ctx, &src0_row, &src1_row, &dst_row);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
ggml_cuda_pool_alloc<char> src1_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(src1));
|
||||
|
@ -2011,54 +2084,69 @@ static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor *
|
|||
src1_row.data = src1_contiguous.get();
|
||||
dst_row.data = dst_contiguous.get();
|
||||
|
||||
for (int32_t row_id = 0; row_id < n_as; ++row_id) {
|
||||
for (int64_t i02 = 0; i02 < n_as; i02++) {
|
||||
int64_t num_src1_rows = 0;
|
||||
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
|
||||
const int32_t row_id_i = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
|
||||
|
||||
if (row_id_i != row_id) {
|
||||
continue;
|
||||
for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
|
||||
for (int64_t id = 0; id < n_ids; id++) {
|
||||
const int32_t row_id_i = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
|
||||
|
||||
GGML_ASSERT(row_id_i >= 0 && row_id_i < n_as);
|
||||
|
||||
if (row_id_i != i02) {
|
||||
continue;
|
||||
}
|
||||
|
||||
num_src1_rows++;
|
||||
}
|
||||
|
||||
GGML_ASSERT(row_id >= 0 && row_id < n_as);
|
||||
|
||||
CUDA_CHECK(cudaMemcpyAsync(src1_contiguous.get() + num_src1_rows*nb11, src1_original + i01*nb11,
|
||||
nb11, cudaMemcpyDeviceToDevice, stream));
|
||||
num_src1_rows++;
|
||||
}
|
||||
|
||||
if (num_src1_rows == 0) {
|
||||
continue;
|
||||
}
|
||||
|
||||
src0_row.data = src0_original + row_id*src0->nb[2];
|
||||
ggml_cuda_pool_alloc<int> dev_cur_src1_row(ctx.pool(), 1);
|
||||
ggml_cuda_pool_alloc<mmid_row_mapping> dev_row_mapping(ctx.pool(), num_src1_rows);
|
||||
CUDA_CHECK(cudaMemsetAsync(dev_cur_src1_row.get(), 0, sizeof(int), stream));
|
||||
|
||||
{
|
||||
dim3 block_dims(std::min((unsigned int)ne10, 768u));
|
||||
dim3 grid_dims(ids->ne[1], n_ids);
|
||||
k_copy_src1_to_contiguous<<<grid_dims, block_dims, 0, stream>>>(
|
||||
src1_original, src1_contiguous.get(),
|
||||
dev_cur_src1_row.get(), dev_row_mapping.get(),
|
||||
ids_dev, i02, ids->nb[1], ids->nb[0],
|
||||
ne11, ne10,
|
||||
nb11, nb12);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
}
|
||||
|
||||
src0_row.data = src0_original + i02*nb02;
|
||||
|
||||
GGML_ASSERT(nb11 == sizeof(float)*ne10);
|
||||
GGML_ASSERT(nb1 == sizeof(float)*ne0);
|
||||
|
||||
src1_row.ne[1] = num_src1_rows;
|
||||
dst_row.ne[1] = num_src1_rows;
|
||||
|
||||
src1_row.nb[1] = nb11;
|
||||
src1_row.nb[2] = num_src1_rows*nb11;
|
||||
src1_row.nb[3] = num_src1_rows*nb11;
|
||||
|
||||
dst_row.ne[1] = num_src1_rows;
|
||||
dst_row.nb[1] = nb1;
|
||||
dst_row.nb[2] = num_src1_rows*nb1;
|
||||
dst_row.nb[3] = num_src1_rows*nb1;
|
||||
|
||||
ggml_cuda_mul_mat(ctx, &src0_row, &src1_row, &dst_row);
|
||||
|
||||
num_src1_rows = 0;
|
||||
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
|
||||
const int32_t row_id_i = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
|
||||
|
||||
if (row_id_i != row_id) {
|
||||
continue;
|
||||
}
|
||||
|
||||
GGML_ASSERT(row_id >= 0 && row_id < n_as);
|
||||
|
||||
CUDA_CHECK(cudaMemcpyAsync(dst_original + i01*nb1, dst_contiguous.get() + num_src1_rows*nb1,
|
||||
nb1, cudaMemcpyDeviceToDevice, stream));
|
||||
num_src1_rows++;
|
||||
{
|
||||
dim3 block_dims(std::min((unsigned int)ne0, 768u));
|
||||
dim3 grid_dims(num_src1_rows);
|
||||
k_copy_dst_from_contiguous<<<grid_dims, block_dims, 0, stream>>>(
|
||||
dst_original, dst_contiguous.get(),
|
||||
dev_row_mapping.get(),
|
||||
ne0,
|
||||
nb1, nb2);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -2487,7 +2575,8 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
|
|||
GGML_CALL static bool ggml_backend_cuda_offload_op(ggml_backend_t backend, const ggml_tensor * op) {
|
||||
const int min_batch_size = 32;
|
||||
|
||||
return op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS;
|
||||
return (op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS) ||
|
||||
(op->ne[2] >= min_batch_size && op->op == GGML_OP_MUL_MAT_ID);
|
||||
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
|
|
@ -22,6 +22,7 @@ static __global__ void k_bin_bcast(const src0_t * src0, const src1_t * src1, dst
|
|||
int ne0, int ne1, int ne2, int ne3,
|
||||
int ne10, int ne11, int ne12, int ne13,
|
||||
/*int s0, */ int s1, int s2, int s3,
|
||||
/*int s00,*/ int s01, int s02, int s03,
|
||||
/*int s10,*/ int s11, int s12, int s13) {
|
||||
const int i0s = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
const int i1 = (blockDim.y*blockIdx.y + threadIdx.y);
|
||||
|
@ -36,9 +37,9 @@ static __global__ void k_bin_bcast(const src0_t * src0, const src1_t * src1, dst
|
|||
const int i12 = i2 % ne12;
|
||||
const int i13 = i3 % ne13;
|
||||
|
||||
const size_t i_src0 = i3*s3 + i2*s2 + i1*s1;
|
||||
const size_t i_src0 = i3*s03 + i2*s02 + i1*s01;
|
||||
const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
|
||||
const size_t i_dst = i_src0;
|
||||
const size_t i_dst = i3*s3 + i2*s2 + i1*s1;
|
||||
|
||||
const src0_t * src0_row = src0 + i_src0;
|
||||
const src1_t * src1_row = src1 + i_src1;
|
||||
|
@ -55,6 +56,7 @@ static __global__ void k_bin_bcast_unravel(const src0_t * src0, const src1_t * s
|
|||
int ne0, int ne1, int ne2, int ne3,
|
||||
int ne10, int ne11, int ne12, int ne13,
|
||||
/*int s0, */ int s1, int s2, int s3,
|
||||
/*int s00,*/ int s01, int s02, int s03,
|
||||
/*int s10,*/ int s11, int s12, int s13) {
|
||||
|
||||
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
@ -72,9 +74,9 @@ static __global__ void k_bin_bcast_unravel(const src0_t * src0, const src1_t * s
|
|||
const int i12 = i2 % ne12;
|
||||
const int i13 = i3 % ne13;
|
||||
|
||||
const size_t i_src0 = i3*s3 + i2*s2 + i1*s1;
|
||||
const size_t i_src0 = i3*s03 + i2*s02 + i1*s01;
|
||||
const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
|
||||
const size_t i_dst = i_src0;
|
||||
const size_t i_dst = i3*s3 + i2*s2 + i1*s1;
|
||||
|
||||
const src0_t * src0_row = src0 + i_src0;
|
||||
const src1_t * src1_row = src1 + i_src1;
|
||||
|
@ -101,10 +103,14 @@ struct bin_bcast_cuda {
|
|||
int nr[4] = { nr0, nr1, nr2, nr3 };
|
||||
|
||||
// collapse dimensions until first broadcast dimension
|
||||
int64_t cne0[] = {ne0, ne1, ne2, ne3};
|
||||
int64_t cne[] = {ne0, ne1, ne2, ne3};
|
||||
int64_t cne0[] = {ne00, ne01, ne02, ne03};
|
||||
int64_t cne1[] = {ne10, ne11, ne12, ne13};
|
||||
size_t cnb0[] = {nb0, nb1, nb2, nb3};
|
||||
|
||||
size_t cnb[] = {nb0, nb1, nb2, nb3};
|
||||
size_t cnb0[] = {nb00, nb01, nb02, nb03};
|
||||
size_t cnb1[] = {nb10, nb11, nb12, nb13};
|
||||
|
||||
auto collapse = [](int64_t cne[]) {
|
||||
cne[0] *= cne[1];
|
||||
cne[1] = cne[2];
|
||||
|
@ -118,32 +124,47 @@ struct bin_bcast_cuda {
|
|||
cnb[3] *= cne[3];
|
||||
};
|
||||
|
||||
for (int i = 0; i < 4; i++) {
|
||||
if (nr[i] != 1) {
|
||||
break;
|
||||
}
|
||||
if (i > 0) {
|
||||
collapse_nb(cnb0, cne0);
|
||||
collapse_nb(cnb1, cne1);
|
||||
collapse(cne0);
|
||||
collapse(cne1);
|
||||
if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && ggml_is_contiguous(dst)) {
|
||||
for (int i = 0; i < 4; i++) {
|
||||
if (nr[i] != 1) {
|
||||
break;
|
||||
}
|
||||
if (i > 0) {
|
||||
collapse_nb(cnb, cne);
|
||||
collapse_nb(cnb0, cne0);
|
||||
collapse_nb(cnb1, cne1);
|
||||
collapse(cne);
|
||||
collapse(cne0);
|
||||
collapse(cne1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
int64_t ne0 = cne0[0];
|
||||
int64_t ne1 = cne0[1];
|
||||
int64_t ne2 = cne0[2];
|
||||
int64_t ne3 = cne0[3];
|
||||
int64_t ne0 = cne[0];
|
||||
int64_t ne1 = cne[1];
|
||||
int64_t ne2 = cne[2];
|
||||
int64_t ne3 = cne[3];
|
||||
|
||||
//int64_t ne00 = cne0[0]; GGML_UNUSED(ne00);
|
||||
//int64_t ne01 = cne0[1]; GGML_UNUSED(ne01);
|
||||
//int64_t ne02 = cne0[2]; GGML_UNUSED(ne02);
|
||||
//int64_t ne03 = cne0[3]; GGML_UNUSED(ne03);
|
||||
|
||||
int64_t ne10 = cne1[0];
|
||||
int64_t ne11 = cne1[1];
|
||||
int64_t ne12 = cne1[2];
|
||||
int64_t ne13 = cne1[3];
|
||||
|
||||
size_t nb0 = cnb0[0];
|
||||
size_t nb1 = cnb0[1];
|
||||
size_t nb2 = cnb0[2];
|
||||
size_t nb3 = cnb0[3];
|
||||
size_t nb0 = cnb[0];
|
||||
size_t nb1 = cnb[1];
|
||||
size_t nb2 = cnb[2];
|
||||
size_t nb3 = cnb[3];
|
||||
|
||||
size_t nb00 = cnb0[0];
|
||||
size_t nb01 = cnb0[1];
|
||||
size_t nb02 = cnb0[2];
|
||||
size_t nb03 = cnb0[3];
|
