Merge branch 'master' into compilade/gguf-py-fix-old-numpy

This commit is contained in:
Francis Couture-Harpin 2024-07-09 00:10:06 -04:00
commit aaf7bc89e4
718 changed files with 216539 additions and 128453 deletions

View file

@ -3,7 +3,7 @@
This is a Python package for writing binary files in the [GGUF](https://github.com/ggerganov/ggml/pull/302)
(GGML Universal File) format.
See [convert-llama-hf-to-gguf.py](https://github.com/ggerganov/llama.cpp/blob/master/convert-hf-to-gguf.py)
See [convert_hf_to_gguf.py](https://github.com/ggerganov/llama.cpp/blob/master/convert_hf_to_gguf.py)
as an example for its usage.
## Installation
@ -15,13 +15,13 @@ pip install gguf
[examples/writer.py](https://github.com/ggerganov/llama.cpp/blob/master/gguf-py/examples/writer.py) — Generates `example.gguf` in the current directory to demonstrate generating a GGUF file. Note that this file cannot be used as a model.
[scripts/gguf-dump.py](https://github.com/ggerganov/llama.cpp/blob/master/gguf-py/scripts/gguf-dump.py) — Dumps a GGUF file's metadata to the console.
[scripts/gguf_dump.py](https://github.com/ggerganov/llama.cpp/blob/master/gguf-py/scripts/gguf_dump.py) — Dumps a GGUF file's metadata to the console.
[scripts/gguf-set-metadata.py](https://github.com/ggerganov/llama.cpp/blob/master/gguf-py/scripts/gguf-set-metadata.py) — Allows changing simple metadata values in a GGUF file by key.
[scripts/gguf_set_metadata.py](https://github.com/ggerganov/llama.cpp/blob/master/gguf-py/scripts/gguf_set_metadata.py) — Allows changing simple metadata values in a GGUF file by key.
[scripts/gguf-convert-endian.py](https://github.com/ggerganov/llama.cpp/blob/master/gguf-py/scripts/gguf-convert-endian.py) — Allows converting the endianness of GGUF files.
[scripts/gguf_convert_endian.py](https://github.com/ggerganov/llama.cpp/blob/master/gguf-py/scripts/gguf_convert_endian.py) — Allows converting the endianness of GGUF files.
[scripts/gguf-new-metadata.py](https://github.com/ggerganov/llama.cpp/blob/master/gguf-py/scripts/gguf-new-metadata.py) — Copies a GGUF file with added/modified/removed metadata values.
[scripts/gguf_new_metadata.py](https://github.com/ggerganov/llama.cpp/blob/master/gguf-py/scripts/gguf_new_metadata.py) — Copies a GGUF file with added/modified/removed metadata values.
## Development
Maintainers who participate in development of this package are advised to install it in editable mode:

