diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml index adf67cecc..1e344db6b 100644 --- a/.github/workflows/build.yml +++ b/.github/workflows/build.yml @@ -799,6 +799,7 @@ jobs: 7z x "-o${env:RUNNER_TEMP}" $env:RUNNER_TEMP/sde.tar $sde = $(join-path $env:RUNNER_TEMP sde-external-${env:SDE_VERSION}-win/sde.exe) cd build + $env:LLAMA_SKIP_TESTS_SLOW_ON_EMULATOR = 1 & $sde -future -- ctest -L main -C Release --verbose --timeout 900 - name: Determine tag name diff --git a/CMakeLists.txt b/CMakeLists.txt index dba083089..e3a0cc369 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -79,8 +79,15 @@ set(GGML_SANITIZE_ADDRESS ${LLAMA_SANITIZE_ADDRESS}) set(GGML_SANITIZE_UNDEFINED ${LLAMA_SANITIZE_UNDEFINED}) set(GGML_ALL_WARNINGS ${LLAMA_ALL_WARNINGS}) set(GGML_FATAL_WARNINGS ${LLAMA_FATAL_WARNINGS}) -set(GGML_LLAMAFILE ON) -set(GGML_CUDA_USE_GRAPHS ON) + +# change the default for these ggml options +if (NOT DEFINED GGML_LLAMAFILE) + set(GGML_LLAMAFILE ON) +endif() + +if (NOT DEFINED GGML_CUDA_USE_GRAPHS) + set(GGML_CUDA_USE_GRAPHS ON) +endif() # transition helpers function (llama_option_depr TYPE OLD NEW) diff --git a/Makefile b/Makefile index bbfe0f12b..8ae4f1dc4 100644 --- a/Makefile +++ b/Makefile @@ -45,6 +45,7 @@ BUILD_TARGETS = \ TEST_TARGETS = \ tests/test-autorelease \ tests/test-backend-ops \ + tests/test-chat-template \ tests/test-double-float \ tests/test-grad0 \ tests/test-grammar-integration \ @@ -1070,6 +1071,7 @@ clean: rm -rvf src/*.o rm -rvf tests/*.o rm -rvf examples/*.o + rm -rvf common/*.o rm -rvf *.a rm -rvf *.dll rm -rvf *.so diff --git a/common/common.cpp b/common/common.cpp index 57d03a578..6a00d25be 100644 --- a/common/common.cpp +++ b/common/common.cpp @@ -1026,6 +1026,10 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa params.input_suffix = argv[i]; return true; } + if (arg == "--spm-infill") { + params.spm_infill = true; + return true; + } if (arg == "--grammar") { CHECK_ARG sparams.grammar = argv[i]; @@ -1409,6 +1413,8 @@ void gpt_params_print_usage(int /*argc*/, char ** argv, const gpt_params & param options.push_back({ "main infill", " --in-prefix-bos", "prefix BOS to user inputs, preceding the `--in-prefix` string" }); options.push_back({ "main infill", " --in-prefix STRING", "string to prefix user inputs with (default: empty)" }); options.push_back({ "main infill", " --in-suffix STRING", "string to suffix after user inputs with (default: empty)" }); + options.push_back({ "server infill", + " --spm-infill", "use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this. (default: %s)", params.spm_infill ? "enabled" : "disabled" }); options.push_back({ "sampling" }); options.push_back({ "*", " --samplers SAMPLERS", "samplers that will be used for generation in the order, separated by \';\'\n" diff --git a/common/common.h b/common/common.h index 0486ba380..d6cb814b9 100644 --- a/common/common.h +++ b/common/common.h @@ -250,6 +250,8 @@ struct gpt_params { std::string cvector_outfile = "control_vector.gguf"; std::string cvector_positive_file = "examples/cvector-generator/positive.txt"; std::string cvector_negative_file = "examples/cvector-generator/negative.txt"; + + bool spm_infill = false; // suffix/prefix/middle pattern for infill }; void gpt_params_handle_model_default(gpt_params & params); diff --git a/common/json-schema-to-grammar.cpp b/common/json-schema-to-grammar.cpp index 823db93a6..d149bf908 100644 --- a/common/json-schema-to-grammar.cpp +++ b/common/json-schema-to-grammar.cpp @@ -321,7 +321,7 @@ std::unordered_map GRAMMAR_LITERAL_ESCAPES = { }; std::unordered_set NON_LITERAL_SET = {'|', '.', '(', ')', '[', ']', '{', '}', '*', '+', '?'}; -std::unordered_set ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS = {'[', ']', '(', ')', '|', '{', '}', '*', '+', '?'}; +std::unordered_set ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS = {'^', '$', '.', '[', ']', '(', ')', '|', '{', '}', '*', '+', '?'}; template std::string join(Iterator begin, Iterator end, const std::string & separator) { @@ -714,7 +714,7 @@ private: } prop_names.push_back(prop_name); } - if (!(additional_properties.is_boolean() && !additional_properties.get())) { + if ((additional_properties.is_boolean() && additional_properties.get()) || additional_properties.is_object()) { std::string sub_name = name + (name.empty() ? "" : "-") + "additional"; std::string value_rule = additional_properties.is_object() ? visit(additional_properties, sub_name + "-value") diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py index 5bf69ef9f..5bcc849db 100755 --- a/convert-hf-to-gguf.py +++ b/convert-hf-to-gguf.py @@ -2340,6 +2340,46 @@ class GemmaModel(Model): return [(self.map_tensor_name(name), data_torch)] +@Model.register("Gemma2ForCausalLM") +class Gemma2Model(Model): + model_arch = gguf.MODEL_ARCH.GEMMA2 + + def set_vocab(self): + self._set_vocab_llama_hf() + self.gguf_writer.add_add_space_prefix(False) + + def set_gguf_parameters(self): + hparams = self.hparams + block_count = hparams["num_hidden_layers"] + + self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name) + self.gguf_writer.add_context_length(hparams["max_position_embeddings"]) + self.gguf_writer.add_embedding_length(hparams["hidden_size"]) + self.gguf_writer.add_block_count(block_count) + self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"]) + self.gguf_writer.add_head_count(hparams["num_attention_heads"]) + self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"]) + self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"]) + self.gguf_writer.add_key_length(hparams["head_dim"]) + self.gguf_writer.add_value_length(hparams["head_dim"]) + self.gguf_writer.add_file_type(self.ftype) + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + del bid # unusem + + # lm_head is not used in llama.cpp, while autoawq will include this tensor in model + # To prevent errors, skip loading lm_head.weight. + if name == "lm_head.weight": + logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.") + return [] + + # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89 + if name.endswith("norm.weight"): + data_torch = data_torch + 1 + + return [(self.map_tensor_name(name), data_torch)] + + @Model.register("Starcoder2ForCausalLM") class StarCoder2Model(Model): model_arch = gguf.MODEL_ARCH.STARCODER2 diff --git a/examples/infill/README.md b/examples/infill/README.md index 74f42d2fc..810a0c5e7 100644 --- a/examples/infill/README.md +++ b/examples/infill/README.md @@ -15,6 +15,7 @@ In this section, we cover the most commonly used options for running the `infill - `-i, --interactive`: Run the program in interactive mode, allowing you to provide input directly and receive real-time responses. - `-n N, --n-predict N`: Set the number of tokens to predict when generating text. Adjusting this value can influence the length of the generated text. - `-c N, --ctx-size N`: Set the size of the prompt context. The default is 512, but LLaMA models were built with a context of 2048, which will provide better results for longer input/inference. +- `--spm-infill`: Use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this. ## Input Prompts diff --git a/examples/infill/infill.cpp b/examples/infill/infill.cpp index 3e82e4a81..ca71dd687 100644 --- a/examples/infill/infill.cpp +++ b/examples/infill/infill.cpp @@ -210,6 +210,7 @@ int main(int argc, char ** argv) { suff_rm_leading_spc = false; } std::vector embd_inp; + std::vector embd_end; std::vector inp_pfx = ::llama_tokenize(ctx, params.input_prefix, false); std::vector inp_sfx = ::llama_tokenize(ctx, params.input_suffix, false); const int space_token = 29871; @@ -217,12 +218,13 @@ int main(int argc, char ** argv) { inp_sfx.erase(inp_sfx.begin()); } inp_pfx.insert(inp_pfx.begin(), llama_token_prefix(model)); - if (add_bos) { - inp_pfx.insert(inp_pfx.begin(), llama_token_bos(model)); - } inp_sfx.insert(inp_sfx.begin(), llama_token_suffix(model)); - embd_inp = inp_pfx; - embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end()); + embd_inp = params.spm_infill ? inp_sfx : inp_pfx; + embd_end = params.spm_infill ? inp_pfx : inp_sfx; + if (add_bos) { + embd_inp.insert(embd_inp.begin(), llama_token_bos(model)); + } + embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end()); const llama_token middle_token = llama_token_middle(model); if (middle_token >= 0) { @@ -526,14 +528,14 @@ int main(int argc, char ** argv) { inp_sfx.erase(inp_sfx.begin()); } inp_pfx.insert(inp_pfx.begin(), llama_token_prefix(model)); - if (add_bos) { - inp_pfx.insert(inp_pfx.begin(), llama_token_bos(model)); - } inp_sfx.insert(inp_sfx.begin(), llama_token_suffix(model)); - embd_inp = inp_pfx; - embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end()); + embd_inp = params.spm_infill ? inp_sfx : inp_pfx; + embd_end = params.spm_infill ? inp_pfx : inp_sfx; + if (add_bos) { + embd_inp.insert(embd_inp.begin(), llama_token_bos(model)); + } + embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end()); - const llama_token middle_token = llama_token_middle(model); if (middle_token >= 0) { embd_inp.push_back(middle_token); } diff --git a/examples/json_schema_to_grammar.py b/examples/json_schema_to_grammar.py index 02c91d650..5b97ba50f 100755 --- a/examples/json_schema_to_grammar.py +++ b/examples/json_schema_to_grammar.py @@ -231,7 +231,7 @@ GRAMMAR_RANGE_LITERAL_ESCAPE_RE = re.compile(r'[\r\n"\]\-\\]') GRAMMAR_LITERAL_ESCAPES = {'\r': '\\r', '\n': '\\n', '"': '\\"', '-': '\\-', ']': '\\]'} NON_LITERAL_SET = set('|.()[]{}*+?') -ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS = set('[]()|{}*+?') +ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS = set('^$.[]()|{}*+?') class SchemaConverter: @@ -686,7 +686,7 @@ class SchemaConverter: required_props = [k for k in sorted_props if k in required] optional_props = [k for k in sorted_props if k not in required] - if additional_properties != False: + if additional_properties is not None and additional_properties != False: sub_name = f'{name}{"-" if name else ""}additional' value_rule = self.visit(additional_properties, f'{sub_name}-value') if isinstance(additional_properties, dict) else \ self._add_primitive('value', PRIMITIVE_RULES['value']) diff --git a/examples/server/README.md b/examples/server/README.md index e7fb0bf64..4fab006bb 100644 --- a/examples/server/README.md +++ b/examples/server/README.md @@ -73,6 +73,7 @@ The project is under active development, and we are [looking for feedback and co - `-fa`, `--flash-attn` : enable flash attention (default: disabled). - `-ctk TYPE`, `--cache-type-k TYPE` : KV cache data type for K (default: `f16`, options `f32`, `f16`, `q8_0`, `q4_0`, `q4_1`, `iq4_nl`, `q5_0`, or `q5_1`) - `-ctv TYPE`, `--cache-type-v TYPE` : KV cache type for V (default `f16`, see `-ctk` for options) +- `--spm-infill` : Use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this. **If compiled with `LLAMA_SERVER_SSL=ON`** - `--ssl-key-file FNAME`: path to file a PEM-encoded SSL private key diff --git a/examples/server/public/json-schema-to-grammar.mjs b/examples/server/public/json-schema-to-grammar.mjs index 8baf23c2c..b796f8dcd 100644 --- a/examples/server/public/json-schema-to-grammar.mjs +++ b/examples/server/public/json-schema-to-grammar.mjs @@ -259,7 +259,7 @@ const GRAMMAR_RANGE_LITERAL_ESCAPE_RE = /[\n\r"\]\-\\]/g; const GRAMMAR_LITERAL_ESCAPES = { '\r': '\\r', '\n': '\\n', '"': '\\"', '-': '\\-', ']': '\\]' }; const NON_LITERAL_SET = new Set('|.()[]{}*+?'); -const ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS = new Set('[]()|{}*+?'); +const ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS = new Set('^$.[]()|{}*+?'); export class SchemaConverter { constructor(options) { @@ -752,7 +752,7 @@ export class SchemaConverter { const requiredProps = sortedProps.filter(k => required.has(k)); const optionalProps = sortedProps.filter(k => !required.has(k)); - if (additionalProperties !== false) { + if (additionalProperties) { const subName = `${name ?? ''}${name ? '-' : ''}additional`; const valueRule = additionalProperties != null && typeof additionalProperties === 'object' ? this.visit(additionalProperties, `${subName}-value`) diff --git a/examples/server/server.cpp b/examples/server/server.cpp index ae768097b..d7fb61812 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -2020,6 +2020,7 @@ struct server_context { slot.t_start_generation = 0; if (slot.infill) { + const bool add_bos = llama_should_add_bos_token(model); bool suff_rm_leading_spc = true; if (params.input_suffix.find_first_of(' ') == 0 && params.input_suffix.size() > 1) { params.input_suffix.erase(0, 1); @@ -2035,16 +2036,21 @@ struct server_context { } prefix_tokens.insert(prefix_tokens.begin(), llama_token_prefix(model)); - prefix_tokens.insert(prefix_tokens.begin(), llama_token_bos(model)); // always add BOS - prefix_tokens.insert(prefix_tokens.end(), llama_token_suffix(model)); - prefix_tokens.insert(prefix_tokens.end(), suffix_tokens.begin(), suffix_tokens.end()); + suffix_tokens.insert(suffix_tokens.begin(), llama_token_suffix(model)); + + auto embd_inp = params.spm_infill ? suffix_tokens : prefix_tokens; + auto embd_end = params.spm_infill ? prefix_tokens : suffix_tokens; + if (add_bos) { + embd_inp.insert(embd_inp.begin(), llama_token_bos(model)); + } + embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end()); const llama_token middle_token = llama_token_middle(model); if (middle_token >= 0) { - prefix_tokens.push_back(middle_token); + embd_inp.push_back(middle_token); } - prompt_tokens = prefix_tokens; + prompt_tokens = embd_inp; } else { prompt_tokens = tokenize(slot.prompt, system_prompt.empty()); // add BOS if there isn't system prompt } diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py index 222a2d137..cf3d09e70 100644 --- a/gguf-py/gguf/constants.py +++ b/gguf-py/gguf/constants.py @@ -150,6 +150,7 @@ class MODEL_ARCH(IntEnum): INTERNLM2 = auto() MINICPM = auto() GEMMA = auto() + GEMMA2 = auto() STARCODER2 = auto() MAMBA = auto() XVERSE = auto() @@ -180,10 +181,13 @@ class MODEL_TENSOR(IntEnum): ATTN_NORM = auto() ATTN_NORM_2 = auto() ATTN_OUT_NORM = auto() + ATTN_POST_NORM = auto() ATTN_ROT_EMBD = auto() FFN_GATE_INP = auto() FFN_GATE_INP_SHEXP = auto() FFN_NORM = auto() + FFN_PRE_NORM = auto() + FFN_POST_NORM = auto() FFN_GATE = auto() FFN_DOWN = auto() FFN_UP = auto() @@ -270,6 +274,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = { MODEL_ARCH.INTERNLM2: "internlm2", MODEL_ARCH.MINICPM: "minicpm", MODEL_ARCH.GEMMA: "gemma", + MODEL_ARCH.GEMMA2: "gemma2", MODEL_ARCH.STARCODER2: "starcoder2", MODEL_ARCH.MAMBA: "mamba", MODEL_ARCH.XVERSE: "xverse", @@ -303,9 +308,12 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = { MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm", MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm", MODEL_TENSOR.ATTN_OUT_NORM: "blk.{bid}.attn_output_norm", + MODEL_TENSOR.ATTN_POST_NORM: "blk.{bid}.post_attention_norm", MODEL_TENSOR.FFN_GATE_INP: "blk.{bid}.ffn_gate_inp", MODEL_TENSOR.FFN_GATE_INP_SHEXP: "blk.{bid}.ffn_gate_inp_shexp", MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm", + MODEL_TENSOR.FFN_PRE_NORM: "blk.{bid}.ffn_norm", + MODEL_TENSOR.FFN_POST_NORM: "blk.{bid}.post_ffw_norm", MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate", MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down", MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up", @@ -751,6 +759,21 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_TENSOR.FFN_UP, MODEL_TENSOR.FFN_NORM, ], + MODEL_ARCH.GEMMA2: [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.OUTPUT_NORM, + MODEL_TENSOR.ATTN_Q, + MODEL_TENSOR.ATTN_K, + MODEL_TENSOR.ATTN_V, + MODEL_TENSOR.ATTN_OUT, + MODEL_TENSOR.FFN_GATE, + MODEL_TENSOR.FFN_DOWN, + MODEL_TENSOR.FFN_UP, + MODEL_TENSOR.ATTN_NORM, + MODEL_TENSOR.ATTN_POST_NORM, + MODEL_TENSOR.FFN_PRE_NORM, + MODEL_TENSOR.FFN_POST_NORM, + ], MODEL_ARCH.STARCODER2: [ MODEL_TENSOR.TOKEN_EMBD, MODEL_TENSOR.OUTPUT_NORM, diff --git a/gguf-py/gguf/tensor_mapping.py b/gguf-py/gguf/tensor_mapping.py index 7b047f241..0bed43939 100644 --- a/gguf-py/gguf/tensor_mapping.py +++ b/gguf-py/gguf/tensor_mapping.py @@ -187,6 +187,10 @@ class TensorNameMap: "transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx ), + MODEL_TENSOR.ATTN_POST_NORM: ( + "model.layers.{bid}.post_attention_layernorm", # gemma2 + ), + # Rotary embeddings MODEL_TENSOR.ATTN_ROT_EMBD: ( "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf @@ -210,6 +214,16 @@ class TensorNameMap: "transformer.decoder_layer.{bid}.rms_norm_2", # Grok ), + # Post feed-forward norm + MODEL_TENSOR.FFN_PRE_NORM: ( + "model.layers.{bid}.pre_feedforward_layernorm", # gemma2 + ), + + # Post feed-forward norm + MODEL_TENSOR.FFN_POST_NORM: ( + "model.layers.{bid}.post_feedforward_layernorm", # gemma2 + ), + MODEL_TENSOR.FFN_GATE_INP: ( "layers.{bid}.feed_forward.gate", # mixtral "model.layers.{bid}.block_sparse_moe.gate", # mixtral diff --git a/grammars/README.md b/grammars/README.md index 6920ca0bc..e91fe3e82 100644 --- a/grammars/README.md +++ b/grammars/README.md @@ -182,6 +182,8 @@ space ::= | " " | "\n" [ \t]{0,20} Here is also a list of known limitations (contributions welcome): +- `additionalProperties` defaults to `false` (produces faster grammars + reduces hallucinations). +- `"additionalProperties": true` may produce keys that contain unescaped newlines. - Unsupported features are skipped silently. It is currently advised to use the command-line Python converter (see above) to see any warnings, and to inspect the resulting grammar / test it w/ [llama-gbnf-validator](../examples/gbnf-validator/gbnf-validator.cpp). - Can't mix `properties` w/ `oneOf` in the same type (https://github.com/ggerganov/llama.cpp/issues/7703) - [prefixItems](https://json-schema.org/draft/2020-12/json-schema-core#name-prefixitems) is broken (but [items](https://json-schema.org/draft/2020-12/json-schema-core#name-items) works) @@ -202,10 +204,11 @@ And a non-exhaustive list of other unsupported features that are unlikely to be ### A word about additionalProperties > [!WARNING] -> By default, `object`s accept [additional properties](https://json-schema.org/understanding-json-schema/reference/object#additionalproperties), which you might not want / not expect, and which will make sampling slower (not just because of the extra tokens, but also generates a slower grammar). -> You can set `"additionalProperties": false` on the schema of any object to ensure only properties listed in `properties` are generated (not needed for non-`object` types, e.g. `array` or `string`). +> The JSON schemas spec states `object`s accept [additional properties](https://json-schema.org/understanding-json-schema/reference/object#additionalproperties) by default. +> Since this is slow and seems prone to hallucinations, we default to no additional properties. +> You can set `"additionalProperties": true` in the the schema of any object to explicitly allow additional properties. -If you're using [Pydantic](https://pydantic.dev/) to generate schemas, you can disable additional properties with the `extra` config on each model class: +If you're using [Pydantic](https://pydantic.dev/) to generate schemas, you can enable additional properties with the `extra` config on each model class: ```python # pip install pydantic @@ -214,14 +217,14 @@ from typing import Annotated, List from pydantic import BaseModel, Extra, Field class QAPair(BaseModel): class Config: - extra = 'forbid' # triggers additionalProperties: false in the JSON schema + extra = 'allow' # triggers additionalProperties: true in the JSON schema question: str concise_answer: str justification: str class Summary(BaseModel): class Config: - extra = 'forbid' + extra = 'allow' key_facts: List[Annotated[str, Field(pattern='- .{5,}')]] question_answers: List[Annotated[List[QAPair], Field(min_items=5)]] @@ -235,7 +238,7 @@ print(json.dumps(Summary.model_json_schema(), indent=2)) { "$defs": { "QAPair": { - "additionalProperties": false, + "additionalProperties": true, "properties": { "question": { "title": "Question", @@ -259,7 +262,7 @@ print(json.dumps(Summary.model_json_schema(), indent=2)) "type": "object" } }, - "additionalProperties": false, + "additionalProperties": true, "properties": { "key_facts": { "items": { @@ -291,30 +294,40 @@ print(json.dumps(Summary.model_json_schema(), indent=2)) ``` ``` -QAPair ::= "{" space QAPair-question-kv "," space QAPair-concise-answer-kv "," space QAPair-justification-kv "}" space +QAPair ::= "{" space QAPair-question-kv "," space QAPair-concise-answer-kv "," space QAPair-justification-kv ( "," space ( QAPair-additional-kv ( "," space QAPair-additional-kv )* ) )? "}" space +QAPair-additional-k ::= ["] ( [c] ([o] ([n] ([c] ([i] ([s] ([e] ([_] ([a] ([n] ([s] ([w] ([e] ([r] char+ | [^"r] char*) | [^"e] char*) | [^"w] char*) | [^"s] char*) | [^"n] char*) | [^"a] char*) | [^"_] char*) | [^"e] char*) | [^"s] char*) | [^"i] char*) | [^"c] char*) | [^"n] char*) | [^"o] char*) | [j] ([u] ([s] ([t] ([i] ([f] ([i] ([c] ([a] ([t] ([i] ([o] ([n] char+ | [^"n] char*) | [^"o] char*) | [^"i] char*) | [^"t] char*) | [^"a] char*) | [^"c] char*) | [^"i] char*) | [^"f] char*) | [^"i] char*) | [^"t] char*) | [^"s] char*) | [^"u] char*) | [q] ([u] ([e] ([s] ([t] ([i] ([o] ([n] char+ | [^"n] char*) | [^"o] char*) | [^"i] char*) | [^"t] char*) | [^"s] char*) | [^"e] char*) | [^"u] char*) | [^"cjq] char* )? ["] space +QAPair-additional-kv ::= QAPair-additional-k ":" space value QAPair-concise-answer-kv ::= "\"concise_answer\"" space ":" space string QAPair-justification-kv ::= "\"justification\"" space ":" space string QAPair-question-kv ::= "\"question\"" space ":" space string +additional-k ::= ["] ( [k] ([e] ([y] ([_] ([f] ([a] ([c] ([t] ([s] char+ | [^"s] char*) | [^"t] char*) | [^"c] char*) | [^"a] char*) | [^"f] char*) | [^"_] char*) | [^"y] char*) | [^"e] char*) | [q] ([u] ([e] ([s] ([t] ([i] ([o] ([n] ([_] ([a] ([n] ([s] ([w] ([e] ([r] ([s] char+ | [^"s] char*) | [^"r] char*) | [^"e] char*) | [^"w] char*) | [^"s] char*) | [^"n] char*) | [^"a] char*) | [^"_] char*) | [^"n] char*) | [^"o] char*) | [^"i] char*) | [^"t] char*) | [^"s] char*) | [^"e] char*) | [^"u] char*) | [^"kq] char* )? ["] space +additional-kv ::= additional-k ":" space value +array ::= "[" space ( value ("," space value)* )? "]" space +boolean ::= ("true" | "false") space char ::= [^"\\\x7F\x00-\x1F] | [\\] (["\\bfnrt] | "u" [0-9a-fA-F]{4}) +decimal-part ::= [0-9]{1,16} dot ::= [^\x0A\x0D] +integral-part ::= [0] | [1-9] [0-9]{0,15} key-facts ::= "[" space (key-facts-item ("," space key-facts-item)*)? "]" space key-facts-item ::= "\"" "- " key-facts-item-1{5,} "\"" space key-facts-item-1 ::= dot key-facts-kv ::= "\"key_facts\"" space ":" space key-facts +null ::= "null" space +number ::= ("-"? integral-part) ("." decimal-part)? ([eE] [-+]? integral-part)? space +object ::= "{" space ( string ":" space value ("," space string ":" space value)* )? "}" space question-answers ::= "[" space (question-answers-item ("," space question-answers-item)*)? "]" space question-answers-item ::= "[" space question-answers-item-item ("," space question-answers-item-item){4,} "]" space question-answers-item-item ::= QAPair question-answers-kv ::= "\"question_answers\"" space ":" space question-answers -root ::= "{" space key-facts-kv "," space question-answers-kv "}" space +root ::= "{" space key-facts-kv "," space question-answers-kv ( "," space ( additional-kv ( "," space additional-kv )* ) )? "}" space space ::= | " " | "\n" [ \t]{0,20} string ::= "\"" char* "\"" space +value ::= object | array | string | number | boolean | null ``` -If you're using [Zod](https://zod.dev/), you can make your objects explicitly strict w/ `z.object(...).strict()` or `z.strictObject(...)`. - -Note however that [zod-to-json-schema](https://github.com/StefanTerdell/zod-to-json-schema) currently always seems to set `"additionalProperties": false` anyway (even w/ zod schemas on which `nonstrict()` / `passthrough()` was called). +If you're using [Zod](https://zod.dev/), you can make your objects to explicitly allow extra properties w/ `nonstrict()` / `passthrough()` (or explicitly no extra props w/ `z.object(...).strict()` or `z.strictObject(...)`) but note that [zod-to-json-schema](https://github.com/StefanTerdell/zod-to-json-schema) currently always sets `"additionalProperties": false` anyway. ```js import { z } from 'zod'; diff --git a/src/llama.cpp b/src/llama.cpp index 3dc0f8535..3edaa98e8 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -217,6 +217,7 @@ enum llm_arch { LLM_ARCH_INTERNLM2, LLM_ARCH_MINICPM, LLM_ARCH_GEMMA, + LLM_ARCH_GEMMA2, LLM_ARCH_STARCODER2, LLM_ARCH_MAMBA, LLM_ARCH_XVERSE, @@ -257,6 +258,7 @@ static const std::map LLM_ARCH_NAMES = { { LLM_ARCH_INTERNLM2, "internlm2" }, { LLM_ARCH_MINICPM, "minicpm" }, { LLM_ARCH_GEMMA, "gemma" }, + { LLM_ARCH_GEMMA2, "gemma2" }, { LLM_ARCH_STARCODER2, "starcoder2" }, { LLM_ARCH_MAMBA, "mamba" }, { LLM_ARCH_XVERSE, "xverse" }, @@ -478,10 +480,12 @@ enum llm_tensor { LLM_TENSOR_ATTN_NORM, LLM_TENSOR_ATTN_NORM_2, LLM_TENSOR_ATTN_OUT_NORM, + LLM_TENSOR_ATTN_POST_NORM, LLM_TENSOR_ATTN_ROT_EMBD, LLM_TENSOR_FFN_GATE_INP, LLM_TENSOR_FFN_GATE_INP_SHEXP, LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_POST_NORM, LLM_TENSOR_FFN_GATE, LLM_TENSOR_FFN_DOWN, LLM_TENSOR_FFN_UP, @@ -1004,6 +1008,24 @@ static const std::map> LLM_TENSOR_NA { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, + { + LLM_ARCH_GEMMA2, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_ATTN_POST_NORM, "blk.%d.post_attention_norm" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + { LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" }, + }, + }, { LLM_ARCH_STARCODER2, { @@ -2039,6 +2061,8 @@ enum e_model { MODEL_16x12B, MODEL_10B_128x3_66B, MODEL_57B_A14B, + MODEL_9B, + MODEL_27B, }; static const size_t kiB = 1024; @@ -2215,6 +2239,7 @@ struct llama_layer { struct ggml_tensor * attn_q_a_norm; struct ggml_tensor * attn_kv_a_norm; struct ggml_tensor * attn_sub_norm; + struct ggml_tensor * attn_post_norm; struct ggml_tensor * ffn_sub_norm; // attention @@ -2238,6 +2263,7 @@ struct llama_layer { // normalization struct ggml_tensor * ffn_norm; struct ggml_tensor * ffn_norm_b; + struct ggml_tensor * ffn_post_norm; struct ggml_tensor * layer_out_norm; struct ggml_tensor * layer_out_norm_b; struct ggml_tensor * ffn_norm_exps; @@ -4269,6 +4295,8 @@ static const char * llama_model_type_name(e_model type) { case MODEL_16x12B: return "16x12B"; case MODEL_10B_128x3_66B: return "10B+128x3.66B"; case MODEL_57B_A14B: return "57B.A14B"; + case MODEL_9B: return "9B"; + case MODEL_27B: return "27B"; default: return "?B"; } } @@ -4671,6 +4699,16 @@ static void llm_load_hparams( default: model.type = e_model::MODEL_UNKNOWN; } } break; + case LLM_ARCH_GEMMA2: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + + switch (hparams.n_layer) { + case 42: model.type = e_model::MODEL_9B; break; + case 46: model.type = e_model::MODEL_27B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; case LLM_ARCH_STARCODER2: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); @@ -6512,6 +6550,40 @@ static bool llm_load_tensors( layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); } } break; + case LLM_ARCH_GEMMA2: + { + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + + // output + model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading + + const int64_t n_ff = hparams.n_ff; + const int64_t n_embd_head_k = hparams.n_embd_head_k; + const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(); + const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(); + + for (uint32_t i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); + + auto & layer = model.layers[i]; + + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + + layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * hparams.n_head}); + layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}); + layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}); + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * hparams.n_head, n_embd}); + layer.attn_post_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}); + + layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); + layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); + layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); + layer.ffn_post_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}); + } + } break; case LLM_ARCH_STARCODER2: { model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); @@ -10923,6 +10995,125 @@ struct llm_build_context { return gf; } + struct ggml_cgraph * build_gemma2() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + + const int64_t n_embd_head_k = hparams.n_embd_head_k; + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); + + inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd)); + cb(inpL, "inp_scaled", -1); + + // inp_pos - contains the positions + struct ggml_tensor * inp_pos = build_inp_pos(); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); + + for (int il = 0; il < n_layer; ++il) { + // norm + cur = llm_build_norm(ctx0, inpL, hparams, + model.layers[il].attn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "attn_norm", il); + + // self-attention + { + // compute Q and K and RoPE them + struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); + cb(Qcur, "Qcur", il); + + struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); + cb(Kcur, "Kcur", il); + + struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); + cb(Vcur, "Vcur", il); + + Qcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos, nullptr, + n_embd_head_k, rope_type, n_ctx_orig, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow); + cb(Qcur, "Qcur", il); + + Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k))); + cb(Qcur, "Qcur_scaled", il); + + Kcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos, nullptr, + n_embd_head_k, rope_type, n_ctx_orig, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow); + cb(Kcur, "Kcur", il); + + cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, + model.layers[il].wo, NULL, + Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il); + } + + cur = llm_build_norm(ctx0, cur, hparams, + model.layers[il].attn_post_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "attn_post_norm", il); + + if (il == n_layer - 1) { + // skip computing output for unused tokens + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); + } + + struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL); + cb(sa_out, "sa_out", il); + + cur = llm_build_norm(ctx0, sa_out, hparams, + model.layers[il].ffn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "ffn_norm", il); + + // feed-forward network + { + cur = llm_build_ffn(ctx0, cur, + model.layers[il].ffn_up, NULL, NULL, + model.layers[il].ffn_gate, NULL, NULL, + model.layers[il].ffn_down, NULL, NULL, + NULL, + LLM_FFN_GELU, LLM_FFN_PAR, cb, il); + cb(cur, "ffn_out", il); + } + + cur = llm_build_norm(ctx0, cur, hparams, + model.layers[il].ffn_post_norm, NULL, + LLM_NORM_RMS, cb, -1); + cb(cur, "ffn_post_norm", -1); + + cur = ggml_add(ctx0, cur, sa_out); + cur = lctx.cvec.apply_to(ctx0, cur, il); + cb(cur, "l_out", il); + + // input for next layer + inpL = cur; + } + + cur = inpL; + + cur = llm_build_norm(ctx0, cur, hparams, + model.output_norm, NULL, + LLM_NORM_RMS, cb, -1); + cb(cur, "result_norm", -1); + + // lm_head + cur = ggml_mul_mat(ctx0, model.output, cur); + cb(cur, "result_output", -1); + + ggml_build_forward_expand(gf, cur); + + return gf; + } + + struct ggml_cgraph * build_starcoder2() { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); @@ -12303,6 +12494,10 @@ static struct ggml_cgraph * llama_build_graph( { result = llm.build_gemma(); } break; + case LLM_ARCH_GEMMA2: + { + result = llm.build_gemma2(); + } break; case LLM_ARCH_STARCODER2: { result = llm.build_starcoder2(); @@ -17597,6 +17792,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) { case LLM_ARCH_PHI2: case LLM_ARCH_PHI3: case LLM_ARCH_GEMMA: + case LLM_ARCH_GEMMA2: case LLM_ARCH_STARCODER2: case LLM_ARCH_GPTNEOX: return LLAMA_ROPE_TYPE_NEOX; @@ -19417,7 +19613,10 @@ static int32_t llama_chat_apply_template_internal( std::string & dest, bool add_ass) { // Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527 std::stringstream ss; - if (tmpl == "chatml" || tmpl.find("<|im_start|>") != std::string::npos) { + auto tmpl_contains = [&tmpl](std::string haystack) -> bool { + return tmpl.find(haystack) != std::string::npos; + }; + if (tmpl == "chatml" || tmpl_contains("<|im_start|>")) { // chatml template for (auto message : chat) { ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n"; @@ -19425,16 +19624,16 @@ static int32_t llama_chat_apply_template_internal( if (add_ass) { ss << "<|im_start|>assistant\n"; } - } else if (tmpl == "llama2" || tmpl == "mistral" || tmpl.find("[INST]") != std::string::npos) { + } else if (tmpl == "llama2" || tmpl == "mistral" || tmpl_contains("[INST]")) { // llama2 template and its variants // [variant] support system message - bool support_system_message = tmpl.find("<>") != std::string::npos || tmpl == "mistral"; + bool support_system_message = tmpl_contains("<>") || tmpl == "mistral"; // [variant] space before + after response - bool space_around_response = tmpl.find("' ' + eos_token") != std::string::npos; + bool space_around_response = tmpl_contains("' ' + eos_token"); // [variant] add BOS inside history - bool add_bos_inside_history = tmpl.find("bos_token + '[INST]") != std::string::npos; + bool add_bos_inside_history = tmpl_contains("bos_token + '[INST]"); // [variant] trim spaces from the input message - bool strip_message = tmpl.find("content.strip()") != std::string::npos; + bool strip_message = tmpl_contains("content.strip()"); // construct the prompt bool is_inside_turn = true; // skip BOS at the beginning ss << "[INST] "; @@ -19460,7 +19659,7 @@ static int32_t llama_chat_apply_template_internal( } } // llama2 templates seem to not care about "add_generation_prompt" - } else if (tmpl == "phi3" || (tmpl.find("<|assistant|>") != std::string::npos && tmpl.find("<|end|>") != std::string::npos)) { + } else if (tmpl == "phi3" || (tmpl_contains("<|assistant|>") && tmpl_contains("<|end|>"))) { // Phi 3 for (auto message : chat) { std::string role(message->role); @@ -19469,7 +19668,7 @@ static int32_t llama_chat_apply_template_internal( if (add_ass) { ss << "<|assistant|>\n"; } - } else if (tmpl == "zephyr" || tmpl.find("<|user|>") != std::string::npos) { + } else if (tmpl == "zephyr" || tmpl_contains("<|user|>")) { // zephyr template for (auto message : chat) { ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n"; @@ -19477,7 +19676,7 @@ static int32_t llama_chat_apply_template_internal( if (add_ass) { ss << "<|assistant|>\n"; } - } else if (tmpl == "monarch" || tmpl.find("bos_token + message['role']") != std::string::npos) { + } else if (tmpl == "monarch" || tmpl_contains("bos_token + message['role']")) { // mlabonne/AlphaMonarch-7B template (the is included inside history) for (auto message : chat) { std::string bos = (message == chat.front()) ? "" : ""; // skip BOS for first message @@ -19486,7 +19685,7 @@ static int32_t llama_chat_apply_template_internal( if (add_ass) { ss << "assistant\n"; } - } else if (tmpl == "gemma" || tmpl.find("") != std::string::npos) { + } else if (tmpl == "gemma" || tmpl == "gemma2" || tmpl_contains("")) { // google/gemma-7b-it std::string system_prompt = ""; for (auto message : chat) { @@ -19508,7 +19707,7 @@ static int32_t llama_chat_apply_template_internal( if (add_ass) { ss << "model\n"; } - } else if (tmpl == "orion" || tmpl.find("'\\n\\nAssistant: ' + eos_token") != std::string::npos) { + } else if (tmpl == "orion" || tmpl_contains("'\\n\\nAssistant: ' + eos_token")) { // OrionStarAI/Orion-14B-Chat std::string system_prompt = ""; for (auto message : chat) { @@ -19528,7 +19727,7 @@ static int32_t llama_chat_apply_template_internal( ss << message->content << ""; } } - } else if (tmpl == "openchat" || tmpl.find("GPT4 Correct ") != std::string::npos) { + } else if (tmpl == "openchat" || tmpl_contains("GPT4 Correct ")) { // openchat/openchat-3.5-0106, for (auto message : chat) { std::string role(message->role); @@ -19542,13 +19741,13 @@ static int32_t llama_chat_apply_template_internal( if (add_ass) { ss << "GPT4 Correct Assistant:"; } - } else if (tmpl == "vicuna" || tmpl == "vicuna-orca" || (tmpl.find("USER: ") != std::string::npos && tmpl.find("ASSISTANT: ") != std::string::npos)) { + } else if (tmpl == "vicuna" || tmpl == "vicuna-orca" || (tmpl_contains("USER: ") && tmpl_contains("ASSISTANT: "))) { // eachadea/vicuna-13b-1.1 (and Orca variant) for (auto message : chat) { std::string role(message->role); if (role == "system") { // Orca-Vicuna variant uses a system prefix - if (tmpl == "vicuna-orca" || tmpl.find("SYSTEM: ") != std::string::npos) { + if (tmpl == "vicuna-orca" || tmpl_contains("SYSTEM: ")) { ss << "SYSTEM: " << message->content << "\n"; } else { ss << message->content << "\n\n"; @@ -19562,7 +19761,7 @@ static int32_t llama_chat_apply_template_internal( if (add_ass) { ss << "ASSISTANT:"; } - } else if (tmpl == "deepseek" || (tmpl.find("### Instruction:") != std::string::npos && tmpl.find("<|EOT|>") != std::string::npos)) { + } else if (tmpl == "deepseek" || (tmpl_contains("### Instruction:") && tmpl_contains("<|EOT|>"))) { // deepseek-ai/deepseek-coder-33b-instruct for (auto message : chat) { std::string role(message->role); @@ -19577,7 +19776,7 @@ static int32_t llama_chat_apply_template_internal( if (add_ass) { ss << "### Response:\n"; } - } else if (tmpl == "command-r" || (tmpl.find("<|START_OF_TURN_TOKEN|>") != std::string::npos && tmpl.find("<|USER_TOKEN|>") != std::string::npos)) { + } else if (tmpl == "command-r" || (tmpl_contains("<|START_OF_TURN_TOKEN|>") && tmpl_contains("<|USER_TOKEN|>"))) { // CohereForAI/c4ai-command-r-plus for (auto message : chat) { std::string role(message->role); @@ -19592,7 +19791,7 @@ static int32_t llama_chat_apply_template_internal( if (add_ass) { ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>"; } - } else if (tmpl == "llama3" || (tmpl.find("<|start_header_id|>") != std::string::npos && tmpl.find("<|end_header_id|>") != std::string::npos)) { + } else if (tmpl == "llama3" || (tmpl_contains("<|start_header_id|>") && tmpl_contains("<|end_header_id|>"))) { // Llama 3 for (auto message : chat) { std::string role(message->role); @@ -19601,6 +19800,33 @@ static int32_t llama_chat_apply_template_internal( if (add_ass) { ss << "<|start_header_id|>assistant<|end_header_id|>\n\n"; } + } else if (tmpl == "minicpm" || tmpl_contains(u8"<用户>")) { + // MiniCPM-3B-OpenHermes-2.5-v2-GGUF + for (auto message : chat) { + std::string role(message->role); + if (role == "user") { + ss << u8"<用户>"; + ss << trim(message->content); + ss << ""; + } else { + ss << trim(message->content); + } + } + } else if (tmpl == "deepseek2" || tmpl_contains("'Assistant: ' + message['content'] + eos_token")) { + // DeepSeek-V2 + for (auto message : chat) { + std::string role(message->role); + if (role == "system") { + ss << message->content << "\n\n"; + } else if (role == "user") { + ss << "User: " << message->content << "\n\n"; + } else if (role == "assistant") { + ss << "Assistant: " << message->content << u8"<|end▁of▁sentence|>"; + } + } + if (add_ass) { + ss << "Assistant:"; + } } else { // template not supported return -1; diff --git a/tests/test-chat-template.cpp b/tests/test-chat-template.cpp index d19ba8633..b154038b2 100644 --- a/tests/test-chat-template.cpp +++ b/tests/test-chat-template.cpp @@ -57,7 +57,11 @@ int main(void) { //Phi-3-medium "{% for message in messages %}{% if (message['role'] == 'user') %}{{'<|user|>' + '\n' + message['content'] + '<|end|>' + '\n' + '<|assistant|>' + '\n'}}{% elif (message['role'] == 'assistant') %}{{message['content'] + '<|end|>' + '\n'}}{% endif %}{% endfor %}", //Phi-3-vision - "{% for message in messages %}{{'<|' + message['role'] + '|>' + '\n' + message['content'] + '<|end|>\n' }}{% endfor %}{% if add_generation_prompt and messages[-1]['role'] != 'assistant' %}{{- '<|assistant|>\n' -}}{% endif %}" + "{% for message in messages %}{{'<|' + message['role'] + '|>' + '\n' + message['content'] + '<|end|>\n' }}{% endfor %}{% if add_generation_prompt and messages[-1]['role'] != 'assistant' %}{{- '<|assistant|>\n' -}}{% endif %}", + // MiniCPM-3B-OpenHermes-2.5-v2-GGUF + u8"{% for message in messages %}{% if message['role'] == 'user' %}{{'<用户>' + message['content'].strip() + ''}}{% else %}{{message['content'].strip()}}{% endif %}{% endfor %}", + // DeepSeek-V2 + "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{{ bos_token }}{% for message in messages %}{% if message['role'] == 'user' %}{{ 'User: ' + message['content'] + '\n\n' }}{% elif message['role'] == 'assistant' %}{{ 'Assistant: ' + message['content'] + eos_token }}{% elif message['role'] == 'system' %}{{ message['content'] + '\n\n' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ 'Assistant:' }}{% endif %}", }; std::vector expected_output = { // teknium/OpenHermes-2.5-Mistral-7B @@ -94,6 +98,10 @@ int main(void) { "<|system|>\nYou are a helpful assistant<|end|>\n<|user|>\nHello<|end|>\n<|assistant|>\nHi there<|end|>\n<|user|>\nWho are you<|end|>\n<|assistant|>\n I am an assistant <|end|>\n<|user|>\nAnother question<|end|>\n<|assistant|>\n", //Phi-3-vision "<|system|>\nYou are a helpful assistant<|end|>\n<|user|>\nHello<|end|>\n<|assistant|>\nHi there<|end|>\n<|user|>\nWho are you<|end|>\n<|assistant|>\n I am an assistant <|end|>\n<|user|>\nAnother question<|end|>\n<|assistant|>\n", + // MiniCPM-3B-OpenHermes-2.5-v2-GGUF + u8"You are a helpful assistant<用户>HelloHi there<用户>Who are youI am an assistant<用户>Another question", + // DeepSeek-V2 + u8"You are a helpful assistant\n\nUser: Hello\n\nAssistant: Hi there<|end▁of▁sentence|>User: Who are you\n\nAssistant: I am an assistant <|end▁of▁sentence|>User: Another question\n\nAssistant:", }; std::vector formatted_chat(1024); int32_t res; diff --git a/tests/test-grammar-integration.cpp b/tests/test-grammar-integration.cpp index dd277e3be..c9836370b 100644 --- a/tests/test-grammar-integration.cpp +++ b/tests/test-grammar-integration.cpp @@ -993,6 +993,40 @@ static void test_json_schema() { } ); + test_schema( + "simple pattern", + // Schema + R"""({ + "pattern": "^[a-zA-Z0-9_-]*$" + })""", + // Passing strings + { + R"""("")""", + R"""("He_llo-12")""", + }, + // Failing strings + { + R"""("!")""", + R"""("Hello World")""", + } + ); + + test_schema( + "pattern with escapes", + // Schema + R"""({ + "pattern": "^a\\^\\$\\.\\[\\]\\(\\)\\|\\{\\}\\*\\+\\?b$" + })""", + // Passing strings + { + R"""("a^$.[]()|{}*+?b")""", + }, + // Failing strings + { + R"""("ab")""", + } + ); + test_schema( "", // Schema @@ -1062,8 +1096,6 @@ static void test_json_schema() { R"""({ "number": 1600, "street_name": "Pennsylvania" })""", // "By extension, even an empty object is valid" R"""({})""", - // "By default, providing additional properties is valid" - R"""({ "number": 1600, "street_name": "Pennsylvania", "street_type":"Avenue", "direction":"NW"})""", R"""({ "number": 1600, "street_name": "Pennsylvania", "street_type": "Avenue" })""", }, // Failing strings @@ -1074,6 +1106,9 @@ static void test_json_schema() { R"""({ "street_name": "Pennsylvania", "number": 1600 })""", // Reorder properties R"""({ "number": "1600", "street_name": "Pennsylvania", "street_type":"Avenue"})""", + // "Additional properties default to false for generation, even though the spec says true. + R"""({ "number": 1600, "street_name": "Pennsylvania", "street_type":"Avenue", "direction":"NW"})""", + } ); diff --git a/tests/test-json-schema-to-grammar.cpp b/tests/test-json-schema-to-grammar.cpp index ec57dfc83..7e547698b 100755 --- a/tests/test-json-schema-to-grammar.cpp +++ b/tests/test-json-schema-to-grammar.cpp @@ -1281,26 +1281,30 @@ int main() { } }); - if (getenv("LLAMA_PYTHON_AVAILABLE") || (std::system("python -c \"import sys; exit(1) if sys.version_info < (3, 8) else print('Python version is sufficient')\"") == 0)) { - test_all("Python", [](const TestCase & tc) { - write("test-json-schema-input.tmp", tc.schema); - tc.verify_status(std::system( - "python ./examples/json_schema_to_grammar.py test-json-schema-input.tmp > test-grammar-output.tmp") == 0 ? SUCCESS : FAILURE); - tc.verify(read("test-grammar-output.tmp")); - }); + if (getenv("LLAMA_SKIP_TESTS_SLOW_ON_EMULATOR")) { + fprintf(stderr, "\033[33mWARNING: Skipping slow tests on emulator.\n\033[0m"); } else { - fprintf(stderr, "\033[33mWARNING: Python not found (min version required is 3.8), skipping Python JSON schema -> grammar tests.\n\033[0m"); - } + if (getenv("LLAMA_PYTHON_AVAILABLE") || (std::system("python -c \"import sys; exit(1) if sys.version_info < (3, 8) else print('Python version is sufficient')\"") == 0)) { + test_all("Python", [](const TestCase & tc) { + write("test-json-schema-input.tmp", tc.schema); + tc.verify_status(std::system( + "python ./examples/json_schema_to_grammar.py test-json-schema-input.tmp > test-grammar-output.tmp") == 0 ? SUCCESS : FAILURE); + tc.verify(read("test-grammar-output.tmp")); + }); + } else { + fprintf(stderr, "\033[33mWARNING: Python not found (min version required is 3.8), skipping Python JSON schema -> grammar tests.\n\033[0m"); + } - if (getenv("LLAMA_NODE_AVAILABLE") || (std::system("node --version") == 0)) { - test_all("JavaScript", [](const TestCase & tc) { - write("test-json-schema-input.tmp", tc.schema); - tc.verify_status(std::system( - "node ./tests/run-json-schema-to-grammar.mjs test-json-schema-input.tmp > test-grammar-output.tmp") == 0 ? SUCCESS : FAILURE); - tc.verify(read("test-grammar-output.tmp")); - }); - } else { - fprintf(stderr, "\033[33mWARNING: Node not found, skipping JavaScript JSON schema -> grammar tests.\n\033[0m"); + if (getenv("LLAMA_NODE_AVAILABLE") || (std::system("node --version") == 0)) { + test_all("JavaScript", [](const TestCase & tc) { + write("test-json-schema-input.tmp", tc.schema); + tc.verify_status(std::system( + "node ./tests/run-json-schema-to-grammar.mjs test-json-schema-input.tmp > test-grammar-output.tmp") == 0 ? SUCCESS : FAILURE); + tc.verify(read("test-grammar-output.tmp")); + }); + } else { + fprintf(stderr, "\033[33mWARNING: Node not found, skipping JavaScript JSON schema -> grammar tests.\n\033[0m"); + } } test_all("Check Expectations Validity", [](const TestCase & tc) {