||||
|
||||
size_t nb10 = cnb1[0];
|
||||
size_t nb11 = cnb1[1];
|
||||
|
@ -160,7 +181,28 @@ struct bin_bcast_cuda {
|
|||
size_t s12 = nb12 / sizeof(src1_t);
|
||||
size_t s13 = nb13 / sizeof(src1_t);
|
||||
|
||||
size_t s00 = nb00 / sizeof(src0_t);
|
||||
size_t s01 = nb01 / sizeof(src0_t);
|
||||
size_t s02 = nb02 / sizeof(src0_t);
|
||||
size_t s03 = nb03 / sizeof(src0_t);
|
||||
|
||||
GGML_ASSERT(nb0 % sizeof(dst_t) == 0);
|
||||
GGML_ASSERT(nb1 % sizeof(dst_t) == 0);
|
||||
GGML_ASSERT(nb2 % sizeof(dst_t) == 0);
|
||||
GGML_ASSERT(nb3 % sizeof(dst_t) == 0);
|
||||
|
||||
GGML_ASSERT(nb00 % sizeof(src0_t) == 0);
|
||||
GGML_ASSERT(nb01 % sizeof(src0_t) == 0);
|
||||
GGML_ASSERT(nb02 % sizeof(src0_t) == 0);
|
||||
GGML_ASSERT(nb03 % sizeof(src0_t) == 0);
|
||||
|
||||
GGML_ASSERT(nb10 % sizeof(src1_t) == 0);
|
||||
GGML_ASSERT(nb11 % sizeof(src1_t) == 0);
|
||||
GGML_ASSERT(nb12 % sizeof(src1_t) == 0);
|
||||
GGML_ASSERT(nb13 % sizeof(src1_t) == 0);
|
||||
|
||||
GGML_ASSERT(s0 == 1);
|
||||
GGML_ASSERT(s00 == 1);
|
||||
GGML_ASSERT(s10 == 1);
|
||||
|
||||
const int block_size = 128;
|
||||
|
@ -179,13 +221,14 @@ struct bin_bcast_cuda {
|
|||
);
|
||||
|
||||
if (block_nums.z > 65535) {
|
||||
// this is the maximum number of blocks in z direction, fallback to 1D grid kernel
|
||||
// this is the maximum number of blocks in z dimension, fallback to 1D grid kernel
|
||||
int block_num = (ne0*ne1*ne2*ne3 + block_size - 1) / block_size;
|
||||
k_bin_bcast_unravel<bin_op><<<block_num, block_size, 0, stream>>>(
|
||||
src0_dd, src1_dd, dst_dd,
|
||||
ne0, ne1, ne2, ne3,
|
||||
ne10, ne11, ne12, ne13,
|
||||
/* s0, */ s1, s2, s3,
|
||||
/* s00, */ s01, s02, s03,
|
||||
/* s10, */ s11, s12, s13);
|
||||
} else {
|
||||
k_bin_bcast<bin_op><<<block_nums, block_dims, 0, stream>>>(
|
||||
|
@ -193,6 +236,7 @@ struct bin_bcast_cuda {
|
|||
ne0, ne1, ne2, ne3,
|
||||
ne10, ne11, ne12, ne13,
|
||||
/* s0, */ s1, s2, s3,
|
||||
/* s00, */ s01, s02, s03,
|
||||
/* s10, */ s11, s12, s13);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -45,6 +45,8 @@ static __global__ void dequantize_block_q8_0_f16(const void * __restrict__ vx, h
|
|||
vals[ix] = x0[ix];
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int iy = 0; iy < CUDA_Q8_0_NE_ALIGN; iy += 2*WARP_SIZE) {
|
||||
if (need_check && i0 + iy + 2*threadIdx.x >= k) {
|
||||
|
|
|
@ -88,7 +88,7 @@ typedef uint16_t ggml_fp16_internal_t;
|
|||
#if defined(_MSC_VER) || defined(__MINGW32__)
|
||||
#include <intrin.h>
|
||||
#else
|
||||
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__)
|
||||
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__) || defined(__SSE__)
|
||||
#if !defined(__riscv)
|
||||
#include <immintrin.h>
|
||||
#endif
|
||||
|
|
182
ggml-metal.m
182
ggml-metal.m
|
@ -41,8 +41,11 @@ enum ggml_metal_kernel_type {
|
|||
GGML_METAL_KERNEL_TYPE_TANH,
|
||||
GGML_METAL_KERNEL_TYPE_RELU,
|
||||
GGML_METAL_KERNEL_TYPE_GELU,
|
||||
GGML_METAL_KERNEL_TYPE_GELU_4,
|
||||
GGML_METAL_KERNEL_TYPE_GELU_QUICK,
|
||||
GGML_METAL_KERNEL_TYPE_GELU_QUICK_4,
|
||||
GGML_METAL_KERNEL_TYPE_SILU,
|
||||
GGML_METAL_KERNEL_TYPE_SILU_4,
|
||||
GGML_METAL_KERNEL_TYPE_SOFT_MAX,
|
||||
GGML_METAL_KERNEL_TYPE_SOFT_MAX_4,
|
||||
GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF,
|
||||
|
@ -473,8 +476,11 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
|||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_TANH, tanh, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RELU, relu, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU, gelu, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_4, gelu_4, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_QUICK, gelu_quick, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_QUICK_4, gelu_quick_4, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SILU, silu, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SILU_4, silu_4, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX, soft_max, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX_4, soft_max_4, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF, diag_mask_inf, true);
|
||||
|
@ -1178,6 +1184,9 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||
} break;
|
||||
case GGML_OP_UNARY:
|
||||
switch (ggml_get_unary_op(gf->nodes[i])) {
|
||||
// we are not taking into account the strides, so for now require contiguous tensors
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
|
||||
case GGML_UNARY_OP_TANH:
|
||||
{
|
||||
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_TANH].pipeline;
|
||||
|
@ -1204,42 +1213,60 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||
} break;
|
||||
case GGML_UNARY_OP_GELU:
|
||||
{
|
||||
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU].pipeline;
|
||||
int64_t n = ggml_nelements(dst);
|
||||
|
||||
id<MTLComputePipelineState> pipeline = nil;
|
||||
|
||||
if (n % 4 == 0) {
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_4].pipeline;
|
||||
n /= 4;
|
||||
} else {
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU].pipeline;
|
||||
}
|
||||
|
||||
[encoder setComputePipelineState:pipeline];
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||
|
||||
const int64_t n = ggml_nelements(dst);
|
||||
GGML_ASSERT(n % 4 == 0);
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
} break;
|
||||
case GGML_UNARY_OP_GELU_QUICK:
|
||||
{
|
||||
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_QUICK].pipeline;
|
||||
int64_t n = ggml_nelements(dst);
|
||||
|
||||
id<MTLComputePipelineState> pipeline = nil;
|
||||
|
||||
if (n % 4 == 0) {
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_QUICK_4].pipeline;
|
||||
n /= 4;
|
||||
} else {
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_QUICK].pipeline;
|
||||
}
|
||||
|
||||
[encoder setComputePipelineState:pipeline];
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||
|
||||
const int64_t n = ggml_nelements(dst);
|
||||
GGML_ASSERT(n % 4 == 0);
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
} break;
|
||||
case GGML_UNARY_OP_SILU:
|
||||
{
|
||||
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SILU].pipeline;
|
||||
int64_t n = ggml_nelements(dst);
|
||||
|
||||
id<MTLComputePipelineState> pipeline = nil;
|
||||
|
||||
if (n % 4 == 0) {
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SILU_4].pipeline;
|
||||
n /= 4;
|
||||
} else {
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SILU].pipeline;
|
||||
}
|
||||
|
||||
[encoder setComputePipelineState:pipeline];
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||
|
||||
const int64_t n = ggml_nelements(dst);
|
||||
GGML_ASSERT(n % 4 == 0);
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
|
@ -1705,15 +1732,10 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||
} break;
|
||||
case GGML_OP_MUL_MAT_ID:
|
||||
{
|
||||
//GGML_ASSERT(ne00 == ne10);
|
||||
//GGML_ASSERT(ne03 == ne13);
|
||||
const int n_as = src0->ne[2];
|
||||
|
||||
// max size of the src1ids array in the kernel shared buffer
|
||||
GGML_ASSERT(ne11 <= 4096);
|
||||
|
||||
// src2 = ids
|
||||
const int64_t ne20 = src2->ne[0]; GGML_UNUSED(ne20);
|
||||
const int64_t ne20 = src2->ne[0];
|
||||
const int64_t ne21 = src2->ne[1];
|
||||
const int64_t ne22 = src2->ne[2]; GGML_UNUSED(ne22);
|
||||
const int64_t ne23 = src2->ne[3]; GGML_UNUSED(ne23);
|
||||
|
@ -1734,15 +1756,13 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||
|
||||
// find the break-even point where the matrix-matrix kernel becomes more efficient compared
|
||||
// to the matrix-vector kernel
|
||||
int ne11_mm_min = n_as;
|
||||
// ne20 = n_used_experts
|
||||
// ne21 = n_rows
|
||||
const int dst_rows = ne20*ne21;
|
||||
const int dst_rows_min = n_as;
|
||||
|
||||
const int idx = ((int32_t *) dst->op_params)[0];
|
||||
|
||||
// batch size
|
||||
GGML_ASSERT(ne21 == ne11); // ?
|
||||
GGML_ASSERT(ne12 == 1 && ne13 == 1); // no broadcasting
|
||||
const uint r2 = 1;
|
||||
const uint r3 = 1;
|
||||
// max size of the rowids array in the kernel shared buffer
|
||||
GGML_ASSERT(dst_rows <= 2048);
|
||||
|
||||
// for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs
|
||||
// AMD GPU and older A-chips will reuse matrix-vector multiplication kernel
|
||||
|
@ -1752,7 +1772,7 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||
// !!!