View file

@ -33,17 +33,25 @@ class Keys:
FILE_TYPE = "general.file_type"
class LLM:
VOCAB_SIZE = "{arch}.vocab_size"
CONTEXT_LENGTH = "{arch}.context_length"
EMBEDDING_LENGTH = "{arch}.embedding_length"
BLOCK_COUNT = "{arch}.block_count"
FEED_FORWARD_LENGTH = "{arch}.feed_forward_length"
USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual"
TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout"
EXPERT_COUNT = "{arch}.expert_count"
EXPERT_USED_COUNT = "{arch}.expert_used_count"
POOLING_TYPE = "{arch}.pooling_type"
LOGIT_SCALE = "{arch}.logit_scale"
VOCAB_SIZE = "{arch}.vocab_size"
CONTEXT_LENGTH = "{arch}.context_length"
EMBEDDING_LENGTH = "{arch}.embedding_length"
BLOCK_COUNT = "{arch}.block_count"
LEADING_DENSE_BLOCK_COUNT = "{arch}.leading_dense_block_count"
FEED_FORWARD_LENGTH = "{arch}.feed_forward_length"
EXPERT_FEED_FORWARD_LENGTH = "{arch}.expert_feed_forward_length"
EXPERT_SHARED_FEED_FORWARD_LENGTH = "{arch}.expert_shared_feed_forward_length"
USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual"
TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout"
EXPERT_COUNT = "{arch}.expert_count"
EXPERT_USED_COUNT = "{arch}.expert_used_count"
EXPERT_SHARED_COUNT = "{arch}.expert_shared_count"
EXPERT_WEIGHTS_SCALE = "{arch}.expert_weights_scale"
POOLING_TYPE = "{arch}.pooling_type"
LOGIT_SCALE = "{arch}.logit_scale"
DECODER_START_TOKEN_ID = "{arch}.decoder_start_token_id"
ATTN_LOGIT_SOFTCAPPING = "{arch}.attn_logit_softcapping"
FINAL_LOGIT_SOFTCAPPING = "{arch}.final_logit_softcapping"
class Attention:
HEAD_COUNT = "{arch}.attention.head_count"
@ -55,6 +63,10 @@ class Keys:
LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon"
LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon"
CAUSAL = "{arch}.attention.causal"
Q_LORA_RANK = "{arch}.attention.q_lora_rank"
KV_LORA_RANK = "{arch}.attention.kv_lora_rank"
REL_BUCKETS_COUNT = "{arch}.attention.relative_buckets_count"
SLIDING_WINDOW = "{arch}.attention.sliding_window"
class Rope:
DIMENSION_COUNT = "{arch}.rope.dimension_count"
@ -64,6 +76,12 @@ class Keys:
SCALING_ATTN_FACTOR = "{arch}.rope.scaling.attn_factor"
SCALING_ORIG_CTX_LEN = "{arch}.rope.scaling.original_context_length"
SCALING_FINETUNED = "{arch}.rope.scaling.finetuned"
SCALING_YARN_LOG_MUL = "{arch}.rope.scaling.yarn_log_multiplier"
class Split:
LLM_KV_SPLIT_NO = "split.no"
LLM_KV_SPLIT_COUNT = "split.count"
LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count"
class SSM:
CONV_KERNEL = "{arch}.ssm.conv_kernel"
@ -72,34 +90,35 @@ class Keys:
TIME_STEP_RANK = "{arch}.ssm.time_step_rank"
class Tokenizer:
MODEL = "tokenizer.ggml.model"
PRE = "tokenizer.ggml.pre"
LIST = "tokenizer.ggml.tokens"
TOKEN_TYPE = "tokenizer.ggml.token_type"
TOKEN_TYPE_COUNT = "tokenizer.ggml.token_type_count" # for BERT-style token types
SCORES = "tokenizer.ggml.scores"
MERGES = "tokenizer.ggml.merges"
BOS_ID = "tokenizer.ggml.bos_token_id"
EOS_ID = "tokenizer.ggml.eos_token_id"
UNK_ID = "tokenizer.ggml.unknown_token_id"
SEP_ID = "tokenizer.ggml.seperator_token_id"
PAD_ID = "tokenizer.ggml.padding_token_id"
CLS_ID = "tokenizer.ggml.cls_token_id"
MASK_ID = "tokenizer.ggml.mask_token_id"
ADD_BOS = "tokenizer.ggml.add_bos_token"
ADD_EOS = "tokenizer.ggml.add_eos_token"
ADD_PREFIX = "tokenizer.ggml.add_space_prefix"
HF_JSON = "tokenizer.huggingface.json"
RWKV = "tokenizer.rwkv.world"
CHAT_TEMPLATE = "tokenizer.chat_template"
CHAT_TEMPLATE_N = "tokenizer.chat_template.{name}"
CHAT_TEMPLATES = "tokenizer.chat_templates"
MODEL = "tokenizer.ggml.model"
PRE = "tokenizer.ggml.pre"
LIST = "tokenizer.ggml.tokens"
TOKEN_TYPE = "tokenizer.ggml.token_type"
TOKEN_TYPE_COUNT = "tokenizer.ggml.token_type_count" # for BERT-style token types
SCORES = "tokenizer.ggml.scores"
MERGES = "tokenizer.ggml.merges"
BOS_ID = "tokenizer.ggml.bos_token_id"
EOS_ID = "tokenizer.ggml.eos_token_id"
UNK_ID = "tokenizer.ggml.unknown_token_id"
SEP_ID = "tokenizer.ggml.seperator_token_id"
PAD_ID = "tokenizer.ggml.padding_token_id"
CLS_ID = "tokenizer.ggml.cls_token_id"
MASK_ID = "tokenizer.ggml.mask_token_id"
ADD_BOS = "tokenizer.ggml.add_bos_token"
ADD_EOS = "tokenizer.ggml.add_eos_token"
ADD_PREFIX = "tokenizer.ggml.add_space_prefix"
REMOVE_EXTRA_WS = "tokenizer.ggml.remove_extra_whitespaces"
PRECOMPILED_CHARSMAP = "tokenizer.ggml.precompiled_charsmap"
HF_JSON = "tokenizer.huggingface.json"
RWKV = "tokenizer.rwkv.world"
CHAT_TEMPLATE = "tokenizer.chat_template"
CHAT_TEMPLATE_N = "tokenizer.chat_template.{name}"
CHAT_TEMPLATES = "tokenizer.chat_templates"
# FIM/Infill special tokens constants
PREFIX_ID = "tokenizer.ggml.prefix_token_id"
SUFFIX_ID = "tokenizer.ggml.suffix_token_id"
MIDDLE_ID = "tokenizer.ggml.middle_token_id"
EOT_ID = "tokenizer.ggml.eot_token_id"
PREFIX_ID = "tokenizer.ggml.prefix_token_id"
SUFFIX_ID = "tokenizer.ggml.suffix_token_id"
MIDDLE_ID = "tokenizer.ggml.middle_token_id"
EOT_ID = "tokenizer.ggml.eot_token_id"
#
# recommended mapping of model tensor names for storage in gguf
@ -107,82 +126,130 @@ class Keys:
class MODEL_ARCH(IntEnum):
LLAMA = auto()
FALCON = auto()
BAICHUAN = auto()
GROK = auto()
GPT2 = auto()
GPTJ = auto()
GPTNEOX = auto()
MPT = auto()
STARCODER = auto()
REFACT = auto()
BERT = auto()
NOMIC_BERT = auto()
LLAMA = auto()
FALCON = auto()
BAICHUAN = auto()
GROK = auto()
GPT2 = auto()
GPTJ = auto()
GPTNEOX = auto()
MPT = auto()
STARCODER = auto()
REFACT = auto()
BERT = auto()
NOMIC_BERT = auto()
JINA_BERT_V2 = auto()
BLOOM = auto()
STABLELM = auto()
QWEN = auto()
QWEN2 = auto()
QWEN2MOE = auto()
PHI2 = auto()
PHI3 = auto()
PLAMO = auto()
CODESHELL = auto()
ORION = auto()
INTERNLM2 = auto()
MINICPM = auto()
GEMMA = auto()
STARCODER2 = auto()
MAMBA = auto()
XVERSE = auto()
COMMAND_R = auto()
DBRX = auto()
OLMO = auto()
BLOOM = auto()
STABLELM = auto()
QWEN = auto()
QWEN2 = auto()
QWEN2MOE = auto()
PHI2 = auto()
PHI3 = auto()
PLAMO = auto()
CODESHELL = auto()
ORION = auto()
INTERNLM2 = auto()
MINICPM = auto()
GEMMA = auto()
GEMMA2 = auto()
STARCODER2 = auto()
MAMBA = auto()
XVERSE = auto()
COMMAND_R = auto()
DBRX = auto()
OLMO = auto()
OPENELM = auto()
ARCTIC = auto()
DEEPSEEK2 = auto()
CHATGLM = auto()
BITNET = auto()
T5 = auto()
JAIS = auto()
class MODEL_TENSOR(IntEnum):
TOKEN_EMBD = auto()
TOKEN_EMBD_NORM = auto()
TOKEN_TYPES = auto()
POS_EMBD = auto()
OUTPUT = auto()
OUTPUT_NORM = auto()
ROPE_FREQS = auto()
ROPE_FACTORS_LONG = auto()
ROPE_FACTORS_SHORT = auto()
ATTN_Q = auto()
ATTN_K = auto()
ATTN_V = auto()
ATTN_QKV = auto()
ATTN_OUT = auto()
ATTN_NORM = auto()
ATTN_NORM_2 = auto()
ATTN_OUT_NORM = auto()
ATTN_ROT_EMBD = auto()
FFN_GATE_INP = auto()
FFN_GATE_INP_SHEXP = auto()
FFN_NORM = auto()
FFN_GATE = auto()
FFN_DOWN = auto()
FFN_UP = auto()
FFN_ACT = auto()
FFN_GATE_EXP = auto()
FFN_DOWN_EXP = auto()
FFN_UP_EXP = auto()
FFN_GATE_SHEXP = auto()
FFN_DOWN_SHEXP = auto()
FFN_UP_SHEXP = auto()
ATTN_Q_NORM = auto()
ATTN_K_NORM = auto()
LAYER_OUT_NORM = auto()
SSM_IN = auto()
SSM_CONV1D = auto()
SSM_X = auto()
SSM_DT = auto()
SSM_A = auto()
SSM_D = auto()
SSM_OUT = auto()
TOKEN_EMBD = auto()
TOKEN_EMBD_NORM = auto()
TOKEN_TYPES = auto()
POS_EMBD = auto()
OUTPUT = auto()
OUTPUT_NORM = auto()
ROPE_FREQS = auto()
ROPE_FACTORS_LONG = auto()
ROPE_FACTORS_SHORT = auto()
ATTN_Q = auto()
ATTN_K = auto()
ATTN_V = auto()
ATTN_QKV = auto()
ATTN_OUT = auto()
ATTN_NORM = auto()
ATTN_NORM_2 = auto()
ATTN_OUT_NORM = auto()
ATTN_POST_NORM = auto()
ATTN_ROT_EMBD = auto()
FFN_GATE_INP = auto()
FFN_GATE_INP_SHEXP = auto()
FFN_NORM = auto()
FFN_PRE_NORM = auto()
FFN_POST_NORM = auto()
FFN_GATE = auto()
FFN_DOWN = auto()
FFN_UP = auto()
FFN_ACT = auto()
FFN_NORM_EXP = auto()
FFN_GATE_EXP = auto()
FFN_DOWN_EXP = auto()
FFN_UP_EXP = auto()
FFN_GATE_SHEXP = auto()
FFN_DOWN_SHEXP = auto()
FFN_UP_SHEXP = auto()
ATTN_Q_NORM = auto()
ATTN_K_NORM = auto()
LAYER_OUT_NORM = auto()
SSM_IN = auto()
SSM_CONV1D = auto()
SSM_X = auto()
SSM_DT = auto()
SSM_A = auto()
SSM_D = auto()
SSM_OUT = auto()
ATTN_Q_A = auto()
ATTN_Q_B = auto()
ATTN_KV_A_MQA = auto()
ATTN_KV_B = auto()
ATTN_Q_A_NORM = auto()
ATTN_KV_A_NORM = auto()
FFN_SUB_NORM = auto()
ATTN_SUB_NORM = auto()
DEC_ATTN_NORM = auto()
DEC_ATTN_Q = auto()
DEC_ATTN_K = auto()
DEC_ATTN_V = auto()
DEC_ATTN_OUT = auto()
DEC_ATTN_REL_B = auto()
DEC_CROSS_ATTN_NORM = auto()
DEC_CROSS_ATTN_Q = auto()
DEC_CROSS_ATTN_K = auto()
DEC_CROSS_ATTN_V = auto()
DEC_CROSS_ATTN_OUT = auto()
DEC_CROSS_ATTN_REL_B = auto()
DEC_FFN_NORM = auto()
DEC_FFN_GATE = auto()
DEC_FFN_DOWN = auto()
DEC_FFN_UP = auto()
DEC_OUTPUT_NORM = auto()
ENC_ATTN_NORM = auto()
ENC_ATTN_Q = auto()
ENC_ATTN_K = auto()
ENC_ATTN_V = auto()
ENC_ATTN_OUT = auto()
ENC_ATTN_REL_B = auto()
ENC_FFN_NORM = auto()
ENC_FFN_GATE = auto()
ENC_FFN_DOWN = auto()
ENC_FFN_UP = auto()
ENC_OUTPUT_NORM = auto()
MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
@ -212,56 +279,104 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.INTERNLM2: "internlm2",
MODEL_ARCH.MINICPM: "minicpm",
MODEL_ARCH.GEMMA: "gemma",
MODEL_ARCH.GEMMA2: "gemma2",
MODEL_ARCH.STARCODER2: "starcoder2",
MODEL_ARCH.MAMBA: "mamba",
MODEL_ARCH.XVERSE: "xverse",
MODEL_ARCH.COMMAND_R: "command-r",
MODEL_ARCH.DBRX: "dbrx",
MODEL_ARCH.OLMO: "olmo",
MODEL_ARCH.OPENELM: "openelm",
MODEL_ARCH.ARCTIC: "arctic",
MODEL_ARCH.DEEPSEEK2: "deepseek2",
MODEL_ARCH.CHATGLM: "chatglm",
MODEL_ARCH.BITNET: "bitnet",
MODEL_ARCH.T5: "t5",
MODEL_ARCH.JAIS: "jais",
}
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
MODEL_TENSOR.TOKEN_EMBD: "token_embd",
MODEL_TENSOR.TOKEN_EMBD_NORM: "token_embd_norm",
MODEL_TENSOR.TOKEN_TYPES: "token_types",
MODEL_TENSOR.POS_EMBD: "position_embd",
MODEL_TENSOR.OUTPUT_NORM: "output_norm",
MODEL_TENSOR.OUTPUT: "output",
MODEL_TENSOR.ROPE_FREQS: "rope_freqs",
MODEL_TENSOR.ROPE_FACTORS_LONG: "rope_factors_long",
MODEL_TENSOR.ROPE_FACTORS_SHORT: "rope_factors_short",
MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2",
MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q",
MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k",
MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v",
MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm",
MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm",
MODEL_TENSOR.ATTN_OUT_NORM: "blk.{bid}.attn_output_norm",
MODEL_TENSOR.FFN_GATE_INP: "blk.{bid}.ffn_gate_inp",
MODEL_TENSOR.FFN_GATE_INP_SHEXP: "blk.{bid}.ffn_gate_inp_shexp",
MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
MODEL_TENSOR.FFN_GATE_SHEXP: "blk.{bid}.ffn_gate_shexp",
MODEL_TENSOR.FFN_DOWN_SHEXP: "blk.{bid}.ffn_down_shexp",
MODEL_TENSOR.FFN_UP_SHEXP: "blk.{bid}.ffn_up_shexp",
MODEL_TENSOR.FFN_ACT: "blk.{bid}.ffn",
MODEL_TENSOR.FFN_GATE_EXP: "blk.{bid}.ffn_gate_exps",
MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down_exps",
MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up_exps",
MODEL_TENSOR.LAYER_OUT_NORM: "blk.{bid}.layer_output_norm",
MODEL_TENSOR.SSM_IN: "blk.{bid}.ssm_in",
MODEL_TENSOR.SSM_CONV1D: "blk.{bid}.ssm_conv1d",
MODEL_TENSOR.SSM_X: "blk.{bid}.ssm_x",
MODEL_TENSOR.SSM_DT: "blk.{bid}.ssm_dt",
MODEL_TENSOR.SSM_A: "blk.{bid}.ssm_a",
MODEL_TENSOR.SSM_D: "blk.{bid}.ssm_d",
MODEL_TENSOR.SSM_OUT: "blk.{bid}.ssm_out",
MODEL_TENSOR.TOKEN_EMBD: "token_embd",
MODEL_TENSOR.TOKEN_EMBD_NORM: "token_embd_norm",
MODEL_TENSOR.TOKEN_TYPES: "token_types",
MODEL_TENSOR.POS_EMBD: "position_embd",
MODEL_TENSOR.OUTPUT_NORM: "output_norm",
MODEL_TENSOR.OUTPUT: "output",
MODEL_TENSOR.ROPE_FREQS: "rope_freqs",
MODEL_TENSOR.ROPE_FACTORS_LONG: "rope_factors_long",
MODEL_TENSOR.ROPE_FACTORS_SHORT: "rope_factors_short",
MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2",
MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q",
MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k",
MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v",
MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm",
MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm",
MODEL_TENSOR.ATTN_OUT_NORM: "blk.{bid}.attn_output_norm",
MODEL_TENSOR.ATTN_POST_NORM: "blk.{bid}.post_attention_norm",
MODEL_TENSOR.FFN_GATE_INP: "blk.{bid}.ffn_gate_inp",
MODEL_TENSOR.FFN_GATE_INP_SHEXP: "blk.{bid}.ffn_gate_inp_shexp",
MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
MODEL_TENSOR.FFN_PRE_NORM: "blk.{bid}.ffn_norm",
MODEL_TENSOR.FFN_POST_NORM: "blk.{bid}.post_ffw_norm",
MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
MODEL_TENSOR.FFN_GATE_SHEXP: "blk.{bid}.ffn_gate_shexp",
MODEL_TENSOR.FFN_DOWN_SHEXP: "blk.{bid}.ffn_down_shexp",
MODEL_TENSOR.FFN_UP_SHEXP: "blk.{bid}.ffn_up_shexp",
MODEL_TENSOR.FFN_ACT: "blk.{bid}.ffn",
MODEL_TENSOR.FFN_NORM_EXP: "blk.{bid}.ffn_norm_exps",
MODEL_TENSOR.FFN_GATE_EXP: "blk.{bid}.ffn_gate_exps",
MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down_exps",
MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up_exps",
MODEL_TENSOR.LAYER_OUT_NORM: "blk.{bid}.layer_output_norm",
MODEL_TENSOR.SSM_IN: "blk.{bid}.ssm_in",
MODEL_TENSOR.SSM_CONV1D: "blk.{bid}.ssm_conv1d",
MODEL_TENSOR.SSM_X: "blk.{bid}.ssm_x",
MODEL_TENSOR.SSM_DT: "blk.{bid}.ssm_dt",
MODEL_TENSOR.SSM_A: "blk.{bid}.ssm_a",
MODEL_TENSOR.SSM_D: "blk.{bid}.ssm_d",
MODEL_TENSOR.SSM_OUT: "blk.{bid}.ssm_out",
MODEL_TENSOR.ATTN_Q_A: "blk.{bid}.attn_q_a",
MODEL_TENSOR.ATTN_Q_B: "blk.{bid}.attn_q_b",
MODEL_TENSOR.ATTN_KV_A_MQA: "blk.{bid}.attn_kv_a_mqa",
MODEL_TENSOR.ATTN_KV_B: "blk.{bid}.attn_kv_b",
MODEL_TENSOR.ATTN_Q_A_NORM: "blk.{bid}.attn_q_a_norm",
MODEL_TENSOR.ATTN_KV_A_NORM: "blk.{bid}.attn_kv_a_norm",
MODEL_TENSOR.ATTN_SUB_NORM: "blk.{bid}.attn_sub_norm",
MODEL_TENSOR.FFN_SUB_NORM: "blk.{bid}.ffn_sub_norm",
MODEL_TENSOR.DEC_ATTN_NORM: "dec.blk.{bid}.attn_norm",
MODEL_TENSOR.DEC_ATTN_Q: "dec.blk.{bid}.attn_q",
MODEL_TENSOR.DEC_ATTN_K: "dec.blk.{bid}.attn_k",
MODEL_TENSOR.DEC_ATTN_V: "dec.blk.{bid}.attn_v",
MODEL_TENSOR.DEC_ATTN_OUT: "dec.blk.{bid}.attn_o",
MODEL_TENSOR.DEC_ATTN_REL_B: "dec.blk.{bid}.attn_rel_b",
MODEL_TENSOR.DEC_CROSS_ATTN_NORM: "dec.blk.{bid}.cross_attn_norm",
MODEL_TENSOR.DEC_CROSS_ATTN_Q: "dec.blk.{bid}.cross_attn_q",
MODEL_TENSOR.DEC_CROSS_ATTN_K: "dec.blk.{bid}.cross_attn_k",
MODEL_TENSOR.DEC_CROSS_ATTN_V: "dec.blk.{bid}.cross_attn_v",
MODEL_TENSOR.DEC_CROSS_ATTN_OUT: "dec.blk.{bid}.cross_attn_o",
MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: "dec.blk.{bid}.cross_attn_rel_b",
MODEL_TENSOR.DEC_FFN_NORM: "dec.blk.{bid}.ffn_norm",
MODEL_TENSOR.DEC_FFN_GATE: "dec.blk.{bid}.ffn_gate",
MODEL_TENSOR.DEC_FFN_DOWN: "dec.blk.{bid}.ffn_down",
MODEL_TENSOR.DEC_FFN_UP: "dec.blk.{bid}.ffn_up",
MODEL_TENSOR.DEC_OUTPUT_NORM: "dec.output_norm",
MODEL_TENSOR.ENC_ATTN_NORM: "enc.blk.{bid}.attn_norm",
MODEL_TENSOR.ENC_ATTN_Q: "enc.blk.{bid}.attn_q",
MODEL_TENSOR.ENC_ATTN_K: "enc.blk.{bid}.attn_k",
MODEL_TENSOR.ENC_ATTN_V: "enc.blk.{bid}.attn_v",
MODEL_TENSOR.ENC_ATTN_OUT: "enc.blk.{bid}.attn_o",
MODEL_TENSOR.ENC_ATTN_REL_B: "enc.blk.{bid}.attn_rel_b",
MODEL_TENSOR.ENC_FFN_NORM: "enc.blk.{bid}.ffn_norm",
MODEL_TENSOR.ENC_FFN_GATE: "enc.blk.{bid}.ffn_gate",
MODEL_TENSOR.ENC_FFN_DOWN: "enc.blk.{bid}.ffn_down",
MODEL_TENSOR.ENC_FFN_UP: "enc.blk.{bid}.ffn_up",
MODEL_TENSOR.ENC_OUTPUT_NORM: "enc.output_norm",
}
MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
@ -390,6 +505,7 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.TOKEN_EMBD_NORM,
MODEL_TENSOR.TOKEN_TYPES,
MODEL_TENSOR.ATTN_NORM_2,
MODEL_TENSOR.ATTN_OUT_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_Q_NORM,
@ -620,6 +736,7 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
],
MODEL_ARCH.MINICPM: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_NORM,
@ -650,6 +767,21 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.FFN_NORM,
],
MODEL_ARCH.GEMMA2: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_POST_NORM,
MODEL_TENSOR.FFN_PRE_NORM,
MODEL_TENSOR.FFN_POST_NORM,
],
MODEL_ARCH.STARCODER2: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
@ -732,6 +864,138 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.OPENELM: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_QKV,
MODEL_TENSOR.ATTN_Q_NORM,
MODEL_TENSOR.ATTN_K_NORM,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.ARCTIC: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.ATTN_ROT_EMBD,
MODEL_TENSOR.FFN_GATE_INP,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.FFN_NORM_EXP,
MODEL_TENSOR.FFN_GATE_EXP,
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
],
MODEL_ARCH.DEEPSEEK2: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_Q_A,
MODEL_TENSOR.ATTN_Q_B,
MODEL_TENSOR.ATTN_KV_A_MQA,
MODEL_TENSOR.ATTN_KV_B,
MODEL_TENSOR.ATTN_Q_A_NORM,
MODEL_TENSOR.ATTN_KV_A_NORM,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.ATTN_ROT_EMBD,
MODEL_TENSOR.FFN_GATE_INP,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.FFN_GATE_EXP,
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
MODEL_TENSOR.FFN_GATE_SHEXP,
MODEL_TENSOR.FFN_DOWN_SHEXP,
MODEL_TENSOR.FFN_UP_SHEXP,
],
MODEL_ARCH.CHATGLM : [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_QKV,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.BITNET: [
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.ATTN_SUB_NORM,
MODEL_TENSOR.FFN_SUB_NORM,
],
MODEL_ARCH.T5: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.DEC_ATTN_NORM,
MODEL_TENSOR.DEC_ATTN_Q,
MODEL_TENSOR.DEC_ATTN_K,
MODEL_TENSOR.DEC_ATTN_V,
MODEL_TENSOR.DEC_ATTN_OUT,
MODEL_TENSOR.DEC_ATTN_REL_B,
MODEL_TENSOR.DEC_CROSS_ATTN_NORM,
MODEL_TENSOR.DEC_CROSS_ATTN_Q,
MODEL_TENSOR.DEC_CROSS_ATTN_K,
MODEL_TENSOR.DEC_CROSS_ATTN_V,
MODEL_TENSOR.DEC_CROSS_ATTN_OUT,
MODEL_TENSOR.DEC_CROSS_ATTN_REL_B,
MODEL_TENSOR.DEC_FFN_NORM,
MODEL_TENSOR.DEC_FFN_GATE,
MODEL_TENSOR.DEC_FFN_DOWN,
MODEL_TENSOR.DEC_FFN_UP,
MODEL_TENSOR.DEC_OUTPUT_NORM,
MODEL_TENSOR.ENC_ATTN_NORM,
MODEL_TENSOR.ENC_ATTN_Q,
MODEL_TENSOR.ENC_ATTN_K,
MODEL_TENSOR.ENC_ATTN_V,
MODEL_TENSOR.ENC_ATTN_OUT,
MODEL_TENSOR.ENC_ATTN_REL_B,
MODEL_TENSOR.ENC_FFN_NORM,
MODEL_TENSOR.ENC_FFN_GATE,
MODEL_TENSOR.ENC_FFN_DOWN,
MODEL_TENSOR.ENC_FFN_UP,
MODEL_TENSOR.ENC_OUTPUT_NORM,
],
MODEL_ARCH.JAIS: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_QKV,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_UP,
],
# TODO
}
@ -765,6 +1029,13 @@ MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_ROT_EMBD,
],
MODEL_ARCH.DEEPSEEK2: [
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_ROT_EMBD,
],
MODEL_ARCH.CHATGLM: [
MODEL_TENSOR.ROPE_FREQS,
],
}
#
@ -905,9 +1176,8 @@ class GGUFValueType(IntEnum):
raise ValueError(f"Unknown type: {type(val)}")
# Note: Does not support GGML_QKK_64
QK_K = 256
# Items here are (block size, type size)
QK_K = 256
GGML_QUANT_SIZES: dict[GGMLQuantizationType, tuple[int, int]] = {
GGMLQuantizationType.F32: (1, 4),
GGMLQuantizationType.F16: (1, 2),

View file

@ -12,6 +12,8 @@ from typing import Any, Literal, NamedTuple, TypeVar, Union
import numpy as np
import numpy.typing as npt
from .quants import quant_shape_to_byte_shape
if __name__ == "__main__":
import sys
from pathlib import Path
@ -65,8 +67,9 @@ class ReaderTensor(NamedTuple):
class GGUFReader:
# I - same as host, S - swapped
byte_order: Literal['I'] | Literal['S'] = 'I'
byte_order: Literal['I', 'S'] = 'I'
alignment: int = GGUF_DEFAULT_ALIGNMENT
data_offset: int
# Note: Internal helper, API may change.
gguf_scalar_to_np: dict[GGUFValueType, type[np.generic]] = {
@ -83,12 +86,16 @@ class GGUFReader:
GGUFValueType.BOOL: np.bool_,
}
def __init__(self, path: os.PathLike[str] | str, mode: Literal['r'] | Literal['r+'] | Literal['c'] = 'r'):
def __init__(self, path: os.PathLike[str] | str, mode: Literal['r', 'r+', 'c'] = 'r'):
self.data = np.memmap(path, mode = mode)
offs = 0
# Check for GGUF magic
if self._get(offs, np.uint32, override_order = '<')[0] != GGUF_MAGIC:
raise ValueError('GGUF magic invalid')
offs += 4
# Check GGUF version
temp_version = self._get(offs, np.uint32)
if temp_version[0] & 65535 == 0:
# If we get 0 here that means it's (probably) a GGUF file created for
@ -101,12 +108,16 @@ class GGUFReader:
self.fields: OrderedDict[str, ReaderField] = OrderedDict()
self.tensors: list[ReaderTensor] = []
offs += self._push_field(ReaderField(offs, 'GGUF.version', [temp_version], [0], [GGUFValueType.UINT32]))
# Check tensor count and kv count
temp_counts = self._get(offs, np.uint64, 2)
offs += self._push_field(ReaderField(offs, 'GGUF.tensor_count', [temp_counts[:1]], [0], [GGUFValueType.UINT64]))
offs += self._push_field(ReaderField(offs, 'GGUF.kv_count', [temp_counts[1:]], [0], [GGUFValueType.UINT64]))
tensor_count, kv_count = temp_counts
offs = self._build_fields(offs, kv_count)
offs, tensors_fields = self._build_tensors_fields(offs, tensor_count)
# Build Tensor Info Fields
offs, tensors_fields = self._build_tensor_info(offs, tensor_count)
new_align = self.fields.get('general.alignment')
if new_align is not None:
if new_align.types != [GGUFValueType.UINT32]:
@ -115,6 +126,7 @@ class GGUFReader:
padding = offs % self.alignment
if padding != 0:
offs += self.alignment - padding
self.data_offset = offs
self._build_tensors(offs, tensors_fields)
_DT = TypeVar('_DT', bound = npt.DTypeLike)
@ -128,7 +140,7 @@ class GGUFReader:
return self.tensors[idx]
def _get(
self, offset: int, dtype: npt.DTypeLike, count: int = 1, override_order: None | Literal['I'] | Literal['S'] | Literal['<'] = None,
self, offset: int, dtype: npt.DTypeLike, count: int = 1, override_order: None | Literal['I', 'S', '<'] = None,
) -> npt.NDArray[Any]:
count = int(count)
itemsize = int(np.empty([], dtype = dtype).itemsize)
@ -191,18 +203,29 @@ class GGUFReader:
# We can't deal with this one.
raise ValueError('Unknown/unhandled field type {gtype}')
def _get_tensor(self, orig_offs: int) -> ReaderField:
def _get_tensor_info_field(self, orig_offs: int) -> ReaderField:
offs = orig_offs
# Get Tensor Name
name_len, name_data = self._get_str(offs)
offs += int(name_len.nbytes + name_data.nbytes)
# Get Tensor Dimensions Count
n_dims = self._get(offs, np.uint32)
offs += int(n_dims.nbytes)
# Get Tensor Dimension Array
dims = self._get(offs, np.uint64, n_dims[0])
offs += int(dims.nbytes)
# Get Tensor Encoding Scheme Type
raw_dtype = self._get(offs, np.uint32)
offs += int(raw_dtype.nbytes)
# Get Tensor Offset
offset_tensor = self._get(offs, np.uint64)
offs += int(offset_tensor.nbytes)
return ReaderField(
orig_offs,
str(bytes(name_data), encoding = 'utf-8'),
@ -231,10 +254,10 @@ class GGUFReader:
offs += field_size
return offs
def _build_tensors_fields(self, offs: int, count: int) -> tuple[int, list[ReaderField]]:
def _build_tensor_info(self, offs: int, count: int) -> tuple[int, list[ReaderField]]:
tensor_fields = []
for _ in range(count):
field = self._get_tensor(offs)
field = self._get_tensor_info_field(offs)
offs += sum(int(part.nbytes) for part in field.parts)
tensor_fields.append(field)
return offs, tensor_fields
@ -251,6 +274,7 @@ class GGUFReader:
tensor_names.add(tensor_name)
ggml_type = GGMLQuantizationType(raw_dtype[0])
n_elems = int(np.prod(dims))
np_dims = tuple(reversed(dims.tolist()))
block_size, type_size = GGML_QUANT_SIZES[ggml_type]
n_bytes = n_elems * type_size // block_size
data_offs = int(start_offs + offset_tensor[0])
@ -279,6 +303,7 @@ class GGUFReader:
else:
item_count = n_bytes
item_type = np.uint8
np_dims = quant_shape_to_byte_shape(np_dims, ggml_type)
tensors.append(ReaderTensor(
name = tensor_name,
tensor_type = ggml_type,
@ -286,7 +311,7 @@ class GGUFReader:
n_elements = n_elems,
n_bytes = n_bytes,
data_offset = data_offs,
data = self._get(data_offs, item_type, item_count),
data = self._get(data_offs, item_type, item_count).reshape(np_dims),
field = field,
))
self.tensors = tensors

