fixed other arch
This commit is contained in:
parent
0c0009e4b4
commit
abb9ad789c
9 changed files with 61 additions and 456 deletions
|
@ -624,148 +624,3 @@ bool legacy_gpt2_eval(
|
|||
|
||||
return true;
|
||||
}
|
||||
|
||||
// int main(int argc, char ** argv) {
|
||||
// ggml_v1_time_init();
|
||||
// const int64_t t_main_start_us = ggml_v1_time_us();
|
||||
|
||||
// gpt_params params;
|
||||
// params.model = "models/gpt-2-117M/ggml-model.bin";
|
||||
|
||||
// if (utils_gpt_params_parse(argc, argv, params) == false) {
|
||||
// return 1;
|
||||
// }
|
||||
|
||||
// if (params.seed < 0) {
|
||||
// params.seed = time(NULL);
|
||||
// }
|
||||
|
||||
// printf("%s: seed = %d\n", __func__, params.seed);
|
||||
|
||||
// std::mt19937 rng(params.seed);
|
||||
// if (params.prompt.empty()) {
|
||||
// if( !isatty(STDIN_FILENO) ){
|
||||
// std::string line;
|
||||
// while( std::getline(std::cin, line) ){
|
||||
// params.prompt = params.prompt + "\n" + line;
|
||||
// }
|
||||
// } else {
|
||||
// params.prompt = utils_gpt_random_prompt(rng);
|
||||
// }
|
||||
// }
|
||||
|
||||
// int64_t t_load_us = 0;
|
||||
|
||||
// gpt_vocab vocab;
|
||||
// gpt2_v1_model model;
|
||||
|
||||
// // load the model
|
||||
// {
|
||||
// const int64_t t_start_us = ggml_v1_time_us();
|
||||
|
||||
// if (!legacy_gpt2_model_load(params.model, model, vocab, FileFormat::GPT2_1)) {
|
||||
// fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
|
||||
// return 1;
|
||||
// }
|
||||
|
||||
// t_load_us = ggml_v1_time_us() - t_start_us;
|
||||
// }
|
||||
|
||||
// int n_past = 0;
|
||||
|
||||
// int64_t t_sample_us = 0;
|
||||
// int64_t t_predict_us = 0;
|
||||
|
||||
// std::vector<float> logits;
|
||||
|
||||
// // tokenize the prompt
|
||||
// std::vector<gpt_vocab::id> embd_inp = ::gpt_tokenize(vocab, params.prompt);
|
||||
|
||||
// params.n_predict = std::min(params.n_predict, model.hparams.n_ctx - (int) embd_inp.size());
|
||||
|
||||
// printf("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
|
||||
// printf("\n");
|
||||
|
||||
// // submit the input prompt token-by-token
|
||||
// // this reduces the memory usage during inference, at the cost of a bit of speed at the beginning
|
||||
// std::vector<gpt_vocab::id> embd;
|
||||
|
||||
// // determine the required inference memory per token:
|
||||
// size_t mem_per_token = 0;
|
||||
// legacy_gpt2_eval(model, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, FileFormat::GPT2_1);
|
||||
|
||||
// for (int i = embd.size(); i < embd_inp.size() + params.n_predict; i++) {
|
||||
// // predict
|
||||
// if (embd.size() > 0) {
|
||||
// const int64_t t_start_us = ggml_v1_time_us();
|
||||
|
||||
// if (!legacy_gpt2_eval(model, params.n_threads, n_past, embd, logits, mem_per_token, FileFormat::GPT2_1)) {
|
||||
// printf("Failed to predict\n");
|
||||
// return 1;
|
||||
// }
|
||||
|
||||
// t_predict_us += ggml_v1_time_us() - t_start_us;
|
||||
// }
|
||||
|
||||
// n_past += embd.size();
|
||||
// embd.clear();
|
||||
|
||||
// if (i >= embd_inp.size()) {
|
||||
// // sample next token
|
||||
// const int top_k = params.top_k;
|
||||
// const float top_p = params.top_p;
|
||||
// const float temp = params.temp;
|
||||
|
||||
// const int n_vocab = model.hparams.n_vocab;
|
||||
|
||||
// gpt_vocab::id id = 0;
|
||||
|
||||
// {
|
||||
// const int64_t t_start_sample_us = ggml_v1_time_us();
|
||||
|
||||
// id = gpt_sample_top_k_top_p(vocab, logits.data() + (logits.size() - n_vocab), top_k, top_p, temp, rng);
|
||||
|
||||
// t_sample_us += ggml_v1_time_us() - t_start_sample_us;
|
||||
// }
|
||||
|
||||
// // add it to the context
|
||||
// embd.push_back(id);
|
||||
// } else {
|
||||
// // if here, it means we are still processing the input prompt
|
||||
// for (int k = i; k < embd_inp.size(); k++) {
|
||||
// embd.push_back(embd_inp[k]);
|
||||
// if (embd.size() >= params.n_batch) {
|
||||
// break;
|
||||
// }
|
||||
// }
|
||||
// i += embd.size() - 1;
|
||||
// }
|
||||
|
||||
// // display text
|
||||
// for (auto id : embd) {
|
||||
// printf("%s", vocab.id_to_token[id].c_str());
|
||||
// }
|
||||
// fflush(stdout);
|
||||
|
||||
// // end of text token
|
||||
// if (embd.back() == 50256) {
|
||||
// break;
|
||||
// }
|
||||
// }
|
||||
|
||||
// // report timing
|
||||
// {
|
||||
// const int64_t t_main_end_us = ggml_v1_time_us();
|
||||
|
||||
// printf("\n\n");
|
||||
// printf("%s: mem per token = %8zu bytes\n", __func__, mem_per_token);
|
||||
// printf("%s: load time = %8.2f ms\n", __func__, t_load_us/1000.0f);
|
||||
// printf("%s: sample time = %8.2f ms\n", __func__, t_sample_us/1000.0f);
|
||||
// printf("%s: predict time = %8.2f ms / %.2f ms per token\n", __func__, t_predict_us/1000.0f, t_predict_us/1000.0f/n_past);
|
||||
// printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f);
|
||||
// }
|
||||
|
||||
// ggml_v1_free(model.ctx);
|
||||
|
||||
// return 0;
|
||||
// }
|
|
@ -72,12 +72,15 @@ ModelLoadResult gpt2_v2_model_load(const std::string & fname, gpt2_v2_model & mo
|
|||
}
|
||||
|
||||
std::string word;
|
||||
std::vector<char> buf(128);
|
||||
|
||||
for (int i = 0; i < n_vocab; i++) {
|
||||
uint32_t len;
|
||||
fin.read((char *) &len, sizeof(len));
|
||||
|
||||
word.resize(len);
|
||||
fin.read((char *) word.data(), len);
|
||||
buf.resize(len);
|
||||
fin.read((char *) buf.data(), len);
|
||||
word.assign(buf.data(), len);
|
||||
|
||||
vocab.token_to_id[word] = i;
|
||||
vocab.id_to_token[i] = word;
|
||||
|
|
|
@ -75,12 +75,15 @@ ModelLoadResult gpt2_model_load(const std::string & fname, gpt2_model & model, g
|
|||
}
|
||||
|
||||
std::string word;
|
||||
std::vector<char> buf(128);
|
||||
|
||||
for (int i = 0; i < n_vocab; i++) {
|
||||
uint32_t len;
|
||||
fin.read((char *) &len, sizeof(len));
|
||||
|
||||
word.resize(len);
|
||||
fin.read((char *) word.data(), len);
|
||||
buf.resize(len);
|
||||
fin.read((char *) buf.data(), len);
|
||||
word.assign(buf.data(), len);
|
||||
|
||||
vocab.token_to_id[word] = i;
|
||||
vocab.id_to_token[i] = word;
|
||||
|
|
|
@ -75,12 +75,15 @@ ModelLoadResult gptj_v2_model_load(const std::string & fname, gptj_v2_model & mo
|
|||
}
|
||||
|
||||
std::string word;
|
||||
std::vector<char> buf(128);
|
||||
|
||||
for (int i = 0; i < n_vocab; i++) {
|
||||
uint32_t len;
|
||||
fin.read((char *) &len, sizeof(len));
|
||||
|
||||
word.resize(len);
|
||||
fin.read((char *) word.data(), len);
|
||||
buf.resize(len);
|
||||
fin.read((char *) buf.data(), len);
|
||||
word.assign(buf.data(), len);
|
||||
|
||||
vocab.token_to_id[word] = i;
|
||||
vocab.id_to_token[i] = word;
|
||||
|
|
|
@ -75,12 +75,15 @@ ModelLoadResult gptj_model_load(const std::string & fname, gptj_model & model, g
|
|||
}
|
||||
|
||||
std::string word;
|
||||
std::vector<char> buf(128);
|
||||
|
||||
for (int i = 0; i < n_vocab; i++) {
|
||||
uint32_t len;
|
||||
fin.read((char *) &len, sizeof(len));
|
||||
|
||||
word.resize(len);
|
||||
fin.read((char *) word.data(), len);
|
||||
buf.resize(len);
|
||||
fin.read((char *) buf.data(), len);
|
||||
word.assign(buf.data(), len);
|
||||
|
||||
vocab.token_to_id[word] = i;
|
||||
vocab.id_to_token[i] = word;
|
||||
|
|
|
@ -75,12 +75,15 @@ ModelLoadResult gpt_neox_v2_model_load(const std::string & fname, gpt_neox_v2_mo
|
|||
const int32_t n_vocab = model.hparams.n_vocab;
|
||||
|
||||
std::string word;
|
||||
std::vector<char> buf(128);
|
||||
|
||||
for (int i = 0; i < n_vocab; i++) {
|
||||
uint32_t len;
|
||||
fin.read((char *) &len, sizeof(len));
|
||||
|
||||
word.resize(len);
|
||||
fin.read((char *) word.data(), len);
|
||||
buf.resize(len);
|
||||
fin.read((char *) buf.data(), len);
|
||||
word.assign(buf.data(), len);
|
||||
|
||||
vocab.token_to_id[word] = i;
|
||||
vocab.id_to_token[i] = word;
|
||||
|
|
|
@ -75,18 +75,22 @@ ModelLoadResult gpt_neox_model_load(const std::string & fname, gpt_neox_model &
|
|||
const int32_t n_vocab = model.hparams.n_vocab;
|
||||
|
||||
std::string word;
|
||||
std::vector<char> buf(128);
|
||||
|
||||
for (int i = 0; i < n_vocab; i++) {
|
||||
uint32_t len;
|
||||
fin.read((char *) &len, sizeof(len));
|
||||
|
||||
word.resize(len);
|
||||
fin.read((char *) word.data(), len);
|
||||
buf.resize(len);
|
||||
fin.read((char *) buf.data(), len);
|
||||
word.assign(buf.data(), len);
|
||||
|
||||
vocab.token_to_id[word] = i;
|
||||
vocab.id_to_token[i] = word;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// for the big tensors, we have the option to store the data in 16-bit floats or quantized
|
||||
// in order to save memory and also to speed up the computation
|
||||
ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype) (model.hparams.ftype));
|
||||
|
|
|
@ -3,78 +3,7 @@
|
|||
#include <fstream>
|
||||
#include <regex>
|
||||
|
||||
bool utils_gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||
for (int i = 1; i < argc; i++) {
|
||||
std::string arg = argv[i];
|
||||
|
||||
if (arg == "-s" || arg == "--seed") {
|
||||
params.seed = std::stoi(argv[++i]);
|
||||
} else if (arg == "-t" || arg == "--threads") {
|
||||
params.n_threads = std::stoi(argv[++i]);
|
||||
} else if (arg == "-p" || arg == "--prompt") {
|
||||
params.prompt = argv[++i];
|
||||
} else if (arg == "-n" || arg == "--n_predict") {
|
||||
params.n_predict = std::stoi(argv[++i]);
|
||||
} else if (arg == "--top_k") {
|
||||
params.top_k = std::stoi(argv[++i]);
|
||||
} else if (arg == "--top_p") {
|
||||
params.top_p = std::stof(argv[++i]);
|
||||
} else if (arg == "--temp") {
|
||||
params.temp = std::stof(argv[++i]);
|
||||
} else if (arg == "-b" || arg == "--batch_size") {
|
||||
params.n_batch = std::stoi(argv[++i]);
|
||||
} else if (arg == "-m" || arg == "--model") {
|
||||
params.model = argv[++i];
|
||||
} else if (arg == "-h" || arg == "--help") {
|
||||
utils_gpt_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
} else {
|
||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||
utils_gpt_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void utils_gpt_print_usage(int argc, char ** argv, const gpt_params & params) {
|
||||
fprintf(stderr, "usage: %s [options]\n", argv[0]);
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "options:\n");
|
||||
fprintf(stderr, " -h, --help show this help message and exit\n");
|
||||
fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n");
|
||||
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
|
||||
fprintf(stderr, " -p PROMPT, --prompt PROMPT\n");
|
||||
fprintf(stderr, " prompt to start generation with (default: random)\n");
|
||||
fprintf(stderr, " -n N, --n_predict N number of tokens to predict (default: %d)\n", params.n_predict);
|
||||
fprintf(stderr, " --top_k N top-k sampling (default: %d)\n", params.top_k);
|
||||
fprintf(stderr, " --top_p N top-p sampling (default: %.1f)\n", params.top_p);
|
||||
fprintf(stderr, " --temp N temperature (default: %.1f)\n", params.temp);
|
||||
fprintf(stderr, " -b N, --batch_size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
||||
fprintf(stderr, " -m FNAME, --model FNAME\n");
|
||||
fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
std::string utils_gpt_random_prompt(std::mt19937 & rng) {
|
||||
const int r = rng() % 10;
|
||||
switch (r) {
|
||||
case 0: return "So";
|
||||
case 1: return "Once upon a time";
|
||||
case 2: return "When";
|
||||
case 3: return "The";
|
||||
case 4: return "After";
|
||||
case 5: return "If";
|
||||
case 6: return "import";
|
||||
case 7: return "He";
|
||||
case 8: return "She";
|
||||
case 9: return "They";
|
||||
default: return "To";
|
||||
}
|
||||
|
||||
return "The";
|
||||
}
|
||||
|
||||
void utreplace(std::string & str, const std::string & needle, const std::string & replacement) {
|
||||
size_t pos = 0;
|
||||
|
@ -175,6 +104,31 @@ std::map<std::string, int32_t> json_parse(const std::string & fname) {
|
|||
return result;
|
||||
}
|
||||
|
||||
|
||||
void gpt_vocab::add_special_token(const std::string & token) {
|
||||
special_tokens.push_back(token);
|
||||
}
|
||||
|
||||
static void append_utf8(char32_t ch, std::string & out) {
|
||||
if (ch <= 0x7F) {
|
||||
out.push_back(static_cast<unsigned char>(ch));
|
||||
} else if (ch <= 0x7FF) {
|
||||
out.push_back(static_cast<unsigned char>(0xC0 | ((ch >> 6) & 0x1F)));
|
||||
out.push_back(static_cast<unsigned char>(0x80 | (ch & 0x3F)));
|
||||
} else if (ch <= 0xFFFF) {
|
||||
out.push_back(static_cast<unsigned char>(0xE0 | ((ch >> 12) & 0x0F)));
|
||||
out.push_back(static_cast<unsigned char>(0x80 | ((ch >> 6) & 0x3F)));
|
||||
out.push_back(static_cast<unsigned char>(0x80 | (ch & 0x3F)));
|
||||
} else if (ch <= 0x10FFFF) {
|
||||
out.push_back(static_cast<unsigned char>(0xF0 | ((ch >> 18) & 0x07)));
|
||||
out.push_back(static_cast<unsigned char>(0x80 | ((ch >> 12) & 0x3F)));
|
||||
out.push_back(static_cast<unsigned char>(0x80 | ((ch >> 6) & 0x3F)));
|
||||
out.push_back(static_cast<unsigned char>(0x80 | (ch & 0x3F)));
|
||||
} else {
|
||||
printf("Invalid Unicode code point\n");
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text) {
|
||||
std::vector<std::string> words;
|
||||
|
||||
|
@ -208,7 +162,8 @@ std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::stri
|
|||
if (it != vocab.token_to_id.end()) {
|
||||
tokens.push_back(it->second);
|
||||
i = j;
|
||||
break;
|
||||
j = n;
|
||||
continue;
|
||||
}
|
||||
--j;
|
||||
}
|
||||
|
@ -230,202 +185,6 @@ std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::stri
|
|||
return tokens;
|
||||
}
|
||||
|
||||
bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab) {
|
||||
printf("%s: loading vocab from '%s'\n", __func__, fname.c_str());
|
||||
|
||||
vocab.token_to_id = ::json_parse(fname);
|
||||
|
||||
for (const auto & kv : vocab.token_to_id) {
|
||||
vocab.id_to_token[kv.second] = kv.first;
|
||||
}
|
||||
|
||||
printf("%s: vocab size = %d\n", __func__, (int) vocab.token_to_id.size());
|
||||
|
||||
// print the vocabulary
|
||||
//for (auto kv : vocab.token_to_id) {
|
||||
// printf("'%s' -> %d\n", kv.first.data(), kv.second);
|
||||
//}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void gptj_sample_top_k(std::vector<std::pair<double, gpt_vocab::id>> & logits_id, int top_k) {
|
||||
// find the top K tokens
|
||||
std::partial_sort(
|
||||
logits_id.begin(),
|
||||
logits_id.begin() + top_k, logits_id.end(),
|
||||
[](const std::pair<double, gpt_vocab::id> & a, const std::pair<double, gpt_vocab::id> & b) {
|
||||
return a.first > b.first;
|
||||
});
|
||||
|
||||
logits_id.resize(top_k);
|
||||
}
|
||||
|
||||
gpt_vocab::id gptj_sample_top_p_top_k(
|
||||
const gpt_vocab & vocab,
|
||||
const float * logits,
|
||||
std::vector<gpt_vocab::id> & last_n_tokens,
|
||||
double repeat_penalty,
|
||||
int top_k,
|
||||
double top_p,
|
||||
double temp,
|
||||
std::mt19937 & rng) {
|
||||
int n_logits = vocab.id_to_token.size();
|
||||
|
||||
std::vector<std::pair<double, gpt_vocab::id>> logits_id;
|
||||
logits_id.reserve(n_logits);
|
||||
|
||||
{
|
||||
const double scale = 1.0/temp;
|
||||
for (int i = 0; i < n_logits; ++i) {
|
||||
// repetition penalty from CTRL paper (https://arxiv.org/abs/1909.05858)
|
||||
// credit https://github.com/facebookresearch/llama/compare/main...shawwn:llama:main
|
||||
if (std::find(last_n_tokens.begin(), last_n_tokens.end(), i) != last_n_tokens.end()) {
|
||||
// if score < 0 then repetition penalty has to multiplied to reduce the previous token probability
|
||||
if (logits[i] < 0.0) {
|
||||
logits_id.push_back(std::make_pair(logits[i]*scale*repeat_penalty, i));
|
||||
} else {
|
||||
logits_id.push_back(std::make_pair(logits[i]*scale/repeat_penalty, i));
|
||||
}
|
||||
} else {
|
||||
logits_id.push_back(std::make_pair(logits[i]*scale, i));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
gptj_sample_top_k(logits_id, top_k > 0 ? std::min(top_k, n_logits) : n_logits);
|
||||
|
||||
double maxl = -INFINITY;
|
||||
for (const auto & kv : logits_id) {
|
||||
maxl = std::max(maxl, kv.first);
|
||||
}
|
||||
|
||||
// compute probs for the top K tokens
|
||||
std::vector<double> probs;
|
||||
probs.reserve(logits_id.size());
|
||||
|
||||
double sum = 0.0;
|
||||
for (const auto & kv : logits_id) {
|
||||
double p = exp(kv.first - maxl);
|
||||
probs.push_back(p);
|
||||
sum += p;
|
||||
}
|
||||
|
||||
// normalize the probs
|
||||
for (auto & p : probs) {
|
||||
p /= sum;
|
||||
}
|
||||
|
||||
if (top_p < 1.0f) {
|
||||
double cumsum = 0.0f;
|
||||
for (int i = 0; i < (int) probs.size(); i++) {
|
||||
cumsum += probs[i];
|
||||
if (cumsum >= top_p) {
|
||||
probs.resize(i + 1);
|
||||
logits_id.resize(i + 1);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
cumsum = 1.0/cumsum;
|
||||
for (int i = 0; i < (int) probs.size(); i++) {
|
||||
probs[i] *= cumsum;
|
||||
}
|
||||
}
|
||||
|
||||
//printf("\n");
|
||||
//for (int i = 0; i < (int) 10; i++) {
|
||||
// printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), probs[i]);
|
||||
//}
|
||||
//printf("\n\n");
|
||||
//exit(0);
|
||||
|
||||
std::discrete_distribution<> dist(probs.begin(), probs.end());
|
||||
int idx = dist(rng);
|
||||
|
||||
return logits_id[idx].second;
|
||||
}
|
||||
|
||||
gpt_vocab::id gpt_sample_top_k_top_p(
|
||||
const gpt_vocab & vocab,
|
||||
const float * logits,
|
||||
int top_k,
|
||||
double top_p,
|
||||
double temp,
|
||||
std::mt19937 & rng) {
|
||||
int n_logits = vocab.id_to_token.size();
|
||||
|
||||
std::vector<std::pair<double, gpt_vocab::id>> logits_id;
|
||||
logits_id.reserve(n_logits);
|
||||
|
||||
{
|
||||
const double scale = 1.0/temp;
|
||||
for (int i = 0; i < n_logits; ++i) {
|
||||
logits_id.push_back(std::make_pair(logits[i]*scale, i));
|
||||
}
|
||||
}
|
||||
|
||||
// find the top K tokens
|
||||
std::partial_sort(
|
||||
logits_id.begin(),
|
||||
logits_id.begin() + top_k, logits_id.end(),
|
||||
[](const std::pair<double, gpt_vocab::id> & a, const std::pair<double, gpt_vocab::id> & b) {
|
||||
return a.first > b.first;
|
||||
});
|
||||
|
||||
logits_id.resize(top_k);
|
||||
|
||||
double maxl = -INFINITY;
|
||||
for (const auto & kv : logits_id) {
|
||||
maxl = std::max(maxl, kv.first);
|
||||
}
|
||||
|
||||
// compute probs for the top K tokens
|
||||
std::vector<double> probs;
|
||||
probs.reserve(logits_id.size());
|
||||
|
||||
double sum = 0.0;
|
||||
for (const auto & kv : logits_id) {
|
||||
double p = exp(kv.first - maxl);
|
||||
probs.push_back(p);
|
||||
sum += p;
|
||||
}
|
||||
|
||||
// normalize the probs
|
||||
for (auto & p : probs) {
|
||||
p /= sum;
|
||||
}
|
||||
|
||||
if (top_p < 1.0f) {
|
||||
double cumsum = 0.0f;
|
||||
for (int i = 0; i < top_k; i++) {
|
||||
cumsum += probs[i];
|
||||
if (cumsum >= top_p) {
|
||||
top_k = i + 1;
|
||||
probs.resize(top_k);
|
||||
logits_id.resize(top_k);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
cumsum = 1.0/cumsum;
|
||||
for (int i = 0; i < (int) probs.size(); i++) {
|
||||
probs[i] *= cumsum;
|
||||
}
|
||||
}
|
||||
|
||||
//printf("\n");
|
||||
//for (int i = 0; i < (int) probs.size(); i++) {
|
||||
// printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), probs[i]);
|
||||
//}
|
||||
//exit(0);
|
||||
|
||||
std::discrete_distribution<> dist(probs.begin(), probs.end());
|
||||
int idx = dist(rng);
|
||||
|
||||
return logits_id[idx].second;
|
||||
}
|
||||
|
||||
bool should_transpose_layer(std::string name)
|
||||
{
|
||||
|
||||
|
|
|
@ -24,6 +24,9 @@ struct gpt_vocab {
|
|||
|
||||
std::map<token, id> token_to_id;
|
||||
std::map<id, token> id_to_token;
|
||||
std::vector<std::string> special_tokens;
|
||||
|
||||
void add_special_token(const std::string & token);
|
||||
};
|
||||
|
||||
void utreplace(std::string & str, const std::string & needle, const std::string & replacement);
|
||||
|
@ -43,37 +46,6 @@ std::map<std::string, int32_t> json_parse(const std::string & fname);
|
|||
//
|
||||
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text);
|
||||
|
||||
// load the tokens from encoder.json
|
||||
bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab);
|
||||
|
||||
// sample next token given probabilities for each embedding
|
||||
//
|
||||
// - consider only the top K tokens
|
||||
// - from them, consider only the top tokens with cumulative probability > P
|
||||
//
|
||||
// TODO: not sure if this implementation is correct
|
||||
// TODO: temperature is not implemented
|
||||
//
|
||||
gpt_vocab::id gpt_sample_top_k_top_p(
|
||||
const gpt_vocab & vocab,
|
||||
const float * logits,
|
||||
int top_k,
|
||||
double top_p,
|
||||
double temp,
|
||||
std::mt19937 & rng);
|
||||
|
||||
gpt_vocab::id gptj_sample_top_p_top_k(
|
||||
const gpt_vocab & vocab,
|
||||
const float * logits,
|
||||
std::vector<gpt_vocab::id> & last_n_tokens,
|
||||
double repeat_penalty,
|
||||
int top_k,
|
||||
double top_p,
|
||||
double temp,
|
||||
std::mt19937 & rng);
|
||||
|
||||
bool utils_gpt_params_parse(int argc, char ** argv, gpt_params & params);
|
||||
void utils_gpt_print_usage(int argc, char ** argv, const gpt_params & params);
|
||||
std::string utils_gpt_random_prompt(std::mt19937 & rng);
|
||||
|
||||
bool should_transpose_layer(std::string name);
|
Loading…
Add table
Add a link
Reference in a new issue