server : update /embeddings and /v1/embeddings endpoints

ggml-ci
This commit is contained in:
Georgi Gerganov 2024-12-17 15:59:55 +02:00
parent 2a94c33028
commit abf33e2017
No known key found for this signature in database
GPG key ID: 449E073F9DC10735
2 changed files with 59 additions and 28 deletions

View file

@ -731,25 +731,31 @@ struct server_task_result_embd : server_task_result {
int32_t n_tokens; int32_t n_tokens;
// OAI-compat fields
bool oaicompat = false;
virtual int get_index() override { virtual int get_index() override {
return index; return index;
} }
virtual json to_json() override { virtual json to_json() override {
if (embedding.size() == 1) { return oaicompat ? to_json_oaicompat() : to_json_non_oaicompat();
// to be OAI compatible }
return json {
{"index", index},
{"embedding", embedding[0]},
};
}
json to_json_non_oaicompat() {
return json { return json {
{"index", index}, {"index", index},
{"embedding", embedding}, {"embedding", embedding},
{"tokens_evaluated", n_tokens}, {"tokens_evaluated", n_tokens},
}; };
} }
json to_json_oaicompat() {
return json {
{"index", index},
{"embedding", embedding[0]},
};
}
}; };
struct server_task_result_rerank : server_task_result { struct server_task_result_rerank : server_task_result {
@ -2027,9 +2033,10 @@ struct server_context {
void send_embedding(const server_slot & slot, const llama_batch & batch) { void send_embedding(const server_slot & slot, const llama_batch & batch) {
auto res = std::make_unique<server_task_result_embd>(); auto res = std::make_unique<server_task_result_embd>();
res->id = slot.id_task; res->id = slot.id_task;
res->index = slot.index; res->index = slot.index;
res->n_tokens = slot.n_prompt_tokens; res->n_tokens = slot.n_prompt_tokens;
res->oaicompat = slot.params.oaicompat;
const int n_embd = llama_n_embd(model); const int n_embd = llama_n_embd(model);
@ -3678,14 +3685,17 @@ int main(int argc, char ** argv) {
res_ok(res, data); res_ok(res, data);
}; };
const auto handle_embeddings = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) { const auto handle_embeddings_impl = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res, bool oaicompat) {
const json body = json::parse(req.body); const json body = json::parse(req.body);
bool oaicompat = false;
if (oaicompat && llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) {
res_error(res, format_error_response("Pooling type 'none' is not OAI compatible. Please use a different pooling type", ERROR_TYPE_INVALID_REQUEST));
return;
}
// for the shape of input/content, see tokenize_input_prompts() // for the shape of input/content, see tokenize_input_prompts()
json prompt; json prompt;
if (body.contains("input")) { if (body.count("input") != 0) {
oaicompat = true;
prompt = body.at("input"); prompt = body.at("input");
} else if (body.contains("content")) { } else if (body.contains("content")) {
oaicompat = false; oaicompat = false;
@ -3710,10 +3720,15 @@ int main(int argc, char ** argv) {
{ {
std::vector<server_task> tasks; std::vector<server_task> tasks;
for (size_t i = 0; i < tokenized_prompts.size(); i++) { for (size_t i = 0; i < tokenized_prompts.size(); i++) {
server_task task = server_task(SERVER_TASK_TYPE_EMBEDDING); server_task task = server_task(SERVER_TASK_TYPE_EMBEDDING);
task.id = ctx_server.queue_tasks.get_new_id(); task.id = ctx_server.queue_tasks.get_new_id();
task.index = i; task.index = i;
task.prompt_tokens = std::move(tokenized_prompts[i]); task.prompt_tokens = std::move(tokenized_prompts[i]);
// OAI-compat
task.params.oaicompat = oaicompat;;
tasks.push_back(task); tasks.push_back(task);
} }
@ -3741,12 +3756,18 @@ int main(int argc, char ** argv) {
} }
// write JSON response // write JSON response
json root = oaicompat json root = oaicompat ? format_embeddings_response_oaicompat(body, responses) : json(responses);
? format_embeddings_response_oaicompat(body, responses)
: responses.size() == 1 ? responses[0] : json(responses);
res_ok(res, root); res_ok(res, root);
}; };
const auto handle_embeddings = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
handle_embeddings_impl(req, res, false);
};
const auto handle_embeddings_oai = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
handle_embeddings_impl(req, res, true);
};
const auto handle_rerank = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) { const auto handle_rerank = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
if (!ctx_server.params_base.reranking || ctx_server.params_base.embedding) { if (!ctx_server.params_base.reranking || ctx_server.params_base.embedding) {
res_error(res, format_error_response("This server does not support reranking. Start it with `--reranking` and without `--embedding`", ERROR_TYPE_NOT_SUPPORTED)); res_error(res, format_error_response("This server does not support reranking. Start it with `--reranking` and without `--embedding`", ERROR_TYPE_NOT_SUPPORTED));
@ -3920,7 +3941,7 @@ int main(int argc, char ** argv) {
svr->Post("/infill", handle_infill); svr->Post("/infill", handle_infill);
svr->Post("/embedding", handle_embeddings); // legacy svr->Post("/embedding", handle_embeddings); // legacy
svr->Post("/embeddings", handle_embeddings); svr->Post("/embeddings", handle_embeddings);
svr->Post("/v1/embeddings", handle_embeddings); svr->Post("/v1/embeddings", handle_embeddings_oai);
svr->Post("/rerank", handle_rerank); svr->Post("/rerank", handle_rerank);
svr->Post("/reranking", handle_rerank); svr->Post("/reranking", handle_rerank);
svr->Post("/v1/rerank", handle_rerank); svr->Post("/v1/rerank", handle_rerank);

View file

@ -16,7 +16,7 @@ def test_embedding_single():
global server global server
server.pooling = 'last' server.pooling = 'last'
server.start() server.start()
res = server.make_request("POST", "/embeddings", data={ res = server.make_request("POST", "/v1/embeddings", data={
"input": "I believe the meaning of life is", "input": "I believe the meaning of life is",
}) })
assert res.status_code == 200 assert res.status_code == 200
@ -32,7 +32,7 @@ def test_embedding_multiple():
global server global server
server.pooling = 'last' server.pooling = 'last'
server.start() server.start()
res = server.make_request("POST", "/embeddings", data={ res = server.make_request("POST", "/v1/embeddings", data={
"input": [ "input": [
"I believe the meaning of life is", "I believe the meaning of life is",
"Write a joke about AI from a very long prompt which will not be truncated", "Write a joke about AI from a very long prompt which will not be truncated",
@ -84,16 +84,26 @@ def test_embedding_pooling_none():
"input": "hello hello hello", "input": "hello hello hello",
}) })
assert res.status_code == 200 assert res.status_code == 200
assert len(res.body['data']) == 1 assert 'embedding' in res.body[0]
assert 'embedding' in res.body['data'][0] assert len(res.body[0]['embedding']) == 3
assert len(res.body['data'][0]['embedding']) == 3
def test_embedding_pooling_none_oai():
global server
server.pooling = 'none'
server.start()
res = server.make_request("POST", "/v1/embeddings", data={
"input": "hello hello hello",
})
# /v1/embeddings does not support pooling type 'none'
assert res.status_code == 400
def test_embedding_openai_library_single(): def test_embedding_openai_library_single():
global server global server
server.pooling = 'last' server.pooling = 'last'
server.start() server.start()
client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}") client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}/v1")
res = client.embeddings.create(model="text-embedding-3-small", input="I believe the meaning of life is") res = client.embeddings.create(model="text-embedding-3-small", input="I believe the meaning of life is")
assert len(res.data) == 1 assert len(res.data) == 1
assert len(res.data[0].embedding) > 1 assert len(res.data[0].embedding) > 1
@ -103,7 +113,7 @@ def test_embedding_openai_library_multiple():
global server global server
server.pooling = 'last' server.pooling = 'last'
server.start() server.start()
client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}") client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}/v1")
res = client.embeddings.create(model="text-embedding-3-small", input=[ res = client.embeddings.create(model="text-embedding-3-small", input=[
"I believe the meaning of life is", "I believe the meaning of life is",
"Write a joke about AI from a very long prompt which will not be truncated", "Write a joke about AI from a very long prompt which will not be truncated",
@ -119,7 +129,7 @@ def test_embedding_error_prompt_too_long():
global server global server
server.pooling = 'last' server.pooling = 'last'
server.start() server.start()
res = server.make_request("POST", "/embeddings", data={ res = server.make_request("POST", "/v1/embeddings", data={
"input": "This is a test " * 512, "input": "This is a test " * 512,
}) })
assert res.status_code != 200 assert res.status_code != 200
@ -129,7 +139,7 @@ def test_embedding_error_prompt_too_long():
def test_same_prompt_give_same_result(): def test_same_prompt_give_same_result():
server.pooling = 'last' server.pooling = 'last'
server.start() server.start()
res = server.make_request("POST", "/embeddings", data={ res = server.make_request("POST", "/v1/embeddings", data={
"input": [ "input": [
"I believe the meaning of life is", "I believe the meaning of life is",
"I believe the meaning of life is", "I believe the meaning of life is",