llama : offload "output" tensor to GPU too + coding style fixes

This commit is contained in:
Georgi Gerganov 2023-05-13 16:35:21 +03:00
parent bb0993ed48
commit ad8a9e6971
5 changed files with 54 additions and 38 deletions

View file

@ -277,12 +277,12 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
params.use_color = true;
} else if (arg == "--mlock") {
params.use_mlock = true;
} else if (arg == "--gpu-layers") {
} else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.gpu_layers = std::stoi(argv[i]);
params.n_gpu_layers = std::stoi(argv[i]);
} else if (arg == "--no-mmap") {
params.use_mmap = false;
} else if (arg == "--mtest") {
@ -427,7 +427,8 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
if (llama_mmap_supported()) {
fprintf(stderr, " --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
}
fprintf(stderr, " --gpu-layers number of layers to store in VRAM\n");
fprintf(stderr, " -ngl N, --n-gpu-layers N\n");
fprintf(stderr, " number of layers to store in VRAM\n");
fprintf(stderr, " --mtest compute maximum memory usage\n");
fprintf(stderr, " --verbose-prompt print prompt before generation\n");
fprintf(stderr, " --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
@ -470,15 +471,15 @@ std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const std::s
struct llama_context * llama_init_from_gpt_params(const gpt_params & params) {
auto lparams = llama_context_default_params();
lparams.n_ctx = params.n_ctx;
lparams.n_parts = params.n_parts;
lparams.seed = params.seed;
lparams.f16_kv = params.memory_f16;
lparams.use_mmap = params.use_mmap;
lparams.use_mlock = params.use_mlock;
lparams.gpu_layers = params.gpu_layers;
lparams.logits_all = params.perplexity;
lparams.embedding = params.embedding;
lparams.n_ctx = params.n_ctx;
lparams.n_parts = params.n_parts;
lparams.n_gpu_layers = params.n_gpu_layers;
lparams.seed = params.seed;
lparams.f16_kv = params.memory_f16;
lparams.use_mmap = params.use_mmap;
lparams.use_mlock = params.use_mlock;
lparams.logits_all = params.perplexity;
lparams.embedding = params.embedding;
llama_context * lctx = llama_init_from_file(params.model.c_str(), lparams);

View file

@ -21,13 +21,14 @@
int32_t get_num_physical_cores();
struct gpt_params {
int32_t seed = -1; // RNG seed
int32_t seed = -1; // RNG seed
int32_t n_threads = get_num_physical_cores();
int32_t n_predict = -1; // new tokens to predict
int32_t n_parts = -1; // amount of model parts (-1 = determine from model dimensions)
int32_t n_ctx = 512; // context size
int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_keep = 0; // number of tokens to keep from initial prompt
int32_t n_parts = -1; // amount of model parts (-1 = determine from model dimensions)
int32_t n_ctx = 512; // context size
int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_keep = 0; // number of tokens to keep from initial prompt
int32_t n_gpu_layers = 0; // number of layers to store in VRAM
// sampling parameters
std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
@ -69,7 +70,6 @@ struct gpt_params {
bool perplexity = false; // compute perplexity over the prompt
bool use_mmap = true; // use mmap for faster loads
bool use_mlock = false; // use mlock to keep model in memory
int gpu_layers = 0; // number of layers to store in VRAM
bool mem_test = false; // compute maximum memory usage
bool verbose_prompt = false; // print prompt tokens before generation
};

View file

@ -729,7 +729,7 @@ static void ggml_cuda_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor
const size_t q_sz = ggml_type_size(type) * x_ne / ggml_blck_size(type);
size_t x_size, y_size, d_size, q_size;
float * d_X;
float * d_X = nullptr;
if (!mul_mat_vec) {
d_X = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * x_ne, &x_size);
}