|
||||
if ([ctx->device supportsFamily:MTLGPUFamilyApple7] &&
|
||||
ne00 % 32 == 0 && ne00 >= 64 &&
|
||||
ne11 > ne11_mm_min) {
|
||||
dst_rows > dst_rows_min) {
|
||||
|
||||
// some Metal matrix data types require aligned pointers
|
||||
// ref: https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf (Table 2.5)
|
||||
|
@ -1794,26 +1814,26 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
||||
[encoder setBuffer:id_src2 offset:offs_src2 atIndex:3];
|
||||
[encoder setBytes:&nb21 length:sizeof(nb21) atIndex:4];
|
||||
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:5];
|
||||
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:6];
|
||||
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
|
||||
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
|
||||
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:9];
|
||||
[encoder setBytes:&ne13 length:sizeof(ne13) atIndex:10];
|
||||
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:11];
|
||||
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:12];
|
||||
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:13];
|
||||
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:14];
|
||||
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:15];
|
||||
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:16];
|
||||
[encoder setBytes:&r2 length:sizeof(r2) atIndex:17];
|
||||
[encoder setBytes:&r3 length:sizeof(r3) atIndex:18];
|
||||
[encoder setBytes:&idx length:sizeof(idx) atIndex:19];
|
||||
[encoder setBytes:&ne20 length:sizeof(ne20) atIndex:4];
|
||||
[encoder setBytes:&ne21 length:sizeof(ne21) atIndex:5];
|
||||
[encoder setBytes:&nb21 length:sizeof(nb21) atIndex:6];
|
||||
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:7];
|
||||
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:8];
|
||||
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:9];
|
||||
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:10];
|
||||
[encoder setBytes:&ne11 length:sizeof(ne11) atIndex:11];
|
||||
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:12];
|
||||
[encoder setBytes:&ne13 length:sizeof(ne13) atIndex:13];
|
||||
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:14];
|
||||
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:15];
|
||||
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:16];
|
||||
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:17];
|
||||
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:18];
|
||||
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:19];
|
||||
|
||||
[encoder setThreadgroupMemoryLength:GGML_PAD(8192 + 2*ne11, 16) atIndex:0];
|
||||
[encoder setThreadgroupMemoryLength:GGML_PAD(8192 + dst_rows*4/*sizeof(ushort2)*/, 16) atIndex:0];
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne11 + 31)/32, (ne01 + 63)/64, n_as*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 31)/32, (ne01 + 63)/64, n_as) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
|
||||
} else {
|
||||
int nth0 = 32;
|
||||
int nth1 = 1;
|
||||
|
@ -1966,72 +1986,72 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||
GGML_ASSERT(ne00 >= nth0*nth1);
|
||||
}
|
||||
|
||||
const int64_t _ne1 = 1; // kernels needs a reference in constant memory
|
||||
|
||||
[encoder setComputePipelineState:pipeline];
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
||||
[encoder setBuffer:id_src2 offset:offs_src2 atIndex:3];
|
||||
[encoder setBytes:&nb21 length:sizeof(nb21) atIndex:4];
|
||||
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:5];
|
||||
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:6];
|
||||
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:7];
|
||||
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:8];
|
||||
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:9];
|
||||
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:10];
|
||||
[encoder setBytes:&ne10 length:sizeof(ne10) atIndex:11];
|
||||
[encoder setBytes:&_ne1 length:sizeof(_ne1) atIndex:12];
|
||||
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:13];
|
||||
[encoder setBytes:&ne13 length:sizeof(ne13) atIndex:14];
|
||||
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:15];
|
||||
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:16];
|
||||
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:17];
|
||||
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:18];
|
||||
[encoder setBytes:&_ne1 length:sizeof(_ne1) atIndex:19];
|
||||
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:20];
|
||||
[encoder setBytes:&r2 length:sizeof(r2) atIndex:21];
|
||||
[encoder setBytes:&r3 length:sizeof(r3) atIndex:22];
|
||||
[encoder setBytes:&idx length:sizeof(idx) atIndex:23];
|
||||
[encoder setBytes:&ne20 length:sizeof(ne20) atIndex:4];
|
||||
[encoder setBytes:&ne21 length:sizeof(ne21) atIndex:5];
|
||||
[encoder setBytes:&nb21 length:sizeof(nb21) atIndex:6];
|
||||
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:7];
|
||||
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:8];
|
||||
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:9];
|
||||
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:10];
|
||||
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:11];
|
||||
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:12];
|
||||
[encoder setBytes:&ne10 length:sizeof(ne10) atIndex:13];
|
||||
[encoder setBytes:&ne11 length:sizeof(ne11) atIndex:14];
|
||||
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:15];
|
||||
[encoder setBytes:&ne13 length:sizeof(ne13) atIndex:16];
|
||||
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:17];
|
||||
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:18];
|
||||
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:19];
|
||||
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:20];
|
||||
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:21];
|
||||
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:22];
|
||||
|
||||
const int64_t _ne1 = 1;
|
||||
const int tgz = dst_rows;
|
||||
|
||||
if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 || src0t == GGML_TYPE_Q5_0 ||
|
||||
src0t == GGML_TYPE_Q5_1 || src0t == GGML_TYPE_Q8_0 || src0t == GGML_TYPE_Q2_K ||
|
||||
src0t == GGML_TYPE_IQ1_S || src0t == GGML_TYPE_IQ1_M || src0t == GGML_TYPE_IQ2_S) {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, _ne1, ne21*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src0t == GGML_TYPE_IQ2_XXS || src0t == GGML_TYPE_IQ2_XS) {
|
||||
const int mem_size = src0t == GGML_TYPE_IQ2_XXS ? 256*8+128 : 512*8+128;
|
||||
[encoder setThreadgroupMemoryLength:mem_size atIndex:0];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, _ne1, ne21*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src0t == GGML_TYPE_IQ3_XXS || src0t == GGML_TYPE_IQ3_S) {
|
||||
const int mem_size = src0t == GGML_TYPE_IQ3_XXS ? 256*4+128 : 512*4;
|
||||
[encoder setThreadgroupMemoryLength:mem_size atIndex:0];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, _ne1, ne21*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src0t == GGML_TYPE_IQ4_NL || src0t == GGML_TYPE_IQ4_XS) {
|
||||
const int mem_size = 32*sizeof(float);
|
||||
[encoder setThreadgroupMemoryLength:mem_size atIndex:0];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, ne21*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src0t == GGML_TYPE_Q4_K) {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, ne21*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src0t == GGML_TYPE_Q3_K) {
|
||||
#ifdef GGML_QKK_64
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, _ne1, ne21*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
#else
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, ne21*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
#endif
|
||||
}
|
||||
else if (src0t == GGML_TYPE_Q5_K) {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, ne21*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src0t == GGML_TYPE_Q6_K) {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, _ne1, ne21*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
} else {
|
||||
const int64_t ny = (_ne1 + nrows - 1)/nrows;
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ny, ne21*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
const int64_t ny = (_ne1 + nrows - 1)/nrows; // = _ne1
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ny, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
}
|
||||
} break;
|
||||
|
|
904
ggml-metal.metal
904
ggml-metal.metal
File diff suppressed because it is too large
Load diff
|
@ -132,7 +132,7 @@ static inline __m256 sum_i16_pairs_float(const __m256i x) {
|
|||
}
|
||||
|
||||
static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
|
||||
#if defined(__AVXVNNI__) || defined(__AVX512VNNI__)
|
||||
#if defined(__AVXVNNI__) || (defined(__AVX512VNNI__) && defined(__AVX512VL__))
|
||||
const __m256i zero = _mm256_setzero_si256();
|
||||
const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
|
||||
return _mm256_cvtepi32_ps(summed_pairs);
|
||||
|
|
|
@ -17752,7 +17752,7 @@ GGML_CALL static bool ggml_backend_sycl_supports_op(ggml_backend_t backend, cons
|
|||
|
||||
GGML_CALL static bool ggml_backend_sycl_offload_op(ggml_backend_t backend, const ggml_tensor * op) {
|
||||
const int min_batch_size = 32;
|
||||
return op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS;
|
||||
return op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS && op->op != GGML_OP_MUL_MAT_ID;
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
|
|
176
ggml.c
176
ggml.c
|
@ -4,6 +4,7 @@
|
|||
#include "ggml-impl.h"
|
||||
#include "ggml-quants.h"
|
||||
#include "ggml.h"
|
||||
#include "sgemm.h"
|
||||
|
||||
#if defined(_MSC_VER) || defined(__MINGW32__)
|
||||
#include <malloc.h> // using malloc.h with MSC/MINGW
|
||||
|
@ -32,6 +33,10 @@
|
|||
#include <unistd.h>
|
||||
#endif
|
||||
|
||||
#ifdef __ARM_FEATURE_MATMUL_INT8
|
||||
#undef GGML_USE_LLAMAFILE
|
||||
#endif
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
// disable "possible loss of data" to avoid hundreds of casts
|
||||
// we should just be careful :)
|
||||
|
@ -4573,21 +4578,32 @@ void ggml_mul_mat_set_prec(
|
|||
|
||||
// ggml_mul_mat_id
|
||||
|
||||
// NOTE: id will be removed in the future and instead all the experts listed in ids will be computed
|
||||
// this will allow computing all the used experts in a single matrix multiplication
|
||||
/*
|
||||
c = ggml_mul_mat_id(ctx, as, b, ids);
|
||||
|
||||
as -> [cols, rows, n_expert]
|
||||
ids -> [n_experts_used, n_tokens] (i32)
|
||||
b -> [cols, n_expert_used, n_tokens]
|
||||
c -> [cols, n_expert_used, n_tokens]
|
||||
|
||||
in b, n_experts_used can be broadcasted to match the n_expert_used of ids
|
||||
|
||||
c ~= as[:,:,i] @ b[:,i%r,t], i = ids[e,t] for all e,t in ids
|
||||
*/
|
||||
struct ggml_tensor * ggml_mul_mat_id(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * as,
|
||||
struct ggml_tensor * ids,
|
||||
int id,
|
||||
struct ggml_tensor * b) {
|
||||
|
||||
struct ggml_tensor * b,
|
||||
struct ggml_tensor * ids) {
|
||||
GGML_ASSERT(!ggml_is_transposed(as));
|
||||
GGML_ASSERT(ids->type == GGML_TYPE_I32);
|
||||
|
||||
GGML_ASSERT(as->ne[3] == 1); // as is 3d (one matrix per expert)
|
||||
GGML_ASSERT(b->ne[3] == 1); // b is 3d
|
||||
GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); // ids is 2d
|
||||
