cuBLAS: use multiple streams, choose smartly between mul_mat_q and mul_mat_f16
This commit is contained in:
parent
cf93fdcfda
commit
a9ad140c17
4 changed files with 235 additions and 53 deletions
249
ggml-cuda.cu
249
ggml-cuda.cu
|
@ -1,3 +1,4 @@
|
|||
#include <cstddef>
|
||||
#include <cstdint>
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
|
@ -253,6 +254,7 @@ static void dequantize_row_q8_0_cuda(const void * vx, float * y, int k, cudaStre
|
|||
dequantize_block_q8_0<<<nb, 1, 0, stream>>>(vx, y);
|
||||
}
|
||||
|
||||
// TODO: optimize
|
||||
static __global__ void convert_fp16_to_fp32(const void * vx, float * y) {
|
||||
const half * x = (const half *) vx;
|
||||
|
||||
|
@ -345,26 +347,31 @@ static void ggml_cuda_pool_free(void * ptr, size_t size) {
|
|||
CUDA_CHECK(cudaFree(ptr));
|
||||
}
|
||||
|
||||
#define GGML_CUDA_MAX_STREAMS 8
|
||||
#define GGML_CUDA_MAX_EVENTS 64
|
||||
static cublasHandle_t g_cublasH = nullptr;
|
||||
static cudaStream_t g_cudaStream = nullptr;
|
||||
static cudaStream_t g_cudaStream2 = nullptr;
|
||||
static cudaEvent_t g_cudaEvent = nullptr;
|
||||
static cudaStream_t g_cudaStreams[GGML_CUDA_MAX_STREAMS] = { nullptr };
|
||||
static cudaStream_t g_cudaStreams2[GGML_CUDA_MAX_STREAMS] = { nullptr };
|
||||
static cudaEvent_t g_cudaEvents[GGML_CUDA_MAX_EVENTS] = { nullptr };
|
||||
|
||||
void ggml_init_cublas() {
|
||||
if (g_cublasH == nullptr) {
|
||||
// create cublas handle, bind a stream
|
||||
CUBLAS_CHECK(cublasCreate(&g_cublasH));
|
||||
CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStream, cudaStreamNonBlocking));
|
||||
CUBLAS_CHECK(cublasSetStream(g_cublasH, g_cudaStream));
|
||||
// enable tensor cores
|
||||
CUBLAS_CHECK(cublasSetMathMode(g_cublasH, CUBLAS_TENSOR_OP_MATH));
|
||||
// create streams
|
||||
for (int i = 0; i < GGML_CUDA_MAX_STREAMS; ++i) {
|
||||
CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams[i], cudaStreamNonBlocking));
|
||||
CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams2[i], cudaStreamNonBlocking));
|
||||
}
|
||||
// create events
|
||||
for (int i = 0; i < GGML_CUDA_MAX_EVENTS; ++i) {
|
||||
CUDA_CHECK(cudaEventCreateWithFlags(&g_cudaEvents[i], cudaEventDisableTiming));
|
||||
}
|
||||
|
||||
// create additional stream and event for synchronization
|
||||
CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStream2, cudaStreamNonBlocking));
|
||||
CUDA_CHECK(cudaEventCreateWithFlags(&g_cudaEvent, cudaEventDisableTiming));
|
||||
// create cublas handle
|
||||
CUBLAS_CHECK(cublasCreate(&g_cublasH));
|
||||
CUBLAS_CHECK(cublasSetMathMode(g_cublasH, CUBLAS_TF32_TENSOR_OP_MATH));
|
||||
|
||||
// configure logging to stdout
|
||||
// CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, NULL));
|
||||
// CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr));
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -433,39 +440,141 @@ static void ggml_cuda_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor *
|
|||
const int x_ne = ne01 * ne00;
|
||||
const int y_ne = ne11 * ne10;
|
||||
const int d_ne = ne11 * ne01;
|
||||
const int n_mm = ne03 * ne02;
|
||||
|
||||
size_t x_size, y_size, d_size;
|
||||
float * d_X = (float *) ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
|
||||
float * d_Y = (float *) ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
|
||||
float * d_D = (float *) ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
|
||||
float * d_X = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * x_ne, &x_size);
|
||||
float * d_Y = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * y_ne, &y_size);
|
||||
float * d_D = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size);
|
||||
|
||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||
int i = i03*ne02 + i02;
|
||||
cudaStream_t cudaStream = g_cudaStreams[i % GGML_CUDA_MAX_STREAMS];
|
||||
|
||||
float * c_X = d_X + i * x_ne;
|
||||
float * c_Y = d_Y + i * y_ne;
|
||||
float * c_D = d_D + i * d_ne;
|
||||
|
||||
// copy data to device
|
||||
CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_X, src0, i03, i02, g_cudaStream));
|
||||
CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_Y, src1, i03, i02, g_cudaStream));
|
||||
CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_X, src0, i03, i02, cudaStream));
|
||||
CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Y, src1, i03, i02, cudaStream));
|
||||
|
||||
// compute
|
||||
CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream));
|
||||
CUBLAS_CHECK(
|
||||
cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
|
||||
ne01, ne11, ne10,
|
||||
&alpha, d_X, ne00,
|
||||
d_Y, ne10,
|
||||
&beta, d_D, ne01));
|
||||
&alpha, c_X, ne00,
|
||||
c_Y, ne10,
|
||||
&beta, c_D, ne01));
|
||||
|
||||
// copy data to host
|
||||
// copy dst to host
|
||||
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
|
||||
CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
|
||||
CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
|
||||
}
|
||||
}
|
||||
|
||||
CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
ggml_cuda_pool_free(d_X, x_size);
|
||||
ggml_cuda_pool_free(d_Y, y_size);
|
||||
ggml_cuda_pool_free(d_D, d_size);
|
||||
}
|
||||
|
||||
static void ggml_cuda_mul_mat_q(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
static void ggml_cuda_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t /* wsize */) {
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t ne01 = src0->ne[1];
|
||||
const int64_t ne02 = src0->ne[2];
|
||||
const int64_t ne03 = src0->ne[3];
|
||||
|
||||
const int64_t ne10 = src1->ne[0];
|
||||
const int64_t ne11 = src1->ne[1];
|
||||
|
||||
const int nb10 = src1->nb[0];
|
||||
const int nb11 = src1->nb[1];
|
||||
const int nb12 = src1->nb[2];
|
||||
const int nb13 = src1->nb[3];
|
||||
|
||||
const int nb2 = dst->nb[2];
|
||||
const int nb3 = dst->nb[3];
|
||||
|
||||
const float alpha = 1.0f;
|
||||
const float beta = 0.0f;
|
||||
const int x_ne = ne01 * ne00;
|
||||
const int y_ne = ne11 * ne10;
|
||||
const int d_ne = ne11 * ne01;
|
||||
const int n_mm = ne03 * ne02;
|
||||
|
||||
size_t x_size, y_size, d_size;
|
||||
half * d_X = (half *) ggml_cuda_pool_malloc(n_mm * sizeof(half) * x_ne, &x_size);
|
||||
half * d_Y = (half *) ggml_cuda_pool_malloc(n_mm * sizeof(half) * y_ne, &y_size);
|
||||
float * d_D = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size);
|
||||
|
||||
bool src1_cont_rows = nb10 == sizeof(float);
|
||||
bool src1_cont_cols = (size_t)nb11 == ne11*sizeof(float);
|
||||
|
||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||
int i = i03*ne02 + i02;
|
||||
cudaStream_t cudaStream = g_cudaStreams[i % GGML_CUDA_MAX_STREAMS];
|
||||
|
||||
half * c_X = d_X + i * x_ne;
|
||||
half * c_Y = d_Y + i * y_ne;
|
||||
float * c_D = d_D + i * d_ne;
|
||||
|
||||
// copy src0 to device
|
||||
CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_X, src0, i03, i02, cudaStream));
|
||||
|
||||
// convert src1 to fp16
|
||||
// TODO: use multiple threads
|
||||
