fixed other arch

This commit is contained in:
Concedo 2023-05-24 00:20:43 +08:00
parent 0c0009e4b4
commit abb9ad789c
9 changed files with 61 additions and 456 deletions

View file

@ -624,148 +624,3 @@ bool legacy_gpt2_eval(
return true;
}
// int main(int argc, char ** argv) {
// ggml_v1_time_init();
// const int64_t t_main_start_us = ggml_v1_time_us();
// gpt_params params;
// params.model = "models/gpt-2-117M/ggml-model.bin";
// if (utils_gpt_params_parse(argc, argv, params) == false) {
// return 1;
// }
// if (params.seed < 0) {
// params.seed = time(NULL);
// }
// printf("%s: seed = %d\n", __func__, params.seed);
// std::mt19937 rng(params.seed);
// if (params.prompt.empty()) {
// if( !isatty(STDIN_FILENO) ){
// std::string line;
// while( std::getline(std::cin, line) ){
// params.prompt = params.prompt + "\n" + line;
// }
// } else {
// params.prompt = utils_gpt_random_prompt(rng);
// }
// }
// int64_t t_load_us = 0;
// gpt_vocab vocab;
// gpt2_v1_model model;
// // load the model
// {
// const int64_t t_start_us = ggml_v1_time_us();
// if (!legacy_gpt2_model_load(params.model, model, vocab, FileFormat::GPT2_1)) {
// fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
// return 1;
// }
// t_load_us = ggml_v1_time_us() - t_start_us;
// }
// int n_past = 0;
// int64_t t_sample_us = 0;
// int64_t t_predict_us = 0;
// std::vector<float> logits;
// // tokenize the prompt
// std::vector<gpt_vocab::id> embd_inp = ::gpt_tokenize(vocab, params.prompt);
// params.n_predict = std::min(params.n_predict, model.hparams.n_ctx - (int) embd_inp.size());
// printf("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
// printf("\n");
// // submit the input prompt token-by-token
// // this reduces the memory usage during inference, at the cost of a bit of speed at the beginning
// std::vector<gpt_vocab::id> embd;
// // determine the required inference memory per token:
// size_t mem_per_token = 0;
// legacy_gpt2_eval(model, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, FileFormat::GPT2_1);
// for (int i = embd.size(); i < embd_inp.size() + params.n_predict; i++) {
// // predict
// if (embd.size() > 0) {
// const int64_t t_start_us = ggml_v1_time_us();
// if (!legacy_gpt2_eval(model, params.n_threads, n_past, embd, logits, mem_per_token, FileFormat::GPT2_1)) {
// printf("Failed to predict\n");
// return 1;
// }
// t_predict_us += ggml_v1_time_us() - t_start_us;
// }
// n_past += embd.size();
// embd.clear();
// if (i >= embd_inp.size()) {
// // sample next token
// const int top_k = params.top_k;
// const float top_p = params.top_p;
// const float temp = params.temp;
// const int n_vocab = model.hparams.n_vocab;
// gpt_vocab::id id = 0;
// {
// const int64_t t_start_sample_us = ggml_v1_time_us();
// id = gpt_sample_top_k_top_p(vocab, logits.data() + (logits.size() - n_vocab), top_k, top_p, temp, rng);
// t_sample_us += ggml_v1_time_us() - t_start_sample_us;
// }
// // add it to the context
// embd.push_back(id);
// } else {
// // if here, it means we are still processing the input prompt
// for (int k = i; k < embd_inp.size(); k++) {
// embd.push_back(embd_inp[k]);
// if (embd.size() >= params.n_batch) {
// break;
// }
// }
// i += embd.size() - 1;
// }
// // display text
// for (auto id : embd) {
// printf("%s", vocab.id_to_token[id].c_str());
// }
// fflush(stdout);
// // end of text token
// if (embd.back() == 50256) {
// break;
// }
// }
// // report timing
// {
// const int64_t t_main_end_us = ggml_v1_time_us();
// printf("\n\n");
// printf("%s: mem per token = %8zu bytes\n", __func__, mem_per_token);
// printf("%s: load time = %8.2f ms\n", __func__, t_load_us/1000.0f);
// printf("%s: sample time = %8.2f ms\n", __func__, t_sample_us/1000.0f);
// printf("%s: predict time = %8.2f ms / %.2f ms per token\n", __func__, t_predict_us/1000.0f, t_predict_us/1000.0f/n_past);
// printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f);
// }
// ggml_v1_free(model.ctx);
// return 0;
// }

View file

@ -72,12 +72,15 @@ ModelLoadResult gpt2_v2_model_load(const std::string & fname, gpt2_v2_model & mo
}
std::string word;
std::vector<char> buf(128);
for (int i = 0; i < n_vocab; i++) {
uint32_t len;
fin.read((char *) &len, sizeof(len));
word.resize(len);
fin.read((char *) word.data(), len);
buf.resize(len);
fin.read((char *) buf.data(), len);
word.assign(buf.data(), len);
vocab.token_to_id[word] = i;
vocab.id_to_token[i] = word;

View file

@ -75,12 +75,15 @@ ModelLoadResult gpt2_model_load(const std::string & fname, gpt2_model & model, g
}
std::string word;
std::vector<char> buf(128);
for (int i = 0; i < n_vocab; i++) {
uint32_t len;
fin.read((char *) &len, sizeof(len));
word.resize(len);
fin.read((char *) word.data(), len);
buf.resize(len);
fin.read((char *) buf.data(), len);
word.assign(buf.data(), len);
vocab.token_to_id[word] = i;
vocab.id_to_token[i] = word;

View file

@ -75,12 +75,15 @@ ModelLoadResult gptj_v2_model_load(const std::string & fname, gptj_v2_model & mo
}
std::string word;
std::vector<char> buf(128);
for (int i = 0; i < n_vocab; i++) {
uint32_t len;
fin.read((char *) &len, sizeof(len));
word.resize(len);
fin.read((char *) word.data(), len);
buf.resize(len);
fin.read((char *) buf.data(), len);
word.assign(buf.data(), len);
vocab.token_to_id[word] = i;
vocab.id_to_token[i] = word;

View file

@ -75,12 +75,15 @@ ModelLoadResult gptj_model_load(const std::string & fname, gptj_model & model, g
}
std::string word;
std::vector<char> buf(128);
for (int i = 0; i < n_vocab; i++) {
uint32_t len;
fin.read((char *) &len, sizeof(len));
word.resize(len);
fin.read((char *) word.data(), len);
buf.resize(len);
fin.read((char *) buf.data(), len);
word.assign(buf.data(), len);
vocab.token_to_id[word] = i;
vocab.id_to_token[i] = word;

View file

@ -75,12 +75,15 @@ ModelLoadResult gpt_neox_v2_model_load(const std::string & fname, gpt_neox_v2_mo
const int32_t n_vocab = model.hparams.n_vocab;
std::string word;
std::vector<char> buf(128);
for (int i = 0; i < n_vocab; i++) {
uint32_t len;
fin.read((char *) &len, sizeof(len));
word.resize(len);
fin.read((char *) word.data(), len);
buf.resize(len);
fin.read((char *) buf.data(), len);
word.assign(buf.data(), len);
vocab.token_to_id[word] = i;
vocab.id_to_token[i] = word;

View file

@ -75,18 +75,22 @@ ModelLoadResult gpt_neox_model_load(const std::string & fname, gpt_neox_model &
const int32_t n_vocab = model.hparams.n_vocab;
std::string word;
std::vector<char> buf(128);
for (int i = 0; i < n_vocab; i++) {
uint32_t len;
fin.read((char *) &len, sizeof(len));
word.resize(len);
fin.read((char *) word.data(), len);
buf.resize(len);
fin.read((char *) buf.data(), len);
word.assign(buf.data(), len);
vocab.token_to_id[word] = i;
vocab.id_to_token[i] = word;
}
}
// for the big tensors, we have the option to store the data in 16-bit floats or quantized
// in order to save memory and also to speed up the computation
ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype) (model.hparams.ftype));

View file

@ -3,78 +3,7 @@
#include <fstream>
#include <regex>
bool utils_gpt_params_parse(int argc, char ** argv, gpt_params & params) {
for (int i = 1; i < argc; i++) {
std::string arg = argv[i];
if (arg == "-s" || arg == "--seed") {
params.seed = std::stoi(argv[++i]);
} else if (arg == "-t" || arg == "--threads") {
params.n_threads = std::stoi(argv[++i]);
} else if (arg == "-p" || arg == "--prompt") {
params.prompt = argv[++i];
} else if (arg == "-n" || arg == "--n_predict") {
params.n_predict = std::stoi(argv[++i]);
} else if (arg == "--top_k") {
params.top_k = std::stoi(argv[++i]);
} else if (arg == "--top_p") {
params.top_p = std::stof(argv[++i]);
} else if (arg == "--temp") {
params.temp = std::stof(argv[++i]);
} else if (arg == "-b" || arg == "--batch_size") {
params.n_batch = std::stoi(argv[++i]);
} else if (arg == "-m" || arg == "--model") {
params.model = argv[++i];
} else if (arg == "-h" || arg == "--help") {
utils_gpt_print_usage(argc, argv, params);
exit(0);
} else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
utils_gpt_print_usage(argc, argv, params);
exit(0);
}
}
return true;
}
void utils_gpt_print_usage(int argc, char ** argv, const gpt_params & params) {
fprintf(stderr, "usage: %s [options]\n", argv[0]);
fprintf(stderr, "\n");
fprintf(stderr, "options:\n");
fprintf(stderr, " -h, --help show this help message and exit\n");
fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n");
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
fprintf(stderr, " -p PROMPT, --prompt PROMPT\n");
fprintf(stderr, " prompt to start generation with (default: random)\n");
fprintf(stderr, " -n N, --n_predict N number of tokens to predict (default: %d)\n", params.n_predict);
fprintf(stderr, " --top_k N top-k sampling (default: %d)\n", params.top_k);
fprintf(stderr, " --top_p N top-p sampling (default: %.1f)\n", params.top_p);
fprintf(stderr, " --temp N temperature (default: %.1f)\n", params.temp);
fprintf(stderr, " -b N, --batch_size N batch size for prompt processing (default: %d)\n", params.n_batch);
fprintf(stderr, " -m FNAME, --model FNAME\n");
fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
fprintf(stderr, "\n");
}
std::string utils_gpt_random_prompt(std::mt19937 & rng) {
const int r = rng() % 10;
switch (r) {
case 0: return "So";
case 1: return "Once upon a time";
case 2: return "When";
case 3: return "The";
case 4: return "After";
case 5: return "If";
case 6: return "import";
case 7: return "He";
case 8: return "She";
case 9: return "They";
default: return "To";
}
return "The";
}
void utreplace(std::string & str, const std::string & needle, const std::string & replacement) {
size_t pos = 0;
@ -175,6 +104,31 @@ std::map<std::string, int32_t> json_parse(const std::string & fname) {
return result;
}
void gpt_vocab::add_special_token(const std::string & token) {
special_tokens.push_back(token);
}
static void append_utf8(char32_t ch, std::string & out) {
if (ch <= 0x7F) {
out.push_back(static_cast<unsigned char>(ch));
} else if (ch <= 0x7FF) {
out.push_back(static_cast<unsigned char>(0xC0 | ((ch >> 6) & 0x1F)));
out.push_back(static_cast<unsigned char>(0x80 | (ch & 0x3F)));
} else if (ch <= 0xFFFF) {
out.push_back(static_cast<unsigned char>(0xE0 | ((ch >> 12) & 0x0F)));
out.push_back(static_cast<unsigned char>(0x80 | ((ch >> 6) & 0x3F)));
out.push_back(static_cast<unsigned char>(0x80 | (ch & 0x3F)));
} else if (ch <= 0x10FFFF) {
out.push_back(static_cast<unsigned char>(0xF0 | ((ch >> 18) & 0x07)));
out.push_back(static_cast<unsigned char>(0x80 | ((ch >> 12) & 0x3F)));
out.push_back(static_cast<unsigned char>(0x80 | ((ch >> 6) & 0x3F)));
out.push_back(static_cast<unsigned char>(0x80 | (ch & 0x3F)));
} else {
printf("Invalid Unicode code point\n");
}
}
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text) {
std::vector<std::string> words;
@ -208,7 +162,8 @@ std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::stri
if (it != vocab.token_to_id.end()) {
tokens.push_back(it->second);
i = j;
break;
j = n;
continue;
}
--j;
}
@ -230,202 +185,6 @@ std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::stri
return tokens;
}
bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab) {
printf("%s: loading vocab from '%s'\n", __func__, fname.c_str());
vocab.token_to_id = ::json_parse(fname);
for (const auto & kv : vocab.token_to_id) {
vocab.id_to_token[kv.second] = kv.first;
}
printf("%s: vocab size = %d\n", __func__, (int) vocab.token_to_id.size());
// print the vocabulary
//for (auto kv : vocab.token_to_id) {
// printf("'%s' -> %d\n", kv.first.data(), kv.second);
//}
return true;
}
void gptj_sample_top_k(std::vector<std::pair<double, gpt_vocab::id>> & logits_id, int top_k) {
// find the top K tokens
std::partial_sort(
logits_id.begin(),
logits_id.begin() + top_k, logits_id.end(),
[](const std::pair<double, gpt_vocab::id> & a, const std::pair<double, gpt_vocab::id> & b) {
return a.first > b.first;
});
logits_id.resize(top_k);
}
gpt_vocab::id gptj_sample_top_p_top_k(
const gpt_vocab & vocab,
const float * logits,
std::vector<gpt_vocab::id> & last_n_tokens,
double repeat_penalty,
int top_k,
double top_p,
double temp,
std::mt19937 & rng) {
int n_logits = vocab.id_to_token.size();
std::vector<std::pair<double, gpt_vocab::id>> logits_id;
logits_id.reserve(n_logits);
{
const double scale = 1.0/temp;
for (int i = 0; i < n_logits; ++i) {
// repetition penalty from CTRL paper (https://arxiv.org/abs/1909.05858)
// credit https://github.com/facebookresearch/llama/compare/main...shawwn:llama:main
if (std::find(last_n_tokens.begin(), last_n_tokens.end(), i) != last_n_tokens.end()) {
// if score < 0 then repetition penalty has to multiplied to reduce the previous token probability
if (logits[i] < 0.0) {
logits_id.push_back(std::make_pair(logits[i]*scale*repeat_penalty, i));
} else {
logits_id.push_back(std::make_pair(logits[i]*scale/repeat_penalty, i));
}
} else {
logits_id.push_back(std::make_pair(logits[i]*scale, i));
}
}
}
gptj_sample_top_k(logits_id, top_k > 0 ? std::min(top_k, n_logits) : n_logits);
double maxl = -INFINITY;
for (const auto & kv : logits_id) {
maxl = std::max(maxl, kv.first);
}
// compute probs for the top K tokens
std::vector<double> probs;
probs.reserve(logits_id.size());
double sum = 0.0;
for (const auto & kv : logits_id) {
double p = exp(kv.first - maxl);
probs.push_back(p);
sum += p;
}
// normalize the probs
for (auto & p : probs) {
p /= sum;
}
if (top_p < 1.0f) {
double cumsum = 0.0f;
for (int i = 0; i < (int) probs.size(); i++) {
cumsum += probs[i];
if (cumsum >= top_p) {
probs.resize(i + 1);
logits_id.resize(i + 1);
break;
}
}
cumsum = 1.0/cumsum;
for (int i = 0; i < (int) probs.size(); i++) {
probs[i] *= cumsum;
}
}
//printf("\n");
//for (int i = 0; i < (int) 10; i++) {
// printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), probs[i]);
//}
//printf("\n\n");
//exit(0);
std::discrete_distribution<> dist(probs.begin(), probs.end());
int idx = dist(rng);
return logits_id[idx].second;
}
gpt_vocab::id gpt_sample_top_k_top_p(
const gpt_vocab & vocab,
const float * logits,
int top_k,
double top_p,
double temp,
std::mt19937 & rng) {
int n_logits = vocab.id_to_token.size();
std::vector<std::pair<double, gpt_vocab::id>> logits_id;
logits_id.reserve(n_logits);
{
const double scale = 1.0/temp;
for (int i = 0; i < n_logits; ++i) {
logits_id.push_back(std::make_pair(logits[i]*scale, i));
}
}
// find the top K tokens
std::partial_sort(
logits_id.begin(),
logits_id.begin() + top_k, logits_id.end(),
[](const std::pair<double, gpt_vocab::id> & a, const std::pair<double, gpt_vocab::id> & b) {
return a.first > b.first;
});
logits_id.resize(top_k);
double maxl = -INFINITY;
for (const auto & kv : logits_id) {
maxl = std::max(maxl, kv.first);
}
// compute probs for the top K tokens
std::vector<double> probs;
probs.reserve(logits_id.size());
double sum = 0.0;
for (const auto & kv : logits_id) {
double p = exp(kv.first - maxl);
probs.push_back(p);
sum += p;
}
// normalize the probs
for (auto & p : probs) {
p /= sum;
}
if (top_p < 1.0f) {
double cumsum = 0.0f;
for (int i = 0; i < top_k; i++) {
cumsum += probs[i];
if (cumsum >= top_p) {
top_k = i + 1;
probs.resize(top_k);
logits_id.resize(top_k);
break;
}
}
cumsum = 1.0/cumsum;
for (int i = 0; i < (int) probs.size(); i++) {
probs[i] *= cumsum;
}
}
//printf("\n");
//for (int i = 0; i < (int) probs.size(); i++) {
// printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), probs[i]);
//}
//exit(0);
std::discrete_distribution<> dist(probs.begin(), probs.end());
int idx = dist(rng);
return logits_id[idx].second;
}
bool should_transpose_layer(std::string name)
{

View file

@ -24,6 +24,9 @@ struct gpt_vocab {
std::map<token, id> token_to_id;
std::map<id, token> id_to_token;
std::vector<std::string> special_tokens;
void add_special_token(const std::string & token);
};
void utreplace(std::string & str, const std::string & needle, const std::string & replacement);
@ -43,37 +46,6 @@ std::map<std::string, int32_t> json_parse(const std::string & fname);
//
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text);
// load the tokens from encoder.json
bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab);
// sample next token given probabilities for each embedding
//
// - consider only the top K tokens
// - from them, consider only the top tokens with cumulative probability > P
//
// TODO: not sure if this implementation is correct
// TODO: temperature is not implemented
//
gpt_vocab::id gpt_sample_top_k_top_p(
const gpt_vocab & vocab,
const float * logits,
int top_k,
double top_p,
double temp,
std::mt19937 & rng);
gpt_vocab::id gptj_sample_top_p_top_k(
const gpt_vocab & vocab,
const float * logits,
std::vector<gpt_vocab::id> & last_n_tokens,
double repeat_penalty,
int top_k,
double top_p,
double temp,
std::mt19937 & rng);
bool utils_gpt_params_parse(int argc, char ** argv, gpt_params & params);
void utils_gpt_print_usage(int argc, char ** argv, const gpt_params & params);
std::string utils_gpt_random_prompt(std::mt19937 & rng);
bool should_transpose_layer(std::string name);