GGML_ASSERT(ids->ne[1] == b->ne[1]); // must have an expert per b row
|
||||
GGML_ASSERT(ids->ne[2] == b->ne[2] && ids->ne[3] == b->ne[3]);
|
||||
GGML_ASSERT(id >= 0 && id < ids->ne[0]); // valid id
|
||||
GGML_ASSERT(ids->ne[1] == b->ne[2]); // must have an expert list per b row
|
||||
GGML_ASSERT(as->ne[0] == b->ne[0]); // can_mul_mat
|
||||
GGML_ASSERT(ids->ne[0] % b->ne[1] == 0); // can broadcast
|
||||
|
||||
bool is_node = false;
|
||||
|
||||
|
@ -4595,11 +4611,9 @@ struct ggml_tensor * ggml_mul_mat_id(
|
|||
is_node = true;
|
||||
}
|
||||
|
||||
const int64_t ne[4] = { as->ne[1], b->ne[1], b->ne[2], b->ne[3] };
|
||||
const int64_t ne[4] = { as->ne[1], ids->ne[0], b->ne[2], 1 };
|
||||
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
|
||||
|
||||
ggml_set_op_params_i32(result, 0, id);
|
||||
|
||||
result->op = GGML_OP_MUL_MAT_ID;
|
||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||
result->src[0] = as;
|
||||
|
@ -10810,6 +10824,28 @@ static void ggml_compute_forward_mul_mat(
|
|||
}
|
||||
#endif
|
||||
|
||||
#if GGML_USE_LLAMAFILE
|
||||
if (nb10 == ggml_type_size(src1->type)) {
|
||||
for (int64_t i13 = 0; i13 < ne13; i13++)
|
||||
for (int64_t i12 = 0; i12 < ne12; i12++)
|
||||
if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
|
||||
(const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
|
||||
nb01/ggml_type_size(src0->type),
|
||||
(const char *)src1->data + i12*nb12 + i13*nb13,
|
||||
nb11/ggml_type_size(src1->type),
|
||||
(char *)dst->data + i12*nb2 + i13*nb3,
|
||||
nb1/ggml_type_size(dst->type),
|
||||
ith, nth,
|
||||
params->type,
|
||||
src0->type,
|
||||
src1->type,
|
||||
dst->type))
|
||||
goto UseGgmlGemm1;
|
||||
return;
|
||||
}
|
||||
UseGgmlGemm1:;
|
||||
#endif
|
||||
|
||||
if (params->type == GGML_TASK_TYPE_INIT) {
|
||||
if (ith != 0) {
|
||||
return;
|
||||
|
@ -10841,6 +10877,30 @@ static void ggml_compute_forward_mul_mat(
|
|||
const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
|
||||
const size_t row_size = ggml_row_size(vec_dot_type, ne10);
|
||||
|
||||
#if GGML_USE_LLAMAFILE
|
||||
if (nb10 == ggml_type_size(src1->type) || src1->type != vec_dot_type) {
|
||||
for (int64_t i13 = 0; i13 < ne13; i13++)
|
||||
for (int64_t i12 = 0; i12 < ne12; i12++)
|
||||
if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
|
||||
(const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
|
||||
nb01/ggml_type_size(src0->type),
|
||||
(const char *)wdata + ggml_row_size(vec_dot_type,
|
||||
nb12/ggml_type_size(src1->type)*i12 +
|
||||
nb13/ggml_type_size(src1->type)*i13),
|
||||
row_size/ggml_type_size(vec_dot_type),
|
||||
(char *)dst->data + i12*nb2 + i13*nb3,
|
||||
nb1/ggml_type_size(dst->type),
|
||||
ith, nth,
|
||||
params->type,
|
||||
src0->type,
|
||||
vec_dot_type,
|
||||
dst->type))
|
||||
goto UseGgmlGemm2;
|
||||
return;
|
||||
}
|
||||
UseGgmlGemm2:;
|
||||
#endif
|
||||
|
||||
const int64_t nr0 = ne01; // src0 rows
|
||||
const int64_t nr1 = ne1*ne12*ne13; // src1 rows
|
||||
|
||||
|
@ -10958,11 +11018,6 @@ static void ggml_compute_forward_mul_mat_id(
|
|||
enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
|
||||
ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
|
||||
|
||||
GGML_ASSERT(ne0 == ne01);
|
||||
GGML_ASSERT(ne1 == ne11);
|
||||
GGML_ASSERT(ne2 == ne12);
|
||||
GGML_ASSERT(ne3 == ne13);
|
||||
|
||||
// we don't support permuted src0 or src1
|
||||
GGML_ASSERT(nb00 == ggml_type_size(type));
|
||||
GGML_ASSERT(nb10 == ggml_type_size(src1->type));
|
||||
|
@ -10973,22 +11028,21 @@ static void ggml_compute_forward_mul_mat_id(
|
|||
GGML_ASSERT(nb1 <= nb2);
|
||||
GGML_ASSERT(nb2 <= nb3);
|
||||
|
||||
// broadcast is not supported with mmid
|
||||
assert(ne12 == 1);
|
||||
assert(ne13 == 1);
|
||||
|
||||
// row groups
|
||||
const int id = ggml_get_op_params_i32(dst, 0);
|
||||
const int n_as = src0->ne[2];
|
||||
const int n_ids = ids->ne[0]; // n_expert_used
|
||||
const int n_as = ne02; // n_expert
|
||||
|
||||
char * wdata_src1_end = (src1->type == vec_dot_type) ?
|
||||
(char *) params->wdata :
|
||||
(char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
|
||||
|
||||
int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
|
||||
int64_t * matrix_rows = matrix_row_counts + n_as; // [n_as][ne11]
|
||||
struct mmid_row_mapping {
|
||||
int32_t i1;
|
||||
int32_t i2;
|
||||
};
|
||||
|
||||
#define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne11 + (i1)]
|
||||
int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
|
||||
struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *)(matrix_row_counts + n_as); // [n_as][ne11]
|
||||
|
||||
if (params->type == GGML_TASK_TYPE_INIT) {
|
||||
if (ith != 0) {
|
||||
|
@ -11014,13 +11068,18 @@ static void ggml_compute_forward_mul_mat_id(
|
|||
// initialize matrix_row_counts
|
||||
memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
|
||||
|
||||
// group rows by src0 matrix
|
||||
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
|
||||
const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]);
|
||||
#define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne12 + (i1)]
|
||||
|
||||
GGML_ASSERT(row_id >= 0 && row_id < n_as);
|
||||
MMID_MATRIX_ROW(row_id, matrix_row_counts[row_id]) = i01;
|
||||
matrix_row_counts[row_id] += 1;
|
||||
// group rows by src0 matrix
|
||||
for (int64_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) {
|
||||
for (int id = 0; id < n_ids; ++id) {
|
||||
const int32_t i02 = *(const int32_t *) ((const char *) ids->data + iid1*ids->nb[1] + id*ids->nb[0]);
|
||||
|
||||
assert(i02 >= 0 && i02 < n_as);
|
||||
|
||||
MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = (struct mmid_row_mapping) {id, iid1};
|
||||
matrix_row_counts[i02] += 1;
|
||||
}
|
||||
}
|
||||
|
||||
return;
|
||||
|
@ -11038,15 +11097,13 @@ static void ggml_compute_forward_mul_mat_id(
|
|||
continue;
|
||||
}
|
||||
|
||||
size_t src0_offset = cur_a*src0->nb[2];
|
||||
const char * src0_cur = (const char *) src0->data + cur_a*nb02;
|
||||
|
||||
const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
|
||||
const size_t row_size = ggml_row_size(vec_dot_type, ne10);
|
||||
|
||||
const int64_t nr0 = ne01; // src0 rows
|
||||
const int64_t nr1 = cne1*ne12*ne13; // src1 rows
|
||||
|
||||
//printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
|
||||
const int64_t nr0 = ne01; // src0 rows
|
||||
const int64_t nr1 = cne1; // src1 rows
|
||||
|
||||
// distribute the thread work across the inner or outer loop based on which one is larger
|
||||
|
||||
|
@ -11065,13 +11122,11 @@ static void ggml_compute_forward_mul_mat_id(
|
|||
const int64_t ir110 = dr1*ith1;
|
||||
const int64_t ir111 = MIN(ir110 + dr1, nr1);
|
||||
|
||||
//printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
|
||||
|
||||
// threads with no work simply yield (not sure if it helps)
|
||||
if (ir010 >= ir011 || ir110 >= ir111) {
|
||||
sched_yield();
|
||||
continue;
|
||||
}
|
||||
//if (ir010 >= ir011 || ir110 >= ir111) {
|
||||
// sched_yield();
|
||||
// continue;
|
||||
//}
|
||||
|
||||
// block-tiling attempt
|
||||
const int64_t blck_0 = 16;
|
||||
|
@ -11083,20 +11138,16 @@ static void ggml_compute_forward_mul_mat_id(
|
|||
for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
|
||||
for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
|
||||
for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
|
||||
const int64_t i13 = (ir1/(ne12*cne1)); // Note: currently, src1 is always a matrix
|
||||
const int64_t i12 = (ir1 - i13*ne12*cne1)/cne1;
|
||||
const int64_t _i11 = (ir1 - i13*ne12*cne1 - i12*cne1);
|
||||
const int64_t i11 = MMID_MATRIX_ROW(cur_a, _i11);
|
||||
const int64_t _i12 = ir1; // logical row index for this expert
|
||||
|
||||
// broadcast src0 into src1
|
||||
//const int64_t i03 = i13/r3;
|
||||
//const int64_t i02 = i12/r2;
|
||||
struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12);
|
||||
const int id = row_mapping.i1; // selected expert index
|
||||
|
||||
const int64_t i1 = i11;
|
||||
const int64_t i2 = i12;
|
||||
const int64_t i3 = i13;
|
||||
const int64_t i11 = id % ne11;
|
||||
const int64_t i12 = row_mapping.i2; // row index in src1
|
||||
|
||||
const char * src0_row = (const char *) src0->data + src0_offset;
|
||||
const int64_t i1 = id; // selected expert index
|
||||
const int64_t i2 = i12; // row
|
||||
|
||||
// desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
|
||||
// if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
|
||||
|
@ -11104,25 +11155,26 @@ static void ggml_compute_forward_mul_mat_id(
|
|||
// TODO: this is a bit of a hack, we should probably have a better way to handle this
|
||||
const char * src1_col = (const char *) wdata +
|
||||
(src1_cont || src1->type != vec_dot_type
|
||||
? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
|
||||
: (i11*nb11 + i12*nb12 + i13*nb13));
|
||||
? (i11 + i12*ne11)*row_size
|
||||
: (i11*nb11 + i12*nb12));
|
||||
|
||||
float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
|
||||
float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2));
|
||||
|
||||
//for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
|
||||
// vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
|
||||
//}
|
||||
|
||||
for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
|
||||
vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_row + ir0*nb01, 0, src1_col, 0, 1);
|
||||
vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1);
|
||||
}
|
||||
|
||||
memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#undef MMID_MATRIX_ROW
|
||||
#undef MMID_MATRIX_ROW
|
||||
}
|
||||
|
||||
// ggml_compute_forward_out_prod
|
||||
|
@ -18461,7 +18513,7 @@ struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threa
|
|||
const int n_as = src0->ne[2];
|
||||
cur += GGML_PAD(cur, sizeof(int64_t)); // align
|
||||
cur += n_as * sizeof(int64_t); // matrix_row_counts
|
||||
cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows
|
||||
cur += n_as * src1->ne[2] * sizeof(int64_t); // matrix_rows
|
||||
} break;
|
||||
case GGML_OP_OUT_PROD:
|
||||
{
|
||||
|
@ -20887,12 +20939,12 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
|
|||
|
||||
ok = ok && cur != NULL;
|
||||
|
||||
ggml_set_name(cur, ctx->infos[i].name.data);
|
||||
|
||||
if (!ok) {
|
||||
break;
|
||||
}
|
||||
|
||||
ggml_set_name(cur, ctx->infos[i].name.data);
|
||||
|
||||
// point the data member to the appropriate location in the binary blob using the tensor infos
|
||||
if (!params.no_alloc) {
|
||||
//cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
|
||||
|
|
6
ggml.h
6
ggml.h
|
@ -1161,13 +1161,11 @@ extern "C" {
|
|||
enum ggml_prec prec);
|
||||
|
||||
// indirect matrix multiplication
|
||||
// ggml_mul_mat_id(ctx, as, ids, id, b) ~= ggml_mul_mat(as[ids[id]], b)
|
||||
GGML_API struct ggml_tensor * ggml_mul_mat_id(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * as,
|
||||
struct ggml_tensor * ids,
|
||||
int id,
|
||||
struct ggml_tensor * b);
|
||||
struct ggml_tensor * b,
|
||||
struct ggml_tensor * ids);
|
||||
|
||||
// A: m columns, n rows,
|
||||
// B: p columns, n rows,
|
||||
|
|
|
@ -21,6 +21,8 @@ pip install gguf
|
|||
|
||||
[scripts/gguf-convert-endian.py](https://github.com/ggerganov/llama.cpp/blob/master/gguf-py/scripts/gguf-convert-endian.py) — Allows converting the endianness of GGUF files.