View file

@ -5,7 +5,9 @@ import os
import shutil
import struct
import tempfile
from dataclasses import dataclass
from enum import Enum, auto
from pathlib import Path
from io import BufferedWriter
from typing import IO, Any, Sequence, Mapping
from string import ascii_letters, digits
@ -13,7 +15,6 @@ from string import ascii_letters, digits
import numpy as np
from .constants import (
GGML_QUANT_SIZES,
GGUF_DEFAULT_ALIGNMENT,
GGUF_MAGIC,
GGUF_VERSION,
@ -26,20 +27,44 @@ from .constants import (
TokenType,
)
from .quants import quant_shape_from_byte_shape
logger = logging.getLogger(__name__)
SHARD_NAME_FORMAT = "{:s}-{:05d}-of-{:05d}.gguf"
@dataclass
class TensorInfo:
shape: Sequence[int]
dtype: GGMLQuantizationType
nbytes: int
tensor: np.ndarray[Any, Any] | None = None
@dataclass
class GGUFValue:
value: Any
type: GGUFValueType
class WriterState(Enum):
NO_FILE = auto()
EMPTY = auto()
HEADER = auto()
KV_DATA = auto()
TI_DATA = auto()
WEIGHTS = auto()
class GGUFWriter:
fout: BufferedWriter
fout: list[BufferedWriter] | None
path: Path | None
temp_file: tempfile.SpooledTemporaryFile[bytes] | None
tensors: list[np.ndarray[Any, Any]]
tensors: list[dict[str, TensorInfo]]
kv_data: list[dict[str, GGUFValue]]
state: WriterState
_simple_value_packing = {
GGUFValueType.UINT8: "B",
GGUFValueType.INT8: "b",
@ -55,141 +80,188 @@ class GGUFWriter:
}
def __init__(
self, path: os.PathLike[str] | str, arch: str, use_temp_file: bool = True,
endianess: GGUFEndian = GGUFEndian.LITTLE,
self, path: os.PathLike[str] | str | None, arch: str, use_temp_file: bool = False, endianess: GGUFEndian = GGUFEndian.LITTLE,
split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False
):
self.fout = open(path, "wb")
self.fout = None
self.path = Path(path) if path else None
self.arch = arch
self.endianess = endianess
self.offset_tensor = 0
self.data_alignment = GGUF_DEFAULT_ALIGNMENT
self.kv_data = bytearray()
self.kv_data_count = 0
self.ti_data = bytearray()
self.ti_data_count = 0
self.ti_names = set()
self.use_temp_file = use_temp_file
self.temp_file = None
self.tensors = []
self.tensors = [{}]
self.kv_data = [{}]
self.split_max_tensors = split_max_tensors
self.split_max_size = split_max_size
self.dry_run = dry_run
self.small_first_shard = small_first_shard
logger.info("gguf: This GGUF file is for {0} Endian only".format(
"Big" if self.endianess == GGUFEndian.BIG else "Little",
))
self.state = WriterState.EMPTY
self.state = WriterState.NO_FILE
if self.small_first_shard:
self.tensors.append({})
self.add_architecture()
def write_header_to_file(self) -> None:
def format_shard_names(self, path: Path) -> list[Path]:
if len(self.tensors) == 1:
return [path]
return [path.with_name(SHARD_NAME_FORMAT.format(path.stem, i + 1, len(self.tensors))) for i in range(len(self.tensors))]
def open_output_file(self, path: Path | None = None) -> None:
if self.state is WriterState.EMPTY and self.fout is not None and (path is None or path == self.path):
# allow calling this multiple times as long as the path is the same
return
if self.state is not WriterState.NO_FILE:
raise ValueError(f'Expected output file to be not yet opened, got {self.state}')
if path is not None:
self.path = path
if self.path is not None:
filenames = self.print_plan()
self.fout = [open(filename, "wb") for filename in filenames]
self.state = WriterState.EMPTY
def print_plan(self) -> list[Path]:
logger.info("Writing the following files:")
assert self.path is not None
filenames = self.format_shard_names(self.path)
assert len(filenames) == len(self.tensors)
for name, tensors in zip(filenames, self.tensors):
logger.info(f"{name}: n_tensors = {len(tensors)}, total_size = {GGUFWriter.format_n_bytes_to_str(sum(ti.nbytes for ti in tensors.values()))}")
if self.dry_run:
logger.info("Dry run, not writing files")
exit()
return filenames
def add_shard_kv_data(self) -> None:
if len(self.tensors) == 1:
return
total_tensors = sum(len(t) for t in self.tensors)
assert self.fout is not None
total_splits = len(self.fout)
self.kv_data.extend({} for _ in range(len(self.kv_data), total_splits))
for i, kv_data in enumerate(self.kv_data):
kv_data[Keys.Split.LLM_KV_SPLIT_NO] = GGUFValue(i, GGUFValueType.UINT16)
kv_data[Keys.Split.LLM_KV_SPLIT_COUNT] = GGUFValue(total_splits, GGUFValueType.UINT16)
kv_data[Keys.Split.LLM_KV_SPLIT_TENSORS_COUNT] = GGUFValue(total_tensors, GGUFValueType.INT32)
def write_header_to_file(self, path: Path | None = None) -> None:
if len(self.tensors) == 1 and (self.split_max_tensors != 0 or self.split_max_size != 0):
logger.warning("Model fails split requirements, not splitting")
self.open_output_file(path)
if self.state is not WriterState.EMPTY:
raise ValueError(f'Expected output file to be empty, got {self.state}')
self._write_packed("<I", GGUF_MAGIC, skip_pack_prefix = True)
self._write_packed("I", GGUF_VERSION)
self._write_packed("Q", self.ti_data_count)
self._write_packed("Q", self.kv_data_count)
self.flush()
assert self.fout is not None
assert len(self.fout) == len(self.tensors)
assert len(self.kv_data) == 1
self.add_shard_kv_data()
for fout, tensors, kv_data in zip(self.fout, self.tensors, self.kv_data):
fout.write(self._pack("<I", GGUF_MAGIC, skip_pack_prefix = True))
fout.write(self._pack("I", GGUF_VERSION))
fout.write(self._pack("Q", len(tensors)))
fout.write(self._pack("Q", len(kv_data)))
fout.flush()
self.state = WriterState.HEADER
def write_kv_data_to_file(self) -> None:
if self.state is not WriterState.HEADER:
raise ValueError(f'Expected output file to contain the header, got {self.state}')
assert self.fout is not None
for fout, kv_data in zip(self.fout, self.kv_data):
kv_bytes = bytearray()
for key, val in kv_data.items():
kv_bytes += self._pack_val(key, GGUFValueType.STRING, add_vtype=False)
kv_bytes += self._pack_val(val.value, val.type, add_vtype=True)
fout.write(kv_bytes)
self.fout.write(self.kv_data)
self.flush()
self.state = WriterState.KV_DATA
def write_ti_data_to_file(self) -> None:
if self.state is not WriterState.KV_DATA:
raise ValueError(f'Expected output file to contain KV data, got {self.state}')
assert self.fout is not None
self.fout.write(self.ti_data)
self.flush()
for fout, tensors in zip(self.fout, self.tensors):
ti_data = bytearray()
offset_tensor = 0
for name, ti in tensors.items():
ti_data += self._pack_val(name, GGUFValueType.STRING, add_vtype=False)
n_dims = len(ti.shape)
ti_data += self._pack("I", n_dims)
for j in range(n_dims):
ti_data += self._pack("Q", ti.shape[n_dims - 1 - j])
ti_data += self._pack("I", ti.dtype)
ti_data += self._pack("Q", offset_tensor)
offset_tensor += GGUFWriter.ggml_pad(ti.nbytes, self.data_alignment)
fout.write(ti_data)
fout.flush()
self.state = WriterState.TI_DATA
def add_key(self, key: str) -> None:
self.add_val(key, GGUFValueType.STRING, add_vtype=False)
def add_key_value(self, key: str, val: Any, vtype: GGUFValueType) -> None:
if any(key in kv_data for kv_data in self.kv_data):
raise ValueError(f'Duplicated key name {key!r}')
self.kv_data[0][key] = GGUFValue(value=val, type=vtype)
def add_uint8(self, key: str, val: int) -> None:
self.add_key(key)
self.add_val(val, GGUFValueType.UINT8)
self.add_key_value(key,val, GGUFValueType.UINT8)
def add_int8(self, key: str, val: int) -> None:
self.add_key(key)
self.add_val(val, GGUFValueType.INT8)
self.add_key_value(key, val, GGUFValueType.INT8)
def add_uint16(self, key: str, val: int) -> None:
self.add_key(key)
self.add_val(val, GGUFValueType.UINT16)
self.add_key_value(key, val, GGUFValueType.UINT16)
def add_int16(self, key: str, val: int) -> None:
self.add_key(key)
self.add_val(val, GGUFValueType.INT16)
self.add_key_value(key, val, GGUFValueType.INT16)
def add_uint32(self, key: str, val: int) -> None:
self.add_key(key)
self.add_val(val, GGUFValueType.UINT32)
self.add_key_value(key, val, GGUFValueType.UINT32)
def add_int32(self, key: str, val: int) -> None:
self.add_key(key)
self.add_val(val, GGUFValueType.INT32)
self.add_key_value(key, val, GGUFValueType.INT32)
def add_float32(self, key: str, val: float) -> None:
self.add_key(key)
self.add_val(val, GGUFValueType.FLOAT32)
self.add_key_value(key, val, GGUFValueType.FLOAT32)
def add_uint64(self, key: str, val: int) -> None:
self.add_key(key)
self.add_val(val, GGUFValueType.UINT64)
self.add_key_value(key, val, GGUFValueType.UINT64)
def add_int64(self, key: str, val: int) -> None:
self.add_key(key)
self.add_val(val, GGUFValueType.INT64)
self.add_key_value(key, val, GGUFValueType.INT64)
def add_float64(self, key: str, val: float) -> None:
self.add_key(key)
self.add_val(val, GGUFValueType.FLOAT64)
self.add_key_value(key, val, GGUFValueType.FLOAT64)
def add_bool(self, key: str, val: bool) -> None:
self.add_key(key)
self.add_val(val, GGUFValueType.BOOL)
self.add_key_value(key, val, GGUFValueType.BOOL)
def add_string(self, key: str, val: str) -> None:
if not val:
return
self.add_key(key)
self.add_val(val, GGUFValueType.STRING)
self.add_key_value(key, val, GGUFValueType.STRING)
def add_array(self, key: str, val: Sequence[Any]) -> None:
if not isinstance(val, Sequence):
raise ValueError("Value must be a sequence for array type")
self.add_key(key)
self.add_val(val, GGUFValueType.ARRAY)
def add_val(self, val: Any, vtype: GGUFValueType | None = None, add_vtype: bool = True) -> None:
if vtype is None:
vtype = GGUFValueType.get_type(val)
if add_vtype:
self.kv_data += self._pack("I", vtype)
self.kv_data_count += 1
pack_fmt = self._simple_value_packing.get(vtype)
if pack_fmt is not None:
self.kv_data += self._pack(pack_fmt, val, skip_pack_prefix = vtype == GGUFValueType.BOOL)
elif vtype == GGUFValueType.STRING:
encoded_val = val.encode("utf-8") if isinstance(val, str) else val
self.kv_data += self._pack("Q", len(encoded_val))
self.kv_data += encoded_val
elif vtype == GGUFValueType.ARRAY and isinstance(val, Sequence) and val:
ltype = GGUFValueType.get_type(val[0])
if not all(GGUFValueType.get_type(i) is ltype for i in val[1:]):
raise ValueError("All items in a GGUF array should be of the same type")
self.kv_data += self._pack("I", ltype)
self.kv_data += self._pack("Q", len(val))
for item in val:
self.add_val(item, add_vtype=False)
else:
raise ValueError("Invalid GGUF metadata value type or value")
self.add_key_value(key, val, GGUFValueType.ARRAY)
@staticmethod
def ggml_pad(x: int, n: int) -> int:
@ -199,16 +271,12 @@ class GGUFWriter:
self, name: str, tensor_shape: Sequence[int], tensor_dtype: np.dtype,
tensor_nbytes: int, raw_dtype: GGMLQuantizationType | None = None,
) -> None:
if self.state is not WriterState.EMPTY:
raise ValueError(f'Expected output file to be empty, got {self.state}')
if self.state is not WriterState.NO_FILE:
raise ValueError(f'Expected output file to be not yet opened, got {self.state}')
if name in self.ti_names:
raise ValueError(f'Duplicated tensor name {name}')
self.ti_names.add(name)
if any(name in tensors for tensors in self.tensors):
raise ValueError(f'Duplicated tensor name {name!r}')
encoded_name = name.encode("utf-8")
self.ti_data += self._pack("Q", len(encoded_name))
self.ti_data += encoded_name
if raw_dtype is None:
if tensor_dtype == np.float16:
dtype = GGMLQuantizationType.F16
@ -229,18 +297,20 @@ class GGUFWriter:
else:
dtype = raw_dtype
if tensor_dtype == np.uint8:
block_size, type_size = GGML_QUANT_SIZES[raw_dtype]
if tensor_shape[-1] % type_size != 0:
raise ValueError(f"Quantized tensor row size ({tensor_shape[-1]}) is not a multiple of {dtype.name} type size ({type_size})")
tensor_shape = tuple(tensor_shape[:-1]) + (tensor_shape[-1] // type_size * block_size,)
n_dims = len(tensor_shape)
self.ti_data += self._pack("I", n_dims)
for i in range(n_dims):
self.ti_data += self._pack("Q", tensor_shape[n_dims - 1 - i])
self.ti_data += self._pack("I", dtype)
self.ti_data += self._pack("Q", self.offset_tensor)
self.offset_tensor += GGUFWriter.ggml_pad(tensor_nbytes, self.data_alignment)
self.ti_data_count += 1
tensor_shape = quant_shape_from_byte_shape(tensor_shape, raw_dtype)
# make sure there is at least one tensor before splitting
if len(self.tensors[-1]) > 0:
if ( # split when over tensor limit
self.split_max_tensors != 0
and len(self.tensors[-1]) >= self.split_max_tensors
) or ( # split when over size limit
self.split_max_size != 0
and sum(ti.nbytes for ti in self.tensors[-1].values()) + tensor_nbytes > self.split_max_size
):
self.tensors.append({})
self.tensors[-1][name] = TensorInfo(shape=tensor_shape, dtype=dtype, nbytes=tensor_nbytes)
def add_tensor(
self, name: str, tensor: np.ndarray[Any, Any], raw_shape: Sequence[int] | None = None,
@ -254,10 +324,10 @@ class GGUFWriter:
self.temp_file = fp
shape: Sequence[int] = raw_shape if raw_shape is not None else tensor.shape
self.add_tensor_info(name, shape, tensor.dtype, tensor.nbytes, raw_dtype = raw_dtype)
self.add_tensor_info(name, shape, tensor.dtype, tensor.nbytes, raw_dtype=raw_dtype)
if self.temp_file is None:
self.tensors.append(tensor)
self.tensors[-1][name].tensor = tensor
return
tensor.tofile(self.temp_file)
@ -269,59 +339,90 @@ class GGUFWriter:
fp.write(bytes([0] * pad))
def write_tensor_data(self, tensor: np.ndarray[Any, Any]) -> None:
if self.state is not WriterState.TI_DATA:
raise ValueError(f'Expected output file to contain tensor info, got {self.state}')
if self.state is not WriterState.TI_DATA and self.state is not WriterState.WEIGHTS:
raise ValueError(f'Expected output file to contain tensor info or weights, got {self.state}')
assert self.fout is not None
if self.endianess == GGUFEndian.BIG:
tensor.byteswap(inplace=True)
self.write_padding(self.fout, self.fout.tell())
tensor.tofile(self.fout)
self.write_padding(self.fout, tensor.nbytes)
file_id = -1
for i, tensors in enumerate(self.tensors):
if len(tensors) > 0:
file_id = i
break
fout = self.fout[file_id]
# pop the first tensor info
# TODO: cleaner way to get the first key
first_tensor_name = [name for name, _ in zip(self.tensors[file_id].keys(), range(1))][0]
ti = self.tensors[file_id].pop(first_tensor_name)
assert ti.nbytes == tensor.nbytes
self.write_padding(fout, fout.tell())
tensor.tofile(fout)
self.write_padding(fout, tensor.nbytes)
self.state = WriterState.WEIGHTS
def write_tensors_to_file(self, *, progress: bool = False) -> None:
self.write_ti_data_to_file()
self.write_padding(self.fout, self.fout.tell())
assert self.fout is not None
for fout in self.fout:
self.write_padding(fout, fout.tell())
if self.temp_file is None:
self.tensors.reverse() # to pop from the "beginning" in constant time
shard_bar = None
bar = None
if progress:
from tqdm import tqdm
total_bytes = sum(t.nbytes for t in self.tensors)
total_bytes = sum(ti.nbytes for t in self.tensors for ti in t.values())
if len(self.fout) > 1:
shard_bar = tqdm(desc=f"Shard (0/{len(self.fout)})", total=None, unit="byte", unit_scale=True)
bar = tqdm(desc="Writing", total=total_bytes, unit="byte", unit_scale=True)
while True:
try:
tensor = self.tensors.pop()
except IndexError:
break
tensor.tofile(self.fout)
bar.update(tensor.nbytes)
self.write_padding(self.fout, tensor.nbytes)
return
while True:
try:
tensor = self.tensors.pop()
except IndexError:
break
tensor.tofile(self.fout)
self.write_padding(self.fout, tensor.nbytes)
return
for i, (fout, tensors) in enumerate(zip(self.fout, self.tensors)):
if shard_bar is not None:
shard_bar.set_description(f"Shard ({i + 1}/{len(self.fout)})")
total = sum(ti.nbytes for ti in tensors.values())
shard_bar.reset(total=(total if total > 0 else None))
self.temp_file.seek(0)
# relying on the fact that Python dicts preserve insertion order (since 3.7)
for ti in tensors.values():
assert ti.tensor is not None # can only iterate once over the tensors
assert ti.tensor.nbytes == ti.nbytes
ti.tensor.tofile(fout)
if shard_bar is not None:
shard_bar.update(ti.nbytes)
if bar is not None:
bar.update(ti.nbytes)
self.write_padding(fout, ti.nbytes)
ti.tensor = None
else:
self.temp_file.seek(0)
shutil.copyfileobj(self.temp_file, self.fout)
self.flush()
self.temp_file.close()
shutil.copyfileobj(self.temp_file, self.fout[0 if not self.small_first_shard else 1])
self.flush()
self.temp_file.close()
self.state = WriterState.WEIGHTS
def flush(self) -> None:
self.fout.flush()
assert self.fout is not None
for fout in self.fout:
fout.flush()
def close(self) -> None:
self.fout.close()
if self.fout is not None:
for fout in self.fout:
fout.close()
self.fout = None
def add_architecture(self) -> None:
self.add_string(Keys.General.ARCHITECTURE, self.arch)
@ -376,17 +477,38 @@ class GGUFWriter:
def add_block_count(self, length: int) -> None:
self.add_uint32(Keys.LLM.BLOCK_COUNT.format(arch=self.arch), length)
def add_feed_forward_length(self, length: int) -> None:
self.add_uint32(Keys.LLM.FEED_FORWARD_LENGTH.format(arch=self.arch), length)
def add_leading_dense_block_count(self, length: int) -> None:
self.add_uint32(Keys.LLM.LEADING_DENSE_BLOCK_COUNT.format(arch=self.arch), length)
def add_feed_forward_length(self, length: int | Sequence[int]) -> None:
if isinstance(length, int):
self.add_uint32(Keys.LLM.FEED_FORWARD_LENGTH.format(arch=self.arch), length)
else:
self.add_array(Keys.LLM.FEED_FORWARD_LENGTH.format(arch=self.arch), length)
def add_expert_feed_forward_length(self, length: int) -> None:
self.add_uint32(Keys.LLM.EXPERT_FEED_FORWARD_LENGTH.format(arch=self.arch), length)
def add_expert_shared_feed_forward_length(self, length: int) -> None:
self.add_uint32(Keys.LLM.EXPERT_SHARED_FEED_FORWARD_LENGTH.format(arch=self.arch), length)
def add_parallel_residual(self, use: bool) -> None:
self.add_bool(Keys.LLM.USE_PARALLEL_RESIDUAL.format(arch=self.arch), use)
def add_head_count(self, count: int) -> None:
self.add_uint32(Keys.Attention.HEAD_COUNT.format(arch=self.arch), count)
def add_decoder_start_token_id(self, id: int) -> None:
self.add_uint32(Keys.LLM.DECODER_START_TOKEN_ID.format(arch=self.arch), id)
def add_head_count_kv(self, count: int) -> None:
self.add_uint32(Keys.Attention.HEAD_COUNT_KV.format(arch=self.arch), count)
def add_head_count(self, count: int | Sequence[int]) -> None:
if isinstance(count, int):
self.add_uint32(Keys.Attention.HEAD_COUNT.format(arch=self.arch), count)
else:
self.add_array(Keys.Attention.HEAD_COUNT.format(arch=self.arch), count)
def add_head_count_kv(self, count: int | Sequence[int]) -> None:
if isinstance(count, int):
self.add_uint32(Keys.Attention.HEAD_COUNT_KV.format(arch=self.arch), count)
else:
self.add_array(Keys.Attention.HEAD_COUNT_KV.format(arch=self.arch), count)
def add_key_length(self, length: int) -> None:
self.add_uint32(Keys.Attention.KEY_LENGTH.format(arch=self.arch), length)
@ -403,12 +525,24 @@ class GGUFWriter:
def add_logit_scale(self, value: float) -> None:
self.add_float32(Keys.LLM.LOGIT_SCALE.format(arch=self.arch), value)
def add_attn_logit_softcapping(self, value: float) -> None:
self.add_float32(Keys.LLM.ATTN_LOGIT_SOFTCAPPING.format(arch=self.arch), value)
def add_final_logit_softcapping(self, value: float) -> None:
self.add_float32(Keys.LLM.FINAL_LOGIT_SOFTCAPPING.format(arch=self.arch), value)
def add_expert_count(self, count: int) -> None:
self.add_uint32(Keys.LLM.EXPERT_COUNT.format(arch=self.arch), count)
def add_expert_used_count(self, count: int) -> None:
self.add_uint32(Keys.LLM.EXPERT_USED_COUNT.format(arch=self.arch), count)
def add_expert_shared_count(self, count: int) -> None:
self.add_uint32(Keys.LLM.EXPERT_SHARED_COUNT.format(arch=self.arch), count)
def add_expert_weights_scale(self, value: float) -> None:
self.add_float32(Keys.LLM.EXPERT_WEIGHTS_SCALE.format(arch=self.arch), value)
def add_layer_norm_eps(self, value: float) -> None:
self.add_float32(Keys.Attention.LAYERNORM_EPS.format(arch=self.arch), value)
@ -418,6 +552,18 @@ class GGUFWriter:
def add_causal_attention(self, value: bool) -> None:
self.add_bool(Keys.Attention.CAUSAL.format(arch=self.arch), value)
def add_q_lora_rank(self, length: int) -> None:
self.add_uint32(Keys.Attention.Q_LORA_RANK.format(arch=self.arch), length)
def add_kv_lora_rank(self, length: int) -> None:
self.add_uint32(Keys.Attention.KV_LORA_RANK.format(arch=self.arch), length)
def add_relative_attn_buckets_count(self, value: int) -> None:
self.add_uint32(Keys.Attention.REL_BUCKETS_COUNT.format(arch=self.arch), value)
def add_sliding_window(self, value: int) -> None:
self.add_uint32(Keys.Attention.SLIDING_WINDOW.format(arch=self.arch), value)
def add_pooling_type(self, value: PoolingType) -> None:
self.add_uint32(Keys.LLM.POOLING_TYPE.format(arch=self.arch), value.value)
@ -433,7 +579,7 @@ class GGUFWriter:
def add_rope_scaling_factor(self, value: float) -> None:
self.add_float32(Keys.Rope.SCALING_FACTOR.format(arch=self.arch), value)
def add_rope_scaling_attn_factors(self, value: Sequence[float]) -> None:
def add_rope_scaling_attn_factors(self, value: float) -> None:
self.add_float32(Keys.Rope.SCALING_ATTN_FACTOR.format(arch=self.arch), value)
def add_rope_scaling_orig_ctx_len(self, value: int) -> None:
@ -442,6 +588,9 @@ class GGUFWriter:
def add_rope_scaling_finetuned(self, value: bool) -> None:
self.add_bool(Keys.Rope.SCALING_FINETUNED.format(arch=self.arch), value)
def add_rope_scaling_yarn_log_mul(self, value: float) -> None:
self.add_float32(Keys.Rope.SCALING_YARN_LOG_MUL.format(arch=self.arch), value)
def add_ssm_conv_kernel(self, value: int) -> None:
self.add_uint32(Keys.SSM.CONV_KERNEL.format(arch=self.arch), value)
@ -505,6 +654,12 @@ class GGUFWriter:
def add_add_space_prefix(self, value: bool) -> None:
self.add_bool(Keys.Tokenizer.ADD_PREFIX, value)
def add_remove_extra_whitespaces(self, value: bool) -> None:
self.add_bool(Keys.Tokenizer.REMOVE_EXTRA_WS, value)
def add_precompiled_charsmap(self, charsmap: Sequence[bytes]) -> None:
self.add_array(Keys.Tokenizer.PRECOMPILED_CHARSMAP, charsmap)
def add_chat_template(self, value: str | Sequence[Mapping[str, str]]) -> None:
if not isinstance(value, str):
template_default = None
@ -552,5 +707,42 @@ class GGUFWriter:
pack_prefix = '<' if self.endianess == GGUFEndian.LITTLE else '>'
return struct.pack(f'{pack_prefix}{fmt}', value)
def _write_packed(self, fmt: str, value: Any, skip_pack_prefix: bool = False) -> None:
self.fout.write(self._pack(fmt, value, skip_pack_prefix))
def _pack_val(self, val: Any, vtype: GGUFValueType, add_vtype: bool) -> bytes:
kv_data = bytearray()
if add_vtype:
kv_data += self._pack("I", vtype)
pack_fmt = self._simple_value_packing.get(vtype)
if pack_fmt is not None:
kv_data += self._pack(pack_fmt, val, skip_pack_prefix = vtype == GGUFValueType.BOOL)
elif vtype == GGUFValueType.STRING:
encoded_val = val.encode("utf-8") if isinstance(val, str) else val
kv_data += self._pack("Q", len(encoded_val))
kv_data += encoded_val
elif vtype == GGUFValueType.ARRAY and isinstance(val, Sequence) and val:
if isinstance(val, bytes):
ltype = GGUFValueType.UINT8
else:
ltype = GGUFValueType.get_type(val[0])
if not all(GGUFValueType.get_type(i) is ltype for i in val[1:]):
raise ValueError("All items in a GGUF array should be of the same type")
kv_data += self._pack("I", ltype)
kv_data += self._pack("Q", len(val))
for item in val:
kv_data += self._pack_val(item, ltype, add_vtype=False)
else:
raise ValueError("Invalid GGUF metadata value type or value")
return kv_data
@staticmethod
def format_n_bytes_to_str(num: int) -> str:
if num == 0:
return "negligible - metadata only"
fnum = float(num)
for unit in ("", "K", "M", "G"):
if abs(fnum) < 1000.0:
return f"{fnum:3.1f}{unit}"
fnum /= 1000.0
return f"{fnum:.1f}T - over 1TB, split recommended"

View file

@ -15,16 +15,16 @@ logger = logging.getLogger(__name__)
class LazyMeta(ABCMeta):
def __new__(cls, name: str, bases: tuple[type, ...], namespace: dict[str, Any], **kwargs):
def __getattr__(self, __name: str) -> Any:
meta_attr = getattr(self._meta, __name)
def __getattr__(self, name: str) -> Any:
meta_attr = getattr(self._meta, name)
if callable(meta_attr):
return type(self)._wrap_fn(
(lambda s, *args, **kwargs: getattr(s, __name)(*args, **kwargs)),
(lambda s, *args, **kwargs: getattr(s, name)(*args, **kwargs)),
use_self=self,
)
elif isinstance(meta_attr, self._tensor_type):
# e.g. self.T with torch.Tensor should still be wrapped
return type(self)._wrap_fn(lambda s: getattr(s, __name))(self)
return type(self)._wrap_fn(lambda s: getattr(s, name))(self)
else:
# no need to wrap non-tensor properties,
# and they likely don't depend on the actual contents of the tensor
@ -140,19 +140,21 @@ class LazyBase(ABC, metaclass=LazyMeta):
res = cls.meta_with_dtype_and_shape(meta_noop, res.shape)
if isinstance(res, cls._tensor_type):
def collect_replace(t: LazyBase):
if collect_replace.shared_lazy is None:
collect_replace.shared_lazy = t._lazy
else:
collect_replace.shared_lazy.extend(t._lazy)
t._lazy = collect_replace.shared_lazy
class CollectSharedLazy:
# emulating a static variable
shared_lazy: None | deque[LazyBase] = None
# emulating a static variable
collect_replace.shared_lazy = None
@staticmethod
def collect_replace(t: LazyBase):
if CollectSharedLazy.shared_lazy is None:
CollectSharedLazy.shared_lazy = t._lazy
else:
CollectSharedLazy.shared_lazy.extend(t._lazy)
t._lazy = CollectSharedLazy.shared_lazy
LazyBase._recurse_apply(args, collect_replace)
LazyBase._recurse_apply(args, CollectSharedLazy.collect_replace)
shared_lazy = collect_replace.shared_lazy
shared_lazy = CollectSharedLazy.shared_lazy
return cls(meta=cls.eager_to_meta(res), lazy=shared_lazy, args=args, func=lambda a: fn(*a, **kwargs))
else:
@ -183,6 +185,7 @@ class LazyBase(ABC, metaclass=LazyMeta):
lt._args = cls._recurse_apply(lt._args, already_eager_to_eager)
lt._data = lt._func(lt._args)
# sanity check
assert lt._data is not None
assert lt._data.dtype == lt._meta.dtype
assert lt._data.shape == lt._meta.shape

View file

@ -1,5 +1,5 @@
from __future__ import annotations
from typing import Callable
from typing import Callable, Sequence
from numpy.typing import DTypeLike
@ -9,6 +9,20 @@ from .lazy import LazyNumpyTensor
import numpy as np
def quant_shape_to_byte_shape(shape: Sequence[int], quant_type: GGMLQuantizationType):
block_size, type_size = GGML_QUANT_SIZES[quant_type]
if shape[-1] % block_size != 0:
raise ValueError(f"Quantized tensor row size ({shape[-1]}) is not a multiple of {quant_type.name} block size ({block_size})")
return (*shape[:-1], shape[-1] // block_size * type_size)
def quant_shape_from_byte_shape(shape: Sequence[int], quant_type: GGMLQuantizationType):
block_size, type_size = GGML_QUANT_SIZES[quant_type]
if shape[-1] % type_size != 0:
raise ValueError(f"Quantized tensor bytes per row ({shape[-1]}) is not a multiple of {quant_type.name} type size ({type_size})")
return (*shape[:-1], shape[-1] // type_size * block_size)
# same as ggml_compute_fp32_to_bf16 in ggml-impl.h
def __compute_fp32_to_bf16(n: np.ndarray) -> np.ndarray:
n = n.astype(np.float32, copy=False).view(np.int32)

View file

@ -10,7 +10,7 @@ class TensorNameMap:
# Token embeddings
MODEL_TENSOR.TOKEN_EMBD: (
"gpt_neox.embed_in", # gptneox
"transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx
"transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais
"transformer.word_embeddings", # falcon
"word_embeddings", # bloom
"model.embed_tokens", # llama-hf
@ -24,6 +24,9 @@ class TensorNameMap:
"backbone.embedding", # mamba
"backbone.embeddings", # mamba-hf
"transformer.in_out_embed", # Grok
"embedding.word_embeddings", # chatglm
"transformer.token_embeddings", # openelm
"shared", # t5
),
# Token type embeddings
@ -36,6 +39,7 @@ class TensorNameMap:
"word_embeddings_layernorm", # bloom
"embeddings.LayerNorm", # bert
"emb_ln", # nomic-bert
"transformer.norm", # openelm
),
# Position embeddings
@ -48,16 +52,17 @@ class TensorNameMap:
# Output
MODEL_TENSOR.OUTPUT: (
"embed_out", # gptneox
"lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx
"lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais
"output", # llama-pth bloom internlm2
"word_embeddings_for_head", # persimmon
"lm_head.linear", # phi2
"output_layer", # chatglm
),
# Output norm
MODEL_TENSOR.OUTPUT_NORM: (
"gpt_neox.final_layer_norm", # gptneox
"transformer.ln_f", # gpt2 gpt-j falcon
"transformer.ln_f", # gpt2 gpt-j falcon jais
"model.norm", # llama-hf baichuan internlm2
"norm", # llama-pth
"transformer.norm_f", # mpt dbrx
@ -68,11 +73,14 @@ class TensorNameMap:
"model.norm_f", # mamba-qbert
"backbone.norm_f", # mamba
"transformer.rms_norm", # Grok
"encoder.final_layernorm", # chatglm
"transformer.norm", # openelm
),
# Rope frequencies
MODEL_TENSOR.ROPE_FREQS: (
"rope.freqs", # llama-pth
"rotary_pos_emb.inv_freq", # chatglm
),
}
@ -80,7 +88,7 @@ class TensorNameMap:
# Attention norm
MODEL_TENSOR.ATTN_NORM: (
"gpt_neox.layers.{bid}.input_layernorm", # gptneox
"transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen
"transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen jais
"transformer.blocks.{bid}.norm_1", # mpt
"transformer.h.{bid}.input_layernorm", # falcon7b
"h.{bid}.input_layernorm", # bloom
@ -97,17 +105,20 @@ class TensorNameMap:
"backbone.layers.{bid}.norm", # mamba
"transformer.decoder_layer.{bid}.rms_norm", # Grok
"transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx
"encoder.layers.{bid}.input_layernorm", # chatglm
"transformer.layers.{bid}.attn_norm", # openelm
),
# Attention norm 2
MODEL_TENSOR.ATTN_NORM_2: (
"transformer.h.{bid}.ln_attn", # falcon40b
"encoder.layer.{bid}.layer_norm_1", # jina-v2-code
),
# Attention query-key-value
MODEL_TENSOR.ATTN_QKV: (
"gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
"transformer.h.{bid}.attn.c_attn", # gpt2 qwen
"transformer.h.{bid}.attn.c_attn", # gpt2 qwen jais
"transformer.blocks.{bid}.attn.Wqkv", # mpt
"transformer.blocks.{bid}.norm_attn_norm.attn.Wqkv", # dbrx
"transformer.h.{bid}.self_attention.query_key_value", # falcon
@ -117,7 +128,9 @@ class TensorNameMap:
"h.{bid}.attn.c_attn", # gpt2
"transformer.h.{bid}.mixer.Wqkv", # phi2
"encoder.layers.{bid}.attn.Wqkv", # nomic-bert
"model.layers.{bid}.self_attn.qkv_proj" # phi3
"model.layers.{bid}.self_attn.qkv_proj", # phi3
"encoder.layers.{bid}.self_attention.query_key_value", # chatglm
"transformer.layers.{bid}.attn.qkv_proj", # openelm
),
# Attention query
@ -128,7 +141,7 @@ class TensorNameMap:
"transformer.h.{bid}.attn.q_proj", # gpt-j
"model.layers.layers.{bid}.self_attn.q_proj", # plamo
"model.layers.{bid}.attention.wq", # internlm2
"transformer.decoder_layer.{bid}.multi_head_attention.query" # Grok
"transformer.decoder_layer.{bid}.multi_head_attention.query",# Grok
),
# Attention key
@ -140,7 +153,7 @@ class TensorNameMap:
"transformer.h.{bid}.attn.k", # refact
"model.layers.layers.{bid}.self_attn.k_proj", # plamo
"model.layers.{bid}.attention.wk", # internlm2
"transformer.decoder_layer.{bid}.multi_head_attention.key" # Grok
"transformer.decoder_layer.{bid}.multi_head_attention.key",# Grok
),
# Attention value
@ -158,7 +171,7 @@ class TensorNameMap:
# Attention output
MODEL_TENSOR.ATTN_OUT: (
"gpt_neox.layers.{bid}.attention.dense", # gptneox
"transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen
"transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen jais
"transformer.blocks.{bid}.attn.out_proj", # mpt
"transformer.h.{bid}.self_attention.dense", # falcon
"h.{bid}.self_attention.dense", # bloom
@ -175,6 +188,8 @@ class TensorNameMap:
"encoder.layers.{bid}.attn.out_proj", # nomic-bert
"transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok
"transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx
"encoder.layers.{bid}.self_attention.dense", # chatglm
"transformer.layers.{bid}.attn.out_proj", # openelm
),
# Attention output norm
@ -185,6 +200,10 @@ class TensorNameMap:
"transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx
),
MODEL_TENSOR.ATTN_POST_NORM: (
"model.layers.{bid}.post_attention_layernorm", # gemma2
),
# Rotary embeddings
MODEL_TENSOR.ATTN_ROT_EMBD: (
"model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
@ -196,7 +215,7 @@ class TensorNameMap:
# Feed-forward norm
MODEL_TENSOR.FFN_NORM: (
"gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
"transformer.h.{bid}.ln_2", # gpt2 refact qwen
"transformer.h.{bid}.ln_2", # gpt2 refact qwen jais
"h.{bid}.post_attention_layernorm", # bloom
"transformer.blocks.{bid}.norm_2", # mpt
"model.layers.{bid}.post_attention_layernorm", # llama-hf
@ -206,6 +225,18 @@ class TensorNameMap:
"h.{bid}.ln_2", # gpt2
"model.layers.{bid}.ffn_norm", # internlm2
"transformer.decoder_layer.{bid}.rms_norm_2", # Grok
"encoder.layers.{bid}.post_attention_layernorm", # chatglm
"transformer.layers.{bid}.ffn_norm", # openelm
),
# Post feed-forward norm
MODEL_TENSOR.FFN_PRE_NORM: (
"model.layers.{bid}.pre_feedforward_layernorm", # gemma2
),
# Post feed-forward norm
MODEL_TENSOR.FFN_POST_NORM: (
"model.layers.{bid}.post_feedforward_layernorm", # gemma2
),
MODEL_TENSOR.FFN_GATE_INP: (
@ -223,7 +254,7 @@ class TensorNameMap:
# Feed-forward up
MODEL_TENSOR.FFN_UP: (
"gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
"transformer.h.{bid}.mlp.c_fc", # gpt2
"transformer.h.{bid}.mlp.c_fc", # gpt2 jais
"transformer.blocks.{bid}.ffn.up_proj", # mpt
"transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
"h.{bid}.mlp.dense_h_to_4h", # bloom
@ -244,6 +275,8 @@ class TensorNameMap:
"encoder.layers.{bid}.mlp.fc11", # nomic-bert
"model.layers.{bid}.mlp.c_fc", # starcoder2
"encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2
"model.layers.{bid}.residual_mlp.w3", # arctic
"encoder.layers.{bid}.mlp.dense_h_to_4h", # chatglm
),
MODEL_TENSOR.FFN_UP_EXP: (
@ -255,6 +288,7 @@ class TensorNameMap:
MODEL_TENSOR.FFN_UP_SHEXP: (
"model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
"model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek2
),
# AWQ-activation gate
@ -267,11 +301,13 @@ class TensorNameMap:
"model.layers.{bid}.mlp.gate_proj", # llama-hf refact
"layers.{bid}.feed_forward.w1", # llama-pth
"transformer.h.{bid}.mlp.w2", # qwen
"transformer.h.{bid}.mlp.c_fc2", # jais
"model.layers.layers.{bid}.mlp.gate_proj", # plamo
"model.layers.{bid}.feed_forward.w1", # internlm2
"encoder.layers.{bid}.mlp.fc12", # nomic-bert
"encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2
"transformer.h.{bid}.mlp.linear_1", # refact
"model.layers.{bid}.residual_mlp.w1", # arctic
),
MODEL_TENSOR.FFN_GATE_EXP: (
@ -283,12 +319,13 @@ class TensorNameMap:
MODEL_TENSOR.FFN_GATE_SHEXP: (
"model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe
"model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek2
),
# Feed-forward down
MODEL_TENSOR.FFN_DOWN: (
"gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
"transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen
"transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen jais
"transformer.blocks.{bid}.ffn.down_proj", # mpt
"transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
"h.{bid}.mlp.dense_4h_to_h", # bloom
@ -306,6 +343,10 @@ class TensorNameMap:
"encoder.layers.{bid}.mlp.fc2", # nomic-bert
"model.layers.{bid}.mlp.c_proj", # starcoder2
"encoder.layer.{bid}.mlp.wo", # jina-bert-v2
"transformer.layers.{bid}.ffn.proj_2", # openelm
"model.layers.{bid}.residual_mlp.w2", # arctic
"encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2
"encoder.layers.{bid}.mlp.dense_4h_to_h", # chatglm
),
MODEL_TENSOR.FFN_DOWN_EXP: (
@ -317,6 +358,7 @@ class TensorNameMap:
MODEL_TENSOR.FFN_DOWN_SHEXP: (
"model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe
"model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek2
),
MODEL_TENSOR.ATTN_Q_NORM: (
@ -324,7 +366,8 @@ class TensorNameMap:
"model.layers.{bid}.self_attn.q_layernorm", # persimmon
"model.layers.{bid}.self_attn.q_norm", # cohere
"transformer.blocks.{bid}.attn.q_ln", # sea-lion
"encoder.layer.{bid}.attention.self.layer_norm_q" # jina-bert-v2
"encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2
"transformer.layers.{bid}.attn.q_norm", # openelm
),
MODEL_TENSOR.ATTN_K_NORM: (
@ -332,7 +375,8 @@ class TensorNameMap:
"model.layers.{bid}.self_attn.k_layernorm", # persimmon
"model.layers.{bid}.self_attn.k_norm", # cohere
"transformer.blocks.{bid}.attn.k_ln", # sea-lion
"encoder.layer.{bid}.attention.self.layer_norm_k" # jina-bert-v2
"encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2
"transformer.layers.{bid}.attn.k_norm", # openelm
),
MODEL_TENSOR.ROPE_FREQS: (
@ -344,6 +388,7 @@ class TensorNameMap:
"encoder.layers.{bid}.norm2", # nomic-bert
"transformer.decoder_layer.{bid}.rms_norm_3", # Grok
"encoder.layer.{bid}.mlp.layernorm", # jina-bert-v2
"encoder.layer.{bid}.layer_norm_2" # jina-v2-code
),
MODEL_TENSOR.SSM_IN: (
@ -380,6 +425,164 @@ class TensorNameMap:
"model.layers.{bid}.out_proj",
"backbone.layers.{bid}.mixer.out_proj",
),
MODEL_TENSOR.ATTN_Q_A: (
"model.layers.{bid}.self_attn.q_a_proj", # deepseek2
),
MODEL_TENSOR.ATTN_Q_B: (
"model.layers.{bid}.self_attn.q_b_proj", # deepseek2
),
MODEL_TENSOR.ATTN_KV_A_MQA: (
"model.layers.{bid}.self_attn.kv_a_proj_with_mqa", # deepseek2
),
MODEL_TENSOR.ATTN_KV_B: (
"model.layers.{bid}.self_attn.kv_b_proj", # deepseek2
),
MODEL_TENSOR.ATTN_Q_A_NORM: (
"model.layers.{bid}.self_attn.q_a_layernorm", # deepseek2
),
MODEL_TENSOR.ATTN_KV_A_NORM: (
"model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2
),
MODEL_TENSOR.ATTN_SUB_NORM: (
"model.layers.{bid}.self_attn.inner_attn_ln", # bitnet
),
MODEL_TENSOR.FFN_SUB_NORM: (
"model.layers.{bid}.mlp.ffn_layernorm", # bitnet
),
MODEL_TENSOR.DEC_ATTN_NORM: (
"decoder.block.{bid}.layer.0.layer_norm", # t5
),
MODEL_TENSOR.DEC_ATTN_Q: (
"decoder.block.{bid}.layer.0.SelfAttention.q", # t5
),
MODEL_TENSOR.DEC_ATTN_K: (
"decoder.block.{bid}.layer.0.SelfAttention.k", # t5
),
MODEL_TENSOR.DEC_ATTN_V: (
"decoder.block.{bid}.layer.0.SelfAttention.v", # t5
),
MODEL_TENSOR.DEC_ATTN_OUT: (
"decoder.block.{bid}.layer.0.SelfAttention.o", # t5
),
MODEL_TENSOR.DEC_ATTN_REL_B: (
"decoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
),
MODEL_TENSOR.DEC_CROSS_ATTN_NORM: (
"decoder.block.{bid}.layer.1.layer_norm", # t5
),
MODEL_TENSOR.DEC_CROSS_ATTN_Q: (
"decoder.block.{bid}.layer.1.EncDecAttention.q", # t5
),
MODEL_TENSOR.DEC_CROSS_ATTN_K: (
"decoder.block.{bid}.layer.1.EncDecAttention.k", # t5
),
MODEL_TENSOR.DEC_CROSS_ATTN_V: (
"decoder.block.{bid}.layer.1.EncDecAttention.v", # t5
),
MODEL_TENSOR.DEC_CROSS_ATTN_OUT: (
"decoder.block.{bid}.layer.1.EncDecAttention.o", # t5
),
MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: (
"decoder.block.{bid}.layer.1.EncDecAttention.relative_attention_bias", # t5
),
MODEL_TENSOR.DEC_FFN_NORM: (
"decoder.block.{bid}.layer.2.layer_norm", # t5
),
MODEL_TENSOR.DEC_FFN_GATE: (
"decoder.block.{bid}.layer.2.DenseReluDense.wi_0", # flan-t5
),
MODEL_TENSOR.DEC_FFN_UP: (
"decoder.block.{bid}.layer.2.DenseReluDense.wi", # t5
"decoder.block.{bid}.layer.2.DenseReluDense.wi_1", # flan-t5
),
MODEL_TENSOR.DEC_FFN_DOWN: (
"decoder.block.{bid}.layer.2.DenseReluDense.wo", # t5
),
MODEL_TENSOR.DEC_OUTPUT_NORM: (
"decoder.final_layer_norm", # t5
),
MODEL_TENSOR.ENC_ATTN_NORM: (
"encoder.block.{bid}.layer.0.layer_norm", # t5
),
MODEL_TENSOR.ENC_ATTN_Q: (
"encoder.block.{bid}.layer.0.SelfAttention.q", # t5
),
MODEL_TENSOR.ENC_ATTN_K: (
"encoder.block.{bid}.layer.0.SelfAttention.k", # t5
),
MODEL_TENSOR.ENC_ATTN_V: (
"encoder.block.{bid}.layer.0.SelfAttention.v", # t5
),
MODEL_TENSOR.ENC_ATTN_OUT: (
"encoder.block.{bid}.layer.0.SelfAttention.o", # t5
),
MODEL_TENSOR.ENC_ATTN_REL_B: (
"encoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
),
MODEL_TENSOR.ENC_FFN_NORM: (
"encoder.block.{bid}.layer.1.layer_norm", # t5
),
MODEL_TENSOR.ENC_FFN_GATE: (
"encoder.block.{bid}.layer.1.DenseReluDense.wi_0", # flan-t5
),
MODEL_TENSOR.ENC_FFN_UP: (
"encoder.block.{bid}.layer.1.DenseReluDense.wi", # t5
"encoder.block.{bid}.layer.1.DenseReluDense.wi_1", # flan-t5
),
MODEL_TENSOR.ENC_FFN_DOWN: (
"encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5
),
MODEL_TENSOR.ENC_OUTPUT_NORM: (
"encoder.final_layer_norm", # t5
),
}
# architecture-specific block mappings
arch_block_mappings_cfg: dict[MODEL_ARCH, dict[MODEL_TENSOR, tuple[str, ...]]] = {
MODEL_ARCH.ARCTIC: {
MODEL_TENSOR.FFN_NORM: (
"model.layers.{bid}.residual_layernorm",
),
MODEL_TENSOR.FFN_NORM_EXP: (
"model.layers.{bid}.post_attention_layernorm",
),
},
}
mapping: dict[str, tuple[MODEL_TENSOR, str]]
@ -393,12 +596,14 @@ class TensorNameMap:
self.mapping[tensor_name] = (tensor, tensor_name)
for key in keys:
self.mapping[key] = (tensor, tensor_name)
if arch in self.arch_block_mappings_cfg:
self.block_mappings_cfg.update(self.arch_block_mappings_cfg[arch])
for bid in range(n_blocks):
for tensor, keys in self.block_mappings_cfg.items():
if tensor not in MODEL_TENSORS[arch]:
continue
# TODO: make this configurable
n_experts = 60
n_experts = 160
for xid in range(n_experts):
tensor_name = TENSOR_NAMES[tensor].format(bid = bid, xid = xid)
self.mapping[tensor_name] = (tensor, tensor_name)