View file

@ -813,13 +813,13 @@ struct llama_context_params llama_context_default_params() {
struct llama_context_params result = {
/*.n_ctx =*/ 512,
/*.n_parts =*/ -1,
/*.gpu_layers =*/ 0,
/*.seed =*/ -1,
/*.f16_kv =*/ false,
/*.logits_all =*/ false,
/*.vocab_only =*/ false,
/*.use_mmap =*/ true,
/*.use_mlock =*/ false,
/*.gpu_layers =*/ 0,
/*.embedding =*/ false,
/*.progress_callback =*/ nullptr,
/*.progress_callback_user_data =*/ nullptr,
@ -880,10 +880,10 @@ static void llama_model_load_internal(
const std::string & fname,
llama_context & lctx,
int n_ctx,
int n_gpu_layers,
ggml_type memory_type,
bool use_mmap,
bool use_mlock,
int gpu_layers,
bool vocab_only,
llama_progress_callback progress_callback,
void * progress_callback_user_data) {
@ -1027,15 +1027,30 @@ static void llama_model_load_internal(
model.mapping = std::move(ml->mapping);
#ifdef GGML_USE_CUBLAS
for (int i = 0; i < std::min(gpu_layers, int(hparams.n_layer)); ++i) {
auto & layer = model.layers[i];
ggml_cuda_transform_tensor(layer.wq);
ggml_cuda_transform_tensor(layer.wk);
ggml_cuda_transform_tensor(layer.wv);
ggml_cuda_transform_tensor(layer.wo);
ggml_cuda_transform_tensor(layer.w1);
ggml_cuda_transform_tensor(layer.w2);
ggml_cuda_transform_tensor(layer.w3);
{
const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
fprintf(stderr, "%s: [cublas] offloading %d layers to GPU\n", __func__, n_gpu);
size_t vram_total = 0;
for (int i = 0; i < n_gpu; ++i) {
const auto & layer = model.layers[i];
ggml_cuda_transform_tensor(layer.wq); vram_total += ggml_nbytes(layer.wq);
ggml_cuda_transform_tensor(layer.wk); vram_total += ggml_nbytes(layer.wk);
ggml_cuda_transform_tensor(layer.wv); vram_total += ggml_nbytes(layer.wv);
ggml_cuda_transform_tensor(layer.wo); vram_total += ggml_nbytes(layer.wo);
ggml_cuda_transform_tensor(layer.w1); vram_total += ggml_nbytes(layer.w1);
ggml_cuda_transform_tensor(layer.w2); vram_total += ggml_nbytes(layer.w2);
ggml_cuda_transform_tensor(layer.w3); vram_total += ggml_nbytes(layer.w3);
}
if (n_gpu_layers > (int) hparams.n_layer) {
fprintf(stderr, "%s: [cublas] offloading output layer to GPU\n", __func__);
ggml_cuda_transform_tensor(model.output); vram_total += ggml_nbytes(model.output);
}
fprintf(stderr, "%s: [cublas] total VRAM used: %zu MB\n", __func__, vram_total / 1024 / 1024);
}
#endif
@ -1048,15 +1063,15 @@ static bool llama_model_load(
const std::string & fname,
llama_context & lctx,
int n_ctx,
int n_gpu_layers,
ggml_type memory_type,
bool use_mmap,
bool use_mlock,
int gpu_layers,
bool vocab_only,
llama_progress_callback progress_callback,
void *progress_callback_user_data) {
try {
llama_model_load_internal(fname, lctx, n_ctx, memory_type, use_mmap, use_mlock, gpu_layers,
llama_model_load_internal(fname, lctx, n_ctx, n_gpu_layers, memory_type, use_mmap, use_mlock,
vocab_only, progress_callback, progress_callback_user_data);
return true;
} catch (const std::string & err) {
@ -2114,8 +2129,8 @@ struct llama_context * llama_init_from_file(
ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
if (!llama_model_load(path_model, *ctx, params.n_ctx, memory_type,
params.use_mmap, params.use_mlock, params.gpu_layers, params.vocab_only,
if (!llama_model_load(path_model, *ctx, params.n_ctx, params.n_gpu_layers, memory_type,
params.use_mmap, params.use_mlock, params.vocab_only,
params.progress_callback, params.progress_callback_user_data)) {
fprintf(stderr, "%s: failed to load model\n", __func__);
llama_free(ctx);

View file

@ -54,16 +54,16 @@ extern "C" {
typedef void (*llama_progress_callback)(float progress, void *ctx);
struct llama_context_params {
int n_ctx; // text context
int n_parts; // -1 for default
int seed; // RNG seed, -1 for random
int n_ctx; // text context
int n_parts; // -1 for default
int n_gpu_layers; // number of layers to store in VRAM
int seed; // RNG seed, -1 for random
bool f16_kv; // use fp16 for KV cache
bool logits_all; // the llama_eval() call computes all logits, not just the last one
bool vocab_only; // only load the vocabulary, no weights
bool use_mmap; // use mmap if possible
bool use_mlock; // force system to keep model in RAM
int gpu_layers; // number of layers to store in VRAM
bool embedding; // embedding mode only
// called with a progress value between 0 and 1, pass NULL to disable