|
||||
|
||||
[scripts/gguf-new-metadata.py](https://github.com/ggerganov/llama.cpp/blob/master/gguf-py/scripts/gguf-new-metadata.py) — Copies a GGUF file with added/modified/removed metadata values.
|
||||
|
||||
## Development
|
||||
Maintainers who participate in development of this package are advised to install it in editable mode:
|
||||
|
||||
|
|
|
@ -90,6 +90,13 @@ class Keys:
|
|||
HF_JSON = "tokenizer.huggingface.json"
|
||||
RWKV = "tokenizer.rwkv.world"
|
||||
CHAT_TEMPLATE = "tokenizer.chat_template"
|
||||
CHAT_TEMPLATE_N = "tokenizer.chat_template.{name}"
|
||||
CHAT_TEMPLATES = "tokenizer.chat_templates"
|
||||
# FIM/Infill special tokens constants
|
||||
PREFIX_ID = "tokenizer.ggml.prefix_token_id"
|
||||
SUFFIX_ID = "tokenizer.ggml.suffix_token_id"
|
||||
MIDDLE_ID = "tokenizer.ggml.middle_token_id"
|
||||
EOT_ID = "tokenizer.ggml.eot_token_id"
|
||||
|
||||
|
||||
#
|
||||
|
@ -115,6 +122,7 @@ class MODEL_ARCH(IntEnum):
|
|||
STABLELM = auto()
|
||||
QWEN = auto()
|
||||
QWEN2 = auto()
|
||||
QWEN2MOE = auto()
|
||||
PHI2 = auto()
|
||||
PLAMO = auto()
|
||||
CODESHELL = auto()
|
||||
|
@ -127,44 +135,49 @@ class MODEL_ARCH(IntEnum):
|
|||
XVERSE = auto()
|
||||
COMMAND_R = auto()
|
||||
DBRX = auto()
|
||||
OLMO = auto()
|
||||
|
||||
|
||||
class MODEL_TENSOR(IntEnum):
|
||||
TOKEN_EMBD = auto()
|
||||
TOKEN_EMBD_NORM = auto()
|
||||
TOKEN_TYPES = auto()
|
||||
POS_EMBD = auto()
|
||||
OUTPUT = auto()
|
||||
OUTPUT_NORM = auto()
|
||||
ROPE_FREQS = auto()
|
||||
ATTN_Q = auto()
|
||||
ATTN_K = auto()
|
||||
ATTN_V = auto()
|
||||
ATTN_QKV = auto()
|
||||
ATTN_OUT = auto()
|
||||
ATTN_NORM = auto()
|
||||
ATTN_NORM_2 = auto()
|
||||
ATTN_OUT_NORM = auto()
|
||||
ATTN_ROT_EMBD = auto()
|
||||
FFN_GATE_INP = auto()
|
||||
FFN_NORM = auto()
|
||||
FFN_GATE = auto()
|
||||
FFN_DOWN = auto()
|
||||
FFN_UP = auto()
|
||||
FFN_ACT = auto()
|
||||
FFN_GATE_EXP = auto()
|
||||
FFN_DOWN_EXP = auto()
|
||||
FFN_UP_EXP = auto()
|
||||
ATTN_Q_NORM = auto()
|
||||
ATTN_K_NORM = auto()
|
||||
LAYER_OUT_NORM = auto()
|
||||
SSM_IN = auto()
|
||||
SSM_CONV1D = auto()
|
||||
SSM_X = auto()
|
||||
SSM_DT = auto()
|
||||
SSM_A = auto()
|
||||
SSM_D = auto()
|
||||
SSM_OUT = auto()
|
||||
TOKEN_EMBD = auto()
|
||||
TOKEN_EMBD_NORM = auto()
|
||||
TOKEN_TYPES = auto()
|
||||
POS_EMBD = auto()
|
||||
OUTPUT = auto()
|
||||
OUTPUT_NORM = auto()
|
||||
ROPE_FREQS = auto()
|
||||
ATTN_Q = auto()
|
||||
ATTN_K = auto()
|
||||
ATTN_V = auto()
|
||||
ATTN_QKV = auto()
|
||||
ATTN_OUT = auto()
|
||||
ATTN_NORM = auto()
|
||||
ATTN_NORM_2 = auto()
|
||||
ATTN_OUT_NORM = auto()
|
||||
ATTN_ROT_EMBD = auto()
|
||||
FFN_GATE_INP = auto()
|
||||
FFN_GATE_INP_SHEXP = auto()
|
||||
FFN_NORM = auto()
|
||||
FFN_GATE = auto()
|
||||
FFN_DOWN = auto()
|
||||
FFN_UP = auto()
|
||||
FFN_ACT = auto()
|
||||
FFN_GATE_EXP = auto()
|
||||
FFN_DOWN_EXP = auto()
|
||||
FFN_UP_EXP = auto()
|
||||
FFN_GATE_SHEXP = auto()
|
||||
FFN_DOWN_SHEXP = auto()
|
||||
FFN_UP_SHEXP = auto()
|
||||
ATTN_Q_NORM = auto()
|
||||
ATTN_K_NORM = auto()
|
||||
LAYER_OUT_NORM = auto()
|
||||
SSM_IN = auto()
|
||||
SSM_CONV1D = auto()
|
||||
SSM_X = auto()
|
||||
SSM_DT = auto()
|
||||
SSM_A = auto()
|
||||
SSM_D = auto()
|
||||
SSM_OUT = auto()
|
||||
|
||||
|
||||
MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
||||
|
@ -185,6 +198,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
|||
MODEL_ARCH.STABLELM: "stablelm",
|
||||
MODEL_ARCH.QWEN: "qwen",
|
||||
MODEL_ARCH.QWEN2: "qwen2",
|
||||
MODEL_ARCH.QWEN2MOE: "qwen2moe",
|
||||
MODEL_ARCH.PHI2: "phi2",
|
||||
MODEL_ARCH.PLAMO: "plamo",
|
||||
MODEL_ARCH.CODESHELL: "codeshell",
|
||||
|
@ -197,44 +211,49 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
|||
MODEL_ARCH.XVERSE: "xverse",
|
||||
MODEL_ARCH.COMMAND_R: "command-r",
|
||||
MODEL_ARCH.DBRX: "dbrx",
|
||||
MODEL_ARCH.OLMO: "olmo",
|
||||
}
|
||||
|
||||
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
||||
MODEL_TENSOR.TOKEN_EMBD: "token_embd",
|
||||
MODEL_TENSOR.TOKEN_EMBD_NORM: "token_embd_norm",
|
||||
MODEL_TENSOR.TOKEN_TYPES: "token_types",
|
||||
MODEL_TENSOR.POS_EMBD: "position_embd",
|
||||
MODEL_TENSOR.OUTPUT_NORM: "output_norm",
|
||||
MODEL_TENSOR.OUTPUT: "output",
|
||||
MODEL_TENSOR.ROPE_FREQS: "rope_freqs",
|
||||
MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
|
||||
MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2",
|
||||
MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
|
||||
MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q",
|
||||
MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k",
|
||||
MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v",
|
||||
MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
|
||||
MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
|
||||
MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm",
|
||||
MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm",
|
||||
MODEL_TENSOR.ATTN_OUT_NORM: "blk.{bid}.attn_output_norm",
|
||||
MODEL_TENSOR.FFN_GATE_INP: "blk.{bid}.ffn_gate_inp",
|
||||
MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
|
||||
MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
|
||||
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
|
||||
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
|
||||
MODEL_TENSOR.FFN_ACT: "blk.{bid}.ffn",
|
||||
MODEL_TENSOR.FFN_GATE_EXP: "blk.{bid}.ffn_gate_exps",
|
||||
MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down_exps",
|
||||
MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up_exps",
|
||||
MODEL_TENSOR.LAYER_OUT_NORM: "blk.{bid}.layer_output_norm",
|
||||
MODEL_TENSOR.SSM_IN: "blk.{bid}.ssm_in",
|
||||
MODEL_TENSOR.SSM_CONV1D: "blk.{bid}.ssm_conv1d",
|
||||
MODEL_TENSOR.SSM_X: "blk.{bid}.ssm_x",
|
||||
MODEL_TENSOR.SSM_DT: "blk.{bid}.ssm_dt",
|
||||
MODEL_TENSOR.SSM_A: "blk.{bid}.ssm_a",
|
||||
MODEL_TENSOR.SSM_D: "blk.{bid}.ssm_d",
|
||||
MODEL_TENSOR.SSM_OUT: "blk.{bid}.ssm_out",
|
||||
MODEL_TENSOR.TOKEN_EMBD: "token_embd",
|
||||
MODEL_TENSOR.TOKEN_EMBD_NORM: "token_embd_norm",
|
||||
MODEL_TENSOR.TOKEN_TYPES: "token_types",
|
||||
MODEL_TENSOR.POS_EMBD: "position_embd",
|
||||
MODEL_TENSOR.OUTPUT_NORM: "output_norm",
|
||||
MODEL_TENSOR.OUTPUT: "output",
|
||||
MODEL_TENSOR.ROPE_FREQS: "rope_freqs",
|
||||
MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
|
||||
MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2",
|
||||
MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
|
||||
MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q",
|
||||
MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k",
|
||||
MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v",
|
||||
MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
|
||||
MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
|
||||
MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm",
|
||||
MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm",
|
||||
MODEL_TENSOR.ATTN_OUT_NORM: "blk.{bid}.attn_output_norm",
|
||||
MODEL_TENSOR.FFN_GATE_INP: "blk.{bid}.ffn_gate_inp",
|
||||
MODEL_TENSOR.FFN_GATE_INP_SHEXP: "blk.{bid}.ffn_gate_inp_shexp",
|
||||
MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
|
||||
MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
|
||||
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
|
||||
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
|
||||
MODEL_TENSOR.FFN_GATE_SHEXP: "blk.{bid}.ffn_gate_shexp",
|
||||
MODEL_TENSOR.FFN_DOWN_SHEXP: "blk.{bid}.ffn_down_shexp",
|
||||
MODEL_TENSOR.FFN_UP_SHEXP: "blk.{bid}.ffn_up_shexp",
|
||||
MODEL_TENSOR.FFN_ACT: "blk.{bid}.ffn",
|
||||
MODEL_TENSOR.FFN_GATE_EXP: "blk.{bid}.ffn_gate_exps",
|
||||
MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down_exps",
|
||||
MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up_exps",
|
||||
MODEL_TENSOR.LAYER_OUT_NORM: "blk.{bid}.layer_output_norm",
|
||||
MODEL_TENSOR.SSM_IN: "blk.{bid}.ssm_in",
|
||||
MODEL_TENSOR.SSM_CONV1D: "blk.{bid}.ssm_conv1d",
|
||||
MODEL_TENSOR.SSM_X: "blk.{bid}.ssm_x",
|
||||
MODEL_TENSOR.SSM_DT: "blk.{bid}.ssm_dt",
|
||||
MODEL_TENSOR.SSM_A: "blk.{bid}.ssm_a",
|
||||
MODEL_TENSOR.SSM_D: "blk.{bid}.ssm_d",
|
||||
MODEL_TENSOR.SSM_OUT: "blk.{bid}.ssm_out",
|
||||
}
|
||||
|
||||
MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
|
@ -440,6 +459,8 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
|||
MODEL_TENSOR.FFN_GATE,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
MODEL_TENSOR.ATTN_Q_NORM,
|
||||
MODEL_TENSOR.ATTN_K_NORM,
|
||||
],
|
||||
MODEL_ARCH.QWEN: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
|
@ -469,6 +490,25 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
|||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
MODEL_ARCH.QWEN2MOE: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_GATE_INP,
|
||||
MODEL_TENSOR.FFN_GATE_EXP,
|
||||
MODEL_TENSOR.FFN_DOWN_EXP,
|
||||
MODEL_TENSOR.FFN_UP_EXP,
|
||||
MODEL_TENSOR.FFN_GATE_INP_SHEXP,
|
||||
MODEL_TENSOR.FFN_GATE_SHEXP,
|
||||
MODEL_TENSOR.FFN_DOWN_SHEXP,
|
||||
MODEL_TENSOR.FFN_UP_SHEXP,
|
||||
],
|
||||
MODEL_ARCH.PLAMO: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
|
@ -657,6 +697,17 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
|||
MODEL_TENSOR.FFN_DOWN_EXP,
|
||||
MODEL_TENSOR.FFN_UP_EXP,
|
||||
],
|
||||
MODEL_ARCH.OLMO: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.FFN_GATE,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
# TODO
|
||||
}
|
||||
|
||||
|
@ -821,6 +872,7 @@ GGML_QUANT_SIZES = {
|
|||
GGMLQuantizationType.I32: (1, 4),
|
||||
GGMLQuantizationType.I64: (1, 8),
|
||||
GGMLQuantizationType.F64: (1, 8),
|
||||
GGMLQuantizationType.IQ1_M: (256, QK_K // 8 + QK_K // 16 + QK_K // 32),
|
||||
}
|
||||
|
||||
|
||||
|
@ -885,3 +937,7 @@ KEY_TOKENIZER_CLS_ID = Keys.Tokenizer.CLS_ID
|
|||
KEY_TOKENIZER_MASK_ID = Keys.Tokenizer.MASK_ID
|
||||
KEY_TOKENIZER_HF_JSON = Keys.Tokenizer.HF_JSON
|
||||
KEY_TOKENIZER_RWKV = Keys.Tokenizer.RWKV
|
||||
KEY_TOKENIZER_PRIFIX_ID = Keys.Tokenizer.PREFIX_ID
|
||||
KEY_TOKENIZER_SUFFIX_ID = Keys.Tokenizer.SUFFIX_ID
|
||||
KEY_TOKENIZER_MIDDLE_ID = Keys.Tokenizer.MIDDLE_ID
|
||||
KEY_TOKENIZER_EOT_ID = Keys.Tokenizer.EOT_ID
|
||||
|
|
|
@ -6,7 +6,8 @@ import struct
|
|||
import tempfile
|
||||
from enum import Enum, auto
|
||||
from io import BufferedWriter
|
||||
from typing import IO, Any, Sequence
|
||||
from typing import IO, Any, Sequence, Mapping
|
||||
from string import ascii_letters, digits
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
@ -466,9 +467,47 @@ class GGUFWriter:
|
|||
def add_add_space_prefix(self, value: bool) -> None:
|
||||
self.add_bool(Keys.Tokenizer.ADD_PREFIX, value)
|
||||
|
||||
def add_chat_template(self, value: str) -> None:
|
||||
def add_chat_template(self, value: str | Sequence[Mapping[str, str]]) -> None:
|
||||
if isinstance(value, list):
|
||||
template_default = None
|
||||
template_names = set()
|
||||
|
||||
for choice in value:
|
||||
name = choice.get('name', '')
|
||||
template = choice.get('template')
|
||||
|
||||
# Allowing non-alphanumerical characters in template name is probably not a good idea, so filter it
|
||||
name = ''.join((c if c in ascii_letters + digits else '_' for c in name))
|
||||
|
||||
if name and template is not None:
|
||||
if name == 'default':
|
||||
template_default = template
|
||||
else:
|
||||
template_names.add(name)
|
||||
self.add_string(Keys.Tokenizer.CHAT_TEMPLATE_N.format(name=name), template)
|
||||
|
||||
if template_names:
|
||||
self.add_array(Keys.Tokenizer.CHAT_TEMPLATES, list(template_names))
|
||||
|
||||
if template_default is None:
|
||||
return
|
||||
|
||||
value = template_default
|
||||
|
||||
self.add_string(Keys.Tokenizer.CHAT_TEMPLATE, value)
|
||||
|
||||
def add_prefix_token_id(self, id: int) -> None:
|
||||
self.add_uint32(Keys.Tokenizer.PREFIX_ID, id)
|
||||
|
||||
def add_suffix_token_id(self, id: int) -> None:
|
||||
self.add_uint32(Keys.Tokenizer.SUFFIX_ID, id)
|
||||
|
||||
def add_middle_token_id(self, id: int) -> None:
|
||||
self.add_uint32(Keys.Tokenizer.MIDDLE_ID, id)
|
||||
|
||||
def add_eot_token_id(self, id: int) -> None:
|
||||
self.add_uint32(Keys.Tokenizer.EOT_ID, id)
|
||||
|
||||
def _pack(self, fmt: str, value: Any, skip_pack_prefix: bool = False) -> bytes:
|
||||
pack_prefix = ''
|
||||
if not skip_pack_prefix:
|
||||
|
|
|
@ -208,10 +208,15 @@ class TensorNameMap:
|
|||
MODEL_TENSOR.FFN_GATE_INP: (
|
||||
"layers.{bid}.feed_forward.gate", # mixtral
|
||||
"model.layers.{bid}.block_sparse_moe.gate", # mixtral
|
||||
"model.layers.{bid}.mlp.gate", # qwen2moe
|
||||
"transformer.decoder_layer.{bid}.router", # Grok
|
||||
"transformer.blocks.{bid}.ffn.router.layer", # dbrx
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
|
||||
"model.layers.{bid}.mlp.shared_expert_gate", # qwen2moe
|
||||
),
|
||||
|
||||
# Feed-forward up
|
||||
MODEL_TENSOR.FFN_UP: (
|
||||
"gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
|
||||
|
@ -236,9 +241,14 @@ class TensorNameMap:
|
|||
),
|
||||
|
||||
MODEL_TENSOR.FFN_UP_EXP: (
|
||||
"layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
|
||||
"transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
|
||||
"transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
|
||||
"layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
|
||||
"transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
|
||||
"transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
|
||||
"model.layers.{bid}.mlp.experts.up_proj", # qwen2moe (merged)
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_UP_SHEXP: (
|
||||
"model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
|
||||
),
|
||||
|
||||
# AWQ-activation gate
|
||||
|
@ -260,6 +270,11 @@ class TensorNameMap:
|
|||
"layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
|
||||
"transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
|
||||
"transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
|
||||
"model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe (merged)
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_GATE_SHEXP: (
|
||||
"model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe
|
||||
),
|
||||
|
||||
# Feed-forward down
|
||||
|
@ -285,9 +300,14 @@ class TensorNameMap:
|
|||
),
|
||||
|
||||
MODEL_TENSOR.FFN_DOWN_EXP: (
|
||||
"layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
|
||||
"transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
|
||||
"transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
|
||||
"layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
|
||||
"transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
|
||||
"transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
|
||||
"model.layers.{bid}.mlp.experts.down_proj", # qwen2moe (merged)
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_DOWN_SHEXP: (
|
||||
"model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe
|
||||
),
|
||||
|
||||
MODEL_TENSOR.ATTN_Q_NORM: (
|
||||
|
@ -366,7 +386,7 @@ class TensorNameMap:
|
|||
if tensor not in MODEL_TENSORS[arch]:
|
||||
continue
|
||||
# TODO: make this configurable
|
||||
n_experts = 8
|
||||
n_experts = 60
|
||||
for xid in range(n_experts):
|
||||
tensor_name = TENSOR_NAMES[tensor].format(bid = bid, xid = xid)
|
||||
self.mapping[tensor_name] = (tensor, tensor_name)
|
||||
|
|
|
@ -141,7 +141,7 @@ class SpecialVocab:
|
|||
with open(tokenizer_config_file, encoding = 'utf-8') as f:
|
||||
tokenizer_config = json.load(f)
|
||||
chat_template = tokenizer_config.get('chat_template')
|
||||
if chat_template is None or isinstance(chat_template, str):
|
||||
if chat_template is None or isinstance(chat_template, (str, list)):
|
||||
self.chat_template = chat_template
|
||||
else:
|
||||
print(
|
||||
|
|
|
@ -33,3 +33,4 @@ build-backend = "poetry.core.masonry.api"
|
|||
gguf-convert-endian = "scripts:gguf_convert_endian_entrypoint"
|
||||
gguf-dump = "scripts:gguf_dump_entrypoint"
|
||||
gguf-set-metadata = "scripts:gguf_set_metadata_entrypoint"
|
||||
gguf-new-metadata = "scripts:gguf_new_metadata_entrypoint"
|
||||
|
|
|
@ -8,5 +8,6 @@ os.environ["NO_LOCAL_GGUF"] = "TRUE"
|
|||
gguf_convert_endian_entrypoint = import_module("scripts.gguf-convert-endian").main
|
||||
gguf_dump_entrypoint = import_module("scripts.gguf-dump").main
|
||||
gguf_set_metadata_entrypoint = import_module("scripts.gguf-set-metadata").main
|
||||
gguf_new_metadata_entrypoint = import_module("scripts.gguf-new-metadata").main
|
||||
|
||||
del import_module, os
|
||||
|
|
190
gguf-py/scripts/gguf-new-metadata.py
Normal file
190
gguf-py/scripts/gguf-new-metadata.py
Normal file
|
@ -0,0 +1,190 @@
|
|||
#!/usr/bin/env python3
|
||||
import logging
|
||||
import argparse
|
||||
import os
|
||||
import sys
|
||||
import json
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
from typing import Any, Mapping, Sequence
|
||||
|
||||
# Necessary to load the local gguf package
|
||||
if "NO_LOCAL_GGUF" not in os.environ and (Path(__file__).parent.parent.parent / 'gguf-py').exists():
|
||||
sys.path.insert(0, str(Path(__file__).parent.parent))
|
||||
|
||||
import gguf
|
||||
|
||||
logger = logging.getLogger("gguf-new-metadata")
|
||||
|
||||
|
||||
def get_byteorder(reader: gguf.GGUFReader) -> gguf.GGUFEndian:
|
||||
if np.uint32(1) == np.uint32(1).newbyteorder("<"):
|
||||
# Host is little endian
|
||||
host_endian = gguf.GGUFEndian.LITTLE
|
||||
swapped_endian = gguf.GGUFEndian.BIG
|
||||
else:
|
||||
# Sorry PDP or other weird systems that don't use BE or LE.
|
||||
host_endian = gguf.GGUFEndian.BIG
|
||||
swapped_endian = gguf.GGUFEndian.LITTLE
|
||||
|
||||
if reader.byte_order == "S":
|
||||
return swapped_endian
|
||||
else:
|
||||
return host_endian
|
||||
|
||||
|
||||
def decode_field(field: gguf.ReaderField) -> Any:
|
||||
if field and field.types:
|
||||
main_type = field.types[0]
|
||||
|
||||
if main_type == gguf.GGUFValueType.ARRAY:
|
||||
sub_type = field.types[-1]
|
||||
|
||||
if sub_type == gguf.GGUFValueType.STRING:
|
||||
return [str(bytes(field.parts[idx]), encoding='utf8') for idx in field.data]
|
||||
else:
|
||||
return [pv for idx in field.data for pv in field.parts[idx].tolist()]
|
||||
if main_type == gguf.GGUFValueType.STRING:
|
||||
return str(bytes(field.parts[-1]), encoding='utf8')
|
||||
else:
|
||||
return field.parts[-1][0]
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def get_field_data(reader: gguf.GGUFReader, key: str) -> Any:
|
||||
field = reader.get_field(key)
|
||||
|
||||
return decode_field(field)
|
||||
|
||||
|
||||
def copy_with_new_metadata(reader: gguf.GGUFReader, writer: gguf.GGUFWriter, new_metadata: Mapping[str, str], remove_metadata: Sequence[str]) -> None:
|
||||
for field in reader.fields.values():
|
||||
# Suppress virtual fields and fields written by GGUFWriter
|
||||
if field.name == gguf.Keys.General.ARCHITECTURE or field.name.startswith('GGUF.'):
|
||||
logger.debug(f'Suppressing {field.name}')
|
||||
continue
|
||||
|
||||
# Skip old chat templates if we have new ones
|
||||
if field.name.startswith(gguf.Keys.Tokenizer.CHAT_TEMPLATE) and gguf.Keys.Tokenizer.CHAT_TEMPLATE in new_metadata:
|
||||
logger.debug(f'Skipping {field.name}')
|
||||
continue
|
||||
|
||||
if field.name in remove_metadata:
|
||||
logger.debug(f'Removing {field.name}')
|
||||
continue
|
||||
|
||||
old_val = decode_field(field)
|
||||
val = new_metadata.get(field.name, old_val)
|
||||
|
||||
if field.name in new_metadata:
|
||||
logger.debug(f'Modifying {field.name}: "{old_val}" -> "{val}"')
|
||||
del new_metadata[field.name]
|
||||
elif val is not None:
|
||||
logger.debug(f'Copying {field.name}')
|
||||
|
||||
if val is not None:
|
||||
writer.add_key(field.name)
|
||||
writer.add_val(val, field.types[0])
|
||||
|
||||
if gguf.Keys.Tokenizer.CHAT_TEMPLATE in new_metadata:
|
||||
logger.debug('Adding chat template(s)')
|
||||
writer.add_chat_template(new_metadata[gguf.Keys.Tokenizer.CHAT_TEMPLATE])
|
||||
del new_metadata[gguf.Keys.Tokenizer.CHAT_TEMPLATE]
|
||||
|
||||
# TODO: Support other types than string?
|
||||
for key, val in new_metadata.items():
|
||||
logger.debug(f'Adding {key}: {val}')
|
||||
writer.add_key(key)
|
||||
writer.add_val(val, gguf.GGUFValueType.STRING)
|
||||
|
||||
for tensor in reader.tensors:
|
||||
# Dimensions are written in reverse order, so flip them first
|
||||
shape = np.flipud(tensor.shape)
|
||||
writer.add_tensor_info(tensor.name, shape, tensor.data.dtype, tensor.data.nbytes, tensor.tensor_type)
|
||||
|
||||
writer.write_header_to_file()
|
||||
writer.write_kv_data_to_file()
|
||||
writer.write_ti_data_to_file()
|
||||
|
||||
for tensor in reader.tensors:
|
||||
writer.write_tensor_data(tensor.data)
|
||||
|
||||
writer.close()
|
||||
|
||||
|
||||
def main() -> None:
|
||||
parser = argparse.ArgumentParser(description="Make a copy of a GGUF file with new metadata")
|
||||
parser.add_argument("input", type=Path, help="GGUF format model input filename")
|
||||
parser.add_argument("output", type=Path, help="GGUF format model output filename")
|
||||
parser.add_argument("--general-name", type=str, help="The models general.name")
|
||||
parser.add_argument("--general-description", type=str, help="The models general.description")
|
||||
parser.add_argument("--chat-template", type=str, help="Chat template string (or JSON string containing templates)")
|
||||
parser.add_argument("--chat-template-config", type=Path, help="Config file (tokenizer_config.json) containing chat template(s)")
|
||||
parser.add_argument("--remove-metadata", action="append", type=str, help="Remove metadata (by key name) from output model")
|
||||
parser.add_argument("--force", action="store_true", help="Bypass warnings without confirmation")
|
||||
parser.add_argument("--verbose", action="store_true", help="Increase output verbosity")
|
||||
args = parser.parse_args(None if len(sys.argv) > 2 else ["--help"])
|
||||
|
||||
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
|
||||
|
||||
new_metadata = {}
|
||||
remove_metadata = args.remove_metadata or []
|
||||
|
||||
if args.general_name:
|
||||
new_metadata[gguf.Keys.General.NAME] = args.general_name
|
||||
|
||||
if args.general_description:
|
||||
new_metadata[gguf.Keys.General.DESCRIPTION] = args.general_description
|
||||
|
||||
if args.chat_template:
|
||||
new_metadata[gguf.Keys.Tokenizer.CHAT_TEMPLATE] = json.loads(args.chat_template) if args.chat_template.startswith('[') else args.chat_template
|
||||
|
||||
if args.chat_template_config:
|
||||
with open(args.chat_template_config, 'r') as fp:
|
||||
config = json.load(fp)
|
||||
template = config.get('chat_template')
|
||||
if template:
|
||||
new_metadata[gguf.Keys.Tokenizer.CHAT_TEMPLATE] = template
|
||||
|
||||
if remove_metadata:
|
||||
logger.warning('*** Warning *** Warning *** Warning **')
|
||||
logger.warning('* Most metadata is required for a fully functional GGUF file,')
|
||||
logger.warning('* removing crucial metadata may result in a corrupt output file!')
|
||||
|
||||
if not args.force:
|
||||
logger.warning('* Enter exactly YES if you are positive you want to proceed:')
|
||||
response = input('YES, I am sure> ')
|
||||
if response != 'YES':
|
||||
logger.info("You didn't enter YES. Okay then, see ya!")
|
||||
sys.exit(0)
|
||||
|
||||
logger.info(f'* Loading: {args.input}')
|
||||
reader = gguf.GGUFReader(args.input, 'r')
|
||||
|
||||
arch = get_field_data(reader, gguf.Keys.General.ARCHITECTURE)
|
||||
endianess = get_byteorder(reader)
|
||||
|
||||
if os.path.isfile(args.output) and not args.force:
|
||||
logger.warning('*** Warning *** Warning *** Warning **')
|
||||
logger.warning(f'* The "{args.output}" GGUF file already exists, it will be overwritten!')
|
||||
logger.warning('* Enter exactly YES if you are positive you want to proceed:')
|
||||
response = input('YES, I am sure> ')
|
||||
if response != 'YES':
|
||||
logger.info("You didn't enter YES. Okay then, see ya!")
|
||||
sys.exit(0)
|
||||
|
||||
logger.info(f'* Writing: {args.output}')
|
||||
writer = gguf.GGUFWriter(args.output, arch=arch, endianess=endianess)
|
||||
|
||||
alignment = get_field_data(reader, gguf.Keys.General.ALIGNMENT)
|
||||
if alignment is not None:
|
||||
logger.debug(f'Setting custom alignment: {alignment}')
|
||||
writer.data_alignment = alignment
|
||||
|
||||
copy_with_new_metadata(reader, writer, new_metadata, remove_metadata)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
9
llama.h
9
llama.h
|
@ -783,6 +783,9 @@ extern "C" {
|
|||
|
||||
LLAMA_API enum llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token);
|
||||
|
||||
// Check if the token is supposed to end generation (end-of-generation, eg. EOS, EOT, etc.)
|
||||
LLAMA_API bool llama_token_is_eog(const struct llama_model * model, llama_token token);
|
||||
|
||||
// Special tokens
|
||||
LLAMA_API llama_token llama_token_bos(const struct llama_model * model); // beginning-of-sentence
|
||||
LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence
|
||||
|
@ -796,7 +799,7 @@ extern "C" {
|
|||
// Returns -1 if unknown, 1 for true or 0 for false.
|
||||
LLAMA_API int32_t llama_add_eos_token(const struct llama_model * model);
|
||||
|
||||
// codellama infill tokens
|
||||
// Codellama infill tokens
|
||||
LLAMA_API llama_token llama_token_prefix(const struct llama_model * model); // Beginning of infill prefix
|
||||
LLAMA_API llama_token llama_token_middle(const struct llama_model * model); // Beginning of infill middle
|
||||
LLAMA_API llama_token llama_token_suffix(const struct llama_model * model); // Beginning of infill suffix
|
||||
|
@ -825,11 +828,13 @@ extern "C" {
|
|||
// Uses the vocabulary in the provided context.
|
||||
// Does not write null terminator to the buffer.
|
||||
// User code is responsible to remove the leading whitespace of the first non-BOS token when decoding multiple tokens.
|
||||
// @param special If true, special tokens are rendered in the output.
|
||||
LLAMA_API int32_t llama_token_to_piece(
|
||||
const struct llama_model * model,
|
||||
llama_token token,
|
||||
char * buf,
|
||||
int32_t length);
|
||||
int32_t length,
|
||||
bool special);
|
||||
|
||||
/// Apply chat template. Inspired by hf apply_chat_template() on python.
|
||||
/// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model"
|
||||
|
|
|
@ -12,19 +12,7 @@ bench_args="${@:3}"
|
|||
|
||||
rm -f llama-bench.sqlite
|
||||
|
||||
backend="cpu"
|
||||
|
||||
if [[ "$OSTYPE" == "darwin"* ]]; then
|
||||
backend="metal"
|
||||
elif command -v nvcc &> /dev/null; then
|
||||
backend="cuda"
|
||||
fi
|
||||
|
||||
make_opts=""
|
||||
|
||||
if [[ "$backend" == "cuda" ]]; then
|
||||
make_opts="LLAMA_CUDA=1"
|
||||
fi
|
||||
# to test a backend, call the script with the corresponding environment variable (e.g. LLAMA_CUDA=1 ./scripts/compare-commits.sh ...)