View file

@ -1,10 +1,15 @@
from __future__ import annotations
import re
import logging
import json
import os
from pathlib import Path
from typing import Any, Callable, Sequence, Mapping, Iterable
from typing import Any, Callable, Sequence, Mapping, Iterable, Protocol, ClassVar, runtime_checkable
from sentencepiece import SentencePieceProcessor
import gguf
from .gguf_writer import GGUFWriter
@ -163,3 +168,298 @@ class SpecialVocab:
for typ in self.special_token_types:
self._set_special_token(typ, config.get(f'{typ}_token_id'))
return True
@runtime_checkable
class BaseVocab(Protocol):
tokenizer_model: ClassVar[str]
name: ClassVar[str]
@runtime_checkable
class Vocab(BaseVocab, Protocol):
vocab_size: int
added_tokens_dict: dict[str, int]
added_tokens_list: list[str]
fname_tokenizer: Path
def __init__(self, base_path: Path): ...
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: ...
class NoVocab(BaseVocab):
tokenizer_model = "no_vocab"
name = "no_vocab"
def __repr__(self) -> str:
return "<NoVocab for a model without integrated vocabulary>"
class BpeVocab(Vocab):
tokenizer_model = "gpt2"
name = "bpe"
def __init__(self, base_path: Path):
added_tokens: dict[str, int] = {}
if (fname_tokenizer := base_path / 'vocab.json').exists():
# "slow" tokenizer
with open(fname_tokenizer, encoding="utf-8") as f:
self.vocab = json.load(f)
try:
# FIXME: Verify that added tokens here _cannot_ overlap with the main vocab.
with open(base_path / 'added_tokens.json', encoding="utf-8") as f:
added_tokens = json.load(f)
except FileNotFoundError:
pass
else:
# "fast" tokenizer
fname_tokenizer = base_path / 'tokenizer.json'
# if this fails, FileNotFoundError propagates to caller
with open(fname_tokenizer, encoding="utf-8") as f:
tokenizer_json = json.load(f)
tokenizer_model: dict[str, Any] = tokenizer_json['model']
if (
tokenizer_model['type'] != 'BPE' or tokenizer_model.get('byte_fallback', False)
or tokenizer_json['decoder']['type'] != 'ByteLevel'
):
raise FileNotFoundError('Cannot find GPT-2 BPE tokenizer')
self.vocab = tokenizer_model["vocab"]
if (added := tokenizer_json.get('added_tokens')) is not None:
# Added tokens here can be duplicates of the main vocabulary.
added_tokens = {item['content']: item['id']
for item in added
if item['content'] not in self.vocab}
vocab_size = len(self.vocab)
expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
actual_ids = sorted(added_tokens.values())
if expected_ids != actual_ids:
expected_end_id = vocab_size + len(actual_ids) - 1
raise ValueError(f"Expected the {len(actual_ids)} added token ID(s) to be sequential in the range "
f"{vocab_size} - {expected_end_id}; got {actual_ids}")
items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1])
self.added_tokens_dict = added_tokens
self.added_tokens_list = [text for (text, idx) in items]
self.vocab_size_base = vocab_size
self.vocab_size = self.vocab_size_base + len(self.added_tokens_list)
self.fname_tokenizer = fname_tokenizer
def bpe_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
reverse_vocab = {id: encoded_tok for encoded_tok, id in self.vocab.items()}
for i, _ in enumerate(self.vocab):
yield reverse_vocab[i], 0.0, gguf.TokenType.NORMAL
def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
for text in self.added_tokens_list:
score = -1000.0
yield text.encode("utf-8"), score, gguf.TokenType.CONTROL
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
yield from self.bpe_tokens()
yield from self.added_tokens()
def __repr__(self) -> str:
return f"<BpeVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
class SentencePieceVocab(Vocab):
tokenizer_model = "llama"
name = "spm"
def __init__(self, base_path: Path):
added_tokens: dict[str, int] = {}
if (fname_tokenizer := base_path / 'tokenizer.model').exists():
# normal location
try:
with open(base_path / 'added_tokens.json', encoding="utf-8") as f:
added_tokens = json.load(f)
except FileNotFoundError:
pass
elif not (fname_tokenizer := base_path.parent / 'tokenizer.model').exists():
# not found in alternate location either
raise FileNotFoundError('Cannot find tokenizer.model')
self.sentencepiece_tokenizer = SentencePieceProcessor()
self.sentencepiece_tokenizer.LoadFromFile(str(fname_tokenizer))
vocab_size = self.sentencepiece_tokenizer.vocab_size()
new_tokens = {id: piece for piece, id in added_tokens.items() if id >= vocab_size}
expected_new_ids = list(range(vocab_size, vocab_size + len(new_tokens)))
actual_new_ids = sorted(new_tokens.keys())
if expected_new_ids != actual_new_ids:
raise ValueError(f"Expected new token IDs {expected_new_ids} to be sequential; got {actual_new_ids}")
# Token pieces that were added to the base vocabulary.
self.added_tokens_dict = added_tokens
self.added_tokens_list = [new_tokens[id] for id in actual_new_ids]
self.vocab_size_base = vocab_size
self.vocab_size = self.vocab_size_base + len(self.added_tokens_list)
self.fname_tokenizer = fname_tokenizer
def sentencepiece_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
tokenizer = self.sentencepiece_tokenizer
for i in range(tokenizer.vocab_size()):
piece = tokenizer.IdToPiece(i)
text = piece.encode("utf-8")
score: float = tokenizer.GetScore(i)
toktype = gguf.TokenType.NORMAL
if tokenizer.IsUnknown(i):
toktype = gguf.TokenType.UNKNOWN
if tokenizer.IsControl(i):
toktype = gguf.TokenType.CONTROL
# NOTE: I think added_tokens are user defined.
# ref: https://github.com/google/sentencepiece/blob/master/src/sentencepiece_model.proto
# if tokenizer.is_user_defined(i): toktype = gguf.TokenType.USER_DEFINED
if tokenizer.IsUnused(i):
toktype = gguf.TokenType.UNUSED
if tokenizer.IsByte(i):
toktype = gguf.TokenType.BYTE
yield text, score, toktype
def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
for text in self.added_tokens_list:
score = -1000.0
yield text.encode("utf-8"), score, gguf.TokenType.USER_DEFINED
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
yield from self.sentencepiece_tokens()
yield from self.added_tokens()
def __repr__(self) -> str:
return f"<SentencePieceVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
class LlamaHfVocab(Vocab):
tokenizer_model = "llama"
name = "hfft"
def __init__(self, base_path: Path):
fname_tokenizer = base_path / 'tokenizer.json'
# if this fails, FileNotFoundError propagates to caller
with open(fname_tokenizer, encoding='utf-8') as f:
tokenizer_json = json.load(f)
# pre-check so we know if we need transformers
tokenizer_model: dict[str, Any] = tokenizer_json['model']
is_llama3 = (
tokenizer_model['type'] == 'BPE' and tokenizer_model.get('ignore_merges', False)
and not tokenizer_model.get('byte_fallback', True)
)
if is_llama3:
raise TypeError('Llama 3 must be converted with BpeVocab')
if not is_llama3 and (
tokenizer_model['type'] != 'BPE' or not tokenizer_model.get('byte_fallback', False)
or tokenizer_json['decoder']['type'] != 'Sequence'
):
raise FileNotFoundError('Cannot find Llama BPE tokenizer')
try:
from transformers import AutoTokenizer
except ImportError as e:
raise ImportError(
"To use LlamaHfVocab, please install the `transformers` package. "
"You can install it with `pip install transformers`."
) from e
# Allow the tokenizer to default to slow or fast versions.
# Explicitly set tokenizer to use local paths.
self.tokenizer = AutoTokenizer.from_pretrained(
base_path,
cache_dir=base_path,
local_files_only=True,
)
assert self.tokenizer.is_fast # assume tokenizer.json is used
# Initialize lists and dictionaries for added tokens
self.added_tokens_list = []
self.added_tokens_dict = dict()
self.added_tokens_ids = set()
# Process added tokens
for tok, tokidx in sorted(
self.tokenizer.get_added_vocab().items(), key=lambda x: x[1]
):
# Only consider added tokens that are not in the base vocabulary
if tokidx >= self.tokenizer.vocab_size:
self.added_tokens_list.append(tok)
self.added_tokens_dict[tok] = tokidx
self.added_tokens_ids.add(tokidx)
# Store special tokens and their IDs
self.specials = {
tok: self.tokenizer.get_vocab()[tok]
for tok in self.tokenizer.all_special_tokens
}
self.special_ids = set(self.tokenizer.all_special_ids)
# Set vocabulary sizes
self.vocab_size_base = self.tokenizer.vocab_size
self.vocab_size = self.vocab_size_base + len(self.added_tokens_list)
self.fname_tokenizer = fname_tokenizer
def hf_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
reverse_vocab = {
id: encoded_tok for encoded_tok, id in self.tokenizer.get_vocab().items()
}
for token_id in range(self.vocab_size_base):
# Skip processing added tokens here
if token_id in self.added_tokens_ids:
continue
# Convert token text to bytes
token_text = reverse_vocab[token_id].encode("utf-8")
# Yield token text, score, and type
yield token_text, self.get_token_score(token_id), self.get_token_type(
token_id, token_text, self.special_ids # Reuse already stored special IDs
)
def get_token_type(self, token_id: int, token_text: bytes, special_ids: set[int]) -> gguf.TokenType:
# Special case for byte tokens
if re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
return gguf.TokenType.BYTE
# Determine token type based on whether it's a special token
return gguf.TokenType.CONTROL if token_id in special_ids else gguf.TokenType.NORMAL
def get_token_score(self, token_id: int) -> float:
# Placeholder for actual logic to determine the token's score
# This needs to be implemented based on specific requirements
return -1000.0 # Default score
def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
for text in self.added_tokens_list:
if text in self.specials:
toktype = self.get_token_type(self.specials[text], b'', self.special_ids)
score = self.get_token_score(self.specials[text])
else:
toktype = gguf.TokenType.USER_DEFINED
score = -1000.0
yield text.encode("utf-8"), score, toktype
def has_newline_token(self):
return "<0x0A>" in self.tokenizer.vocab or "\n" in self.tokenizer.vocab
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
yield from self.hf_tokens()
yield from self.added_tokens()
def __repr__(self) -> str:
return f"<LlamaHfVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"

View file

@ -1,13 +1,6 @@
import os
# pyright: reportUnusedImport=false
from importlib import import_module
os.environ["NO_LOCAL_GGUF"] = "TRUE"
gguf_convert_endian_entrypoint = import_module("scripts.gguf-convert-endian").main
gguf_dump_entrypoint = import_module("scripts.gguf-dump").main
gguf_set_metadata_entrypoint = import_module("scripts.gguf-set-metadata").main
gguf_new_metadata_entrypoint = import_module("scripts.gguf-new-metadata").main
del import_module, os
from .gguf_convert_endian import main as gguf_convert_endian_entrypoint
from .gguf_dump import main as gguf_dump_entrypoint
from .gguf_set_metadata import main as gguf_set_metadata_entrypoint
from .gguf_new_metadata import main as gguf_new_metadata_entrypoint

View file

@ -1,128 +0,0 @@
#!/usr/bin/env python3
from __future__ import annotations
import logging
import argparse
import os
import sys
from pathlib import Path
from typing import Any
import numpy as np
# Necessary to load the local gguf package
if "NO_LOCAL_GGUF" not in os.environ and (Path(__file__).parent.parent.parent / 'gguf-py').exists():
sys.path.insert(0, str(Path(__file__).parent.parent))
from gguf import GGUFReader, GGUFValueType # noqa: E402
logger = logging.getLogger("gguf-dump")
def get_file_host_endian(reader: GGUFReader) -> tuple[str, str]:
host_endian = 'LITTLE' if np.uint32(1) == np.uint32(1).newbyteorder("<") else 'BIG'
if reader.byte_order == 'S':
file_endian = 'BIG' if host_endian == 'LITTLE' else 'LITTLE'
else:
file_endian = host_endian
return (host_endian, file_endian)
# For more information about what field.parts and field.data represent,
# please see the comments in the modify_gguf.py example.
def dump_metadata(reader: GGUFReader, args: argparse.Namespace) -> None:
host_endian, file_endian = get_file_host_endian(reader)
print(f'* File is {file_endian} endian, script is running on a {host_endian} endian host.') # noqa: NP100
print(f'* Dumping {len(reader.fields)} key/value pair(s)') # noqa: NP100
for n, field in enumerate(reader.fields.values(), 1):
if not field.types:
pretty_type = 'N/A'
elif field.types[0] == GGUFValueType.ARRAY:
nest_count = len(field.types) - 1
pretty_type = '[' * nest_count + str(field.types[-1].name) + ']' * nest_count
else:
pretty_type = str(field.types[-1].name)
log_message = f' {n:5}: {pretty_type:10} | {len(field.data):8} | {field.name}'
if len(field.types) == 1:
curr_type = field.types[0]
if curr_type == GGUFValueType.STRING:
log_message += ' = {0}'.format(repr(str(bytes(field.parts[-1]), encoding='utf-8')[:60]))
elif field.types[0] in reader.gguf_scalar_to_np:
log_message += ' = {0}'.format(field.parts[-1][0])
print(log_message) # noqa: NP100
if args.no_tensors:
return
print(f'* Dumping {len(reader.tensors)} tensor(s)') # noqa: NP100
for n, tensor in enumerate(reader.tensors, 1):
prettydims = ', '.join('{0:5}'.format(d) for d in list(tensor.shape) + [1] * (4 - len(tensor.shape)))
print(f' {n:5}: {tensor.n_elements:10} | {prettydims} | {tensor.tensor_type.name:7} | {tensor.name}') # noqa: NP100
def dump_metadata_json(reader: GGUFReader, args: argparse.Namespace) -> None:
import json
host_endian, file_endian = get_file_host_endian(reader)
metadata: dict[str, Any] = {}
tensors: dict[str, Any] = {}
result = {
"filename": args.model,
"endian": file_endian,
"metadata": metadata,
"tensors": tensors,
}
for idx, field in enumerate(reader.fields.values()):
curr: dict[str, Any] = {
"index": idx,
"type": field.types[0].name if field.types else 'UNKNOWN',
"offset": field.offset,
}
metadata[field.name] = curr
if field.types[:1] == [GGUFValueType.ARRAY]:
curr["array_types"] = [t.name for t in field.types][1:]
if not args.json_array:
continue
itype = field.types[-1]
if itype == GGUFValueType.STRING:
curr["value"] = [str(bytes(field.parts[idx]), encoding="utf-8") for idx in field.data]
else:
curr["value"] = [pv for idx in field.data for pv in field.parts[idx].tolist()]
elif field.types[0] == GGUFValueType.STRING:
curr["value"] = str(bytes(field.parts[-1]), encoding="utf-8")
else:
curr["value"] = field.parts[-1].tolist()[0]
if not args.no_tensors:
for idx, tensor in enumerate(reader.tensors):
tensors[tensor.name] = {
"index": idx,
"shape": tensor.shape.tolist(),
"type": tensor.tensor_type.name,
"offset": tensor.field.offset,
}
json.dump(result, sys.stdout)
def main() -> None:
parser = argparse.ArgumentParser(description="Dump GGUF file metadata")
parser.add_argument("model", type=str, help="GGUF format model filename")
parser.add_argument("--no-tensors", action="store_true", help="Don't dump tensor metadata")
parser.add_argument("--json", action="store_true", help="Produce JSON output")
parser.add_argument("--json-array", action="store_true", help="Include full array values in JSON output (long)")
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
args = parser.parse_args(None if len(sys.argv) > 1 else ["--help"])
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
if not args.json:
logger.info(f'* Loading: {args.model}')
reader = GGUFReader(args.model, 'r')
if args.json:
dump_metadata_json(reader, args)
else:
dump_metadata(reader, args)
if __name__ == '__main__':
main()

421
gguf-py/scripts/gguf_dump.py Executable file
View file

@ -0,0 +1,421 @@
#!/usr/bin/env python3
from __future__ import annotations
import logging
import argparse
import os
import sys
from pathlib import Path
from typing import Any
import numpy as np
# Necessary to load the local gguf package
if "NO_LOCAL_GGUF" not in os.environ and (Path(__file__).parent.parent.parent / 'gguf-py').exists():
sys.path.insert(0, str(Path(__file__).parent.parent))
from gguf import GGUFReader, GGUFValueType, ReaderTensor # noqa: E402
logger = logging.getLogger("gguf-dump")
def get_file_host_endian(reader: GGUFReader) -> tuple[str, str]:
host_endian = 'LITTLE' if np.uint32(1) == np.uint32(1).newbyteorder("<") else 'BIG'
if reader.byte_order == 'S':
file_endian = 'BIG' if host_endian == 'LITTLE' else 'LITTLE'
else:
file_endian = host_endian
return (host_endian, file_endian)
# For more information about what field.parts and field.data represent,
# please see the comments in the modify_gguf.py example.
def dump_metadata(reader: GGUFReader, args: argparse.Namespace) -> None:
host_endian, file_endian = get_file_host_endian(reader)
print(f'* File is {file_endian} endian, script is running on a {host_endian} endian host.') # noqa: NP100
print(f'* Dumping {len(reader.fields)} key/value pair(s)') # noqa: NP100
for n, field in enumerate(reader.fields.values(), 1):
if not field.types:
pretty_type = 'N/A'
elif field.types[0] == GGUFValueType.ARRAY:
nest_count = len(field.types) - 1
pretty_type = '[' * nest_count + str(field.types[-1].name) + ']' * nest_count
else:
pretty_type = str(field.types[-1].name)
log_message = f' {n:5}: {pretty_type:10} | {len(field.data):8} | {field.name}'
if len(field.types) == 1:
curr_type = field.types[0]
if curr_type == GGUFValueType.STRING:
log_message += ' = {0}'.format(repr(str(bytes(field.parts[-1]), encoding='utf-8')[:60]))
elif field.types[0] in reader.gguf_scalar_to_np:
log_message += ' = {0}'.format(field.parts[-1][0])
print(log_message) # noqa: NP100
if args.no_tensors:
return
print(f'* Dumping {len(reader.tensors)} tensor(s)') # noqa: NP100
for n, tensor in enumerate(reader.tensors, 1):
prettydims = ', '.join('{0:5}'.format(d) for d in list(tensor.shape) + [1] * (4 - len(tensor.shape)))
print(f' {n:5}: {tensor.n_elements:10} | {prettydims} | {tensor.tensor_type.name:7} | {tensor.name}') # noqa: NP100
def dump_metadata_json(reader: GGUFReader, args: argparse.Namespace) -> None:
import json
host_endian, file_endian = get_file_host_endian(reader)
metadata: dict[str, Any] = {}
tensors: dict[str, Any] = {}
result = {
"filename": args.model,
"endian": file_endian,
"metadata": metadata,
"tensors": tensors,
}
for idx, field in enumerate(reader.fields.values()):
curr: dict[str, Any] = {
"index": idx,
"type": field.types[0].name if field.types else 'UNKNOWN',
"offset": field.offset,
}
metadata[field.name] = curr
if field.types[:1] == [GGUFValueType.ARRAY]:
curr["array_types"] = [t.name for t in field.types][1:]
if not args.json_array:
continue
itype = field.types[-1]
if itype == GGUFValueType.STRING:
curr["value"] = [str(bytes(field.parts[idx]), encoding="utf-8") for idx in field.data]
else:
curr["value"] = [pv for idx in field.data for pv in field.parts[idx].tolist()]
elif field.types[0] == GGUFValueType.STRING:
curr["value"] = str(bytes(field.parts[-1]), encoding="utf-8")
else:
curr["value"] = field.parts[-1].tolist()[0]
if not args.no_tensors:
for idx, tensor in enumerate(reader.tensors):
tensors[tensor.name] = {
"index": idx,
"shape": tensor.shape.tolist(),
"type": tensor.tensor_type.name,
"offset": tensor.field.offset,
}
json.dump(result, sys.stdout)
def markdown_table_with_alignment_support(header_map: list[dict[str, str]], data: list[dict[str, Any]]):
# JSON to Markdown table formatting: https://stackoverflow.com/a/72983854/2850957
# Alignment Utility Function
def strAlign(padding: int, alignMode: str | None, strVal: str):
if alignMode == 'center':
return strVal.center(padding)
elif alignMode == 'right':
return strVal.rjust(padding - 1) + ' '
elif alignMode == 'left':
return ' ' + strVal.ljust(padding - 1)
else: # default left
return ' ' + strVal.ljust(padding - 1)
def dashAlign(padding: int, alignMode: str | None):
if alignMode == 'center':
return ':' + '-' * (padding - 2) + ':'
elif alignMode == 'right':
return '-' * (padding - 1) + ':'
elif alignMode == 'left':
return ':' + '-' * (padding - 1)
else: # default left
return '-' * (padding)
# Calculate Padding For Each Column Based On Header and Data Length
rowsPadding = {}
for index, columnEntry in enumerate(header_map):
padCount = max([len(str(v)) for d in data for k, v in d.items() if k == columnEntry['key_name']], default=0) + 2
headerPadCount = len(columnEntry['header_name']) + 2
rowsPadding[index] = headerPadCount if padCount <= headerPadCount else padCount
# Render Markdown Header
rows = []
rows.append('|'.join(strAlign(rowsPadding[index], columnEntry.get('align'), str(columnEntry['header_name'])) for index, columnEntry in enumerate(header_map)))
rows.append('|'.join(dashAlign(rowsPadding[index], columnEntry.get('align')) for index, columnEntry in enumerate(header_map)))
# Render Tabular Data
for item in data:
rows.append('|'.join(strAlign(rowsPadding[index], columnEntry.get('align'), str(item[columnEntry['key_name']])) for index, columnEntry in enumerate(header_map)))
# Convert Tabular String Rows Into String
tableString = ""
for row in rows:
tableString += f'|{row}|\n'
return tableString
def element_count_rounded_notation(count: int) -> str:
if count > 1e15 :
# Quadrillion
scaled_amount = count * 1e-15
scale_suffix = "Q"
elif count > 1e12 :
# Trillions
scaled_amount = count * 1e-12
scale_suffix = "T"
elif count > 1e9 :
# Billions
scaled_amount = count * 1e-9
scale_suffix = "B"
elif count > 1e6 :
# Millions
scaled_amount = count * 1e-6
scale_suffix = "M"
elif count > 1e3 :
# Thousands
scaled_amount = count * 1e-3
scale_suffix = "K"
else:
# Under Thousands
scaled_amount = count
scale_suffix = ""
return f"{'~' if count > 1e3 else ''}{round(scaled_amount)}{scale_suffix}"
def translate_tensor_name(name):
words = name.split(".")
# Source: https://github.com/ggerganov/ggml/blob/master/docs/gguf.md#standardized-tensor-names
abbreviation_dictionary = {
'token_embd': 'Token embedding',
'pos_embd': 'Position embedding',
'output_norm': 'Output normalization',
'output': 'Output',
'attn_norm': 'Attention normalization',
'attn_norm_2': 'Attention normalization',
'attn_qkv': 'Attention query-key-value',
'attn_q': 'Attention query',
'attn_k': 'Attention key',
'attn_v': 'Attention value',
'attn_output': 'Attention output',
'ffn_norm': 'Feed-forward network normalization',
'ffn_up': 'Feed-forward network "up"',
'ffn_gate': 'Feed-forward network "gate"',
'ffn_down': 'Feed-forward network "down"',
'ffn_gate_inp': 'Expert-routing layer for the Feed-forward network in Mixture of Expert models',
'ffn_gate_exp': 'Feed-forward network "gate" layer per expert in Mixture of Expert models',
'ffn_down_exp': 'Feed-forward network "down" layer per expert in Mixture of Expert models',
'ffn_up_exp': 'Feed-forward network "up" layer per expert in Mixture of Expert models',
'ssm_in': 'State space model input projections',
'ssm_conv1d': 'State space model rolling/shift',
'ssm_x': 'State space model selective parametrization',
'ssm_a': 'State space model state compression',
'ssm_d': 'State space model skip connection',
'ssm_dt': 'State space model time step',
'ssm_out': 'State space model output projection',
'blk': 'Block',
'enc': 'Encoder',
'dec': 'Decoder',
}
expanded_words = []
for word in words:
word_norm = word.strip().lower()
if word_norm in abbreviation_dictionary:
expanded_words.append(abbreviation_dictionary[word_norm].title())
else:
expanded_words.append(word.title())
return ' '.join(expanded_words)
def dump_markdown_metadata(reader: GGUFReader, args: argparse.Namespace) -> None:
host_endian, file_endian = get_file_host_endian(reader)
markdown_content = ""
markdown_content += f'# {args.model} - GGUF Internal File Dump\n\n'
markdown_content += f'- Endian: {file_endian} endian\n'
markdown_content += '\n'
markdown_content += '## Key Value Metadata Store\n\n'
markdown_content += f'There are {len(reader.fields)} key-value pairs in this file\n'
markdown_content += '\n'
kv_dump_table: list[dict[str, str | int]] = []
for n, field in enumerate(reader.fields.values(), 1):
if not field.types:
pretty_type = 'N/A'
elif field.types[0] == GGUFValueType.ARRAY:
nest_count = len(field.types) - 1
pretty_type = '[' * nest_count + str(field.types[-1].name) + ']' * nest_count
else:
pretty_type = str(field.types[-1].name)
total_elements = len(field.data)
value = ""
if len(field.types) == 1:
curr_type = field.types[0]
if curr_type == GGUFValueType.STRING:
value = repr(str(bytes(field.parts[-1]), encoding='utf-8')[:60])
elif curr_type in reader.gguf_scalar_to_np:
value = str(field.parts[-1][0])
else:
if field.types[0] == GGUFValueType.ARRAY:
curr_type = field.types[1]
if curr_type == GGUFValueType.STRING:
render_element = min(5, total_elements)
for element_pos in range(render_element):
value += repr(str(bytes(field.parts[-1 - element_pos]), encoding='utf-8')[:5]) + (", " if total_elements > 1 else "")
elif curr_type in reader.gguf_scalar_to_np:
render_element = min(7, total_elements)
for element_pos in range(render_element):
value += str(field.parts[-1 - element_pos][0]) + (", " if total_elements > 1 else "")
value = f'[ {value}{" ..." if total_elements > 1 else ""} ]'
kv_dump_table.append({"n":n, "pretty_type":pretty_type, "total_elements":total_elements, "field_name":field.name, "value":value})
kv_dump_table_header_map = [
{'key_name':'n', 'header_name':'POS', 'align':'right'},
{'key_name':'pretty_type', 'header_name':'TYPE', 'align':'left'},
{'key_name':'total_elements', 'header_name':'Count', 'align':'right'},
{'key_name':'field_name', 'header_name':'Key', 'align':'left'},
{'key_name':'value', 'header_name':'Value', 'align':'left'},
]
markdown_content += markdown_table_with_alignment_support(kv_dump_table_header_map, kv_dump_table)
markdown_content += "\n"
if not args.no_tensors:
# Group tensors by their prefix and maintain order
tensor_prefix_order: list[str] = []
tensor_name_to_key: dict[str, int] = {}
tensor_groups: dict[str, list[ReaderTensor]] = {}
total_elements = sum(tensor.n_elements for tensor in reader.tensors)
# Parsing Tensors Record
for key, tensor in enumerate(reader.tensors):
tensor_components = tensor.name.split('.')
# Classify Tensor Group
tensor_group_name = "base"
if tensor_components[0] == 'blk':
tensor_group_name = f"{tensor_components[0]}.{tensor_components[1]}"
elif tensor_components[0] in ['enc', 'dec'] and tensor_components[1] == 'blk':
tensor_group_name = f"{tensor_components[0]}.{tensor_components[1]}.{tensor_components[2]}"
elif tensor_components[0] in ['enc', 'dec']:
tensor_group_name = f"{tensor_components[0]}"
# Check if new Tensor Group
if tensor_group_name not in tensor_groups:
tensor_groups[tensor_group_name] = []
tensor_prefix_order.append(tensor_group_name)
# Record Tensor and Tensor Position
tensor_groups[tensor_group_name].append(tensor)
tensor_name_to_key[tensor.name] = key
# Tensors Mapping Dump
markdown_content += f'## Tensors Overview {element_count_rounded_notation(total_elements)} Elements\n\n'
markdown_content += f'Total number of elements in all tensors: {total_elements} Elements\n'
markdown_content += '\n'
for group in tensor_prefix_order:
tensors = tensor_groups[group]
group_elements = sum(tensor.n_elements for tensor in tensors)
markdown_content += f"- [{translate_tensor_name(group)} Tensor Group - {element_count_rounded_notation(group_elements)} Elements](#{group.replace('.', '_')})\n"
markdown_content += "\n"
markdown_content += "### Tensor Data Offset\n"
markdown_content += '\n'
markdown_content += 'This table contains the offset and data segment relative to start of file\n'
markdown_content += '\n'
tensor_mapping_table: list[dict[str, str | int]] = []
for key, tensor in enumerate(reader.tensors):
data_offset_pretty = '{0:#16x}'.format(tensor.data_offset)
data_size_pretty = '{0:#16x}'.format(tensor.n_bytes)
tensor_mapping_table.append({"t_id":key, "layer_name":tensor.name, "data_offset":data_offset_pretty, "data_size":data_size_pretty})
tensors_mapping_table_header_map = [
{'key_name':'t_id', 'header_name':'T_ID', 'align':'right'},
{'key_name':'layer_name', 'header_name':'Tensor Layer Name', 'align':'left'},
{'key_name':'data_offset', 'header_name':'Data Offset (B)', 'align':'right'},
{'key_name':'data_size', 'header_name':'Data Size (B)', 'align':'right'},
]
markdown_content += markdown_table_with_alignment_support(tensors_mapping_table_header_map, tensor_mapping_table)
markdown_content += "\n"
for group in tensor_prefix_order:
tensors = tensor_groups[group]
group_elements = sum(tensor.n_elements for tensor in tensors)
group_percentage = group_elements / total_elements * 100
markdown_content += f"### <a name=\"{group.replace('.', '_')}\">{translate_tensor_name(group)} Tensor Group : {element_count_rounded_notation(group_elements)} Elements</a>\n\n"
# Precalculate column sizing for visual consistency
prettify_element_est_count_size: int = 1
prettify_element_count_size: int = 1
prettify_dimension_max_widths: dict[int, int] = {}
for tensor in tensors:
prettify_element_est_count_size = max(prettify_element_est_count_size, len(str(element_count_rounded_notation(tensor.n_elements))))
prettify_element_count_size = max(prettify_element_count_size, len(str(tensor.n_elements)))
for i, dimension_size in enumerate(list(tensor.shape) + [1] * (4 - len(tensor.shape))):
prettify_dimension_max_widths[i] = max(prettify_dimension_max_widths.get(i,1), len(str(dimension_size)))
# Generate Tensor Layer Table Content
tensor_dump_table: list[dict[str, str | int]] = []
for tensor in tensors:
human_friendly_name = translate_tensor_name(tensor.name.replace(".weight", ".(W)").replace(".bias", ".(B)"))
pretty_dimension = ' x '.join(f'{str(d):>{prettify_dimension_max_widths[i]}}' for i, d in enumerate(list(tensor.shape) + [1] * (4 - len(tensor.shape))))
element_count_est = f"({element_count_rounded_notation(tensor.n_elements):>{prettify_element_est_count_size}})"
element_count_string = f"{element_count_est} {tensor.n_elements:>{prettify_element_count_size}}"
type_name_string = f"{tensor.tensor_type.name}"
tensor_dump_table.append({"t_id":tensor_name_to_key[tensor.name], "layer_name":tensor.name, "human_layer_name":human_friendly_name, "element_count":element_count_string, "pretty_dimension":pretty_dimension, "tensor_type":type_name_string})
tensor_dump_table_header_map = [
{'key_name':'t_id', 'header_name':'T_ID', 'align':'right'},
{'key_name':'layer_name', 'header_name':'Tensor Layer Name', 'align':'left'},
{'key_name':'human_layer_name', 'header_name':'Human Friendly Tensor Layer Name', 'align':'left'},
{'key_name':'element_count', 'header_name':'Elements', 'align':'left'},
{'key_name':'pretty_dimension', 'header_name':'Shape', 'align':'left'},
{'key_name':'tensor_type', 'header_name':'Type', 'align':'left'},
]
markdown_content += markdown_table_with_alignment_support(tensor_dump_table_header_map, tensor_dump_table)
markdown_content += "\n"
markdown_content += f"- Total elements in {group}: ({element_count_rounded_notation(group_elements):>4}) {group_elements}\n"
markdown_content += f"- Percentage of total elements: {group_percentage:.2f}%\n"
markdown_content += "\n\n"
print(markdown_content) # noqa: NP100
def main() -> None:
parser = argparse.ArgumentParser(description="Dump GGUF file metadata")
parser.add_argument("model", type=str, help="GGUF format model filename")
parser.add_argument("--no-tensors", action="store_true", help="Don't dump tensor metadata")
parser.add_argument("--json", action="store_true", help="Produce JSON output")
parser.add_argument("--json-array", action="store_true", help="Include full array values in JSON output (long)")
parser.add_argument("--data-offset", action="store_true", help="Start of data offset")
parser.add_argument("--data-alignment", action="store_true", help="Data alignment applied globally to data field")
parser.add_argument("--markdown", action="store_true", help="Produce markdown output")
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
args = parser.parse_args(None if len(sys.argv) > 1 else ["--help"])
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
if not args.json and not args.markdown and not args.data_offset and not args.data_alignment:
logger.info(f'* Loading: {args.model}')
reader = GGUFReader(args.model, 'r')
if args.json:
dump_metadata_json(reader, args)
elif args.markdown:
dump_markdown_metadata(reader, args)
elif args.data_offset:
print(reader.data_offset) # noqa: NP100
elif args.data_alignment:
print(reader.alignment) # noqa: NP100
else:
dump_metadata(reader, args)
if __name__ == '__main__':
main()

91
gguf-py/scripts/gguf_hash.py Executable file
View file

@ -0,0 +1,91 @@
#!/usr/bin/env python3
from __future__ import annotations
import uuid
import hashlib
import logging
import argparse
import os
import sys
from pathlib import Path
from tqdm import tqdm
# Necessary to load the local gguf package
if "NO_LOCAL_GGUF" not in os.environ and (Path(__file__).parent.parent.parent / 'gguf-py').exists():
sys.path.insert(0, str(Path(__file__).parent.parent))
from gguf import GGUFReader # noqa: E402
logger = logging.getLogger("gguf-hash")
# UUID_NAMESPACE_LLAMA_CPP = uuid.uuid5(uuid.NAMESPACE_URL, 'en.wikipedia.org/wiki/Llama.cpp')
UUID_NAMESPACE_LLAMA_CPP = uuid.UUID('ef001206-dadc-5f6d-a15f-3359e577d4e5')
# For more information about what field.parts and field.data represent,
# please see the comments in the modify_gguf.py example.
def gguf_hash(reader: GGUFReader, filename: str, disable_progress_bar) -> None:
sha1 = hashlib.sha1()
uuidv5_sha1 = hashlib.sha1()
uuidv5_sha1.update(UUID_NAMESPACE_LLAMA_CPP.bytes)
# Total Weight Calculation For Progress Bar
total_weights = 0
for n, tensor in enumerate(reader.tensors, 1):
# We don't need these
if tensor.name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
continue
# Calculate Tensor Volume
sum_weights_in_tensor = 1
for dim in tensor.shape:
sum_weights_in_tensor *= dim
total_weights += sum_weights_in_tensor
# Hash Progress Bar
bar = tqdm(desc="Hashing", total=total_weights, unit="weights", unit_scale=True, disable=disable_progress_bar)
# Hashing Process
for n, tensor in enumerate(reader.tensors, 1):
# We don't need these
if tensor.name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
continue
# Progressbar
sum_weights_in_tensor = 1
for dim in tensor.shape:
sum_weights_in_tensor *= dim
bar.update(sum_weights_in_tensor)
sha1_layer = hashlib.sha1()
sha1_layer.update(tensor.data.data)
sha1.update(tensor.data.data)
uuidv5_sha1.update(tensor.data.data)
print("sha1 {0} {1}:{2}".format(sha1_layer.hexdigest(), filename, tensor.name)) # noqa: NP100
# Flush Hash Progress Bar
bar.close()
# Display Hash Output
print("sha1 {0} {1}".format(sha1.hexdigest(), filename)) # noqa: NP100
print("UUIDv5 {0} {1}".format(uuid.UUID(bytes=uuidv5_sha1.digest()[:16], version=5), filename)) # noqa: NP100
def main() -> None:
parser = argparse.ArgumentParser(description="Dump GGUF file metadata")
parser.add_argument("model", type=str, help="GGUF format model filename")
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
parser.add_argument("--progressbar", action="store_true", help="enable progressbar")
args = parser.parse_args(None if len(sys.argv) > 1 else ["--help"])
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
reader = GGUFReader(args.model, 'r')
gguf_hash(reader, args.model, not args.progressbar)
if __name__ == '__main__':
main()

View file

@ -1,4 +1,6 @@
#!/usr/bin/env python3
from __future__ import annotations
import logging
import argparse
import os
@ -101,8 +103,7 @@ def copy_with_new_metadata(reader: gguf.GGUFReader, writer: gguf.GGUFWriter, new
logger.debug(f'Copying {field.name}')
if val.value is not None:
writer.add_key(field.name)
writer.add_val(val.value, val.type)
writer.add_key_value(field.name, val.value, val.type)
if gguf.Keys.Tokenizer.CHAT_TEMPLATE in new_metadata:
logger.debug('Adding chat template(s)')
@ -111,16 +112,13 @@ def copy_with_new_metadata(reader: gguf.GGUFReader, writer: gguf.GGUFWriter, new
for key, val in new_metadata.items():
logger.debug(f'Adding {key}: "{val.value}" {val.description}')
writer.add_key(key)
writer.add_val(val.value, val.type)
writer.add_key_value(key, val.value, val.type)
total_bytes = 0
for tensor in reader.tensors:
total_bytes += tensor.n_bytes
# Dimensions are written in reverse order, so flip them first
shape = np.flipud(tensor.shape).tolist()
writer.add_tensor_info(tensor.name, shape, tensor.data.dtype, tensor.data.nbytes, tensor.tensor_type)
writer.add_tensor_info(tensor.name, tensor.data.shape, tensor.data.dtype, tensor.data.nbytes, tensor.tensor_type)
bar = tqdm(desc="Writing", total=total_bytes, unit="byte", unit_scale=True)
@ -146,6 +144,7 @@ def main() -> None:
parser.add_argument("--general-description", type=str, help="The models general.description", metavar='"Description ..."')
parser.add_argument("--chat-template", type=str, help="Chat template string (or JSON string containing templates)", metavar='"{% ... %} ..."')
parser.add_argument("--chat-template-config", type=Path, help="Config file containing chat template(s)", metavar='tokenizer_config.json')
parser.add_argument("--pre-tokenizer", type=str, help="The models tokenizer.ggml.pre", metavar='"pre tokenizer"')
parser.add_argument("--remove-metadata", action="append", type=str, help="Remove metadata (by key name) from output model", metavar='general.url')
parser.add_argument("--special-token", action="append", type=str, help="Special token by value", nargs=2, metavar=(' | '.join(token_names.keys()), '"<token>"'))
parser.add_argument("--special-token-by-id", action="append", type=str, help="Special token by id", nargs=2, metavar=(' | '.join(token_names.keys()), '0'))
@ -174,6 +173,9 @@ def main() -> None:
if template:
new_metadata[gguf.Keys.Tokenizer.CHAT_TEMPLATE] = MetadataDetails(gguf.GGUFValueType.STRING, template)
if args.pre_tokenizer:
new_metadata[gguf.Keys.Tokenizer.PRE] = MetadataDetails(gguf.GGUFValueType.STRING, args.pre_tokenizer)
if remove_metadata:
logger.warning('*** Warning *** Warning *** Warning **')
logger.warning('* Most metadata is required for a fully functional GGUF file,')

View file

@ -1,4 +1,4 @@
import gguf # noqa: F401
import gguf # noqa: F401 # pyright: ignore[reportUnusedImport]
# TODO: add tests