ggml_fp16_t * const tmp = (ggml_fp16_t *) wdata + (ne11 * ne10) * (i03 * ne02 + i02);
|
||||
char * src1i = (char *) src1->data + i03*nb13 + i02*nb12;
|
||||
if (src1_cont_rows) {
|
||||
if (src1_cont_cols) {
|
||||
ggml_fp32_to_fp16_row((float *) src1i, tmp, ne10*ne11);
|
||||
}
|
||||
else {
|
||||
for (int64_t i01 = 0; i01 < ne11; i01++) {
|
||||
ggml_fp32_to_fp16_row((float *) (src1i + i01*nb11), tmp + i01*ne10, ne10);
|
||||
}
|
||||
}
|
||||
}
|
||||
else {
|
||||
for (int64_t i01 = 0; i01 < ne11; i01++) {
|
||||
for (int64_t i00 = 0; i00 < ne10; i00++) {
|
||||
// very slow due to no inlining
|
||||
tmp[i01*ne10 + i00] = ggml_fp32_to_fp16(*(float *) (src1i + i01*nb11 + i00*nb10));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// copy src1 to device
|
||||
CUDA_CHECK(cudaMemcpyAsync(c_Y, tmp, sizeof(half) * y_ne, cudaMemcpyHostToDevice, cudaStream));
|
||||
|
||||
// compute
|
||||
CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream));
|
||||
CUBLAS_CHECK(
|
||||
cublasGemmEx(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
|
||||
ne01, ne11, ne10,
|
||||
&alpha, c_X, CUDA_R_16F, ne00,
|
||||
c_Y, CUDA_R_16F, ne10,
|
||||
&beta, c_D, CUDA_R_32F, ne01,
|
||||
CUBLAS_COMPUTE_32F_FAST_16F,
|
||||
CUBLAS_GEMM_DEFAULT));
|
||||
|
||||
// copy dst to host
|
||||
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
|
||||
CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
|
||||
}
|
||||
}
|
||||
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
ggml_cuda_pool_free(d_X, x_size);
|
||||
ggml_cuda_pool_free(d_Y, y_size);
|
||||
ggml_cuda_pool_free(d_D, d_size);
|
||||
}
|
||||
|
||||
static void ggml_cuda_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t ne01 = src0->ne[1];
|
||||
const int64_t ne02 = src0->ne[2];
|
||||
|
@ -483,46 +592,58 @@ static void ggml_cuda_mul_mat_q(const ggml_tensor * src0, const ggml_tensor * sr
|
|||
const int x_ne = ne01 * ne00;
|
||||
const int y_ne = ne11 * ne10;
|
||||
const int d_ne = ne11 * ne01;
|
||||
const int n_mm = ne03 * ne02;
|
||||
const size_t q_sz = ggml_type_size(type) * x_ne / ggml_blck_size(type);
|
||||
|
||||
size_t x_size, y_size, d_size, q_size;
|
||||
float * d_X = (float *) ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
|
||||
float * d_Y = (float *) ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
|
||||
float * d_D = (float *) ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
|
||||
void * d_Q = (void *) ggml_cuda_pool_malloc(ggml_type_size(type) * x_ne / ggml_blck_size(type), &q_size);
|
||||
float * d_X = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * x_ne, &x_size);
|
||||
float * d_Y = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * y_ne, &y_size);
|
||||
float * d_D = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size);
|
||||
char * d_Q = (char *) ggml_cuda_pool_malloc(n_mm * q_sz, &q_size);
|
||||
|
||||
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(type);
|
||||
GGML_ASSERT(to_fp32_cuda != NULL);
|
||||
GGML_ASSERT(to_fp32_cuda != nullptr);
|
||||
|
||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||
// copy and convert to fp32 on device
|
||||
CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_Q, src0, i03, i02, g_cudaStream2));
|
||||
int i = i03*ne02 + i02;
|
||||
cudaStream_t cudaStream = g_cudaStreams[i % GGML_CUDA_MAX_STREAMS];
|
||||
cudaStream_t cudaStream2 = g_cudaStreams2[i % GGML_CUDA_MAX_STREAMS];
|
||||
cudaEvent_t cudaEvent = g_cudaEvents[i % GGML_CUDA_MAX_EVENTS];
|
||||
|
||||
to_fp32_cuda(d_Q, d_X, x_ne, g_cudaStream2);
|
||||
float * c_X = d_X + i * x_ne;
|
||||
float * c_Y = d_Y + i * y_ne;
|
||||
float * c_D = d_D + i * d_ne;
|
||||
char * c_Q = d_Q + i * q_sz;
|
||||
|
||||
// copy src0 and convert to fp32 on device
|
||||
CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Q, src0, i03, i02, cudaStream2));
|
||||
to_fp32_cuda(c_Q, c_X, x_ne, cudaStream2);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
CUDA_CHECK(cudaEventRecord(g_cudaEvent, g_cudaStream2));
|
||||
CUDA_CHECK(cudaEventRecord(cudaEvent, cudaStream2));
|
||||
|
||||
// copy data to device
|
||||
CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_Y, src1, i03, i02, g_cudaStream));
|
||||
// copy src1 to device
|
||||
CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Y, src1, i03, i02, cudaStream));
|
||||
|
||||
// wait for conversion
|
||||
CUDA_CHECK(cudaStreamWaitEvent(g_cudaStream, g_cudaEvent, 0));
|
||||
CUDA_CHECK(cudaStreamWaitEvent(cudaStream, cudaEvent, 0));
|
||||
|
||||
// compute
|
||||
CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream));
|
||||
CUBLAS_CHECK(
|
||||
cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
|
||||
ne01, ne11, ne10,
|
||||
&alpha, d_X, ne00,
|
||||
d_Y, ne10,
|
||||
&beta, d_D, ne01));
|
||||
&alpha, c_X, ne00,
|
||||
c_Y, ne10,
|
||||
&beta, c_D, ne01));
|
||||
|
||||
// copy data to host
|
||||
// copy dst to host
|
||||
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
|
||||
CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
|
||||
CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
|
||||
}
|
||||
}
|
||||
|
||||
CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
ggml_cuda_pool_free(d_X, x_size);
|
||||
ggml_cuda_pool_free(d_Y, y_size);
|
||||
ggml_cuda_pool_free(d_D, d_size);
|
||||
|
@ -547,18 +668,48 @@ bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_te
|
|||
return false;
|
||||
}
|
||||
|
||||
void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
bool ggml_cuda_mul_mat_use_f16(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * /* dst */) {
|
||||
size_t src0_sz = ggml_nbytes(src0);
|
||||
size_t src1_sz = ggml_nbytes(src1);
|
||||
|
||||
// mul_mat_q: src0 is converted to fp32 on device
|
||||
size_t mul_mat_q_transfer = src0_sz + src1_sz;
|
||||
|
||||
// mul_mat_f16: src1 is converted to fp16 on cpu
|
||||
size_t mul_mat_f16_transfer = src0_sz + sizeof(half) * ggml_nelements(src1);
|
||||
|
||||
// choose the smaller one to transfer to the device
|
||||
// TODO: this is not always the best choice due to the overhead of converting to fp16
|
||||
return mul_mat_f16_transfer < mul_mat_q_transfer;
|
||||
}
|
||||
|
||||
void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t wsize) {
|
||||
GGML_ASSERT(ggml_cuda_can_mul_mat(src0, src1, dst));
|
||||
|
||||
const ggml_type type = src0->type;
|
||||
|
||||
if (type == GGML_TYPE_F32) {
|
||||
if (src0->type == GGML_TYPE_F32) {
|
||||
ggml_cuda_mul_mat_f32(src0, src1, dst);
|
||||
}
|
||||
else if (type == GGML_TYPE_F16 || ggml_is_quantized(type)) {
|
||||
ggml_cuda_mul_mat_q(src0, src1, dst);
|
||||
else if (src0->type == GGML_TYPE_F16) {
|
||||
if (ggml_cuda_mul_mat_use_f16(src0, src1, dst)) {
|
||||
ggml_cuda_mul_mat_f16(src0, src1, dst, wdata, wsize);
|
||||
}
|
||||
else {
|
||||
ggml_cuda_mul_mat_q_f32(src0, src1, dst);
|
||||
}
|
||||
}
|
||||
else if (ggml_is_quantized(src0->type)) {
|
||||
ggml_cuda_mul_mat_q_f32(src0, src1, dst);
|
||||
}
|
||||
else {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
}
|
||||
|
||||
size_t ggml_cuda_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
|
||||
if (ggml_cuda_mul_mat_use_f16(src0, src1, dst)) {
|
||||
return ggml_nelements(src1) * sizeof(ggml_fp16_t);
|
||||
}
|
||||
else {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -7,7 +7,8 @@ extern "C" {
|
|||
void ggml_init_cublas(void);
|
||||
|
||||
bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
|
||||
void ggml_cuda_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
|
||||
size_t ggml_cuda_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
|
||||
void ggml_cuda_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize);
|
||||
|
||||
// TODO: export these with GGML_API
|
||||
void * ggml_cuda_host_malloc(size_t size);
|
||||
|
|
33
ggml.c
33
ggml.c
|
@ -362,6 +362,32 @@ ggml_fp16_t ggml_fp32_to_fp16(float x) {
|
|||
return GGML_FP32_TO_FP16(x);
|
||||
}
|
||||
|
||||
void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n) {
|
||||
for (size_t i = 0; i < n; i++) {
|
||||
y[i] = GGML_FP16_TO_FP32(x[i]);
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n) {
|
||||
size_t i = 0;
|
||||
#if defined(__F16C__)
|
||||
for (; i + 7 < n; i += 8) {
|
||||
__m256 x_vec = _mm256_loadu_ps(x + i);
|
||||
__m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
|
||||
_mm_storeu_si128((__m128i *)(y + i), y_vec);
|
||||
}
|
||||
for(; i + 3 < n; i += 4) {
|
||||
__m128 x_vec = _mm_loadu_ps(x + i);
|
||||
__m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
|
||||
_mm_storel_epi64((__m128i *)(y + i), y_vec);
|
||||
}
|
||||
#endif
|
||||
for (; i < n; i++) {
|
||||
y[i] = GGML_FP32_TO_FP16(x[i]);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//
|
||||
// timing
|
||||
//
|
||||
|
@ -8193,7 +8219,7 @@ static void ggml_compute_forward_mul_mat_f32(
|
|||
#if defined(GGML_USE_CUBLAS)
|
||||
if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
|
||||
if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
|
||||
ggml_cuda_mul_mat(src0, src1, dst);
|
||||
ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
@ -8368,7 +8394,7 @@ static void ggml_compute_forward_mul_mat_f16_f32(
|
|||
#if defined(GGML_USE_CUBLAS)
|
||||
if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
|
||||
if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
|
||||
ggml_cuda_mul_mat(src0, src1, dst);
|
||||
ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
@ -8588,7 +8614,7 @@ static void ggml_compute_forward_mul_mat_q_f32(
|
|||
#if defined(GGML_USE_CUBLAS)
|
||||
if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
|
||||
if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
|
||||
ggml_cuda_mul_mat(src0, src1, dst);
|
||||
ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
@ -11638,6 +11664,7 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
|
|||
if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
|
||||
node->n_tasks = 1; // TODO: this actually is doing nothing
|
||||
// the threads are still spinning
|
||||
cur = ggml_cuda_mul_mat_get_wsize(node->src0, node->src1, node);
|
||||
}
|
||||
else
|
||||
#endif
|
||||
|
|
3
ggml.h
3
ggml.h
|
@ -220,6 +220,9 @@ extern "C" {
|
|||
GGML_API float ggml_fp16_to_fp32(ggml_fp16_t x);
|
||||
GGML_API ggml_fp16_t ggml_fp32_to_fp16(float x);
|
||||
|
||||
GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n);
|
||||
GGML_API void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n);
|
||||
|
||||
struct ggml_object;
|
||||
struct ggml_context;
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue