Merge branch 'ggerganov:master' into master

This commit is contained in:
StrangeBytesDev 2024-03-02 13:13:17 -08:00 committed by GitHub
commit ab7a989293
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
48 changed files with 3561 additions and 2324 deletions

View file

@ -145,6 +145,28 @@ jobs:
cd build
ctest -L main --verbose
ubuntu-22-cmake-vulkan:
runs-on: ubuntu-22.04
steps:
- name: Clone
id: checkout
uses: actions/checkout@v3
- name: Dependencies
id: depends
run: |
sudo apt-get update
sudo apt-get install build-essential libvulkan-dev
- name: Build
id: cmake_build
run: |
mkdir build
cd build
cmake -DLLAMA_VULKAN=ON ..
cmake --build . --config Release -j $(nproc)
ubuntu-22-cmake-sycl:
runs-on: ubuntu-22.04

View file

@ -3,12 +3,14 @@ name: Python check requirements.txt
on:
push:
paths:
- '.github/workflows/python-check-requirements.yml'
- 'scripts/check-requirements.sh'
- 'convert*.py'
- 'requirements.txt'
- 'requirements/*.txt'
pull_request:
paths:
- '.github/workflows/python-check-requirements.yml'
- 'scripts/check-requirements.sh'
- 'convert*.py'
- 'requirements.txt'
@ -26,4 +28,4 @@ jobs:
with:
python-version: "3.11"
- name: Run check-requirements.sh script
run: bash scripts/check-requirements.sh nocleanup
run: bash scripts/check-requirements.sh

View file

@ -10,6 +10,8 @@ on:
pull_request:
types: [opened, synchronize, reopened]
paths: ['.github/workflows/server.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'examples/server/tests/**.*']
schedule:
- cron: '00 0 * * *'
jobs:
server:
@ -70,14 +72,15 @@ jobs:
run: |
pip install -r examples/server/tests/requirements.txt
- name: Download models
id: download_models
run: |
cd examples/server/tests
../../../scripts/hf.sh --repo ggml-org/models --file tinyllamas/stories260K.gguf
- name: Tests
id: server_integration_test
id: server_integration_tests
run: |
cd examples/server/tests
PORT=8888 ./tests.sh
- name: Slow tests
id: server_integration_tests_slow
if: github.event.schedule != ''
run: |
cd examples/server/tests
PORT=8888 ./tests.sh --stop --no-skipped --no-capture --tags slow

View file

@ -1,6 +1,7 @@
# llama.cpp for SYCL
- [Background](#background)
- [News](#news)
- [OS](#os)
- [Intel GPU](#intel-gpu)
- [Docker](#docker)
@ -25,6 +26,21 @@ The llama.cpp for SYCL is used to support Intel GPUs.
For Intel CPU, recommend to use llama.cpp for X86 (Intel MKL building).
## News
- 2024.3
- Support multiple cards: **--split-mode**: [none|layer]; not support [row], it's on developing.
- Support to assign main GPU by **--main-gpu**, replace $GGML_SYCL_DEVICE.
- Support detecting all GPUs with level-zero and same top **Max compute units**.
- Support OPs
- hardsigmoid
- hardswish
- pool2d
- 2024.1
- Create SYCL backend for Intel GPU.
- Support Windows build
## OS
|OS|Status|Verified|
@ -449,6 +465,7 @@ Using device **0** (Intel(R) Arc(TM) A770 Graphics) as main device
|-|-|-|
|GGML_SYCL_DEVICE|0 (default) or 1|Set the device id used. Check the device ids by default running output|
|GGML_SYCL_DEBUG|0 (default) or 1|Enable log function by macro: GGML_SYCL_DEBUG|
|ZES_ENABLE_SYSMAN| 0 (default) or 1|Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory.<br>Recommended to use when --split-mode = layer|
## Known Issue
@ -458,6 +475,10 @@ Using device **0** (Intel(R) Arc(TM) A770 Graphics) as main device
Solution: add **--no-mmap** or **--mmap 0**.
- Split-mode: [row] is not supported
It's on developing.
## Q&A
- Error: `error while loading shared libraries: libsycl.so.7: cannot open shared object file: No such file or directory`.

View file

@ -10,6 +10,7 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others)
### Hot topics
- The `api_like_OAI.py` script has been removed - use `server` instead ([#5766](https://github.com/ggerganov/llama.cpp/issues/5766#issuecomment-1969037761))
- Support for chat templates: [Wiki (contributions welcome)](https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template)
- Support for Gemma models: https://github.com/ggerganov/llama.cpp/pull/5631
- Non-linear quantization IQ4_NL: https://github.com/ggerganov/llama.cpp/pull/5590
@ -785,7 +786,7 @@ And after 4.45 hours, you will have the final perplexity.
### Interactive mode
If you want a more ChatGPT-like experience, you can run in interactive mode by passing `-i` as a parameter.
In this mode, you can always interrupt generation by pressing Ctrl+C and entering one or more lines of text, which will be converted into tokens and appended to the current context. You can also specify a *reverse prompt* with the parameter `-r "reverse prompt string"`. This will result in user input being prompted whenever the exact tokens of the reverse prompt string are encountered in the generation. A typical use is to use a prompt that makes LLaMa emulate a chat between multiple users, say Alice and Bob, and pass `-r "Alice:"`.
In this mode, you can always interrupt generation by pressing Ctrl+C and entering one or more lines of text, which will be converted into tokens and appended to the current context. You can also specify a *reverse prompt* with the parameter `-r "reverse prompt string"`. This will result in user input being prompted whenever the exact tokens of the reverse prompt string are encountered in the generation. A typical use is to use a prompt that makes LLaMA emulate a chat between multiple users, say Alice and Bob, and pass `-r "Alice:"`.
Here is an example of a few-shot interaction, invoked with the command
@ -849,7 +850,7 @@ Sample run:
```
== Running in interactive mode. ==
- Press Ctrl+C to interject at any time.
- Press Return to return control to LLaMa.
- Press Return to return control to LLaMA.
- If you want to submit another line, end your input in '\'.
Below is an instruction that describes a task. Write a response that appropriately completes the request.

View file

@ -640,6 +640,10 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
} else if (arg_next == "layer") {
params.split_mode = LLAMA_SPLIT_MODE_LAYER;
} else if (arg_next == "row") {
#ifdef GGML_USE_SYCL
fprintf(stderr, "warning: The split mode value:[row] is not supported by llama.cpp with SYCL. It's developing.\nExit!\n");
exit(1);
#endif // GGML_USE_SYCL
params.split_mode = LLAMA_SPLIT_MODE_ROW;
} else {
invalid_param = true;
@ -1015,7 +1019,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
printf(" --ignore-eos ignore end of stream token and continue generating (implies --logit-bias 2-inf)\n");
printf(" --no-penalize-nl do not penalize newline token\n");
printf(" --temp N temperature (default: %.1f)\n", (double)sparams.temp);
printf(" --logits-all return logits for all tokens in the batch (default: disabled)\n");
printf(" --all-logits return logits for all tokens in the batch (default: disabled)\n");
printf(" --hellaswag compute HellaSwag score over random tasks from datafile supplied with -f\n");
printf(" --hellaswag-tasks N number of tasks to use when computing the HellaSwag score (default: %zu)\n", params.hellaswag_tasks);
printf(" --winogrande compute Winogrande score over random tasks from datafile supplied with -f\n");
@ -1281,7 +1285,6 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
cparams.n_batch = params.n_batch;
cparams.n_threads = params.n_threads;
cparams.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
cparams.mul_mat_q = params.mul_mat_q;
cparams.seed = params.seed;
cparams.logits_all = params.logits_all;
cparams.embedding = params.embedding;
@ -1725,7 +1728,6 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict);
fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", sparams.n_probs);
fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false");
fprintf(stream, "no_mul_mat_q: %s # default: false\n", !params.mul_mat_q ? "true" : "false");
fprintf(stream, "no_penalize_nl: %s # default: false\n", !sparams.penalize_nl ? "true" : "false");
fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type);
fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride);

View file

@ -115,7 +115,6 @@ struct gpt_params {
bool kl_divergence = false; // compute KL-divergence
bool mul_mat_q = true; // if true, use mul_mat_q kernels instead of cuBLAS
bool random_prompt = false; // do not randomize prompt if none provided
bool use_color = false; // use color to distinguish generations and inputs
bool interactive = false; // interactive mode

View file

@ -8,9 +8,10 @@ import json
import os
import re
import sys
from abc import ABC, abstractmethod
from enum import IntEnum
from pathlib import Path
from typing import TYPE_CHECKING, Any, ContextManager, Iterator, Sequence, cast
from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterator, Sequence, TypeVar, cast
import numpy as np
import torch
@ -35,8 +36,11 @@ class SentencePieceTokenTypes(IntEnum):
UNUSED = 5
BYTE = 6
AnyModel = TypeVar("AnyModel", bound="type[Model]")
class Model(ABC):
_model_classes: dict[str, type[Model]] = {}
class Model:
def __init__(self, dir_model: Path, ftype: int, fname_out: Path, is_big_endian: bool):
self.dir_model = dir_model
self.ftype = ftype
@ -47,10 +51,14 @@ class Model:
self.num_parts = Model.count_model_parts(self.dir_model, ".safetensors" if self.is_safetensors else ".bin")
self.part_names = self._get_part_names()
self.hparams = Model.load_hparams(self.dir_model)
self.model_arch = self._get_model_architecture()
self.gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=False)
self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer"])
@property
@abstractmethod
def model_arch(self) -> gguf.MODEL_ARCH:
pass
def find_hparam(self, keys: Sequence[str], optional: bool = False) -> Any:
key = next((k for k in keys if k in self.hparams), None)
if key is not None:
@ -96,9 +104,11 @@ class Model:
if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
self.gguf_writer.add_head_count_kv(n_head_kv)
if (rope_theta := self.hparams.get("rope_theta")) is not None:
self.gguf_writer.add_rope_freq_base(rope_theta)
if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon"], optional=True)) is not None:
if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
self.gguf_writer.add_layer_norm_eps(f_norm_eps)
if (n_experts := self.hparams.get("num_local_experts")) is not None:
self.gguf_writer.add_expert_count(n_experts)
@ -174,53 +184,21 @@ class Model:
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
return json.load(f)
@staticmethod
def from_model_architecture(model_architecture):
if model_architecture == "GPTNeoXForCausalLM":
return GPTNeoXModel
if model_architecture == "BloomForCausalLM":
return BloomModel
if model_architecture == "MPTForCausalLM":
return MPTModel
if model_architecture in ("BaichuanForCausalLM", "BaiChuanForCausalLM"):
return BaichuanModel
if model_architecture in ("FalconForCausalLM", "RWForCausalLM"):
return FalconModel
if model_architecture == "GPTBigCodeForCausalLM":
return StarCoderModel
if model_architecture == "GPTRefactForCausalLM":
return RefactModel
if model_architecture == "PersimmonForCausalLM":
return PersimmonModel
if model_architecture in ("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM"):
return StableLMModel
if model_architecture == "QWenLMHeadModel":
return QwenModel
if model_architecture == "Qwen2ForCausalLM":
return Model
if model_architecture == "MixtralForCausalLM":
return MixtralModel
if model_architecture == "GPT2LMHeadModel":
return GPT2Model
if model_architecture == "PhiForCausalLM":
return Phi2Model
if model_architecture == "PlamoForCausalLM":
return PlamoModel
if model_architecture == "CodeShellForCausalLM":
return CodeShellModel
if model_architecture == "OrionForCausalLM":
return OrionModel
if model_architecture == "InternLM2ForCausalLM":
return InternLM2Model
if model_architecture == "MiniCPMForCausalLM":
return MiniCPMModel
if model_architecture == "BertModel":
return BertModel
if model_architecture == "NomicBertModel":
return NomicBertModel
if model_architecture == "GemmaForCausalLM":
return GemmaModel
return Model
@classmethod
def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
assert names
def func(modelcls: type[Model]):
for name in names:
cls._model_classes[name] = modelcls
return modelcls
return func
@classmethod
def from_model_architecture(cls, arch):
try:
return cls._model_classes[arch]
except KeyError:
raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
def _is_model_safetensors(self) -> bool:
return Model.count_model_parts(self.dir_model, ".safetensors") > 0
@ -235,55 +213,6 @@ class Model:
return ("pytorch_model.bin",)
return (f"pytorch_model-{n:05}-of-{self.num_parts:05}.bin" for n in range(1, self.num_parts + 1))
def _get_model_architecture(self) -> gguf.MODEL_ARCH:
arch = self.hparams["architectures"][0]
if arch == "GPTNeoXForCausalLM":
return gguf.MODEL_ARCH.GPTNEOX
if arch == "BloomForCausalLM":
return gguf.MODEL_ARCH.BLOOM
if arch == "MPTForCausalLM":
return gguf.MODEL_ARCH.MPT
if arch in ("BaichuanForCausalLM", "BaiChuanForCausalLM"):
return gguf.MODEL_ARCH.BAICHUAN
if arch in ("FalconForCausalLM", "RWForCausalLM"):
return gguf.MODEL_ARCH.FALCON
if arch == "GPTBigCodeForCausalLM":
return gguf.MODEL_ARCH.STARCODER
if arch == "GPTRefactForCausalLM":
return gguf.MODEL_ARCH.REFACT
if arch == "PersimmonForCausalLM":
return gguf.MODEL_ARCH.PERSIMMON
if arch in ("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM"):
return gguf.MODEL_ARCH.STABLELM
if arch == "QWenLMHeadModel":
return gguf.MODEL_ARCH.QWEN
if arch == "Qwen2ForCausalLM":
return gguf.MODEL_ARCH.QWEN2
if arch == "MixtralForCausalLM":
return gguf.MODEL_ARCH.LLAMA
if arch == "GPT2LMHeadModel":
return gguf.MODEL_ARCH.GPT2
if arch == "PhiForCausalLM":
return gguf.MODEL_ARCH.PHI2
if arch == "PlamoForCausalLM":
return gguf.MODEL_ARCH.PLAMO
if arch == "CodeShellForCausalLM":
return gguf.MODEL_ARCH.CODESHELL
if arch == "OrionForCausalLM":
return gguf.MODEL_ARCH.ORION
if arch == "InternLM2ForCausalLM":
return gguf.MODEL_ARCH.INTERNLM2
if arch == "MiniCPMForCausalLM":
return gguf.MODEL_ARCH.MINICPM
if arch == "BertModel":
return gguf.MODEL_ARCH.BERT
if arch == "NomicBertModel":
return gguf.MODEL_ARCH.NOMIC_BERT
if arch == "GemmaForCausalLM":
return gguf.MODEL_ARCH.GEMMA
raise NotImplementedError(f'Architecture "{arch}" not supported!')
def _set_vocab_gpt2(self):
dir_model = self.dir_model
hparams = self.hparams
@ -451,7 +380,10 @@ class Model:
special_vocab.add_to_gguf(self.gguf_writer)
@Model.register("GPTNeoXForCausalLM")
class GPTNeoXModel(Model):
model_arch = gguf.MODEL_ARCH.GPTNEOX
def set_gguf_parameters(self):
block_count = self.hparams["num_hidden_layers"]
@ -468,7 +400,10 @@ class GPTNeoXModel(Model):
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
@Model.register("BloomForCausalLM")
class BloomModel(Model):
model_arch = gguf.MODEL_ARCH.BLOOM
def set_gguf_parameters(self):
self.gguf_writer.add_name("Bloom")
n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
@ -560,7 +495,10 @@ class BloomModel(Model):
print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
@Model.register("MPTForCausalLM")
class MPTModel(Model):
model_arch = gguf.MODEL_ARCH.MPT
def set_gguf_parameters(self):
block_count = self.hparams["n_layers"]
self.gguf_writer.add_name(self.dir_model.name)
@ -623,7 +561,10 @@ class MPTModel(Model):
self.gguf_writer.add_tensor(new_name, data)
@Model.register("OrionForCausalLM")
class OrionModel(Model):
model_arch = gguf.MODEL_ARCH.ORION
def set_vocab(self):
self._set_vocab_sentencepiece()
@ -702,7 +643,10 @@ class OrionModel(Model):
self.gguf_writer.add_tensor(new_name, data)
@Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
class BaichuanModel(Model):
model_arch = gguf.MODEL_ARCH.BAICHUAN
def set_vocab(self):
self._set_vocab_sentencepiece()
@ -817,7 +761,10 @@ class BaichuanModel(Model):
return weights[r * n_part:r * n_part + r, ...]
@Model.register("FalconForCausalLM", "RWForCausalLM")
class FalconModel(Model):
model_arch = gguf.MODEL_ARCH.FALCON
def set_gguf_parameters(self):
block_count = self.hparams.get("num_hidden_layers")
if block_count is None:
@ -910,7 +857,10 @@ class FalconModel(Model):
self.gguf_writer.add_tensor(new_name, data)
@Model.register("GPTBigCodeForCausalLM")
class StarCoderModel(Model):
model_arch = gguf.MODEL_ARCH.STARCODER
def set_gguf_parameters(self):
block_count = self.hparams["n_layer"]
@ -925,7 +875,10 @@ class StarCoderModel(Model):
self.gguf_writer.add_file_type(self.ftype)
@Model.register("GPTRefactForCausalLM")
class RefactModel(Model):
model_arch = gguf.MODEL_ARCH.REFACT
def set_gguf_parameters(self):
hidden_dim = self.hparams["n_embd"]
inner_dim = 4 * hidden_dim
@ -1009,7 +962,10 @@ class RefactModel(Model):
self.gguf_writer.add_tensor(new_name, data)
@Model.register("PersimmonForCausalLM")
class PersimmonModel(Model):
model_arch = gguf.MODEL_ARCH.PERSIMMON
def set_gguf_parameters(self):
block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
head_count = self.hparams["num_attention_heads"]
@ -1057,7 +1013,10 @@ class PersimmonModel(Model):
self.gguf_writer.add_tensor(new_name, data)
@Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
class StableLMModel(Model):
model_arch = gguf.MODEL_ARCH.STABLELM
def set_vocab(self):
if (self.dir_model / "tokenizer.json").is_file():
self._set_vocab_gpt2()
@ -1081,12 +1040,18 @@ class StableLMModel(Model):
self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
@Model.register("MixtralForCausalLM")
class MixtralModel(Model):
model_arch = gguf.MODEL_ARCH.LLAMA
def set_vocab(self):
self._set_vocab_sentencepiece()
@Model.register("MiniCPMForCausalLM")
class MiniCPMModel(Model):
model_arch = gguf.MODEL_ARCH.MINICPM
def set_gguf_parameters(self):
block_count = self.hparams["num_hidden_layers"]
self.gguf_writer.add_name("MiniCPM")
@ -1163,7 +1128,10 @@ class MiniCPMModel(Model):
self.gguf_writer.add_tensor(new_name, data)
@Model.register("QWenLMHeadModel")
class QwenModel(Model):
model_arch = gguf.MODEL_ARCH.QWEN
@staticmethod
def token_bytes_to_string(b):
from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
@ -1243,7 +1211,15 @@ class QwenModel(Model):
self.gguf_writer.add_tensor(new_name, data)
@Model.register("Qwen2ForCausalLM")
class Qwen2Model(Model):
model_arch = gguf.MODEL_ARCH.QWEN2
@Model.register("GPT2LMHeadModel")
class GPT2Model(Model):
model_arch = gguf.MODEL_ARCH.GPT2
def set_gguf_parameters(self):
self.gguf_writer.add_name(self.dir_model.name)
self.gguf_writer.add_block_count(self.hparams["n_layer"])
@ -1305,7 +1281,10 @@ class GPT2Model(Model):
self.gguf_writer.add_tensor("output.weight", data)
@Model.register("PhiForCausalLM")
class Phi2Model(Model):
model_arch = gguf.MODEL_ARCH.PHI2
def set_gguf_parameters(self):
block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
@ -1327,7 +1306,10 @@ class Phi2Model(Model):
self.gguf_writer.add_add_bos_token(False)
@Model.register("PlamoForCausalLM")
class PlamoModel(Model):
model_arch = gguf.MODEL_ARCH.PLAMO
def set_vocab(self):
self._set_vocab_sentencepiece()
@ -1406,7 +1388,10 @@ class PlamoModel(Model):
self.gguf_writer.add_tensor(new_name, data)
@Model.register("CodeShellForCausalLM")
class CodeShellModel(Model):
model_arch = gguf.MODEL_ARCH.CODESHELL
def set_gguf_parameters(self):
block_count = self.hparams["n_layer"]
@ -1471,7 +1456,10 @@ class CodeShellModel(Model):
print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
@Model.register("InternLM2ForCausalLM")
class InternLM2Model(Model):
model_arch = gguf.MODEL_ARCH.INTERNLM2
def set_vocab(self):
# (TODO): Is there a better way?
# Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
@ -1643,7 +1631,10 @@ in chat mode so that the conversation can end normally.")
self.post_write_tensors(tensor_map, name, data_torch)
@Model.register("BertModel")
class BertModel(Model):
model_arch = gguf.MODEL_ARCH.BERT
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.vocab_size = None
@ -1673,7 +1664,7 @@ class BertModel(Model):
else:
raise NotImplementedError("Only MEAN and CLS pooling types supported")
self.gguf_writer.add_pooling_type(pooling_type.value)
self.gguf_writer.add_pooling_type(pooling_type)
def set_vocab(self):
path = self.dir_model
@ -1749,7 +1740,10 @@ class BertModel(Model):
self.gguf_writer.add_tensor(new_name, data)
@Model.register("NomicBertModel")
class NomicBertModel(BertModel):
model_arch = gguf.MODEL_ARCH.NOMIC_BERT
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
@ -1786,7 +1780,10 @@ class NomicBertModel(BertModel):
yield name, data
@Model.register("GemmaForCausalLM")
class GemmaModel(Model):
model_arch = gguf.MODEL_ARCH.GEMMA
def set_vocab(self):
self._set_vocab_sentencepiece()
@ -1811,16 +1808,15 @@ class GemmaModel(Model):
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
for name, data_torch in self.get_tensors():
# ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
if name.endswith("norm.weight"):
data_torch = data_torch + 1
old_dtype = data_torch.dtype
# convert any unsupported data types to float32
if data_torch.dtype not in (torch.float16, torch.float32):
data_torch = data_torch.to(torch.float32)
# ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
if name.endswith("norm.weight"):
data_torch = data_torch + 1
data = data_torch.squeeze().numpy()
# map tensor names
@ -1843,6 +1839,11 @@ class GemmaModel(Model):
self.gguf_writer.add_tensor(new_name, data)
@Model.register("Starcoder2ForCausalLM")
class StarCoder2Model(Model):
model_arch = gguf.MODEL_ARCH.STARCODER2
###### CONVERSION LOGIC ######

View file

@ -373,7 +373,7 @@ def handle_metadata(cfg, hp):
raise ValueError('Unable to load metadata')
vocab_path = Path(cfg.vocab_dir if cfg.vocab_dir is not None else cfg.model_metadata_dir)
vocab_factory = convert.VocabFactory(vocab_path)
vocab, special_vocab = vocab_factory.load_vocab(cfg.vocabtype, cfg.model_metadata_dir)
vocab, special_vocab = vocab_factory.load_vocab(cfg.vocabtype.split(","), cfg.model_metadata_dir)
convert.check_vocab_size(params, vocab)
return params, vocab, special_vocab
@ -398,8 +398,8 @@ def handle_args():
help ='Load HuggingFace/.pth vocab and metadata from the specified directory')
parser.add_argument("--vocab-dir", type=Path,
help="directory containing tokenizer.model, if separate from model file - only meaningful with --model-metadata-dir")
parser.add_argument("--vocabtype", choices=["spm", "bpe"], default="spm",
help="vocab format - only meaningful with --model-metadata-dir and/or --vocab-dir (default: spm)")
parser.add_argument("--vocabtype", default="spm,hfft",
help="vocab format - only meaningful with --model-metadata-dir and/or --vocab-dir (default: spm,hfft)")
return parser.parse_args()

View file

@ -1282,35 +1282,32 @@ def load_some_model(path: Path) -> ModelPlus:
class VocabFactory:
_FILES = {"spm": "tokenizer.model", "bpe": "vocab.json", "hfft": "tokenizer.json"}
def __init__(self, path: Path):
self.path = path
self.files: dict[str, Path | None] = {
"tokenizer.model": None,
"vocab.json": None,
"tokenizer.json": None,
}
self._detect_files()
self.file_paths = self._detect_files()
print(f"Found vocab files: {self.file_paths}")
def _detect_files(self):
for file in self.files.keys():
file_path = self.path / file
parent_file_path = self.path.parent / file
if file_path.exists():
self.files[file] = file_path
elif parent_file_path.exists():
self.files[file] = parent_file_path
print(f"Found vocab files: {self.files}")
def _detect_files(self) -> dict[str, Path | None]:
def locate(file: str) -> Path | None:
if (path := self.path / file).exists():
return path
if (path := self.path.parent / file).exists():
return path
return None
def _select_file(self, vocabtype: str | None) -> Path:
if vocabtype in ["spm", "bpe"]:
for file_key in self.files.keys():
if (file := self.files[file_key]) is not None:
return file
raise FileNotFoundError(f"{vocabtype} vocab not found.")
if vocabtype == "hfft":
# For Hugging Face Fast Tokenizer, return the directory path instead of a specific file
return self.path
raise ValueError(f"Unsupported vocabulary type {vocabtype}")
return {vt: locate(f) for vt, f in self._FILES.items()}
def _select_file(self, vocab_types: list[str]) -> tuple[str, Path]:
for vtype in vocab_types:
try:
path = self.file_paths[vtype]
except KeyError:
raise ValueError(f"Unsupported vocabulary type {vtype}") from None
if path is not None:
return vtype, path
raise FileNotFoundError(f"Could not find any of {[self._FILES[vt] for vt in vocab_types]}")
def _create_special_vocab(self, vocab: Vocab, vocabtype: str, model_parent_path: Path) -> gguf.SpecialVocab:
load_merges = vocabtype == "bpe"
@ -1322,30 +1319,30 @@ class VocabFactory:
n_vocab=n_vocab,
)
def load_vocab(self, vocabtype: str, model_parent_path: Path) -> tuple[Vocab, gguf.SpecialVocab]:
path = self._select_file(vocabtype)
print(f"Loading vocab file '{path}', type '{vocabtype}'")
def load_vocab(self, vocab_types: list[str], model_parent_path: Path) -> tuple[Vocab, gguf.SpecialVocab]:
vocab_type, path = self._select_file(vocab_types)
print(f"Loading vocab file {path!r}, type {vocab_type!r}")
added_tokens_path = path.parent / "added_tokens.json"
vocab: Vocab
if vocabtype == "bpe":
if vocab_type == "bpe":
vocab = BpeVocab(
path, added_tokens_path if added_tokens_path.exists() else None
)
elif vocabtype == "spm":
elif vocab_type == "spm":
vocab = SentencePieceVocab(
path, added_tokens_path if added_tokens_path.exists() else None
)
elif vocabtype == "hfft":
elif vocab_type == "hfft":
vocab = HfVocab(
path, added_tokens_path if added_tokens_path.exists() else None
path.parent, added_tokens_path if added_tokens_path.exists() else None
)
else:
raise ValueError(f"Unsupported vocabulary type {vocabtype}")
raise ValueError(vocab_type)
# FIXME: Respect --vocab-dir?
special_vocab = self._create_special_vocab(
vocab,
vocabtype,
vocab_type,
model_parent_path,
)
return vocab, special_vocab
@ -1379,15 +1376,14 @@ def main(args_in: list[str] | None = None) -> None:
if np.uint32(1) == np.uint32(1).newbyteorder("<"):
# We currently only support Q8_0 output on little endian systems.
output_choices.append("q8_0")
vocab_types = ["spm", "bpe", "hfft"]
parser = argparse.ArgumentParser(description="Convert a LLaMa model to a GGML compatible file")
parser = argparse.ArgumentParser(description="Convert a LLaMA model to a GGML compatible file")
parser.add_argument("--awq-path", type=Path, help="Path to scale awq cache file", default=None)
parser.add_argument("--dump", action="store_true", help="don't convert, just show what's in the model")
parser.add_argument("--dump-single", action="store_true", help="don't convert, just show what's in a single model file")
parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
parser.add_argument("--outtype", choices=output_choices, help="output format - note: q8_0 may be very slow (default: f16 or f32 based on input)")
parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file")
parser.add_argument("--vocab-type", choices=vocab_types, help="The vocabulary format used to define the tokenizer model (default: spm)", default="spm")
parser.add_argument("--vocab-type", help="vocab types to try in order, choose from 'spm', 'bpe', 'hfft' (default: spm,hfft)", default="spm,hfft")
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)")
parser.add_argument("--ctx", type=int, help="model training context (default: based on input)")
@ -1448,7 +1444,7 @@ def main(args_in: list[str] | None = None) -> None:
model_parent_path = model_plus.paths[0].parent
vocab_path = Path(args.vocab_dir or args.model or model_parent_path)
vocab_factory = VocabFactory(vocab_path)
vocab, special_vocab = vocab_factory.load_vocab(args.vocab_type, model_parent_path)
vocab, special_vocab = vocab_factory.load_vocab(args.vocab_type.split(","), model_parent_path)
if args.vocab_only:
if not args.outfile:

View file

@ -32,16 +32,15 @@ int main(int argc, char ** argv) {
gpt_params params;
if (argc == 1 || argv[1][0] == '-') {
printf("usage: %s MODEL_PATH [N_KV_MAX] [IS_PP_SHARED] [NGL] [MMQ] <PP> <TG> <PL>\n" , argv[0]);
printf("usage: %s MODEL_PATH [N_KV_MAX] [IS_PP_SHARED] [NGL] <PP> <TG> <PL>\n" , argv[0]);
printf(" <PP>, <TG> and PL are comma-separated lists of numbers without spaces\n\n");
printf(" example: %s ggml-model-f16.gguf 2048 0 999 0 128,256,512 128,256 1,2,4,8,16,32\n\n", argv[0]);
printf(" example: %s ggml-model-f16.gguf 2048 0 999 128,256,512 128,256 1,2,4,8,16,32\n\n", argv[0]);
return 1 ;
}
int n_kv_max = 2048;
int is_pp_shared = 0;
int n_gpu_layers = 0;
int mmq = 0;
std::vector<int> n_pp = { 128, 256, 512, 1024, 2048, 3584, 7680, };
std::vector<int> n_tg = { 128, 256, };
@ -65,19 +64,15 @@ int main(int argc, char ** argv) {
}
if (argc >= 6) {
mmq = std::atoi(argv[5]);
n_pp = parse_list(argv[5]);
}
if (argc >= 7) {
n_pp = parse_list(argv[6]);
n_tg = parse_list(argv[6]);
}
if (argc >= 8) {
n_tg = parse_list(argv[7]);
}
if (argc >= 9) {
n_pl = parse_list(argv[8]);
n_pl = parse_list(argv[7]);
}
// init LLM
@ -106,7 +101,6 @@ int main(int argc, char ** argv) {
ctx_params.seed = 1234;
ctx_params.n_ctx = n_kv_max;
ctx_params.n_batch = 512;
ctx_params.mul_mat_q = mmq;
ctx_params.n_threads = params.n_threads;
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
@ -159,7 +153,7 @@ int main(int argc, char ** argv) {
}
LOG_TEE("\n");
LOG_TEE("%s: n_kv_max = %d, is_pp_shared = %d, n_gpu_layers = %d, mmq = %d, n_threads = %u, n_threads_batch = %u\n", __func__, n_kv_max, is_pp_shared, n_gpu_layers, mmq, ctx_params.n_threads, ctx_params.n_threads_batch);
LOG_TEE("%s: n_kv_max = %d, is_pp_shared = %d, n_gpu_layers = %d, n_threads = %u, n_threads_batch = %u\n", __func__, n_kv_max, is_pp_shared, n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch);
LOG_TEE("\n");
LOG_TEE("|%6s | %6s | %4s | %6s | %8s | %8s | %8s | %8s | %8s | %8s |\n", "PP", "TG", "B", "N_KV", "T_PP s", "S_PP t/s", "T_TG s", "S_TG t/s", "T s", "S t/s");

View file

@ -378,10 +378,10 @@ int main(int argc, char ** argv) {
if (params.interactive) {
const char *control_message;
if (params.multiline_input) {
control_message = " - To return control to LLaMa, end your input with '\\'.\n"
control_message = " - To return control to LLaMA, end your input with '\\'.\n"
" - To return control without starting a new line, end your input with '/'.\n";
} else {
control_message = " - Press Return to return control to LLaMa.\n"
control_message = " - Press Return to return control to LLaMA.\n"
" - To return control without starting a new line, end your input with '/'.\n"
" - If you want to submit another line, end your input with '\\'.\n";
}

View file

@ -35,7 +35,6 @@ options:
-mg, --main-gpu <i> (default: 0)
-nkvo, --no-kv-offload <0|1> (default: 0)
-mmp, --mmap <0|1> (default: 1)
-mmq, --mul-mat-q <0|1> (default: 1)
-ts, --tensor_split <ts0/ts1/..> (default: 0)
-r, --repetitions <n> (default: 5)
-o, --output <csv|json|md|sql> (default: md)

View file

@ -123,20 +123,15 @@ static std::string get_gpu_info() {
}
#endif
#ifdef GGML_USE_SYCL
int device_list[GGML_SYCL_MAX_DEVICES];
ggml_sycl_get_gpu_list(device_list, GGML_SYCL_MAX_DEVICES);
for (int i = 0; i < GGML_SYCL_MAX_DEVICES; i++) {
if (device_list[i] >0 ){
int count = ggml_backend_sycl_get_device_count();
for (int i = 0; i < count; i++) {
char buf[128];
ggml_sycl_get_device_description(i, buf, sizeof(buf));
id += buf;
if (i < count - 1) {
id += "/";
}
}
if (id.length() >2 ) {
id.pop_back();
}
#endif
// TODO: other backends
return id;
@ -176,7 +171,6 @@ struct cmd_params {
std::vector<llama_split_mode> split_mode;
std::vector<int> main_gpu;
std::vector<bool> no_kv_offload;
std::vector<bool> mul_mat_q;
std::vector<std::vector<float>> tensor_split;
std::vector<bool> use_mmap;
int reps;
@ -196,7 +190,6 @@ static const cmd_params cmd_params_defaults = {
/* split_mode */ {LLAMA_SPLIT_MODE_LAYER},
/* main_gpu */ {0},
/* no_kv_offload */ {false},
/* mul_mat_q */ {true},
/* tensor_split */ {std::vector<float>(llama_max_devices(), 0.0f)},
/* use_mmap */ {true},
/* reps */ 5,
@ -221,7 +214,6 @@ static void print_usage(int /* argc */, char ** argv) {
printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
printf(" -mmp, --mmap <0|1> (default: %s)\n", join(cmd_params_defaults.use_mmap, ",").c_str());
printf(" -mmq, --mul-mat-q <0|1> (default: %s)\n", join(cmd_params_defaults.mul_mat_q, ",").c_str());
printf(" -ts, --tensor_split <ts0/ts1/..> (default: 0)\n");
printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
printf(" -o, --output <csv|json|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format));
@ -383,13 +375,6 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
}
auto p = split<bool>(argv[i], split_delim);
params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end());
} else if (arg == "-mmq" || arg == "--mul-mat-q") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = split<bool>(argv[i], split_delim);
params.mul_mat_q.insert(params.mul_mat_q.end(), p.begin(), p.end());
} else if (arg == "-mmp" || arg == "--mmap") {
if (++i >= argc) {
invalid_param = true;
@ -466,7 +451,6 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
if (params.split_mode.empty()) { params.split_mode = cmd_params_defaults.split_mode; }
if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
if (params.no_kv_offload.empty()){ params.no_kv_offload = cmd_params_defaults.no_kv_offload; }
if (params.mul_mat_q.empty()) { params.mul_mat_q = cmd_params_defaults.mul_mat_q; }
if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
if (params.use_mmap.empty()) { params.use_mmap = cmd_params_defaults.use_mmap; }
if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
@ -486,7 +470,6 @@ struct cmd_params_instance {
llama_split_mode split_mode;
int main_gpu;
bool no_kv_offload;
bool mul_mat_q;
std::vector<float> tensor_split;
bool use_mmap;
@ -518,7 +501,6 @@ struct cmd_params_instance {
cparams.n_batch = n_batch;
cparams.type_k = type_k;
cparams.type_v = type_v;
cparams.mul_mat_q = mul_mat_q;
cparams.offload_kqv = !no_kv_offload;
return cparams;
@ -538,7 +520,6 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
for (const auto & nb : params.n_batch)
for (const auto & tk : params.type_k)
for (const auto & tv : params.type_v)
for (const auto & mmq : params.mul_mat_q)
for (const auto & nkvo : params.no_kv_offload)
for (const auto & nt : params.n_threads) {
for (const auto & n_prompt : params.n_prompt) {
@ -557,7 +538,6 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
/* .split_mode = */ sm,
/* .main_gpu = */ mg,
/* .no_kv_offload= */ nkvo,
/* .mul_mat_q = */ mmq,
/* .tensor_split = */ ts,
/* .use_mmap = */ mmp,
};
@ -580,7 +560,6 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
/* .split_mode = */ sm,
/* .main_gpu = */ mg,
/* .no_kv_offload= */ nkvo,
/* .mul_mat_q = */ mmq,
/* .tensor_split = */ ts,
/* .use_mmap = */ mmp,
};
@ -616,7 +595,6 @@ struct test {
llama_split_mode split_mode;
int main_gpu;
bool no_kv_offload;
bool mul_mat_q;
std::vector<float> tensor_split;
bool use_mmap;
int n_prompt;
@ -639,7 +617,6 @@ struct test {
split_mode = inst.split_mode;
main_gpu = inst.main_gpu;
no_kv_offload = inst.no_kv_offload;
mul_mat_q = inst.mul_mat_q;
tensor_split = inst.tensor_split;
use_mmap = inst.use_mmap;
n_prompt = inst.n_prompt;
@ -713,7 +690,7 @@ struct test {
"n_batch", "n_threads", "type_k", "type_v",
"n_gpu_layers", "split_mode",
"main_gpu", "no_kv_offload",
"mul_mat_q", "tensor_split", "use_mmap",
"tensor_split", "use_mmap",
"n_prompt", "n_gen", "test_time",
"avg_ns", "stddev_ns",
"avg_ts", "stddev_ts"
@ -733,7 +710,7 @@ struct test {
}
if (field == "cuda" || field == "opencl" || field == "vulkan" || field == "kompute" || field == "metal" ||
field == "gpu_blas" || field == "blas" || field == "sycl" ||field == "f16_kv" || field == "no_kv_offload" ||
field == "mul_mat_q" || field == "use_mmap") {
field == "use_mmap") {
return BOOL;
}
if (field == "avg_ts" || field == "stddev_ts") {
@ -767,7 +744,7 @@ struct test {
std::to_string(n_batch), std::to_string(n_threads), ggml_type_name(type_k), ggml_type_name(type_v),
std::to_string(n_gpu_layers), split_mode_str(split_mode),
std::to_string(main_gpu), std::to_string(no_kv_offload),
std::to_string(mul_mat_q), tensor_split_str, std::to_string(use_mmap),
tensor_split_str, std::to_string(use_mmap),
std::to_string(n_prompt), std::to_string(n_gen), test_time,
std::to_string(avg_ns()), std::to_string(stdev_ns()),
std::to_string(avg_ts()), std::to_string(stdev_ts())
@ -931,9 +908,6 @@ struct markdown_printer : public printer {
if (field == "n_threads") {
return "threads";
}
if (field == "mul_mat_q") {
return "mmq";
}
if (field == "no_kv_offload") {
return "nkvo";
}
@ -974,9 +948,6 @@ struct markdown_printer : public printer {
if (params.split_mode.size() > 1 || params.split_mode != cmd_params_defaults.split_mode) {
fields.emplace_back("split_mode");
}
if (params.mul_mat_q.size() > 1 || params.mul_mat_q != cmd_params_defaults.mul_mat_q) {
fields.emplace_back("mul_mat_q");
}
if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) {
fields.emplace_back("no_kv_offload");
}

View file

@ -18,6 +18,7 @@ The project is under active development, and we are [looking for feedback and co
- `--threads N`, `-t N`: Set the number of threads to use during generation.
- `-tb N, --threads-batch N`: Set the number of threads to use during batch and prompt processing. If not specified, the number of threads will be set to the number of threads used for generation.
- `--threads-http N`: number of threads in the http server pool to process requests (default: `std::thread::hardware_concurrency()`)
- `-m FNAME`, `--model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.gguf`).
- `-a ALIAS`, `--alias ALIAS`: Set an alias for the model. The alias will be returned in API responses.
- `-c N`, `--ctx-size N`: Set the size of the prompt context. The default is 512, but LLaMA models were built with a context of 2048, which will provide better results for longer input/inference. The size may differ in other models, for example, baichuan models were build with a context of 4096.
@ -325,7 +326,7 @@ Notice that each `probs` is an array of length `n_probs`.
- `default_generation_settings` - the default generation settings for the `/completion` endpoint, has the same fields as the `generation_settings` response object from the `/completion` endpoint.
- `total_slots` - the total number of slots for process requests (defined by `--parallel` option)
- **POST** `/v1/chat/completions`: OpenAI-compatible Chat Completions API. Given a ChatML-formatted json description in `messages`, it returns the predicted completion. Both synchronous and streaming mode are supported, so scripted and interactive applications work fine. While no strong claims of compatibility with OpenAI API spec is being made, in our experience it suffices to support many apps. Only ChatML-tuned models, such as Dolphin, OpenOrca, OpenHermes, OpenChat-3.5, etc can be used with this endpoint. Compared to `api_like_OAI.py` this API implementation does not require a wrapper to be served.
- **POST** `/v1/chat/completions`: OpenAI-compatible Chat Completions API. Given a ChatML-formatted json description in `messages`, it returns the predicted completion. Both synchronous and streaming mode are supported, so scripted and interactive applications work fine. While no strong claims of compatibility with OpenAI API spec is being made, in our experience it suffices to support many apps. Only ChatML-tuned models, such as Dolphin, OpenOrca, OpenHermes, OpenChat-3.5, etc can be used with this endpoint.
*Options:*
@ -527,20 +528,7 @@ bash chat.sh
### API like OAI
API example using Python Flask: [api_like_OAI.py](api_like_OAI.py)
This example must be used with server.cpp
```sh
python api_like_OAI.py
```
After running the API server, you can use it in Python by setting the API base URL.
```python
openai.api_base = "http://<Your api-server IP>:port"
```
Then you can utilize llama.cpp as an OpenAI's **chat.completion** or **text_completion** API
The HTTP server supports OAI-like API
### Extending or building alternative Web Front End

View file

@ -1,228 +0,0 @@
#!/usr/bin/env python3
import argparse
from flask import Flask, jsonify, request, Response
import urllib.parse
import requests
import time
import json
app = Flask(__name__)
slot_id = -1
parser = argparse.ArgumentParser(description="An example of using server.cpp with a similar API to OAI. It must be used together with server.cpp.")
parser.add_argument("--chat-prompt", type=str, help="the top prompt in chat completions(default: 'A chat between a curious user and an artificial intelligence assistant. The assistant follows the given rules no matter what.')", default='A chat between a curious user and an artificial intelligence assistant. The assistant follows the given rules no matter what.')
parser.add_argument("--user-name", type=str, help="USER name in chat completions(default: 'USER: ')", default="USER: ")
parser.add_argument("--ai-name", type=str, help="ASSISTANT name in chat completions(default: 'ASSISTANT: ')", default="ASSISTANT: ")
parser.add_argument("--system-name", type=str, help="SYSTEM name in chat completions(default: 'ASSISTANT's RULE: ')", default="ASSISTANT's RULE: ")
parser.add_argument("--stop", type=str, help="the end of response in chat completions(default: '</s>')", default="</s>")
parser.add_argument("--llama-api", type=str, help="Set the address of server.cpp in llama.cpp(default: http://127.0.0.1:8080)", default='http://127.0.0.1:8080')
parser.add_argument("--api-key", type=str, help="Set the api key to allow only few user(default: NULL)", default="")
parser.add_argument("--host", type=str, help="Set the ip address to listen.(default: 127.0.0.1)", default='127.0.0.1')
parser.add_argument("--port", type=int, help="Set the port to listen.(default: 8081)", default=8081)
args = parser.parse_args()
def is_present(json, key):
try:
buf = json[key]
except KeyError:
return False
if json[key] == None:
return False
return True
#convert chat to prompt
def convert_chat(messages):
system_n = args.system_name
user_n = args.user_name
ai_n = args.ai_name
stop = args.stop
prompt = "" + args.chat_prompt + stop
for line in messages:
if (line["role"] == "system"):
prompt += f"{system_n}{line['content']}{stop}"
if (line["role"] == "user"):
prompt += f"{user_n}{line['content']}{stop}"
if (line["role"] == "assistant"):
prompt += f"{ai_n}{line['content']}{stop}"
prompt += ai_n.rstrip()
return prompt
def make_postData(body, chat=False, stream=False):
postData = {}
if (chat):
postData["prompt"] = convert_chat(body["messages"])
else:
postData["prompt"] = body["prompt"]
if(is_present(body, "temperature")): postData["temperature"] = body["temperature"]
if(is_present(body, "top_k")): postData["top_k"] = body["top_k"]
if(is_present(body, "top_p")): postData["top_p"] = body["top_p"]
if(is_present(body, "max_tokens")): postData["n_predict"] = body["max_tokens"]
if(is_present(body, "presence_penalty")): postData["presence_penalty"] = body["presence_penalty"]
if(is_present(body, "frequency_penalty")): postData["frequency_penalty"] = body["frequency_penalty"]
if(is_present(body, "repeat_penalty")): postData["repeat_penalty"] = body["repeat_penalty"]
if(is_present(body, "mirostat")): postData["mirostat"] = body["mirostat"]
if(is_present(body, "mirostat_tau")): postData["mirostat_tau"] = body["mirostat_tau"]
if(is_present(body, "mirostat_eta")): postData["mirostat_eta"] = body["mirostat_eta"]
if(is_present(body, "seed")): postData["seed"] = body["seed"]
if(is_present(body, "grammar")): postData["grammar"] = body["grammar"]
if(is_present(body, "logit_bias")): postData["logit_bias"] = [[int(token), body["logit_bias"][token]] for token in body["logit_bias"].keys()]
if (args.stop != ""):
postData["stop"] = [args.stop]
else:
postData["stop"] = []
if(is_present(body, "stop")): postData["stop"] += body["stop"]
postData["n_keep"] = -1
postData["stream"] = stream
postData["cache_prompt"] = True
postData["slot_id"] = slot_id
return postData
def make_resData(data, chat=False, promptToken=[]):
resData = {
"id": "chatcmpl" if (chat) else "cmpl",
"object": "chat.completion" if (chat) else "text_completion",
"created": int(time.time()),
"truncated": data["truncated"],
"model": "LLaMA_CPP",
"usage": {
"prompt_tokens": data["tokens_evaluated"],
"completion_tokens": data["tokens_predicted"],
"total_tokens": data["tokens_evaluated"] + data["tokens_predicted"]
}
}
if (len(promptToken) != 0):
resData["promptToken"] = promptToken
if (chat):
#only one choice is supported
resData["choices"] = [{
"index": 0,
"message": {
"role": "assistant",
"content": data["content"],
},
"finish_reason": "stop" if (data["stopped_eos"] or data["stopped_word"]) else "length"
}]
else:
#only one choice is supported
resData["choices"] = [{
"text": data["content"],
"index": 0,
"logprobs": None,
"finish_reason": "stop" if (data["stopped_eos"] or data["stopped_word"]) else "length"
}]
return resData
def make_resData_stream(data, chat=False, time_now = 0, start=False):
resData = {
"id": "chatcmpl" if (chat) else "cmpl",
"object": "chat.completion.chunk" if (chat) else "text_completion.chunk",
"created": time_now,
"model": "LLaMA_CPP",
"choices": [
{
"finish_reason": None,
"index": 0
}
]
}
slot_id = data.get("slot_id")
if (chat):
if (start):
resData["choices"][0]["delta"] = {
"role": "assistant"
}
else:
resData["choices"][0]["delta"] = {
"content": data["content"]
}
if (data["stop"]):
resData["choices"][0]["finish_reason"] = "stop" if (data["stopped_eos"] or data["stopped_word"]) else "length"
else:
resData["choices"][0]["text"] = data["content"]
if (data["stop"]):
resData["choices"][0]["finish_reason"] = "stop" if (data["stopped_eos"] or data["stopped_word"]) else "length"
return resData
@app.route('/chat/completions', methods=['POST', 'OPTIONS'])
@app.route('/v1/chat/completions', methods=['POST', 'OPTIONS'])
def chat_completions():
if (args.api_key != "" and request.headers["Authorization"].split()[1] != args.api_key):
return Response(status=403)
if request.method == 'OPTIONS':
return Response(headers={"Access-Control-Allow-Origin": "*", "Access-Control-Allow-Headers": "*"})
body = request.get_json()
stream = False
tokenize = False
if(is_present(body, "stream")): stream = body["stream"]
if(is_present(body, "tokenize")): tokenize = body["tokenize"]
postData = make_postData(body, chat=True, stream=stream)
promptToken = []
if (tokenize):
tokenData = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/tokenize"), data=json.dumps({"content": postData["prompt"]})).json()
promptToken = tokenData["tokens"]
if (not stream):
data = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/completion"), data=json.dumps(postData))
print(data.json())
resData = make_resData(data.json(), chat=True, promptToken=promptToken)
return jsonify(resData)
else:
def generate():
data = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/completion"), data=json.dumps(postData), stream=True)
time_now = int(time.time())
resData = make_resData_stream({}, chat=True, time_now=time_now, start=True)
yield 'data: {}\n\n'.format(json.dumps(resData))
for line in data.iter_lines():
if line:
decoded_line = line.decode('utf-8')
resData = make_resData_stream(json.loads(decoded_line[6:]), chat=True, time_now=time_now)
yield 'data: {}\n\n'.format(json.dumps(resData))
return Response(generate(), mimetype='text/event-stream', headers={"Access-Control-Allow-Origin": "*", "Access-Control-Allow-Headers": "*"})
@app.route('/completions', methods=['POST', 'OPTIONS'])
@app.route('/v1/completions', methods=['POST', 'OPTIONS'])
def completion():
if (args.api_key != "" and request.headers["Authorization"].split()[1] != args.api_key):
return Response(status=403)
if request.method == 'OPTIONS':
return Response(headers={"Access-Control-Allow-Origin": "*", "Access-Control-Allow-Headers": "*"})
body = request.get_json()
stream = False
tokenize = False
if(is_present(body, "stream")): stream = body["stream"]
if(is_present(body, "tokenize")): tokenize = body["tokenize"]
postData = make_postData(body, chat=False, stream=stream)
promptToken = []
if (tokenize):
tokenData = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/tokenize"), data=json.dumps({"content": postData["prompt"]})).json()
promptToken = tokenData["tokens"]
if (not stream):
data = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/completion"), data=json.dumps(postData))
print(data.json())
resData = make_resData(data.json(), chat=False, promptToken=promptToken)
return jsonify(resData)
else:
def generate():
data = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/completion"), data=json.dumps(postData), stream=True)
time_now = int(time.time())
for line in data.iter_lines():
if line:
decoded_line = line.decode('utf-8')
resData = make_resData_stream(json.loads(decoded_line[6:]), chat=False, time_now=time_now)
yield 'data: {}\n\n'.format(json.dumps(resData))
return Response(generate(), mimetype='text/event-stream', headers={"Access-Control-Allow-Origin": "*", "Access-Control-Allow-Headers": "*"})
if __name__ == '__main__':
app.run(args.host, port=args.port)

View file

@ -33,8 +33,7 @@
using json = nlohmann::json;
struct server_params
{
struct server_params {
std::string hostname = "127.0.0.1";
std::vector<std::string> api_keys;
std::string public_path = "examples/server/public";
@ -44,108 +43,56 @@ struct server_params
int32_t write_timeout = 600;
bool slots_endpoint = true;
bool metrics_endpoint = false;
int n_threads_http = -1;
};
bool server_verbose = false;
bool server_log_json = true;
static size_t common_part(const std::vector<llama_token> &a, const std::vector<llama_token> &b)
{
size_t i;
for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++)
{
}
return i;
}
enum stop_type
{
enum stop_type {
STOP_FULL,
STOP_PARTIAL,
};
static bool ends_with(const std::string &str, const std::string &suffix)
{
return str.size() >= suffix.size() &&
0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix);
}
// TODO: can become bool if we can't find use of more states
enum slot_state {
IDLE,
PROCESSING,
};
static size_t find_partial_stop_string(const std::string &stop,
const std::string &text)
{
if (!text.empty() && !stop.empty())
{
const char text_last_char = text.back();
for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--)
{
if (stop[char_index] == text_last_char)
{
const std::string current_partial = stop.substr(0, char_index + 1);
if (ends_with(text, current_partial))
{
return text.size() - char_index - 1;
}
}
}
}
return std::string::npos;
}
enum slot_command {
NONE,
LOAD_PROMPT,
RELEASE,
};
// TODO: reuse llama_detokenize
template <class Iter>
static std::string tokens_to_str(llama_context *ctx, Iter begin, Iter end)
{
std::string ret;
for (; begin != end; ++begin)
{
ret += llama_token_to_piece(ctx, *begin);
}
return ret;
}
struct slot_params {
bool stream = true;
bool cache_prompt = false; // remember the prompt to avoid reprocessing all prompt
// format incomplete utf-8 multibyte character for output
static std::string tokens_to_output_formatted_string(const llama_context *ctx, const llama_token token)
{
std::string out = token == -1 ? "" : llama_token_to_piece(ctx, token);
// if the size is 1 and first bit is 1, meaning it's a partial character
// (size > 1 meaning it's already a known token)
if (out.size() == 1 && (out[0] & 0x80) == 0x80)
{
std::stringstream ss;
ss << std::hex << (out[0] & 0xff);
std::string res(ss.str());
out = "byte: \\x" + res;
}
return out;
}
uint32_t seed = -1; // RNG seed
int32_t n_keep = 0; // number of tokens to keep from initial prompt
int32_t n_predict = -1; // new tokens to predict
// convert a vector of completion_token_output to json
static json probs_vector_to_json(const llama_context *ctx, const std::vector<completion_token_output> &probs)
{
json out = json::array();
for (const auto &prob : probs)
{
json probs_for_token = json::array();
for (const auto &p : prob.probs)
{
std::string tok_str = tokens_to_output_formatted_string(ctx, p.tok);
probs_for_token.push_back(json
{
{"tok_str", tok_str},
{"prob", p.prob},
});
}
std::string tok_str = tokens_to_output_formatted_string(ctx, prob.tok);
out.push_back(json{
{"content", tok_str},
{"probs", probs_for_token},
});
}
return out;
}
std::vector<std::string> antiprompt;
struct llama_client_slot
{
json input_prefix;
json input_suffix;
};
struct slot_image {
int32_t id;
bool request_encode_image = false;
float * image_embedding = nullptr;
int32_t image_tokens = 0;
clip_image_u8 * img_data;
std::string prefix_prompt; // before of this image
};
struct server_slot {
int id;
int task_id = -1;
@ -165,8 +112,8 @@ struct llama_client_slot
int32_t i_batch = -1;
int32_t n_predict = -1;
int32_t num_prompt_tokens = 0;
int32_t num_prompt_tokens_processed = 0;
int32_t n_prompt_tokens = 0;
int32_t n_prompt_tokens_processed = 0;
json prompt;
std::string generated_text;
@ -201,8 +148,8 @@ struct llama_client_slot
std::vector<slot_image> images;
// stats
size_t sent_count = 0;
size_t sent_token_probs_index = 0;
size_t n_sent_text = 0; // number of sent text character
size_t n_sent_token_probs = 0;
int64_t t_start_process_prompt;
int64_t t_start_genereration;
@ -214,7 +161,7 @@ struct llama_client_slot
int multitask_id = -1;
void reset() {
num_prompt_tokens = 0;
n_prompt_tokens = 0;
generated_text = "";
truncated = false;
stopped_eos = false;
@ -222,16 +169,15 @@ struct llama_client_slot
stopped_limit = false;
stopping_word = "";
n_past = 0;
sent_count = 0;
sent_token_probs_index = 0;
n_sent_text = 0;
n_sent_token_probs = 0;
infill = false;
ga_i = 0;
n_past_se = 0;
generated_token_probs.clear();
for (slot_image & img : images)
{
for (slot_image & img : images) {
free(img.image_embedding);
if (img.img_data) {
clip_image_u8_free(img.img_data);
@ -243,19 +189,15 @@ struct llama_client_slot
}
bool has_budget(gpt_params &global_params) {
if (params.n_predict == -1 && global_params.n_predict == -1)
{
if (params.n_predict == -1 && global_params.n_predict == -1) {
return true; // limitless
}
n_remaining = -1;
if (params.n_predict != -1)
{
if (params.n_predict != -1) {
n_remaining = params.n_predict - n_decoded;
}
else if (global_params.n_predict != -1)
{
} else if (global_params.n_predict != -1) {
n_remaining = global_params.n_predict - n_decoded;
}
@ -271,8 +213,7 @@ struct llama_client_slot
}
void add_token_string(const completion_token_output &token) {
if (command == RELEASE)
{
if (command == RELEASE) {
return;
}
cache_tokens.push_back(token.tok);
@ -290,10 +231,10 @@ struct llama_client_slot
json get_formated_timings() {
return json
{
{"prompt_n", num_prompt_tokens_processed},
{"prompt_n", n_prompt_tokens_processed},
{"prompt_ms", t_prompt_processing},
{"prompt_per_token_ms", t_prompt_processing / num_prompt_tokens_processed},
{"prompt_per_second", 1e3 / t_prompt_processing * num_prompt_tokens_processed},
{"prompt_per_token_ms", t_prompt_processing / n_prompt_tokens_processed},
{"prompt_per_second", 1e3 / t_prompt_processing * n_prompt_tokens_processed},
{"predicted_n", n_decoded},
{"predicted_ms", t_token_generation},
@ -304,16 +245,16 @@ struct llama_client_slot
void print_timings() const {
char buffer[512];
double t_token = t_prompt_processing / num_prompt_tokens_processed;
double n_tokens_second = 1e3 / t_prompt_processing * num_prompt_tokens_processed;
double t_token = t_prompt_processing / n_prompt_tokens_processed;
double n_tokens_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
sprintf(buffer, "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)",
t_prompt_processing, num_prompt_tokens_processed,
t_prompt_processing, n_prompt_tokens_processed,
t_token, n_tokens_second);
LOG_INFO(buffer, {
{"slot_id", id},
{"task_id", task_id},
{"t_prompt_processing", t_prompt_processing},
{"num_prompt_tokens_processed", num_prompt_tokens_processed},
{"n_prompt_tokens_processed", n_prompt_tokens_processed},
{"t_token", t_token},
{"n_tokens_second", n_tokens_second},
});
@ -343,7 +284,7 @@ struct llama_client_slot
}
};
struct llama_metrics {
struct server_metrics {
uint64_t n_prompt_tokens_processed_total = 0;
uint64_t n_tokens_predicted_total = 0;
@ -354,16 +295,14 @@ struct llama_metrics {
uint64_t t_tokens_generation = 0;
void on_prompt_eval(const llama_client_slot &slot) {
n_prompt_tokens_processed_total += slot.num_prompt_tokens_processed;
n_prompt_tokens_processed += slot.num_prompt_tokens_processed;
void on_prompt_eval(const server_slot &slot) {
n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
n_prompt_tokens_processed += slot.n_prompt_tokens_processed;
t_prompt_processing += slot.t_prompt_processing;
}
void on_prediction(const llama_client_slot &slot) {
void on_prediction(const server_slot &slot) {
n_tokens_predicted_total += slot.n_decoded;
n_tokens_predicted += slot.n_decoded;
t_tokens_generation += slot.t_token_generation;
}
@ -404,13 +343,13 @@ struct llama_server_context
std::string name_assistant;
// slots / clients
std::vector<llama_client_slot> slots;
std::vector<server_slot> slots;
json default_generation_settings_for_props;
llama_server_queue queue_tasks;
llama_server_response queue_results;
llama_metrics metrics;
server_metrics metrics;
~llama_server_context()
{
@ -487,7 +426,7 @@ struct llama_server_context
LOG_INFO("initializing slots", {{"n_slots", params.n_parallel}});
for (int i = 0; i < params.n_parallel; i++)
{
llama_client_slot slot;
server_slot slot;
slot.id = i;
slot.n_ctx = n_ctx_slot;
@ -579,11 +518,11 @@ struct llama_server_context
return prompt_tokens;
}
llama_client_slot* get_slot(int id) {
server_slot* get_slot(int id) {
int64_t t_last = ggml_time_us();
llama_client_slot *last_used = nullptr;
server_slot *last_used = nullptr;
for (llama_client_slot & slot : slots)
for (server_slot & slot : slots)
{
if (slot.id == id && slot.available())
{
@ -600,7 +539,7 @@ struct llama_server_context
return last_used;
}
bool launch_slot_with_data(llama_client_slot* &slot, json data) {
bool launch_slot_with_data(server_slot* &slot, json data) {
slot_params default_params;
llama_sampling_params default_sparams;
@ -888,7 +827,7 @@ struct llama_server_context
clean_kv_cache = false;
}
void update_system_prompt() {
void system_prompt_update() {
kv_cache_clear();
system_tokens.clear();
@ -933,9 +872,9 @@ struct llama_server_context
system_need_update = false;
}
void notify_system_prompt_changed() {
void system_prompt_notify() {
// release all slots
for (llama_client_slot &slot : slots)
for (server_slot &slot : slots)
{
slot.release();
}
@ -943,17 +882,17 @@ struct llama_server_context
system_need_update = true;
}
void process_system_prompt_data(const json &sys_props) {
void system_prompt_process(const json &sys_props) {
system_prompt = sys_props.value("prompt", "");
name_user = sys_props.value("anti_prompt", "");
name_assistant = sys_props.value("assistant_name", "");
notify_system_prompt_changed();
system_prompt_notify();
}
static size_t find_stopping_strings(const std::string &text, const size_t last_token_size,
const stop_type type, llama_client_slot &slot)
const stop_type type, server_slot &slot)
{
size_t stop_pos = std::string::npos;
@ -986,7 +925,7 @@ struct llama_server_context
return stop_pos;
}
bool process_token(completion_token_output &result, llama_client_slot &slot) {
bool process_token(completion_token_output &result, server_slot &slot) {
// remember which tokens were sampled - used for repetition penalties during sampling
const std::string token_str = llama_token_to_piece(ctx, result.tok);
slot.sampled = result.tok;
@ -1032,7 +971,7 @@ struct llama_server_context
if (!incomplete)
{
size_t pos = std::min(slot.sent_count, slot.generated_text.size());
size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
const std::string str_test = slot.generated_text.substr(pos);
bool is_stop_full = false;
size_t stop_pos = find_stopping_strings(str_test, token_str.size(), STOP_FULL, slot);
@ -1042,7 +981,7 @@ struct llama_server_context
slot.generated_text.erase(
slot.generated_text.begin() + pos + stop_pos,
slot.generated_text.end());
pos = std::min(slot.sent_count, slot.generated_text.size());
pos = std::min(slot.n_sent_text, slot.generated_text.size());
}
else
{
@ -1055,7 +994,7 @@ struct llama_server_context
{
// no send the stop word in the response
result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
slot.sent_count += result.text_to_send.size();
slot.n_sent_text += result.text_to_send.size();
// add the token to slot queue and cache
}
slot.add_token_string(result);
@ -1099,7 +1038,7 @@ struct llama_server_context
return slot.has_next_token; // continue
}
bool process_images(llama_client_slot &slot) const
bool process_images(server_slot &slot) const
{
for (slot_image &img : slot.images)
{
@ -1132,7 +1071,7 @@ struct llama_server_context
queue_results.send(res);
}
json get_formated_generation(llama_client_slot &slot)
json get_formated_generation(server_slot &slot)
{
const auto eos_bias = slot.sparams.logit_bias.find(llama_token_eos(model));
const bool ignore_eos = eos_bias != slot.sparams.logit_bias.end() &&
@ -1179,7 +1118,7 @@ struct llama_server_context
};
}
void send_partial_response(llama_client_slot &slot, completion_token_output tkn)
void send_partial_response(server_slot &slot, completion_token_output tkn)
{
task_result res;
res.id = slot.task_id;
@ -1199,13 +1138,13 @@ struct llama_server_context
{
std::vector<completion_token_output> probs_output = {};
const std::vector<llama_token> to_send_toks = llama_tokenize(ctx, tkn.text_to_send, false);
size_t probs_pos = std::min(slot.sent_token_probs_index, slot.generated_token_probs.size());
size_t probs_stop_pos = std::min(slot.sent_token_probs_index + to_send_toks.size(), slot.generated_token_probs.size());
size_t probs_pos = std::min(slot.n_sent_token_probs, slot.generated_token_probs.size());
size_t probs_stop_pos = std::min(slot.n_sent_token_probs + to_send_toks.size(), slot.generated_token_probs.size());
if (probs_pos < probs_stop_pos)
{
probs_output = std::vector<completion_token_output>(slot.generated_token_probs.begin() + probs_pos, slot.generated_token_probs.begin() + probs_stop_pos);
}
slot.sent_token_probs_index = probs_stop_pos;
slot.n_sent_token_probs = probs_stop_pos;
res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs_output);
}
@ -1218,7 +1157,7 @@ struct llama_server_context
queue_results.send(res);
}
void send_final_response(llama_client_slot &slot)
void send_final_response(server_slot &slot)
{
task_result res;
res.id = slot.task_id;
@ -1233,7 +1172,7 @@ struct llama_server_context
{"stop", true},
{"model", params.model_alias},
{"tokens_predicted", slot.n_decoded},
{"tokens_evaluated", slot.num_prompt_tokens},
{"tokens_evaluated", slot.n_prompt_tokens},
{"generation_settings", get_formated_generation(slot)},
{"prompt", slot.prompt},
{"truncated", slot.truncated},
@ -1271,7 +1210,7 @@ struct llama_server_context
queue_results.send(res);
}
void send_embedding(llama_client_slot &slot)
void send_embedding(server_slot &slot)
{
task_result res;
res.id = slot.task_id;
@ -1282,9 +1221,7 @@ struct llama_server_context
const int n_embd = llama_n_embd(model);
if (!params.embedding)
{
LOG_WARNING("embedding disabled", {
{"params.embedding", params.embedding},
});
LOG_WARNING("embedding disabled", {{"params.embedding", params.embedding}});
res.result_json = json
{
{"embedding", std::vector<float>(n_embd, 0.0f)},
@ -1296,7 +1233,7 @@ struct llama_server_context
std::vector<float> embedding(data, data + n_embd);
res.result_json = json
{
{"embedding", embedding },
{"embedding", embedding},
};
}
queue_results.send(res);
@ -1345,7 +1282,7 @@ struct llama_server_context
}
// for multiple images processing
bool ingest_images(llama_client_slot &slot, int n_batch)
bool ingest_images(server_slot &slot, int n_batch)
{
int image_idx = 0;
@ -1384,7 +1321,17 @@ struct llama_server_context
}
const int n_embd = llama_n_embd(model);
llama_batch batch_img = { n_eval, nullptr, (img.image_embedding + i * n_embd), nullptr, nullptr, nullptr, nullptr, slot.n_past, 1, 0, };
llama_batch batch_img = {
n_eval,
nullptr,
(img.image_embedding + i * n_embd),
nullptr,
nullptr,
nullptr,
nullptr,
slot.n_past,
1, 0
};
if (llama_decode(ctx, batch_img))
{
LOG_TEE("%s : failed to eval image\n", __func__);
@ -1454,7 +1401,7 @@ struct llama_server_context
switch (task.type)
{
case TASK_TYPE_COMPLETION: {
llama_client_slot *slot = get_slot(json_value(task.data, "slot_id", -1));
server_slot *slot = get_slot(json_value(task.data, "slot_id", -1));
if (slot == nullptr)
{
// if no slot is available, we defer this task for processing later
@ -1469,10 +1416,10 @@ struct llama_server_context
send_error(task, "system prompt can only be updated when all slots are idle");
break;
}
process_system_prompt_data(task.data["system_prompt"]);
system_prompt_process(task.data["system_prompt"]);
// reset cache_tokens for all slots
for (llama_client_slot &slot : slots)
for (server_slot &slot : slots)
{
slot.cache_tokens.clear();
slot.n_past = 0;
@ -1512,7 +1459,7 @@ struct llama_server_context
int n_idle_slots = 0;
int n_processing_slots = 0;
for (llama_client_slot &slot: slots) {
for (server_slot &slot: slots) {
json slot_data = get_formated_generation(slot);
slot_data["id"] = slot.id;
slot_data["task_id"] = slot.task_id;
@ -1597,7 +1544,7 @@ struct llama_server_context
if (system_need_update)
{
LOG_INFO("updating system prompt", {});
update_system_prompt();
system_prompt_update();
}
llama_batch_clear(batch);
@ -1618,7 +1565,7 @@ struct llama_server_context
task.target_id = -1;
queue_tasks.post(task);
for (llama_client_slot &slot : slots)
for (server_slot &slot : slots)
{
if (slot.ga_n == 1)
{
@ -1754,23 +1701,28 @@ struct llama_server_context
prompt_tokens = tokenize(slot.prompt, system_prompt.empty() && add_bos_token); // add BOS if there isn't system prompt
}
slot.num_prompt_tokens = prompt_tokens.size();
slot.n_prompt_tokens = prompt_tokens.size();
if (slot.params.n_keep < 0)
{
slot.params.n_keep = slot.num_prompt_tokens;
slot.params.n_keep = slot.n_prompt_tokens;
}
slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
// if input prompt is too big, truncate it
if (slot.num_prompt_tokens >= slot.n_ctx)
// if input prompt is too big, truncate it, if group attention self-extend is disabled
if (slot.ga_n == 1 && slot.n_prompt_tokens >= slot.n_ctx)
{
const int n_left = slot.n_ctx - slot.params.n_keep;
const int n_block_size = n_left / 2;
const int erased_blocks = (slot.num_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
const int erased_blocks = (slot.n_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + slot.params.n_keep);
new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size, prompt_tokens.end());
std::vector<llama_token> new_tokens(
prompt_tokens.begin(),
prompt_tokens.begin() + slot.params.n_keep);
new_tokens.insert(
new_tokens.end(),
prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size,
prompt_tokens.end());
LOG_VERBOSE("input truncated", {
{"n_ctx", slot.n_ctx},
@ -1781,8 +1733,8 @@ struct llama_server_context
slot.truncated = true;
prompt_tokens = new_tokens;
slot.num_prompt_tokens = prompt_tokens.size();
GGML_ASSERT(slot.num_prompt_tokens < slot.n_ctx);
slot.n_prompt_tokens = prompt_tokens.size();
GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
}
if (!slot.params.cache_prompt)
@ -1792,7 +1744,7 @@ struct llama_server_context
slot.n_past = 0;
slot.n_past_se = 0;
slot.ga_i = 0;
slot.num_prompt_tokens_processed = slot.num_prompt_tokens;
slot.n_prompt_tokens_processed = slot.n_prompt_tokens;
}
else
{
@ -1811,7 +1763,7 @@ struct llama_server_context
slot.n_past -= 1;
}
slot.num_prompt_tokens_processed = slot.num_prompt_tokens - slot.n_past;
slot.n_prompt_tokens_processed = slot.n_prompt_tokens - slot.n_past;
if (slot.ga_n != 1)
{
@ -1836,13 +1788,15 @@ struct llama_server_context
{ "slot_id", slot.id },
{ "task_id", slot.task_id },
{ "n_past", slot.n_past },
{ "num_prompt_tokens_processed", slot.num_prompt_tokens_processed }
{ "n_past_se", slot.n_past_se },
{ "ga_i", slot.ga_i },
{ "n_prompt_tokens_processed", slot.n_prompt_tokens_processed }
});
}
slot.cache_tokens = prompt_tokens;
if (slot.n_past == slot.num_prompt_tokens && slot.n_past > 0)
if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0)
{
// we have to evaluate at least 1 token to generate logits.
LOG_INFO("we have to evaluate at least 1 token to generate logits", {
@ -1898,8 +1852,8 @@ struct llama_server_context
if (has_images && !ingest_images(slot, n_batch))
{
LOG_ERROR("failed processing images", {
"slot_id", slot.id,
"task_id", slot.task_id,
{"slot_id", slot.id},
{"task_id", slot.task_id},
});
// FIXME @phymbert: to be properly tested
// early returning without changing the slot state will block the slot for ever
@ -2050,8 +2004,15 @@ struct llama_server_context
return true;
}
void run_on_all_tasks_finished() {
update_slots();
json model_meta() {
return json{
{"vocab_type", llama_vocab_type(model)},
{"n_vocab", llama_n_vocab(model)},
{"n_ctx_train", llama_n_ctx_train(model)},
{"n_embd", llama_n_embd(model)},
{"n_params", llama_model_n_params(model)},
{"size", llama_model_size(model)},
};
}
};
@ -2065,6 +2026,7 @@ static void server_print_usage(const char *argv0, const gpt_params &params,
printf(" -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled");
printf(" -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
printf(" -tb N, --threads-batch N number of threads to use during batch and prompt processing (default: same as --threads)\n");
printf(" --threads-http N number of threads in the http server pool to process requests (default: hardware concurrency)\n");
printf(" -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
printf(" --rope-scaling {none,linear,yarn}\n");
printf(" RoPE frequency scaling method, defaults to linear unless specified by the model\n");
@ -2133,8 +2095,8 @@ static void server_print_usage(const char *argv0, const gpt_params &params,
printf(" --override-kv KEY=TYPE:VALUE\n");
printf(" advanced option to override model metadata by key. may be specified multiple times.\n");
printf(" types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
printf(" -gan N, --grp-attn-n N set the group attention factor to extend context size through self-extend(default: 1=disabled), used together with group attention width `--grp-attn-w`");
printf(" -gaw N, --grp-attn-w N set the group attention width to extend context size through self-extend(default: 512), used together with group attention factor `--grp-attn-n`");
printf(" -gan N, --grp-attn-n N set the group attention factor to extend context size through self-extend(default: 1=disabled), used together with group attention width `--grp-attn-w`\n");
printf(" -gaw N, --grp-attn-w N set the group attention width to extend context size through self-extend(default: 512), used together with group attention factor `--grp-attn-n`\n");
printf(" --chat-template JINJA_TEMPLATE\n");
printf(" set custom jinja chat template (default: template taken from model's metadata)\n");
printf(" Note: only commonly used templates are accepted, since we don't have jinja parser\n");
@ -2351,6 +2313,15 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
}
params.n_threads_batch = std::stoi(argv[i]);
}
else if (arg == "--threads-http")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
sparams.n_threads_http = std::stoi(argv[i]);
}
else if (arg == "-b" || arg == "--batch-size")
{
if (++i >= argc)
@ -2432,14 +2403,6 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
}
#else
LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n", {});
#endif // GGML_USE_CUBLAS
}
else if (arg == "--no-mul-mat-q" || arg == "-nommq")
{
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_SYCL)
params.mul_mat_q = false;
#else
LOG_WARNING("warning: llama.cpp was compiled without cuBLAS. Disabling mul_mat_q kernels has no effect.\n", {});
#endif // GGML_USE_CUBLAS
}
else if (arg == "--main-gpu" || arg == "-mg")
@ -2561,7 +2524,7 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
std::istreambuf_iterator<char>(),
std::back_inserter(systm_content)
);
llama.process_system_prompt_data(json::parse(systm_content));
llama.system_prompt_process(json::parse(systm_content));
}
else if (arg == "-ctk" || arg == "--cache-type-k") {
params.cache_type_k = argv[++i];
@ -2692,7 +2655,7 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
/* llama.cpp completion api semantics */
static json format_partial_response(
llama_server_context &llama, llama_client_slot *slot, const std::string &content, const std::vector<completion_token_output> &probs
llama_server_context &llama, server_slot *slot, const std::string &content, const std::vector<completion_token_output> &probs
) {
json res = json
{
@ -2748,14 +2711,7 @@ static void log_server_request(const httplib::Request &req, const httplib::Respo
});
}
struct token_translator
{
llama_context * ctx;
std::string operator()(llama_token tok) const { return llama_token_to_piece(ctx, tok); }
std::string operator()(const completion_token_output &cto) const { return (*this)(cto.tok); }
};
static void append_to_generated_text_from_generated_token_probs(llama_server_context &llama, llama_client_slot *slot)
static void append_to_generated_text_from_generated_token_probs(llama_server_context &llama, server_slot *slot)
{
auto & gtps = slot->generated_token_probs;
auto translator = token_translator{llama.ctx};
@ -2968,9 +2924,10 @@ int main(int argc, char **argv)
for (const auto& metric_def : metrics_def) {
std::string name = metric_def["name"];
std::string help = metric_def["help"];
auto value = json_value(metric_def, "value", 0);
prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
<< "# TYPE llamacpp:" << name << " " << type << "\n"
<< "llamacpp:" << name << " " << metric_def["value"] << "\n";
<< "llamacpp:" << name << " " << value << "\n";
}
}
@ -3051,6 +3008,7 @@ int main(int argc, char **argv)
state.store(SERVER_STATE_READY);
LOG_INFO("model loaded", {});
}
const auto model_meta = llama.model_meta();
if (sparams.chat_template.empty()) { // custom chat template is not supplied
// check if the template comes with the model is supported by us
@ -3198,7 +3156,7 @@ int main(int argc, char **argv)
}
});
svr.Get("/v1/models", [&params](const httplib::Request& req, httplib::Response& res)
svr.Get("/v1/models", [&params, &model_meta](const httplib::Request& req, httplib::Response& res)
{
std::time_t t = std::time(0);
@ -3209,7 +3167,8 @@ int main(int argc, char **argv)
{"id", params.model_alias},
{"object", "model"},
{"created", t},
{"owned_by", "llamacpp"}
{"owned_by", "llamacpp"},
{"meta", model_meta}
},
}}
};
@ -3500,6 +3459,11 @@ int main(int argc, char **argv)
}*/
//);
if (sparams.n_threads_http > 0) {
log_data["n_threads_http"] = std::to_string(sparams.n_threads_http);
svr.new_task_queue = [&sparams] { return new httplib::ThreadPool(sparams.n_threads_http); };
}
LOG_INFO("HTTP server listening", log_data);
// run the HTTP server in a thread - see comment below
std::thread t([&]()
@ -3517,8 +3481,8 @@ int main(int argc, char **argv)
&llama_server_context::process_single_task, &llama, std::placeholders::_1));
llama.queue_tasks.on_finish_multitask(std::bind(
&llama_server_context::on_finish_multitask, &llama, std::placeholders::_1));
llama.queue_tasks.on_all_tasks_finished(std::bind(
&llama_server_context::run_on_all_tasks_finished, &llama));
llama.queue_tasks.on_run_slots(std::bind(
&llama_server_context::update_slots, &llama));
llama.queue_results.on_multitask_update(std::bind(
&llama_server_queue::update_multitask,
&llama.queue_tasks,

View file

@ -1,22 +1,30 @@
# Server tests
Python based server tests scenario using [BDD](https://en.wikipedia.org/wiki/Behavior-driven_development) and [behave](https://behave.readthedocs.io/en/latest/):
* [issues.feature](./features/issues.feature) Pending issues scenario
* [parallel.feature](./features/parallel.feature) Scenario involving multi slots and concurrent requests
* [security.feature](./features/security.feature) Security, CORS and API Key
* [server.feature](./features/server.feature) Server base scenario: completion, embedding, tokenization, etc...
Python based server tests scenario using [BDD](https://en.wikipedia.org/wiki/Behavior-driven_development)
and [behave](https://behave.readthedocs.io/en/latest/):
* [issues.feature](./features/issues.feature) Pending issues scenario
* [parallel.feature](./features/parallel.feature) Scenario involving multi slots and concurrent requests
* [security.feature](./features/security.feature) Security, CORS and API Key
* [server.feature](./features/server.feature) Server base scenario: completion, embedding, tokenization, etc...
Tests target GitHub workflows job runners with 4 vCPU.
Requests are using [aiohttp](https://docs.aiohttp.org/en/stable/client_reference.html), [asyncio](https://docs.python.org/fr/3/library/asyncio.html) based http client.
Requests are
using [aiohttp](https://docs.aiohttp.org/en/stable/client_reference.html), [asyncio](https://docs.python.org/fr/3/library/asyncio.html)
based http client.
Note: If the host architecture inference speed is faster than GitHub runners one, parallel scenario may randomly fail. To mitigate it, you can increase values in `n_predict`, `kv_size`.
Note: If the host architecture inference speed is faster than GitHub runners one, parallel scenario may randomly fail.
To mitigate it, you can increase values in `n_predict`, `kv_size`.
### Install dependencies
`pip install -r requirements.txt`
### Run tests
1. Build the server
```shell
cd ../../..
mkdir build
@ -24,24 +32,36 @@ cd build
cmake ../
cmake --build . --target server
```
2. download required models:
1. `../../../scripts/hf.sh --repo ggml-org/models --file tinyllamas/stories260K.gguf`
3. Start the test: `./tests.sh`
2. Start the test: `./tests.sh`
It's possible to override some scenario steps values with environment variables:
- `PORT` -> `context.server_port` to set the listening port of the server during scenario, default: `8080`
- `LLAMA_SERVER_BIN_PATH` -> to change the server binary path, default: `../../../build/bin/server`
- `DEBUG` -> "ON" to enable steps and server verbose mode `--verbose`
- `SERVER_LOG_FORMAT_JSON` -> if set switch server logs to json format
| variable | description |
|--------------------------|------------------------------------------------------------------------------------------------|
| `PORT` | `context.server_port` to set the listening port of the server during scenario, default: `8080` |
| `LLAMA_SERVER_BIN_PATH` | to change the server binary path, default: `../../../build/bin/server` |
| `DEBUG` | "ON" to enable steps and server verbose mode `--verbose` |
| `SERVER_LOG_FORMAT_JSON` | if set switch server logs to json format |
| `N_GPU_LAYERS` | number of model layers to offload to VRAM `-ngl --n-gpu-layers` |
### Run @bug, @wip or @wrong_usage annotated scenario
Feature or Scenario must be annotated with `@llama.cpp` to be included in the default scope.
- `@bug` annotation aims to link a scenario with a GitHub issue.
- `@wrong_usage` are meant to show user issue that are actually an expected behavior
- `@wip` to focus on a scenario working in progress
- `@slow` heavy test, disabled by default
To run a scenario annotated with `@bug`, start:
`DEBUG=ON ./tests.sh --no-skipped --tags bug`
```shell
DEBUG=ON ./tests.sh --no-skipped --tags bug
```
After changing logic in `steps.py`, ensure that `@bug` and `@wrong_usage` scenario are updated.
```shell
./tests.sh --no-skipped --tags bug,wrong_usage || echo "should failed but compile"
```

View file

@ -7,7 +7,10 @@ from signal import SIGKILL
def before_scenario(context, scenario):
print(f"\x1b[33;42mStarting new scenario: {scenario.name}!\x1b[0m")
context.debug = 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON'
if context.debug:
print("DEBUG=ON\n")
print(f"\x1b[33;42mStarting new scenario: {scenario.name}!\x1b[0m\n")
port = 8080
if 'PORT' in os.environ:
port = int(os.environ['PORT'])

View file

@ -1,4 +1,5 @@
# List of ongoing issues
# run with: DEBUG=ON ./tests.sh --no-skipped --tags bug
@bug
Feature: Issues
# No confirmed issue at the moment

View file

@ -1,11 +1,12 @@
@llama.cpp
@parallel
Feature: Parallel
Background: Server startup
Given a server listening on localhost:8080
And a model file stories260K.gguf
And a model alias tinyllama-2
And a model file tinyllamas/stories260K.gguf from HF repo ggml-org/models
And 42 as server seed
And 512 as batch size
And 64 KV cache size
And 2 slots
And embeddings extraction

View file

@ -0,0 +1,55 @@
# run with: ./tests.sh --no-skipped --tags passkey
@passkey
@slow
Feature: Passkey / Self-extend with context shift
Background: Server startup
Given a server listening on localhost:8080
# Generates a long text of junk and inserts a secret passkey number inside it.
# Then we query the LLM for the secret passkey.
# see #3856 and #4810
Scenario Outline: Passkey
Given a model file <hf_file> from HF repo <hf_repo>
And <n_batch> as batch size
And <n_junk> as number of junk
And <n_predicted> server max tokens to predict
And 42 as seed
And <n_ctx> KV cache size
And 1 slots
And <n_ga> group attention factor to extend context size through self-extend
And <n_ga_w> group attention width to extend context size through self-extend
# Can be override with N_GPU_LAYERS
And <ngl> GPU offloaded layers
Then the server is starting
Then the server is healthy
Given available models
Then model 0 is trained on <n_ctx_train> tokens context
Given a prefix prompt:
"""
here is an important info hidden inside a lot of irrelevant text. Find it and memorize them. I will quiz you about the important information there.
"""
And a passkey prompt template:
"""
The pass key is <passkey> Remember it. <passkey> is the pass key.
"""
And a junk suffix prompt:
"""
The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again.
"""
And a suffix prompt:
"""
What is the pass key? The pass key is
"""
Given a "<passkey>" passkey challenge prompt with the passkey inserted every <i_pos> junk
And a completion request with no api error
Then <n_predicted> tokens are predicted matching <re_content>
Examples:
| hf_repo | hf_file | n_ctx_train | ngl | n_ctx | n_batch | n_ga | n_ga_w | n_junk | i_pos | passkey | n_predicted | re_content |
| TheBloke/phi-2-GGUF | phi-2.Q4_K_M.gguf | 2048 | 5 | 8192 | 512 | 4 | 512 | 250 | 50 | 42 | 1 | 42 |
| TheBloke/phi-2-GGUF | phi-2.Q4_K_M.gguf | 2048 | 5 | 8192 | 512 | 2 | 512 | 250 | 50 | 42 | 1 | \b((?!42)\w)+\b |
#| TheBloke/Llama-2-7B-GGUF | llama-2-7b.Q2_K.gguf | 4096 | 3 | 16384 | 512 | 4 | 512 | 500 | 300 | 1234 | 5 | 1234 |
#| TheBloke/Mixtral-8x7B-v0.1-GGUF | mixtral-8x7b-v0.1.Q2_K.gguf | 32768 | 2 | 16384 | 512 | 4 | 512 | 500 | 100 | 0987 | 5 | 0
# 987 |

View file

@ -1,9 +1,10 @@
@llama.cpp
@security
Feature: Security
Background: Server startup with an api key defined
Given a server listening on localhost:8080
And a model file stories260K.gguf
And a model file tinyllamas/stories260K.gguf from HF repo ggml-org/models
And a server api key llama.cpp
Then the server is starting
Then the server is healthy

View file

@ -1,15 +1,17 @@
@llama.cpp
@server
Feature: llama.cpp server
Background: Server startup
Given a server listening on localhost:8080
And a model file stories260K.gguf
And a model file tinyllamas/stories260K.gguf from HF repo ggml-org/models
And a model alias tinyllama-2
And 42 as server seed
# KV Cache corresponds to the total amount of tokens
# that can be stored across all independent sequences: #4130
# see --ctx-size and #5568
And 32 KV cache size
And 512 as batch size
And 1 slots
And embeddings extraction
And 32 server max tokens to predict
@ -30,8 +32,8 @@ Feature: llama.cpp server
Examples: Prompts
| prompt | n_predict | re_content | n_predicted |
| I believe the meaning of life is | 8 | (read<or>going)+ | 8 |
| Write a joke about AI | 64 | (park<or>friends<or>scared<or>always)+ | 32 |
| I believe the meaning of life is | 8 | (read\|going)+ | 8 |
| Write a joke about AI | 64 | (park\|friends\|scared\|always)+ | 32 |
Scenario Outline: OAI Compatibility
Given a model <model>
@ -44,8 +46,8 @@ Feature: llama.cpp server
Examples: Prompts
| model | system_prompt | user_prompt | max_tokens | re_content | n_predicted | enable_streaming |
| llama-2 | Book | What is the best book | 8 | (Mom<or>what)+ | 8 | disabled |
| codellama70b | You are a coding assistant. | Write the fibonacci function in c++. | 64 | (thanks<or>happy<or>bird)+ | 32 | enabled |
| llama-2 | Book | What is the best book | 8 | (Mom\|what)+ | 8 | disabled |
| codellama70b | You are a coding assistant. | Write the fibonacci function in c++. | 64 | (thanks\|happy\|bird)+ | 32 | enabled |
Scenario: Embedding
When embeddings are computed for:
@ -75,10 +77,15 @@ Feature: llama.cpp server
When an OAI compatible embeddings computation request for multiple inputs
Then embeddings are generated
Scenario: Tokenize / Detokenize
When tokenizing:
"""
What is the capital of France ?
"""
Then tokens can be detokenize
Scenario: Models available
Given available models
Then 1 models are supported
Then model 0 is identified by tinyllama-2
Then model 0 is trained on 128 tokens context

View file

@ -13,6 +13,7 @@ import aiohttp
import openai
from behave import step
from behave.api.async_step import async_run_until_complete
from huggingface_hub import hf_hub_download
from prometheus_client import parser
@ -26,17 +27,23 @@ def step_server_config(context, server_fqdn, server_port):
context.base_url = f'http://{context.server_fqdn}:{context.server_port}'
context.debug = 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON'
context.model_alias = None
context.n_batch = None
context.n_ctx = None
context.n_ga = None
context.n_ga_w = None
context.n_gpu_layer = None
context.n_predict = None
context.n_server_predict = None
context.n_slots = None
context.prompt_prefix = None
context.prompt_suffix = None
context.server_api_key = None
context.server_continuous_batching = False
context.server_embeddings = False
context.server_metrics = False
context.server_process = None
context.seed = None
context.server_seed = None
context.user_api_key = None
@ -45,9 +52,11 @@ def step_server_config(context, server_fqdn, server_port):
context.prompts = []
@step(u'a model file {model_file}')
def step_model_file(context, model_file):
context.model_file = model_file
@step(u'a model file {hf_file} from HF repo {hf_repo}')
def step_download_hf_model(context, hf_file, hf_repo):
context.model_file = hf_hub_download(repo_id=hf_repo, filename=hf_file)
if context.debug:
print(f"model file: {context.model_file}\n")
@step(u'a model alias {model_alias}')
@ -55,24 +64,34 @@ def step_model_alias(context, model_alias):
context.model_alias = model_alias
@step(u'{seed} as server seed')
@step(u'{seed:d} as server seed')
def step_seed(context, seed):
context.server_seed = int(seed)
context.server_seed = seed
@step(u'{n_ctx} KV cache size')
@step(u'{ngl:d} GPU offloaded layers')
def step_n_gpu_layer(context, ngl):
if 'N_GPU_LAYERS' in os.environ:
new_ngl = int(os.environ['N_GPU_LAYERS'])
if context.debug:
print(f"-ngl upgraded from {ngl} to {new_ngl}")
ngl = new_ngl
context.n_gpu_layer = ngl
@step(u'{n_ctx:d} KV cache size')
def step_n_ctx(context, n_ctx):
context.n_ctx = int(n_ctx)
context.n_ctx = n_ctx
@step(u'{n_slots} slots')
@step(u'{n_slots:d} slots')
def step_n_slots(context, n_slots):
context.n_slots = int(n_slots)
context.n_slots = n_slots
@step(u'{n_predict} server max tokens to predict')
@step(u'{n_predict:d} server max tokens to predict')
def step_server_n_predict(context, n_predict):
context.n_server_predict = int(n_predict)
context.n_server_predict = n_predict
@step(u'continuous batching')
@ -116,11 +135,13 @@ async def step_wait_for_the_server_to_be_started(context, expecting_status):
case 'ready' | 'idle':
await wait_for_health_status(context, context.base_url, 200, 'ok',
timeout=10,
params={'fail_on_no_slot': 0, 'include_slots': 0},
slots_idle=context.n_slots,
slots_processing=0,
expected_slots=[{'id': slot_id, 'state': 0}
for slot_id in range(context.n_slots)])
for slot_id in
range(context.n_slots if context.n_slots else 1)])
case 'busy':
await wait_for_health_status(context, context.base_url, 503,
'no slot available',
@ -128,7 +149,8 @@ async def step_wait_for_the_server_to_be_started(context, expecting_status):
slots_idle=0,
slots_processing=context.n_slots,
expected_slots=[{'id': slot_id, 'state': 1}
for slot_id in range(context.n_slots)])
for slot_id in
range(context.n_slots if context.n_slots else 1)])
case _:
assert False, "unknown status"
@ -157,24 +179,24 @@ async def step_request_completion(context, api_error):
context.base_url,
debug=context.debug,
n_predict=context.n_predict,
server_seed=context.server_seed,
seed=await completions_seed(context),
expect_api_error=expect_api_error,
user_api_key=context.user_api_key)
context.tasks_result.append(completion)
if context.debug:
print(f"Completion response: {completion}")
print(f"Completion response: {completion}\n")
if expect_api_error:
assert completion == 401, f"completion must be an 401 status code: {completion}"
@step(u'{predicted_n} tokens are predicted matching {re_content}')
@step(u'{predicted_n:d} tokens are predicted matching {re_content}')
def step_n_tokens_predicted_with_content(context, predicted_n, re_content):
assert_n_tokens_predicted(context.tasks_result.pop(), int(predicted_n), re_content)
assert_n_tokens_predicted(context.tasks_result.pop(), predicted_n, re_content)
@step(u'{predicted_n} tokens are predicted')
@step(u'{predicted_n:d} tokens are predicted')
def step_n_tokens_predicted(context, predicted_n):
assert_n_tokens_predicted(context.tasks_result.pop(), int(predicted_n))
assert_n_tokens_predicted(context.tasks_result.pop(), predicted_n)
@step(u'a user prompt {user_prompt}')
@ -192,9 +214,9 @@ def step_model(context, model):
context.model = model
@step(u'{max_tokens} max tokens to predict')
@step(u'{max_tokens:d} max tokens to predict')
def step_max_tokens(context, max_tokens):
context.n_predict = int(max_tokens)
context.n_predict = max_tokens
@step(u'streaming is {enable_streaming}')
@ -222,11 +244,70 @@ def step_server_api_key(context, server_api_key):
context.server_api_key = server_api_key
@step(u'{n_junk:d} as number of junk')
def step_n_junk(context, n_junk):
context.n_junk = n_junk
@step(u'{n_batch:d} as batch size')
def step_n_batch(context, n_batch):
context.n_batch = n_batch
@step(u'{seed:d} as seed')
def step_seed(context, seed):
context.seed = seed
@step(u'a prefix prompt')
def step_prompt_prefix(context):
context.prompt_prefix = context.text
@step(u'a junk suffix prompt')
def step_prompt_junk_suffix(context):
context.prompt_junk_suffix = context.text
@step(u'a suffix prompt')
def step_prompt_suffix(context):
context.prompt_suffix = context.text
@step(u'{n_ga:d} group attention factor'
u' to extend context size through self-extend')
def step_impl(context, n_ga):
context.n_ga = n_ga
@step(u'{n_ga_w:d} group attention width to extend context size through self-extend')
def step_impl(context, n_ga_w):
context.n_ga_w = n_ga_w
@step(u'a passkey prompt template')
def step_prompt_passkey(context):
context.prompt_passkey = context.text
@step(u'a "{passkey}" passkey challenge prompt with the passkey inserted every {i_pos:d} junk')
def step_prompt_passkey(context, passkey, i_pos):
prompt = ""
for i in range(context.n_junk):
if i % context.n_junk == i_pos:
prompt += context.prompt_passkey # the passkey is already substituted
prompt += context.prompt_junk_suffix
if context.debug:
passkey_highlight = "\x1b[33m" + passkey + "\x1b[0m"
print(f"Passkey challenge:\n```{prompt.replace(passkey, passkey_highlight)}```\n")
context.prompts.append(context.prompt_prefix + prompt + context.prompt_suffix)
@step(u'an OAI compatible chat completions request with {api_error} api error')
@async_run_until_complete
async def step_oai_chat_completions(context, api_error):
if context.debug:
print(f"Submitting OAI compatible completions request...")
print(f"Submitting OAI compatible completions request...\n")
expect_api_error = api_error == 'raised'
completion = await oai_chat_completions(context.prompts.pop(),
context.system_prompt,
@ -241,8 +322,7 @@ async def step_oai_chat_completions(context, api_error):
enable_streaming=context.enable_streaming
if hasattr(context, 'enable_streaming') else None,
server_seed=context.server_seed
if hasattr(context, 'server_seed') else None,
seed=await completions_seed(context),
user_api_key=context.user_api_key
if hasattr(context, 'user_api_key') else None,
@ -276,8 +356,10 @@ async def step_concurrent_completion_requests(context):
# prompt is inserted automatically
context.base_url,
debug=context.debug,
prompt_prefix=context.prompt_prefix,
prompt_suffix=context.prompt_suffix,
n_predict=context.n_predict if hasattr(context, 'n_predict') else None,
server_seed=context.server_seed if hasattr(context, 'server_seed') else None,
seed=await completions_seed(context),
user_api_key=context.user_api_key if hasattr(context,
'user_api_key') else None)
@ -297,8 +379,7 @@ async def step_oai_chat_completions(context):
if hasattr(context, 'n_predict') else None,
enable_streaming=context.enable_streaming
if hasattr(context, 'enable_streaming') else None,
server_seed=context.server_seed
if hasattr(context, 'server_seed') else None,
seed=await completions_seed(context),
user_api_key=context.user_api_key
if hasattr(context, 'user_api_key') else None)
@ -318,7 +399,9 @@ async def step_oai_chat_completions(context):
if hasattr(context, 'n_predict') else None,
enable_streaming=context.enable_streaming
if hasattr(context, 'enable_streaming') else None,
server_seed=context.server_seed
seed=context.seed
if hasattr(context, 'seed') else
context.server_seed
if hasattr(context, 'server_seed') else None,
user_api_key=context.user_api_key
if hasattr(context, 'user_api_key') else None)
@ -330,11 +413,10 @@ async def step_all_prompts_are_predicted(context):
await all_prompts_are_predicted(context)
@step(u'all prompts are predicted with {n_predict} tokens')
@step(u'all prompts are predicted with {n_expected_predicted:d} tokens')
@async_run_until_complete
async def step_all_prompts_are_predicted_with_n_tokens(context, n_predict):
expected_predicted_n = int(n_predict)
await all_prompts_are_predicted(context, expected_predicted_n)
async def step_all_prompts_are_predicted_with_n_tokens(context, n_expected_predicted):
await all_prompts_are_predicted(context, n_expected_predicted)
async def all_prompts_are_predicted(context, expected_predicted_n=None):
@ -464,6 +546,8 @@ async def step_prometheus_metrics_exported(context):
assert metrics_response.headers['Content-Type'] == "text/plain; version=0.0.4"
metrics_raw = await metrics_response.text()
metric_exported = False
if context.debug:
print(f"/metrics answer:\n{metrics_raw}\n")
for metric in parser.text_string_to_metric_families(metrics_raw):
match metric.name:
case "llamacpp:kv_cache_usage_ratio":
@ -472,6 +556,37 @@ async def step_prometheus_metrics_exported(context):
assert metric_exported, "No metrics exported"
@step(u'available models')
def step_available_models(context):
# openai client always expects an api_key
openai.api_key = context.user_api_key if context.user_api_key is not None else 'nope'
openai.api_base = f'{context.base_url}/v1'
context.models = openai.Model.list().data
@step(u'{n_model:d} models are supported')
def step_supported_models(context, n_model):
if context.debug:
print("server models available:", context.models)
assert len(context.models) == n_model
@step(u'model {i_model:d} is {param} {preposition} {param_value}')
def step_supported_models(context, i_model, param, preposition, param_value):
assert i_model < len(context.models)
model = context.models[i_model]
param_value = param_value.split(' ', 1)[0]
match param:
case 'identified':
value = model.id
case 'trained':
value = str(model.meta.n_ctx_train)
case _:
assert False, "param {param} not supported"
assert param_value == value, f"model param {param} {value} != {param_value}"
async def concurrent_requests(context, f_completion, *args, **kwargs):
n_prompts = len(context.prompts)
if context.debug:
@ -486,8 +601,10 @@ async def concurrent_requests(context, f_completion, *args, **kwargs):
async def request_completion(prompt,
base_url,
debug=False,
prompt_prefix=None,
prompt_suffix=None,
n_predict=None,
server_seed=None,
seed=None,
expect_api_error=None,
user_api_key=None):
if debug:
@ -504,11 +621,14 @@ async def request_completion(prompt,
async with aiohttp.ClientSession() as session:
async with session.post(f'{base_url}/completion',
json={
"input_prefix": prompt_prefix,
"prompt": prompt,
"n_predict": int(n_predict) if n_predict is not None else -1,
"seed": server_seed if server_seed is not None else 42
"input_suffix": prompt_suffix,
"n_predict": n_predict if n_predict is not None else -1,
"seed": seed if seed is not None else 42
},
headers=headers) as response:
headers=headers,
timeout=3600) as response:
if expect_api_error is None or not expect_api_error:
assert response.status == 200
assert response.headers['Access-Control-Allow-Origin'] == origin
@ -526,14 +646,14 @@ async def oai_chat_completions(user_prompt,
model=None,
n_predict=None,
enable_streaming=None,
server_seed=None,
seed=None,
user_api_key=None,
expect_api_error=None):
if debug:
print(f"Sending OAI Chat completions request: {user_prompt}")
# openai client always expects an api key
user_api_key = user_api_key if user_api_key is not None else 'nope'
seed = server_seed if server_seed is not None else 42
seed = seed if seed is not None else 42
enable_streaming = enable_streaming if enable_streaming is not None else False
payload = {
"messages": [
@ -692,20 +812,32 @@ def assert_n_tokens_predicted(completion_response, expected_predicted_n=None, re
content = completion_response['content']
n_predicted = completion_response['timings']['predicted_n']
assert len(content) > 0, "no token predicted"
if expected_predicted_n is not None:
if re_content is not None:
p = re.compile(re_content, flags=RegexFlag.IGNORECASE | RegexFlag.MULTILINE | RegexFlag.DOTALL)
matches = p.finditer(content)
last_match = 0
highlighted = ''
for match in matches:
start, end = match.span()
highlighted += content[last_match: start]
highlighted += '\x1b[33m'
highlighted += content[start: end]
highlighted += '\x1b[0m'
last_match = end
highlighted += content[last_match:]
if 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON':
print(f"Checking completion response: {highlighted}\n")
assert last_match > 0, f'/{re_content}/ must match ```{highlighted}```'
if expected_predicted_n and expected_predicted_n > 0:
assert n_predicted == expected_predicted_n, (f'invalid number of tokens predicted:'
f' {n_predicted} <> {expected_predicted_n}')
if re_content is not None:
re_content = '^.*' + re_content.replace('<or>', '|') + '.*$'
assert re.match(re_content, content, flags=RegexFlag.IGNORECASE | RegexFlag.MULTILINE | RegexFlag.DOTALL), (
f'invalid tokens predicted:'
f' ```\n{content}\n``` do not match /{re_content}/')
async def gather_tasks_results(context):
n_tasks = len(context.concurrent_tasks)
if context.debug:
print(f"Waiting for all {n_tasks} tasks results...")
print(f"Waiting for all {n_tasks} tasks results...\n")
for task_no in range(n_tasks):
context.tasks_result.append(await context.concurrent_tasks.pop())
n_completions = len(context.tasks_result)
@ -716,15 +848,13 @@ async def wait_for_health_status(context,
base_url,
expected_http_status_code,
expected_health_status,
timeout=3,
params=None,
slots_idle=None,
slots_processing=None,
expected_slots=None):
if context.debug:
print(f"Starting checking for health for expected_health_status={expected_health_status}")
timeout = 3 # seconds
if expected_health_status == 'ok':
timeout = 10 # CI slow inference
print(f"Starting checking for health for expected_health_status={expected_health_status}\n")
interval = 0.5
counter = 0
async with aiohttp.ClientSession() as session:
@ -734,7 +864,7 @@ async def wait_for_health_status(context,
health = await health_response.json()
if context.debug:
print(f"HEALTH - response for expected health status='{expected_health_status}' on "
f"'{base_url}/health'?{params} is {health}")
f"'{base_url}/health'?{params} is {health}\n")
if (status_code == expected_http_status_code
and health['status'] == expected_health_status
and (slots_idle is None or health['slots_idle'] == slots_idle)
@ -757,7 +887,7 @@ async def wait_for_health_status(context,
if expected_http_status_code == 503:
if len(context.tasks_result) == 0:
print("\x1b[5;37;43mWARNING: forcing concurrent tasks,"
" busy health check missed, probably too fast inference\x1b[0m")
" busy health check missed, probably too fast inference\x1b[0m\n")
n_completions = await gather_tasks_results(context)
if n_completions > 0:
return
@ -791,6 +921,11 @@ def assert_slots_status(slots, expected_slots):
f" = {expected[key]} != {slot[key]}")
async def completions_seed(context):
return context.seed if hasattr(context, 'seed') and context.seed is not None \
else context.server_seed if hasattr(context, 'server_seed') else None
def start_server_background(context):
context.server_path = '../../../build/bin/server'
if 'LLAMA_SERVER_BIN_PATH' in os.environ:
@ -800,27 +935,35 @@ def start_server_background(context):
'--port', context.server_port,
'--model', context.model_file
]
if context.n_batch:
server_args.extend(['--batch-size', context.n_batch])
if context.n_gpu_layer:
server_args.extend(['--n-gpu-layers', context.n_gpu_layer])
if context.server_continuous_batching:
server_args.append('--cont-batching')
if context.server_embeddings:
server_args.append('--embedding')
if context.server_metrics:
server_args.append('--metrics')
if context.model_alias is not None:
if context.model_alias:
server_args.extend(['--alias', context.model_alias])
if context.n_ctx is not None:
if context.n_ctx:
server_args.extend(['--ctx-size', context.n_ctx])
if context.n_slots is not None:
if context.n_slots:
server_args.extend(['--parallel', context.n_slots])
if context.n_server_predict is not None:
if context.n_server_predict:
server_args.extend(['--n-predict', context.n_server_predict])
if context.server_api_key is not None:
if context.server_api_key:
server_args.extend(['--api-key', context.server_api_key])
if context.n_ga:
server_args.extend(['--grp-attn-n', context.n_ga])
if context.n_ga_w:
server_args.extend(['--grp-attn-w', context.n_ga_w])
if context.debug:
server_args.append('--verbose')
if 'SERVER_LOG_FORMAT_JSON' not in os.environ:
server_args.extend(['--log-format', "text"])
print(f"starting server with: {context.server_path}", *server_args)
print(f"starting server with: {context.server_path} {server_args}\n")
context.server_process = subprocess.Popen(
[str(arg) for arg in [context.server_path, *server_args]],
close_fds=True)

View file

@ -1,4 +1,4 @@
# run with ./test.sh --tags wrong_usage
# run with: ./tests.sh --no-skipped --tags wrong_usage
@wrong_usage
Feature: Wrong usage of llama.cpp server
@ -7,7 +7,7 @@ Feature: Wrong usage of llama.cpp server
# or pass n_predict/max_tokens in the request.
Scenario: Infinite loop
Given a server listening on localhost:8080
And a model file stories260K.gguf
And a model file tinyllamas/stories260K.gguf from HF repo ggml-org/models
# Uncomment below to fix the issue
#And 64 server max tokens to predict
Then the server is starting
@ -18,4 +18,5 @@ Feature: Wrong usage of llama.cpp server
# Uncomment below to fix the issue
#And 128 max tokens to predict
Given concurrent completion requests
Then the server is idle
Then all prompts are predicted

View file

@ -1,4 +1,5 @@
aiohttp~=3.9.3
behave~=1.2.6
huggingface_hub~=0.20.3
openai~=0.25.0
prometheus-client~=0.20.0

View file

@ -5,7 +5,7 @@ set -eu
if [ $# -lt 1 ]
then
# Start @llama.cpp scenario
behave --summary --stop --no-capture --exclude 'issues|wrong_usages' --tags llama.cpp
behave --summary --stop --no-capture --exclude 'issues|wrong_usages|passkey' --tags llama.cpp
else
behave "$@"
fi

View file

@ -37,10 +37,6 @@ extern bool server_log_json;
#define LOG_WARNING(MSG, ...) server_log("WARN", __func__, __LINE__, MSG, __VA_ARGS__)
#define LOG_INFO( MSG, ...) server_log("INFO", __func__, __LINE__, MSG, __VA_ARGS__)
//
// parallel
//
enum server_state {
SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
SERVER_STATE_READY, // Server is ready and model is loaded
@ -78,51 +74,8 @@ struct task_multi {
std::vector<task_result> results{};
};
// TODO: can become bool if we can't find use of more states
enum slot_state
{
IDLE,
PROCESSING,
};
enum slot_command
{
NONE,
LOAD_PROMPT,
RELEASE,
};
struct slot_params
{
bool stream = true;
bool cache_prompt = false; // remember the prompt to avoid reprocessing all prompt
uint32_t seed = -1; // RNG seed
int32_t n_keep = 0; // number of tokens to keep from initial prompt
int32_t n_predict = -1; // new tokens to predict
std::vector<std::string> antiprompt;
json input_prefix;
json input_suffix;
};
struct slot_image
{
int32_t id;
bool request_encode_image = false;
float * image_embedding = nullptr;
int32_t image_tokens = 0;
clip_image_u8 * img_data;
std::string prefix_prompt; // before of this image
};
// completion token output with probabilities
struct completion_token_output
{
struct completion_token_output {
struct token_prob
{
llama_token tok;
@ -134,8 +87,13 @@ struct completion_token_output
std::string text_to_send;
};
static inline void server_log(const char *level, const char *function, int line, const char *message, const nlohmann::ordered_json &extra)
{
struct token_translator {
llama_context * ctx;
std::string operator()(llama_token tok) const { return llama_token_to_piece(ctx, tok); }
std::string operator()(const completion_token_output &cto) const { return (*this)(cto.tok); }
};
static inline void server_log(const char *level, const char *function, int line, const char *message, const nlohmann::ordered_json &extra) {
std::stringstream ss_tid;
ss_tid << std::this_thread::get_id();
json log = nlohmann::ordered_json{
@ -168,8 +126,7 @@ static inline void server_log(const char *level, const char *function, int line,
for (const auto& el : log.items())
{
const std::string value = el.value().dump(-1, ' ', false, json::error_handler_t::replace);
snprintf(buf, 1024, " %s=%s", el.key().c_str(), value.c_str());
ss << buf;
ss << " " << el.key() << "=" << value;
}
const std::string str = ss.str();
@ -183,8 +140,7 @@ static inline void server_log(const char *level, const char *function, int line,
//
template <typename T>
static T json_value(const json &body, const std::string &key, const T &default_value)
{
static T json_value(const json &body, const std::string &key, const T &default_value) {
// Fallback null to default value
return body.contains(key) && !body.at(key).is_null()
? body.value(key, default_value)
@ -200,8 +156,7 @@ inline bool verify_custom_template(const std::string & tmpl) {
}
// Format given chat. If tmpl is empty, we take the template from model metadata
inline std::string format_chat(const struct llama_model * model, const std::string & tmpl, const std::vector<json> & messages)
{
inline std::string format_chat(const struct llama_model * model, const std::string & tmpl, const std::vector<json> & messages) {
size_t alloc_size = 0;
// vector holding all allocated string to be passed to llama_chat_apply_template
std::vector<std::string> str(messages.size() * 2);
@ -250,7 +205,7 @@ struct llama_server_queue {
// callback functions
std::function<void(task_server&)> callback_new_task;
std::function<void(task_multi&)> callback_finish_multitask;
std::function<void(void)> callback_all_task_finished;
std::function<void(void)> callback_run_slots;
// Add a new task to the end of the queue
int post(task_server task) {
@ -283,14 +238,14 @@ struct llama_server_queue {
callback_new_task = callback;
}
// Register function to process a multitask
// Register function to process a multitask when it is finished
void on_finish_multitask(std::function<void(task_multi&)> callback) {
callback_finish_multitask = callback;
}
// Register the function to be called when the batch of tasks is finished
void on_all_tasks_finished(std::function<void(void)> callback) {
callback_all_task_finished = callback;
// Register the function to be called when all slots data is ready to be processed
void on_run_slots(std::function<void(void)> callback) {
callback_run_slots = callback;
}
// Call when the state of one slot is changed
@ -312,7 +267,13 @@ struct llama_server_queue {
condition_tasks.notify_all();
}
// Start the main loop.
/**
* Main loop consists of these steps:
* - Wait until a new task arrives
* - Process the task (i.e. maybe copy data into slot)
* - Check if multitask is finished
* - Run all slots
*/
void start_loop() {
running = true;
while (true) {
@ -331,8 +292,8 @@ struct llama_server_queue {
LOG_VERBOSE("callback_new_task", {{"task_id", task.id}});
callback_new_task(task);
}
LOG_VERBOSE("callback_all_task_finished", {});
// process and update all the multitasks
LOG_VERBOSE("update_multitasks", {});
// check if we have any finished multitasks
auto queue_iterator = queue_multitasks.begin();
while (queue_iterator != queue_multitasks.end())
{
@ -349,8 +310,9 @@ struct llama_server_queue {
++queue_iterator;
}
}
// all tasks in the current loop is finished
callback_all_task_finished();
// all tasks in the current loop is processed, slots data is now ready
LOG_VERBOSE("callback_run_slots", {});
callback_run_slots();
}
LOG_VERBOSE("wait for new task", {});
// wait for new task
@ -408,12 +370,14 @@ struct llama_server_response {
std::mutex mutex_results;
std::condition_variable condition_results;
// add the task_id to the list of tasks waiting for response
void add_waiting_task_id(int task_id) {
LOG_VERBOSE("waiting for task id", {{"task_id", task_id}});
std::unique_lock<std::mutex> lock(mutex_results);
waiting_task_ids.insert(task_id);
}
// when the request is finished, we can remove task associated with it
void remove_waiting_task_id(int task_id) {
LOG_VERBOSE("remove waiting for task id", {{"task_id", task_id}});
std::unique_lock<std::mutex> lock(mutex_results);
@ -574,3 +538,96 @@ static std::string gen_chatcmplid()
chatcmplid << "chatcmpl-" << random_string();
return chatcmplid.str();
}
//
// other common utils
//
static size_t common_part(const std::vector<llama_token> &a, const std::vector<llama_token> &b)
{
size_t i;
for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++)
{
}
return i;
}
static bool ends_with(const std::string &str, const std::string &suffix)
{
return str.size() >= suffix.size() &&
0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix);
}
static size_t find_partial_stop_string(const std::string &stop,
const std::string &text)
{
if (!text.empty() && !stop.empty())
{
const char text_last_char = text.back();
for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--)
{
if (stop[char_index] == text_last_char)
{
const std::string current_partial = stop.substr(0, char_index + 1);
if (ends_with(text, current_partial))
{
return text.size() - char_index - 1;
}
}
}
}
return std::string::npos;
}
// TODO: reuse llama_detokenize
template <class Iter>
static std::string tokens_to_str(llama_context *ctx, Iter begin, Iter end)
{
std::string ret;
for (; begin != end; ++begin)
{
ret += llama_token_to_piece(ctx, *begin);
}
return ret;
}
// format incomplete utf-8 multibyte character for output
static std::string tokens_to_output_formatted_string(const llama_context *ctx, const llama_token token)
{
std::string out = token == -1 ? "" : llama_token_to_piece(ctx, token);
// if the size is 1 and first bit is 1, meaning it's a partial character
// (size > 1 meaning it's already a known token)
if (out.size() == 1 && (out[0] & 0x80) == 0x80)
{
std::stringstream ss;
ss << std::hex << (out[0] & 0xff);
std::string res(ss.str());
out = "byte: \\x" + res;
}
return out;
}
// convert a vector of completion_token_output to json
static json probs_vector_to_json(const llama_context *ctx, const std::vector<completion_token_output> &probs)
{
json out = json::array();
for (const auto &prob : probs)
{
json probs_for_token = json::array();
for (const auto &p : prob.probs)
{
std::string tok_str = tokens_to_output_formatted_string(ctx, p.tok);
probs_for_token.push_back(json
{
{"tok_str", tok_str},
{"prob", p.prob},
});
}
std::string tok_str = tokens_to_output_formatted_string(ctx, prob.tok);
out.push_back(json{
{"content", tok_str},
{"probs", probs_for_token},
});
}
return out;
}

View file

@ -7,7 +7,7 @@
#include "ggml-sycl.h"
int main(int argc, char ** argv) {
int main() {
ggml_backend_sycl_print_sycl_devices();
return 0;
}

View file

@ -8,12 +8,19 @@ INPUT2="Building a website can be done in 10 simple steps:\nStep 1:"
source /opt/intel/oneapi/setvars.sh
if [ $# -gt 0 ]; then
export GGML_SYCL_DEVICE=$1
GGML_SYCL_DEVICE=$1
else
export GGML_SYCL_DEVICE=0
GGML_SYCL_DEVICE=0
fi
echo GGML_SYCL_DEVICE=$GGML_SYCL_DEVICE
echo "use $GGML_SYCL_DEVICE as main GPU"
#export GGML_SYCL_DEBUG=1
./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "${INPUT2}" -n 400 -e -ngl 33 -s 0
#./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "${INPUT2}" -n 5 -e -ngl 33 -t 1 -s 0
#ZES_ENABLE_SYSMAN=1, Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory. Recommended to use when --split-mode = layer.
#use all GPUs with same max compute units
ZES_ENABLE_SYSMAN=1 ./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "${INPUT2}" -n 400 -e -ngl 33 -s 0
#use main GPU only
#ZES_ENABLE_SYSMAN=1 ./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "${INPUT2}" -n 400 -e -ngl 33 -s 0 -mg $GGML_SYCL_DEVICE -sm none

View file

@ -107,11 +107,12 @@
# ```
#
# Cf. https://nixos.org/manual/nix/unstable/command-ref/new-cli/nix3-flake.html?highlight=flake#flake-format
flake.overlays.default =
(final: prev: {
flake.overlays.default = (
final: prev: {
llamaPackages = final.callPackage .devops/nix/scope.nix { inherit llamaVersion; };
inherit (final.llamaPackages) llama-cpp;
});
}
);
systems = [
"aarch64-darwin"
@ -131,6 +132,9 @@
...
}:
{
# For standardised reproducible formatting with `nix fmt`
formatter = pkgs.nixfmt-rfc-style;
# Unlike `.#packages`, legacyPackages may contain values of
# arbitrary types (including nested attrsets) and may even throw
# exceptions. This attribute isn't recursed into by `nix flake

View file

@ -2018,74 +2018,73 @@ static const __device__ uint32_t iq3xxs_grid[256] = {
0x3e1c1c1c, 0x3e1c3404, 0x3e24140c, 0x3e24240c, 0x3e2c0404, 0x3e2c0414, 0x3e2c1424, 0x3e341c04,
};
static const __device__ uint32_t iq3xs_grid[512] = {
0x04040404, 0x0404040c, 0x04040414, 0x0404042c, 0x0404043e, 0x04040c04, 0x04040c0c, 0x04040c14,
0x04040c24, 0x04040c34, 0x04041404, 0x0404140c, 0x0404142c, 0x04041c1c, 0x04042404, 0x04042414,
0x0404242c, 0x0404243e, 0x04042c0c, 0x04042c1c, 0x04043404, 0x04043414, 0x04043e0c, 0x04043e24,
0x04043e3e, 0x040c0404, 0x040c040c, 0x040c0414, 0x040c0424, 0x040c0c04, 0x040c0c0c, 0x040c0c2c,
0x040c1404, 0x040c141c, 0x040c143e, 0x040c1c0c, 0x040c1c2c, 0x040c2424, 0x040c340c, 0x040c342c,
0x040c3e14, 0x04140404, 0x0414040c, 0x0414042c, 0x0414043e, 0x04140c04, 0x04140c1c, 0x04140c34,
0x0414140c, 0x0414142c, 0x04141c04, 0x04141c24, 0x04142414, 0x0414242c, 0x0414243e, 0x04142c0c,
0x04142c1c, 0x04143e04, 0x04143e1c, 0x041c041c, 0x041c0c0c, 0x041c0c2c, 0x041c1404, 0x041c1414,
0x041c1c0c, 0x041c1c1c, 0x041c1c34, 0x041c2424, 0x041c2c04, 0x041c2c14, 0x041c343e, 0x041c3e0c,
0x041c3e2c, 0x04240404, 0x04240c1c, 0x04240c3e, 0x0424140c, 0x04241424, 0x04241c14, 0x04242404,
0x0424241c, 0x04242c0c, 0x04243e04, 0x042c0414, 0x042c0424, 0x042c1404, 0x042c1414, 0x042c1434,
0x042c1c1c, 0x042c240c, 0x042c242c, 0x042c243e, 0x042c3434, 0x042c3e1c, 0x04340434, 0x04340c0c,
0x04340c1c, 0x04341c0c, 0x04342c14, 0x04343e0c, 0x043e0404, 0x043e0414, 0x043e0424, 0x043e1404,
0x043e1414, 0x043e1434, 0x043e1c1c, 0x043e2c04, 0x043e2c24, 0x0c040404, 0x0c04040c, 0x0c040414,
0x0c040424, 0x0c040c04, 0x0c040c0c, 0x0c040c1c, 0x0c040c2c, 0x0c040c3e, 0x0c041404, 0x0c041414,
0x0c041c0c, 0x0c041c24, 0x0c041c34, 0x0c042c24, 0x0c042c34, 0x0c04340c, 0x0c043e14, 0x0c0c0404,
0x0c0c040c, 0x0c0c041c, 0x0c0c0434, 0x0c0c0c04, 0x0c0c0c24, 0x0c0c140c, 0x0c0c1c04, 0x0c0c1c1c,
0x0c0c240c, 0x0c0c2c04, 0x0c0c2c14, 0x0c0c3e04, 0x0c0c3e34, 0x0c140404, 0x0c140c14, 0x0c140c2c,
0x0c140c3e, 0x0c141404, 0x0c141424, 0x0c141c14, 0x0c142404, 0x0c14241c, 0x0c142c2c, 0x0c143404,
0x0c143e14, 0x0c1c040c, 0x0c1c0424, 0x0c1c043e, 0x0c1c0c04, 0x0c1c0c1c, 0x0c1c140c, 0x0c1c143e,
0x0c1c1c04, 0x0c1c1c24, 0x0c1c240c, 0x0c1c3414, 0x0c1c3e04, 0x0c24041c, 0x0c24042c, 0x0c240c14,
0x0c240c24, 0x0c241c0c, 0x0c241c1c, 0x0c242414, 0x0c242434, 0x0c242c04, 0x0c242c24, 0x0c2c040c,
0x0c2c0c04, 0x0c2c0c1c, 0x0c2c140c, 0x0c2c1c04, 0x0c2c1c14, 0x0c2c2c0c, 0x0c341404, 0x0c341424,
0x0c34143e, 0x0c342424, 0x0c342434, 0x0c3e040c, 0x0c3e041c, 0x0c3e0c04, 0x0c3e0c14, 0x0c3e140c,
0x0c3e1c2c, 0x0c3e240c, 0x0c3e3414, 0x0c3e3e04, 0x14040404, 0x1404040c, 0x1404041c, 0x1404042c,
0x1404043e, 0x14040c04, 0x14040c14, 0x14040c24, 0x14040c34, 0x1404140c, 0x1404141c, 0x1404143e,
0x14041c04, 0x14041c14, 0x1404240c, 0x1404241c, 0x1404242c, 0x14042c04, 0x14042c14, 0x1404343e,
0x14043e04, 0x14043e1c, 0x14043e2c, 0x140c0404, 0x140c0414, 0x140c0c04, 0x140c0c1c, 0x140c0c3e,
0x140c1414, 0x140c142c, 0x140c1c0c, 0x140c1c24, 0x140c2414, 0x140c2c0c, 0x1414040c, 0x14140424,
0x1414043e, 0x1414140c, 0x1414141c, 0x14141c04, 0x14141c3e, 0x1414240c, 0x14142c1c, 0x14142c3e,
0x14143e0c, 0x14143e24, 0x141c0404, 0x141c0414, 0x141c042c, 0x141c0c0c, 0x141c1414, 0x141c1424,
0x141c1c0c, 0x141c1c1c, 0x141c2414, 0x141c2c04, 0x141c3434, 0x1424040c, 0x1424043e, 0x14241404,
0x1424141c, 0x14241c14, 0x14241c2c, 0x1424240c, 0x14243e14, 0x14243e2c, 0x142c0424, 0x142c0c0c,
0x142c1414, 0x142c1c3e, 0x142c2404, 0x142c2c1c, 0x142c3e04, 0x14340404, 0x14340414, 0x1434043e,
0x1434140c, 0x14342c2c, 0x1434340c, 0x143e042c, 0x143e0c0c, 0x143e1434, 0x143e1c04, 0x143e241c,
0x143e2c04, 0x1c040414, 0x1c040c0c, 0x1c040c1c, 0x1c040c2c, 0x1c040c3e, 0x1c041414, 0x1c041c0c,
0x1c041c1c, 0x1c041c2c, 0x1c042414, 0x1c042424, 0x1c04243e, 0x1c042c0c, 0x1c04341c, 0x1c043e0c,
0x1c0c040c, 0x1c0c041c, 0x1c0c042c, 0x1c0c0c24, 0x1c0c140c, 0x1c0c141c, 0x1c0c2404, 0x1c0c3404,
0x1c0c3e14, 0x1c0c3e34, 0x1c140404, 0x1c140c14, 0x1c141404, 0x1c141c14, 0x1c141c24, 0x1c142c04,
0x1c1c040c, 0x1c1c0c04, 0x1c1c0c24, 0x1c1c140c, 0x1c1c141c, 0x1c1c143e, 0x1c1c1c04, 0x1c1c240c,
0x1c1c241c, 0x1c1c243e, 0x1c1c2c2c, 0x1c1c3e1c, 0x1c24041c, 0x1c240c0c, 0x1c240c34, 0x1c241414,
0x1c241c0c, 0x1c242c14, 0x1c243404, 0x1c243424, 0x1c2c040c, 0x1c2c0c04, 0x1c2c0c14, 0x1c2c142c,
0x1c2c1c14, 0x1c2c2424, 0x1c2c2c34, 0x1c2c3e1c, 0x1c340c34, 0x1c34240c, 0x1c3e040c, 0x1c3e041c,
0x1c3e1404, 0x1c3e1414, 0x1c3e1c2c, 0x24040404, 0x24040424, 0x24040c14, 0x24041404, 0x24041424,
0x2404143e, 0x24041c14, 0x2404240c, 0x24042c04, 0x24043e04, 0x240c0414, 0x240c043e, 0x240c0c0c,
0x240c0c1c, 0x240c1414, 0x240c1c04, 0x240c1c2c, 0x240c241c, 0x240c2c0c, 0x240c2c2c, 0x2414040c,
0x2414041c, 0x24140c04, 0x24140c2c, 0x2414140c, 0x24141c1c, 0x24142404, 0x24142c3e, 0x24143414,
0x24143e04, 0x241c0424, 0x241c0c0c, 0x241c0c1c, 0x241c1404, 0x241c1414, 0x241c1c0c, 0x241c1c2c,
0x24240404, 0x24240414, 0x24241424, 0x24241c3e, 0x24242404, 0x24243e0c, 0x242c042c, 0x242c043e,
0x242c140c, 0x242c3414, 0x24340c1c, 0x24341c24, 0x24343404, 0x243e0c04, 0x243e0c2c, 0x243e1c04,
0x243e241c, 0x243e2c0c, 0x2c040414, 0x2c040c04, 0x2c040c24, 0x2c041414, 0x2c042404, 0x2c042424,
0x2c04243e, 0x2c042c14, 0x2c043434, 0x2c043e24, 0x2c0c040c, 0x2c0c041c, 0x2c0c042c, 0x2c0c0c14,
0x2c0c140c, 0x2c0c1c14, 0x2c0c3e14, 0x2c140404, 0x2c140c0c, 0x2c14141c, 0x2c141c04, 0x2c141c34,
0x2c142c1c, 0x2c1c0414, 0x2c1c043e, 0x2c1c0c04, 0x2c1c143e, 0x2c1c2424, 0x2c1c2c0c, 0x2c1c342c,
0x2c1c3e1c, 0x2c24040c, 0x2c240424, 0x2c241404, 0x2c241c14, 0x2c242434, 0x2c2c0c14, 0x2c2c1434,
0x2c2c2c0c, 0x2c2c2c1c, 0x2c342414, 0x2c3e0414, 0x2c3e0424, 0x2c3e1414, 0x34040c0c, 0x34040c1c,
0x34040c2c, 0x34041c0c, 0x34041c1c, 0x34043404, 0x340c0404, 0x340c1404, 0x340c143e, 0x340c3424,
0x34140c14, 0x34141c24, 0x34142414, 0x34142c2c, 0x34143414, 0x34143e04, 0x341c0404, 0x341c0c24,
0x341c140c, 0x341c2404, 0x3424142c, 0x3424241c, 0x34243414, 0x342c0404, 0x342c041c, 0x342c1c24,
0x342c3404, 0x3434042c, 0x34342404, 0x343e0c0c, 0x343e0c1c, 0x3e040404, 0x3e040424, 0x3e04043e,
0x3e041404, 0x3e041414, 0x3e041c34, 0x3e042404, 0x3e042c24, 0x3e043414, 0x3e0c0414, 0x3e0c0c0c,
0x3e0c1424, 0x3e0c241c, 0x3e0c242c, 0x3e14040c, 0x3e140424, 0x3e140c04, 0x3e140c34, 0x3e14140c,
0x3e141c04, 0x3e142c0c, 0x3e1c0414, 0x3e1c1c14, 0x3e1c1c2c, 0x3e1c2c1c, 0x3e24040c, 0x3e24042c,
0x3e240c1c, 0x3e241404, 0x3e242c04, 0x3e2c1414, 0x3e2c2414, 0x3e340414, 0x3e341c0c, 0x3e3e0404,
static const __device__ uint32_t iq3s_grid[512] = {
0x01010101, 0x01010103, 0x01010105, 0x0101010b, 0x0101010f, 0x01010301, 0x01010303, 0x01010305,
0x01010309, 0x0101030d, 0x01010501, 0x01010503, 0x0101050b, 0x01010707, 0x01010901, 0x01010905,
0x0101090b, 0x0101090f, 0x01010b03, 0x01010b07, 0x01010d01, 0x01010d05, 0x01010f03, 0x01010f09,
0x01010f0f, 0x01030101, 0x01030103, 0x01030105, 0x01030109, 0x01030301, 0x01030303, 0x0103030b,
0x01030501, 0x01030507, 0x0103050f, 0x01030703, 0x0103070b, 0x01030909, 0x01030d03, 0x01030d0b,
0x01030f05, 0x01050101, 0x01050103, 0x0105010b, 0x0105010f, 0x01050301, 0x01050307, 0x0105030d,
0x01050503, 0x0105050b, 0x01050701, 0x01050709, 0x01050905, 0x0105090b, 0x0105090f, 0x01050b03,
0x01050b07, 0x01050f01, 0x01050f07, 0x01070107, 0x01070303, 0x0107030b, 0x01070501, 0x01070505,
0x01070703, 0x01070707, 0x0107070d, 0x01070909, 0x01070b01, 0x01070b05, 0x01070d0f, 0x01070f03,
0x01070f0b, 0x01090101, 0x01090307, 0x0109030f, 0x01090503, 0x01090509, 0x01090705, 0x01090901,
0x01090907, 0x01090b03, 0x01090f01, 0x010b0105, 0x010b0109, 0x010b0501, 0x010b0505, 0x010b050d,
0x010b0707, 0x010b0903, 0x010b090b, 0x010b090f, 0x010b0d0d, 0x010b0f07, 0x010d010d, 0x010d0303,
0x010d0307, 0x010d0703, 0x010d0b05, 0x010d0f03, 0x010f0101, 0x010f0105, 0x010f0109, 0x010f0501,
0x010f0505, 0x010f050d, 0x010f0707, 0x010f0b01, 0x010f0b09, 0x03010101, 0x03010103, 0x03010105,
0x03010109, 0x03010301, 0x03010303, 0x03010307, 0x0301030b, 0x0301030f, 0x03010501, 0x03010505,
0x03010703, 0x03010709, 0x0301070d, 0x03010b09, 0x03010b0d, 0x03010d03, 0x03010f05, 0x03030101,
0x03030103, 0x03030107, 0x0303010d, 0x03030301, 0x03030309, 0x03030503, 0x03030701, 0x03030707,
0x03030903, 0x03030b01, 0x03030b05, 0x03030f01, 0x03030f0d, 0x03050101, 0x03050305, 0x0305030b,
0x0305030f, 0x03050501, 0x03050509, 0x03050705, 0x03050901, 0x03050907, 0x03050b0b, 0x03050d01,
0x03050f05, 0x03070103, 0x03070109, 0x0307010f, 0x03070301, 0x03070307, 0x03070503, 0x0307050f,
0x03070701, 0x03070709, 0x03070903, 0x03070d05, 0x03070f01, 0x03090107, 0x0309010b, 0x03090305,
0x03090309, 0x03090703, 0x03090707, 0x03090905, 0x0309090d, 0x03090b01, 0x03090b09, 0x030b0103,
0x030b0301, 0x030b0307, 0x030b0503, 0x030b0701, 0x030b0705, 0x030b0b03, 0x030d0501, 0x030d0509,
0x030d050f, 0x030d0909, 0x030d090d, 0x030f0103, 0x030f0107, 0x030f0301, 0x030f0305, 0x030f0503,
0x030f070b, 0x030f0903, 0x030f0d05, 0x030f0f01, 0x05010101, 0x05010103, 0x05010107, 0x0501010b,
0x0501010f, 0x05010301, 0x05010305, 0x05010309, 0x0501030d, 0x05010503, 0x05010507, 0x0501050f,
0x05010701, 0x05010705, 0x05010903, 0x05010907, 0x0501090b, 0x05010b01, 0x05010b05, 0x05010d0f,
0x05010f01, 0x05010f07, 0x05010f0b, 0x05030101, 0x05030105, 0x05030301, 0x05030307, 0x0503030f,
0x05030505, 0x0503050b, 0x05030703, 0x05030709, 0x05030905, 0x05030b03, 0x05050103, 0x05050109,
0x0505010f, 0x05050503, 0x05050507, 0x05050701, 0x0505070f, 0x05050903, 0x05050b07, 0x05050b0f,
0x05050f03, 0x05050f09, 0x05070101, 0x05070105, 0x0507010b, 0x05070303, 0x05070505, 0x05070509,
0x05070703, 0x05070707, 0x05070905, 0x05070b01, 0x05070d0d, 0x05090103, 0x0509010f, 0x05090501,
0x05090507, 0x05090705, 0x0509070b, 0x05090903, 0x05090f05, 0x05090f0b, 0x050b0109, 0x050b0303,
0x050b0505, 0x050b070f, 0x050b0901, 0x050b0b07, 0x050b0f01, 0x050d0101, 0x050d0105, 0x050d010f,
0x050d0503, 0x050d0b0b, 0x050d0d03, 0x050f010b, 0x050f0303, 0x050f050d, 0x050f0701, 0x050f0907,
0x050f0b01, 0x07010105, 0x07010303, 0x07010307, 0x0701030b, 0x0701030f, 0x07010505, 0x07010703,
0x07010707, 0x0701070b, 0x07010905, 0x07010909, 0x0701090f, 0x07010b03, 0x07010d07, 0x07010f03,
0x07030103, 0x07030107, 0x0703010b, 0x07030309, 0x07030503, 0x07030507, 0x07030901, 0x07030d01,
0x07030f05, 0x07030f0d, 0x07050101, 0x07050305, 0x07050501, 0x07050705, 0x07050709, 0x07050b01,
0x07070103, 0x07070301, 0x07070309, 0x07070503, 0x07070507, 0x0707050f, 0x07070701, 0x07070903,
0x07070907, 0x0707090f, 0x07070b0b, 0x07070f07, 0x07090107, 0x07090303, 0x0709030d, 0x07090505,
0x07090703, 0x07090b05, 0x07090d01, 0x07090d09, 0x070b0103, 0x070b0301, 0x070b0305, 0x070b050b,
0x070b0705, 0x070b0909, 0x070b0b0d, 0x070b0f07, 0x070d030d, 0x070d0903, 0x070f0103, 0x070f0107,
0x070f0501, 0x070f0505, 0x070f070b, 0x09010101, 0x09010109, 0x09010305, 0x09010501, 0x09010509,
0x0901050f, 0x09010705, 0x09010903, 0x09010b01, 0x09010f01, 0x09030105, 0x0903010f, 0x09030303,
0x09030307, 0x09030505, 0x09030701, 0x0903070b, 0x09030907, 0x09030b03, 0x09030b0b, 0x09050103,
0x09050107, 0x09050301, 0x0905030b, 0x09050503, 0x09050707, 0x09050901, 0x09050b0f, 0x09050d05,
0x09050f01, 0x09070109, 0x09070303, 0x09070307, 0x09070501, 0x09070505, 0x09070703, 0x0907070b,
0x09090101, 0x09090105, 0x09090509, 0x0909070f, 0x09090901, 0x09090f03, 0x090b010b, 0x090b010f,
0x090b0503, 0x090b0d05, 0x090d0307, 0x090d0709, 0x090d0d01, 0x090f0301, 0x090f030b, 0x090f0701,
0x090f0907, 0x090f0b03, 0x0b010105, 0x0b010301, 0x0b010309, 0x0b010505, 0x0b010901, 0x0b010909,
0x0b01090f, 0x0b010b05, 0x0b010d0d, 0x0b010f09, 0x0b030103, 0x0b030107, 0x0b03010b, 0x0b030305,
0x0b030503, 0x0b030705, 0x0b030f05, 0x0b050101, 0x0b050303, 0x0b050507, 0x0b050701, 0x0b05070d,
0x0b050b07, 0x0b070105, 0x0b07010f, 0x0b070301, 0x0b07050f, 0x0b070909, 0x0b070b03, 0x0b070d0b,
0x0b070f07, 0x0b090103, 0x0b090109, 0x0b090501, 0x0b090705, 0x0b09090d, 0x0b0b0305, 0x0b0b050d,
0x0b0b0b03, 0x0b0b0b07, 0x0b0d0905, 0x0b0f0105, 0x0b0f0109, 0x0b0f0505, 0x0d010303, 0x0d010307,
0x0d01030b, 0x0d010703, 0x0d010707, 0x0d010d01, 0x0d030101, 0x0d030501, 0x0d03050f, 0x0d030d09,
0x0d050305, 0x0d050709, 0x0d050905, 0x0d050b0b, 0x0d050d05, 0x0d050f01, 0x0d070101, 0x0d070309,
0x0d070503, 0x0d070901, 0x0d09050b, 0x0d090907, 0x0d090d05, 0x0d0b0101, 0x0d0b0107, 0x0d0b0709,
0x0d0b0d01, 0x0d0d010b, 0x0d0d0901, 0x0d0f0303, 0x0d0f0307, 0x0f010101, 0x0f010109, 0x0f01010f,
0x0f010501, 0x0f010505, 0x0f01070d, 0x0f010901, 0x0f010b09, 0x0f010d05, 0x0f030105, 0x0f030303,
0x0f030509, 0x0f030907, 0x0f03090b, 0x0f050103, 0x0f050109, 0x0f050301, 0x0f05030d, 0x0f050503,
0x0f050701, 0x0f050b03, 0x0f070105, 0x0f070705, 0x0f07070b, 0x0f070b07, 0x0f090103, 0x0f09010b,
0x0f090307, 0x0f090501, 0x0f090b01, 0x0f0b0505, 0x0f0b0905, 0x0f0d0105, 0x0f0d0703, 0x0f0f0101,
};
static const __device__ uint64_t iq1s_grid[512] = {
0xffffffffffff0101, 0xffffffffff01ff00, 0xffffffffff010100, 0xffffffff00000000,
0xffffffff01ff00ff, 0xffffffff01ff0001, 0xffffffff0101ffff, 0xffffffff0101ff01,
@ -2392,9 +2391,9 @@ static __global__ void dequantize_block_iq3_s(const void * __restrict__ vx, dst_
const int ib = tid%8; // 0...7
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
const uint8_t * qs = x[i].qs + 8*ib;
const uint8_t * grid1 = (const uint8_t *)(iq3xs_grid + (qs[2*il+0] | ((x[i].qh[ib] << (8-2*il)) & 256)));
const uint8_t * grid2 = (const uint8_t *)(iq3xs_grid + (qs[2*il+1] | ((x[i].qh[ib] << (7-2*il)) & 256)));
const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib/2] >> 4*(ib%2)) & 0xf)) * 0.5f;
const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*il+0] | ((x[i].qh[ib] << (8-2*il)) & 256)));
const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*il+1] | ((x[i].qh[ib] << (7-2*il)) & 256)));
const float d = (float)x[i].d * (1 + 2*((x[i].scales[ib/2] >> 4*(ib%2)) & 0xf));
const uint8_t signs = x[i].signs[4*ib + il];
for (int j = 0; j < 4; ++j) {
y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
@ -5211,8 +5210,8 @@ static __device__ __forceinline__ float vec_dot_iq3_s_q8_1(
const int8_t * q8 = bq8_1[ib32].qs;
int sumi = 0;
for (int l = 0; l < 4; ++l) {
const uint32_t * grid1 = iq3xs_grid + (qs[2*l+0] | ((bq2->qh[ib32] << (8 - 2*l)) & 256));
const uint32_t * grid2 = iq3xs_grid + (qs[2*l+1] | ((bq2->qh[ib32] << (7 - 2*l)) & 256));
const uint32_t * grid1 = iq3s_grid + (qs[2*l+0] | ((bq2->qh[ib32] << (8 - 2*l)) & 256));
const uint32_t * grid2 = iq3s_grid + (qs[2*l+1] | ((bq2->qh[ib32] << (7 - 2*l)) & 256));
uint32_t signs0 = __vcmpeq4(((bq2->signs[4*ib32+l] & 0xf) * 0x01010101) & 0x08040201, 0x08040201);
uint32_t signs1 = __vcmpeq4(((bq2->signs[4*ib32+l] >> 4) * 0x01010101) & 0x08040201, 0x08040201);
const int grid_l = __vsub4(grid1[0] ^ signs0, signs0);
@ -5221,7 +5220,7 @@ static __device__ __forceinline__ float vec_dot_iq3_s_q8_1(
sumi = __dp4a(grid_h, *((int *)q8+1), sumi);
q8 += 8;
}
const float d = (float)bq2->d * (0.5f + ((bq2->scales[ib32/2] >> 4*(ib32%2)) & 0xf)) * __low2float(bq8_1[ib32].ds) * 0.5f;
const float d = (float)bq2->d * (1 + 2*((bq2->scales[ib32/2] >> 4*(ib32%2)) & 0xf)) * __low2float(bq8_1[ib32].ds);
return d * sumi;
#else
assert(false);

View file

@ -4087,71 +4087,71 @@ constexpr constant static uint32_t iq3xxs_grid[256] = {
0x3e1c1c1c, 0x3e1c3404, 0x3e24140c, 0x3e24240c, 0x3e2c0404, 0x3e2c0414, 0x3e2c1424, 0x3e341c04,
};
constexpr constant static uint32_t iq3xs_grid[512] = {
0x04040404, 0x0404040c, 0x04040414, 0x0404042c, 0x0404043e, 0x04040c04, 0x04040c0c, 0x04040c14,
0x04040c24, 0x04040c34, 0x04041404, 0x0404140c, 0x0404142c, 0x04041c1c, 0x04042404, 0x04042414,
0x0404242c, 0x0404243e, 0x04042c0c, 0x04042c1c, 0x04043404, 0x04043414, 0x04043e0c, 0x04043e24,
0x04043e3e, 0x040c0404, 0x040c040c, 0x040c0414, 0x040c0424, 0x040c0c04, 0x040c0c0c, 0x040c0c2c,
0x040c1404, 0x040c141c, 0x040c143e, 0x040c1c0c, 0x040c1c2c, 0x040c2424, 0x040c340c, 0x040c342c,
0x040c3e14, 0x04140404, 0x0414040c, 0x0414042c, 0x0414043e, 0x04140c04, 0x04140c1c, 0x04140c34,
0x0414140c, 0x0414142c, 0x04141c04, 0x04141c24, 0x04142414, 0x0414242c, 0x0414243e, 0x04142c0c,
0x04142c1c, 0x04143e04, 0x04143e1c, 0x041c041c, 0x041c0c0c, 0x041c0c2c, 0x041c1404, 0x041c1414,
0x041c1c0c, 0x041c1c1c, 0x041c1c34, 0x041c2424, 0x041c2c04, 0x041c2c14, 0x041c343e, 0x041c3e0c,
0x041c3e2c, 0x04240404, 0x04240c1c, 0x04240c3e, 0x0424140c, 0x04241424, 0x04241c14, 0x04242404,
0x0424241c, 0x04242c0c, 0x04243e04, 0x042c0414, 0x042c0424, 0x042c1404, 0x042c1414, 0x042c1434,
0x042c1c1c, 0x042c240c, 0x042c242c, 0x042c243e, 0x042c3434, 0x042c3e1c, 0x04340434, 0x04340c0c,
0x04340c1c, 0x04341c0c, 0x04342c14, 0x04343e0c, 0x043e0404, 0x043e0414, 0x043e0424, 0x043e1404,
0x043e1414, 0x043e1434, 0x043e1c1c, 0x043e2c04, 0x043e2c24, 0x0c040404, 0x0c04040c, 0x0c040414,
0x0c040424, 0x0c040c04, 0x0c040c0c, 0x0c040c1c, 0x0c040c2c, 0x0c040c3e, 0x0c041404, 0x0c041414,
0x0c041c0c, 0x0c041c24, 0x0c041c34, 0x0c042c24, 0x0c042c34, 0x0c04340c, 0x0c043e14, 0x0c0c0404,
0x0c0c040c, 0x0c0c041c, 0x0c0c0434, 0x0c0c0c04, 0x0c0c0c24, 0x0c0c140c, 0x0c0c1c04, 0x0c0c1c1c,
0x0c0c240c, 0x0c0c2c04, 0x0c0c2c14, 0x0c0c3e04, 0x0c0c3e34, 0x0c140404, 0x0c140c14, 0x0c140c2c,
0x0c140c3e, 0x0c141404, 0x0c141424, 0x0c141c14, 0x0c142404, 0x0c14241c, 0x0c142c2c, 0x0c143404,
0x0c143e14, 0x0c1c040c, 0x0c1c0424, 0x0c1c043e, 0x0c1c0c04, 0x0c1c0c1c, 0x0c1c140c, 0x0c1c143e,
0x0c1c1c04, 0x0c1c1c24, 0x0c1c240c, 0x0c1c3414, 0x0c1c3e04, 0x0c24041c, 0x0c24042c, 0x0c240c14,
0x0c240c24, 0x0c241c0c, 0x0c241c1c, 0x0c242414, 0x0c242434, 0x0c242c04, 0x0c242c24, 0x0c2c040c,
0x0c2c0c04, 0x0c2c0c1c, 0x0c2c140c, 0x0c2c1c04, 0x0c2c1c14, 0x0c2c2c0c, 0x0c341404, 0x0c341424,
0x0c34143e, 0x0c342424, 0x0c342434, 0x0c3e040c, 0x0c3e041c, 0x0c3e0c04, 0x0c3e0c14, 0x0c3e140c,
0x0c3e1c2c, 0x0c3e240c, 0x0c3e3414, 0x0c3e3e04, 0x14040404, 0x1404040c, 0x1404041c, 0x1404042c,
0x1404043e, 0x14040c04, 0x14040c14, 0x14040c24, 0x14040c34, 0x1404140c, 0x1404141c, 0x1404143e,
0x14041c04, 0x14041c14, 0x1404240c, 0x1404241c, 0x1404242c, 0x14042c04, 0x14042c14, 0x1404343e,
0x14043e04, 0x14043e1c, 0x14043e2c, 0x140c0404, 0x140c0414, 0x140c0c04, 0x140c0c1c, 0x140c0c3e,
0x140c1414, 0x140c142c, 0x140c1c0c, 0x140c1c24, 0x140c2414, 0x140c2c0c, 0x1414040c, 0x14140424,
0x1414043e, 0x1414140c, 0x1414141c, 0x14141c04, 0x14141c3e, 0x1414240c, 0x14142c1c, 0x14142c3e,
0x14143e0c, 0x14143e24, 0x141c0404, 0x141c0414, 0x141c042c, 0x141c0c0c, 0x141c1414, 0x141c1424,
0x141c1c0c, 0x141c1c1c, 0x141c2414, 0x141c2c04, 0x141c3434, 0x1424040c, 0x1424043e, 0x14241404,
0x1424141c, 0x14241c14, 0x14241c2c, 0x1424240c, 0x14243e14, 0x14243e2c, 0x142c0424, 0x142c0c0c,
0x142c1414, 0x142c1c3e, 0x142c2404, 0x142c2c1c, 0x142c3e04, 0x14340404, 0x14340414, 0x1434043e,
0x1434140c, 0x14342c2c, 0x1434340c, 0x143e042c, 0x143e0c0c, 0x143e1434, 0x143e1c04, 0x143e241c,
0x143e2c04, 0x1c040414, 0x1c040c0c, 0x1c040c1c, 0x1c040c2c, 0x1c040c3e, 0x1c041414, 0x1c041c0c,
0x1c041c1c, 0x1c041c2c, 0x1c042414, 0x1c042424, 0x1c04243e, 0x1c042c0c, 0x1c04341c, 0x1c043e0c,
0x1c0c040c, 0x1c0c041c, 0x1c0c042c, 0x1c0c0c24, 0x1c0c140c, 0x1c0c141c, 0x1c0c2404, 0x1c0c3404,
0x1c0c3e14, 0x1c0c3e34, 0x1c140404, 0x1c140c14, 0x1c141404, 0x1c141c14, 0x1c141c24, 0x1c142c04,
0x1c1c040c, 0x1c1c0c04, 0x1c1c0c24, 0x1c1c140c, 0x1c1c141c, 0x1c1c143e, 0x1c1c1c04, 0x1c1c240c,
0x1c1c241c, 0x1c1c243e, 0x1c1c2c2c, 0x1c1c3e1c, 0x1c24041c, 0x1c240c0c, 0x1c240c34, 0x1c241414,
0x1c241c0c, 0x1c242c14, 0x1c243404, 0x1c243424, 0x1c2c040c, 0x1c2c0c04, 0x1c2c0c14, 0x1c2c142c,
0x1c2c1c14, 0x1c2c2424, 0x1c2c2c34, 0x1c2c3e1c, 0x1c340c34, 0x1c34240c, 0x1c3e040c, 0x1c3e041c,
0x1c3e1404, 0x1c3e1414, 0x1c3e1c2c, 0x24040404, 0x24040424, 0x24040c14, 0x24041404, 0x24041424,
0x2404143e, 0x24041c14, 0x2404240c, 0x24042c04, 0x24043e04, 0x240c0414, 0x240c043e, 0x240c0c0c,
0x240c0c1c, 0x240c1414, 0x240c1c04, 0x240c1c2c, 0x240c241c, 0x240c2c0c, 0x240c2c2c, 0x2414040c,
0x2414041c, 0x24140c04, 0x24140c2c, 0x2414140c, 0x24141c1c, 0x24142404, 0x24142c3e, 0x24143414,
0x24143e04, 0x241c0424, 0x241c0c0c, 0x241c0c1c, 0x241c1404, 0x241c1414, 0x241c1c0c, 0x241c1c2c,
0x24240404, 0x24240414, 0x24241424, 0x24241c3e, 0x24242404, 0x24243e0c, 0x242c042c, 0x242c043e,
0x242c140c, 0x242c3414, 0x24340c1c, 0x24341c24, 0x24343404, 0x243e0c04, 0x243e0c2c, 0x243e1c04,
0x243e241c, 0x243e2c0c, 0x2c040414, 0x2c040c04, 0x2c040c24, 0x2c041414, 0x2c042404, 0x2c042424,
0x2c04243e, 0x2c042c14, 0x2c043434, 0x2c043e24, 0x2c0c040c, 0x2c0c041c, 0x2c0c042c, 0x2c0c0c14,
0x2c0c140c, 0x2c0c1c14, 0x2c0c3e14, 0x2c140404, 0x2c140c0c, 0x2c14141c, 0x2c141c04, 0x2c141c34,
0x2c142c1c, 0x2c1c0414, 0x2c1c043e, 0x2c1c0c04, 0x2c1c143e, 0x2c1c2424, 0x2c1c2c0c, 0x2c1c342c,
0x2c1c3e1c, 0x2c24040c, 0x2c240424, 0x2c241404, 0x2c241c14, 0x2c242434, 0x2c2c0c14, 0x2c2c1434,
0x2c2c2c0c, 0x2c2c2c1c, 0x2c342414, 0x2c3e0414, 0x2c3e0424, 0x2c3e1414, 0x34040c0c, 0x34040c1c,
0x34040c2c, 0x34041c0c, 0x34041c1c, 0x34043404, 0x340c0404, 0x340c1404, 0x340c143e, 0x340c3424,
0x34140c14, 0x34141c24, 0x34142414, 0x34142c2c, 0x34143414, 0x34143e04, 0x341c0404, 0x341c0c24,
0x341c140c, 0x341c2404, 0x3424142c, 0x3424241c, 0x34243414, 0x342c0404, 0x342c041c, 0x342c1c24,
0x342c3404, 0x3434042c, 0x34342404, 0x343e0c0c, 0x343e0c1c, 0x3e040404, 0x3e040424, 0x3e04043e,
0x3e041404, 0x3e041414, 0x3e041c34, 0x3e042404, 0x3e042c24, 0x3e043414, 0x3e0c0414, 0x3e0c0c0c,
0x3e0c1424, 0x3e0c241c, 0x3e0c242c, 0x3e14040c, 0x3e140424, 0x3e140c04, 0x3e140c34, 0x3e14140c,
0x3e141c04, 0x3e142c0c, 0x3e1c0414, 0x3e1c1c14, 0x3e1c1c2c, 0x3e1c2c1c, 0x3e24040c, 0x3e24042c,
0x3e240c1c, 0x3e241404, 0x3e242c04, 0x3e2c1414, 0x3e2c2414, 0x3e340414, 0x3e341c0c, 0x3e3e0404,
constexpr constant static uint32_t iq3s_grid[512] = {
0x01010101, 0x01010103, 0x01010105, 0x0101010b, 0x0101010f, 0x01010301, 0x01010303, 0x01010305,
0x01010309, 0x0101030d, 0x01010501, 0x01010503, 0x0101050b, 0x01010707, 0x01010901, 0x01010905,
0x0101090b, 0x0101090f, 0x01010b03, 0x01010b07, 0x01010d01, 0x01010d05, 0x01010f03, 0x01010f09,
0x01010f0f, 0x01030101, 0x01030103, 0x01030105, 0x01030109, 0x01030301, 0x01030303, 0x0103030b,
0x01030501, 0x01030507, 0x0103050f, 0x01030703, 0x0103070b, 0x01030909, 0x01030d03, 0x01030d0b,
0x01030f05, 0x01050101, 0x01050103, 0x0105010b, 0x0105010f, 0x01050301, 0x01050307, 0x0105030d,
0x01050503, 0x0105050b, 0x01050701, 0x01050709, 0x01050905, 0x0105090b, 0x0105090f, 0x01050b03,
0x01050b07, 0x01050f01, 0x01050f07, 0x01070107, 0x01070303, 0x0107030b, 0x01070501, 0x01070505,
0x01070703, 0x01070707, 0x0107070d, 0x01070909, 0x01070b01, 0x01070b05, 0x01070d0f, 0x01070f03,
0x01070f0b, 0x01090101, 0x01090307, 0x0109030f, 0x01090503, 0x01090509, 0x01090705, 0x01090901,
0x01090907, 0x01090b03, 0x01090f01, 0x010b0105, 0x010b0109, 0x010b0501, 0x010b0505, 0x010b050d,
0x010b0707, 0x010b0903, 0x010b090b, 0x010b090f, 0x010b0d0d, 0x010b0f07, 0x010d010d, 0x010d0303,
0x010d0307, 0x010d0703, 0x010d0b05, 0x010d0f03, 0x010f0101, 0x010f0105, 0x010f0109, 0x010f0501,
0x010f0505, 0x010f050d, 0x010f0707, 0x010f0b01, 0x010f0b09, 0x03010101, 0x03010103, 0x03010105,
0x03010109, 0x03010301, 0x03010303, 0x03010307, 0x0301030b, 0x0301030f, 0x03010501, 0x03010505,
0x03010703, 0x03010709, 0x0301070d, 0x03010b09, 0x03010b0d, 0x03010d03, 0x03010f05, 0x03030101,
0x03030103, 0x03030107, 0x0303010d, 0x03030301, 0x03030309, 0x03030503, 0x03030701, 0x03030707,
0x03030903, 0x03030b01, 0x03030b05, 0x03030f01, 0x03030f0d, 0x03050101, 0x03050305, 0x0305030b,
0x0305030f, 0x03050501, 0x03050509, 0x03050705, 0x03050901, 0x03050907, 0x03050b0b, 0x03050d01,
0x03050f05, 0x03070103, 0x03070109, 0x0307010f, 0x03070301, 0x03070307, 0x03070503, 0x0307050f,
0x03070701, 0x03070709, 0x03070903, 0x03070d05, 0x03070f01, 0x03090107, 0x0309010b, 0x03090305,
0x03090309, 0x03090703, 0x03090707, 0x03090905, 0x0309090d, 0x03090b01, 0x03090b09, 0x030b0103,
0x030b0301, 0x030b0307, 0x030b0503, 0x030b0701, 0x030b0705, 0x030b0b03, 0x030d0501, 0x030d0509,
0x030d050f, 0x030d0909, 0x030d090d, 0x030f0103, 0x030f0107, 0x030f0301, 0x030f0305, 0x030f0503,
0x030f070b, 0x030f0903, 0x030f0d05, 0x030f0f01, 0x05010101, 0x05010103, 0x05010107, 0x0501010b,
0x0501010f, 0x05010301, 0x05010305, 0x05010309, 0x0501030d, 0x05010503, 0x05010507, 0x0501050f,
0x05010701, 0x05010705, 0x05010903, 0x05010907, 0x0501090b, 0x05010b01, 0x05010b05, 0x05010d0f,
0x05010f01, 0x05010f07, 0x05010f0b, 0x05030101, 0x05030105, 0x05030301, 0x05030307, 0x0503030f,
0x05030505, 0x0503050b, 0x05030703, 0x05030709, 0x05030905, 0x05030b03, 0x05050103, 0x05050109,
0x0505010f, 0x05050503, 0x05050507, 0x05050701, 0x0505070f, 0x05050903, 0x05050b07, 0x05050b0f,
0x05050f03, 0x05050f09, 0x05070101, 0x05070105, 0x0507010b, 0x05070303, 0x05070505, 0x05070509,
0x05070703, 0x05070707, 0x05070905, 0x05070b01, 0x05070d0d, 0x05090103, 0x0509010f, 0x05090501,
0x05090507, 0x05090705, 0x0509070b, 0x05090903, 0x05090f05, 0x05090f0b, 0x050b0109, 0x050b0303,
0x050b0505, 0x050b070f, 0x050b0901, 0x050b0b07, 0x050b0f01, 0x050d0101, 0x050d0105, 0x050d010f,
0x050d0503, 0x050d0b0b, 0x050d0d03, 0x050f010b, 0x050f0303, 0x050f050d, 0x050f0701, 0x050f0907,
0x050f0b01, 0x07010105, 0x07010303, 0x07010307, 0x0701030b, 0x0701030f, 0x07010505, 0x07010703,
0x07010707, 0x0701070b, 0x07010905, 0x07010909, 0x0701090f, 0x07010b03, 0x07010d07, 0x07010f03,
0x07030103, 0x07030107, 0x0703010b, 0x07030309, 0x07030503, 0x07030507, 0x07030901, 0x07030d01,
0x07030f05, 0x07030f0d, 0x07050101, 0x07050305, 0x07050501, 0x07050705, 0x07050709, 0x07050b01,
0x07070103, 0x07070301, 0x07070309, 0x07070503, 0x07070507, 0x0707050f, 0x07070701, 0x07070903,
0x07070907, 0x0707090f, 0x07070b0b, 0x07070f07, 0x07090107, 0x07090303, 0x0709030d, 0x07090505,
0x07090703, 0x07090b05, 0x07090d01, 0x07090d09, 0x070b0103, 0x070b0301, 0x070b0305, 0x070b050b,
0x070b0705, 0x070b0909, 0x070b0b0d, 0x070b0f07, 0x070d030d, 0x070d0903, 0x070f0103, 0x070f0107,
0x070f0501, 0x070f0505, 0x070f070b, 0x09010101, 0x09010109, 0x09010305, 0x09010501, 0x09010509,
0x0901050f, 0x09010705, 0x09010903, 0x09010b01, 0x09010f01, 0x09030105, 0x0903010f, 0x09030303,
0x09030307, 0x09030505, 0x09030701, 0x0903070b, 0x09030907, 0x09030b03, 0x09030b0b, 0x09050103,
0x09050107, 0x09050301, 0x0905030b, 0x09050503, 0x09050707, 0x09050901, 0x09050b0f, 0x09050d05,
0x09050f01, 0x09070109, 0x09070303, 0x09070307, 0x09070501, 0x09070505, 0x09070703, 0x0907070b,
0x09090101, 0x09090105, 0x09090509, 0x0909070f, 0x09090901, 0x09090f03, 0x090b010b, 0x090b010f,
0x090b0503, 0x090b0d05, 0x090d0307, 0x090d0709, 0x090d0d01, 0x090f0301, 0x090f030b, 0x090f0701,
0x090f0907, 0x090f0b03, 0x0b010105, 0x0b010301, 0x0b010309, 0x0b010505, 0x0b010901, 0x0b010909,
0x0b01090f, 0x0b010b05, 0x0b010d0d, 0x0b010f09, 0x0b030103, 0x0b030107, 0x0b03010b, 0x0b030305,
0x0b030503, 0x0b030705, 0x0b030f05, 0x0b050101, 0x0b050303, 0x0b050507, 0x0b050701, 0x0b05070d,
0x0b050b07, 0x0b070105, 0x0b07010f, 0x0b070301, 0x0b07050f, 0x0b070909, 0x0b070b03, 0x0b070d0b,
0x0b070f07, 0x0b090103, 0x0b090109, 0x0b090501, 0x0b090705, 0x0b09090d, 0x0b0b0305, 0x0b0b050d,
0x0b0b0b03, 0x0b0b0b07, 0x0b0d0905, 0x0b0f0105, 0x0b0f0109, 0x0b0f0505, 0x0d010303, 0x0d010307,
0x0d01030b, 0x0d010703, 0x0d010707, 0x0d010d01, 0x0d030101, 0x0d030501, 0x0d03050f, 0x0d030d09,
0x0d050305, 0x0d050709, 0x0d050905, 0x0d050b0b, 0x0d050d05, 0x0d050f01, 0x0d070101, 0x0d070309,
0x0d070503, 0x0d070901, 0x0d09050b, 0x0d090907, 0x0d090d05, 0x0d0b0101, 0x0d0b0107, 0x0d0b0709,
0x0d0b0d01, 0x0d0d010b, 0x0d0d0901, 0x0d0f0303, 0x0d0f0307, 0x0f010101, 0x0f010109, 0x0f01010f,
0x0f010501, 0x0f010505, 0x0f01070d, 0x0f010901, 0x0f010b09, 0x0f010d05, 0x0f030105, 0x0f030303,
0x0f030509, 0x0f030907, 0x0f03090b, 0x0f050103, 0x0f050109, 0x0f050301, 0x0f05030d, 0x0f050503,
0x0f050701, 0x0f050b03, 0x0f070105, 0x0f070705, 0x0f07070b, 0x0f070b07, 0x0f090103, 0x0f09010b,
0x0f090307, 0x0f090501, 0x0f090b01, 0x0f0b0505, 0x0f0b0905, 0x0f0d0105, 0x0f0d0703, 0x0f0f0101,
};
#define NGRID_IQ1S 512
@ -4742,7 +4742,7 @@ void kernel_mul_mv_iq3_s_f32_impl(
{
int nval = 8;
int pos = (32*sgitg + tiisg)*nval;
for (int i = 0; i < nval; ++i) values[pos + i] = iq3xs_grid[pos + i];
for (int i = 0; i < nval; ++i) values[pos + i] = iq3s_grid[pos + i];
threadgroup_barrier(mem_flags::mem_threadgroup);
}
@ -4769,12 +4769,14 @@ void kernel_mul_mv_iq3_s_f32_impl(
for (int row = 0; row < N_DST; row++) {
const float db = dh[0];
const float d = db * (0.5f + ((sc[0] >> 4*(ib%2)) & 0xf));
const float d = db * (1 + 2*((sc[0] >> 4*(ib%2)) & 0xf));
float2 sum = {0};
for (int l = 0; l < 4; ++l) {
const threadgroup uint8_t * grid1 = (const threadgroup uint8_t *)(values + (qs[2*l+0] | ((qh[0] << (8-2*l)) & 256)));
const threadgroup uint8_t * grid2 = (const threadgroup uint8_t *)(values + (qs[2*l+1] | ((qh[0] << (7-2*l)) & 256)));
const threadgroup uint32_t * table1 = qh[0] & kmask_iq2xs[2*l+0] ? values + 256 : values;
const threadgroup uint32_t * table2 = qh[0] & kmask_iq2xs[2*l+1] ? values + 256 : values;
const threadgroup uint8_t * grid1 = (const threadgroup uint8_t *)(table1 + qs[2*l+0]);
const threadgroup uint8_t * grid2 = (const threadgroup uint8_t *)(table2 + qs[2*l+1]);
for (int j = 0; j < 4; ++j) {
sum[0] += yl[8*l + j + 0] * grid1[j] * select(1, -1, signs[l] & kmask_iq2xs[j+0]);
sum[1] += yl[8*l + j + 4] * grid2[j] * select(1, -1, signs[l] & kmask_iq2xs[j+4]);
@ -4795,7 +4797,7 @@ void kernel_mul_mv_iq3_s_f32_impl(
for (int row = 0; row < N_DST; ++row) {
all_sum = simd_sum(sumf[row]);
if (tiisg == 0) {
dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum * 0.5f;
dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum;
}
}
}
@ -5685,15 +5687,15 @@ void dequantize_iq3_s(device const block_iq3_s * xb, short il, thread type4x4 &
device const uint8_t * qs = xb->qs + 8*ib32;
device const uint8_t * signs = xb->signs + 4*ib32 + 2*il;
const uint8_t qh = xb->qh[ib32] >> 4*il;
const float dl = d * (0.5f + ((xb->scales[ib32/2] >> 4*(ib32%2)) & 0xf)) * 0.5f;
constant uint8_t * grid1 = (constant uint8_t *)(iq3xs_grid + (qs[4*il+0] | ((qh << 8) & 256)));
constant uint8_t * grid2 = (constant uint8_t *)(iq3xs_grid + (qs[4*il+1] | ((qh << 7) & 256)));
const float dl = d * (1 + 2*((xb->scales[ib32/2] >> 4*(ib32%2)) & 0xf));
constant uint8_t * grid1 = (constant uint8_t *)(iq3s_grid + (qs[4*il+0] | ((qh << 8) & 256)));
constant uint8_t * grid2 = (constant uint8_t *)(iq3s_grid + (qs[4*il+1] | ((qh << 7) & 256)));
for (int i = 0; i < 4; ++i) {
reg[0][i] = dl * grid1[i] * select(1, -1, signs[0] & kmask_iq2xs[i+0]);
reg[1][i] = dl * grid2[i] * select(1, -1, signs[0] & kmask_iq2xs[i+4]);
}
grid1 = (constant uint8_t *)(iq3xs_grid + (qs[4*il+2] | ((qh << 6) & 256)));
grid2 = (constant uint8_t *)(iq3xs_grid + (qs[4*il+3] | ((qh << 5) & 256)));
grid1 = (constant uint8_t *)(iq3s_grid + (qs[4*il+2] | ((qh << 6) & 256)));
grid2 = (constant uint8_t *)(iq3s_grid + (qs[4*il+3] | ((qh << 5) & 256)));
for (int i = 0; i < 4; ++i) {
reg[2][i] = dl * grid1[i] * select(1, -1, signs[1] & kmask_iq2xs[i+0]);
reg[3][i] = dl * grid2[i] * select(1, -1, signs[1] & kmask_iq2xs[i+4]);

View file

@ -3818,71 +3818,71 @@ static const uint32_t iq3xxs_grid[256] = {
0x3e1c1c1c, 0x3e1c3404, 0x3e24140c, 0x3e24240c, 0x3e2c0404, 0x3e2c0414, 0x3e2c1424, 0x3e341c04,
};
static const uint32_t iq3xs_grid[512] = {
0x04040404, 0x0404040c, 0x04040414, 0x0404042c, 0x0404043e, 0x04040c04, 0x04040c0c, 0x04040c14,
0x04040c24, 0x04040c34, 0x04041404, 0x0404140c, 0x0404142c, 0x04041c1c, 0x04042404, 0x04042414,
0x0404242c, 0x0404243e, 0x04042c0c, 0x04042c1c, 0x04043404, 0x04043414, 0x04043e0c, 0x04043e24,
0x04043e3e, 0x040c0404, 0x040c040c, 0x040c0414, 0x040c0424, 0x040c0c04, 0x040c0c0c, 0x040c0c2c,
0x040c1404, 0x040c141c, 0x040c143e, 0x040c1c0c, 0x040c1c2c, 0x040c2424, 0x040c340c, 0x040c342c,
0x040c3e14, 0x04140404, 0x0414040c, 0x0414042c, 0x0414043e, 0x04140c04, 0x04140c1c, 0x04140c34,
0x0414140c, 0x0414142c, 0x04141c04, 0x04141c24, 0x04142414, 0x0414242c, 0x0414243e, 0x04142c0c,
0x04142c1c, 0x04143e04, 0x04143e1c, 0x041c041c, 0x041c0c0c, 0x041c0c2c, 0x041c1404, 0x041c1414,
0x041c1c0c, 0x041c1c1c, 0x041c1c34, 0x041c2424, 0x041c2c04, 0x041c2c14, 0x041c343e, 0x041c3e0c,
0x041c3e2c, 0x04240404, 0x04240c1c, 0x04240c3e, 0x0424140c, 0x04241424, 0x04241c14, 0x04242404,
0x0424241c, 0x04242c0c, 0x04243e04, 0x042c0414, 0x042c0424, 0x042c1404, 0x042c1414, 0x042c1434,
0x042c1c1c, 0x042c240c, 0x042c242c, 0x042c243e, 0x042c3434, 0x042c3e1c, 0x04340434, 0x04340c0c,
0x04340c1c, 0x04341c0c, 0x04342c14, 0x04343e0c, 0x043e0404, 0x043e0414, 0x043e0424, 0x043e1404,
0x043e1414, 0x043e1434, 0x043e1c1c, 0x043e2c04, 0x043e2c24, 0x0c040404, 0x0c04040c, 0x0c040414,
0x0c040424, 0x0c040c04, 0x0c040c0c, 0x0c040c1c, 0x0c040c2c, 0x0c040c3e, 0x0c041404, 0x0c041414,
0x0c041c0c, 0x0c041c24, 0x0c041c34, 0x0c042c24, 0x0c042c34, 0x0c04340c, 0x0c043e14, 0x0c0c0404,
0x0c0c040c, 0x0c0c041c, 0x0c0c0434, 0x0c0c0c04, 0x0c0c0c24, 0x0c0c140c, 0x0c0c1c04, 0x0c0c1c1c,
0x0c0c240c, 0x0c0c2c04, 0x0c0c2c14, 0x0c0c3e04, 0x0c0c3e34, 0x0c140404, 0x0c140c14, 0x0c140c2c,
0x0c140c3e, 0x0c141404, 0x0c141424, 0x0c141c14, 0x0c142404, 0x0c14241c, 0x0c142c2c, 0x0c143404,
0x0c143e14, 0x0c1c040c, 0x0c1c0424, 0x0c1c043e, 0x0c1c0c04, 0x0c1c0c1c, 0x0c1c140c, 0x0c1c143e,
0x0c1c1c04, 0x0c1c1c24, 0x0c1c240c, 0x0c1c3414, 0x0c1c3e04, 0x0c24041c, 0x0c24042c, 0x0c240c14,
0x0c240c24, 0x0c241c0c, 0x0c241c1c, 0x0c242414, 0x0c242434, 0x0c242c04, 0x0c242c24, 0x0c2c040c,
0x0c2c0c04, 0x0c2c0c1c, 0x0c2c140c, 0x0c2c1c04, 0x0c2c1c14, 0x0c2c2c0c, 0x0c341404, 0x0c341424,
0x0c34143e, 0x0c342424, 0x0c342434, 0x0c3e040c, 0x0c3e041c, 0x0c3e0c04, 0x0c3e0c14, 0x0c3e140c,
0x0c3e1c2c, 0x0c3e240c, 0x0c3e3414, 0x0c3e3e04, 0x14040404, 0x1404040c, 0x1404041c, 0x1404042c,
0x1404043e, 0x14040c04, 0x14040c14, 0x14040c24, 0x14040c34, 0x1404140c, 0x1404141c, 0x1404143e,
0x14041c04, 0x14041c14, 0x1404240c, 0x1404241c, 0x1404242c, 0x14042c04, 0x14042c14, 0x1404343e,
0x14043e04, 0x14043e1c, 0x14043e2c, 0x140c0404, 0x140c0414, 0x140c0c04, 0x140c0c1c, 0x140c0c3e,
0x140c1414, 0x140c142c, 0x140c1c0c, 0x140c1c24, 0x140c2414, 0x140c2c0c, 0x1414040c, 0x14140424,
0x1414043e, 0x1414140c, 0x1414141c, 0x14141c04, 0x14141c3e, 0x1414240c, 0x14142c1c, 0x14142c3e,
0x14143e0c, 0x14143e24, 0x141c0404, 0x141c0414, 0x141c042c, 0x141c0c0c, 0x141c1414, 0x141c1424,
0x141c1c0c, 0x141c1c1c, 0x141c2414, 0x141c2c04, 0x141c3434, 0x1424040c, 0x1424043e, 0x14241404,
0x1424141c, 0x14241c14, 0x14241c2c, 0x1424240c, 0x14243e14, 0x14243e2c, 0x142c0424, 0x142c0c0c,
0x142c1414, 0x142c1c3e, 0x142c2404, 0x142c2c1c, 0x142c3e04, 0x14340404, 0x14340414, 0x1434043e,
0x1434140c, 0x14342c2c, 0x1434340c, 0x143e042c, 0x143e0c0c, 0x143e1434, 0x143e1c04, 0x143e241c,
0x143e2c04, 0x1c040414, 0x1c040c0c, 0x1c040c1c, 0x1c040c2c, 0x1c040c3e, 0x1c041414, 0x1c041c0c,
0x1c041c1c, 0x1c041c2c, 0x1c042414, 0x1c042424, 0x1c04243e, 0x1c042c0c, 0x1c04341c, 0x1c043e0c,
0x1c0c040c, 0x1c0c041c, 0x1c0c042c, 0x1c0c0c24, 0x1c0c140c, 0x1c0c141c, 0x1c0c2404, 0x1c0c3404,
0x1c0c3e14, 0x1c0c3e34, 0x1c140404, 0x1c140c14, 0x1c141404, 0x1c141c14, 0x1c141c24, 0x1c142c04,
0x1c1c040c, 0x1c1c0c04, 0x1c1c0c24, 0x1c1c140c, 0x1c1c141c, 0x1c1c143e, 0x1c1c1c04, 0x1c1c240c,
0x1c1c241c, 0x1c1c243e, 0x1c1c2c2c, 0x1c1c3e1c, 0x1c24041c, 0x1c240c0c, 0x1c240c34, 0x1c241414,
0x1c241c0c, 0x1c242c14, 0x1c243404, 0x1c243424, 0x1c2c040c, 0x1c2c0c04, 0x1c2c0c14, 0x1c2c142c,
0x1c2c1c14, 0x1c2c2424, 0x1c2c2c34, 0x1c2c3e1c, 0x1c340c34, 0x1c34240c, 0x1c3e040c, 0x1c3e041c,
0x1c3e1404, 0x1c3e1414, 0x1c3e1c2c, 0x24040404, 0x24040424, 0x24040c14, 0x24041404, 0x24041424,
0x2404143e, 0x24041c14, 0x2404240c, 0x24042c04, 0x24043e04, 0x240c0414, 0x240c043e, 0x240c0c0c,
0x240c0c1c, 0x240c1414, 0x240c1c04, 0x240c1c2c, 0x240c241c, 0x240c2c0c, 0x240c2c2c, 0x2414040c,
0x2414041c, 0x24140c04, 0x24140c2c, 0x2414140c, 0x24141c1c, 0x24142404, 0x24142c3e, 0x24143414,
0x24143e04, 0x241c0424, 0x241c0c0c, 0x241c0c1c, 0x241c1404, 0x241c1414, 0x241c1c0c, 0x241c1c2c,
0x24240404, 0x24240414, 0x24241424, 0x24241c3e, 0x24242404, 0x24243e0c, 0x242c042c, 0x242c043e,
0x242c140c, 0x242c3414, 0x24340c1c, 0x24341c24, 0x24343404, 0x243e0c04, 0x243e0c2c, 0x243e1c04,
0x243e241c, 0x243e2c0c, 0x2c040414, 0x2c040c04, 0x2c040c24, 0x2c041414, 0x2c042404, 0x2c042424,
0x2c04243e, 0x2c042c14, 0x2c043434, 0x2c043e24, 0x2c0c040c, 0x2c0c041c, 0x2c0c042c, 0x2c0c0c14,
0x2c0c140c, 0x2c0c1c14, 0x2c0c3e14, 0x2c140404, 0x2c140c0c, 0x2c14141c, 0x2c141c04, 0x2c141c34,
0x2c142c1c, 0x2c1c0414, 0x2c1c043e, 0x2c1c0c04, 0x2c1c143e, 0x2c1c2424, 0x2c1c2c0c, 0x2c1c342c,
0x2c1c3e1c, 0x2c24040c, 0x2c240424, 0x2c241404, 0x2c241c14, 0x2c242434, 0x2c2c0c14, 0x2c2c1434,
0x2c2c2c0c, 0x2c2c2c1c, 0x2c342414, 0x2c3e0414, 0x2c3e0424, 0x2c3e1414, 0x34040c0c, 0x34040c1c,
0x34040c2c, 0x34041c0c, 0x34041c1c, 0x34043404, 0x340c0404, 0x340c1404, 0x340c143e, 0x340c3424,
0x34140c14, 0x34141c24, 0x34142414, 0x34142c2c, 0x34143414, 0x34143e04, 0x341c0404, 0x341c0c24,
0x341c140c, 0x341c2404, 0x3424142c, 0x3424241c, 0x34243414, 0x342c0404, 0x342c041c, 0x342c1c24,
0x342c3404, 0x3434042c, 0x34342404, 0x343e0c0c, 0x343e0c1c, 0x3e040404, 0x3e040424, 0x3e04043e,
0x3e041404, 0x3e041414, 0x3e041c34, 0x3e042404, 0x3e042c24, 0x3e043414, 0x3e0c0414, 0x3e0c0c0c,
0x3e0c1424, 0x3e0c241c, 0x3e0c242c, 0x3e14040c, 0x3e140424, 0x3e140c04, 0x3e140c34, 0x3e14140c,
0x3e141c04, 0x3e142c0c, 0x3e1c0414, 0x3e1c1c14, 0x3e1c1c2c, 0x3e1c2c1c, 0x3e24040c, 0x3e24042c,
0x3e240c1c, 0x3e241404, 0x3e242c04, 0x3e2c1414, 0x3e2c2414, 0x3e340414, 0x3e341c0c, 0x3e3e0404,
static const uint32_t iq3s_grid[512] = {
0x01010101, 0x01010103, 0x01010105, 0x0101010b, 0x0101010f, 0x01010301, 0x01010303, 0x01010305,
0x01010309, 0x0101030d, 0x01010501, 0x01010503, 0x0101050b, 0x01010707, 0x01010901, 0x01010905,
0x0101090b, 0x0101090f, 0x01010b03, 0x01010b07, 0x01010d01, 0x01010d05, 0x01010f03, 0x01010f09,
0x01010f0f, 0x01030101, 0x01030103, 0x01030105, 0x01030109, 0x01030301, 0x01030303, 0x0103030b,
0x01030501, 0x01030507, 0x0103050f, 0x01030703, 0x0103070b, 0x01030909, 0x01030d03, 0x01030d0b,
0x01030f05, 0x01050101, 0x01050103, 0x0105010b, 0x0105010f, 0x01050301, 0x01050307, 0x0105030d,
0x01050503, 0x0105050b, 0x01050701, 0x01050709, 0x01050905, 0x0105090b, 0x0105090f, 0x01050b03,
0x01050b07, 0x01050f01, 0x01050f07, 0x01070107, 0x01070303, 0x0107030b, 0x01070501, 0x01070505,
0x01070703, 0x01070707, 0x0107070d, 0x01070909, 0x01070b01, 0x01070b05, 0x01070d0f, 0x01070f03,
0x01070f0b, 0x01090101, 0x01090307, 0x0109030f, 0x01090503, 0x01090509, 0x01090705, 0x01090901,
0x01090907, 0x01090b03, 0x01090f01, 0x010b0105, 0x010b0109, 0x010b0501, 0x010b0505, 0x010b050d,
0x010b0707, 0x010b0903, 0x010b090b, 0x010b090f, 0x010b0d0d, 0x010b0f07, 0x010d010d, 0x010d0303,
0x010d0307, 0x010d0703, 0x010d0b05, 0x010d0f03, 0x010f0101, 0x010f0105, 0x010f0109, 0x010f0501,
0x010f0505, 0x010f050d, 0x010f0707, 0x010f0b01, 0x010f0b09, 0x03010101, 0x03010103, 0x03010105,
0x03010109, 0x03010301, 0x03010303, 0x03010307, 0x0301030b, 0x0301030f, 0x03010501, 0x03010505,
0x03010703, 0x03010709, 0x0301070d, 0x03010b09, 0x03010b0d, 0x03010d03, 0x03010f05, 0x03030101,
0x03030103, 0x03030107, 0x0303010d, 0x03030301, 0x03030309, 0x03030503, 0x03030701, 0x03030707,
0x03030903, 0x03030b01, 0x03030b05, 0x03030f01, 0x03030f0d, 0x03050101, 0x03050305, 0x0305030b,
0x0305030f, 0x03050501, 0x03050509, 0x03050705, 0x03050901, 0x03050907, 0x03050b0b, 0x03050d01,
0x03050f05, 0x03070103, 0x03070109, 0x0307010f, 0x03070301, 0x03070307, 0x03070503, 0x0307050f,
0x03070701, 0x03070709, 0x03070903, 0x03070d05, 0x03070f01, 0x03090107, 0x0309010b, 0x03090305,
0x03090309, 0x03090703, 0x03090707, 0x03090905, 0x0309090d, 0x03090b01, 0x03090b09, 0x030b0103,
0x030b0301, 0x030b0307, 0x030b0503, 0x030b0701, 0x030b0705, 0x030b0b03, 0x030d0501, 0x030d0509,
0x030d050f, 0x030d0909, 0x030d090d, 0x030f0103, 0x030f0107, 0x030f0301, 0x030f0305, 0x030f0503,
0x030f070b, 0x030f0903, 0x030f0d05, 0x030f0f01, 0x05010101, 0x05010103, 0x05010107, 0x0501010b,
0x0501010f, 0x05010301, 0x05010305, 0x05010309, 0x0501030d, 0x05010503, 0x05010507, 0x0501050f,
0x05010701, 0x05010705, 0x05010903, 0x05010907, 0x0501090b, 0x05010b01, 0x05010b05, 0x05010d0f,
0x05010f01, 0x05010f07, 0x05010f0b, 0x05030101, 0x05030105, 0x05030301, 0x05030307, 0x0503030f,
0x05030505, 0x0503050b, 0x05030703, 0x05030709, 0x05030905, 0x05030b03, 0x05050103, 0x05050109,
0x0505010f, 0x05050503, 0x05050507, 0x05050701, 0x0505070f, 0x05050903, 0x05050b07, 0x05050b0f,
0x05050f03, 0x05050f09, 0x05070101, 0x05070105, 0x0507010b, 0x05070303, 0x05070505, 0x05070509,
0x05070703, 0x05070707, 0x05070905, 0x05070b01, 0x05070d0d, 0x05090103, 0x0509010f, 0x05090501,
0x05090507, 0x05090705, 0x0509070b, 0x05090903, 0x05090f05, 0x05090f0b, 0x050b0109, 0x050b0303,
0x050b0505, 0x050b070f, 0x050b0901, 0x050b0b07, 0x050b0f01, 0x050d0101, 0x050d0105, 0x050d010f,
0x050d0503, 0x050d0b0b, 0x050d0d03, 0x050f010b, 0x050f0303, 0x050f050d, 0x050f0701, 0x050f0907,
0x050f0b01, 0x07010105, 0x07010303, 0x07010307, 0x0701030b, 0x0701030f, 0x07010505, 0x07010703,
0x07010707, 0x0701070b, 0x07010905, 0x07010909, 0x0701090f, 0x07010b03, 0x07010d07, 0x07010f03,
0x07030103, 0x07030107, 0x0703010b, 0x07030309, 0x07030503, 0x07030507, 0x07030901, 0x07030d01,
0x07030f05, 0x07030f0d, 0x07050101, 0x07050305, 0x07050501, 0x07050705, 0x07050709, 0x07050b01,
0x07070103, 0x07070301, 0x07070309, 0x07070503, 0x07070507, 0x0707050f, 0x07070701, 0x07070903,
0x07070907, 0x0707090f, 0x07070b0b, 0x07070f07, 0x07090107, 0x07090303, 0x0709030d, 0x07090505,
0x07090703, 0x07090b05, 0x07090d01, 0x07090d09, 0x070b0103, 0x070b0301, 0x070b0305, 0x070b050b,
0x070b0705, 0x070b0909, 0x070b0b0d, 0x070b0f07, 0x070d030d, 0x070d0903, 0x070f0103, 0x070f0107,
0x070f0501, 0x070f0505, 0x070f070b, 0x09010101, 0x09010109, 0x09010305, 0x09010501, 0x09010509,
0x0901050f, 0x09010705, 0x09010903, 0x09010b01, 0x09010f01, 0x09030105, 0x0903010f, 0x09030303,
0x09030307, 0x09030505, 0x09030701, 0x0903070b, 0x09030907, 0x09030b03, 0x09030b0b, 0x09050103,
0x09050107, 0x09050301, 0x0905030b, 0x09050503, 0x09050707, 0x09050901, 0x09050b0f, 0x09050d05,
0x09050f01, 0x09070109, 0x09070303, 0x09070307, 0x09070501, 0x09070505, 0x09070703, 0x0907070b,
0x09090101, 0x09090105, 0x09090509, 0x0909070f, 0x09090901, 0x09090f03, 0x090b010b, 0x090b010f,
0x090b0503, 0x090b0d05, 0x090d0307, 0x090d0709, 0x090d0d01, 0x090f0301, 0x090f030b, 0x090f0701,
0x090f0907, 0x090f0b03, 0x0b010105, 0x0b010301, 0x0b010309, 0x0b010505, 0x0b010901, 0x0b010909,
0x0b01090f, 0x0b010b05, 0x0b010d0d, 0x0b010f09, 0x0b030103, 0x0b030107, 0x0b03010b, 0x0b030305,
0x0b030503, 0x0b030705, 0x0b030f05, 0x0b050101, 0x0b050303, 0x0b050507, 0x0b050701, 0x0b05070d,
0x0b050b07, 0x0b070105, 0x0b07010f, 0x0b070301, 0x0b07050f, 0x0b070909, 0x0b070b03, 0x0b070d0b,
0x0b070f07, 0x0b090103, 0x0b090109, 0x0b090501, 0x0b090705, 0x0b09090d, 0x0b0b0305, 0x0b0b050d,
0x0b0b0b03, 0x0b0b0b07, 0x0b0d0905, 0x0b0f0105, 0x0b0f0109, 0x0b0f0505, 0x0d010303, 0x0d010307,
0x0d01030b, 0x0d010703, 0x0d010707, 0x0d010d01, 0x0d030101, 0x0d030501, 0x0d03050f, 0x0d030d09,
0x0d050305, 0x0d050709, 0x0d050905, 0x0d050b0b, 0x0d050d05, 0x0d050f01, 0x0d070101, 0x0d070309,
0x0d070503, 0x0d070901, 0x0d09050b, 0x0d090907, 0x0d090d05, 0x0d0b0101, 0x0d0b0107, 0x0d0b0709,
0x0d0b0d01, 0x0d0d010b, 0x0d0d0901, 0x0d0f0303, 0x0d0f0307, 0x0f010101, 0x0f010109, 0x0f01010f,
0x0f010501, 0x0f010505, 0x0f01070d, 0x0f010901, 0x0f010b09, 0x0f010d05, 0x0f030105, 0x0f030303,
0x0f030509, 0x0f030907, 0x0f03090b, 0x0f050103, 0x0f050109, 0x0f050301, 0x0f05030d, 0x0f050503,
0x0f050701, 0x0f050b03, 0x0f070105, 0x0f070705, 0x0f07070b, 0x0f070b07, 0x0f090103, 0x0f09010b,
0x0f090307, 0x0f090501, 0x0f090b01, 0x0f0b0505, 0x0f0b0905, 0x0f0d0105, 0x0f0d0703, 0x0f0f0101,
};
#define NGRID_IQ2XXS 512
@ -4162,11 +4162,11 @@ void dequantize_row_iq3_s(const block_iq3_s * restrict x, float * restrict y, in
const uint8_t * signs = x[i].signs;
for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
const float db1 = d * (0.5f + (x[i].scales[ib32/2] & 0xf)) * 0.5f;
const float db2 = d * (0.5f + (x[i].scales[ib32/2] >> 4)) * 0.5f;
const float db1 = d * (1 + 2*(x[i].scales[ib32/2] & 0xf));
const float db2 = d * (1 + 2*(x[i].scales[ib32/2] >> 4));
for (int l = 0; l < 4; ++l) {
const uint8_t * grid1 = (const uint8_t *)(iq3xs_grid + (qs[2*l+0] | ((qh[0] << (8-2*l)) & 256)));
const uint8_t * grid2 = (const uint8_t *)(iq3xs_grid + (qs[2*l+1] | ((qh[0] << (7-2*l)) & 256)));
const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[0] << (8-2*l)) & 256)));
const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[0] << (7-2*l)) & 256)));
for (int j = 0; j < 4; ++j) {
y[j+0] = db1 * grid1[j] * (signs[l] & kmask_iq2xs[j+0] ? -1.f : 1.f);
y[j+4] = db1 * grid2[j] * (signs[l] & kmask_iq2xs[j+4] ? -1.f : 1.f);
@ -4176,8 +4176,8 @@ void dequantize_row_iq3_s(const block_iq3_s * restrict x, float * restrict y, in
qs += 8;
signs += 4;
for (int l = 0; l < 4; ++l) {
const uint8_t * grid1 = (const uint8_t *)(iq3xs_grid + (qs[2*l+0] | ((qh[1] << (8-2*l)) & 256)));
const uint8_t * grid2 = (const uint8_t *)(iq3xs_grid + (qs[2*l+1] | ((qh[1] << (7-2*l)) & 256)));
const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[1] << (8-2*l)) & 256)));
const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[1] << (7-2*l)) & 256)));
for (int j = 0; j < 4; ++j) {
y[j+0] = db2 * grid1[j] * (signs[l] & kmask_iq2xs[j+0] ? -1.f : 1.f);
y[j+4] = db2 * grid2[j] * (signs[l] & kmask_iq2xs[j+4] ? -1.f : 1.f);
@ -10089,18 +10089,34 @@ void ggml_vec_dot_iq3_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const v
#if defined(__ARM_NEON)
typedef union {
uint16x8_t vec_index;
uint16_t index[8];
} vec_index_t;
static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
};
static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};
static const int16_t k_shift[8] = {8, 7, 6, 5, 4, 3, 2, 1};
const uint8x16x2_t mask1 = vld1q_u8_x2(k_mask1);
const uint8x16_t mask2 = vld1q_u8(k_mask2);
const int16x8_t hshift = vld1q_s16(k_shift);
const uint16x8_t m256 = vdupq_n_u16(256);
const uint8x16_t m1 = vdupq_n_u8(1);
uint8x16x2_t vs;
ggml_int8x16x4_t q3s;
ggml_int8x16x4_t q8b;
vec_index_t idx;
#if QK_K == 256
uint32_t scales32[2];
const uint8_t * scales8 = (const uint8_t *)scales32;
#endif
float sumf = 0;
for (int i = 0; i < nb; ++i) {
@ -10109,47 +10125,63 @@ void ggml_vec_dot_iq3_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const v
const uint8_t * restrict qh = x[i].qh;
const uint16_t * restrict signs = (const uint16_t *)x[i].signs;
const int8_t * restrict q8 = y[i].qs;
#if QK_K == 256
memcpy(scales32, x[i].scales, 4);
scales32[1] = (((scales32[0] >> 4) & 0x0f0f0f0f) << 1) | 0x01010101;
scales32[0] = ((scales32[0] & 0x0f0f0f0f) << 1) | 0x01010101;
#endif
int sumi1 = 0, sumi2 = 0;
for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
const uint32x4_t aux32x4_0 = {iq3xs_grid[qs[ 0] | ((qh[ib32+0] << 8) & 256)], iq3xs_grid[qs[ 1] | ((qh[ib32+0] << 7) & 256)],
iq3xs_grid[qs[ 2] | ((qh[ib32+0] << 6) & 256)], iq3xs_grid[qs[ 3] | ((qh[ib32+0] << 5) & 256)]};
const uint32x4_t aux32x4_1 = {iq3xs_grid[qs[ 4] | ((qh[ib32+0] << 4) & 256)], iq3xs_grid[qs[ 5] | ((qh[ib32+0] << 3) & 256)],
iq3xs_grid[qs[ 6] | ((qh[ib32+0] << 2) & 256)], iq3xs_grid[qs[ 7] | ((qh[ib32+0] << 1) & 256)]};
const uint32x4_t aux32x4_2 = {iq3xs_grid[qs[ 8] | ((qh[ib32+1] << 8) & 256)], iq3xs_grid[qs[ 9] | ((qh[ib32+1] << 7) & 256)],
iq3xs_grid[qs[10] | ((qh[ib32+1] << 6) & 256)], iq3xs_grid[qs[11] | ((qh[ib32+1] << 5) & 256)]};
const uint32x4_t aux32x4_3 = {iq3xs_grid[qs[12] | ((qh[ib32+1] << 4) & 256)], iq3xs_grid[qs[13] | ((qh[ib32+1] << 3) & 256)],
iq3xs_grid[qs[14] | ((qh[ib32+1] << 2) & 256)], iq3xs_grid[qs[15] | ((qh[ib32+1] << 1) & 256)]};
qs += 16;
const uint8x16_t idx_l = vld1q_u8(qs); qs += 16;
idx.vec_index = vorrq_u16(vmovl_u8(vget_low_u8 (idx_l)), vandq_u16(vshlq_u16(vdupq_n_u16(qh[ib32+0]), hshift), m256));
const uint32x4_t aux32x4_0 = {iq3s_grid[idx.index[0]], iq3s_grid[idx.index[1]],
iq3s_grid[idx.index[2]], iq3s_grid[idx.index[3]]};
const uint32x4_t aux32x4_1 = {iq3s_grid[idx.index[4]], iq3s_grid[idx.index[5]],
iq3s_grid[idx.index[6]], iq3s_grid[idx.index[7]]};
idx.vec_index = vorrq_u16(vmovl_u8(vget_high_u8(idx_l)), vandq_u16(vshlq_u16(vdupq_n_u16(qh[ib32+1]), hshift), m256));
const uint32x4_t aux32x4_2 = {iq3s_grid[idx.index[0]], iq3s_grid[idx.index[1]],
iq3s_grid[idx.index[2]], iq3s_grid[idx.index[3]]};
const uint32x4_t aux32x4_3 = {iq3s_grid[idx.index[4]], iq3s_grid[idx.index[5]],
iq3s_grid[idx.index[6]], iq3s_grid[idx.index[7]]};
vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[0] | (signs[1] << 16)));
vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
vs.val[0] = vceqq_u8(vs.val[0], mask2);
vs.val[1] = vceqq_u8(vs.val[1], mask2);
vs.val[0] = vorrq_u8(vceqq_u8(vs.val[0], mask2), m1);
vs.val[1] = vorrq_u8(vceqq_u8(vs.val[1], mask2), m1);
q3s.val[0] = vsubq_s8(vreinterpretq_s8_u8(veorq_u8(vs.val[0], vreinterpretq_u8_u32(aux32x4_0))), vreinterpretq_s8_u8(vs.val[0]));
q3s.val[1] = vsubq_s8(vreinterpretq_s8_u8(veorq_u8(vs.val[1], vreinterpretq_u8_u32(aux32x4_1))), vreinterpretq_s8_u8(vs.val[1]));
q3s.val[0] = vmulq_s8(vreinterpretq_s8_u8(vs.val[0]), vreinterpretq_s8_u32(aux32x4_0));
q3s.val[1] = vmulq_s8(vreinterpretq_s8_u8(vs.val[1]), vreinterpretq_s8_u32(aux32x4_1));
vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[2] | (signs[3] << 16)));
vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
vs.val[0] = vceqq_u8(vs.val[0], mask2);
vs.val[1] = vceqq_u8(vs.val[1], mask2);
vs.val[0] = vorrq_u8(vceqq_u8(vs.val[0], mask2), m1);
vs.val[1] = vorrq_u8(vceqq_u8(vs.val[1], mask2), m1);
signs += 4;
q3s.val[2] = vsubq_s8(vreinterpretq_s8_u8(veorq_u8(vs.val[0], vreinterpretq_u8_u32(aux32x4_2))), vreinterpretq_s8_u8(vs.val[0]));
q3s.val[3] = vsubq_s8(vreinterpretq_s8_u8(veorq_u8(vs.val[1], vreinterpretq_u8_u32(aux32x4_3))), vreinterpretq_s8_u8(vs.val[1]));
q3s.val[2] = vmulq_s8(vreinterpretq_s8_u8(vs.val[0]), vreinterpretq_s8_u32(aux32x4_2));
q3s.val[3] = vmulq_s8(vreinterpretq_s8_u8(vs.val[1]), vreinterpretq_s8_u32(aux32x4_3));
const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[0], q8b.val[0]), q3s.val[1], q8b.val[1]);
const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[2], q8b.val[2]), q3s.val[3], q8b.val[3]);
#if QK_K == 256
sumi1 += vaddvq_s32(p1) * scales8[ib32/2+0];
sumi2 += vaddvq_s32(p2) * scales8[ib32/2+4];
#else
sumi1 += vaddvq_s32(p1) * (1 + 2*(x[i].scales[ib32/2] & 0xf));
sumi2 += vaddvq_s32(p2) * (1 + 2*(x[i].scales[ib32/2] >> 4));
#endif
}
sumf += d*(sumi1 + sumi2);
}
*s = 0.25f * sumf;
*s = sumf;
#elif defined(__AVX2__)
@ -10164,6 +10196,16 @@ void ggml_vec_dot_iq3_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const v
const __m256i mask1 = _mm256_loadu_si256((const __m256i*)k_mask1);
const __m256i mask2 = _mm256_loadu_si256((const __m256i*)k_mask2);
const __m256i idx_shift = _mm256_set_epi32(1, 2, 3, 4, 5, 6, 7, 8);
const __m256i idx_mask = _mm256_set1_epi32(256);
typedef union {
__m256i vec[2];
uint32_t index[16];
} index_t;
index_t idx;
__m256 accumf = _mm256_setzero_ps();
for (int i = 0; i < nb; ++i) {
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
@ -10176,24 +10218,25 @@ void ggml_vec_dot_iq3_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const v
for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
const __m256i q2_1 = _mm256_set_epi32(iq3xs_grid[qs[7] | ((qh[ib32+0] << 1) & 256)],
iq3xs_grid[qs[6] | ((qh[ib32+0] << 2) & 256)],
iq3xs_grid[qs[5] | ((qh[ib32+0] << 3) & 256)],
iq3xs_grid[qs[4] | ((qh[ib32+0] << 4) & 256)],
iq3xs_grid[qs[3] | ((qh[ib32+0] << 5) & 256)],
iq3xs_grid[qs[2] | ((qh[ib32+0] << 6) & 256)],
iq3xs_grid[qs[1] | ((qh[ib32+0] << 7) & 256)],
iq3xs_grid[qs[0] | ((qh[ib32+0] << 8) & 256)]);
qs += 8;
const __m256i q2_2 = _mm256_set_epi32(iq3xs_grid[qs[7] | ((qh[ib32+1] << 1) & 256)],
iq3xs_grid[qs[6] | ((qh[ib32+1] << 2) & 256)],
iq3xs_grid[qs[5] | ((qh[ib32+1] << 3) & 256)],
iq3xs_grid[qs[4] | ((qh[ib32+1] << 4) & 256)],
iq3xs_grid[qs[3] | ((qh[ib32+1] << 5) & 256)],
iq3xs_grid[qs[2] | ((qh[ib32+1] << 6) & 256)],
iq3xs_grid[qs[1] | ((qh[ib32+1] << 7) & 256)],
iq3xs_grid[qs[0] | ((qh[ib32+1] << 8) & 256)]);
qs += 8;
const __m256i idx_l = _mm256_cvtepu8_epi16(_mm_loadu_si128((const __m128i *)qs)); qs += 16;
idx.vec[0] = _mm256_set1_epi32(qh[ib32+0]);
idx.vec[1] = _mm256_set1_epi32(qh[ib32+1]);
idx.vec[0] = _mm256_and_si256(_mm256_sllv_epi32(idx.vec[0], idx_shift), idx_mask);
idx.vec[1] = _mm256_and_si256(_mm256_sllv_epi32(idx.vec[1], idx_shift), idx_mask);
idx.vec[0] = _mm256_or_si256(idx.vec[0], _mm256_cvtepi16_epi32(_mm256_castsi256_si128(idx_l)));
idx.vec[1] = _mm256_or_si256(idx.vec[1], _mm256_cvtepi16_epi32(_mm256_extractf128_si256(idx_l, 1)));
// At leat on my CPU (Ryzen 7950X), using _mm256_i32gather_epi32 is slower than _mm256_set_epi32. Strange.
//const __m256i q2_1 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[0], 4);
//const __m256i q2_2 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[1], 4);
const __m256i q2_1 = _mm256_set_epi32(
iq3s_grid[idx.index[7]], iq3s_grid[idx.index[6]], iq3s_grid[idx.index[5]], iq3s_grid[idx.index[4]],
iq3s_grid[idx.index[3]], iq3s_grid[idx.index[2]], iq3s_grid[idx.index[1]], iq3s_grid[idx.index[0]]
);
const __m256i q2_2 = _mm256_set_epi32(
iq3s_grid[idx.index[15]], iq3s_grid[idx.index[14]], iq3s_grid[idx.index[13]], iq3s_grid[idx.index[12]],
iq3s_grid[idx.index[11]], iq3s_grid[idx.index[10]], iq3s_grid[idx.index[ 9]], iq3s_grid[idx.index[ 8]]
);
__m256i aux256 = _mm256_set1_epi32(signs[0] | (signs[1] << 16));
aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
@ -10221,7 +10264,7 @@ void ggml_vec_dot_iq3_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const v
}
*s = 0.25f * hsum_float_8(accumf);
*s = hsum_float_8(accumf);
#else
@ -10238,8 +10281,8 @@ void ggml_vec_dot_iq3_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const v
const uint32_t ls2 = 2*(x[i].scales[ib32/2] >> 4) + 1;
int32_t sumi = 0;
for (int l = 0; l < 4; ++l) {
const uint8_t * grid1 = (const uint8_t *)(iq3xs_grid + (qs[2*l+0] | ((qh[ib32+0] << (8-2*l)) & 256)));
const uint8_t * grid2 = (const uint8_t *)(iq3xs_grid + (qs[2*l+1] | ((qh[ib32+0] << (7-2*l)) & 256)));
const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[ib32+0] << (8-2*l)) & 256)));
const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[ib32+0] << (7-2*l)) & 256)));
for (int j = 0; j < 4; ++j) {
sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1);
sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1);
@ -10251,8 +10294,8 @@ void ggml_vec_dot_iq3_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const v
bsum += sumi * ls1;
sumi = 0;
for (int l = 0; l < 4; ++l) {
const uint8_t * grid1 = (const uint8_t *)(iq3xs_grid + (qs[2*l+0] | ((qh[ib32+1] << (8-2*l)) & 256)));
const uint8_t * grid2 = (const uint8_t *)(iq3xs_grid + (qs[2*l+1] | ((qh[ib32+1] << (7-2*l)) & 256)));
const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[ib32+1] << (8-2*l)) & 256)));
const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[ib32+1] << (7-2*l)) & 256)));
for (int j = 0; j < 4; ++j) {
sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1);
sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1);
@ -10265,7 +10308,7 @@ void ggml_vec_dot_iq3_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const v
}
sumf += d * bsum;
}
*s = 0.25f * sumf;
*s = sumf;
#endif
}
@ -11912,7 +11955,8 @@ static void quantize_row_iq3_s_impl(int block_size, const float * restrict x, vo
}
float best = 0;
float scale = max/(2*kMaxQ-1);
for (int is = -15; is <= 15; ++is) {
for (int k = 0; k < bs4; ++k) is_on_grid[k] = false;
for (int is = -9; is <= 9; ++is) {
float id = (2*kMaxQ-1+is*0.2f)/max;
float this_scale = 1/id;
for (int k = 0; k < bs4; ++k) {
@ -11948,7 +11992,7 @@ static void quantize_row_iq3_s_impl(int block_size, const float * restrict x, vo
if (n_not_ongrid > 0 && scale > 0) {
float id = 1/scale;
for (int k = 0; k < bs4; ++k) {
if (is_on_grid[k]) continue;
//if (is_on_grid[k]) continue;
uint16_t u = 0;
for (int i = 0; i < 4; ++i) {
int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
@ -12004,7 +12048,7 @@ static void quantize_row_iq3_s_impl(int block_size, const float * restrict x, vo
}
float d = max_scale/31;
y[ibl].d = GGML_FP32_TO_FP16(d);
y[ibl].d = GGML_FP32_TO_FP16(d * 1.033f);
float id = 1/d;
for (int ib = 0; ib < QK_K/block_size; ib += 2) {
int l1 = nearest_int(0.5f*(id*scales[ib+0]-1));

File diff suppressed because it is too large Load diff

View file

@ -24,6 +24,11 @@ GGML_API ggml_backend_buffer_type_t ggml_backend_sycl_host_buffer_type(void);
GGML_API void ggml_backend_sycl_print_sycl_devices(void);
GGML_API GGML_CALL void ggml_sycl_get_gpu_list(int *id_list, int max_len);
GGML_API GGML_CALL void ggml_sycl_get_device_description(int device, char *description, size_t description_size);
GGML_API GGML_CALL int ggml_backend_sycl_get_device_count();
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_sycl_split_buffer_type(const float * tensor_split);
GGML_API GGML_CALL void ggml_backend_sycl_get_device_memory(int device, size_t *free, size_t *total);
GGML_API GGML_CALL int ggml_backend_sycl_get_device_index(int device_id);
#ifdef __cplusplus
}
#endif

View file

@ -5428,7 +5428,8 @@ static void ggml_vk_print_tensor(ggml_backend_vk_context * ctx, const ggml_tenso
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
ggml_vk_buffer_read(ctx, extra->buffer_gpu, extra->offset, tensor_data, tensor_size);
vk_buffer buffer_gpu = extra->buffer_gpu.lock();
ggml_vk_buffer_read(ctx, buffer_gpu, extra->offset, tensor_data, tensor_size);
}
std::cerr << "TENSOR CHECK " << name << " (" << tensor->name << "): " << ggml_op_name(tensor->op) << std::endl;
@ -5540,7 +5541,8 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
for (int i3 = 0; i3 < src0->ne[3]; i3++) {
for (int i2 = 0; i2 < src0->ne[2]; i2++) {
const int idx = i3*src0->ne[2] + i2;
ggml_vk_buffer_read(ctx, extra->buffer_gpu, offset + idx * src0->nb[2], ((char *)src0_clone->data + idx * src0_clone->nb[2]), src0->ne[1] * src0->nb[1]);
vk_buffer buffer_gpu = extra->buffer_gpu.lock();
ggml_vk_buffer_read(ctx, buffer_gpu, offset + idx * src0->nb[2], ((char *)src0_clone->data + idx * src0_clone->nb[2]), src0->ne[1] * src0->nb[1]);
}
}
@ -5550,10 +5552,11 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
src0_clone->nb[i] = src0_clone->nb[i - 1]*src0_clone->ne[i - 1];
}
} else {
if (offset + src0_size >= extra->buffer_gpu->size) {
src0_size = extra->buffer_gpu->size - offset;
vk_buffer buffer_gpu = extra->buffer_gpu.lock();
if (offset + src0_size >= buffer_gpu->size) {
src0_size = buffer_gpu->size - offset;
}
ggml_vk_buffer_read(ctx, extra->buffer_gpu, offset, src0_clone->data, src0_size);
ggml_vk_buffer_read(ctx, buffer_gpu, offset, src0_clone->data, src0_size);
memcpy(src0_clone->nb, src0->nb, sizeof(size_t) * GGML_MAX_DIMS);
}
} else {
@ -5583,7 +5586,8 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
for (int i3 = 0; i3 < src1->ne[3]; i3++) {
for (int i2 = 0; i2 < src1->ne[2]; i2++) {
const int idx = i3*src1->ne[2] + i2;
ggml_vk_buffer_read(ctx, extra->buffer_gpu, offset + idx * src1->nb[2], ((char *)src1_clone->data + idx * src1_clone->nb[2]), src1->ne[1] * src1->nb[1]);
vk_buffer buffer_gpu = extra->buffer_gpu.lock();
ggml_vk_buffer_read(ctx, buffer_gpu, offset + idx * src1->nb[2], ((char *)src1_clone->data + idx * src1_clone->nb[2]), src1->ne[1] * src1->nb[1]);
}
}
@ -5593,10 +5597,11 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
src1_clone->nb[i] = src1_clone->nb[i - 1]*src1_clone->ne[i - 1];
}
} else {
if (offset + src1_size >= extra->buffer_gpu->size) {
src1_size = extra->buffer_gpu->size - offset;
vk_buffer buffer_gpu = extra->buffer_gpu.lock();
if (offset + src1_size >= buffer_gpu->size) {
src1_size = buffer_gpu->size - offset;
}
ggml_vk_buffer_read(ctx, extra->buffer_gpu, offset, src1_clone->data, src1_size);
ggml_vk_buffer_read(ctx, buffer_gpu, offset, src1_clone->data, src1_size);
memcpy(src1_clone->nb, src1->nb, sizeof(size_t) * GGML_MAX_DIMS);
}
} else {
@ -5643,11 +5648,7 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
} else if (tensor->op == GGML_OP_RMS_NORM) {
tensor_clone = ggml_rms_norm(ggml_ctx, src0_clone, *(float *)tensor->op_params);
} else if (tensor->op == GGML_OP_SOFT_MAX) {
if (src1 != nullptr) {
tensor_clone = ggml_soft_max_ext(ggml_ctx, src0_clone, src1_clone, *(float *)tensor->op_params);
} else {
tensor_clone = ggml_soft_max(ggml_ctx, src0_clone);
}
} else if (tensor->op == GGML_OP_DIAG_MASK_INF) {
tensor_clone = ggml_diag_mask_inf(ggml_ctx, src0_clone, *(float *)tensor->op_params);
} else if (tensor->op == GGML_OP_ROPE) {
@ -5753,11 +5754,12 @@ static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_compute_
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
if (extra->offset + tensor_size >= extra->buffer_gpu->size) {
tensor_size = extra->buffer_gpu->size - (extra->offset);
vk_buffer buffer_gpu = extra->buffer_gpu.lock();
if (extra->offset + tensor_size >= buffer_gpu->size) {
tensor_size = buffer_gpu->size - (extra->offset);
}
ggml_vk_buffer_read(ctx, extra->buffer_gpu, extra->offset, tensor_data, tensor_size);
ggml_vk_buffer_read(ctx, buffer_gpu, extra->offset, tensor_data, tensor_size);
}
float first_error_result = -1.0f;

View file

@ -112,6 +112,7 @@ class MODEL_ARCH(IntEnum):
INTERNLM2 = auto()
MINICPM = auto()
GEMMA = auto()
STARCODER2 = auto()
class MODEL_TENSOR(IntEnum):
@ -169,6 +170,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.INTERNLM2: "internlm2",
MODEL_ARCH.MINICPM: "minicpm",
MODEL_ARCH.GEMMA: "gemma",
MODEL_ARCH.STARCODER2: "starcoder2",
}
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
@ -526,6 +528,21 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.FFN_NORM,
],
MODEL_ARCH.STARCODER2: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.ATTN_ROT_EMBD,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
# TODO
}
@ -554,6 +571,10 @@ MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_ROT_EMBD,
],
MODEL_ARCH.STARCODER2: [
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_ROT_EMBD,
],
}
#

View file

@ -362,7 +362,7 @@ class GGUFWriter:
self.add_bool(Keys.Attention.CAUSAL.format(arch=self.arch), value)
def add_pooling_type(self, value: PoolingType) -> None:
self.add_uint32(Keys.LLM.POOLING_TYPE.format(arch=self.arch), value)
self.add_uint32(Keys.LLM.POOLING_TYPE.format(arch=self.arch), value.value)
def add_rope_dimension_count(self, count: int) -> None:
self.add_uint32(Keys.Rope.DIMENSION_COUNT.format(arch=self.arch), count)

View file

@ -210,6 +210,7 @@ class TensorNameMap:
"model.layers.layers.{bid}.mlp.up_proj", # plamo
"model.layers.{bid}.feed_forward.w3", # internlm2
"encoder.layers.{bid}.mlp.fc11", # nomic-bert
"model.layers.{bid}.mlp.c_fc", # starcoder2
),
MODEL_TENSOR.FFN_UP_EXP: (
@ -256,6 +257,7 @@ class TensorNameMap:
"model.layers.layers.{bid}.mlp.down_proj", # plamo
"model.layers.{bid}.feed_forward.w2", # internlm2
"encoder.layers.{bid}.mlp.fc2", # nomic-bert
"model.layers.{bid}.mlp.c_proj", # starcoder2
),
MODEL_TENSOR.FFN_DOWN_EXP: (

384
llama.cpp
View file

@ -104,6 +104,7 @@
#define LLAMA_MAX_NODES 8192
#define LLAMA_MAX_EXPERTS 8
//
// logging
//
@ -211,10 +212,11 @@ enum llm_arch {
LLM_ARCH_INTERNLM2,
LLM_ARCH_MINICPM,
LLM_ARCH_GEMMA,
LLM_ARCH_STARCODER2,
LLM_ARCH_UNKNOWN,
};
static std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_LLAMA, "llama" },
{ LLM_ARCH_FALCON, "falcon" },
{ LLM_ARCH_GPT2, "gpt2" },
@ -238,6 +240,8 @@ static std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_INTERNLM2, "internlm2" },
{ LLM_ARCH_MINICPM, "minicpm" },
{ LLM_ARCH_GEMMA, "gemma" },
{ LLM_ARCH_STARCODER2, "starcoder2" },
{ LLM_ARCH_UNKNOWN, "(unknown)" },
};
enum llm_kv {
@ -298,7 +302,7 @@ enum llm_kv {
LLM_KV_TOKENIZER_RWKV,
};
static std::map<llm_kv, const char *> LLM_KV_NAMES = {
static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
{ LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" },
{ LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" },
{ LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
@ -362,7 +366,7 @@ struct LLM_KV {
llm_arch arch;
std::string operator()(llm_kv kv) const {
return ::format(LLM_KV_NAMES[kv], LLM_ARCH_NAMES[arch]);
return ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch));
}
};
@ -397,7 +401,7 @@ enum llm_tensor {
LLM_TENSOR_LAYER_OUT_NORM,
};
static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
{
LLM_ARCH_LLAMA,
{
@ -779,6 +783,24 @@ static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES =
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
{
LLM_ARCH_STARCODER2,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
{
LLM_ARCH_UNKNOWN,
{
@ -812,38 +834,38 @@ struct LLM_TN {
llm_arch arch;
std::string operator()(llm_tensor tensor) const {
if (LLM_TENSOR_NAMES[arch].find(tensor) == LLM_TENSOR_NAMES[arch].end()) {
if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
return "__missing__";
}
return LLM_TENSOR_NAMES[arch].at(tensor);
return LLM_TENSOR_NAMES.at(arch).at(tensor);
}
std::string operator()(llm_tensor tensor, const std::string & suffix) const {
if (LLM_TENSOR_NAMES[arch].find(tensor) == LLM_TENSOR_NAMES[arch].end()) {
if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
return "__missing__";
}
return LLM_TENSOR_NAMES[arch].at(tensor) + "." + suffix;
return LLM_TENSOR_NAMES.at(arch).at(tensor) + "." + suffix;
}
std::string operator()(llm_tensor tensor, int bid) const {
if (LLM_TENSOR_NAMES[arch].find(tensor) == LLM_TENSOR_NAMES[arch].end()) {
if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
return "__missing__";
}
return ::format(LLM_TENSOR_NAMES[arch].at(tensor).c_str(), bid);
return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid);
}
std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const {
if (LLM_TENSOR_NAMES[arch].find(tensor) == LLM_TENSOR_NAMES[arch].end()) {
if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
return "__missing__";
}
return ::format(LLM_TENSOR_NAMES[arch].at(tensor).c_str(), bid) + "." + suffix;
return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid) + "." + suffix;
}
std::string operator()(llm_tensor tensor, const std::string & suffix, int bid, int xid) const {
if (LLM_TENSOR_NAMES[arch].find(tensor) == LLM_TENSOR_NAMES[arch].end()) {
if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
return "__missing__";
}
return ::format(LLM_TENSOR_NAMES[arch].at(tensor).c_str(), bid, xid) + "." + suffix;
return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid, xid) + "." + suffix;
}
};
@ -851,7 +873,7 @@ struct LLM_TN {
// gguf helpers
//
static std::map<int32_t, const char *> LLAMA_ROPE_SCALING_TYPES = {
static const std::map<int32_t, const char *> LLAMA_ROPE_SCALING_TYPES = {
{ LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
{ LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
{ LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
@ -1409,7 +1431,9 @@ static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer
buft = ggml_backend_cuda_host_buffer_type();
}
#elif defined(GGML_USE_SYCL)
if (host_buffer) {
buft = ggml_backend_sycl_host_buffer_type();
}
#elif defined(GGML_USE_CPU_HBM)
buft = ggml_backend_cpu_hbm_buffer_type();
#elif defined(GGML_USE_VULKAN)
@ -1463,6 +1487,12 @@ static ggml_backend_buffer_type_t llama_default_buffer_type_split(int fallback_g
}
#endif
#ifdef GGML_USE_SYCL
if (ggml_backend_sycl_get_device_count() > 1) {
buft = ggml_backend_sycl_split_buffer_type(tensor_split);
}
#endif
if (buft == nullptr) {
buft = llama_default_buffer_type_offload(fallback_gpu);
}
@ -1474,6 +1504,8 @@ static ggml_backend_buffer_type_t llama_default_buffer_type_split(int fallback_g
static size_t llama_get_device_count() {
#if defined(GGML_USE_CUBLAS)
return ggml_backend_cuda_get_device_count();
#elif defined(GGML_USE_SYCL)
return ggml_backend_sycl_get_device_count();
#elif defined(GGML_USE_VULKAN)
return ggml_backend_vk_get_device_count();
#else
@ -1487,6 +1519,11 @@ static size_t llama_get_device_memory(int device) {
size_t free;
ggml_backend_cuda_get_device_memory(device, &total, &free);
return free;
#elif defined(GGML_USE_SYCL)
size_t total;
size_t free;
ggml_backend_sycl_get_device_memory(device, &total, &free);
return free;
#elif defined(GGML_USE_VULKAN)
size_t total;
size_t free;
@ -1645,7 +1682,6 @@ struct llama_cparams {
float yarn_beta_slow;
float defrag_thold;
bool mul_mat_q;
bool offload_kqv;
bool do_pooling;
@ -1951,6 +1987,9 @@ struct llama_context {
std::vector<uint8_t> buf_compute_meta;
ggml_backend_sched_t sched = nullptr;
ggml_abort_callback abort_callback = nullptr;
void * abort_callback_data = nullptr;
// input tensors
ggml_backend_buffer_t buf_input = nullptr;
ggml_context * ctx_input = nullptr;
@ -3321,6 +3360,16 @@ static void llm_load_hparams(
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
case LLM_ARCH_STARCODER2:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
switch (hparams.n_layer) {
case 30: model.type = e_model::MODEL_3B; break;
case 32: model.type = e_model::MODEL_7B; break;
case 40: model.type = e_model::MODEL_15B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
default: (void)0;
}
@ -4491,6 +4540,56 @@ static bool llm_load_tensors(
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
}
} break;
case LLM_ARCH_STARCODER2:
{
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
// output
{
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
// if output is NULL, init from the input tok embed
if (model.output == NULL) {
model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
ml.n_created--; // artificial tensor
ml.size_data += ggml_nbytes(model.output);
}
}
for (int i = 0; i < n_layer; ++i) {
ggml_context * ctx_layer = ctx_for_layer(i);
ggml_context * ctx_split = ctx_for_layer_split(i);
auto & layer = model.layers[i];
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
// optional bias tensors
layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
// optional bias tensors
layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff});
}
} break;
default:
throw std::runtime_error("unknown architecture");
}
@ -7560,6 +7659,120 @@ struct llm_build_context {
return gf;
}
struct ggml_cgraph * build_starcoder2() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
cb(inpL, "inp_embd", -1);
// inp_pos - contains the positions
struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
cb(inp_pos, "inp_pos", -1);
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
cb(KQ_mask, "KQ_mask", -1);
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * inpSA = inpL;
// norm
cur = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm, model.layers[il].attn_norm_b,
LLM_NORM, cb, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_rope_custom(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
Kcur = ggml_rope_custom(
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
model.layers[il].wo, model.layers[il].bo,
Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
cb(cur, "kqv_out", il);
}
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = llm_build_norm(ctx0, ffn_inp, hparams,
model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
LLM_NORM, cb, il);
cb(cur, "ffn_norm", il);
cur = llm_build_ffn(ctx0, cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b,
NULL, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b,
NULL,
LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = llm_build_norm(ctx0, cur, hparams,
model.output_norm, model.output_norm_b,
LLM_NORM, cb, -1);
cb(cur, "result_norm", -1);
// lm_head
cur = ggml_mul_mat(ctx0, model.output, cur);
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
};
static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
@ -7706,6 +7919,10 @@ static struct ggml_cgraph * llama_build_graph(
{
result = llm.build_gemma();
} break;
case LLM_ARCH_STARCODER2:
{
result = llm.build_starcoder2();
} break;
default:
GGML_ASSERT(false);
}
@ -7857,6 +8074,7 @@ static void llama_graph_compute(
if (lctx.backend_cpu != nullptr) {
ggml_backend_cpu_set_n_threads(lctx.backend_cpu, n_threads);
ggml_backend_cpu_set_abort_callback(lctx.backend_cpu, lctx.abort_callback, lctx.abort_callback_data);
}
ggml_backend_sched_graph_compute(lctx.sched, gf);
@ -8947,10 +9165,10 @@ struct llm_tokenizer_wpm {
std::vector<uint32_t> codepoints = codepoints_from_utf8(text);
std::vector<uint32_t> nfd_codepoints;
for (uint32_t code : codepoints) {
auto it = nfd_map.find(code);
if (it != nfd_map.end()) {
for (uint32_t c : it->second) {
nfd_codepoints.push_back(c);
auto it = nfd_map.equal_range(code);
if (it.first != it.second) {
for (auto jt = it.first; jt != it.second; jt++) {
nfd_codepoints.push_back(jt->second);
}
} else {
nfd_codepoints.push_back(code);
@ -9001,12 +9219,13 @@ struct llm_tokenizer_wpm {
}
uint32_t to_lower(uint32_t code) {
static const std::locale locale("en_US.UTF-8");
#if defined(_WIN32)
if (code > 0xFFFF) {
return code;
}
#endif
return std::tolower(wchar_t(code), std::locale("en_US.UTF-8"));
return std::tolower(wchar_t(code), locale);
}
bool is_ascii_punct(uint32_t code) {
@ -10621,7 +10840,7 @@ struct quantize_state_internal {
{}
};
static void llama_convert_tensor_internal(
static void llama_tensor_dequantize_internal(
struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
const size_t nelements, const int nthread
) {
@ -10962,6 +11181,46 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty
return new_type;
}
static int32_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int chunk_size, int nrows, int n_per_row, int64_t * hist_cur, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
std::mutex mutex;
int counter = 0;
size_t new_size = 0;
if (nthread < 2) {
// single-thread
return ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, hist_cur, imatrix);
}
auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, chunk_size,
nrows, n_per_row, imatrix]() {
std::array<int64_t, 1 << 4> local_hist = {};
const int nrows_per_chunk = chunk_size / n_per_row;
size_t local_size = 0;
while (true) {
std::unique_lock<std::mutex> lock(mutex);
int first_row = counter; counter += nrows_per_chunk;
if (first_row >= nrows) {
if (local_size > 0) {
for (int j=0; j<int(local_hist.size()); ++j) {
hist_cur[j] += local_hist[j];
}
new_size += local_size;
}
break;
}
lock.unlock();
const int this_nrow = std::min(nrows - first_row, nrows_per_chunk);
local_size += ggml_quantize_chunk(new_type, f32_data, new_data,
first_row * n_per_row, this_nrow, n_per_row, local_hist.data(), imatrix);
}
};
for (int it = 0; it < nthread - 1; ++it) {
workers.emplace_back(compute);
}
compute();
for (auto & w : workers) { w.join(); }
workers.clear();
return new_size;
}
static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
ggml_type quantized_type;
llama_ftype ftype = params->ftype;
@ -11074,7 +11333,6 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
std::vector<std::thread> workers;
workers.reserve(nthread);
std::mutex mutex;
int idx = 0;
@ -11188,7 +11446,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
} else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
} else {
llama_convert_tensor_internal(tensor, f32_conv_buf, workers, nelements, nthread);
llama_tensor_dequantize_internal(tensor, f32_conv_buf, workers, nelements, nthread);
f32_data = (float *) f32_conv_buf.data();
}
@ -11209,41 +11467,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
const int nchunk = (nelements + chunk_size - 1)/chunk_size;
const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1;
if (nthread_use < 2) {
new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, hist_cur.data(), imatrix);
} else {
int counter = 0;
new_size = 0;
auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, chunk_size,
nrows, n_per_row, imatrix]() {
std::array<int64_t, 1 << 4> local_hist = {};
const int nrows_per_chunk = chunk_size / n_per_row;
size_t local_size = 0;
while (true) {
std::unique_lock<std::mutex> lock(mutex);
int first_row = counter; counter += nrows_per_chunk;
if (first_row >= nrows) {
if (local_size > 0) {
for (int j=0; j<int(local_hist.size()); ++j) {
hist_cur[j] += local_hist[j];
}
new_size += local_size;
}
break;
}
lock.unlock();
const int this_nrow = std::min(nrows - first_row, nrows_per_chunk);
local_size += ggml_quantize_chunk(new_type, f32_data, new_data,
first_row * n_per_row, this_nrow, n_per_row, local_hist.data(), imatrix);
}
};
for (int it = 0; it < nthread_use - 1; ++it) {
workers.emplace_back(compute);
}
compute();
for (auto & w : workers) { w.join(); }
workers.clear();
}
new_size = llama_tensor_quantize_internal(new_type, f32_data, new_data, chunk_size, nrows, n_per_row, hist_cur.data(), imatrix, workers, nthread_use);
LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
int64_t tot_count = 0;
@ -11632,11 +11856,12 @@ struct llama_context_params llama_context_default_params() {
/*.cb_eval_user_data =*/ nullptr,
/*.type_k =*/ GGML_TYPE_F16,
/*.type_v =*/ GGML_TYPE_F16,
/*.mul_mat_q =*/ true,
/*.logits_all =*/ false,
/*.embedding =*/ false,
/*.offload_kqv =*/ true,
/*.do_pooling =*/ true,
/*.abort_callback =*/ nullptr,
/*.abort_callback_data =*/ nullptr,
};
return result;
@ -11784,7 +12009,6 @@ struct llama_context * llama_new_context_with_model(
cparams.yarn_beta_fast = params.yarn_beta_fast;
cparams.yarn_beta_slow = params.yarn_beta_slow;
cparams.defrag_thold = params.defrag_thold;
cparams.mul_mat_q = params.mul_mat_q;
cparams.offload_kqv = params.offload_kqv;
cparams.do_pooling = params.do_pooling;
@ -11820,6 +12044,9 @@ struct llama_context * llama_new_context_with_model(
LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base);
LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale);
ctx->abort_callback = params.abort_callback;
ctx->abort_callback_data = params.abort_callback_data;
ctx->rng = std::mt19937(params.seed);
ctx->logits_all = params.logits_all;
@ -11879,13 +12106,31 @@ struct llama_context * llama_new_context_with_model(
}
#elif defined(GGML_USE_SYCL)
if (model->n_gpu_layers > 0) {
ggml_backend_t backend = ggml_backend_sycl_init(model->main_gpu);
// with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
int main_gpu_index = ggml_backend_sycl_get_device_index(model->main_gpu);
ggml_backend_t backend = ggml_backend_sycl_init(main_gpu_index);
if (backend == nullptr) {
LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d backend\n", __func__, model->main_gpu);
LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d)backend\n", __func__, model->main_gpu, main_gpu_index);
llama_free(ctx);
return nullptr;
}
ctx->backends.push_back(backend);
} else {
// LLAMA_SPLIT_LAYER requires a backend for each GPU
int id_list[GGML_SYCL_MAX_DEVICES];
ggml_sycl_get_gpu_list(id_list, GGML_SYCL_MAX_DEVICES);
for (int i = 0; i < ggml_backend_sycl_get_device_count(); ++i) {
int device_id = id_list[i];
ggml_backend_t backend = ggml_backend_sycl_init(i);
if (backend == nullptr) {
LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d)backend\n", __func__, device_id, i);
llama_free(ctx);
return nullptr;
}
ctx->backends.push_back(backend);
}
}
}
#elif defined(GGML_USE_KOMPUTE)
if (model->n_gpu_layers > 0) {
@ -11965,7 +12210,6 @@ struct llama_context * llama_new_context_with_model(
ggml_set_name(ctx->inp_cls, "inp_cls");
ctx->buf_input = ggml_backend_alloc_ctx_tensors_from_buft(ctx->ctx_input, llama_default_buffer_type_cpu(true));
LLAMA_LOG_INFO("%s: %10s input buffer size = %8.2f MiB\n", __func__,
ggml_backend_buffer_name(ctx->buf_input),
ggml_backend_buffer_get_size(ctx->buf_input) / 1024.0 / 1024.0);
@ -12086,6 +12330,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
case LLM_ARCH_QWEN2:
case LLM_ARCH_PHI2:
case LLM_ARCH_GEMMA:
case LLM_ARCH_STARCODER2:
return LLAMA_ROPE_TYPE_NEOX;
// all model arches should be listed explicitly here
@ -12545,8 +12790,8 @@ size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
}
// Sets the state reading from the specified source address
size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
uint8_t * inp = src;
size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
const uint8_t * inp = src;
// set rng
{
@ -12555,7 +12800,7 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
std::string rng_str((char *)inp, rng_size); inp += rng_size;
std::string rng_str((const char *)inp, rng_size); inp += rng_size;
std::istringstream rng_ss(rng_str);
rng_ss >> ctx->rng;
@ -12753,6 +12998,11 @@ void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_
ctx->cparams.n_threads_batch = n_threads_batch;
}
void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) {
ctx->abort_callback = abort_callback;
ctx->abort_callback_data = abort_callback_data;
}
struct llama_batch llama_batch_get_one(
llama_token * tokens,
int32_t n_tokens,

16
llama.h
View file

@ -255,11 +255,16 @@ extern "C" {
enum ggml_type type_v; // data type for V cache
// Keep the booleans together to avoid misalignment during copy-by-value.
bool mul_mat_q; // if true, use experimental mul_mat_q kernels (DEPRECATED - always true)
bool logits_all; // the llama_eval() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
bool logits_all; // the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
bool embedding; // embedding mode only
bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
bool do_pooling; // whether to pool (sum) embedding results by sequence id (ignored if no pooling layer)
// Abort callback
// if it returns true, execution of llama_decode() will be aborted
// currently works only with CPU execution
ggml_abort_callback abort_callback;
void * abort_callback_data;
};
// model quantization parameters
@ -575,7 +580,7 @@ extern "C" {
// Returns the number of bytes read
LLAMA_API size_t llama_set_state_data(
struct llama_context * ctx,
uint8_t * src);
const uint8_t * src);
// Save/load session file
LLAMA_API bool llama_load_session_file(
@ -633,7 +638,10 @@ extern "C" {
// n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
LLAMA_API void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch);
// Token logits obtained from the last call to llama_eval()
// Set abort callback
LLAMA_API void llama_set_abort_callback(struct llama_context * ctx, ggml_abort_callback abort_callback, void * abort_callback_data);
// Token logits obtained from the last call to llama_decode()
// The logits for the last token are stored in the last row
// Logits for which llama_batch.logits[i] == 0 are undefined
// Rows: n_tokens provided with llama_batch

View file

@ -1,2 +1,3 @@
-r ./requirements-convert.txt
torch~=2.1.1
einops~=0.7.0

View file

@ -31,7 +31,7 @@ PRETTY_NAMES = {
"model_size": "Model Size [GiB]", "model_n_params": "Num. of Parameters",
"n_batch": "Batch size", "n_threads": "Threads", "type_k": "K type", "type_v": "V type",
"n_gpu_layers": "GPU layers", "main_gpu": "Main GPU", "no_kv_offload": "NKVO",
"mul_mat_q": "MMQ", "tensor_split": "Tensor split"
"tensor_split": "Tensor split"
}
DEFAULT_SHOW = ["model_type"] # Always show these properties by default.

213
scripts/pod-llama.sh Normal file
View file

@ -0,0 +1,213 @@
#!/bin/bash
#
# Use this script only on fresh pods (runpod.io)!
# Otherwise, it can break your environment!
#
if [ -z "$1" ]; then
echo "Usage: $0 <data>"
echo " 0: no models"
echo " 1: tinyllama-1b"
echo " 2: codellama-7b"
echo " 3: codellama-13b"
echo " 4: codellama-34b"
echo " 5: codellama-7b-instruct"
echo " 6: codellama-13b-instruct"
echo " 7: codellama-34b-instruct"
exit 1
fi
set -x
# setup deps
apt-get update
apt-get install -y git-lfs cmake cmake-curses-gui vim ruby
git-lfs install
if [ ! -d "/workspace" ]; then
ln -sfn $(pwd) /workspace
fi
# download data
cd /workspace
# this is useful to git clone repos without doubling the disk size due to .git
git clone https://github.com/iboB/git-lfs-download
ln -sfn /workspace/git-lfs-download/git-lfs-download /usr/local/bin/git-lfs-download
# llama.cpp
cd /workspace
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp
LLAMA_CUBLAS=1 make -j
ln -sfn /workspace/TinyLlama-1.1B-Chat-v0.3 ./models/tinyllama-1b
ln -sfn /workspace/CodeLlama-7b-hf ./models/codellama-7b
ln -sfn /workspace/CodeLlama-13b-hf ./models/codellama-13b
ln -sfn /workspace/CodeLlama-34b-hf ./models/codellama-34b
ln -sfn /workspace/CodeLlama-7b-Instruct-hf ./models/codellama-7b-instruct
ln -sfn /workspace/CodeLlama-13b-Instruct-hf ./models/codellama-13b-instruct
ln -sfn /workspace/CodeLlama-34b-Instruct-hf ./models/codellama-34b-instruct
pip install -r requirements.txt
# cmake
cd /workspace/llama.cpp
mkdir build-cublas
cd build-cublas
cmake -DLLAMA_CUBLAS=1 ../
make -j
if [ "$1" -eq "0" ]; then
exit 0
fi
# more models
if [ "$1" -eq "1" ]; then
cd /workspace
git-lfs-download https://huggingface.co/PY007/TinyLlama-1.1B-Chat-v0.3
cd /workspace/llama.cpp
python3 convert.py ./models/tinyllama-1b --outfile ./models/tinyllama-1b/ggml-model-f16.gguf --outtype f16
./quantize ./models/tinyllama-1b/ggml-model-f16.gguf ./models/tinyllama-1b/ggml-model-q4_0.gguf q4_0
./quantize ./models/tinyllama-1b/ggml-model-f16.gguf ./models/tinyllama-1b/ggml-model-q4_k.gguf q4_k
./quantize ./models/tinyllama-1b/ggml-model-f16.gguf ./models/tinyllama-1b/ggml-model-q8_0.gguf q8_0
fi
if [ "$1" -eq "2" ]; then
cd /workspace
git-lfs-download https://huggingface.co/codellama/CodeLlama-7b-hf --without *safetensors*
rm -v ./CodeLlama-7b-hf/*safetensors*
cd /workspace/llama.cpp
python3 convert.py ./models/codellama-7b --outfile ./models/codellama-7b/ggml-model-f16.gguf --outtype f16
./quantize ./models/codellama-7b/ggml-model-f16.gguf ./models/codellama-7b/ggml-model-q4_0.gguf q4_0
./quantize ./models/codellama-7b/ggml-model-f16.gguf ./models/codellama-7b/ggml-model-q4_k.gguf q4_k
./quantize ./models/codellama-7b/ggml-model-f16.gguf ./models/codellama-7b/ggml-model-q8_0.gguf q8_0
fi
if [ "$1" -eq "3" ]; then
cd /workspace
git-lfs-download https://huggingface.co/codellama/CodeLlama-13b-hf --without *safetensors*
rm -v ./CodeLlama-13b-hf/*safetensors*
cd /workspace/llama.cpp
python3 convert.py ./models/codellama-13b --outfile ./models/codellama-13b/ggml-model-f16.gguf --outtype f16
./quantize ./models/codellama-13b/ggml-model-f16.gguf ./models/codellama-13b/ggml-model-q4_0.gguf q4_0
./quantize ./models/codellama-13b/ggml-model-f16.gguf ./models/codellama-13b/ggml-model-q4_k.gguf q4_k
./quantize ./models/codellama-13b/ggml-model-f16.gguf ./models/codellama-13b/ggml-model-q8_0.gguf q8_0
fi
if [ "$1" -eq "4" ]; then
cd /workspace
git-lfs-download https://huggingface.co/codellama/CodeLlama-34b-hf --without *safetensors*
rm -v ./CodeLlama-34b-hf/*safetensors*
cd /workspace/llama.cpp
python3 convert.py ./models/codellama-34b --outfile ./models/codellama-34b/ggml-model-f16.gguf --outtype f16
./quantize ./models/codellama-34b/ggml-model-f16.gguf ./models/codellama-34b/ggml-model-q4_0.gguf q4_0
./quantize ./models/codellama-34b/ggml-model-f16.gguf ./models/codellama-34b/ggml-model-q4_k.gguf q4_k
./quantize ./models/codellama-34b/ggml-model-f16.gguf ./models/codellama-34b/ggml-model-q8_0.gguf q8_0
fi
if [ "$1" -eq "5" ]; then
cd /workspace
git-lfs-download https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf --without *safetensors*
rm -v ./CodeLlama-7b-Instruct-hf/*safetensors*
cd /workspace/llama.cpp
python3 convert.py ./models/codellama-7b-instruct --outfile ./models/codellama-7b-instruct/ggml-model-f16.gguf --outtype f16
./quantize ./models/codellama-7b-instruct/ggml-model-f16.gguf ./models/codellama-7b-instruct/ggml-model-q4_0.gguf q4_0
./quantize ./models/codellama-7b-instruct/ggml-model-f16.gguf ./models/codellama-7b-instruct/ggml-model-q4_k.gguf q4_k
./quantize ./models/codellama-7b-instruct/ggml-model-f16.gguf ./models/codellama-7b-instruct/ggml-model-q8_0.gguf q8_0
fi
if [ "$1" -eq "6" ]; then
cd /workspace
git-lfs-download https://huggingface.co/codellama/CodeLlama-13b-Instruct-hf --without *safetensors*
rm -v ./CodeLlama-13b-Instruct-hf/*safetensors*
cd /workspace/llama.cpp
python3 convert.py ./models/codellama-13b-instruct --outfile ./models/codellama-13b-instruct/ggml-model-f16.gguf --outtype f16
./quantize ./models/codellama-13b-instruct/ggml-model-f16.gguf ./models/codellama-13b-instruct/ggml-model-q4_0.gguf q4_0
./quantize ./models/codellama-13b-instruct/ggml-model-f16.gguf ./models/codellama-13b-instruct/ggml-model-q4_k.gguf q4_k
./quantize ./models/codellama-13b-instruct/ggml-model-f16.gguf ./models/codellama-13b-instruct/ggml-model-q8_0.gguf q8_0
fi
if [ "$1" -eq "7" ]; then
cd /workspace
git-lfs-download https://huggingface.co/codellama/CodeLlama-34b-Instruct-hf --without *safetensors*
rm -v ./CodeLlama-34b-Instruct-hf/*safetensors*
cd /workspace/llama.cpp
python3 convert.py ./models/codellama-34b-instruct --outfile ./models/codellama-34b-instruct/ggml-model-f16.gguf --outtype f16
./quantize ./models/codellama-34b-instruct/ggml-model-f16.gguf ./models/codellama-34b-instruct/ggml-model-q4_0.gguf q4_0
./quantize ./models/codellama-34b-instruct/ggml-model-f16.gguf ./models/codellama-34b-instruct/ggml-model-q4_k.gguf q4_k
./quantize ./models/codellama-34b-instruct/ggml-model-f16.gguf ./models/codellama-34b-instruct/ggml-model-q8_0.gguf q8_0
fi
if [ "$1" -eq "1" ]; then
# perf + perplexity
cd /workspace/llama.cpp/build-cublas
make -j && ../scripts/run-all-perf.sh tinyllama-1b "f16" "-ngl 99 -t 1 -p 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,32,64,128,256,512,1024,2048 -n 128"
../scripts/get-wikitext-2.sh
unzip wikitext-2-raw-v1.zip
make -j && ./bin/perplexity -m ../models/tinyllama-1b/ggml-model-f16.gguf -f ./wikitext-2-raw/wiki.test.raw -ngl 100 --chunks 32
# batched
cd /workspace/llama.cpp
LLAMA_CUBLAS=1 make -j && ./batched ./models/tinyllama-1b/ggml-model-f16.gguf "Hello, my name is" 8 128 999
# batched-bench
cd /workspace/llama.cpp
LLAMA_CUBLAS=1 make -j && ./batched-bench ./models/tinyllama-1b/ggml-model-f16.gguf 4608 1 99 0 512 128 1,2,3,4,5,6,7,8,16,32
# parallel
cd /workspace/llama.cpp
LLAMA_CUBLAS=1 make -j && ./parallel -m ./models/tinyllama-1b/ggml-model-f16.gguf -t 1 -ngl 100 -c 4096 -b 512 -s 1 -np 8 -ns 128 -n 100 -cb
fi
# speculative
#if [ "$1" -eq "7" ]; then
# cd /workspace/llama.cpp
#
# LLAMA_CUBLAS=1 make -j && ./speculative -m ./models/codellama-34b-instruct/ggml-model-f16.gguf -md ./models/codellama-7b-instruct/ggml-model-q4_0.gguf -p "# Dijkstra's shortest path algorithm in Python (4 spaces indentation) + complexity analysis:\n\n" -e -ngl 999 -ngld 999 -t 4 -n 512 -c 4096 -s 21 --draft 16 -np 1 --temp 0.0
#fi
# more benches
#LLAMA_CUBLAS=1 make -j && ./batched-bench ./models/codellama-7b/ggml-model-q4_k.gguf 4096 1 99 1 512,3200 128,128,800 1
#LLAMA_CUBLAS=1 make -j && ./batched-bench ./models/codellama-13b/ggml-model-q4_k.gguf 4096 1 99 1 512,3200 128,128,800 1

566
unicode.h
View file

@ -1,6 +1,7 @@
#pragma once
#include <cassert>
#include <map>
#include <stdexcept>
#include <string>
#include <unordered_map>
@ -223,266 +224,311 @@ static const std::vector<std::pair<uint32_t, uint32_t>> control_ranges = {
{0x2B81E, 0x2B81F}, {0x2CEA2, 0x2CEAF}, {0x2EBE1, 0x2F7FF}, {0x2FA1E, 0x2FFFF}, {0x3134B, 0xE00FF}, {0xE01F0, 0x10FFFF},
};
static const std::unordered_map<uint32_t, std::vector<uint32_t>> nfd_map = {
{0xC0, {0x41, 0x300}}, {0xC1, {0x41, 0x301}}, {0xC2, {0x41, 0x302}}, {0xC3, {0x41, 0x303}}, {0xC4, {0x41, 0x308}}, {0xC5, {0x41, 0x30A}}, {0xC7, {0x43, 0x327}}, {0xC8, {0x45, 0x300}},
{0xC9, {0x45, 0x301}}, {0xCA, {0x45, 0x302}}, {0xCB, {0x45, 0x308}}, {0xCC, {0x49, 0x300}}, {0xCD, {0x49, 0x301}}, {0xCE, {0x49, 0x302}}, {0xCF, {0x49, 0x308}}, {0xD1, {0x4E, 0x303}},
{0xD2, {0x4F, 0x300}}, {0xD3, {0x4F, 0x301}}, {0xD4, {0x4F, 0x302}}, {0xD5, {0x4F, 0x303}}, {0xD6, {0x4F, 0x308}}, {0xD9, {0x55, 0x300}}, {0xDA, {0x55, 0x301}}, {0xDB, {0x55, 0x302}},
{0xDC, {0x55, 0x308}}, {0xDD, {0x59, 0x301}}, {0xE0, {0x61, 0x300}}, {0xE1, {0x61, 0x301}}, {0xE2, {0x61, 0x302}}, {0xE3, {0x61, 0x303}}, {0xE4, {0x61, 0x308}}, {0xE5, {0x61, 0x30A}},
{0xE7, {0x63, 0x327}}, {0xE8, {0x65, 0x300}}, {0xE9, {0x65, 0x301}}, {0xEA, {0x65, 0x302}}, {0xEB, {0x65, 0x308}}, {0xEC, {0x69, 0x300}}, {0xED, {0x69, 0x301}}, {0xEE, {0x69, 0x302}},
{0xEF, {0x69, 0x308}}, {0xF1, {0x6E, 0x303}}, {0xF2, {0x6F, 0x300}}, {0xF3, {0x6F, 0x301}}, {0xF4, {0x6F, 0x302}}, {0xF5, {0x6F, 0x303}}, {0xF6, {0x6F, 0x308}}, {0xF9, {0x75, 0x300}},
{0xFA, {0x75, 0x301}}, {0xFB, {0x75, 0x302}}, {0xFC, {0x75, 0x308}}, {0xFD, {0x79, 0x301}}, {0xFF, {0x79, 0x308}}, {0x100, {0x41, 0x304}}, {0x101, {0x61, 0x304}}, {0x102, {0x41, 0x306}},
{0x103, {0x61, 0x306}}, {0x104, {0x41, 0x328}}, {0x105, {0x61, 0x328}}, {0x106, {0x43, 0x301}}, {0x107, {0x63, 0x301}}, {0x108, {0x43, 0x302}}, {0x109, {0x63, 0x302}}, {0x10A, {0x43, 0x307}},
{0x10B, {0x63, 0x307}}, {0x10C, {0x43, 0x30C}}, {0x10D, {0x63, 0x30C}}, {0x10E, {0x44, 0x30C}}, {0x10F, {0x64, 0x30C}}, {0x112, {0x45, 0x304}}, {0x113, {0x65, 0x304}}, {0x114, {0x45, 0x306}},
{0x115, {0x65, 0x306}}, {0x116, {0x45, 0x307}}, {0x117, {0x65, 0x307}}, {0x118, {0x45, 0x328}}, {0x119, {0x65, 0x328}}, {0x11A, {0x45, 0x30C}}, {0x11B, {0x65, 0x30C}}, {0x11C, {0x47, 0x302}},
{0x11D, {0x67, 0x302}}, {0x11E, {0x47, 0x306}}, {0x11F, {0x67, 0x306}}, {0x120, {0x47, 0x307}}, {0x121, {0x67, 0x307}}, {0x122, {0x47, 0x327}}, {0x123, {0x67, 0x327}}, {0x124, {0x48, 0x302}},
{0x125, {0x68, 0x302}}, {0x128, {0x49, 0x303}}, {0x129, {0x69, 0x303}}, {0x12A, {0x49, 0x304}}, {0x12B, {0x69, 0x304}}, {0x12C, {0x49, 0x306}}, {0x12D, {0x69, 0x306}}, {0x12E, {0x49, 0x328}},
{0x12F, {0x69, 0x328}}, {0x130, {0x49, 0x307}}, {0x134, {0x4A, 0x302}}, {0x135, {0x6A, 0x302}}, {0x136, {0x4B, 0x327}}, {0x137, {0x6B, 0x327}}, {0x139, {0x4C, 0x301}}, {0x13A, {0x6C, 0x301}},
{0x13B, {0x4C, 0x327}}, {0x13C, {0x6C, 0x327}}, {0x13D, {0x4C, 0x30C}}, {0x13E, {0x6C, 0x30C}}, {0x143, {0x4E, 0x301}}, {0x144, {0x6E, 0x301}}, {0x145, {0x4E, 0x327}}, {0x146, {0x6E, 0x327}},
{0x147, {0x4E, 0x30C}}, {0x148, {0x6E, 0x30C}}, {0x14C, {0x4F, 0x304}}, {0x14D, {0x6F, 0x304}}, {0x14E, {0x4F, 0x306}}, {0x14F, {0x6F, 0x306}}, {0x150, {0x4F, 0x30B}}, {0x151, {0x6F, 0x30B}},
{0x154, {0x52, 0x301}}, {0x155, {0x72, 0x301}}, {0x156, {0x52, 0x327}}, {0x157, {0x72, 0x327}}, {0x158, {0x52, 0x30C}}, {0x159, {0x72, 0x30C}}, {0x15A, {0x53, 0x301}}, {0x15B, {0x73, 0x301}},
{0x15C, {0x53, 0x302}}, {0x15D, {0x73, 0x302}}, {0x15E, {0x53, 0x327}}, {0x15F, {0x73, 0x327}}, {0x160, {0x53, 0x30C}}, {0x161, {0x73, 0x30C}}, {0x162, {0x54, 0x327}}, {0x163, {0x74, 0x327}},
{0x164, {0x54, 0x30C}}, {0x165, {0x74, 0x30C}}, {0x168, {0x55, 0x303}}, {0x169, {0x75, 0x303}}, {0x16A, {0x55, 0x304}}, {0x16B, {0x75, 0x304}}, {0x16C, {0x55, 0x306}}, {0x16D, {0x75, 0x306}},
{0x16E, {0x55, 0x30A}}, {0x16F, {0x75, 0x30A}}, {0x170, {0x55, 0x30B}}, {0x171, {0x75, 0x30B}}, {0x172, {0x55, 0x328}}, {0x173, {0x75, 0x328}}, {0x174, {0x57, 0x302}}, {0x175, {0x77, 0x302}},
{0x176, {0x59, 0x302}}, {0x177, {0x79, 0x302}}, {0x178, {0x59, 0x308}}, {0x179, {0x5A, 0x301}}, {0x17A, {0x7A, 0x301}}, {0x17B, {0x5A, 0x307}}, {0x17C, {0x7A, 0x307}}, {0x17D, {0x5A, 0x30C}},
{0x17E, {0x7A, 0x30C}}, {0x1A0, {0x4F, 0x31B}}, {0x1A1, {0x6F, 0x31B}}, {0x1AF, {0x55, 0x31B}}, {0x1B0, {0x75, 0x31B}}, {0x1CD, {0x41, 0x30C}}, {0x1CE, {0x61, 0x30C}}, {0x1CF, {0x49, 0x30C}},
{0x1D0, {0x69, 0x30C}}, {0x1D1, {0x4F, 0x30C}}, {0x1D2, {0x6F, 0x30C}}, {0x1D3, {0x55, 0x30C}}, {0x1D4, {0x75, 0x30C}}, {0x1D5, {0x55, 0x308, 0x304}}, {0x1D6, {0x75, 0x308, 0x304}},
{0x1D7, {0x55, 0x308, 0x301}}, {0x1D8, {0x75, 0x308, 0x301}}, {0x1D9, {0x55, 0x308, 0x30C}}, {0x1DA, {0x75, 0x308, 0x30C}}, {0x1DB, {0x55, 0x308, 0x300}}, {0x1DC, {0x75, 0x308, 0x300}},
{0x1DE, {0x41, 0x308, 0x304}}, {0x1DF, {0x61, 0x308, 0x304}}, {0x1E0, {0x41, 0x307, 0x304}}, {0x1E1, {0x61, 0x307, 0x304}}, {0x1E2, {0xC6, 0x304}}, {0x1E3, {0xE6, 0x304}}, {0x1E6, {0x47, 0x30C}},
{0x1E7, {0x67, 0x30C}}, {0x1E8, {0x4B, 0x30C}}, {0x1E9, {0x6B, 0x30C}}, {0x1EA, {0x4F, 0x328}}, {0x1EB, {0x6F, 0x328}}, {0x1EC, {0x4F, 0x328, 0x304}}, {0x1ED, {0x6F, 0x328, 0x304}},
{0x1EE, {0x1B7, 0x30C}}, {0x1EF, {0x292, 0x30C}}, {0x1F0, {0x6A, 0x30C}}, {0x1F4, {0x47, 0x301}}, {0x1F5, {0x67, 0x301}}, {0x1F8, {0x4E, 0x300}}, {0x1F9, {0x6E, 0x300}}, {0x1FA, {0x41, 0x30A, 0x301}},
{0x1FB, {0x61, 0x30A, 0x301}}, {0x1FC, {0xC6, 0x301}}, {0x1FD, {0xE6, 0x301}}, {0x1FE, {0xD8, 0x301}}, {0x1FF, {0xF8, 0x301}}, {0x200, {0x41, 0x30F}}, {0x201, {0x61, 0x30F}}, {0x202, {0x41, 0x311}},
{0x203, {0x61, 0x311}}, {0x204, {0x45, 0x30F}}, {0x205, {0x65, 0x30F}}, {0x206, {0x45, 0x311}}, {0x207, {0x65, 0x311}}, {0x208, {0x49, 0x30F}}, {0x209, {0x69, 0x30F}}, {0x20A, {0x49, 0x311}},
{0x20B, {0x69, 0x311}}, {0x20C, {0x4F, 0x30F}}, {0x20D, {0x6F, 0x30F}}, {0x20E, {0x4F, 0x311}}, {0x20F, {0x6F, 0x311}}, {0x210, {0x52, 0x30F}}, {0x211, {0x72, 0x30F}}, {0x212, {0x52, 0x311}},
{0x213, {0x72, 0x311}}, {0x214, {0x55, 0x30F}}, {0x215, {0x75, 0x30F}}, {0x216, {0x55, 0x311}}, {0x217, {0x75, 0x311}}, {0x218, {0x53, 0x326}}, {0x219, {0x73, 0x326}}, {0x21A, {0x54, 0x326}},
{0x21B, {0x74, 0x326}}, {0x21E, {0x48, 0x30C}}, {0x21F, {0x68, 0x30C}}, {0x226, {0x41, 0x307}}, {0x227, {0x61, 0x307}}, {0x228, {0x45, 0x327}}, {0x229, {0x65, 0x327}}, {0x22A, {0x4F, 0x308, 0x304}},
{0x22B, {0x6F, 0x308, 0x304}}, {0x22C, {0x4F, 0x303, 0x304}}, {0x22D, {0x6F, 0x303, 0x304}}, {0x22E, {0x4F, 0x307}}, {0x22F, {0x6F, 0x307}}, {0x230, {0x4F, 0x307, 0x304}},
{0x231, {0x6F, 0x307, 0x304}}, {0x232, {0x59, 0x304}}, {0x233, {0x79, 0x304}}, {0x340, {0x300}}, {0x341, {0x301}}, {0x343, {0x313}}, {0x344, {0x308, 0x301}}, {0x374, {0x2B9}}, {0x37E, {0x3B}},
{0x385, {0xA8, 0x301}}, {0x386, {0x391, 0x301}}, {0x387, {0xB7}}, {0x388, {0x395, 0x301}}, {0x389, {0x397, 0x301}}, {0x38A, {0x399, 0x301}}, {0x38C, {0x39F, 0x301}}, {0x38E, {0x3A5, 0x301}},
{0x38F, {0x3A9, 0x301}}, {0x390, {0x3B9, 0x308, 0x301}}, {0x3AA, {0x399, 0x308}}, {0x3AB, {0x3A5, 0x308}}, {0x3AC, {0x3B1, 0x301}}, {0x3AD, {0x3B5, 0x301}}, {0x3AE, {0x3B7, 0x301}},
{0x3AF, {0x3B9, 0x301}}, {0x3B0, {0x3C5, 0x308, 0x301}}, {0x3CA, {0x3B9, 0x308}}, {0x3CB, {0x3C5, 0x308}}, {0x3CC, {0x3BF, 0x301}}, {0x3CD, {0x3C5, 0x301}}, {0x3CE, {0x3C9, 0x301}},
{0x3D3, {0x3D2, 0x301}}, {0x3D4, {0x3D2, 0x308}}, {0x400, {0x415, 0x300}}, {0x401, {0x415, 0x308}}, {0x403, {0x413, 0x301}}, {0x407, {0x406, 0x308}}, {0x40C, {0x41A, 0x301}}, {0x40D, {0x418, 0x300}},
{0x40E, {0x423, 0x306}}, {0x419, {0x418, 0x306}}, {0x439, {0x438, 0x306}}, {0x450, {0x435, 0x300}}, {0x451, {0x435, 0x308}}, {0x453, {0x433, 0x301}}, {0x457, {0x456, 0x308}}, {0x45C, {0x43A, 0x301}},
{0x45D, {0x438, 0x300}}, {0x45E, {0x443, 0x306}}, {0x476, {0x474, 0x30F}}, {0x477, {0x475, 0x30F}}, {0x4C1, {0x416, 0x306}}, {0x4C2, {0x436, 0x306}}, {0x4D0, {0x410, 0x306}}, {0x4D1, {0x430, 0x306}},
{0x4D2, {0x410, 0x308}}, {0x4D3, {0x430, 0x308}}, {0x4D6, {0x415, 0x306}}, {0x4D7, {0x435, 0x306}}, {0x4DA, {0x4D8, 0x308}}, {0x4DB, {0x4D9, 0x308}}, {0x4DC, {0x416, 0x308}}, {0x4DD, {0x436, 0x308}},
{0x4DE, {0x417, 0x308}}, {0x4DF, {0x437, 0x308}}, {0x4E2, {0x418, 0x304}}, {0x4E3, {0x438, 0x304}}, {0x4E4, {0x418, 0x308}}, {0x4E5, {0x438, 0x308}}, {0x4E6, {0x41E, 0x308}}, {0x4E7, {0x43E, 0x308}},
{0x4EA, {0x4E8, 0x308}}, {0x4EB, {0x4E9, 0x308}}, {0x4EC, {0x42D, 0x308}}, {0x4ED, {0x44D, 0x308}}, {0x4EE, {0x423, 0x304}}, {0x4EF, {0x443, 0x304}}, {0x4F0, {0x423, 0x308}}, {0x4F1, {0x443, 0x308}},
{0x4F2, {0x423, 0x30B}}, {0x4F3, {0x443, 0x30B}}, {0x4F4, {0x427, 0x308}}, {0x4F5, {0x447, 0x308}}, {0x4F8, {0x42B, 0x308}}, {0x4F9, {0x44B, 0x308}}, {0x622, {0x627, 0x653}}, {0x623, {0x627, 0x654}},
{0x624, {0x648, 0x654}}, {0x625, {0x627, 0x655}}, {0x626, {0x64A, 0x654}}, {0x6C0, {0x6D5, 0x654}}, {0x6C2, {0x6C1, 0x654}}, {0x6D3, {0x6D2, 0x654}}, {0x929, {0x928, 0x93C}}, {0x931, {0x930, 0x93C}},
{0x934, {0x933, 0x93C}}, {0x958, {0x915, 0x93C}}, {0x959, {0x916, 0x93C}}, {0x95A, {0x917, 0x93C}}, {0x95B, {0x91C, 0x93C}}, {0x95C, {0x921, 0x93C}}, {0x95D, {0x922, 0x93C}}, {0x95E, {0x92B, 0x93C}},
{0x95F, {0x92F, 0x93C}}, {0x9CB, {0x9C7, 0x9BE}}, {0x9CC, {0x9C7, 0x9D7}}, {0x9DC, {0x9A1, 0x9BC}}, {0x9DD, {0x9A2, 0x9BC}}, {0x9DF, {0x9AF, 0x9BC}}, {0xA33, {0xA32, 0xA3C}}, {0xA36, {0xA38, 0xA3C}},
{0xA59, {0xA16, 0xA3C}}, {0xA5A, {0xA17, 0xA3C}}, {0xA5B, {0xA1C, 0xA3C}}, {0xA5E, {0xA2B, 0xA3C}}, {0xB48, {0xB47, 0xB56}}, {0xB4B, {0xB47, 0xB3E}}, {0xB4C, {0xB47, 0xB57}}, {0xB5C, {0xB21, 0xB3C}},
{0xB5D, {0xB22, 0xB3C}}, {0xB94, {0xB92, 0xBD7}}, {0xBCA, {0xBC6, 0xBBE}}, {0xBCB, {0xBC7, 0xBBE}}, {0xBCC, {0xBC6, 0xBD7}}, {0xC48, {0xC46, 0xC56}}, {0xCC0, {0xCBF, 0xCD5}}, {0xCC7, {0xCC6, 0xCD5}},
{0xCC8, {0xCC6, 0xCD6}}, {0xCCA, {0xCC6, 0xCC2}}, {0xCCB, {0xCC6, 0xCC2, 0xCD5}}, {0xD4A, {0xD46, 0xD3E}}, {0xD4B, {0xD47, 0xD3E}}, {0xD4C, {0xD46, 0xD57}}, {0xDDA, {0xDD9, 0xDCA}},
{0xDDC, {0xDD9, 0xDCF}}, {0xDDD, {0xDD9, 0xDCF, 0xDCA}}, {0xDDE, {0xDD9, 0xDDF}}, {0xF43, {0xF42, 0xFB7}}, {0xF4D, {0xF4C, 0xFB7}}, {0xF52, {0xF51, 0xFB7}}, {0xF57, {0xF56, 0xFB7}},
{0xF5C, {0xF5B, 0xFB7}}, {0xF69, {0xF40, 0xFB5}}, {0xF73, {0xF71, 0xF72}}, {0xF75, {0xF71, 0xF74}}, {0xF76, {0xFB2, 0xF80}}, {0xF78, {0xFB3, 0xF80}}, {0xF81, {0xF71, 0xF80}}, {0xF93, {0xF92, 0xFB7}},
{0xF9D, {0xF9C, 0xFB7}}, {0xFA2, {0xFA1, 0xFB7}}, {0xFA7, {0xFA6, 0xFB7}}, {0xFAC, {0xFAB, 0xFB7}}, {0xFB9, {0xF90, 0xFB5}}, {0x1026, {0x1025, 0x102E}}, {0x1B06, {0x1B05, 0x1B35}},
{0x1B08, {0x1B07, 0x1B35}}, {0x1B0A, {0x1B09, 0x1B35}}, {0x1B0C, {0x1B0B, 0x1B35}}, {0x1B0E, {0x1B0D, 0x1B35}}, {0x1B12, {0x1B11, 0x1B35}}, {0x1B3B, {0x1B3A, 0x1B35}}, {0x1B3D, {0x1B3C, 0x1B35}},
{0x1B40, {0x1B3E, 0x1B35}}, {0x1B41, {0x1B3F, 0x1B35}}, {0x1B43, {0x1B42, 0x1B35}}, {0x1E00, {0x41, 0x325}}, {0x1E01, {0x61, 0x325}}, {0x1E02, {0x42, 0x307}}, {0x1E03, {0x62, 0x307}},
{0x1E04, {0x42, 0x323}}, {0x1E05, {0x62, 0x323}}, {0x1E06, {0x42, 0x331}}, {0x1E07, {0x62, 0x331}}, {0x1E08, {0x43, 0x327, 0x301}}, {0x1E09, {0x63, 0x327, 0x301}}, {0x1E0A, {0x44, 0x307}},
{0x1E0B, {0x64, 0x307}}, {0x1E0C, {0x44, 0x323}}, {0x1E0D, {0x64, 0x323}}, {0x1E0E, {0x44, 0x331}}, {0x1E0F, {0x64, 0x331}}, {0x1E10, {0x44, 0x327}}, {0x1E11, {0x64, 0x327}}, {0x1E12, {0x44, 0x32D}},
{0x1E13, {0x64, 0x32D}}, {0x1E14, {0x45, 0x304, 0x300}}, {0x1E15, {0x65, 0x304, 0x300}}, {0x1E16, {0x45, 0x304, 0x301}}, {0x1E17, {0x65, 0x304, 0x301}}, {0x1E18, {0x45, 0x32D}},
{0x1E19, {0x65, 0x32D}}, {0x1E1A, {0x45, 0x330}}, {0x1E1B, {0x65, 0x330}}, {0x1E1C, {0x45, 0x327, 0x306}}, {0x1E1D, {0x65, 0x327, 0x306}}, {0x1E1E, {0x46, 0x307}}, {0x1E1F, {0x66, 0x307}},
{0x1E20, {0x47, 0x304}}, {0x1E21, {0x67, 0x304}}, {0x1E22, {0x48, 0x307}}, {0x1E23, {0x68, 0x307}}, {0x1E24, {0x48, 0x323}}, {0x1E25, {0x68, 0x323}}, {0x1E26, {0x48, 0x308}}, {0x1E27, {0x68, 0x308}},
{0x1E28, {0x48, 0x327}}, {0x1E29, {0x68, 0x327}}, {0x1E2A, {0x48, 0x32E}}, {0x1E2B, {0x68, 0x32E}}, {0x1E2C, {0x49, 0x330}}, {0x1E2D, {0x69, 0x330}}, {0x1E2E, {0x49, 0x308, 0x301}},
{0x1E2F, {0x69, 0x308, 0x301}}, {0x1E30, {0x4B, 0x301}}, {0x1E31, {0x6B, 0x301}}, {0x1E32, {0x4B, 0x323}}, {0x1E33, {0x6B, 0x323}}, {0x1E34, {0x4B, 0x331}}, {0x1E35, {0x6B, 0x331}},
{0x1E36, {0x4C, 0x323}}, {0x1E37, {0x6C, 0x323}}, {0x1E38, {0x4C, 0x323, 0x304}}, {0x1E39, {0x6C, 0x323, 0x304}}, {0x1E3A, {0x4C, 0x331}}, {0x1E3B, {0x6C, 0x331}}, {0x1E3C, {0x4C, 0x32D}},
{0x1E3D, {0x6C, 0x32D}}, {0x1E3E, {0x4D, 0x301}}, {0x1E3F, {0x6D, 0x301}}, {0x1E40, {0x4D, 0x307}}, {0x1E41, {0x6D, 0x307}}, {0x1E42, {0x4D, 0x323}}, {0x1E43, {0x6D, 0x323}}, {0x1E44, {0x4E, 0x307}},
{0x1E45, {0x6E, 0x307}}, {0x1E46, {0x4E, 0x323}}, {0x1E47, {0x6E, 0x323}}, {0x1E48, {0x4E, 0x331}}, {0x1E49, {0x6E, 0x331}}, {0x1E4A, {0x4E, 0x32D}}, {0x1E4B, {0x6E, 0x32D}},
{0x1E4C, {0x4F, 0x303, 0x301}}, {0x1E4D, {0x6F, 0x303, 0x301}}, {0x1E4E, {0x4F, 0x303, 0x308}}, {0x1E4F, {0x6F, 0x303, 0x308}}, {0x1E50, {0x4F, 0x304, 0x300}}, {0x1E51, {0x6F, 0x304, 0x300}},
{0x1E52, {0x4F, 0x304, 0x301}}, {0x1E53, {0x6F, 0x304, 0x301}}, {0x1E54, {0x50, 0x301}}, {0x1E55, {0x70, 0x301}}, {0x1E56, {0x50, 0x307}}, {0x1E57, {0x70, 0x307}}, {0x1E58, {0x52, 0x307}},
{0x1E59, {0x72, 0x307}}, {0x1E5A, {0x52, 0x323}}, {0x1E5B, {0x72, 0x323}}, {0x1E5C, {0x52, 0x323, 0x304}}, {0x1E5D, {0x72, 0x323, 0x304}}, {0x1E5E, {0x52, 0x331}}, {0x1E5F, {0x72, 0x331}},
{0x1E60, {0x53, 0x307}}, {0x1E61, {0x73, 0x307}}, {0x1E62, {0x53, 0x323}}, {0x1E63, {0x73, 0x323}}, {0x1E64, {0x53, 0x301, 0x307}}, {0x1E65, {0x73, 0x301, 0x307}}, {0x1E66, {0x53, 0x30C, 0x307}},
{0x1E67, {0x73, 0x30C, 0x307}}, {0x1E68, {0x53, 0x323, 0x307}}, {0x1E69, {0x73, 0x323, 0x307}}, {0x1E6A, {0x54, 0x307}}, {0x1E6B, {0x74, 0x307}}, {0x1E6C, {0x54, 0x323}}, {0x1E6D, {0x74, 0x323}},
{0x1E6E, {0x54, 0x331}}, {0x1E6F, {0x74, 0x331}}, {0x1E70, {0x54, 0x32D}}, {0x1E71, {0x74, 0x32D}}, {0x1E72, {0x55, 0x324}}, {0x1E73, {0x75, 0x324}}, {0x1E74, {0x55, 0x330}}, {0x1E75, {0x75, 0x330}},
{0x1E76, {0x55, 0x32D}}, {0x1E77, {0x75, 0x32D}}, {0x1E78, {0x55, 0x303, 0x301}}, {0x1E79, {0x75, 0x303, 0x301}}, {0x1E7A, {0x55, 0x304, 0x308}}, {0x1E7B, {0x75, 0x304, 0x308}},
{0x1E7C, {0x56, 0x303}}, {0x1E7D, {0x76, 0x303}}, {0x1E7E, {0x56, 0x323}}, {0x1E7F, {0x76, 0x323}}, {0x1E80, {0x57, 0x300}}, {0x1E81, {0x77, 0x300}}, {0x1E82, {0x57, 0x301}}, {0x1E83, {0x77, 0x301}},
{0x1E84, {0x57, 0x308}}, {0x1E85, {0x77, 0x308}}, {0x1E86, {0x57, 0x307}}, {0x1E87, {0x77, 0x307}}, {0x1E88, {0x57, 0x323}}, {0x1E89, {0x77, 0x323}}, {0x1E8A, {0x58, 0x307}}, {0x1E8B, {0x78, 0x307}},
{0x1E8C, {0x58, 0x308}}, {0x1E8D, {0x78, 0x308}}, {0x1E8E, {0x59, 0x307}}, {0x1E8F, {0x79, 0x307}}, {0x1E90, {0x5A, 0x302}}, {0x1E91, {0x7A, 0x302}}, {0x1E92, {0x5A, 0x323}}, {0x1E93, {0x7A, 0x323}},
{0x1E94, {0x5A, 0x331}}, {0x1E95, {0x7A, 0x331}}, {0x1E96, {0x68, 0x331}}, {0x1E97, {0x74, 0x308}}, {0x1E98, {0x77, 0x30A}}, {0x1E99, {0x79, 0x30A}}, {0x1E9B, {0x17F, 0x307}}, {0x1EA0, {0x41, 0x323}},
{0x1EA1, {0x61, 0x323}}, {0x1EA2, {0x41, 0x309}}, {0x1EA3, {0x61, 0x309}}, {0x1EA4, {0x41, 0x302, 0x301}}, {0x1EA5, {0x61, 0x302, 0x301}}, {0x1EA6, {0x41, 0x302, 0x300}},
{0x1EA7, {0x61, 0x302, 0x300}}, {0x1EA8, {0x41, 0x302, 0x309}}, {0x1EA9, {0x61, 0x302, 0x309}}, {0x1EAA, {0x41, 0x302, 0x303}}, {0x1EAB, {0x61, 0x302, 0x303}}, {0x1EAC, {0x41, 0x323, 0x302}},
{0x1EAD, {0x61, 0x323, 0x302}}, {0x1EAE, {0x41, 0x306, 0x301}}, {0x1EAF, {0x61, 0x306, 0x301}}, {0x1EB0, {0x41, 0x306, 0x300}}, {0x1EB1, {0x61, 0x306, 0x300}}, {0x1EB2, {0x41, 0x306, 0x309}},
{0x1EB3, {0x61, 0x306, 0x309}}, {0x1EB4, {0x41, 0x306, 0x303}}, {0x1EB5, {0x61, 0x306, 0x303}}, {0x1EB6, {0x41, 0x323, 0x306}}, {0x1EB7, {0x61, 0x323, 0x306}}, {0x1EB8, {0x45, 0x323}},
{0x1EB9, {0x65, 0x323}}, {0x1EBA, {0x45, 0x309}}, {0x1EBB, {0x65, 0x309}}, {0x1EBC, {0x45, 0x303}}, {0x1EBD, {0x65, 0x303}}, {0x1EBE, {0x45, 0x302, 0x301}}, {0x1EBF, {0x65, 0x302, 0x301}},
{0x1EC0, {0x45, 0x302, 0x300}}, {0x1EC1, {0x65, 0x302, 0x300}}, {0x1EC2, {0x45, 0x302, 0x309}}, {0x1EC3, {0x65, 0x302, 0x309}}, {0x1EC4, {0x45, 0x302, 0x303}}, {0x1EC5, {0x65, 0x302, 0x303}},
{0x1EC6, {0x45, 0x323, 0x302}}, {0x1EC7, {0x65, 0x323, 0x302}}, {0x1EC8, {0x49, 0x309}}, {0x1EC9, {0x69, 0x309}}, {0x1ECA, {0x49, 0x323}}, {0x1ECB, {0x69, 0x323}}, {0x1ECC, {0x4F, 0x323}},
{0x1ECD, {0x6F, 0x323}}, {0x1ECE, {0x4F, 0x309}}, {0x1ECF, {0x6F, 0x309}}, {0x1ED0, {0x4F, 0x302, 0x301}}, {0x1ED1, {0x6F, 0x302, 0x301}}, {0x1ED2, {0x4F, 0x302, 0x300}},
{0x1ED3, {0x6F, 0x302, 0x300}}, {0x1ED4, {0x4F, 0x302, 0x309}}, {0x1ED5, {0x6F, 0x302, 0x309}}, {0x1ED6, {0x4F, 0x302, 0x303}}, {0x1ED7, {0x6F, 0x302, 0x303}}, {0x1ED8, {0x4F, 0x323, 0x302}},
{0x1ED9, {0x6F, 0x323, 0x302}}, {0x1EDA, {0x4F, 0x31B, 0x301}}, {0x1EDB, {0x6F, 0x31B, 0x301}}, {0x1EDC, {0x4F, 0x31B, 0x300}}, {0x1EDD, {0x6F, 0x31B, 0x300}}, {0x1EDE, {0x4F, 0x31B, 0x309}},
{0x1EDF, {0x6F, 0x31B, 0x309}}, {0x1EE0, {0x4F, 0x31B, 0x303}}, {0x1EE1, {0x6F, 0x31B, 0x303}}, {0x1EE2, {0x4F, 0x31B, 0x323}}, {0x1EE3, {0x6F, 0x31B, 0x323}}, {0x1EE4, {0x55, 0x323}},
{0x1EE5, {0x75, 0x323}}, {0x1EE6, {0x55, 0x309}}, {0x1EE7, {0x75, 0x309}}, {0x1EE8, {0x55, 0x31B, 0x301}}, {0x1EE9, {0x75, 0x31B, 0x301}}, {0x1EEA, {0x55, 0x31B, 0x300}},
{0x1EEB, {0x75, 0x31B, 0x300}}, {0x1EEC, {0x55, 0x31B, 0x309}}, {0x1EED, {0x75, 0x31B, 0x309}}, {0x1EEE, {0x55, 0x31B, 0x303}}, {0x1EEF, {0x75, 0x31B, 0x303}}, {0x1EF0, {0x55, 0x31B, 0x323}},
{0x1EF1, {0x75, 0x31B, 0x323}}, {0x1EF2, {0x59, 0x300}}, {0x1EF3, {0x79, 0x300}}, {0x1EF4, {0x59, 0x323}}, {0x1EF5, {0x79, 0x323}}, {0x1EF6, {0x59, 0x309}}, {0x1EF7, {0x79, 0x309}},
{0x1EF8, {0x59, 0x303}}, {0x1EF9, {0x79, 0x303}}, {0x1F00, {0x3B1, 0x313}}, {0x1F01, {0x3B1, 0x314}}, {0x1F02, {0x3B1, 0x313, 0x300}}, {0x1F03, {0x3B1, 0x314, 0x300}}, {0x1F04, {0x3B1, 0x313, 0x301}},
{0x1F05, {0x3B1, 0x314, 0x301}}, {0x1F06, {0x3B1, 0x313, 0x342}}, {0x1F07, {0x3B1, 0x314, 0x342}}, {0x1F08, {0x391, 0x313}}, {0x1F09, {0x391, 0x314}}, {0x1F0A, {0x391, 0x313, 0x300}},
{0x1F0B, {0x391, 0x314, 0x300}}, {0x1F0C, {0x391, 0x313, 0x301}}, {0x1F0D, {0x391, 0x314, 0x301}}, {0x1F0E, {0x391, 0x313, 0x342}}, {0x1F0F, {0x391, 0x314, 0x342}}, {0x1F10, {0x3B5, 0x313}},
{0x1F11, {0x3B5, 0x314}}, {0x1F12, {0x3B5, 0x313, 0x300}}, {0x1F13, {0x3B5, 0x314, 0x300}}, {0x1F14, {0x3B5, 0x313, 0x301}}, {0x1F15, {0x3B5, 0x314, 0x301}}, {0x1F18, {0x395, 0x313}},
{0x1F19, {0x395, 0x314}}, {0x1F1A, {0x395, 0x313, 0x300}}, {0x1F1B, {0x395, 0x314, 0x300}}, {0x1F1C, {0x395, 0x313, 0x301}}, {0x1F1D, {0x395, 0x314, 0x301}}, {0x1F20, {0x3B7, 0x313}},
{0x1F21, {0x3B7, 0x314}}, {0x1F22, {0x3B7, 0x313, 0x300}}, {0x1F23, {0x3B7, 0x314, 0x300}}, {0x1F24, {0x3B7, 0x313, 0x301}}, {0x1F25, {0x3B7, 0x314, 0x301}}, {0x1F26, {0x3B7, 0x313, 0x342}},
{0x1F27, {0x3B7, 0x314, 0x342}}, {0x1F28, {0x397, 0x313}}, {0x1F29, {0x397, 0x314}}, {0x1F2A, {0x397, 0x313, 0x300}}, {0x1F2B, {0x397, 0x314, 0x300}}, {0x1F2C, {0x397, 0x313, 0x301}},
{0x1F2D, {0x397, 0x314, 0x301}}, {0x1F2E, {0x397, 0x313, 0x342}}, {0x1F2F, {0x397, 0x314, 0x342}}, {0x1F30, {0x3B9, 0x313}}, {0x1F31, {0x3B9, 0x314}}, {0x1F32, {0x3B9, 0x313, 0x300}},
{0x1F33, {0x3B9, 0x314, 0x300}}, {0x1F34, {0x3B9, 0x313, 0x301}}, {0x1F35, {0x3B9, 0x314, 0x301}}, {0x1F36, {0x3B9, 0x313, 0x342}}, {0x1F37, {0x3B9, 0x314, 0x342}}, {0x1F38, {0x399, 0x313}},
{0x1F39, {0x399, 0x314}}, {0x1F3A, {0x399, 0x313, 0x300}}, {0x1F3B, {0x399, 0x314, 0x300}}, {0x1F3C, {0x399, 0x313, 0x301}}, {0x1F3D, {0x399, 0x314, 0x301}}, {0x1F3E, {0x399, 0x313, 0x342}},
{0x1F3F, {0x399, 0x314, 0x342}}, {0x1F40, {0x3BF, 0x313}}, {0x1F41, {0x3BF, 0x314}}, {0x1F42, {0x3BF, 0x313, 0x300}}, {0x1F43, {0x3BF, 0x314, 0x300}}, {0x1F44, {0x3BF, 0x313, 0x301}},
{0x1F45, {0x3BF, 0x314, 0x301}}, {0x1F48, {0x39F, 0x313}}, {0x1F49, {0x39F, 0x314}}, {0x1F4A, {0x39F, 0x313, 0x300}}, {0x1F4B, {0x39F, 0x314, 0x300}}, {0x1F4C, {0x39F, 0x313, 0x301}},
{0x1F4D, {0x39F, 0x314, 0x301}}, {0x1F50, {0x3C5, 0x313}}, {0x1F51, {0x3C5, 0x314}}, {0x1F52, {0x3C5, 0x313, 0x300}}, {0x1F53, {0x3C5, 0x314, 0x300}}, {0x1F54, {0x3C5, 0x313, 0x301}},
{0x1F55, {0x3C5, 0x314, 0x301}}, {0x1F56, {0x3C5, 0x313, 0x342}}, {0x1F57, {0x3C5, 0x314, 0x342}}, {0x1F59, {0x3A5, 0x314}}, {0x1F5B, {0x3A5, 0x314, 0x300}}, {0x1F5D, {0x3A5, 0x314, 0x301}},
{0x1F5F, {0x3A5, 0x314, 0x342}}, {0x1F60, {0x3C9, 0x313}}, {0x1F61, {0x3C9, 0x314}}, {0x1F62, {0x3C9, 0x313, 0x300}}, {0x1F63, {0x3C9, 0x314, 0x300}}, {0x1F64, {0x3C9, 0x313, 0x301}},
{0x1F65, {0x3C9, 0x314, 0x301}}, {0x1F66, {0x3C9, 0x313, 0x342}}, {0x1F67, {0x3C9, 0x314, 0x342}}, {0x1F68, {0x3A9, 0x313}}, {0x1F69, {0x3A9, 0x314}}, {0x1F6A, {0x3A9, 0x313, 0x300}},
{0x1F6B, {0x3A9, 0x314, 0x300}}, {0x1F6C, {0x3A9, 0x313, 0x301}}, {0x1F6D, {0x3A9, 0x314, 0x301}}, {0x1F6E, {0x3A9, 0x313, 0x342}}, {0x1F6F, {0x3A9, 0x314, 0x342}}, {0x1F70, {0x3B1, 0x300}},
{0x1F71, {0x3B1, 0x301}}, {0x1F72, {0x3B5, 0x300}}, {0x1F73, {0x3B5, 0x301}}, {0x1F74, {0x3B7, 0x300}}, {0x1F75, {0x3B7, 0x301}}, {0x1F76, {0x3B9, 0x300}}, {0x1F77, {0x3B9, 0x301}},
{0x1F78, {0x3BF, 0x300}}, {0x1F79, {0x3BF, 0x301}}, {0x1F7A, {0x3C5, 0x300}}, {0x1F7B, {0x3C5, 0x301}}, {0x1F7C, {0x3C9, 0x300}}, {0x1F7D, {0x3C9, 0x301}}, {0x1F80, {0x3B1, 0x313, 0x345}},
{0x1F81, {0x3B1, 0x314, 0x345}}, {0x1F82, {0x3B1, 0x313, 0x300, 0x345}}, {0x1F83, {0x3B1, 0x314, 0x300, 0x345}}, {0x1F84, {0x3B1, 0x313, 0x301, 0x345}}, {0x1F85, {0x3B1, 0x314, 0x301, 0x345}},
{0x1F86, {0x3B1, 0x313, 0x342, 0x345}}, {0x1F87, {0x3B1, 0x314, 0x342, 0x345}}, {0x1F88, {0x391, 0x313, 0x345}}, {0x1F89, {0x391, 0x314, 0x345}}, {0x1F8A, {0x391, 0x313, 0x300, 0x345}},
{0x1F8B, {0x391, 0x314, 0x300, 0x345}}, {0x1F8C, {0x391, 0x313, 0x301, 0x345}}, {0x1F8D, {0x391, 0x314, 0x301, 0x345}}, {0x1F8E, {0x391, 0x313, 0x342, 0x345}}, {0x1F8F, {0x391, 0x314, 0x342, 0x345}},
{0x1F90, {0x3B7, 0x313, 0x345}}, {0x1F91, {0x3B7, 0x314, 0x345}}, {0x1F92, {0x3B7, 0x313, 0x300, 0x345}}, {0x1F93, {0x3B7, 0x314, 0x300, 0x345}}, {0x1F94, {0x3B7, 0x313, 0x301, 0x345}},
{0x1F95, {0x3B7, 0x314, 0x301, 0x345}}, {0x1F96, {0x3B7, 0x313, 0x342, 0x345}}, {0x1F97, {0x3B7, 0x314, 0x342, 0x345}}, {0x1F98, {0x397, 0x313, 0x345}}, {0x1F99, {0x397, 0x314, 0x345}},
{0x1F9A, {0x397, 0x313, 0x300, 0x345}}, {0x1F9B, {0x397, 0x314, 0x300, 0x345}}, {0x1F9C, {0x397, 0x313, 0x301, 0x345}}, {0x1F9D, {0x397, 0x314, 0x301, 0x345}}, {0x1F9E, {0x397, 0x313, 0x342, 0x345}},
{0x1F9F, {0x397, 0x314, 0x342, 0x345}}, {0x1FA0, {0x3C9, 0x313, 0x345}}, {0x1FA1, {0x3C9, 0x314, 0x345}}, {0x1FA2, {0x3C9, 0x313, 0x300, 0x345}}, {0x1FA3, {0x3C9, 0x314, 0x300, 0x345}},
{0x1FA4, {0x3C9, 0x313, 0x301, 0x345}}, {0x1FA5, {0x3C9, 0x314, 0x301, 0x345}}, {0x1FA6, {0x3C9, 0x313, 0x342, 0x345}}, {0x1FA7, {0x3C9, 0x314, 0x342, 0x345}}, {0x1FA8, {0x3A9, 0x313, 0x345}},
{0x1FA9, {0x3A9, 0x314, 0x345}}, {0x1FAA, {0x3A9, 0x313, 0x300, 0x345}}, {0x1FAB, {0x3A9, 0x314, 0x300, 0x345}}, {0x1FAC, {0x3A9, 0x313, 0x301, 0x345}}, {0x1FAD, {0x3A9, 0x314, 0x301, 0x345}},
{0x1FAE, {0x3A9, 0x313, 0x342, 0x345}}, {0x1FAF, {0x3A9, 0x314, 0x342, 0x345}}, {0x1FB0, {0x3B1, 0x306}}, {0x1FB1, {0x3B1, 0x304}}, {0x1FB2, {0x3B1, 0x300, 0x345}}, {0x1FB3, {0x3B1, 0x345}},
{0x1FB4, {0x3B1, 0x301, 0x345}}, {0x1FB6, {0x3B1, 0x342}}, {0x1FB7, {0x3B1, 0x342, 0x345}}, {0x1FB8, {0x391, 0x306}}, {0x1FB9, {0x391, 0x304}}, {0x1FBA, {0x391, 0x300}}, {0x1FBB, {0x391, 0x301}},
{0x1FBC, {0x391, 0x345}}, {0x1FBE, {0x3B9}}, {0x1FC1, {0xA8, 0x342}}, {0x1FC2, {0x3B7, 0x300, 0x345}}, {0x1FC3, {0x3B7, 0x345}}, {0x1FC4, {0x3B7, 0x301, 0x345}}, {0x1FC6, {0x3B7, 0x342}},
{0x1FC7, {0x3B7, 0x342, 0x345}}, {0x1FC8, {0x395, 0x300}}, {0x1FC9, {0x395, 0x301}}, {0x1FCA, {0x397, 0x300}}, {0x1FCB, {0x397, 0x301}}, {0x1FCC, {0x397, 0x345}}, {0x1FCD, {0x1FBF, 0x300}},
{0x1FCE, {0x1FBF, 0x301}}, {0x1FCF, {0x1FBF, 0x342}}, {0x1FD0, {0x3B9, 0x306}}, {0x1FD1, {0x3B9, 0x304}}, {0x1FD2, {0x3B9, 0x308, 0x300}}, {0x1FD3, {0x3B9, 0x308, 0x301}}, {0x1FD6, {0x3B9, 0x342}},
{0x1FD7, {0x3B9, 0x308, 0x342}}, {0x1FD8, {0x399, 0x306}}, {0x1FD9, {0x399, 0x304}}, {0x1FDA, {0x399, 0x300}}, {0x1FDB, {0x399, 0x301}}, {0x1FDD, {0x1FFE, 0x300}}, {0x1FDE, {0x1FFE, 0x301}},
{0x1FDF, {0x1FFE, 0x342}}, {0x1FE0, {0x3C5, 0x306}}, {0x1FE1, {0x3C5, 0x304}}, {0x1FE2, {0x3C5, 0x308, 0x300}}, {0x1FE3, {0x3C5, 0x308, 0x301}}, {0x1FE4, {0x3C1, 0x313}}, {0x1FE5, {0x3C1, 0x314}},
{0x1FE6, {0x3C5, 0x342}}, {0x1FE7, {0x3C5, 0x308, 0x342}}, {0x1FE8, {0x3A5, 0x306}}, {0x1FE9, {0x3A5, 0x304}}, {0x1FEA, {0x3A5, 0x300}}, {0x1FEB, {0x3A5, 0x301}}, {0x1FEC, {0x3A1, 0x314}},
{0x1FED, {0xA8, 0x300}}, {0x1FEE, {0xA8, 0x301}}, {0x1FEF, {0x60}}, {0x1FF2, {0x3C9, 0x300, 0x345}}, {0x1FF3, {0x3C9, 0x345}}, {0x1FF4, {0x3C9, 0x301, 0x345}}, {0x1FF6, {0x3C9, 0x342}},
{0x1FF7, {0x3C9, 0x342, 0x345}}, {0x1FF8, {0x39F, 0x300}}, {0x1FF9, {0x39F, 0x301}}, {0x1FFA, {0x3A9, 0x300}}, {0x1FFB, {0x3A9, 0x301}}, {0x1FFC, {0x3A9, 0x345}}, {0x1FFD, {0xB4}}, {0x2000, {0x2002}},
{0x2001, {0x2003}}, {0x2126, {0x3A9}}, {0x212A, {0x4B}}, {0x212B, {0x41, 0x30A}}, {0x219A, {0x2190, 0x338}}, {0x219B, {0x2192, 0x338}}, {0x21AE, {0x2194, 0x338}}, {0x21CD, {0x21D0, 0x338}},
{0x21CE, {0x21D4, 0x338}}, {0x21CF, {0x21D2, 0x338}}, {0x2204, {0x2203, 0x338}}, {0x2209, {0x2208, 0x338}}, {0x220C, {0x220B, 0x338}}, {0x2224, {0x2223, 0x338}}, {0x2226, {0x2225, 0x338}},
{0x2241, {0x223C, 0x338}}, {0x2244, {0x2243, 0x338}}, {0x2247, {0x2245, 0x338}}, {0x2249, {0x2248, 0x338}}, {0x2260, {0x3D, 0x338}}, {0x2262, {0x2261, 0x338}}, {0x226D, {0x224D, 0x338}},
{0x226E, {0x3C, 0x338}}, {0x226F, {0x3E, 0x338}}, {0x2270, {0x2264, 0x338}}, {0x2271, {0x2265, 0x338}}, {0x2274, {0x2272, 0x338}}, {0x2275, {0x2273, 0x338}}, {0x2278, {0x2276, 0x338}},
{0x2279, {0x2277, 0x338}}, {0x2280, {0x227A, 0x338}}, {0x2281, {0x227B, 0x338}}, {0x2284, {0x2282, 0x338}}, {0x2285, {0x2283, 0x338}}, {0x2288, {0x2286, 0x338}}, {0x2289, {0x2287, 0x338}},
{0x22AC, {0x22A2, 0x338}}, {0x22AD, {0x22A8, 0x338}}, {0x22AE, {0x22A9, 0x338}}, {0x22AF, {0x22AB, 0x338}}, {0x22E0, {0x227C, 0x338}}, {0x22E1, {0x227D, 0x338}}, {0x22E2, {0x2291, 0x338}},
{0x22E3, {0x2292, 0x338}}, {0x22EA, {0x22B2, 0x338}}, {0x22EB, {0x22B3, 0x338}}, {0x22EC, {0x22B4, 0x338}}, {0x22ED, {0x22B5, 0x338}}, {0x2329, {0x3008}}, {0x232A, {0x3009}},
{0x2ADC, {0x2ADD, 0x338}}, {0x304C, {0x304B, 0x3099}}, {0x304E, {0x304D, 0x3099}}, {0x3050, {0x304F, 0x3099}}, {0x3052, {0x3051, 0x3099}}, {0x3054, {0x3053, 0x3099}}, {0x3056, {0x3055, 0x3099}},
{0x3058, {0x3057, 0x3099}}, {0x305A, {0x3059, 0x3099}}, {0x305C, {0x305B, 0x3099}}, {0x305E, {0x305D, 0x3099}}, {0x3060, {0x305F, 0x3099}}, {0x3062, {0x3061, 0x3099}}, {0x3065, {0x3064, 0x3099}},
{0x3067, {0x3066, 0x3099}}, {0x3069, {0x3068, 0x3099}}, {0x3070, {0x306F, 0x3099}}, {0x3071, {0x306F, 0x309A}}, {0x3073, {0x3072, 0x3099}}, {0x3074, {0x3072, 0x309A}}, {0x3076, {0x3075, 0x3099}},
{0x3077, {0x3075, 0x309A}}, {0x3079, {0x3078, 0x3099}}, {0x307A, {0x3078, 0x309A}}, {0x307C, {0x307B, 0x3099}}, {0x307D, {0x307B, 0x309A}}, {0x3094, {0x3046, 0x3099}}, {0x309E, {0x309D, 0x3099}},
{0x30AC, {0x30AB, 0x3099}}, {0x30AE, {0x30AD, 0x3099}}, {0x30B0, {0x30AF, 0x3099}}, {0x30B2, {0x30B1, 0x3099}}, {0x30B4, {0x30B3, 0x3099}}, {0x30B6, {0x30B5, 0x3099}}, {0x30B8, {0x30B7, 0x3099}},
{0x30BA, {0x30B9, 0x3099}}, {0x30BC, {0x30BB, 0x3099}}, {0x30BE, {0x30BD, 0x3099}}, {0x30C0, {0x30BF, 0x3099}}, {0x30C2, {0x30C1, 0x3099}}, {0x30C5, {0x30C4, 0x3099}}, {0x30C7, {0x30C6, 0x3099}},
{0x30C9, {0x30C8, 0x3099}}, {0x30D0, {0x30CF, 0x3099}}, {0x30D1, {0x30CF, 0x309A}}, {0x30D3, {0x30D2, 0x3099}}, {0x30D4, {0x30D2, 0x309A}}, {0x30D6, {0x30D5, 0x3099}}, {0x30D7, {0x30D5, 0x309A}},
{0x30D9, {0x30D8, 0x3099}}, {0x30DA, {0x30D8, 0x309A}}, {0x30DC, {0x30DB, 0x3099}}, {0x30DD, {0x30DB, 0x309A}}, {0x30F4, {0x30A6, 0x3099}}, {0x30F7, {0x30EF, 0x3099}}, {0x30F8, {0x30F0, 0x3099}},
{0x30F9, {0x30F1, 0x3099}}, {0x30FA, {0x30F2, 0x3099}}, {0x30FE, {0x30FD, 0x3099}}, {0xF900, {0x8C48}}, {0xF901, {0x66F4}}, {0xF902, {0x8ECA}}, {0xF903, {0x8CC8}}, {0xF904, {0x6ED1}},
{0xF905, {0x4E32}}, {0xF906, {0x53E5}}, {0xF907, {0x9F9C}}, {0xF908, {0x9F9C}}, {0xF909, {0x5951}}, {0xF90A, {0x91D1}}, {0xF90B, {0x5587}}, {0xF90C, {0x5948}}, {0xF90D, {0x61F6}}, {0xF90E, {0x7669}},
{0xF90F, {0x7F85}}, {0xF910, {0x863F}}, {0xF911, {0x87BA}}, {0xF912, {0x88F8}}, {0xF913, {0x908F}}, {0xF914, {0x6A02}}, {0xF915, {0x6D1B}}, {0xF916, {0x70D9}}, {0xF917, {0x73DE}}, {0xF918, {0x843D}},
{0xF919, {0x916A}}, {0xF91A, {0x99F1}}, {0xF91B, {0x4E82}}, {0xF91C, {0x5375}}, {0xF91D, {0x6B04}}, {0xF91E, {0x721B}}, {0xF91F, {0x862D}}, {0xF920, {0x9E1E}}, {0xF921, {0x5D50}}, {0xF922, {0x6FEB}},
{0xF923, {0x85CD}}, {0xF924, {0x8964}}, {0xF925, {0x62C9}}, {0xF926, {0x81D8}}, {0xF927, {0x881F}}, {0xF928, {0x5ECA}}, {0xF929, {0x6717}}, {0xF92A, {0x6D6A}}, {0xF92B, {0x72FC}}, {0xF92C, {0x90CE}},
{0xF92D, {0x4F86}}, {0xF92E, {0x51B7}}, {0xF92F, {0x52DE}}, {0xF930, {0x64C4}}, {0xF931, {0x6AD3}}, {0xF932, {0x7210}}, {0xF933, {0x76E7}}, {0xF934, {0x8001}}, {0xF935, {0x8606}}, {0xF936, {0x865C}},
{0xF937, {0x8DEF}}, {0xF938, {0x9732}}, {0xF939, {0x9B6F}}, {0xF93A, {0x9DFA}}, {0xF93B, {0x788C}}, {0xF93C, {0x797F}}, {0xF93D, {0x7DA0}}, {0xF93E, {0x83C9}}, {0xF93F, {0x9304}}, {0xF940, {0x9E7F}},
{0xF941, {0x8AD6}}, {0xF942, {0x58DF}}, {0xF943, {0x5F04}}, {0xF944, {0x7C60}}, {0xF945, {0x807E}}, {0xF946, {0x7262}}, {0xF947, {0x78CA}}, {0xF948, {0x8CC2}}, {0xF949, {0x96F7}}, {0xF94A, {0x58D8}},
{0xF94B, {0x5C62}}, {0xF94C, {0x6A13}}, {0xF94D, {0x6DDA}}, {0xF94E, {0x6F0F}}, {0xF94F, {0x7D2F}}, {0xF950, {0x7E37}}, {0xF951, {0x964B}}, {0xF952, {0x52D2}}, {0xF953, {0x808B}}, {0xF954, {0x51DC}},
{0xF955, {0x51CC}}, {0xF956, {0x7A1C}}, {0xF957, {0x7DBE}}, {0xF958, {0x83F1}}, {0xF959, {0x9675}}, {0xF95A, {0x8B80}}, {0xF95B, {0x62CF}}, {0xF95C, {0x6A02}}, {0xF95D, {0x8AFE}}, {0xF95E, {0x4E39}},
{0xF95F, {0x5BE7}}, {0xF960, {0x6012}}, {0xF961, {0x7387}}, {0xF962, {0x7570}}, {0xF963, {0x5317}}, {0xF964, {0x78FB}}, {0xF965, {0x4FBF}}, {0xF966, {0x5FA9}}, {0xF967, {0x4E0D}}, {0xF968, {0x6CCC}},
{0xF969, {0x6578}}, {0xF96A, {0x7D22}}, {0xF96B, {0x53C3}}, {0xF96C, {0x585E}}, {0xF96D, {0x7701}}, {0xF96E, {0x8449}}, {0xF96F, {0x8AAA}}, {0xF970, {0x6BBA}}, {0xF971, {0x8FB0}}, {0xF972, {0x6C88}},
{0xF973, {0x62FE}}, {0xF974, {0x82E5}}, {0xF975, {0x63A0}}, {0xF976, {0x7565}}, {0xF977, {0x4EAE}}, {0xF978, {0x5169}}, {0xF979, {0x51C9}}, {0xF97A, {0x6881}}, {0xF97B, {0x7CE7}}, {0xF97C, {0x826F}},
{0xF97D, {0x8AD2}}, {0xF97E, {0x91CF}}, {0xF97F, {0x52F5}}, {0xF980, {0x5442}}, {0xF981, {0x5973}}, {0xF982, {0x5EEC}}, {0xF983, {0x65C5}}, {0xF984, {0x6FFE}}, {0xF985, {0x792A}}, {0xF986, {0x95AD}},
{0xF987, {0x9A6A}}, {0xF988, {0x9E97}}, {0xF989, {0x9ECE}}, {0xF98A, {0x529B}}, {0xF98B, {0x66C6}}, {0xF98C, {0x6B77}}, {0xF98D, {0x8F62}}, {0xF98E, {0x5E74}}, {0xF98F, {0x6190}}, {0xF990, {0x6200}},
{0xF991, {0x649A}}, {0xF992, {0x6F23}}, {0xF993, {0x7149}}, {0xF994, {0x7489}}, {0xF995, {0x79CA}}, {0xF996, {0x7DF4}}, {0xF997, {0x806F}}, {0xF998, {0x8F26}}, {0xF999, {0x84EE}}, {0xF99A, {0x9023}},
{0xF99B, {0x934A}}, {0xF99C, {0x5217}}, {0xF99D, {0x52A3}}, {0xF99E, {0x54BD}}, {0xF99F, {0x70C8}}, {0xF9A0, {0x88C2}}, {0xF9A1, {0x8AAA}}, {0xF9A2, {0x5EC9}}, {0xF9A3, {0x5FF5}}, {0xF9A4, {0x637B}},
{0xF9A5, {0x6BAE}}, {0xF9A6, {0x7C3E}}, {0xF9A7, {0x7375}}, {0xF9A8, {0x4EE4}}, {0xF9A9, {0x56F9}}, {0xF9AA, {0x5BE7}}, {0xF9AB, {0x5DBA}}, {0xF9AC, {0x601C}}, {0xF9AD, {0x73B2}}, {0xF9AE, {0x7469}},
{0xF9AF, {0x7F9A}}, {0xF9B0, {0x8046}}, {0xF9B1, {0x9234}}, {0xF9B2, {0x96F6}}, {0xF9B3, {0x9748}}, {0xF9B4, {0x9818}}, {0xF9B5, {0x4F8B}}, {0xF9B6, {0x79AE}}, {0xF9B7, {0x91B4}}, {0xF9B8, {0x96B8}},
{0xF9B9, {0x60E1}}, {0xF9BA, {0x4E86}}, {0xF9BB, {0x50DA}}, {0xF9BC, {0x5BEE}}, {0xF9BD, {0x5C3F}}, {0xF9BE, {0x6599}}, {0xF9BF, {0x6A02}}, {0xF9C0, {0x71CE}}, {0xF9C1, {0x7642}}, {0xF9C2, {0x84FC}},
{0xF9C3, {0x907C}}, {0xF9C4, {0x9F8D}}, {0xF9C5, {0x6688}}, {0xF9C6, {0x962E}}, {0xF9C7, {0x5289}}, {0xF9C8, {0x677B}}, {0xF9C9, {0x67F3}}, {0xF9CA, {0x6D41}}, {0xF9CB, {0x6E9C}}, {0xF9CC, {0x7409}},
{0xF9CD, {0x7559}}, {0xF9CE, {0x786B}}, {0xF9CF, {0x7D10}}, {0xF9D0, {0x985E}}, {0xF9D1, {0x516D}}, {0xF9D2, {0x622E}}, {0xF9D3, {0x9678}}, {0xF9D4, {0x502B}}, {0xF9D5, {0x5D19}}, {0xF9D6, {0x6DEA}},
{0xF9D7, {0x8F2A}}, {0xF9D8, {0x5F8B}}, {0xF9D9, {0x6144}}, {0xF9DA, {0x6817}}, {0xF9DB, {0x7387}}, {0xF9DC, {0x9686}}, {0xF9DD, {0x5229}}, {0xF9DE, {0x540F}}, {0xF9DF, {0x5C65}}, {0xF9E0, {0x6613}},
{0xF9E1, {0x674E}}, {0xF9E2, {0x68A8}}, {0xF9E3, {0x6CE5}}, {0xF9E4, {0x7406}}, {0xF9E5, {0x75E2}}, {0xF9E6, {0x7F79}}, {0xF9E7, {0x88CF}}, {0xF9E8, {0x88E1}}, {0xF9E9, {0x91CC}}, {0xF9EA, {0x96E2}},
{0xF9EB, {0x533F}}, {0xF9EC, {0x6EBA}}, {0xF9ED, {0x541D}}, {0xF9EE, {0x71D0}}, {0xF9EF, {0x7498}}, {0xF9F0, {0x85FA}}, {0xF9F1, {0x96A3}}, {0xF9F2, {0x9C57}}, {0xF9F3, {0x9E9F}}, {0xF9F4, {0x6797}},
{0xF9F5, {0x6DCB}}, {0xF9F6, {0x81E8}}, {0xF9F7, {0x7ACB}}, {0xF9F8, {0x7B20}}, {0xF9F9, {0x7C92}}, {0xF9FA, {0x72C0}}, {0xF9FB, {0x7099}}, {0xF9FC, {0x8B58}}, {0xF9FD, {0x4EC0}}, {0xF9FE, {0x8336}},
{0xF9FF, {0x523A}}, {0xFA00, {0x5207}}, {0xFA01, {0x5EA6}}, {0xFA02, {0x62D3}}, {0xFA03, {0x7CD6}}, {0xFA04, {0x5B85}}, {0xFA05, {0x6D1E}}, {0xFA06, {0x66B4}}, {0xFA07, {0x8F3B}}, {0xFA08, {0x884C}},
{0xFA09, {0x964D}}, {0xFA0A, {0x898B}}, {0xFA0B, {0x5ED3}}, {0xFA0C, {0x5140}}, {0xFA0D, {0x55C0}}, {0xFA10, {0x585A}}, {0xFA12, {0x6674}}, {0xFA15, {0x51DE}}, {0xFA16, {0x732A}}, {0xFA17, {0x76CA}},
{0xFA18, {0x793C}}, {0xFA19, {0x795E}}, {0xFA1A, {0x7965}}, {0xFA1B, {0x798F}}, {0xFA1C, {0x9756}}, {0xFA1D, {0x7CBE}}, {0xFA1E, {0x7FBD}}, {0xFA20, {0x8612}}, {0xFA22, {0x8AF8}}, {0xFA25, {0x9038}},
{0xFA26, {0x90FD}}, {0xFA2A, {0x98EF}}, {0xFA2B, {0x98FC}}, {0xFA2C, {0x9928}}, {0xFA2D, {0x9DB4}}, {0xFA2E, {0x90DE}}, {0xFA2F, {0x96B7}}, {0xFA30, {0x4FAE}}, {0xFA31, {0x50E7}}, {0xFA32, {0x514D}},
{0xFA33, {0x52C9}}, {0xFA34, {0x52E4}}, {0xFA35, {0x5351}}, {0xFA36, {0x559D}}, {0xFA37, {0x5606}}, {0xFA38, {0x5668}}, {0xFA39, {0x5840}}, {0xFA3A, {0x58A8}}, {0xFA3B, {0x5C64}}, {0xFA3C, {0x5C6E}},
{0xFA3D, {0x6094}}, {0xFA3E, {0x6168}}, {0xFA3F, {0x618E}}, {0xFA40, {0x61F2}}, {0xFA41, {0x654F}}, {0xFA42, {0x65E2}}, {0xFA43, {0x6691}}, {0xFA44, {0x6885}}, {0xFA45, {0x6D77}}, {0xFA46, {0x6E1A}},
{0xFA47, {0x6F22}}, {0xFA48, {0x716E}}, {0xFA49, {0x722B}}, {0xFA4A, {0x7422}}, {0xFA4B, {0x7891}}, {0xFA4C, {0x793E}}, {0xFA4D, {0x7949}}, {0xFA4E, {0x7948}}, {0xFA4F, {0x7950}}, {0xFA50, {0x7956}},
{0xFA51, {0x795D}}, {0xFA52, {0x798D}}, {0xFA53, {0x798E}}, {0xFA54, {0x7A40}}, {0xFA55, {0x7A81}}, {0xFA56, {0x7BC0}}, {0xFA57, {0x7DF4}}, {0xFA58, {0x7E09}}, {0xFA59, {0x7E41}}, {0xFA5A, {0x7F72}},
{0xFA5B, {0x8005}}, {0xFA5C, {0x81ED}}, {0xFA5D, {0x8279}}, {0xFA5E, {0x8279}}, {0xFA5F, {0x8457}}, {0xFA60, {0x8910}}, {0xFA61, {0x8996}}, {0xFA62, {0x8B01}}, {0xFA63, {0x8B39}}, {0xFA64, {0x8CD3}},
{0xFA65, {0x8D08}}, {0xFA66, {0x8FB6}}, {0xFA67, {0x9038}}, {0xFA68, {0x96E3}}, {0xFA69, {0x97FF}}, {0xFA6A, {0x983B}}, {0xFA6B, {0x6075}}, {0xFA6C, {0x242EE}}, {0xFA6D, {0x8218}}, {0xFA70, {0x4E26}},
{0xFA71, {0x51B5}}, {0xFA72, {0x5168}}, {0xFA73, {0x4F80}}, {0xFA74, {0x5145}}, {0xFA75, {0x5180}}, {0xFA76, {0x52C7}}, {0xFA77, {0x52FA}}, {0xFA78, {0x559D}}, {0xFA79, {0x5555}}, {0xFA7A, {0x5599}},
{0xFA7B, {0x55E2}}, {0xFA7C, {0x585A}}, {0xFA7D, {0x58B3}}, {0xFA7E, {0x5944}}, {0xFA7F, {0x5954}}, {0xFA80, {0x5A62}}, {0xFA81, {0x5B28}}, {0xFA82, {0x5ED2}}, {0xFA83, {0x5ED9}}, {0xFA84, {0x5F69}},
{0xFA85, {0x5FAD}}, {0xFA86, {0x60D8}}, {0xFA87, {0x614E}}, {0xFA88, {0x6108}}, {0xFA89, {0x618E}}, {0xFA8A, {0x6160}}, {0xFA8B, {0x61F2}}, {0xFA8C, {0x6234}}, {0xFA8D, {0x63C4}}, {0xFA8E, {0x641C}},
{0xFA8F, {0x6452}}, {0xFA90, {0x6556}}, {0xFA91, {0x6674}}, {0xFA92, {0x6717}}, {0xFA93, {0x671B}}, {0xFA94, {0x6756}}, {0xFA95, {0x6B79}}, {0xFA96, {0x6BBA}}, {0xFA97, {0x6D41}}, {0xFA98, {0x6EDB}},
{0xFA99, {0x6ECB}}, {0xFA9A, {0x6F22}}, {0xFA9B, {0x701E}}, {0xFA9C, {0x716E}}, {0xFA9D, {0x77A7}}, {0xFA9E, {0x7235}}, {0xFA9F, {0x72AF}}, {0xFAA0, {0x732A}}, {0xFAA1, {0x7471}}, {0xFAA2, {0x7506}},
{0xFAA3, {0x753B}}, {0xFAA4, {0x761D}}, {0xFAA5, {0x761F}}, {0xFAA6, {0x76CA}}, {0xFAA7, {0x76DB}}, {0xFAA8, {0x76F4}}, {0xFAA9, {0x774A}}, {0xFAAA, {0x7740}}, {0xFAAB, {0x78CC}}, {0xFAAC, {0x7AB1}},
{0xFAAD, {0x7BC0}}, {0xFAAE, {0x7C7B}}, {0xFAAF, {0x7D5B}}, {0xFAB0, {0x7DF4}}, {0xFAB1, {0x7F3E}}, {0xFAB2, {0x8005}}, {0xFAB3, {0x8352}}, {0xFAB4, {0x83EF}}, {0xFAB5, {0x8779}}, {0xFAB6, {0x8941}},
{0xFAB7, {0x8986}}, {0xFAB8, {0x8996}}, {0xFAB9, {0x8ABF}}, {0xFABA, {0x8AF8}}, {0xFABB, {0x8ACB}}, {0xFABC, {0x8B01}}, {0xFABD, {0x8AFE}}, {0xFABE, {0x8AED}}, {0xFABF, {0x8B39}}, {0xFAC0, {0x8B8A}},
{0xFAC1, {0x8D08}}, {0xFAC2, {0x8F38}}, {0xFAC3, {0x9072}}, {0xFAC4, {0x9199}}, {0xFAC5, {0x9276}}, {0xFAC6, {0x967C}}, {0xFAC7, {0x96E3}}, {0xFAC8, {0x9756}}, {0xFAC9, {0x97DB}}, {0xFACA, {0x97FF}},
{0xFACB, {0x980B}}, {0xFACC, {0x983B}}, {0xFACD, {0x9B12}}, {0xFACE, {0x9F9C}}, {0xFACF, {0x2284A}}, {0xFAD0, {0x22844}}, {0xFAD1, {0x233D5}}, {0xFAD2, {0x3B9D}}, {0xFAD3, {0x4018}},
{0xFAD4, {0x4039}}, {0xFAD5, {0x25249}}, {0xFAD6, {0x25CD0}}, {0xFAD7, {0x27ED3}}, {0xFAD8, {0x9F43}}, {0xFAD9, {0x9F8E}}, {0xFB1D, {0x5D9, 0x5B4}}, {0xFB1F, {0x5F2, 0x5B7}}, {0xFB2A, {0x5E9, 0x5C1}},
{0xFB2B, {0x5E9, 0x5C2}}, {0xFB2C, {0x5E9, 0x5BC, 0x5C1}}, {0xFB2D, {0x5E9, 0x5BC, 0x5C2}}, {0xFB2E, {0x5D0, 0x5B7}}, {0xFB2F, {0x5D0, 0x5B8}}, {0xFB30, {0x5D0, 0x5BC}}, {0xFB31, {0x5D1, 0x5BC}},
{0xFB32, {0x5D2, 0x5BC}}, {0xFB33, {0x5D3, 0x5BC}}, {0xFB34, {0x5D4, 0x5BC}}, {0xFB35, {0x5D5, 0x5BC}}, {0xFB36, {0x5D6, 0x5BC}}, {0xFB38, {0x5D8, 0x5BC}}, {0xFB39, {0x5D9, 0x5BC}},
{0xFB3A, {0x5DA, 0x5BC}}, {0xFB3B, {0x5DB, 0x5BC}}, {0xFB3C, {0x5DC, 0x5BC}}, {0xFB3E, {0x5DE, 0x5BC}}, {0xFB40, {0x5E0, 0x5BC}}, {0xFB41, {0x5E1, 0x5BC}}, {0xFB43, {0x5E3, 0x5BC}},
{0xFB44, {0x5E4, 0x5BC}}, {0xFB46, {0x5E6, 0x5BC}}, {0xFB47, {0x5E7, 0x5BC}}, {0xFB48, {0x5E8, 0x5BC}}, {0xFB49, {0x5E9, 0x5BC}}, {0xFB4A, {0x5EA, 0x5BC}}, {0xFB4B, {0x5D5, 0x5B9}},
{0xFB4C, {0x5D1, 0x5BF}}, {0xFB4D, {0x5DB, 0x5BF}}, {0xFB4E, {0x5E4, 0x5BF}}, {0x1109A, {0x11099, 0x110BA}}, {0x1109C, {0x1109B, 0x110BA}}, {0x110AB, {0x110A5, 0x110BA}},
{0x1112E, {0x11131, 0x11127}}, {0x1112F, {0x11132, 0x11127}}, {0x1134B, {0x11347, 0x1133E}}, {0x1134C, {0x11347, 0x11357}}, {0x114BB, {0x114B9, 0x114BA}}, {0x114BC, {0x114B9, 0x114B0}},
{0x114BE, {0x114B9, 0x114BD}}, {0x115BA, {0x115B8, 0x115AF}}, {0x115BB, {0x115B9, 0x115AF}}, {0x1D15E, {0x1D157, 0x1D165}}, {0x1D15F, {0x1D158, 0x1D165}}, {0x1D160, {0x1D158, 0x1D165, 0x1D16E}},
{0x1D161, {0x1D158, 0x1D165, 0x1D16F}}, {0x1D162, {0x1D158, 0x1D165, 0x1D170}}, {0x1D163, {0x1D158, 0x1D165, 0x1D171}}, {0x1D164, {0x1D158, 0x1D165, 0x1D172}}, {0x1D1BB, {0x1D1B9, 0x1D165}},
{0x1D1BC, {0x1D1BA, 0x1D165}}, {0x1D1BD, {0x1D1B9, 0x1D165, 0x1D16E}}, {0x1D1BE, {0x1D1BA, 0x1D165, 0x1D16E}}, {0x1D1BF, {0x1D1B9, 0x1D165, 0x1D16F}}, {0x1D1C0, {0x1D1BA, 0x1D165, 0x1D16F}},
{0x2F800, {0x4E3D}}, {0x2F801, {0x4E38}}, {0x2F802, {0x4E41}}, {0x2F803, {0x20122}}, {0x2F804, {0x4F60}}, {0x2F805, {0x4FAE}}, {0x2F806, {0x4FBB}}, {0x2F807, {0x5002}}, {0x2F808, {0x507A}},
{0x2F809, {0x5099}}, {0x2F80A, {0x50E7}}, {0x2F80B, {0x50CF}}, {0x2F80C, {0x349E}}, {0x2F80D, {0x2063A}}, {0x2F80E, {0x514D}}, {0x2F80F, {0x5154}}, {0x2F810, {0x5164}}, {0x2F811, {0x5177}},
{0x2F812, {0x2051C}}, {0x2F813, {0x34B9}}, {0x2F814, {0x5167}}, {0x2F815, {0x518D}}, {0x2F816, {0x2054B}}, {0x2F817, {0x5197}}, {0x2F818, {0x51A4}}, {0x2F819, {0x4ECC}}, {0x2F81A, {0x51AC}},
{0x2F81B, {0x51B5}}, {0x2F81C, {0x291DF}}, {0x2F81D, {0x51F5}}, {0x2F81E, {0x5203}}, {0x2F81F, {0x34DF}}, {0x2F820, {0x523B}}, {0x2F821, {0x5246}}, {0x2F822, {0x5272}}, {0x2F823, {0x5277}},
{0x2F824, {0x3515}}, {0x2F825, {0x52C7}}, {0x2F826, {0x52C9}}, {0x2F827, {0x52E4}}, {0x2F828, {0x52FA}}, {0x2F829, {0x5305}}, {0x2F82A, {0x5306}}, {0x2F82B, {0x5317}}, {0x2F82C, {0x5349}},
{0x2F82D, {0x5351}}, {0x2F82E, {0x535A}}, {0x2F82F, {0x5373}}, {0x2F830, {0x537D}}, {0x2F831, {0x537F}}, {0x2F832, {0x537F}}, {0x2F833, {0x537F}}, {0x2F834, {0x20A2C}}, {0x2F835, {0x7070}},
{0x2F836, {0x53CA}}, {0x2F837, {0x53DF}}, {0x2F838, {0x20B63}}, {0x2F839, {0x53EB}}, {0x2F83A, {0x53F1}}, {0x2F83B, {0x5406}}, {0x2F83C, {0x549E}}, {0x2F83D, {0x5438}}, {0x2F83E, {0x5448}},
{0x2F83F, {0x5468}}, {0x2F840, {0x54A2}}, {0x2F841, {0x54F6}}, {0x2F842, {0x5510}}, {0x2F843, {0x5553}}, {0x2F844, {0x5563}}, {0x2F845, {0x5584}}, {0x2F846, {0x5584}}, {0x2F847, {0x5599}},
{0x2F848, {0x55AB}}, {0x2F849, {0x55B3}}, {0x2F84A, {0x55C2}}, {0x2F84B, {0x5716}}, {0x2F84C, {0x5606}}, {0x2F84D, {0x5717}}, {0x2F84E, {0x5651}}, {0x2F84F, {0x5674}}, {0x2F850, {0x5207}},
{0x2F851, {0x58EE}}, {0x2F852, {0x57CE}}, {0x2F853, {0x57F4}}, {0x2F854, {0x580D}}, {0x2F855, {0x578B}}, {0x2F856, {0x5832}}, {0x2F857, {0x5831}}, {0x2F858, {0x58AC}}, {0x2F859, {0x214E4}},
{0x2F85A, {0x58F2}}, {0x2F85B, {0x58F7}}, {0x2F85C, {0x5906}}, {0x2F85D, {0x591A}}, {0x2F85E, {0x5922}}, {0x2F85F, {0x5962}}, {0x2F860, {0x216A8}}, {0x2F861, {0x216EA}}, {0x2F862, {0x59EC}},
{0x2F863, {0x5A1B}}, {0x2F864, {0x5A27}}, {0x2F865, {0x59D8}}, {0x2F866, {0x5A66}}, {0x2F867, {0x36EE}}, {0x2F868, {0x36FC}}, {0x2F869, {0x5B08}}, {0x2F86A, {0x5B3E}}, {0x2F86B, {0x5B3E}},
{0x2F86C, {0x219C8}}, {0x2F86D, {0x5BC3}}, {0x2F86E, {0x5BD8}}, {0x2F86F, {0x5BE7}}, {0x2F870, {0x5BF3}}, {0x2F871, {0x21B18}}, {0x2F872, {0x5BFF}}, {0x2F873, {0x5C06}}, {0x2F874, {0x5F53}},
{0x2F875, {0x5C22}}, {0x2F876, {0x3781}}, {0x2F877, {0x5C60}}, {0x2F878, {0x5C6E}}, {0x2F879, {0x5CC0}}, {0x2F87A, {0x5C8D}}, {0x2F87B, {0x21DE4}}, {0x2F87C, {0x5D43}}, {0x2F87D, {0x21DE6}},
{0x2F87E, {0x5D6E}}, {0x2F87F, {0x5D6B}}, {0x2F880, {0x5D7C}}, {0x2F881, {0x5DE1}}, {0x2F882, {0x5DE2}}, {0x2F883, {0x382F}}, {0x2F884, {0x5DFD}}, {0x2F885, {0x5E28}}, {0x2F886, {0x5E3D}},
{0x2F887, {0x5E69}}, {0x2F888, {0x3862}}, {0x2F889, {0x22183}}, {0x2F88A, {0x387C}}, {0x2F88B, {0x5EB0}}, {0x2F88C, {0x5EB3}}, {0x2F88D, {0x5EB6}}, {0x2F88E, {0x5ECA}}, {0x2F88F, {0x2A392}},
{0x2F890, {0x5EFE}}, {0x2F891, {0x22331}}, {0x2F892, {0x22331}}, {0x2F893, {0x8201}}, {0x2F894, {0x5F22}}, {0x2F895, {0x5F22}}, {0x2F896, {0x38C7}}, {0x2F897, {0x232B8}}, {0x2F898, {0x261DA}},
{0x2F899, {0x5F62}}, {0x2F89A, {0x5F6B}}, {0x2F89B, {0x38E3}}, {0x2F89C, {0x5F9A}}, {0x2F89D, {0x5FCD}}, {0x2F89E, {0x5FD7}}, {0x2F89F, {0x5FF9}}, {0x2F8A0, {0x6081}}, {0x2F8A1, {0x393A}},
{0x2F8A2, {0x391C}}, {0x2F8A3, {0x6094}}, {0x2F8A4, {0x226D4}}, {0x2F8A5, {0x60C7}}, {0x2F8A6, {0x6148}}, {0x2F8A7, {0x614C}}, {0x2F8A8, {0x614E}}, {0x2F8A9, {0x614C}}, {0x2F8AA, {0x617A}},
{0x2F8AB, {0x618E}}, {0x2F8AC, {0x61B2}}, {0x2F8AD, {0x61A4}}, {0x2F8AE, {0x61AF}}, {0x2F8AF, {0x61DE}}, {0x2F8B0, {0x61F2}}, {0x2F8B1, {0x61F6}}, {0x2F8B2, {0x6210}}, {0x2F8B3, {0x621B}},
{0x2F8B4, {0x625D}}, {0x2F8B5, {0x62B1}}, {0x2F8B6, {0x62D4}}, {0x2F8B7, {0x6350}}, {0x2F8B8, {0x22B0C}}, {0x2F8B9, {0x633D}}, {0x2F8BA, {0x62FC}}, {0x2F8BB, {0x6368}}, {0x2F8BC, {0x6383}},
{0x2F8BD, {0x63E4}}, {0x2F8BE, {0x22BF1}}, {0x2F8BF, {0x6422}}, {0x2F8C0, {0x63C5}}, {0x2F8C1, {0x63A9}}, {0x2F8C2, {0x3A2E}}, {0x2F8C3, {0x6469}}, {0x2F8C4, {0x647E}}, {0x2F8C5, {0x649D}},
{0x2F8C6, {0x6477}}, {0x2F8C7, {0x3A6C}}, {0x2F8C8, {0x654F}}, {0x2F8C9, {0x656C}}, {0x2F8CA, {0x2300A}}, {0x2F8CB, {0x65E3}}, {0x2F8CC, {0x66F8}}, {0x2F8CD, {0x6649}}, {0x2F8CE, {0x3B19}},
{0x2F8CF, {0x6691}}, {0x2F8D0, {0x3B08}}, {0x2F8D1, {0x3AE4}}, {0x2F8D2, {0x5192}}, {0x2F8D3, {0x5195}}, {0x2F8D4, {0x6700}}, {0x2F8D5, {0x669C}}, {0x2F8D6, {0x80AD}}, {0x2F8D7, {0x43D9}},
{0x2F8D8, {0x6717}}, {0x2F8D9, {0x671B}}, {0x2F8DA, {0x6721}}, {0x2F8DB, {0x675E}}, {0x2F8DC, {0x6753}}, {0x2F8DD, {0x233C3}}, {0x2F8DE, {0x3B49}}, {0x2F8DF, {0x67FA}}, {0x2F8E0, {0x6785}},
{0x2F8E1, {0x6852}}, {0x2F8E2, {0x6885}}, {0x2F8E3, {0x2346D}}, {0x2F8E4, {0x688E}}, {0x2F8E5, {0x681F}}, {0x2F8E6, {0x6914}}, {0x2F8E7, {0x3B9D}}, {0x2F8E8, {0x6942}}, {0x2F8E9, {0x69A3}},
{0x2F8EA, {0x69EA}}, {0x2F8EB, {0x6AA8}}, {0x2F8EC, {0x236A3}}, {0x2F8ED, {0x6ADB}}, {0x2F8EE, {0x3C18}}, {0x2F8EF, {0x6B21}}, {0x2F8F0, {0x238A7}}, {0x2F8F1, {0x6B54}}, {0x2F8F2, {0x3C4E}},
{0x2F8F3, {0x6B72}}, {0x2F8F4, {0x6B9F}}, {0x2F8F5, {0x6BBA}}, {0x2F8F6, {0x6BBB}}, {0x2F8F7, {0x23A8D}}, {0x2F8F8, {0x21D0B}}, {0x2F8F9, {0x23AFA}}, {0x2F8FA, {0x6C4E}}, {0x2F8FB, {0x23CBC}},
{0x2F8FC, {0x6CBF}}, {0x2F8FD, {0x6CCD}}, {0x2F8FE, {0x6C67}}, {0x2F8FF, {0x6D16}}, {0x2F900, {0x6D3E}}, {0x2F901, {0x6D77}}, {0x2F902, {0x6D41}}, {0x2F903, {0x6D69}}, {0x2F904, {0x6D78}},
{0x2F905, {0x6D85}}, {0x2F906, {0x23D1E}}, {0x2F907, {0x6D34}}, {0x2F908, {0x6E2F}}, {0x2F909, {0x6E6E}}, {0x2F90A, {0x3D33}}, {0x2F90B, {0x6ECB}}, {0x2F90C, {0x6EC7}}, {0x2F90D, {0x23ED1}},
{0x2F90E, {0x6DF9}}, {0x2F90F, {0x6F6E}}, {0x2F910, {0x23F5E}}, {0x2F911, {0x23F8E}}, {0x2F912, {0x6FC6}}, {0x2F913, {0x7039}}, {0x2F914, {0x701E}}, {0x2F915, {0x701B}}, {0x2F916, {0x3D96}},
{0x2F917, {0x704A}}, {0x2F918, {0x707D}}, {0x2F919, {0x7077}}, {0x2F91A, {0x70AD}}, {0x2F91B, {0x20525}}, {0x2F91C, {0x7145}}, {0x2F91D, {0x24263}}, {0x2F91E, {0x719C}}, {0x2F91F, {0x243AB}},
{0x2F920, {0x7228}}, {0x2F921, {0x7235}}, {0x2F922, {0x7250}}, {0x2F923, {0x24608}}, {0x2F924, {0x7280}}, {0x2F925, {0x7295}}, {0x2F926, {0x24735}}, {0x2F927, {0x24814}}, {0x2F928, {0x737A}},
{0x2F929, {0x738B}}, {0x2F92A, {0x3EAC}}, {0x2F92B, {0x73A5}}, {0x2F92C, {0x3EB8}}, {0x2F92D, {0x3EB8}}, {0x2F92E, {0x7447}}, {0x2F92F, {0x745C}}, {0x2F930, {0x7471}}, {0x2F931, {0x7485}},
{0x2F932, {0x74CA}}, {0x2F933, {0x3F1B}}, {0x2F934, {0x7524}}, {0x2F935, {0x24C36}}, {0x2F936, {0x753E}}, {0x2F937, {0x24C92}}, {0x2F938, {0x7570}}, {0x2F939, {0x2219F}}, {0x2F93A, {0x7610}},
{0x2F93B, {0x24FA1}}, {0x2F93C, {0x24FB8}}, {0x2F93D, {0x25044}}, {0x2F93E, {0x3FFC}}, {0x2F93F, {0x4008}}, {0x2F940, {0x76F4}}, {0x2F941, {0x250F3}}, {0x2F942, {0x250F2}}, {0x2F943, {0x25119}},
{0x2F944, {0x25133}}, {0x2F945, {0x771E}}, {0x2F946, {0x771F}}, {0x2F947, {0x771F}}, {0x2F948, {0x774A}}, {0x2F949, {0x4039}}, {0x2F94A, {0x778B}}, {0x2F94B, {0x4046}}, {0x2F94C, {0x4096}},
{0x2F94D, {0x2541D}}, {0x2F94E, {0x784E}}, {0x2F94F, {0x788C}}, {0x2F950, {0x78CC}}, {0x2F951, {0x40E3}}, {0x2F952, {0x25626}}, {0x2F953, {0x7956}}, {0x2F954, {0x2569A}}, {0x2F955, {0x256C5}},
{0x2F956, {0x798F}}, {0x2F957, {0x79EB}}, {0x2F958, {0x412F}}, {0x2F959, {0x7A40}}, {0x2F95A, {0x7A4A}}, {0x2F95B, {0x7A4F}}, {0x2F95C, {0x2597C}}, {0x2F95D, {0x25AA7}}, {0x2F95E, {0x25AA7}},
{0x2F95F, {0x7AEE}}, {0x2F960, {0x4202}}, {0x2F961, {0x25BAB}}, {0x2F962, {0x7BC6}}, {0x2F963, {0x7BC9}}, {0x2F964, {0x4227}}, {0x2F965, {0x25C80}}, {0x2F966, {0x7CD2}}, {0x2F967, {0x42A0}},
{0x2F968, {0x7CE8}}, {0x2F969, {0x7CE3}}, {0x2F96A, {0x7D00}}, {0x2F96B, {0x25F86}}, {0x2F96C, {0x7D63}}, {0x2F96D, {0x4301}}, {0x2F96E, {0x7DC7}}, {0x2F96F, {0x7E02}}, {0x2F970, {0x7E45}},
{0x2F971, {0x4334}}, {0x2F972, {0x26228}}, {0x2F973, {0x26247}}, {0x2F974, {0x4359}}, {0x2F975, {0x262D9}}, {0x2F976, {0x7F7A}}, {0x2F977, {0x2633E}}, {0x2F978, {0x7F95}}, {0x2F979, {0x7FFA}},
{0x2F97A, {0x8005}}, {0x2F97B, {0x264DA}}, {0x2F97C, {0x26523}}, {0x2F97D, {0x8060}}, {0x2F97E, {0x265A8}}, {0x2F97F, {0x8070}}, {0x2F980, {0x2335F}}, {0x2F981, {0x43D5}}, {0x2F982, {0x80B2}},
{0x2F983, {0x8103}}, {0x2F984, {0x440B}}, {0x2F985, {0x813E}}, {0x2F986, {0x5AB5}}, {0x2F987, {0x267A7}}, {0x2F988, {0x267B5}}, {0x2F989, {0x23393}}, {0x2F98A, {0x2339C}}, {0x2F98B, {0x8201}},
{0x2F98C, {0x8204}}, {0x2F98D, {0x8F9E}}, {0x2F98E, {0x446B}}, {0x2F98F, {0x8291}}, {0x2F990, {0x828B}}, {0x2F991, {0x829D}}, {0x2F992, {0x52B3}}, {0x2F993, {0x82B1}}, {0x2F994, {0x82B3}},
{0x2F995, {0x82BD}}, {0x2F996, {0x82E6}}, {0x2F997, {0x26B3C}}, {0x2F998, {0x82E5}}, {0x2F999, {0x831D}}, {0x2F99A, {0x8363}}, {0x2F99B, {0x83AD}}, {0x2F99C, {0x8323}}, {0x2F99D, {0x83BD}},
{0x2F99E, {0x83E7}}, {0x2F99F, {0x8457}}, {0x2F9A0, {0x8353}}, {0x2F9A1, {0x83CA}}, {0x2F9A2, {0x83CC}}, {0x2F9A3, {0x83DC}}, {0x2F9A4, {0x26C36}}, {0x2F9A5, {0x26D6B}}, {0x2F9A6, {0x26CD5}},
{0x2F9A7, {0x452B}}, {0x2F9A8, {0x84F1}}, {0x2F9A9, {0x84F3}}, {0x2F9AA, {0x8516}}, {0x2F9AB, {0x273CA}}, {0x2F9AC, {0x8564}}, {0x2F9AD, {0x26F2C}}, {0x2F9AE, {0x455D}}, {0x2F9AF, {0x4561}},
{0x2F9B0, {0x26FB1}}, {0x2F9B1, {0x270D2}}, {0x2F9B2, {0x456B}}, {0x2F9B3, {0x8650}}, {0x2F9B4, {0x865C}}, {0x2F9B5, {0x8667}}, {0x2F9B6, {0x8669}}, {0x2F9B7, {0x86A9}}, {0x2F9B8, {0x8688}},
{0x2F9B9, {0x870E}}, {0x2F9BA, {0x86E2}}, {0x2F9BB, {0x8779}}, {0x2F9BC, {0x8728}}, {0x2F9BD, {0x876B}}, {0x2F9BE, {0x8786}}, {0x2F9BF, {0x45D7}}, {0x2F9C0, {0x87E1}}, {0x2F9C1, {0x8801}},
{0x2F9C2, {0x45F9}}, {0x2F9C3, {0x8860}}, {0x2F9C4, {0x8863}}, {0x2F9C5, {0x27667}}, {0x2F9C6, {0x88D7}}, {0x2F9C7, {0x88DE}}, {0x2F9C8, {0x4635}}, {0x2F9C9, {0x88FA}}, {0x2F9CA, {0x34BB}},
{0x2F9CB, {0x278AE}}, {0x2F9CC, {0x27966}}, {0x2F9CD, {0x46BE}}, {0x2F9CE, {0x46C7}}, {0x2F9CF, {0x8AA0}}, {0x2F9D0, {0x8AED}}, {0x2F9D1, {0x8B8A}}, {0x2F9D2, {0x8C55}}, {0x2F9D3, {0x27CA8}},
{0x2F9D4, {0x8CAB}}, {0x2F9D5, {0x8CC1}}, {0x2F9D6, {0x8D1B}}, {0x2F9D7, {0x8D77}}, {0x2F9D8, {0x27F2F}}, {0x2F9D9, {0x20804}}, {0x2F9DA, {0x8DCB}}, {0x2F9DB, {0x8DBC}}, {0x2F9DC, {0x8DF0}},
{0x2F9DD, {0x208DE}}, {0x2F9DE, {0x8ED4}}, {0x2F9DF, {0x8F38}}, {0x2F9E0, {0x285D2}}, {0x2F9E1, {0x285ED}}, {0x2F9E2, {0x9094}}, {0x2F9E3, {0x90F1}}, {0x2F9E4, {0x9111}}, {0x2F9E5, {0x2872E}},
{0x2F9E6, {0x911B}}, {0x2F9E7, {0x9238}}, {0x2F9E8, {0x92D7}}, {0x2F9E9, {0x92D8}}, {0x2F9EA, {0x927C}}, {0x2F9EB, {0x93F9}}, {0x2F9EC, {0x9415}}, {0x2F9ED, {0x28BFA}}, {0x2F9EE, {0x958B}},
{0x2F9EF, {0x4995}}, {0x2F9F0, {0x95B7}}, {0x2F9F1, {0x28D77}}, {0x2F9F2, {0x49E6}}, {0x2F9F3, {0x96C3}}, {0x2F9F4, {0x5DB2}}, {0x2F9F5, {0x9723}}, {0x2F9F6, {0x29145}}, {0x2F9F7, {0x2921A}},
{0x2F9F8, {0x4A6E}}, {0x2F9F9, {0x4A76}}, {0x2F9FA, {0x97E0}}, {0x2F9FB, {0x2940A}}, {0x2F9FC, {0x4AB2}}, {0x2F9FD, {0x29496}}, {0x2F9FE, {0x980B}}, {0x2F9FF, {0x980B}}, {0x2FA00, {0x9829}},
{0x2FA01, {0x295B6}}, {0x2FA02, {0x98E2}}, {0x2FA03, {0x4B33}}, {0x2FA04, {0x9929}}, {0x2FA05, {0x99A7}}, {0x2FA06, {0x99C2}}, {0x2FA07, {0x99FE}}, {0x2FA08, {0x4BCE}}, {0x2FA09, {0x29B30}},
{0x2FA0A, {0x9B12}}, {0x2FA0B, {0x9C40}}, {0x2FA0C, {0x9CFD}}, {0x2FA0D, {0x4CCE}}, {0x2FA0E, {0x4CED}}, {0x2FA0F, {0x9D67}}, {0x2FA10, {0x2A0CE}}, {0x2FA11, {0x4CF8}}, {0x2FA12, {0x2A105}},
{0x2FA13, {0x2A20E}}, {0x2FA14, {0x2A291}}, {0x2FA15, {0x9EBB}}, {0x2FA16, {0x4D56}}, {0x2FA17, {0x9EF9}}, {0x2FA18, {0x9EFE}}, {0x2FA19, {0x9F05}}, {0x2FA1A, {0x9F0F}}, {0x2FA1B, {0x9F16}},
{0x2FA1D, {0x2A600}},
static const std::multimap<uint32_t, uint32_t> nfd_map = {
{0xC0, 0x41}, {0xC0, 0x300}, {0xC1, 0x41}, {0xC1, 0x301}, {0xC2, 0x41}, {0xC2, 0x302}, {0xC3, 0x41}, {0xC3, 0x303}, {0xC4, 0x41}, {0xC4, 0x308}, {0xC5, 0x41}, {0xC5, 0x30A}, {0xC7, 0x43},
{0xC7, 0x327}, {0xC8, 0x45}, {0xC8, 0x300}, {0xC9, 0x45}, {0xC9, 0x301}, {0xCA, 0x45}, {0xCA, 0x302}, {0xCB, 0x45}, {0xCB, 0x308}, {0xCC, 0x49}, {0xCC, 0x300}, {0xCD, 0x49}, {0xCD, 0x301},
{0xCE, 0x49}, {0xCE, 0x302}, {0xCF, 0x49}, {0xCF, 0x308}, {0xD1, 0x4E}, {0xD1, 0x303}, {0xD2, 0x4F}, {0xD2, 0x300}, {0xD3, 0x4F}, {0xD3, 0x301}, {0xD4, 0x4F}, {0xD4, 0x302}, {0xD5, 0x4F},
{0xD5, 0x303}, {0xD6, 0x4F}, {0xD6, 0x308}, {0xD9, 0x55}, {0xD9, 0x300}, {0xDA, 0x55}, {0xDA, 0x301}, {0xDB, 0x55}, {0xDB, 0x302}, {0xDC, 0x55}, {0xDC, 0x308}, {0xDD, 0x59}, {0xDD, 0x301},
{0xE0, 0x61}, {0xE0, 0x300}, {0xE1, 0x61}, {0xE1, 0x301}, {0xE2, 0x61}, {0xE2, 0x302}, {0xE3, 0x61}, {0xE3, 0x303}, {0xE4, 0x61}, {0xE4, 0x308}, {0xE5, 0x61}, {0xE5, 0x30A}, {0xE7, 0x63},
{0xE7, 0x327}, {0xE8, 0x65}, {0xE8, 0x300}, {0xE9, 0x65}, {0xE9, 0x301}, {0xEA, 0x65}, {0xEA, 0x302}, {0xEB, 0x65}, {0xEB, 0x308}, {0xEC, 0x69}, {0xEC, 0x300}, {0xED, 0x69}, {0xED, 0x301},
{0xEE, 0x69}, {0xEE, 0x302}, {0xEF, 0x69}, {0xEF, 0x308}, {0xF1, 0x6E}, {0xF1, 0x303}, {0xF2, 0x6F}, {0xF2, 0x300}, {0xF3, 0x6F}, {0xF3, 0x301}, {0xF4, 0x6F}, {0xF4, 0x302}, {0xF5, 0x6F},
{0xF5, 0x303}, {0xF6, 0x6F}, {0xF6, 0x308}, {0xF9, 0x75}, {0xF9, 0x300}, {0xFA, 0x75}, {0xFA, 0x301}, {0xFB, 0x75}, {0xFB, 0x302}, {0xFC, 0x75}, {0xFC, 0x308}, {0xFD, 0x79}, {0xFD, 0x301},
{0xFF, 0x79}, {0xFF, 0x308}, {0x100, 0x41}, {0x100, 0x304}, {0x101, 0x61}, {0x101, 0x304}, {0x102, 0x41}, {0x102, 0x306}, {0x103, 0x61}, {0x103, 0x306}, {0x104, 0x41}, {0x104, 0x328}, {0x105, 0x61},
{0x105, 0x328}, {0x106, 0x43}, {0x106, 0x301}, {0x107, 0x63}, {0x107, 0x301}, {0x108, 0x43}, {0x108, 0x302}, {0x109, 0x63}, {0x109, 0x302}, {0x10A, 0x43}, {0x10A, 0x307}, {0x10B, 0x63},
{0x10B, 0x307}, {0x10C, 0x43}, {0x10C, 0x30C}, {0x10D, 0x63}, {0x10D, 0x30C}, {0x10E, 0x44}, {0x10E, 0x30C}, {0x10F, 0x64}, {0x10F, 0x30C}, {0x112, 0x45}, {0x112, 0x304}, {0x113, 0x65},
{0x113, 0x304}, {0x114, 0x45}, {0x114, 0x306}, {0x115, 0x65}, {0x115, 0x306}, {0x116, 0x45}, {0x116, 0x307}, {0x117, 0x65}, {0x117, 0x307}, {0x118, 0x45}, {0x118, 0x328}, {0x119, 0x65},
{0x119, 0x328}, {0x11A, 0x45}, {0x11A, 0x30C}, {0x11B, 0x65}, {0x11B, 0x30C}, {0x11C, 0x47}, {0x11C, 0x302}, {0x11D, 0x67}, {0x11D, 0x302}, {0x11E, 0x47}, {0x11E, 0x306}, {0x11F, 0x67},
{0x11F, 0x306}, {0x120, 0x47}, {0x120, 0x307}, {0x121, 0x67}, {0x121, 0x307}, {0x122, 0x47}, {0x122, 0x327}, {0x123, 0x67}, {0x123, 0x327}, {0x124, 0x48}, {0x124, 0x302}, {0x125, 0x68},
{0x125, 0x302}, {0x128, 0x49}, {0x128, 0x303}, {0x129, 0x69}, {0x129, 0x303}, {0x12A, 0x49}, {0x12A, 0x304}, {0x12B, 0x69}, {0x12B, 0x304}, {0x12C, 0x49}, {0x12C, 0x306}, {0x12D, 0x69},
{0x12D, 0x306}, {0x12E, 0x49}, {0x12E, 0x328}, {0x12F, 0x69}, {0x12F, 0x328}, {0x130, 0x49}, {0x130, 0x307}, {0x134, 0x4A}, {0x134, 0x302}, {0x135, 0x6A}, {0x135, 0x302}, {0x136, 0x4B},
{0x136, 0x327}, {0x137, 0x6B}, {0x137, 0x327}, {0x139, 0x4C}, {0x139, 0x301}, {0x13A, 0x6C}, {0x13A, 0x301}, {0x13B, 0x4C}, {0x13B, 0x327}, {0x13C, 0x6C}, {0x13C, 0x327}, {0x13D, 0x4C},
{0x13D, 0x30C}, {0x13E, 0x6C}, {0x13E, 0x30C}, {0x143, 0x4E}, {0x143, 0x301}, {0x144, 0x6E}, {0x144, 0x301}, {0x145, 0x4E}, {0x145, 0x327}, {0x146, 0x6E}, {0x146, 0x327}, {0x147, 0x4E},
{0x147, 0x30C}, {0x148, 0x6E}, {0x148, 0x30C}, {0x14C, 0x4F}, {0x14C, 0x304}, {0x14D, 0x6F}, {0x14D, 0x304}, {0x14E, 0x4F}, {0x14E, 0x306}, {0x14F, 0x6F}, {0x14F, 0x306}, {0x150, 0x4F},
{0x150, 0x30B}, {0x151, 0x6F}, {0x151, 0x30B}, {0x154, 0x52}, {0x154, 0x301}, {0x155, 0x72}, {0x155, 0x301}, {0x156, 0x52}, {0x156, 0x327}, {0x157, 0x72}, {0x157, 0x327}, {0x158, 0x52},
{0x158, 0x30C}, {0x159, 0x72}, {0x159, 0x30C}, {0x15A, 0x53}, {0x15A, 0x301}, {0x15B, 0x73}, {0x15B, 0x301}, {0x15C, 0x53}, {0x15C, 0x302}, {0x15D, 0x73}, {0x15D, 0x302}, {0x15E, 0x53},
{0x15E, 0x327}, {0x15F, 0x73}, {0x15F, 0x327}, {0x160, 0x53}, {0x160, 0x30C}, {0x161, 0x73}, {0x161, 0x30C}, {0x162, 0x54}, {0x162, 0x327}, {0x163, 0x74}, {0x163, 0x327}, {0x164, 0x54},
{0x164, 0x30C}, {0x165, 0x74}, {0x165, 0x30C}, {0x168, 0x55}, {0x168, 0x303}, {0x169, 0x75}, {0x169, 0x303}, {0x16A, 0x55}, {0x16A, 0x304}, {0x16B, 0x75}, {0x16B, 0x304}, {0x16C, 0x55},
{0x16C, 0x306}, {0x16D, 0x75}, {0x16D, 0x306}, {0x16E, 0x55}, {0x16E, 0x30A}, {0x16F, 0x75}, {0x16F, 0x30A}, {0x170, 0x55}, {0x170, 0x30B}, {0x171, 0x75}, {0x171, 0x30B}, {0x172, 0x55},
{0x172, 0x328}, {0x173, 0x75}, {0x173, 0x328}, {0x174, 0x57}, {0x174, 0x302}, {0x175, 0x77}, {0x175, 0x302}, {0x176, 0x59}, {0x176, 0x302}, {0x177, 0x79}, {0x177, 0x302}, {0x178, 0x59},
{0x178, 0x308}, {0x179, 0x5A}, {0x179, 0x301}, {0x17A, 0x7A}, {0x17A, 0x301}, {0x17B, 0x5A}, {0x17B, 0x307}, {0x17C, 0x7A}, {0x17C, 0x307}, {0x17D, 0x5A}, {0x17D, 0x30C}, {0x17E, 0x7A},
{0x17E, 0x30C}, {0x1A0, 0x4F}, {0x1A0, 0x31B}, {0x1A1, 0x6F}, {0x1A1, 0x31B}, {0x1AF, 0x55}, {0x1AF, 0x31B}, {0x1B0, 0x75}, {0x1B0, 0x31B}, {0x1CD, 0x41}, {0x1CD, 0x30C}, {0x1CE, 0x61},
{0x1CE, 0x30C}, {0x1CF, 0x49}, {0x1CF, 0x30C}, {0x1D0, 0x69}, {0x1D0, 0x30C}, {0x1D1, 0x4F}, {0x1D1, 0x30C}, {0x1D2, 0x6F}, {0x1D2, 0x30C}, {0x1D3, 0x55}, {0x1D3, 0x30C}, {0x1D4, 0x75},
{0x1D4, 0x30C}, {0x1D5, 0x55}, {0x1D5, 0x308}, {0x1D5, 0x304}, {0x1D6, 0x75}, {0x1D6, 0x308}, {0x1D6, 0x304}, {0x1D7, 0x55}, {0x1D7, 0x308}, {0x1D7, 0x301}, {0x1D8, 0x75}, {0x1D8, 0x308},
{0x1D8, 0x301}, {0x1D9, 0x55}, {0x1D9, 0x308}, {0x1D9, 0x30C}, {0x1DA, 0x75}, {0x1DA, 0x308}, {0x1DA, 0x30C}, {0x1DB, 0x55}, {0x1DB, 0x308}, {0x1DB, 0x300}, {0x1DC, 0x75}, {0x1DC, 0x308},
{0x1DC, 0x300}, {0x1DE, 0x41}, {0x1DE, 0x308}, {0x1DE, 0x304}, {0x1DF, 0x61}, {0x1DF, 0x308}, {0x1DF, 0x304}, {0x1E0, 0x41}, {0x1E0, 0x307}, {0x1E0, 0x304}, {0x1E1, 0x61}, {0x1E1, 0x307},
{0x1E1, 0x304}, {0x1E2, 0xC6}, {0x1E2, 0x304}, {0x1E3, 0xE6}, {0x1E3, 0x304}, {0x1E6, 0x47}, {0x1E6, 0x30C}, {0x1E7, 0x67}, {0x1E7, 0x30C}, {0x1E8, 0x4B}, {0x1E8, 0x30C}, {0x1E9, 0x6B},
{0x1E9, 0x30C}, {0x1EA, 0x4F}, {0x1EA, 0x328}, {0x1EB, 0x6F}, {0x1EB, 0x328}, {0x1EC, 0x4F}, {0x1EC, 0x328}, {0x1EC, 0x304}, {0x1ED, 0x6F}, {0x1ED, 0x328}, {0x1ED, 0x304}, {0x1EE, 0x1B7},
{0x1EE, 0x30C}, {0x1EF, 0x292}, {0x1EF, 0x30C}, {0x1F0, 0x6A}, {0x1F0, 0x30C}, {0x1F4, 0x47}, {0x1F4, 0x301}, {0x1F5, 0x67}, {0x1F5, 0x301}, {0x1F8, 0x4E}, {0x1F8, 0x300}, {0x1F9, 0x6E},
{0x1F9, 0x300}, {0x1FA, 0x41}, {0x1FA, 0x30A}, {0x1FA, 0x301}, {0x1FB, 0x61}, {0x1FB, 0x30A}, {0x1FB, 0x301}, {0x1FC, 0xC6}, {0x1FC, 0x301}, {0x1FD, 0xE6}, {0x1FD, 0x301}, {0x1FE, 0xD8},
{0x1FE, 0x301}, {0x1FF, 0xF8}, {0x1FF, 0x301}, {0x200, 0x41}, {0x200, 0x30F}, {0x201, 0x61}, {0x201, 0x30F}, {0x202, 0x41}, {0x202, 0x311}, {0x203, 0x61}, {0x203, 0x311}, {0x204, 0x45},
{0x204, 0x30F}, {0x205, 0x65}, {0x205, 0x30F}, {0x206, 0x45}, {0x206, 0x311}, {0x207, 0x65}, {0x207, 0x311}, {0x208, 0x49}, {0x208, 0x30F}, {0x209, 0x69}, {0x209, 0x30F}, {0x20A, 0x49},
{0x20A, 0x311}, {0x20B, 0x69}, {0x20B, 0x311}, {0x20C, 0x4F}, {0x20C, 0x30F}, {0x20D, 0x6F}, {0x20D, 0x30F}, {0x20E, 0x4F}, {0x20E, 0x311}, {0x20F, 0x6F}, {0x20F, 0x311}, {0x210, 0x52},
{0x210, 0x30F}, {0x211, 0x72}, {0x211, 0x30F}, {0x212, 0x52}, {0x212, 0x311}, {0x213, 0x72}, {0x213, 0x311}, {0x214, 0x55}, {0x214, 0x30F}, {0x215, 0x75}, {0x215, 0x30F}, {0x216, 0x55},
{0x216, 0x311}, {0x217, 0x75}, {0x217, 0x311}, {0x218, 0x53}, {0x218, 0x326}, {0x219, 0x73}, {0x219, 0x326}, {0x21A, 0x54}, {0x21A, 0x326}, {0x21B, 0x74}, {0x21B, 0x326}, {0x21E, 0x48},
{0x21E, 0x30C}, {0x21F, 0x68}, {0x21F, 0x30C}, {0x226, 0x41}, {0x226, 0x307}, {0x227, 0x61}, {0x227, 0x307}, {0x228, 0x45}, {0x228, 0x327}, {0x229, 0x65}, {0x229, 0x327}, {0x22A, 0x4F},
{0x22A, 0x308}, {0x22A, 0x304}, {0x22B, 0x6F}, {0x22B, 0x308}, {0x22B, 0x304}, {0x22C, 0x4F}, {0x22C, 0x303}, {0x22C, 0x304}, {0x22D, 0x6F}, {0x22D, 0x303}, {0x22D, 0x304}, {0x22E, 0x4F},
{0x22E, 0x307}, {0x22F, 0x6F}, {0x22F, 0x307}, {0x230, 0x4F}, {0x230, 0x307}, {0x230, 0x304}, {0x231, 0x6F}, {0x231, 0x307}, {0x231, 0x304}, {0x232, 0x59}, {0x232, 0x304}, {0x233, 0x79},
{0x233, 0x304}, {0x340, 0x300}, {0x341, 0x301}, {0x343, 0x313}, {0x344, 0x308}, {0x344, 0x301}, {0x374, 0x2B9}, {0x37E, 0x3B}, {0x385, 0xA8}, {0x385, 0x301}, {0x386, 0x391}, {0x386, 0x301},
{0x387, 0xB7}, {0x388, 0x395}, {0x388, 0x301}, {0x389, 0x397}, {0x389, 0x301}, {0x38A, 0x399}, {0x38A, 0x301}, {0x38C, 0x39F}, {0x38C, 0x301}, {0x38E, 0x3A5}, {0x38E, 0x301}, {0x38F, 0x3A9},
{0x38F, 0x301}, {0x390, 0x3B9}, {0x390, 0x308}, {0x390, 0x301}, {0x3AA, 0x399}, {0x3AA, 0x308}, {0x3AB, 0x3A5}, {0x3AB, 0x308}, {0x3AC, 0x3B1}, {0x3AC, 0x301}, {0x3AD, 0x3B5}, {0x3AD, 0x301},
{0x3AE, 0x3B7}, {0x3AE, 0x301}, {0x3AF, 0x3B9}, {0x3AF, 0x301}, {0x3B0, 0x3C5}, {0x3B0, 0x308}, {0x3B0, 0x301}, {0x3CA, 0x3B9}, {0x3CA, 0x308}, {0x3CB, 0x3C5}, {0x3CB, 0x308}, {0x3CC, 0x3BF},
{0x3CC, 0x301}, {0x3CD, 0x3C5}, {0x3CD, 0x301}, {0x3CE, 0x3C9}, {0x3CE, 0x301}, {0x3D3, 0x3D2}, {0x3D3, 0x301}, {0x3D4, 0x3D2}, {0x3D4, 0x308}, {0x400, 0x415}, {0x400, 0x300}, {0x401, 0x415},
{0x401, 0x308}, {0x403, 0x413}, {0x403, 0x301}, {0x407, 0x406}, {0x407, 0x308}, {0x40C, 0x41A}, {0x40C, 0x301}, {0x40D, 0x418}, {0x40D, 0x300}, {0x40E, 0x423}, {0x40E, 0x306}, {0x419, 0x418},
{0x419, 0x306}, {0x439, 0x438}, {0x439, 0x306}, {0x450, 0x435}, {0x450, 0x300}, {0x451, 0x435}, {0x451, 0x308}, {0x453, 0x433}, {0x453, 0x301}, {0x457, 0x456}, {0x457, 0x308}, {0x45C, 0x43A},
{0x45C, 0x301}, {0x45D, 0x438}, {0x45D, 0x300}, {0x45E, 0x443}, {0x45E, 0x306}, {0x476, 0x474}, {0x476, 0x30F}, {0x477, 0x475}, {0x477, 0x30F}, {0x4C1, 0x416}, {0x4C1, 0x306}, {0x4C2, 0x436},
{0x4C2, 0x306}, {0x4D0, 0x410}, {0x4D0, 0x306}, {0x4D1, 0x430}, {0x4D1, 0x306}, {0x4D2, 0x410}, {0x4D2, 0x308}, {0x4D3, 0x430}, {0x4D3, 0x308}, {0x4D6, 0x415}, {0x4D6, 0x306}, {0x4D7, 0x435},
{0x4D7, 0x306}, {0x4DA, 0x4D8}, {0x4DA, 0x308}, {0x4DB, 0x4D9}, {0x4DB, 0x308}, {0x4DC, 0x416}, {0x4DC, 0x308}, {0x4DD, 0x436}, {0x4DD, 0x308}, {0x4DE, 0x417}, {0x4DE, 0x308}, {0x4DF, 0x437},
{0x4DF, 0x308}, {0x4E2, 0x418}, {0x4E2, 0x304}, {0x4E3, 0x438}, {0x4E3, 0x304}, {0x4E4, 0x418}, {0x4E4, 0x308}, {0x4E5, 0x438}, {0x4E5, 0x308}, {0x4E6, 0x41E}, {0x4E6, 0x308}, {0x4E7, 0x43E},
{0x4E7, 0x308}, {0x4EA, 0x4E8}, {0x4EA, 0x308}, {0x4EB, 0x4E9}, {0x4EB, 0x308}, {0x4EC, 0x42D}, {0x4EC, 0x308}, {0x4ED, 0x44D}, {0x4ED, 0x308}, {0x4EE, 0x423}, {0x4EE, 0x304}, {0x4EF, 0x443},
{0x4EF, 0x304}, {0x4F0, 0x423}, {0x4F0, 0x308}, {0x4F1, 0x443}, {0x4F1, 0x308}, {0x4F2, 0x423}, {0x4F2, 0x30B}, {0x4F3, 0x443}, {0x4F3, 0x30B}, {0x4F4, 0x427}, {0x4F4, 0x308}, {0x4F5, 0x447},
{0x4F5, 0x308}, {0x4F8, 0x42B}, {0x4F8, 0x308}, {0x4F9, 0x44B}, {0x4F9, 0x308}, {0x622, 0x627}, {0x622, 0x653}, {0x623, 0x627}, {0x623, 0x654}, {0x624, 0x648}, {0x624, 0x654}, {0x625, 0x627},
{0x625, 0x655}, {0x626, 0x64A}, {0x626, 0x654}, {0x6C0, 0x6D5}, {0x6C0, 0x654}, {0x6C2, 0x6C1}, {0x6C2, 0x654}, {0x6D3, 0x6D2}, {0x6D3, 0x654}, {0x929, 0x928}, {0x929, 0x93C}, {0x931, 0x930},
{0x931, 0x93C}, {0x934, 0x933}, {0x934, 0x93C}, {0x958, 0x915}, {0x958, 0x93C}, {0x959, 0x916}, {0x959, 0x93C}, {0x95A, 0x917}, {0x95A, 0x93C}, {0x95B, 0x91C}, {0x95B, 0x93C}, {0x95C, 0x921},
{0x95C, 0x93C}, {0x95D, 0x922}, {0x95D, 0x93C}, {0x95E, 0x92B}, {0x95E, 0x93C}, {0x95F, 0x92F}, {0x95F, 0x93C}, {0x9CB, 0x9C7}, {0x9CB, 0x9BE}, {0x9CC, 0x9C7}, {0x9CC, 0x9D7}, {0x9DC, 0x9A1},
{0x9DC, 0x9BC}, {0x9DD, 0x9A2}, {0x9DD, 0x9BC}, {0x9DF, 0x9AF}, {0x9DF, 0x9BC}, {0xA33, 0xA32}, {0xA33, 0xA3C}, {0xA36, 0xA38}, {0xA36, 0xA3C}, {0xA59, 0xA16}, {0xA59, 0xA3C}, {0xA5A, 0xA17},
{0xA5A, 0xA3C}, {0xA5B, 0xA1C}, {0xA5B, 0xA3C}, {0xA5E, 0xA2B}, {0xA5E, 0xA3C}, {0xB48, 0xB47}, {0xB48, 0xB56}, {0xB4B, 0xB47}, {0xB4B, 0xB3E}, {0xB4C, 0xB47}, {0xB4C, 0xB57}, {0xB5C, 0xB21},
{0xB5C, 0xB3C}, {0xB5D, 0xB22}, {0xB5D, 0xB3C}, {0xB94, 0xB92}, {0xB94, 0xBD7}, {0xBCA, 0xBC6}, {0xBCA, 0xBBE}, {0xBCB, 0xBC7}, {0xBCB, 0xBBE}, {0xBCC, 0xBC6}, {0xBCC, 0xBD7}, {0xC48, 0xC46},
{0xC48, 0xC56}, {0xCC0, 0xCBF}, {0xCC0, 0xCD5}, {0xCC7, 0xCC6}, {0xCC7, 0xCD5}, {0xCC8, 0xCC6}, {0xCC8, 0xCD6}, {0xCCA, 0xCC6}, {0xCCA, 0xCC2}, {0xCCB, 0xCC6}, {0xCCB, 0xCC2}, {0xCCB, 0xCD5},
{0xD4A, 0xD46}, {0xD4A, 0xD3E}, {0xD4B, 0xD47}, {0xD4B, 0xD3E}, {0xD4C, 0xD46}, {0xD4C, 0xD57}, {0xDDA, 0xDD9}, {0xDDA, 0xDCA}, {0xDDC, 0xDD9}, {0xDDC, 0xDCF}, {0xDDD, 0xDD9}, {0xDDD, 0xDCF},
{0xDDD, 0xDCA}, {0xDDE, 0xDD9}, {0xDDE, 0xDDF}, {0xF43, 0xF42}, {0xF43, 0xFB7}, {0xF4D, 0xF4C}, {0xF4D, 0xFB7}, {0xF52, 0xF51}, {0xF52, 0xFB7}, {0xF57, 0xF56}, {0xF57, 0xFB7}, {0xF5C, 0xF5B},
{0xF5C, 0xFB7}, {0xF69, 0xF40}, {0xF69, 0xFB5}, {0xF73, 0xF71}, {0xF73, 0xF72}, {0xF75, 0xF71}, {0xF75, 0xF74}, {0xF76, 0xFB2}, {0xF76, 0xF80}, {0xF78, 0xFB3}, {0xF78, 0xF80}, {0xF81, 0xF71},
{0xF81, 0xF80}, {0xF93, 0xF92}, {0xF93, 0xFB7}, {0xF9D, 0xF9C}, {0xF9D, 0xFB7}, {0xFA2, 0xFA1}, {0xFA2, 0xFB7}, {0xFA7, 0xFA6}, {0xFA7, 0xFB7}, {0xFAC, 0xFAB}, {0xFAC, 0xFB7}, {0xFB9, 0xF90},
{0xFB9, 0xFB5}, {0x1026, 0x1025}, {0x1026, 0x102E}, {0x1B06, 0x1B05}, {0x1B06, 0x1B35}, {0x1B08, 0x1B07}, {0x1B08, 0x1B35}, {0x1B0A, 0x1B09}, {0x1B0A, 0x1B35}, {0x1B0C, 0x1B0B}, {0x1B0C, 0x1B35},
{0x1B0E, 0x1B0D}, {0x1B0E, 0x1B35}, {0x1B12, 0x1B11}, {0x1B12, 0x1B35}, {0x1B3B, 0x1B3A}, {0x1B3B, 0x1B35}, {0x1B3D, 0x1B3C}, {0x1B3D, 0x1B35}, {0x1B40, 0x1B3E}, {0x1B40, 0x1B35}, {0x1B41, 0x1B3F},
{0x1B41, 0x1B35}, {0x1B43, 0x1B42}, {0x1B43, 0x1B35}, {0x1E00, 0x41}, {0x1E00, 0x325}, {0x1E01, 0x61}, {0x1E01, 0x325}, {0x1E02, 0x42}, {0x1E02, 0x307}, {0x1E03, 0x62}, {0x1E03, 0x307},
{0x1E04, 0x42}, {0x1E04, 0x323}, {0x1E05, 0x62}, {0x1E05, 0x323}, {0x1E06, 0x42}, {0x1E06, 0x331}, {0x1E07, 0x62}, {0x1E07, 0x331}, {0x1E08, 0x43}, {0x1E08, 0x327}, {0x1E08, 0x301}, {0x1E09, 0x63},
{0x1E09, 0x327}, {0x1E09, 0x301}, {0x1E0A, 0x44}, {0x1E0A, 0x307}, {0x1E0B, 0x64}, {0x1E0B, 0x307}, {0x1E0C, 0x44}, {0x1E0C, 0x323}, {0x1E0D, 0x64}, {0x1E0D, 0x323}, {0x1E0E, 0x44}, {0x1E0E, 0x331},
{0x1E0F, 0x64}, {0x1E0F, 0x331}, {0x1E10, 0x44}, {0x1E10, 0x327}, {0x1E11, 0x64}, {0x1E11, 0x327}, {0x1E12, 0x44}, {0x1E12, 0x32D}, {0x1E13, 0x64}, {0x1E13, 0x32D}, {0x1E14, 0x45}, {0x1E14, 0x304},
{0x1E14, 0x300}, {0x1E15, 0x65}, {0x1E15, 0x304}, {0x1E15, 0x300}, {0x1E16, 0x45}, {0x1E16, 0x304}, {0x1E16, 0x301}, {0x1E17, 0x65}, {0x1E17, 0x304}, {0x1E17, 0x301}, {0x1E18, 0x45}, {0x1E18, 0x32D},
{0x1E19, 0x65}, {0x1E19, 0x32D}, {0x1E1A, 0x45}, {0x1E1A, 0x330}, {0x1E1B, 0x65}, {0x1E1B, 0x330}, {0x1E1C, 0x45}, {0x1E1C, 0x327}, {0x1E1C, 0x306}, {0x1E1D, 0x65}, {0x1E1D, 0x327}, {0x1E1D, 0x306},
{0x1E1E, 0x46}, {0x1E1E, 0x307}, {0x1E1F, 0x66}, {0x1E1F, 0x307}, {0x1E20, 0x47}, {0x1E20, 0x304}, {0x1E21, 0x67}, {0x1E21, 0x304}, {0x1E22, 0x48}, {0x1E22, 0x307}, {0x1E23, 0x68}, {0x1E23, 0x307},
{0x1E24, 0x48}, {0x1E24, 0x323}, {0x1E25, 0x68}, {0x1E25, 0x323}, {0x1E26, 0x48}, {0x1E26, 0x308}, {0x1E27, 0x68}, {0x1E27, 0x308}, {0x1E28, 0x48}, {0x1E28, 0x327}, {0x1E29, 0x68}, {0x1E29, 0x327},
{0x1E2A, 0x48}, {0x1E2A, 0x32E}, {0x1E2B, 0x68}, {0x1E2B, 0x32E}, {0x1E2C, 0x49}, {0x1E2C, 0x330}, {0x1E2D, 0x69}, {0x1E2D, 0x330}, {0x1E2E, 0x49}, {0x1E2E, 0x308}, {0x1E2E, 0x301}, {0x1E2F, 0x69},
{0x1E2F, 0x308}, {0x1E2F, 0x301}, {0x1E30, 0x4B}, {0x1E30, 0x301}, {0x1E31, 0x6B}, {0x1E31, 0x301}, {0x1E32, 0x4B}, {0x1E32, 0x323}, {0x1E33, 0x6B}, {0x1E33, 0x323}, {0x1E34, 0x4B}, {0x1E34, 0x331},
{0x1E35, 0x6B}, {0x1E35, 0x331}, {0x1E36, 0x4C}, {0x1E36, 0x323}, {0x1E37, 0x6C}, {0x1E37, 0x323}, {0x1E38, 0x4C}, {0x1E38, 0x323}, {0x1E38, 0x304}, {0x1E39, 0x6C}, {0x1E39, 0x323}, {0x1E39, 0x304},
{0x1E3A, 0x4C}, {0x1E3A, 0x331}, {0x1E3B, 0x6C}, {0x1E3B, 0x331}, {0x1E3C, 0x4C}, {0x1E3C, 0x32D}, {0x1E3D, 0x6C}, {0x1E3D, 0x32D}, {0x1E3E, 0x4D}, {0x1E3E, 0x301}, {0x1E3F, 0x6D}, {0x1E3F, 0x301},
{0x1E40, 0x4D}, {0x1E40, 0x307}, {0x1E41, 0x6D}, {0x1E41, 0x307}, {0x1E42, 0x4D}, {0x1E42, 0x323}, {0x1E43, 0x6D}, {0x1E43, 0x323}, {0x1E44, 0x4E}, {0x1E44, 0x307}, {0x1E45, 0x6E}, {0x1E45, 0x307},
{0x1E46, 0x4E}, {0x1E46, 0x323}, {0x1E47, 0x6E}, {0x1E47, 0x323}, {0x1E48, 0x4E}, {0x1E48, 0x331}, {0x1E49, 0x6E}, {0x1E49, 0x331}, {0x1E4A, 0x4E}, {0x1E4A, 0x32D}, {0x1E4B, 0x6E}, {0x1E4B, 0x32D},
{0x1E4C, 0x4F}, {0x1E4C, 0x303}, {0x1E4C, 0x301}, {0x1E4D, 0x6F}, {0x1E4D, 0x303}, {0x1E4D, 0x301}, {0x1E4E, 0x4F}, {0x1E4E, 0x303}, {0x1E4E, 0x308}, {0x1E4F, 0x6F}, {0x1E4F, 0x303}, {0x1E4F, 0x308},
{0x1E50, 0x4F}, {0x1E50, 0x304}, {0x1E50, 0x300}, {0x1E51, 0x6F}, {0x1E51, 0x304}, {0x1E51, 0x300}, {0x1E52, 0x4F}, {0x1E52, 0x304}, {0x1E52, 0x301}, {0x1E53, 0x6F}, {0x1E53, 0x304}, {0x1E53, 0x301},
{0x1E54, 0x50}, {0x1E54, 0x301}, {0x1E55, 0x70}, {0x1E55, 0x301}, {0x1E56, 0x50}, {0x1E56, 0x307}, {0x1E57, 0x70}, {0x1E57, 0x307}, {0x1E58, 0x52}, {0x1E58, 0x307}, {0x1E59, 0x72}, {0x1E59, 0x307},
{0x1E5A, 0x52}, {0x1E5A, 0x323}, {0x1E5B, 0x72}, {0x1E5B, 0x323}, {0x1E5C, 0x52}, {0x1E5C, 0x323}, {0x1E5C, 0x304}, {0x1E5D, 0x72}, {0x1E5D, 0x323}, {0x1E5D, 0x304}, {0x1E5E, 0x52}, {0x1E5E, 0x331},
{0x1E5F, 0x72}, {0x1E5F, 0x331}, {0x1E60, 0x53}, {0x1E60, 0x307}, {0x1E61, 0x73}, {0x1E61, 0x307}, {0x1E62, 0x53}, {0x1E62, 0x323}, {0x1E63, 0x73}, {0x1E63, 0x323}, {0x1E64, 0x53}, {0x1E64, 0x301},
{0x1E64, 0x307}, {0x1E65, 0x73}, {0x1E65, 0x301}, {0x1E65, 0x307}, {0x1E66, 0x53}, {0x1E66, 0x30C}, {0x1E66, 0x307}, {0x1E67, 0x73}, {0x1E67, 0x30C}, {0x1E67, 0x307}, {0x1E68, 0x53}, {0x1E68, 0x323},
{0x1E68, 0x307}, {0x1E69, 0x73}, {0x1E69, 0x323}, {0x1E69, 0x307}, {0x1E6A, 0x54}, {0x1E6A, 0x307}, {0x1E6B, 0x74}, {0x1E6B, 0x307}, {0x1E6C, 0x54}, {0x1E6C, 0x323}, {0x1E6D, 0x74}, {0x1E6D, 0x323},
{0x1E6E, 0x54}, {0x1E6E, 0x331}, {0x1E6F, 0x74}, {0x1E6F, 0x331}, {0x1E70, 0x54}, {0x1E70, 0x32D}, {0x1E71, 0x74}, {0x1E71, 0x32D}, {0x1E72, 0x55}, {0x1E72, 0x324}, {0x1E73, 0x75}, {0x1E73, 0x324},
{0x1E74, 0x55}, {0x1E74, 0x330}, {0x1E75, 0x75}, {0x1E75, 0x330}, {0x1E76, 0x55}, {0x1E76, 0x32D}, {0x1E77, 0x75}, {0x1E77, 0x32D}, {0x1E78, 0x55}, {0x1E78, 0x303}, {0x1E78, 0x301}, {0x1E79, 0x75},
{0x1E79, 0x303}, {0x1E79, 0x301}, {0x1E7A, 0x55}, {0x1E7A, 0x304}, {0x1E7A, 0x308}, {0x1E7B, 0x75}, {0x1E7B, 0x304}, {0x1E7B, 0x308}, {0x1E7C, 0x56}, {0x1E7C, 0x303}, {0x1E7D, 0x76}, {0x1E7D, 0x303},
{0x1E7E, 0x56}, {0x1E7E, 0x323}, {0x1E7F, 0x76}, {0x1E7F, 0x323}, {0x1E80, 0x57}, {0x1E80, 0x300}, {0x1E81, 0x77}, {0x1E81, 0x300}, {0x1E82, 0x57}, {0x1E82, 0x301}, {0x1E83, 0x77}, {0x1E83, 0x301},
{0x1E84, 0x57}, {0x1E84, 0x308}, {0x1E85, 0x77}, {0x1E85, 0x308}, {0x1E86, 0x57}, {0x1E86, 0x307}, {0x1E87, 0x77}, {0x1E87, 0x307}, {0x1E88, 0x57}, {0x1E88, 0x323}, {0x1E89, 0x77}, {0x1E89, 0x323},
{0x1E8A, 0x58}, {0x1E8A, 0x307}, {0x1E8B, 0x78}, {0x1E8B, 0x307}, {0x1E8C, 0x58}, {0x1E8C, 0x308}, {0x1E8D, 0x78}, {0x1E8D, 0x308}, {0x1E8E, 0x59}, {0x1E8E, 0x307}, {0x1E8F, 0x79}, {0x1E8F, 0x307},
{0x1E90, 0x5A}, {0x1E90, 0x302}, {0x1E91, 0x7A}, {0x1E91, 0x302}, {0x1E92, 0x5A}, {0x1E92, 0x323}, {0x1E93, 0x7A}, {0x1E93, 0x323}, {0x1E94, 0x5A}, {0x1E94, 0x331}, {0x1E95, 0x7A}, {0x1E95, 0x331},
{0x1E96, 0x68}, {0x1E96, 0x331}, {0x1E97, 0x74}, {0x1E97, 0x308}, {0x1E98, 0x77}, {0x1E98, 0x30A}, {0x1E99, 0x79}, {0x1E99, 0x30A}, {0x1E9B, 0x17F}, {0x1E9B, 0x307}, {0x1EA0, 0x41}, {0x1EA0, 0x323},
{0x1EA1, 0x61}, {0x1EA1, 0x323}, {0x1EA2, 0x41}, {0x1EA2, 0x309}, {0x1EA3, 0x61}, {0x1EA3, 0x309}, {0x1EA4, 0x41}, {0x1EA4, 0x302}, {0x1EA4, 0x301}, {0x1EA5, 0x61}, {0x1EA5, 0x302}, {0x1EA5, 0x301},
{0x1EA6, 0x41}, {0x1EA6, 0x302}, {0x1EA6, 0x300}, {0x1EA7, 0x61}, {0x1EA7, 0x302}, {0x1EA7, 0x300}, {0x1EA8, 0x41}, {0x1EA8, 0x302}, {0x1EA8, 0x309}, {0x1EA9, 0x61}, {0x1EA9, 0x302}, {0x1EA9, 0x309},
{0x1EAA, 0x41}, {0x1EAA, 0x302}, {0x1EAA, 0x303}, {0x1EAB, 0x61}, {0x1EAB, 0x302}, {0x1EAB, 0x303}, {0x1EAC, 0x41}, {0x1EAC, 0x323}, {0x1EAC, 0x302}, {0x1EAD, 0x61}, {0x1EAD, 0x323}, {0x1EAD, 0x302},
{0x1EAE, 0x41}, {0x1EAE, 0x306}, {0x1EAE, 0x301}, {0x1EAF, 0x61}, {0x1EAF, 0x306}, {0x1EAF, 0x301}, {0x1EB0, 0x41}, {0x1EB0, 0x306}, {0x1EB0, 0x300}, {0x1EB1, 0x61}, {0x1EB1, 0x306}, {0x1EB1, 0x300},
{0x1EB2, 0x41}, {0x1EB2, 0x306}, {0x1EB2, 0x309}, {0x1EB3, 0x61}, {0x1EB3, 0x306}, {0x1EB3, 0x309}, {0x1EB4, 0x41}, {0x1EB4, 0x306}, {0x1EB4, 0x303}, {0x1EB5, 0x61}, {0x1EB5, 0x306}, {0x1EB5, 0x303},
{0x1EB6, 0x41}, {0x1EB6, 0x323}, {0x1EB6, 0x306}, {0x1EB7, 0x61}, {0x1EB7, 0x323}, {0x1EB7, 0x306}, {0x1EB8, 0x45}, {0x1EB8, 0x323}, {0x1EB9, 0x65}, {0x1EB9, 0x323}, {0x1EBA, 0x45}, {0x1EBA, 0x309},
{0x1EBB, 0x65}, {0x1EBB, 0x309}, {0x1EBC, 0x45}, {0x1EBC, 0x303}, {0x1EBD, 0x65}, {0x1EBD, 0x303}, {0x1EBE, 0x45}, {0x1EBE, 0x302}, {0x1EBE, 0x301}, {0x1EBF, 0x65}, {0x1EBF, 0x302}, {0x1EBF, 0x301},
{0x1EC0, 0x45}, {0x1EC0, 0x302}, {0x1EC0, 0x300}, {0x1EC1, 0x65}, {0x1EC1, 0x302}, {0x1EC1, 0x300}, {0x1EC2, 0x45}, {0x1EC2, 0x302}, {0x1EC2, 0x309}, {0x1EC3, 0x65}, {0x1EC3, 0x302}, {0x1EC3, 0x309},
{0x1EC4, 0x45}, {0x1EC4, 0x302}, {0x1EC4, 0x303}, {0x1EC5, 0x65}, {0x1EC5, 0x302}, {0x1EC5, 0x303}, {0x1EC6, 0x45}, {0x1EC6, 0x323}, {0x1EC6, 0x302}, {0x1EC7, 0x65}, {0x1EC7, 0x323}, {0x1EC7, 0x302},
{0x1EC8, 0x49}, {0x1EC8, 0x309}, {0x1EC9, 0x69}, {0x1EC9, 0x309}, {0x1ECA, 0x49}, {0x1ECA, 0x323}, {0x1ECB, 0x69}, {0x1ECB, 0x323}, {0x1ECC, 0x4F}, {0x1ECC, 0x323}, {0x1ECD, 0x6F}, {0x1ECD, 0x323},
{0x1ECE, 0x4F}, {0x1ECE, 0x309}, {0x1ECF, 0x6F}, {0x1ECF, 0x309}, {0x1ED0, 0x4F}, {0x1ED0, 0x302}, {0x1ED0, 0x301}, {0x1ED1, 0x6F}, {0x1ED1, 0x302}, {0x1ED1, 0x301}, {0x1ED2, 0x4F}, {0x1ED2, 0x302},
{0x1ED2, 0x300}, {0x1ED3, 0x6F}, {0x1ED3, 0x302}, {0x1ED3, 0x300}, {0x1ED4, 0x4F}, {0x1ED4, 0x302}, {0x1ED4, 0x309}, {0x1ED5, 0x6F}, {0x1ED5, 0x302}, {0x1ED5, 0x309}, {0x1ED6, 0x4F}, {0x1ED6, 0x302},
{0x1ED6, 0x303}, {0x1ED7, 0x6F}, {0x1ED7, 0x302}, {0x1ED7, 0x303}, {0x1ED8, 0x4F}, {0x1ED8, 0x323}, {0x1ED8, 0x302}, {0x1ED9, 0x6F}, {0x1ED9, 0x323}, {0x1ED9, 0x302}, {0x1EDA, 0x4F}, {0x1EDA, 0x31B},
{0x1EDA, 0x301}, {0x1EDB, 0x6F}, {0x1EDB, 0x31B}, {0x1EDB, 0x301}, {0x1EDC, 0x4F}, {0x1EDC, 0x31B}, {0x1EDC, 0x300}, {0x1EDD, 0x6F}, {0x1EDD, 0x31B}, {0x1EDD, 0x300}, {0x1EDE, 0x4F}, {0x1EDE, 0x31B},
{0x1EDE, 0x309}, {0x1EDF, 0x6F}, {0x1EDF, 0x31B}, {0x1EDF, 0x309}, {0x1EE0, 0x4F}, {0x1EE0, 0x31B}, {0x1EE0, 0x303}, {0x1EE1, 0x6F}, {0x1EE1, 0x31B}, {0x1EE1, 0x303}, {0x1EE2, 0x4F}, {0x1EE2, 0x31B},
{0x1EE2, 0x323}, {0x1EE3, 0x6F}, {0x1EE3, 0x31B}, {0x1EE3, 0x323}, {0x1EE4, 0x55}, {0x1EE4, 0x323}, {0x1EE5, 0x75}, {0x1EE5, 0x323}, {0x1EE6, 0x55}, {0x1EE6, 0x309}, {0x1EE7, 0x75}, {0x1EE7, 0x309},
{0x1EE8, 0x55}, {0x1EE8, 0x31B}, {0x1EE8, 0x301}, {0x1EE9, 0x75}, {0x1EE9, 0x31B}, {0x1EE9, 0x301}, {0x1EEA, 0x55}, {0x1EEA, 0x31B}, {0x1EEA, 0x300}, {0x1EEB, 0x75}, {0x1EEB, 0x31B}, {0x1EEB, 0x300},
{0x1EEC, 0x55}, {0x1EEC, 0x31B}, {0x1EEC, 0x309}, {0x1EED, 0x75}, {0x1EED, 0x31B}, {0x1EED, 0x309}, {0x1EEE, 0x55}, {0x1EEE, 0x31B}, {0x1EEE, 0x303}, {0x1EEF, 0x75}, {0x1EEF, 0x31B}, {0x1EEF, 0x303},
{0x1EF0, 0x55}, {0x1EF0, 0x31B}, {0x1EF0, 0x323}, {0x1EF1, 0x75}, {0x1EF1, 0x31B}, {0x1EF1, 0x323}, {0x1EF2, 0x59}, {0x1EF2, 0x300}, {0x1EF3, 0x79}, {0x1EF3, 0x300}, {0x1EF4, 0x59}, {0x1EF4, 0x323},
{0x1EF5, 0x79}, {0x1EF5, 0x323}, {0x1EF6, 0x59}, {0x1EF6, 0x309}, {0x1EF7, 0x79}, {0x1EF7, 0x309}, {0x1EF8, 0x59}, {0x1EF8, 0x303}, {0x1EF9, 0x79}, {0x1EF9, 0x303}, {0x1F00, 0x3B1}, {0x1F00, 0x313},
{0x1F01, 0x3B1}, {0x1F01, 0x314}, {0x1F02, 0x3B1}, {0x1F02, 0x313}, {0x1F02, 0x300}, {0x1F03, 0x3B1}, {0x1F03, 0x314}, {0x1F03, 0x300}, {0x1F04, 0x3B1}, {0x1F04, 0x313}, {0x1F04, 0x301},
{0x1F05, 0x3B1}, {0x1F05, 0x314}, {0x1F05, 0x301}, {0x1F06, 0x3B1}, {0x1F06, 0x313}, {0x1F06, 0x342}, {0x1F07, 0x3B1}, {0x1F07, 0x314}, {0x1F07, 0x342}, {0x1F08, 0x391}, {0x1F08, 0x313},
{0x1F09, 0x391}, {0x1F09, 0x314}, {0x1F0A, 0x391}, {0x1F0A, 0x313}, {0x1F0A, 0x300}, {0x1F0B, 0x391}, {0x1F0B, 0x314}, {0x1F0B, 0x300}, {0x1F0C, 0x391}, {0x1F0C, 0x313}, {0x1F0C, 0x301},
{0x1F0D, 0x391}, {0x1F0D, 0x314}, {0x1F0D, 0x301}, {0x1F0E, 0x391}, {0x1F0E, 0x313}, {0x1F0E, 0x342}, {0x1F0F, 0x391}, {0x1F0F, 0x314}, {0x1F0F, 0x342}, {0x1F10, 0x3B5}, {0x1F10, 0x313},
{0x1F11, 0x3B5}, {0x1F11, 0x314}, {0x1F12, 0x3B5}, {0x1F12, 0x313}, {0x1F12, 0x300}, {0x1F13, 0x3B5}, {0x1F13, 0x314}, {0x1F13, 0x300}, {0x1F14, 0x3B5}, {0x1F14, 0x313}, {0x1F14, 0x301},
{0x1F15, 0x3B5}, {0x1F15, 0x314}, {0x1F15, 0x301}, {0x1F18, 0x395}, {0x1F18, 0x313}, {0x1F19, 0x395}, {0x1F19, 0x314}, {0x1F1A, 0x395}, {0x1F1A, 0x313}, {0x1F1A, 0x300}, {0x1F1B, 0x395},
{0x1F1B, 0x314}, {0x1F1B, 0x300}, {0x1F1C, 0x395}, {0x1F1C, 0x313}, {0x1F1C, 0x301}, {0x1F1D, 0x395}, {0x1F1D, 0x314}, {0x1F1D, 0x301}, {0x1F20, 0x3B7}, {0x1F20, 0x313}, {0x1F21, 0x3B7},
{0x1F21, 0x314}, {0x1F22, 0x3B7}, {0x1F22, 0x313}, {0x1F22, 0x300}, {0x1F23, 0x3B7}, {0x1F23, 0x314}, {0x1F23, 0x300}, {0x1F24, 0x3B7}, {0x1F24, 0x313}, {0x1F24, 0x301}, {0x1F25, 0x3B7},
{0x1F25, 0x314}, {0x1F25, 0x301}, {0x1F26, 0x3B7}, {0x1F26, 0x313}, {0x1F26, 0x342}, {0x1F27, 0x3B7}, {0x1F27, 0x314}, {0x1F27, 0x342}, {0x1F28, 0x397}, {0x1F28, 0x313}, {0x1F29, 0x397},
{0x1F29, 0x314}, {0x1F2A, 0x397}, {0x1F2A, 0x313}, {0x1F2A, 0x300}, {0x1F2B, 0x397}, {0x1F2B, 0x314}, {0x1F2B, 0x300}, {0x1F2C, 0x397}, {0x1F2C, 0x313}, {0x1F2C, 0x301}, {0x1F2D, 0x397},
{0x1F2D, 0x314}, {0x1F2D, 0x301}, {0x1F2E, 0x397}, {0x1F2E, 0x313}, {0x1F2E, 0x342}, {0x1F2F, 0x397}, {0x1F2F, 0x314}, {0x1F2F, 0x342}, {0x1F30, 0x3B9}, {0x1F30, 0x313}, {0x1F31, 0x3B9},
{0x1F31, 0x314}, {0x1F32, 0x3B9}, {0x1F32, 0x313}, {0x1F32, 0x300}, {0x1F33, 0x3B9}, {0x1F33, 0x314}, {0x1F33, 0x300}, {0x1F34, 0x3B9}, {0x1F34, 0x313}, {0x1F34, 0x301}, {0x1F35, 0x3B9},
{0x1F35, 0x314}, {0x1F35, 0x301}, {0x1F36, 0x3B9}, {0x1F36, 0x313}, {0x1F36, 0x342}, {0x1F37, 0x3B9}, {0x1F37, 0x314}, {0x1F37, 0x342}, {0x1F38, 0x399}, {0x1F38, 0x313}, {0x1F39, 0x399},
{0x1F39, 0x314}, {0x1F3A, 0x399}, {0x1F3A, 0x313}, {0x1F3A, 0x300}, {0x1F3B, 0x399}, {0x1F3B, 0x314}, {0x1F3B, 0x300}, {0x1F3C, 0x399}, {0x1F3C, 0x313}, {0x1F3C, 0x301}, {0x1F3D, 0x399},
{0x1F3D, 0x314}, {0x1F3D, 0x301}, {0x1F3E, 0x399}, {0x1F3E, 0x313}, {0x1F3E, 0x342}, {0x1F3F, 0x399}, {0x1F3F, 0x314}, {0x1F3F, 0x342}, {0x1F40, 0x3BF}, {0x1F40, 0x313}, {0x1F41, 0x3BF},
{0x1F41, 0x314}, {0x1F42, 0x3BF}, {0x1F42, 0x313}, {0x1F42, 0x300}, {0x1F43, 0x3BF}, {0x1F43, 0x314}, {0x1F43, 0x300}, {0x1F44, 0x3BF}, {0x1F44, 0x313}, {0x1F44, 0x301}, {0x1F45, 0x3BF},
{0x1F45, 0x314}, {0x1F45, 0x301}, {0x1F48, 0x39F}, {0x1F48, 0x313}, {0x1F49, 0x39F}, {0x1F49, 0x314}, {0x1F4A, 0x39F}, {0x1F4A, 0x313}, {0x1F4A, 0x300}, {0x1F4B, 0x39F}, {0x1F4B, 0x314},
{0x1F4B, 0x300}, {0x1F4C, 0x39F}, {0x1F4C, 0x313}, {0x1F4C, 0x301}, {0x1F4D, 0x39F}, {0x1F4D, 0x314}, {0x1F4D, 0x301}, {0x1F50, 0x3C5}, {0x1F50, 0x313}, {0x1F51, 0x3C5}, {0x1F51, 0x314},
{0x1F52, 0x3C5}, {0x1F52, 0x313}, {0x1F52, 0x300}, {0x1F53, 0x3C5}, {0x1F53, 0x314}, {0x1F53, 0x300}, {0x1F54, 0x3C5}, {0x1F54, 0x313}, {0x1F54, 0x301}, {0x1F55, 0x3C5}, {0x1F55, 0x314},
{0x1F55, 0x301}, {0x1F56, 0x3C5}, {0x1F56, 0x313}, {0x1F56, 0x342}, {0x1F57, 0x3C5}, {0x1F57, 0x314}, {0x1F57, 0x342}, {0x1F59, 0x3A5}, {0x1F59, 0x314}, {0x1F5B, 0x3A5}, {0x1F5B, 0x314},
{0x1F5B, 0x300}, {0x1F5D, 0x3A5}, {0x1F5D, 0x314}, {0x1F5D, 0x301}, {0x1F5F, 0x3A5}, {0x1F5F, 0x314}, {0x1F5F, 0x342}, {0x1F60, 0x3C9}, {0x1F60, 0x313}, {0x1F61, 0x3C9}, {0x1F61, 0x314},
{0x1F62, 0x3C9}, {0x1F62, 0x313}, {0x1F62, 0x300}, {0x1F63, 0x3C9}, {0x1F63, 0x314}, {0x1F63, 0x300}, {0x1F64, 0x3C9}, {0x1F64, 0x313}, {0x1F64, 0x301}, {0x1F65, 0x3C9}, {0x1F65, 0x314},
{0x1F65, 0x301}, {0x1F66, 0x3C9}, {0x1F66, 0x313}, {0x1F66, 0x342}, {0x1F67, 0x3C9}, {0x1F67, 0x314}, {0x1F67, 0x342}, {0x1F68, 0x3A9}, {0x1F68, 0x313}, {0x1F69, 0x3A9}, {0x1F69, 0x314},
{0x1F6A, 0x3A9}, {0x1F6A, 0x313}, {0x1F6A, 0x300}, {0x1F6B, 0x3A9}, {0x1F6B, 0x314}, {0x1F6B, 0x300}, {0x1F6C, 0x3A9}, {0x1F6C, 0x313}, {0x1F6C, 0x301}, {0x1F6D, 0x3A9}, {0x1F6D, 0x314},
{0x1F6D, 0x301}, {0x1F6E, 0x3A9}, {0x1F6E, 0x313}, {0x1F6E, 0x342}, {0x1F6F, 0x3A9}, {0x1F6F, 0x314}, {0x1F6F, 0x342}, {0x1F70, 0x3B1}, {0x1F70, 0x300}, {0x1F71, 0x3B1}, {0x1F71, 0x301},
{0x1F72, 0x3B5}, {0x1F72, 0x300}, {0x1F73, 0x3B5}, {0x1F73, 0x301}, {0x1F74, 0x3B7}, {0x1F74, 0x300}, {0x1F75, 0x3B7}, {0x1F75, 0x301}, {0x1F76, 0x3B9}, {0x1F76, 0x300}, {0x1F77, 0x3B9},
{0x1F77, 0x301}, {0x1F78, 0x3BF}, {0x1F78, 0x300}, {0x1F79, 0x3BF}, {0x1F79, 0x301}, {0x1F7A, 0x3C5}, {0x1F7A, 0x300}, {0x1F7B, 0x3C5}, {0x1F7B, 0x301}, {0x1F7C, 0x3C9}, {0x1F7C, 0x300},
{0x1F7D, 0x3C9}, {0x1F7D, 0x301}, {0x1F80, 0x3B1}, {0x1F80, 0x313}, {0x1F80, 0x345}, {0x1F81, 0x3B1}, {0x1F81, 0x314}, {0x1F81, 0x345}, {0x1F82, 0x3B1}, {0x1F82, 0x313}, {0x1F82, 0x300},
{0x1F82, 0x345}, {0x1F83, 0x3B1}, {0x1F83, 0x314}, {0x1F83, 0x300}, {0x1F83, 0x345}, {0x1F84, 0x3B1}, {0x1F84, 0x313}, {0x1F84, 0x301}, {0x1F84, 0x345}, {0x1F85, 0x3B1}, {0x1F85, 0x314},
{0x1F85, 0x301}, {0x1F85, 0x345}, {0x1F86, 0x3B1}, {0x1F86, 0x313}, {0x1F86, 0x342}, {0x1F86, 0x345}, {0x1F87, 0x3B1}, {0x1F87, 0x314}, {0x1F87, 0x342}, {0x1F87, 0x345}, {0x1F88, 0x391},
{0x1F88, 0x313}, {0x1F88, 0x345}, {0x1F89, 0x391}, {0x1F89, 0x314}, {0x1F89, 0x345}, {0x1F8A, 0x391}, {0x1F8A, 0x313}, {0x1F8A, 0x300}, {0x1F8A, 0x345}, {0x1F8B, 0x391}, {0x1F8B, 0x314},
{0x1F8B, 0x300}, {0x1F8B, 0x345}, {0x1F8C, 0x391}, {0x1F8C, 0x313}, {0x1F8C, 0x301}, {0x1F8C, 0x345}, {0x1F8D, 0x391}, {0x1F8D, 0x314}, {0x1F8D, 0x301}, {0x1F8D, 0x345}, {0x1F8E, 0x391},
{0x1F8E, 0x313}, {0x1F8E, 0x342}, {0x1F8E, 0x345}, {0x1F8F, 0x391}, {0x1F8F, 0x314}, {0x1F8F, 0x342}, {0x1F8F, 0x345}, {0x1F90, 0x3B7}, {0x1F90, 0x313}, {0x1F90, 0x345}, {0x1F91, 0x3B7},
{0x1F91, 0x314}, {0x1F91, 0x345}, {0x1F92, 0x3B7}, {0x1F92, 0x313}, {0x1F92, 0x300}, {0x1F92, 0x345}, {0x1F93, 0x3B7}, {0x1F93, 0x314}, {0x1F93, 0x300}, {0x1F93, 0x345}, {0x1F94, 0x3B7},
{0x1F94, 0x313}, {0x1F94, 0x301}, {0x1F94, 0x345}, {0x1F95, 0x3B7}, {0x1F95, 0x314}, {0x1F95, 0x301}, {0x1F95, 0x345}, {0x1F96, 0x3B7}, {0x1F96, 0x313}, {0x1F96, 0x342}, {0x1F96, 0x345},
{0x1F97, 0x3B7}, {0x1F97, 0x314}, {0x1F97, 0x342}, {0x1F97, 0x345}, {0x1F98, 0x397}, {0x1F98, 0x313}, {0x1F98, 0x345}, {0x1F99, 0x397}, {0x1F99, 0x314}, {0x1F99, 0x345}, {0x1F9A, 0x397},
{0x1F9A, 0x313}, {0x1F9A, 0x300}, {0x1F9A, 0x345}, {0x1F9B, 0x397}, {0x1F9B, 0x314}, {0x1F9B, 0x300}, {0x1F9B, 0x345}, {0x1F9C, 0x397}, {0x1F9C, 0x313}, {0x1F9C, 0x301}, {0x1F9C, 0x345},
{0x1F9D, 0x397}, {0x1F9D, 0x314}, {0x1F9D, 0x301}, {0x1F9D, 0x345}, {0x1F9E, 0x397}, {0x1F9E, 0x313}, {0x1F9E, 0x342}, {0x1F9E, 0x345}, {0x1F9F, 0x397}, {0x1F9F, 0x314}, {0x1F9F, 0x342},
{0x1F9F, 0x345}, {0x1FA0, 0x3C9}, {0x1FA0, 0x313}, {0x1FA0, 0x345}, {0x1FA1, 0x3C9}, {0x1FA1, 0x314}, {0x1FA1, 0x345}, {0x1FA2, 0x3C9}, {0x1FA2, 0x313}, {0x1FA2, 0x300}, {0x1FA2, 0x345},
{0x1FA3, 0x3C9}, {0x1FA3, 0x314}, {0x1FA3, 0x300}, {0x1FA3, 0x345}, {0x1FA4, 0x3C9}, {0x1FA4, 0x313}, {0x1FA4, 0x301}, {0x1FA4, 0x345}, {0x1FA5, 0x3C9}, {0x1FA5, 0x314}, {0x1FA5, 0x301},
{0x1FA5, 0x345}, {0x1FA6, 0x3C9}, {0x1FA6, 0x313}, {0x1FA6, 0x342}, {0x1FA6, 0x345}, {0x1FA7, 0x3C9}, {0x1FA7, 0x314}, {0x1FA7, 0x342}, {0x1FA7, 0x345}, {0x1FA8, 0x3A9}, {0x1FA8, 0x313},
{0x1FA8, 0x345}, {0x1FA9, 0x3A9}, {0x1FA9, 0x314}, {0x1FA9, 0x345}, {0x1FAA, 0x3A9}, {0x1FAA, 0x313}, {0x1FAA, 0x300}, {0x1FAA, 0x345}, {0x1FAB, 0x3A9}, {0x1FAB, 0x314}, {0x1FAB, 0x300},
{0x1FAB, 0x345}, {0x1FAC, 0x3A9}, {0x1FAC, 0x313}, {0x1FAC, 0x301}, {0x1FAC, 0x345}, {0x1FAD, 0x3A9}, {0x1FAD, 0x314}, {0x1FAD, 0x301}, {0x1FAD, 0x345}, {0x1FAE, 0x3A9}, {0x1FAE, 0x313},
{0x1FAE, 0x342}, {0x1FAE, 0x345}, {0x1FAF, 0x3A9}, {0x1FAF, 0x314}, {0x1FAF, 0x342}, {0x1FAF, 0x345}, {0x1FB0, 0x3B1}, {0x1FB0, 0x306}, {0x1FB1, 0x3B1}, {0x1FB1, 0x304}, {0x1FB2, 0x3B1},
{0x1FB2, 0x300}, {0x1FB2, 0x345}, {0x1FB3, 0x3B1}, {0x1FB3, 0x345}, {0x1FB4, 0x3B1}, {0x1FB4, 0x301}, {0x1FB4, 0x345}, {0x1FB6, 0x3B1}, {0x1FB6, 0x342}, {0x1FB7, 0x3B1}, {0x1FB7, 0x342},
{0x1FB7, 0x345}, {0x1FB8, 0x391}, {0x1FB8, 0x306}, {0x1FB9, 0x391}, {0x1FB9, 0x304}, {0x1FBA, 0x391}, {0x1FBA, 0x300}, {0x1FBB, 0x391}, {0x1FBB, 0x301}, {0x1FBC, 0x391}, {0x1FBC, 0x345},
{0x1FBE, 0x3B9}, {0x1FC1, 0xA8}, {0x1FC1, 0x342}, {0x1FC2, 0x3B7}, {0x1FC2, 0x300}, {0x1FC2, 0x345}, {0x1FC3, 0x3B7}, {0x1FC3, 0x345}, {0x1FC4, 0x3B7}, {0x1FC4, 0x301}, {0x1FC4, 0x345},
{0x1FC6, 0x3B7}, {0x1FC6, 0x342}, {0x1FC7, 0x3B7}, {0x1FC7, 0x342}, {0x1FC7, 0x345}, {0x1FC8, 0x395}, {0x1FC8, 0x300}, {0x1FC9, 0x395}, {0x1FC9, 0x301}, {0x1FCA, 0x397}, {0x1FCA, 0x300},
{0x1FCB, 0x397}, {0x1FCB, 0x301}, {0x1FCC, 0x397}, {0x1FCC, 0x345}, {0x1FCD, 0x1FBF}, {0x1FCD, 0x300}, {0x1FCE, 0x1FBF}, {0x1FCE, 0x301}, {0x1FCF, 0x1FBF}, {0x1FCF, 0x342}, {0x1FD0, 0x3B9},
{0x1FD0, 0x306}, {0x1FD1, 0x3B9}, {0x1FD1, 0x304}, {0x1FD2, 0x3B9}, {0x1FD2, 0x308}, {0x1FD2, 0x300}, {0x1FD3, 0x3B9}, {0x1FD3, 0x308}, {0x1FD3, 0x301}, {0x1FD6, 0x3B9}, {0x1FD6, 0x342},
{0x1FD7, 0x3B9}, {0x1FD7, 0x308}, {0x1FD7, 0x342}, {0x1FD8, 0x399}, {0x1FD8, 0x306}, {0x1FD9, 0x399}, {0x1FD9, 0x304}, {0x1FDA, 0x399}, {0x1FDA, 0x300}, {0x1FDB, 0x399}, {0x1FDB, 0x301},
{0x1FDD, 0x1FFE}, {0x1FDD, 0x300}, {0x1FDE, 0x1FFE}, {0x1FDE, 0x301}, {0x1FDF, 0x1FFE}, {0x1FDF, 0x342}, {0x1FE0, 0x3C5}, {0x1FE0, 0x306}, {0x1FE1, 0x3C5}, {0x1FE1, 0x304}, {0x1FE2, 0x3C5},
{0x1FE2, 0x308}, {0x1FE2, 0x300}, {0x1FE3, 0x3C5}, {0x1FE3, 0x308}, {0x1FE3, 0x301}, {0x1FE4, 0x3C1}, {0x1FE4, 0x313}, {0x1FE5, 0x3C1}, {0x1FE5, 0x314}, {0x1FE6, 0x3C5}, {0x1FE6, 0x342},
{0x1FE7, 0x3C5}, {0x1FE7, 0x308}, {0x1FE7, 0x342}, {0x1FE8, 0x3A5}, {0x1FE8, 0x306}, {0x1FE9, 0x3A5}, {0x1FE9, 0x304}, {0x1FEA, 0x3A5}, {0x1FEA, 0x300}, {0x1FEB, 0x3A5}, {0x1FEB, 0x301},
{0x1FEC, 0x3A1}, {0x1FEC, 0x314}, {0x1FED, 0xA8}, {0x1FED, 0x300}, {0x1FEE, 0xA8}, {0x1FEE, 0x301}, {0x1FEF, 0x60}, {0x1FF2, 0x3C9}, {0x1FF2, 0x300}, {0x1FF2, 0x345}, {0x1FF3, 0x3C9}, {0x1FF3, 0x345},
{0x1FF4, 0x3C9}, {0x1FF4, 0x301}, {0x1FF4, 0x345}, {0x1FF6, 0x3C9}, {0x1FF6, 0x342}, {0x1FF7, 0x3C9}, {0x1FF7, 0x342}, {0x1FF7, 0x345}, {0x1FF8, 0x39F}, {0x1FF8, 0x300}, {0x1FF9, 0x39F},
{0x1FF9, 0x301}, {0x1FFA, 0x3A9}, {0x1FFA, 0x300}, {0x1FFB, 0x3A9}, {0x1FFB, 0x301}, {0x1FFC, 0x3A9}, {0x1FFC, 0x345}, {0x1FFD, 0xB4}, {0x2000, 0x2002}, {0x2001, 0x2003}, {0x2126, 0x3A9},
{0x212A, 0x4B}, {0x212B, 0x41}, {0x212B, 0x30A}, {0x219A, 0x2190}, {0x219A, 0x338}, {0x219B, 0x2192}, {0x219B, 0x338}, {0x21AE, 0x2194}, {0x21AE, 0x338}, {0x21CD, 0x21D0}, {0x21CD, 0x338},
{0x21CE, 0x21D4}, {0x21CE, 0x338}, {0x21CF, 0x21D2}, {0x21CF, 0x338}, {0x2204, 0x2203}, {0x2204, 0x338}, {0x2209, 0x2208}, {0x2209, 0x338}, {0x220C, 0x220B}, {0x220C, 0x338}, {0x2224, 0x2223},
{0x2224, 0x338}, {0x2226, 0x2225}, {0x2226, 0x338}, {0x2241, 0x223C}, {0x2241, 0x338}, {0x2244, 0x2243}, {0x2244, 0x338}, {0x2247, 0x2245}, {0x2247, 0x338}, {0x2249, 0x2248}, {0x2249, 0x338},
{0x2260, 0x3D}, {0x2260, 0x338}, {0x2262, 0x2261}, {0x2262, 0x338}, {0x226D, 0x224D}, {0x226D, 0x338}, {0x226E, 0x3C}, {0x226E, 0x338}, {0x226F, 0x3E}, {0x226F, 0x338}, {0x2270, 0x2264},
{0x2270, 0x338}, {0x2271, 0x2265}, {0x2271, 0x338}, {0x2274, 0x2272}, {0x2274, 0x338}, {0x2275, 0x2273}, {0x2275, 0x338}, {0x2278, 0x2276}, {0x2278, 0x338}, {0x2279, 0x2277}, {0x2279, 0x338},
{0x2280, 0x227A}, {0x2280, 0x338}, {0x2281, 0x227B}, {0x2281, 0x338}, {0x2284, 0x2282}, {0x2284, 0x338}, {0x2285, 0x2283}, {0x2285, 0x338}, {0x2288, 0x2286}, {0x2288, 0x338}, {0x2289, 0x2287},
{0x2289, 0x338}, {0x22AC, 0x22A2}, {0x22AC, 0x338}, {0x22AD, 0x22A8}, {0x22AD, 0x338}, {0x22AE, 0x22A9}, {0x22AE, 0x338}, {0x22AF, 0x22AB}, {0x22AF, 0x338}, {0x22E0, 0x227C}, {0x22E0, 0x338},
{0x22E1, 0x227D}, {0x22E1, 0x338}, {0x22E2, 0x2291}, {0x22E2, 0x338}, {0x22E3, 0x2292}, {0x22E3, 0x338}, {0x22EA, 0x22B2}, {0x22EA, 0x338}, {0x22EB, 0x22B3}, {0x22EB, 0x338}, {0x22EC, 0x22B4},
{0x22EC, 0x338}, {0x22ED, 0x22B5}, {0x22ED, 0x338}, {0x2329, 0x3008}, {0x232A, 0x3009}, {0x2ADC, 0x2ADD}, {0x2ADC, 0x338}, {0x304C, 0x304B}, {0x304C, 0x3099}, {0x304E, 0x304D}, {0x304E, 0x3099},
{0x3050, 0x304F}, {0x3050, 0x3099}, {0x3052, 0x3051}, {0x3052, 0x3099}, {0x3054, 0x3053}, {0x3054, 0x3099}, {0x3056, 0x3055}, {0x3056, 0x3099}, {0x3058, 0x3057}, {0x3058, 0x3099}, {0x305A, 0x3059},
{0x305A, 0x3099}, {0x305C, 0x305B}, {0x305C, 0x3099}, {0x305E, 0x305D}, {0x305E, 0x3099}, {0x3060, 0x305F}, {0x3060, 0x3099}, {0x3062, 0x3061}, {0x3062, 0x3099}, {0x3065, 0x3064}, {0x3065, 0x3099},
{0x3067, 0x3066}, {0x3067, 0x3099}, {0x3069, 0x3068}, {0x3069, 0x3099}, {0x3070, 0x306F}, {0x3070, 0x3099}, {0x3071, 0x306F}, {0x3071, 0x309A}, {0x3073, 0x3072}, {0x3073, 0x3099}, {0x3074, 0x3072},
{0x3074, 0x309A}, {0x3076, 0x3075}, {0x3076, 0x3099}, {0x3077, 0x3075}, {0x3077, 0x309A}, {0x3079, 0x3078}, {0x3079, 0x3099}, {0x307A, 0x3078}, {0x307A, 0x309A}, {0x307C, 0x307B}, {0x307C, 0x3099},
{0x307D, 0x307B}, {0x307D, 0x309A}, {0x3094, 0x3046}, {0x3094, 0x3099}, {0x309E, 0x309D}, {0x309E, 0x3099}, {0x30AC, 0x30AB}, {0x30AC, 0x3099}, {0x30AE, 0x30AD}, {0x30AE, 0x3099}, {0x30B0, 0x30AF},
{0x30B0, 0x3099}, {0x30B2, 0x30B1}, {0x30B2, 0x3099}, {0x30B4, 0x30B3}, {0x30B4, 0x3099}, {0x30B6, 0x30B5}, {0x30B6, 0x3099}, {0x30B8, 0x30B7}, {0x30B8, 0x3099}, {0x30BA, 0x30B9}, {0x30BA, 0x3099},
{0x30BC, 0x30BB}, {0x30BC, 0x3099}, {0x30BE, 0x30BD}, {0x30BE, 0x3099}, {0x30C0, 0x30BF}, {0x30C0, 0x3099}, {0x30C2, 0x30C1}, {0x30C2, 0x3099}, {0x30C5, 0x30C4}, {0x30C5, 0x3099}, {0x30C7, 0x30C6},
{0x30C7, 0x3099}, {0x30C9, 0x30C8}, {0x30C9, 0x3099}, {0x30D0, 0x30CF}, {0x30D0, 0x3099}, {0x30D1, 0x30CF}, {0x30D1, 0x309A}, {0x30D3, 0x30D2}, {0x30D3, 0x3099}, {0x30D4, 0x30D2}, {0x30D4, 0x309A},
{0x30D6, 0x30D5}, {0x30D6, 0x3099}, {0x30D7, 0x30D5}, {0x30D7, 0x309A}, {0x30D9, 0x30D8}, {0x30D9, 0x3099}, {0x30DA, 0x30D8}, {0x30DA, 0x309A}, {0x30DC, 0x30DB}, {0x30DC, 0x3099}, {0x30DD, 0x30DB},
{0x30DD, 0x309A}, {0x30F4, 0x30A6}, {0x30F4, 0x3099}, {0x30F7, 0x30EF}, {0x30F7, 0x3099}, {0x30F8, 0x30F0}, {0x30F8, 0x3099}, {0x30F9, 0x30F1}, {0x30F9, 0x3099}, {0x30FA, 0x30F2}, {0x30FA, 0x3099},
{0x30FE, 0x30FD}, {0x30FE, 0x3099}, {0xF900, 0x8C48}, {0xF901, 0x66F4}, {0xF902, 0x8ECA}, {0xF903, 0x8CC8}, {0xF904, 0x6ED1}, {0xF905, 0x4E32}, {0xF906, 0x53E5}, {0xF907, 0x9F9C}, {0xF908, 0x9F9C},
{0xF909, 0x5951}, {0xF90A, 0x91D1}, {0xF90B, 0x5587}, {0xF90C, 0x5948}, {0xF90D, 0x61F6}, {0xF90E, 0x7669}, {0xF90F, 0x7F85}, {0xF910, 0x863F}, {0xF911, 0x87BA}, {0xF912, 0x88F8}, {0xF913, 0x908F},
{0xF914, 0x6A02}, {0xF915, 0x6D1B}, {0xF916, 0x70D9}, {0xF917, 0x73DE}, {0xF918, 0x843D}, {0xF919, 0x916A}, {0xF91A, 0x99F1}, {0xF91B, 0x4E82}, {0xF91C, 0x5375}, {0xF91D, 0x6B04}, {0xF91E, 0x721B},
{0xF91F, 0x862D}, {0xF920, 0x9E1E}, {0xF921, 0x5D50}, {0xF922, 0x6FEB}, {0xF923, 0x85CD}, {0xF924, 0x8964}, {0xF925, 0x62C9}, {0xF926, 0x81D8}, {0xF927, 0x881F}, {0xF928, 0x5ECA}, {0xF929, 0x6717},
{0xF92A, 0x6D6A}, {0xF92B, 0x72FC}, {0xF92C, 0x90CE}, {0xF92D, 0x4F86}, {0xF92E, 0x51B7}, {0xF92F, 0x52DE}, {0xF930, 0x64C4}, {0xF931, 0x6AD3}, {0xF932, 0x7210}, {0xF933, 0x76E7}, {0xF934, 0x8001},
{0xF935, 0x8606}, {0xF936, 0x865C}, {0xF937, 0x8DEF}, {0xF938, 0x9732}, {0xF939, 0x9B6F}, {0xF93A, 0x9DFA}, {0xF93B, 0x788C}, {0xF93C, 0x797F}, {0xF93D, 0x7DA0}, {0xF93E, 0x83C9}, {0xF93F, 0x9304},
{0xF940, 0x9E7F}, {0xF941, 0x8AD6}, {0xF942, 0x58DF}, {0xF943, 0x5F04}, {0xF944, 0x7C60}, {0xF945, 0x807E}, {0xF946, 0x7262}, {0xF947, 0x78CA}, {0xF948, 0x8CC2}, {0xF949, 0x96F7}, {0xF94A, 0x58D8},
{0xF94B, 0x5C62}, {0xF94C, 0x6A13}, {0xF94D, 0x6DDA}, {0xF94E, 0x6F0F}, {0xF94F, 0x7D2F}, {0xF950, 0x7E37}, {0xF951, 0x964B}, {0xF952, 0x52D2}, {0xF953, 0x808B}, {0xF954, 0x51DC}, {0xF955, 0x51CC},
{0xF956, 0x7A1C}, {0xF957, 0x7DBE}, {0xF958, 0x83F1}, {0xF959, 0x9675}, {0xF95A, 0x8B80}, {0xF95B, 0x62CF}, {0xF95C, 0x6A02}, {0xF95D, 0x8AFE}, {0xF95E, 0x4E39}, {0xF95F, 0x5BE7}, {0xF960, 0x6012},
{0xF961, 0x7387}, {0xF962, 0x7570}, {0xF963, 0x5317}, {0xF964, 0x78FB}, {0xF965, 0x4FBF}, {0xF966, 0x5FA9}, {0xF967, 0x4E0D}, {0xF968, 0x6CCC}, {0xF969, 0x6578}, {0xF96A, 0x7D22}, {0xF96B, 0x53C3},
{0xF96C, 0x585E}, {0xF96D, 0x7701}, {0xF96E, 0x8449}, {0xF96F, 0x8AAA}, {0xF970, 0x6BBA}, {0xF971, 0x8FB0}, {0xF972, 0x6C88}, {0xF973, 0x62FE}, {0xF974, 0x82E5}, {0xF975, 0x63A0}, {0xF976, 0x7565},
{0xF977, 0x4EAE}, {0xF978, 0x5169}, {0xF979, 0x51C9}, {0xF97A, 0x6881}, {0xF97B, 0x7CE7}, {0xF97C, 0x826F}, {0xF97D, 0x8AD2}, {0xF97E, 0x91CF}, {0xF97F, 0x52F5}, {0xF980, 0x5442}, {0xF981, 0x5973},
{0xF982, 0x5EEC}, {0xF983, 0x65C5}, {0xF984, 0x6FFE}, {0xF985, 0x792A}, {0xF986, 0x95AD}, {0xF987, 0x9A6A}, {0xF988, 0x9E97}, {0xF989, 0x9ECE}, {0xF98A, 0x529B}, {0xF98B, 0x66C6}, {0xF98C, 0x6B77},
{0xF98D, 0x8F62}, {0xF98E, 0x5E74}, {0xF98F, 0x6190}, {0xF990, 0x6200}, {0xF991, 0x649A}, {0xF992, 0x6F23}, {0xF993, 0x7149}, {0xF994, 0x7489}, {0xF995, 0x79CA}, {0xF996, 0x7DF4}, {0xF997, 0x806F},
{0xF998, 0x8F26}, {0xF999, 0x84EE}, {0xF99A, 0x9023}, {0xF99B, 0x934A}, {0xF99C, 0x5217}, {0xF99D, 0x52A3}, {0xF99E, 0x54BD}, {0xF99F, 0x70C8}, {0xF9A0, 0x88C2}, {0xF9A1, 0x8AAA}, {0xF9A2, 0x5EC9},
{0xF9A3, 0x5FF5}, {0xF9A4, 0x637B}, {0xF9A5, 0x6BAE}, {0xF9A6, 0x7C3E}, {0xF9A7, 0x7375}, {0xF9A8, 0x4EE4}, {0xF9A9, 0x56F9}, {0xF9AA, 0x5BE7}, {0xF9AB, 0x5DBA}, {0xF9AC, 0x601C}, {0xF9AD, 0x73B2},
{0xF9AE, 0x7469}, {0xF9AF, 0x7F9A}, {0xF9B0, 0x8046}, {0xF9B1, 0x9234}, {0xF9B2, 0x96F6}, {0xF9B3, 0x9748}, {0xF9B4, 0x9818}, {0xF9B5, 0x4F8B}, {0xF9B6, 0x79AE}, {0xF9B7, 0x91B4}, {0xF9B8, 0x96B8},
{0xF9B9, 0x60E1}, {0xF9BA, 0x4E86}, {0xF9BB, 0x50DA}, {0xF9BC, 0x5BEE}, {0xF9BD, 0x5C3F}, {0xF9BE, 0x6599}, {0xF9BF, 0x6A02}, {0xF9C0, 0x71CE}, {0xF9C1, 0x7642}, {0xF9C2, 0x84FC}, {0xF9C3, 0x907C},
{0xF9C4, 0x9F8D}, {0xF9C5, 0x6688}, {0xF9C6, 0x962E}, {0xF9C7, 0x5289}, {0xF9C8, 0x677B}, {0xF9C9, 0x67F3}, {0xF9CA, 0x6D41}, {0xF9CB, 0x6E9C}, {0xF9CC, 0x7409}, {0xF9CD, 0x7559}, {0xF9CE, 0x786B},
{0xF9CF, 0x7D10}, {0xF9D0, 0x985E}, {0xF9D1, 0x516D}, {0xF9D2, 0x622E}, {0xF9D3, 0x9678}, {0xF9D4, 0x502B}, {0xF9D5, 0x5D19}, {0xF9D6, 0x6DEA}, {0xF9D7, 0x8F2A}, {0xF9D8, 0x5F8B}, {0xF9D9, 0x6144},
{0xF9DA, 0x6817}, {0xF9DB, 0x7387}, {0xF9DC, 0x9686}, {0xF9DD, 0x5229}, {0xF9DE, 0x540F}, {0xF9DF, 0x5C65}, {0xF9E0, 0x6613}, {0xF9E1, 0x674E}, {0xF9E2, 0x68A8}, {0xF9E3, 0x6CE5}, {0xF9E4, 0x7406},
{0xF9E5, 0x75E2}, {0xF9E6, 0x7F79}, {0xF9E7, 0x88CF}, {0xF9E8, 0x88E1}, {0xF9E9, 0x91CC}, {0xF9EA, 0x96E2}, {0xF9EB, 0x533F}, {0xF9EC, 0x6EBA}, {0xF9ED, 0x541D}, {0xF9EE, 0x71D0}, {0xF9EF, 0x7498},
{0xF9F0, 0x85FA}, {0xF9F1, 0x96A3}, {0xF9F2, 0x9C57}, {0xF9F3, 0x9E9F}, {0xF9F4, 0x6797}, {0xF9F5, 0x6DCB}, {0xF9F6, 0x81E8}, {0xF9F7, 0x7ACB}, {0xF9F8, 0x7B20}, {0xF9F9, 0x7C92}, {0xF9FA, 0x72C0},
{0xF9FB, 0x7099}, {0xF9FC, 0x8B58}, {0xF9FD, 0x4EC0}, {0xF9FE, 0x8336}, {0xF9FF, 0x523A}, {0xFA00, 0x5207}, {0xFA01, 0x5EA6}, {0xFA02, 0x62D3}, {0xFA03, 0x7CD6}, {0xFA04, 0x5B85}, {0xFA05, 0x6D1E},
{0xFA06, 0x66B4}, {0xFA07, 0x8F3B}, {0xFA08, 0x884C}, {0xFA09, 0x964D}, {0xFA0A, 0x898B}, {0xFA0B, 0x5ED3}, {0xFA0C, 0x5140}, {0xFA0D, 0x55C0}, {0xFA10, 0x585A}, {0xFA12, 0x6674}, {0xFA15, 0x51DE},
{0xFA16, 0x732A}, {0xFA17, 0x76CA}, {0xFA18, 0x793C}, {0xFA19, 0x795E}, {0xFA1A, 0x7965}, {0xFA1B, 0x798F}, {0xFA1C, 0x9756}, {0xFA1D, 0x7CBE}, {0xFA1E, 0x7FBD}, {0xFA20, 0x8612}, {0xFA22, 0x8AF8},
{0xFA25, 0x9038}, {0xFA26, 0x90FD}, {0xFA2A, 0x98EF}, {0xFA2B, 0x98FC}, {0xFA2C, 0x9928}, {0xFA2D, 0x9DB4}, {0xFA2E, 0x90DE}, {0xFA2F, 0x96B7}, {0xFA30, 0x4FAE}, {0xFA31, 0x50E7}, {0xFA32, 0x514D},
{0xFA33, 0x52C9}, {0xFA34, 0x52E4}, {0xFA35, 0x5351}, {0xFA36, 0x559D}, {0xFA37, 0x5606}, {0xFA38, 0x5668}, {0xFA39, 0x5840}, {0xFA3A, 0x58A8}, {0xFA3B, 0x5C64}, {0xFA3C, 0x5C6E}, {0xFA3D, 0x6094},
{0xFA3E, 0x6168}, {0xFA3F, 0x618E}, {0xFA40, 0x61F2}, {0xFA41, 0x654F}, {0xFA42, 0x65E2}, {0xFA43, 0x6691}, {0xFA44, 0x6885}, {0xFA45, 0x6D77}, {0xFA46, 0x6E1A}, {0xFA47, 0x6F22}, {0xFA48, 0x716E},
{0xFA49, 0x722B}, {0xFA4A, 0x7422}, {0xFA4B, 0x7891}, {0xFA4C, 0x793E}, {0xFA4D, 0x7949}, {0xFA4E, 0x7948}, {0xFA4F, 0x7950}, {0xFA50, 0x7956}, {0xFA51, 0x795D}, {0xFA52, 0x798D}, {0xFA53, 0x798E},
{0xFA54, 0x7A40}, {0xFA55, 0x7A81}, {0xFA56, 0x7BC0}, {0xFA57, 0x7DF4}, {0xFA58, 0x7E09}, {0xFA59, 0x7E41}, {0xFA5A, 0x7F72}, {0xFA5B, 0x8005}, {0xFA5C, 0x81ED}, {0xFA5D, 0x8279}, {0xFA5E, 0x8279},
{0xFA5F, 0x8457}, {0xFA60, 0x8910}, {0xFA61, 0x8996}, {0xFA62, 0x8B01}, {0xFA63, 0x8B39}, {0xFA64, 0x8CD3}, {0xFA65, 0x8D08}, {0xFA66, 0x8FB6}, {0xFA67, 0x9038}, {0xFA68, 0x96E3}, {0xFA69, 0x97FF},
{0xFA6A, 0x983B}, {0xFA6B, 0x6075}, {0xFA6C, 0x242EE}, {0xFA6D, 0x8218}, {0xFA70, 0x4E26}, {0xFA71, 0x51B5}, {0xFA72, 0x5168}, {0xFA73, 0x4F80}, {0xFA74, 0x5145}, {0xFA75, 0x5180}, {0xFA76, 0x52C7},
{0xFA77, 0x52FA}, {0xFA78, 0x559D}, {0xFA79, 0x5555}, {0xFA7A, 0x5599}, {0xFA7B, 0x55E2}, {0xFA7C, 0x585A}, {0xFA7D, 0x58B3}, {0xFA7E, 0x5944}, {0xFA7F, 0x5954}, {0xFA80, 0x5A62}, {0xFA81, 0x5B28},
{0xFA82, 0x5ED2}, {0xFA83, 0x5ED9}, {0xFA84, 0x5F69}, {0xFA85, 0x5FAD}, {0xFA86, 0x60D8}, {0xFA87, 0x614E}, {0xFA88, 0x6108}, {0xFA89, 0x618E}, {0xFA8A, 0x6160}, {0xFA8B, 0x61F2}, {0xFA8C, 0x6234},
{0xFA8D, 0x63C4}, {0xFA8E, 0x641C}, {0xFA8F, 0x6452}, {0xFA90, 0x6556}, {0xFA91, 0x6674}, {0xFA92, 0x6717}, {0xFA93, 0x671B}, {0xFA94, 0x6756}, {0xFA95, 0x6B79}, {0xFA96, 0x6BBA}, {0xFA97, 0x6D41},
{0xFA98, 0x6EDB}, {0xFA99, 0x6ECB}, {0xFA9A, 0x6F22}, {0xFA9B, 0x701E}, {0xFA9C, 0x716E}, {0xFA9D, 0x77A7}, {0xFA9E, 0x7235}, {0xFA9F, 0x72AF}, {0xFAA0, 0x732A}, {0xFAA1, 0x7471}, {0xFAA2, 0x7506},
{0xFAA3, 0x753B}, {0xFAA4, 0x761D}, {0xFAA5, 0x761F}, {0xFAA6, 0x76CA}, {0xFAA7, 0x76DB}, {0xFAA8, 0x76F4}, {0xFAA9, 0x774A}, {0xFAAA, 0x7740}, {0xFAAB, 0x78CC}, {0xFAAC, 0x7AB1}, {0xFAAD, 0x7BC0},
{0xFAAE, 0x7C7B}, {0xFAAF, 0x7D5B}, {0xFAB0, 0x7DF4}, {0xFAB1, 0x7F3E}, {0xFAB2, 0x8005}, {0xFAB3, 0x8352}, {0xFAB4, 0x83EF}, {0xFAB5, 0x8779}, {0xFAB6, 0x8941}, {0xFAB7, 0x8986}, {0xFAB8, 0x8996},
{0xFAB9, 0x8ABF}, {0xFABA, 0x8AF8}, {0xFABB, 0x8ACB}, {0xFABC, 0x8B01}, {0xFABD, 0x8AFE}, {0xFABE, 0x8AED}, {0xFABF, 0x8B39}, {0xFAC0, 0x8B8A}, {0xFAC1, 0x8D08}, {0xFAC2, 0x8F38}, {0xFAC3, 0x9072},
{0xFAC4, 0x9199}, {0xFAC5, 0x9276}, {0xFAC6, 0x967C}, {0xFAC7, 0x96E3}, {0xFAC8, 0x9756}, {0xFAC9, 0x97DB}, {0xFACA, 0x97FF}, {0xFACB, 0x980B}, {0xFACC, 0x983B}, {0xFACD, 0x9B12}, {0xFACE, 0x9F9C},
{0xFACF, 0x2284A}, {0xFAD0, 0x22844}, {0xFAD1, 0x233D5}, {0xFAD2, 0x3B9D}, {0xFAD3, 0x4018}, {0xFAD4, 0x4039}, {0xFAD5, 0x25249}, {0xFAD6, 0x25CD0}, {0xFAD7, 0x27ED3}, {0xFAD8, 0x9F43},
{0xFAD9, 0x9F8E}, {0xFB1D, 0x5D9}, {0xFB1D, 0x5B4}, {0xFB1F, 0x5F2}, {0xFB1F, 0x5B7}, {0xFB2A, 0x5E9}, {0xFB2A, 0x5C1}, {0xFB2B, 0x5E9}, {0xFB2B, 0x5C2}, {0xFB2C, 0x5E9}, {0xFB2C, 0x5BC},
{0xFB2C, 0x5C1}, {0xFB2D, 0x5E9}, {0xFB2D, 0x5BC}, {0xFB2D, 0x5C2}, {0xFB2E, 0x5D0}, {0xFB2E, 0x5B7}, {0xFB2F, 0x5D0}, {0xFB2F, 0x5B8}, {0xFB30, 0x5D0}, {0xFB30, 0x5BC}, {0xFB31, 0x5D1},
{0xFB31, 0x5BC}, {0xFB32, 0x5D2}, {0xFB32, 0x5BC}, {0xFB33, 0x5D3}, {0xFB33, 0x5BC}, {0xFB34, 0x5D4}, {0xFB34, 0x5BC}, {0xFB35, 0x5D5}, {0xFB35, 0x5BC}, {0xFB36, 0x5D6}, {0xFB36, 0x5BC},
{0xFB38, 0x5D8}, {0xFB38, 0x5BC}, {0xFB39, 0x5D9}, {0xFB39, 0x5BC}, {0xFB3A, 0x5DA}, {0xFB3A, 0x5BC}, {0xFB3B, 0x5DB}, {0xFB3B, 0x5BC}, {0xFB3C, 0x5DC}, {0xFB3C, 0x5BC}, {0xFB3E, 0x5DE},
{0xFB3E, 0x5BC}, {0xFB40, 0x5E0}, {0xFB40, 0x5BC}, {0xFB41, 0x5E1}, {0xFB41, 0x5BC}, {0xFB43, 0x5E3}, {0xFB43, 0x5BC}, {0xFB44, 0x5E4}, {0xFB44, 0x5BC}, {0xFB46, 0x5E6}, {0xFB46, 0x5BC},
{0xFB47, 0x5E7}, {0xFB47, 0x5BC}, {0xFB48, 0x5E8}, {0xFB48, 0x5BC}, {0xFB49, 0x5E9}, {0xFB49, 0x5BC}, {0xFB4A, 0x5EA}, {0xFB4A, 0x5BC}, {0xFB4B, 0x5D5}, {0xFB4B, 0x5B9}, {0xFB4C, 0x5D1},
{0xFB4C, 0x5BF}, {0xFB4D, 0x5DB}, {0xFB4D, 0x5BF}, {0xFB4E, 0x5E4}, {0xFB4E, 0x5BF}, {0x1109A, 0x11099}, {0x1109A, 0x110BA}, {0x1109C, 0x1109B}, {0x1109C, 0x110BA}, {0x110AB, 0x110A5},
{0x110AB, 0x110BA}, {0x1112E, 0x11131}, {0x1112E, 0x11127}, {0x1112F, 0x11132}, {0x1112F, 0x11127}, {0x1134B, 0x11347}, {0x1134B, 0x1133E}, {0x1134C, 0x11347}, {0x1134C, 0x11357}, {0x114BB, 0x114B9},
{0x114BB, 0x114BA}, {0x114BC, 0x114B9}, {0x114BC, 0x114B0}, {0x114BE, 0x114B9}, {0x114BE, 0x114BD}, {0x115BA, 0x115B8}, {0x115BA, 0x115AF}, {0x115BB, 0x115B9}, {0x115BB, 0x115AF}, {0x1D15E, 0x1D157},
{0x1D15E, 0x1D165}, {0x1D15F, 0x1D158}, {0x1D15F, 0x1D165}, {0x1D160, 0x1D158}, {0x1D160, 0x1D165}, {0x1D160, 0x1D16E}, {0x1D161, 0x1D158}, {0x1D161, 0x1D165}, {0x1D161, 0x1D16F}, {0x1D162, 0x1D158},
{0x1D162, 0x1D165}, {0x1D162, 0x1D170}, {0x1D163, 0x1D158}, {0x1D163, 0x1D165}, {0x1D163, 0x1D171}, {0x1D164, 0x1D158}, {0x1D164, 0x1D165}, {0x1D164, 0x1D172}, {0x1D1BB, 0x1D1B9}, {0x1D1BB, 0x1D165},
{0x1D1BC, 0x1D1BA}, {0x1D1BC, 0x1D165}, {0x1D1BD, 0x1D1B9}, {0x1D1BD, 0x1D165}, {0x1D1BD, 0x1D16E}, {0x1D1BE, 0x1D1BA}, {0x1D1BE, 0x1D165}, {0x1D1BE, 0x1D16E}, {0x1D1BF, 0x1D1B9}, {0x1D1BF, 0x1D165},
{0x1D1BF, 0x1D16F}, {0x1D1C0, 0x1D1BA}, {0x1D1C0, 0x1D165}, {0x1D1C0, 0x1D16F}, {0x2F800, 0x4E3D}, {0x2F801, 0x4E38}, {0x2F802, 0x4E41}, {0x2F803, 0x20122}, {0x2F804, 0x4F60}, {0x2F805, 0x4FAE},
{0x2F806, 0x4FBB}, {0x2F807, 0x5002}, {0x2F808, 0x507A}, {0x2F809, 0x5099}, {0x2F80A, 0x50E7}, {0x2F80B, 0x50CF}, {0x2F80C, 0x349E}, {0x2F80D, 0x2063A}, {0x2F80E, 0x514D}, {0x2F80F, 0x5154},
{0x2F810, 0x5164}, {0x2F811, 0x5177}, {0x2F812, 0x2051C}, {0x2F813, 0x34B9}, {0x2F814, 0x5167}, {0x2F815, 0x518D}, {0x2F816, 0x2054B}, {0x2F817, 0x5197}, {0x2F818, 0x51A4}, {0x2F819, 0x4ECC},
{0x2F81A, 0x51AC}, {0x2F81B, 0x51B5}, {0x2F81C, 0x291DF}, {0x2F81D, 0x51F5}, {0x2F81E, 0x5203}, {0x2F81F, 0x34DF}, {0x2F820, 0x523B}, {0x2F821, 0x5246}, {0x2F822, 0x5272}, {0x2F823, 0x5277},
{0x2F824, 0x3515}, {0x2F825, 0x52C7}, {0x2F826, 0x52C9}, {0x2F827, 0x52E4}, {0x2F828, 0x52FA}, {0x2F829, 0x5305}, {0x2F82A, 0x5306}, {0x2F82B, 0x5317}, {0x2F82C, 0x5349}, {0x2F82D, 0x5351},
{0x2F82E, 0x535A}, {0x2F82F, 0x5373}, {0x2F830, 0x537D}, {0x2F831, 0x537F}, {0x2F832, 0x537F}, {0x2F833, 0x537F}, {0x2F834, 0x20A2C}, {0x2F835, 0x7070}, {0x2F836, 0x53CA}, {0x2F837, 0x53DF},
{0x2F838, 0x20B63}, {0x2F839, 0x53EB}, {0x2F83A, 0x53F1}, {0x2F83B, 0x5406}, {0x2F83C, 0x549E}, {0x2F83D, 0x5438}, {0x2F83E, 0x5448}, {0x2F83F, 0x5468}, {0x2F840, 0x54A2}, {0x2F841, 0x54F6},
{0x2F842, 0x5510}, {0x2F843, 0x5553}, {0x2F844, 0x5563}, {0x2F845, 0x5584}, {0x2F846, 0x5584}, {0x2F847, 0x5599}, {0x2F848, 0x55AB}, {0x2F849, 0x55B3}, {0x2F84A, 0x55C2}, {0x2F84B, 0x5716},
{0x2F84C, 0x5606}, {0x2F84D, 0x5717}, {0x2F84E, 0x5651}, {0x2F84F, 0x5674}, {0x2F850, 0x5207}, {0x2F851, 0x58EE}, {0x2F852, 0x57CE}, {0x2F853, 0x57F4}, {0x2F854, 0x580D}, {0x2F855, 0x578B},
{0x2F856, 0x5832}, {0x2F857, 0x5831}, {0x2F858, 0x58AC}, {0x2F859, 0x214E4}, {0x2F85A, 0x58F2}, {0x2F85B, 0x58F7}, {0x2F85C, 0x5906}, {0x2F85D, 0x591A}, {0x2F85E, 0x5922}, {0x2F85F, 0x5962},
{0x2F860, 0x216A8}, {0x2F861, 0x216EA}, {0x2F862, 0x59EC}, {0x2F863, 0x5A1B}, {0x2F864, 0x5A27}, {0x2F865, 0x59D8}, {0x2F866, 0x5A66}, {0x2F867, 0x36EE}, {0x2F868, 0x36FC}, {0x2F869, 0x5B08},
{0x2F86A, 0x5B3E}, {0x2F86B, 0x5B3E}, {0x2F86C, 0x219C8}, {0x2F86D, 0x5BC3}, {0x2F86E, 0x5BD8}, {0x2F86F, 0x5BE7}, {0x2F870, 0x5BF3}, {0x2F871, 0x21B18}, {0x2F872, 0x5BFF}, {0x2F873, 0x5C06},
{0x2F874, 0x5F53}, {0x2F875, 0x5C22}, {0x2F876, 0x3781}, {0x2F877, 0x5C60}, {0x2F878, 0x5C6E}, {0x2F879, 0x5CC0}, {0x2F87A, 0x5C8D}, {0x2F87B, 0x21DE4}, {0x2F87C, 0x5D43}, {0x2F87D, 0x21DE6},
{0x2F87E, 0x5D6E}, {0x2F87F, 0x5D6B}, {0x2F880, 0x5D7C}, {0x2F881, 0x5DE1}, {0x2F882, 0x5DE2}, {0x2F883, 0x382F}, {0x2F884, 0x5DFD}, {0x2F885, 0x5E28}, {0x2F886, 0x5E3D}, {0x2F887, 0x5E69},
{0x2F888, 0x3862}, {0x2F889, 0x22183}, {0x2F88A, 0x387C}, {0x2F88B, 0x5EB0}, {0x2F88C, 0x5EB3}, {0x2F88D, 0x5EB6}, {0x2F88E, 0x5ECA}, {0x2F88F, 0x2A392}, {0x2F890, 0x5EFE}, {0x2F891, 0x22331},
{0x2F892, 0x22331}, {0x2F893, 0x8201}, {0x2F894, 0x5F22}, {0x2F895, 0x5F22}, {0x2F896, 0x38C7}, {0x2F897, 0x232B8}, {0x2F898, 0x261DA}, {0x2F899, 0x5F62}, {0x2F89A, 0x5F6B}, {0x2F89B, 0x38E3},
{0x2F89C, 0x5F9A}, {0x2F89D, 0x5FCD}, {0x2F89E, 0x5FD7}, {0x2F89F, 0x5FF9}, {0x2F8A0, 0x6081}, {0x2F8A1, 0x393A}, {0x2F8A2, 0x391C}, {0x2F8A3, 0x6094}, {0x2F8A4, 0x226D4}, {0x2F8A5, 0x60C7},
{0x2F8A6, 0x6148}, {0x2F8A7, 0x614C}, {0x2F8A8, 0x614E}, {0x2F8A9, 0x614C}, {0x2F8AA, 0x617A}, {0x2F8AB, 0x618E}, {0x2F8AC, 0x61B2}, {0x2F8AD, 0x61A4}, {0x2F8AE, 0x61AF}, {0x2F8AF, 0x61DE},
{0x2F8B0, 0x61F2}, {0x2F8B1, 0x61F6}, {0x2F8B2, 0x6210}, {0x2F8B3, 0x621B}, {0x2F8B4, 0x625D}, {0x2F8B5, 0x62B1}, {0x2F8B6, 0x62D4}, {0x2F8B7, 0x6350}, {0x2F8B8, 0x22B0C}, {0x2F8B9, 0x633D},
{0x2F8BA, 0x62FC}, {0x2F8BB, 0x6368}, {0x2F8BC, 0x6383}, {0x2F8BD, 0x63E4}, {0x2F8BE, 0x22BF1}, {0x2F8BF, 0x6422}, {0x2F8C0, 0x63C5}, {0x2F8C1, 0x63A9}, {0x2F8C2, 0x3A2E}, {0x2F8C3, 0x6469},
{0x2F8C4, 0x647E}, {0x2F8C5, 0x649D}, {0x2F8C6, 0x6477}, {0x2F8C7, 0x3A6C}, {0x2F8C8, 0x654F}, {0x2F8C9, 0x656C}, {0x2F8CA, 0x2300A}, {0x2F8CB, 0x65E3}, {0x2F8CC, 0x66F8}, {0x2F8CD, 0x6649},
{0x2F8CE, 0x3B19}, {0x2F8CF, 0x6691}, {0x2F8D0, 0x3B08}, {0x2F8D1, 0x3AE4}, {0x2F8D2, 0x5192}, {0x2F8D3, 0x5195}, {0x2F8D4, 0x6700}, {0x2F8D5, 0x669C}, {0x2F8D6, 0x80AD}, {0x2F8D7, 0x43D9},
{0x2F8D8, 0x6717}, {0x2F8D9, 0x671B}, {0x2F8DA, 0x6721}, {0x2F8DB, 0x675E}, {0x2F8DC, 0x6753}, {0x2F8DD, 0x233C3}, {0x2F8DE, 0x3B49}, {0x2F8DF, 0x67FA}, {0x2F8E0, 0x6785}, {0x2F8E1, 0x6852},
{0x2F8E2, 0x6885}, {0x2F8E3, 0x2346D}, {0x2F8E4, 0x688E}, {0x2F8E5, 0x681F}, {0x2F8E6, 0x6914}, {0x2F8E7, 0x3B9D}, {0x2F8E8, 0x6942}, {0x2F8E9, 0x69A3}, {0x2F8EA, 0x69EA}, {0x2F8EB, 0x6AA8},
{0x2F8EC, 0x236A3}, {0x2F8ED, 0x6ADB}, {0x2F8EE, 0x3C18}, {0x2F8EF, 0x6B21}, {0x2F8F0, 0x238A7}, {0x2F8F1, 0x6B54}, {0x2F8F2, 0x3C4E}, {0x2F8F3, 0x6B72}, {0x2F8F4, 0x6B9F}, {0x2F8F5, 0x6BBA},
{0x2F8F6, 0x6BBB}, {0x2F8F7, 0x23A8D}, {0x2F8F8, 0x21D0B}, {0x2F8F9, 0x23AFA}, {0x2F8FA, 0x6C4E}, {0x2F8FB, 0x23CBC}, {0x2F8FC, 0x6CBF}, {0x2F8FD, 0x6CCD}, {0x2F8FE, 0x6C67}, {0x2F8FF, 0x6D16},
{0x2F900, 0x6D3E}, {0x2F901, 0x6D77}, {0x2F902, 0x6D41}, {0x2F903, 0x6D69}, {0x2F904, 0x6D78}, {0x2F905, 0x6D85}, {0x2F906, 0x23D1E}, {0x2F907, 0x6D34}, {0x2F908, 0x6E2F}, {0x2F909, 0x6E6E},
{0x2F90A, 0x3D33}, {0x2F90B, 0x6ECB}, {0x2F90C, 0x6EC7}, {0x2F90D, 0x23ED1}, {0x2F90E, 0x6DF9}, {0x2F90F, 0x6F6E}, {0x2F910, 0x23F5E}, {0x2F911, 0x23F8E}, {0x2F912, 0x6FC6}, {0x2F913, 0x7039},
{0x2F914, 0x701E}, {0x2F915, 0x701B}, {0x2F916, 0x3D96}, {0x2F917, 0x704A}, {0x2F918, 0x707D}, {0x2F919, 0x7077}, {0x2F91A, 0x70AD}, {0x2F91B, 0x20525}, {0x2F91C, 0x7145}, {0x2F91D, 0x24263},
{0x2F91E, 0x719C}, {0x2F91F, 0x243AB}, {0x2F920, 0x7228}, {0x2F921, 0x7235}, {0x2F922, 0x7250}, {0x2F923, 0x24608}, {0x2F924, 0x7280}, {0x2F925, 0x7295}, {0x2F926, 0x24735}, {0x2F927, 0x24814},
{0x2F928, 0x737A}, {0x2F929, 0x738B}, {0x2F92A, 0x3EAC}, {0x2F92B, 0x73A5}, {0x2F92C, 0x3EB8}, {0x2F92D, 0x3EB8}, {0x2F92E, 0x7447}, {0x2F92F, 0x745C}, {0x2F930, 0x7471}, {0x2F931, 0x7485},
{0x2F932, 0x74CA}, {0x2F933, 0x3F1B}, {0x2F934, 0x7524}, {0x2F935, 0x24C36}, {0x2F936, 0x753E}, {0x2F937, 0x24C92}, {0x2F938, 0x7570}, {0x2F939, 0x2219F}, {0x2F93A, 0x7610}, {0x2F93B, 0x24FA1},
{0x2F93C, 0x24FB8}, {0x2F93D, 0x25044}, {0x2F93E, 0x3FFC}, {0x2F93F, 0x4008}, {0x2F940, 0x76F4}, {0x2F941, 0x250F3}, {0x2F942, 0x250F2}, {0x2F943, 0x25119}, {0x2F944, 0x25133}, {0x2F945, 0x771E},
{0x2F946, 0x771F}, {0x2F947, 0x771F}, {0x2F948, 0x774A}, {0x2F949, 0x4039}, {0x2F94A, 0x778B}, {0x2F94B, 0x4046}, {0x2F94C, 0x4096}, {0x2F94D, 0x2541D}, {0x2F94E, 0x784E}, {0x2F94F, 0x788C},
{0x2F950, 0x78CC}, {0x2F951, 0x40E3}, {0x2F952, 0x25626}, {0x2F953, 0x7956}, {0x2F954, 0x2569A}, {0x2F955, 0x256C5}, {0x2F956, 0x798F}, {0x2F957, 0x79EB}, {0x2F958, 0x412F}, {0x2F959, 0x7A40},
{0x2F95A, 0x7A4A}, {0x2F95B, 0x7A4F}, {0x2F95C, 0x2597C}, {0x2F95D, 0x25AA7}, {0x2F95E, 0x25AA7}, {0x2F95F, 0x7AEE}, {0x2F960, 0x4202}, {0x2F961, 0x25BAB}, {0x2F962, 0x7BC6}, {0x2F963, 0x7BC9},
{0x2F964, 0x4227}, {0x2F965, 0x25C80}, {0x2F966, 0x7CD2}, {0x2F967, 0x42A0}, {0x2F968, 0x7CE8}, {0x2F969, 0x7CE3}, {0x2F96A, 0x7D00}, {0x2F96B, 0x25F86}, {0x2F96C, 0x7D63}, {0x2F96D, 0x4301},
{0x2F96E, 0x7DC7}, {0x2F96F, 0x7E02}, {0x2F970, 0x7E45}, {0x2F971, 0x4334}, {0x2F972, 0x26228}, {0x2F973, 0x26247}, {0x2F974, 0x4359}, {0x2F975, 0x262D9}, {0x2F976, 0x7F7A}, {0x2F977, 0x2633E},
{0x2F978, 0x7F95}, {0x2F979, 0x7FFA}, {0x2F97A, 0x8005}, {0x2F97B, 0x264DA}, {0x2F97C, 0x26523}, {0x2F97D, 0x8060}, {0x2F97E, 0x265A8}, {0x2F97F, 0x8070}, {0x2F980, 0x2335F}, {0x2F981, 0x43D5},
{0x2F982, 0x80B2}, {0x2F983, 0x8103}, {0x2F984, 0x440B}, {0x2F985, 0x813E}, {0x2F986, 0x5AB5}, {0x2F987, 0x267A7}, {0x2F988, 0x267B5}, {0x2F989, 0x23393}, {0x2F98A, 0x2339C}, {0x2F98B, 0x8201},
{0x2F98C, 0x8204}, {0x2F98D, 0x8F9E}, {0x2F98E, 0x446B}, {0x2F98F, 0x8291}, {0x2F990, 0x828B}, {0x2F991, 0x829D}, {0x2F992, 0x52B3}, {0x2F993, 0x82B1}, {0x2F994, 0x82B3}, {0x2F995, 0x82BD},
{0x2F996, 0x82E6}, {0x2F997, 0x26B3C}, {0x2F998, 0x82E5}, {0x2F999, 0x831D}, {0x2F99A, 0x8363}, {0x2F99B, 0x83AD}, {0x2F99C, 0x8323}, {0x2F99D, 0x83BD}, {0x2F99E, 0x83E7}, {0x2F99F, 0x8457},
{0x2F9A0, 0x8353}, {0x2F9A1, 0x83CA}, {0x2F9A2, 0x83CC}, {0x2F9A3, 0x83DC}, {0x2F9A4, 0x26C36}, {0x2F9A5, 0x26D6B}, {0x2F9A6, 0x26CD5}, {0x2F9A7, 0x452B}, {0x2F9A8, 0x84F1}, {0x2F9A9, 0x84F3},
{0x2F9AA, 0x8516}, {0x2F9AB, 0x273CA}, {0x2F9AC, 0x8564}, {0x2F9AD, 0x26F2C}, {0x2F9AE, 0x455D}, {0x2F9AF, 0x4561}, {0x2F9B0, 0x26FB1}, {0x2F9B1, 0x270D2}, {0x2F9B2, 0x456B}, {0x2F9B3, 0x8650},
{0x2F9B4, 0x865C}, {0x2F9B5, 0x8667}, {0x2F9B6, 0x8669}, {0x2F9B7, 0x86A9}, {0x2F9B8, 0x8688}, {0x2F9B9, 0x870E}, {0x2F9BA, 0x86E2}, {0x2F9BB, 0x8779}, {0x2F9BC, 0x8728}, {0x2F9BD, 0x876B},
{0x2F9BE, 0x8786}, {0x2F9BF, 0x45D7}, {0x2F9C0, 0x87E1}, {0x2F9C1, 0x8801}, {0x2F9C2, 0x45F9}, {0x2F9C3, 0x8860}, {0x2F9C4, 0x8863}, {0x2F9C5, 0x27667}, {0x2F9C6, 0x88D7}, {0x2F9C7, 0x88DE},
{0x2F9C8, 0x4635}, {0x2F9C9, 0x88FA}, {0x2F9CA, 0x34BB}, {0x2F9CB, 0x278AE}, {0x2F9CC, 0x27966}, {0x2F9CD, 0x46BE}, {0x2F9CE, 0x46C7}, {0x2F9CF, 0x8AA0}, {0x2F9D0, 0x8AED}, {0x2F9D1, 0x8B8A},
{0x2F9D2, 0x8C55}, {0x2F9D3, 0x27CA8}, {0x2F9D4, 0x8CAB}, {0x2F9D5, 0x8CC1}, {0x2F9D6, 0x8D1B}, {0x2F9D7, 0x8D77}, {0x2F9D8, 0x27F2F}, {0x2F9D9, 0x20804}, {0x2F9DA, 0x8DCB}, {0x2F9DB, 0x8DBC},
{0x2F9DC, 0x8DF0}, {0x2F9DD, 0x208DE}, {0x2F9DE, 0x8ED4}, {0x2F9DF, 0x8F38}, {0x2F9E0, 0x285D2}, {0x2F9E1, 0x285ED}, {0x2F9E2, 0x9094}, {0x2F9E3, 0x90F1}, {0x2F9E4, 0x9111}, {0x2F9E5, 0x2872E},
{0x2F9E6, 0x911B}, {0x2F9E7, 0x9238}, {0x2F9E8, 0x92D7}, {0x2F9E9, 0x92D8}, {0x2F9EA, 0x927C}, {0x2F9EB, 0x93F9}, {0x2F9EC, 0x9415}, {0x2F9ED, 0x28BFA}, {0x2F9EE, 0x958B}, {0x2F9EF, 0x4995},
{0x2F9F0, 0x95B7}, {0x2F9F1, 0x28D77}, {0x2F9F2, 0x49E6}, {0x2F9F3, 0x96C3}, {0x2F9F4, 0x5DB2}, {0x2F9F5, 0x9723}, {0x2F9F6, 0x29145}, {0x2F9F7, 0x2921A}, {0x2F9F8, 0x4A6E}, {0x2F9F9, 0x4A76},
{0x2F9FA, 0x97E0}, {0x2F9FB, 0x2940A}, {0x2F9FC, 0x4AB2}, {0x2F9FD, 0x29496}, {0x2F9FE, 0x980B}, {0x2F9FF, 0x980B}, {0x2FA00, 0x9829}, {0x2FA01, 0x295B6}, {0x2FA02, 0x98E2}, {0x2FA03, 0x4B33},
{0x2FA04, 0x9929}, {0x2FA05, 0x99A7}, {0x2FA06, 0x99C2}, {0x2FA07, 0x99FE}, {0x2FA08, 0x4BCE}, {0x2FA09, 0x29B30}, {0x2FA0A, 0x9B12}, {0x2FA0B, 0x9C40}, {0x2FA0C, 0x9CFD}, {0x2FA0D, 0x4CCE},
{0x2FA0E, 0x4CED}, {0x2FA0F, 0x9D67}, {0x2FA10, 0x2A0CE}, {0x2FA11, 0x4CF8}, {0x2FA12, 0x2A105}, {0x2FA13, 0x2A20E}, {0x2FA14, 0x2A291}, {0x2FA15, 0x9EBB}, {0x2FA16, 0x4D56}, {0x2FA17, 0x9EF9},
{0x2FA18, 0x9EFE}, {0x2FA19, 0x9F05}, {0x2FA1A, 0x9F0F}, {0x2FA1B, 0x9F16}, {0x2FA1D, 0x2A600},
};
static std::string codepoint_to_utf8(uint32_t cp) {