|
||||
|
||||
git checkout $1
|
||||
make clean && make -j32 $make_opts llama-bench
|
||||
|
|
16
scripts/xxd.cmake
Normal file
16
scripts/xxd.cmake
Normal file
|
@ -0,0 +1,16 @@
|
|||
# CMake equivalent of `xxd -i ${INPUT} ${OUTPUT}`
|
||||
# Usage: cmake -DINPUT=examples/server/public/index.html -DOUTPUT=examples/server/index.html.hpp -P scripts/xxd.cmake
|
||||
|
||||
SET(INPUT "" CACHE STRING "Input File")
|
||||
SET(OUTPUT "" CACHE STRING "Output File")
|
||||
|
||||
get_filename_component(filename "${INPUT}" NAME)
|
||||
string(REGEX REPLACE "\\.|-" "_" name "${filename}")
|
||||
|
||||
file(READ "${INPUT}" hex_data HEX)
|
||||
string(REGEX REPLACE "([0-9a-f][0-9a-f])" "0x\\1," hex_sequence "${hex_data}")
|
||||
|
||||
string(LENGTH ${hex_data} hex_len)
|
||||
math(EXPR len "${hex_len} / 2")
|
||||
|
||||
file(WRITE "${OUTPUT}" "unsigned char ${name}[] = {${hex_sequence}};\nunsigned int ${name}_len = ${len};\n")
|
12
sgemm.h
Normal file
12
sgemm.h
Normal file
|
@ -0,0 +1,12 @@
|
|||
#pragma once
|
||||
#include <stdbool.h>
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
bool llamafile_sgemm(int, int, int, const void *, int, const void *, int,
|
||||
void *, int, int, int, int, int, int, int);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
|
@ -101,7 +101,7 @@ static std::vector<float> tensor_to_float(const ggml_tensor * t) {
|
|||
} else if (t->type == GGML_TYPE_I8) {
|
||||
tv.push_back((float)*(int8_t *) &buf[i]);
|
||||
} else if (quantized) {
|
||||
tt.to_float(&buf[i], vq.data(), ggml_blck_size(t->type));
|
||||
tt.to_float(&buf[i], vq.data(), bs);
|
||||
tv.insert(tv.end(), vq.begin(), vq.end());
|
||||
} else {
|
||||
GGML_ASSERT(false);
|
||||
|
@ -948,14 +948,14 @@ struct test_mul_mat_id : public test_case {
|
|||
const ggml_type type_a;
|
||||
const ggml_type type_b;
|
||||
const int n_mats;
|
||||
const int id;
|
||||
const int n_used;
|
||||
const bool b; // brodcast b matrix
|
||||
const int64_t m;
|
||||
const int64_t n;
|
||||
const int64_t k;
|
||||
const bool v; // view (non-contiguous ids)
|
||||
|
||||
std::string vars() override {
|
||||
return VARS_TO_STR8(type_a, type_b, n_mats, id, m, n, k, v);
|
||||
return VARS_TO_STR8(type_a, type_b, n_mats, n_used, b, m, n, k);
|
||||
}
|
||||
|
||||
double max_nmse_err() override {
|
||||
|
@ -972,20 +972,22 @@ struct test_mul_mat_id : public test_case {
|
|||
}
|
||||
|
||||
test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
|
||||
int n_mats = 2, int id = 0,
|
||||
int64_t m = 32, int64_t n = 32, int64_t k = 32, bool v = false)
|
||||
: type_a(type_a), type_b(type_b), n_mats(n_mats), id(id),
|
||||
m(m), n(n), k(k), v(v) {}
|
||||
int n_mats = 8, int n_used = 2, bool b = false,
|
||||
int64_t m = 32, int64_t n = 32, int64_t k = 32)
|
||||
: type_a(type_a), type_b(type_b), n_mats(n_mats), n_used(n_used), b(b),
|
||||
m(m), n(n), k(k) {
|
||||
GGML_ASSERT(n_used <= n_mats);
|
||||
}
|
||||
|
||||
ggml_tensor * build_graph(ggml_context * ctx) override {
|
||||
// C^T = A * B^T: (k, m) * (k, n) => (m, n)
|
||||
ggml_tensor * mats = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
|
||||
ggml_tensor * as = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
|
||||
ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
|
||||
if (v) {
|
||||
ids = ggml_view_2d(ctx, ids, n_mats/2, ids->ne[1], ids->nb[1], 0);
|
||||
if (n_used != n_mats) {
|
||||
ids = ggml_view_2d(ctx, ids, n_used, n, ids->nb[1], 0);
|
||||
}
|
||||
ggml_tensor * b = ggml_new_tensor_2d(ctx, type_b, k, n);
|
||||
ggml_tensor * out = ggml_mul_mat_id(ctx, mats, ids, v ? id/2 : id, b);
|
||||
ggml_tensor * b = ggml_new_tensor_3d(ctx, type_b, k, this->b ? 1 : n_used, n);
|
||||
ggml_tensor * out = ggml_mul_mat_id(ctx, as, b, ids);
|
||||
return out;
|
||||
}
|
||||
|
||||
|
@ -1611,7 +1613,6 @@ public:
|
|||
}
|
||||
};
|
||||
|
||||
|
||||
// Llama
|
||||
struct test_llama : public test_llm {
|
||||
static constexpr float freq_base = 10000.0f;
|
||||
|
@ -1875,9 +1876,29 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
|||
GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
|
||||
};
|
||||
|
||||
const ggml_type base_types[] = {
|
||||
GGML_TYPE_F32, GGML_TYPE_F16,
|
||||
GGML_TYPE_Q4_0,
|
||||
GGML_TYPE_Q4_K,
|
||||
GGML_TYPE_IQ2_XXS
|
||||
};
|
||||
|
||||
const ggml_type other_types[] = {
|
||||
GGML_TYPE_Q4_1,
|
||||
GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
|
||||
GGML_TYPE_Q8_0,
|
||||
GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
|
||||
GGML_TYPE_Q5_K,
|
||||
GGML_TYPE_Q6_K,
|
||||
GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
|
||||
GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
|
||||
GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
|
||||
};
|
||||
|
||||
// unary ops
|
||||
for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) {
|
||||
test_cases.emplace_back(new test_unary((ggml_unary_op) op));
|
||||
test_cases.emplace_back(new test_unary((ggml_unary_op) op, GGML_TYPE_F32, { 7, 13, 19, 23 }));
|
||||
}
|
||||
|
||||
test_cases.emplace_back(new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, false));
|
||||
|
@ -1982,7 +2003,7 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
|||
test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 10, 10, 10}, eps));
|
||||
}
|
||||
|
||||
for (ggml_type type_a : all_types) {
|
||||
for (ggml_type type_a : base_types) {
|
||||
for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
|
||||
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, { 1, 1}, {1, 1}));
|
||||
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 1}, {1, 1}));
|
||||
|
@ -2002,6 +2023,12 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
|||
}
|
||||
}
|
||||
|
||||
for (ggml_type type_a : other_types) {
|
||||
for (ggml_type type_b : {GGML_TYPE_F32}) {
|
||||
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, { 1, 1}, {1, 1}));
|
||||
}
|
||||
}
|
||||
|
||||
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 128, { 8, 1}, {1, 1}));
|
||||
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 128, { 8, 1}, {4, 1}));
|
||||
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 64, { 8, 1}, {4, 1}));
|
||||
|
@ -2009,13 +2036,32 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
|||
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 45, 128, { 8, 1}, {4, 1}));
|
||||
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 45, 64, { 8, 1}, {4, 1}));
|
||||
|
||||
for (ggml_type type_a : all_types) {
|
||||
for (ggml_type type_a : base_types) {
|
||||
for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
|
||||
for (int n_mats : {2, 4, 8}) {
|
||||
for (int id = 0; id < n_mats; id++) {
|
||||
for (bool v : {false, true}) {
|
||||
test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, id, 16, 1, 256, v));
|
||||
test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, id, 16, 16, 256, v));
|
||||
for (int n_mats : {4, 8}) {
|
||||
for (int n_used : {1, 2, 4}) {
|
||||
for (bool b : {false, true}) {
|
||||
for (int n : {1, 32}) {
|
||||
int m = 512;
|
||||
int k = 256;
|
||||
test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (ggml_type type_a : other_types) {
|
||||
for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
|
||||
for (int n_mats : {4}) {
|
||||
for (int n_used : {2}) {
|
||||
for (bool b : {false}) {
|
||||
for (int n : {1}) {
|
||||
int m = 512;
|
||||
int k = 256;
|
||||
test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -46,7 +46,9 @@ int main(void) {
|
|||
// No template included in tokenizer_config.json, so this template likely needs to be manually set.
|
||||
"{%- for message in messages %}{%- if message['role'] == 'system' -%}{{-'SYSTEM: ' + message['content'] + '\n' -}}{%- else -%}{%- if message['role'] == 'user' -%}{{-'USER: ' + message['content'] + '\n'-}}{%- else -%}{{-'ASSISTANT: ' + message['content'] + '</s>\n' -}}{%- endif -%}{%- endif -%}{%- endfor -%}{%- if add_generation_prompt -%}{{-'ASSISTANT:'-}}{%- endif -%}",
|
||||
// CohereForAI/c4ai-command-r-plus
|
||||
"{{ bos_token }}{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% elif false == true %}{% set loop_messages = messages %}{% set system_message = 'You are Command-R, a brilliant, sophisticated, AI-assistant trained to assist human users by providing thorough responses. You are trained by Cohere.' %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% if system_message != false %}{{ '<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>' + system_message + '<|END_OF_TURN_TOKEN|>' }}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|START_OF_TURN_TOKEN|><|USER_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}{% elif message['role'] == 'assistant' %}{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' }}{% endif %}"
|
||||
"{{ bos_token }}{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% elif false == true %}{% set loop_messages = messages %}{% set system_message = 'You are Command-R, a brilliant, sophisticated, AI-assistant trained to assist human users by providing thorough responses. You are trained by Cohere.' %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% if system_message != false %}{{ '<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>' + system_message + '<|END_OF_TURN_TOKEN|>' }}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|START_OF_TURN_TOKEN|><|USER_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}{% elif message['role'] == 'assistant' %}{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' }}{% endif %}",
|
||||
// Llama-3
|
||||
"{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}",
|
||||
};
|
||||
std::vector<std::string> expected_output = {
|
||||
// teknium/OpenHermes-2.5-Mistral-7B
|
||||
|
@ -73,6 +75,8 @@ int main(void) {
|
|||
"SYSTEM: You are a helpful assistant\nUSER: Hello\nASSISTANT: Hi there</s>\nUSER: Who are you\nASSISTANT: I am an assistant </s>\nUSER: Another question\nASSISTANT:",
|
||||
// CohereForAI/c4ai-command-r-plus
|
||||
"<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>You are a helpful assistant<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hello<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>Hi there<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Who are you<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>I am an assistant<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Another question<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>",
|
||||
// Llama 3
|
||||
"<|start_header_id|>system<|end_header_id|>\n\nYou are a helpful assistant<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nHello<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\nHi there<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nWho are you<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\nI am an assistant<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nAnother question<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n",
|
||||
};
|
||||
std::vector<char> formatted_chat(1024);
|
||||
int32_t res;
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue