new sampler for experimentation.
This commit is contained in:
parent
074bea2eb1
commit
abbf7e7a61
3 changed files with 128 additions and 71 deletions
2
main.cpp
2
main.cpp
|
@ -990,7 +990,7 @@ int main(int argc, char ** argv) {
|
|||
logits[logits.size() - n_vocab + EOS_TOKEN_ID] = 0;
|
||||
}
|
||||
|
||||
id = llama_sample_top_p_top_k(vocab, logits.data() + (logits.size() - n_vocab), last_n_tokens, repeat_penalty, top_k, top_p, temp, rng);
|
||||
id = sample_top_k_top_p(vocab, logits.data() + (logits.size() - n_vocab), last_n_tokens, repeat_penalty, top_k, top_p, temp, rng);
|
||||
|
||||
last_n_tokens.erase(last_n_tokens.begin());
|
||||
last_n_tokens.push_back(id);
|
||||
|
|
208
utils.cpp
208
utils.cpp
|
@ -456,8 +456,87 @@ bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab) {
|
|||
return true;
|
||||
}
|
||||
|
||||
struct SoftMaxSampler {
|
||||
std::vector<std::pair<double, gpt_vocab::id>> logits_id; // Set by reset, sorted by soft_max
|
||||
std::vector<double> probs; // Set by compute_probs
|
||||
|
||||
void sample_top_k(std::vector<std::pair<double, gpt_vocab::id>> & logits_id, int top_k) {
|
||||
// Scales loggits (temp, repeat penalty), then computes probas and sort them.
|
||||
void reset(
|
||||
const gpt_vocab & vocab,
|
||||
const float * logits,
|
||||
double temp,
|
||||
const std::vector<gpt_vocab::id> & last_n_tokens,
|
||||
double repeat_penalty
|
||||
) {
|
||||
const int n_logits = vocab.id_to_token.size();
|
||||
if (repeat_penalty == 1 || n_logits == 0) {
|
||||
reset(vocab, logits, temp);
|
||||
return;
|
||||
}
|
||||
logits_id.clear();
|
||||
logits_id.reserve(n_logits);
|
||||
|
||||
const double scale_norepeat = 1 / temp;
|
||||
const double scale_repeat_neg = scale_norepeat * repeat_penalty;
|
||||
const double scale_repeat_pos = scale_norepeat / repeat_penalty;
|
||||
for (int i = 0; i < n_logits; ++i) {
|
||||
// repetition penalty from CTRL paper (https://arxiv.org/abs/1909.05858)
|
||||
// credit https://github.com/facebookresearch/llama/compare/main...shawwn:llama:main
|
||||
double scale = scale_norepeat;
|
||||
if (std::find(last_n_tokens.begin(), last_n_tokens.end(), i) != last_n_tokens.end()) {
|
||||
// if score < 0 then repetition penalty has to multiplied to reduce the previous token probability
|
||||
scale = logits[i] > 0. ? scale_repeat_pos : scale_repeat_neg;
|
||||
}
|
||||
logits_id.push_back(std::make_pair(logits[i] * scale, i));
|
||||
}
|
||||
}
|
||||
|
||||
void reset(
|
||||
const gpt_vocab & vocab,
|
||||
const float * logits,
|
||||
double temp
|
||||
) {
|
||||
const int n_logits = vocab.id_to_token.size();
|
||||
|
||||
logits_id.clear();
|
||||
logits_id.reserve(n_logits);
|
||||
|
||||
const double scale = 1.0 / temp;
|
||||
for (int i = 0; i < n_logits; ++i) {
|
||||
logits_id.push_back(std::make_pair(logits[i]*scale, i));
|
||||
}
|
||||
}
|
||||
|
||||
void soft_max() {
|
||||
const size_t n = logits_id.size();
|
||||
probs.clear();
|
||||
probs.reserve(n);
|
||||
|
||||
double maxl = -INFINITY;
|
||||
for (const auto & kv : logits_id) {
|
||||
maxl = std::max(maxl, kv.first);
|
||||
}
|
||||
|
||||
// compute probs for the tokens
|
||||
double sum_p = 0.0;
|
||||
for (const auto & kv : logits_id) {
|
||||
double logp = kv.first - maxl;
|
||||
double p = exp(logp);
|
||||
probs.push_back(p);
|
||||
sum_p += p;
|
||||
}
|
||||
|
||||
// normalize the probs
|
||||
const double scale = 1.0 / sum_p;
|
||||
for (auto & p : probs) {
|
||||
p *= scale;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Finds and computes the probabilities of the top K tokens
|
||||
void top_k_sort(int top_k=0) {
|
||||
if (top_k > 0 && top_k < logits_id.size()) {
|
||||
// find the top K tokens
|
||||
std::partial_sort(
|
||||
logits_id.begin(),
|
||||
|
@ -465,11 +544,56 @@ void sample_top_k(std::vector<std::pair<double, gpt_vocab::id>> & logits_id, int
|
|||
[](const std::pair<double, gpt_vocab::id> & a, const std::pair<double, gpt_vocab::id> & b) {
|
||||
return a.first > b.first;
|
||||
});
|
||||
|
||||
logits_id.resize(top_k);
|
||||
} else {
|
||||
std::sort(
|
||||
logits_id.begin(),
|
||||
logits_id.end(),
|
||||
[](const std::pair<double, gpt_vocab::id> & a, const std::pair<double, gpt_vocab::id> & b) {
|
||||
return a.first > b.first;
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
gpt_vocab::id llama_sample_top_p_top_k(
|
||||
int size() const {
|
||||
return logits_id.size();
|
||||
}
|
||||
|
||||
std::discrete_distribution<> top_k() const {
|
||||
return std::discrete_distribution<>(probs.begin(), probs.end());
|
||||
}
|
||||
|
||||
std::discrete_distribution<> top_p(double top_p) const {
|
||||
if (top_p >= 1.0f) {
|
||||
return top_k();
|
||||
}
|
||||
int n = 1;
|
||||
double cumsum = 0.0f;
|
||||
for (int i = 0; i < probs.size(); i++) {
|
||||
cumsum += probs[i];
|
||||
if (cumsum >= top_p) {
|
||||
n = i + 1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// discrete_distribution renormalizes the subset of probabilities to sum to 1.0
|
||||
return std::discrete_distribution<>(probs.begin(), probs.begin() + n);
|
||||
}
|
||||
|
||||
gpt_vocab::id top() {
|
||||
return logits_id[0].second;
|
||||
}
|
||||
|
||||
gpt_vocab::id sample(
|
||||
std::discrete_distribution<> & dist,
|
||||
std::mt19937 & rng
|
||||
) const {
|
||||
return logits_id[dist(rng)].second;
|
||||
}
|
||||
};
|
||||
|
||||
gpt_vocab::id sample_top_k_top_p(
|
||||
const gpt_vocab & vocab,
|
||||
const float * logits,
|
||||
std::vector<gpt_vocab::id> & last_n_tokens,
|
||||
|
@ -478,80 +602,16 @@ gpt_vocab::id llama_sample_top_p_top_k(
|
|||
double top_p,
|
||||
double temp,
|
||||
std::mt19937 & rng) {
|
||||
int n_logits = vocab.id_to_token.size();
|
||||
|
||||
std::vector<std::pair<double, gpt_vocab::id>> logits_id;
|
||||
logits_id.reserve(n_logits);
|
||||
SoftMaxSampler probs;
|
||||
probs.reset(vocab, logits, temp, last_n_tokens, repeat_penalty);
|
||||
probs.top_k_sort(top_k);
|
||||
probs.soft_max();
|
||||
auto dist = probs.top_p(top_p);
|
||||
int sampled_tok_id = probs.sample(dist, rng);
|
||||
|
||||
{
|
||||
const double scale = 1.0/temp;
|
||||
for (int i = 0; i < n_logits; ++i) {
|
||||
// repetition penalty from CTRL paper (https://arxiv.org/abs/1909.05858)
|
||||
// credit https://github.com/facebookresearch/llama/compare/main...shawwn:llama:main
|
||||
if (std::find(last_n_tokens.begin(), last_n_tokens.end(), i) != last_n_tokens.end()) {
|
||||
// if score < 0 then repetition penalty has to multiplied to reduce the previous token probability
|
||||
if (logits[i] < 0.0) {
|
||||
logits_id.push_back(std::make_pair(logits[i]*scale*repeat_penalty, i));
|
||||
} else {
|
||||
logits_id.push_back(std::make_pair(logits[i]*scale/repeat_penalty, i));
|
||||
}
|
||||
} else {
|
||||
logits_id.push_back(std::make_pair(logits[i]*scale, i));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
sample_top_k(logits_id, top_k);
|
||||
|
||||
double maxl = -INFINITY;
|
||||
for (const auto & kv : logits_id) {
|
||||
maxl = std::max(maxl, kv.first);
|
||||
}
|
||||
|
||||
// compute probs for the top K tokens
|
||||
std::vector<double> probs;
|
||||
probs.reserve(logits_id.size());
|
||||
|
||||
double sum = 0.0;
|
||||
for (const auto & kv : logits_id) {
|
||||
double p = exp(kv.first - maxl);
|
||||
probs.push_back(p);
|
||||
sum += p;
|
||||
}
|
||||
|
||||
// normalize the probs
|
||||
for (auto & p : probs) {
|
||||
p /= sum;
|
||||
}
|
||||
|
||||
if (top_p < 1.0f) {
|
||||
double cumsum = 0.0f;
|
||||
for (int i = 0; i < (int) probs.size(); i++) {
|
||||
cumsum += probs[i];
|
||||
if (cumsum >= top_p) {
|
||||
probs.resize(i + 1);
|
||||
logits_id.resize(i + 1);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
cumsum = 1.0/cumsum;
|
||||
for (int i = 0; i < (int) probs.size(); i++) {
|
||||
probs[i] *= cumsum;
|
||||
}
|
||||
}
|
||||
|
||||
//printf("\n");
|
||||
//for (int i = 0; i < (int) 10; i++) {
|
||||
// printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), probs[i]);
|
||||
//}
|
||||
//printf("\n\n");
|
||||
//exit(0);
|
||||
|
||||
std::discrete_distribution<> dist(probs.begin(), probs.end());
|
||||
int idx = dist(rng);
|
||||
|
||||
return logits_id[idx].second;
|
||||
return sampled_tok_id;
|
||||
}
|
||||
|
||||
|
||||
|
|
5
utils.h
5
utils.h
|
@ -90,7 +90,7 @@ bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab);
|
|||
// - consider only the top K tokens
|
||||
// - from them, consider only the top tokens with cumulative probability > P
|
||||
//
|
||||
gpt_vocab::id llama_sample_top_p_top_k(
|
||||
gpt_vocab::id sample_top_k_top_p(
|
||||
const gpt_vocab & vocab,
|
||||
const float * logits,
|
||||
std::vector<gpt_vocab::id> & last_n_tokens,
|
||||
|
@ -100,9 +100,6 @@ gpt_vocab::id llama_sample_top_p_top_k(
|
|||
double temp,
|
||||
std::mt19937 & rng);
|
||||
|
||||
// filer to top K tokens from list of logits
|
||||
void sample_top_k(std::vector<std::pair<double, gpt_vocab::id>> & logits_id, int top_k);
|
||||
|
||||
//
|
||||
// Quantization
|
||||
//
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue