lower synchronization overhead

This commit is contained in:
zrm 2023-06-18 02:03:41 -04:00
parent b71dfe637f
commit adaad10e97

339
ggml.c
View file

@ -3702,12 +3702,6 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"f(x,y)", "f(x,y)",
}; };
// only send finalize op to thread pool if it actually does something
// currently none of them?
static const bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = {
0
};
static_assert(GGML_OP_COUNT == 51, "GGML_OP_COUNT != 51"); static_assert(GGML_OP_COUNT == 51, "GGML_OP_COUNT != 51");
static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN"); static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
@ -14099,75 +14093,114 @@ void clear_numa_thread_affinity(void)
// TODO: Windows etc. // TODO: Windows etc.
// (the linux implementation may also work on BSD, someone should test) // (the linux implementation may also work on BSD, someone should test)
void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); } void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
void clear_numa_thread_affinity() {} void clear_numa_thread_affinity(void) {}
#endif #endif
struct ggml_compute_state_shared { struct ggml_compute_state_shared {
ggml_lock_t spin; struct ggml_cgraph * cgraph;
int64_t perf_node_start_cycles;
int64_t perf_node_start_time_us;
int n_threads; int n_threads;
// synchronization primitives // synchronization primitives
atomic_int n_ready; atomic_int n_active; // num active threads
atomic_bool has_work; atomic_int node_n; // active graph node
atomic_bool stop; // stop all threads
}; };
struct ggml_compute_state { struct ggml_compute_state {
ggml_thread_t thrd; ggml_thread_t thrd;
int ith;
struct ggml_compute_params params;
struct ggml_tensor * node;
struct ggml_compute_state_shared * shared; struct ggml_compute_state_shared * shared;
}; };
inline void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st)
{
int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
node->perf_runs++;
node->perf_cycles += cycles_cur;
node->perf_time_us += time_us_cur;
}
static thread_ret_t ggml_graph_compute_thread(void * data) { static thread_ret_t ggml_graph_compute_thread(void * data) {
struct ggml_compute_state * state = (struct ggml_compute_state *) data; struct ggml_compute_state * state = (struct ggml_compute_state *) data;
struct ggml_cgraph * cgraph = state->shared->cgraph;
const int n_threads = state->shared->n_threads; const int n_threads = state->shared->n_threads;
set_numa_thread_affinity(state->params.ith, n_threads); set_numa_thread_affinity(state->ith, n_threads);
int node_n = -1;
while (true) { while (true) {
if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) { if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
atomic_store(&state->shared->has_work, false); // all other threads are finished and spinning
// do finalize and init here so we don't have synchronize again
struct ggml_compute_params params = {
/*.type =*/ GGML_TASK_FINALIZE,
/*.ith =*/ 0,
/*.nth =*/ 0,
/*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
/*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
};
if (node_n != -1) {
/* FINALIZE */
struct ggml_tensor * node = state->shared->cgraph->nodes[node_n];
params.nth = node->n_tasks;
ggml_compute_forward(&params, node);
ggml_graph_compute_perf_stats_node(node, state->shared);
}
// distribute new work or execute it direct if 1T
while (++node_n < cgraph->n_nodes) {
GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
struct ggml_tensor * node = cgraph->nodes[node_n];
state->shared->perf_node_start_cycles = ggml_perf_cycles();
state->shared->perf_node_start_time_us = ggml_perf_time_us();
/* INIT */
params.type = GGML_TASK_INIT;
params.nth = node->n_tasks;
ggml_compute_forward(&params, node);
if (node->n_tasks == 1) {
// TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
// they do something more efficient than spinning (?)
params.type = GGML_TASK_COMPUTE;
ggml_compute_forward(&params, node);
params.type = GGML_TASK_FINALIZE;
ggml_compute_forward(&params, node);
ggml_graph_compute_perf_stats_node(node, state->shared);
} else { } else {
while (atomic_load(&state->shared->has_work)) { break;
if (atomic_load(&state->shared->stop)) {
return 0;
}
ggml_lock_lock (&state->shared->spin);
ggml_lock_unlock(&state->shared->spin);
} }
} }
atomic_store(&state->shared->n_active, n_threads);
atomic_fetch_sub(&state->shared->n_ready, 1); atomic_store(&state->shared->node_n, node_n);
} else {
// wait for work // wait for other threads to finish
while (!atomic_load(&state->shared->has_work)) { const int last = node_n;
if (atomic_load(&state->shared->stop)) { do {
return 0; sched_yield();
node_n = atomic_load(&state->shared->node_n);
} while (node_n == last);
} }
ggml_lock_lock (&state->shared->spin);
ggml_lock_unlock(&state->shared->spin);
}
// check if we should stop // check if we should stop
if (atomic_load(&state->shared->stop)) { if (node_n >= cgraph->n_nodes) break;
break; struct ggml_tensor * node = cgraph->nodes[node_n];
} /* COMPUTE */
struct ggml_compute_params params = {
if (state->node) { /*.type =*/ GGML_TASK_COMPUTE,
if (state->params.ith < state->params.nth) { /*.ith =*/ state->ith,
ggml_compute_forward(&state->params, state->node); /*.nth =*/ node->n_tasks,
} /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
/*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
state->node = NULL; };
if(state->ith < node->n_tasks) {
ggml_compute_forward(&params, node);
} else { } else {
break; break;
} }
} }
return 0; return 0;
} }
@ -14175,39 +14208,14 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
const int n_threads = cgraph->n_threads; const int n_threads = cgraph->n_threads;
struct ggml_compute_state_shared state_shared = { struct ggml_compute_state_shared state_shared = {
/*.spin =*/ GGML_LOCK_INITIALIZER, /*.cgraph =*/ cgraph,
/*.perf_node_start_cycles =*/ 0,
/*.perf_node_start_time_us =*/ 0,
/*.n_threads =*/ n_threads, /*.n_threads =*/ n_threads,
/*.n_ready =*/ 0, /*.n_active =*/ n_threads,
/*.has_work =*/ false, /*.node_n =*/ -1,
/*.stop =*/ false,
}; };
struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL; struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
// create thread pool
if (n_threads > 1) {
ggml_lock_init(&state_shared.spin);
atomic_store(&state_shared.has_work, true);
for (int j = 0; j < n_threads - 1; j++) {
workers[j] = (struct ggml_compute_state) {
.thrd = 0,
.params = {
.type = GGML_TASK_COMPUTE,
.ith = j + 1,
.nth = n_threads,
.wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
.wdata = cgraph->work ? cgraph->work->data : NULL,
},
.node = NULL,
.shared = &state_shared,
};
int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
GGML_ASSERT(rc == 0);
UNUSED(rc);
}
}
// initialize tasks + work buffer // initialize tasks + work buffer
{ {
@ -14468,166 +14476,39 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
} }
} }
// create thread pool
if (n_threads > 1) {
for (int j = 1; j < n_threads; ++j) {
workers[j] = (struct ggml_compute_state) {
.thrd = 0,
.ith = j,
.shared = &state_shared,
};
int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
GGML_ASSERT(rc == 0);
UNUSED(rc);
}
}
workers[0].ith = 0;
workers[0].shared = &state_shared;
const int64_t perf_start_cycles = ggml_perf_cycles(); const int64_t perf_start_cycles = ggml_perf_cycles();
const int64_t perf_start_time_us = ggml_perf_time_us(); const int64_t perf_start_time_us = ggml_perf_time_us();
for (int i = 0; i < cgraph->n_nodes; i++) { // this is a work thread too
GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes); ggml_graph_compute_thread(&workers[0]);
// don't leave affinity set on the main thread
struct ggml_tensor * node = cgraph->nodes[i]; clear_numa_thread_affinity();
// TODO: this could be used to avoid unnecessary computations, but it needs to be improved
//if (node->grad == NULL && node->perf_runs > 0) {
// continue;
//}
const int64_t perf_node_start_cycles = ggml_perf_cycles();
const int64_t perf_node_start_time_us = ggml_perf_time_us();
// INIT
struct ggml_compute_params params = {
/*.type =*/ GGML_TASK_INIT,
/*.ith =*/ 0,
/*.nth =*/ node->n_tasks,
/*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
/*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
};
ggml_compute_forward(&params, node);
// COMPUTE
if (node->n_tasks > 1) {
if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
atomic_store(&state_shared.has_work, false);
}
while (atomic_load(&state_shared.has_work)) {
ggml_lock_lock (&state_shared.spin);
ggml_lock_unlock(&state_shared.spin);
}
// launch thread pool
for (int j = 0; j < n_threads - 1; j++) {
workers[j].params = (struct ggml_compute_params) {
.type = GGML_TASK_COMPUTE,
.ith = j + 1,
.nth = node->n_tasks,
.wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
.wdata = cgraph->work ? cgraph->work->data : NULL,
};
workers[j].node = node;
}
atomic_fetch_sub(&state_shared.n_ready, 1);
while (atomic_load(&state_shared.n_ready) > 0) {
ggml_lock_lock (&state_shared.spin);
ggml_lock_unlock(&state_shared.spin);
}
atomic_store(&state_shared.has_work, true);
}
params.type = GGML_TASK_COMPUTE;
ggml_compute_forward(&params, node);
// wait for thread pool
if (node->n_tasks > 1) {
if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
atomic_store(&state_shared.has_work, false);
}
while (atomic_load(&state_shared.has_work)) {
ggml_lock_lock (&state_shared.spin);
ggml_lock_unlock(&state_shared.spin);
}
atomic_fetch_sub(&state_shared.n_ready, 1);
while (atomic_load(&state_shared.n_ready) != 0) {
ggml_lock_lock (&state_shared.spin);
ggml_lock_unlock(&state_shared.spin);
}
}
// FINALIZE
if (node->n_tasks > 1 && GGML_OP_HAS_FINALIZE[node->op]) {
if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
atomic_store(&state_shared.has_work, false);
}
while (atomic_load(&state_shared.has_work)) {
ggml_lock_lock (&state_shared.spin);
ggml_lock_unlock(&state_shared.spin);
}
// launch thread pool
for (int j = 0; j < n_threads - 1; j++) {
workers[j].params = (struct ggml_compute_params) {
.type = GGML_TASK_FINALIZE,
.ith = j + 1,
.nth = node->n_tasks,
.wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
.wdata = cgraph->work ? cgraph->work->data : NULL,
};
workers[j].node = node;
}
atomic_fetch_sub(&state_shared.n_ready, 1);
while (atomic_load(&state_shared.n_ready) > 0) {
ggml_lock_lock (&state_shared.spin);
ggml_lock_unlock(&state_shared.spin);
}
atomic_store(&state_shared.has_work, true);
}
params.type = GGML_TASK_FINALIZE;
ggml_compute_forward(&params, node);
// wait for thread pool
if (node->n_tasks > 1 && GGML_OP_HAS_FINALIZE[node->op]) {
if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
atomic_store(&state_shared.has_work, false);
}
while (atomic_load(&state_shared.has_work)) {
ggml_lock_lock (&state_shared.spin);
ggml_lock_unlock(&state_shared.spin);
}
atomic_fetch_sub(&state_shared.n_ready, 1);
while (atomic_load(&state_shared.n_ready) != 0) {
ggml_lock_lock (&state_shared.spin);
ggml_lock_unlock(&state_shared.spin);
}
}
// performance stats (node)
{
int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
node->perf_runs++;
node->perf_cycles += perf_cycles_cur;
node->perf_time_us += perf_time_us_cur;
}
}
// join thread pool // join thread pool
if (n_threads > 1) { if (n_threads > 1) {
atomic_store(&state_shared.stop, true); for (int j = 1; j < n_threads; j++) {
atomic_store(&state_shared.has_work, true);
for (int j = 0; j < n_threads - 1; j++) {
int rc = ggml_thread_join(workers[j].thrd, NULL); int rc = ggml_thread_join(workers[j].thrd, NULL);
GGML_ASSERT(rc == 0); GGML_ASSERT(rc == 0);
UNUSED(rc); UNUSED(rc);
} }
ggml_lock_destroy(&state_shared.spin);
} }
// performance stats (graph) // performance stats (graph)