diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py index 6fb84d049..cae1551a2 100755 --- a/convert-hf-to-gguf.py +++ b/convert-hf-to-gguf.py @@ -1705,7 +1705,10 @@ class BertModel(Model): n_dims = len(data.shape) new_dtype: type[np.floating[Any]] - if self.ftype == 1 and name.endswith(".weight") and n_dims == 2: + if ( + self.ftype == 1 and name.endswith(".weight") and n_dims == 2 + and name != "embeddings.token_type_embeddings.weight" # not used with get_rows, must be F32 + ): # if f16 desired, convert any float32 2-dim weight tensors to float16 new_dtype = np.float16 else: diff --git a/llama.cpp b/llama.cpp index 42756b48f..f64571dc8 100644 --- a/llama.cpp +++ b/llama.cpp @@ -1881,7 +1881,6 @@ struct llama_context { struct ggml_tensor * inp_tokens; // I32 [n_batch] struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch] struct ggml_tensor * inp_pos; // I32 [n_batch] - struct ggml_tensor * inp_type; // I32 [n_batch] struct ggml_tensor * inp_KQ_mask; // F32 [n_ctx, n_batch] struct ggml_tensor * inp_K_shift; // I32 [n_ctx] struct ggml_tensor * inp_sum; // F32 [1, n_batch] @@ -5746,13 +5745,14 @@ struct llm_build_context { struct ggml_tensor * inpL; // get input vectors with right size - struct ggml_tensor * inp_type = ggml_view_1d(ctx0, lctx.inp_type, n_tokens, 0); struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0); struct ggml_tensor * inp_sum = ggml_view_1d(ctx0, lctx.inp_sum, n_tokens, 0); // construct input embeddings (token, type, position) inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb); - inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.type_embd, inp_type), inpL); + // token types are hardcoded to zero ("Sentence A") + struct ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0); + inpL = ggml_add(ctx0, inpL, type_row0); inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL); cb(inpL, "inp_embd", -1); @@ -7249,12 +7249,6 @@ static struct ggml_cgraph * llama_build_graph( ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos)); } - { - // for embedding models, token type is always zero ("sentence A") - GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_type->buffer)); - memset(lctx.inp_type->data, 0, batch.n_tokens * ggml_element_size(lctx.inp_type)); - } - { const int64_t n_kv = llm.n_kv; const int64_t n_tokens = batch.n_tokens; @@ -11240,7 +11234,6 @@ struct llama_context * llama_new_context_with_model( ctx->inp_tokens = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_I32, cparams.n_batch); ctx->inp_embd = ggml_new_tensor_2d(ctx->ctx_input, GGML_TYPE_F32, hparams.n_embd, cparams.n_batch); ctx->inp_pos = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_I32, cparams.n_batch); - ctx->inp_type = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_I32, cparams.n_batch); ctx->inp_KQ_mask = ggml_new_tensor_2d(ctx->ctx_input, GGML_TYPE_F32, cparams.n_ctx, cparams.n_batch); ctx->inp_K_shift = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_I32, cparams.n_ctx); ctx->inp_sum = ggml_new_tensor_2d(ctx->ctx_input, GGML_TYPE_F32, 1, cparams.n_batch); @@ -11248,7 +11241,6 @@ struct llama_context * llama_new_context_with_model( ggml_set_name(ctx->inp_tokens, "inp_tokens"); ggml_set_name(ctx->inp_embd, "inp_embd"); ggml_set_name(ctx->inp_pos, "inp_pos"); - ggml_set_name(ctx->inp_type, "inp_type"); ggml_set_name(ctx->inp_KQ_mask, "inp_KQ_mask"); ggml_set_name(ctx->inp_K_shift, "inp_K_shift"); ggml_set_name(ctx->inp_sum, "inp_sum");