perplexity.cpp : add hellswag scores / remove perplexity-lines
This commit is contained in:
parent
a40f608249
commit
ae4d116bdf
1 changed files with 142 additions and 42 deletions
|
@ -121,8 +121,23 @@ void perplexity(llama_context * ctx, const gpt_params & params) {
|
||||||
printf("\n");
|
printf("\n");
|
||||||
}
|
}
|
||||||
|
|
||||||
void perplexity_lines(llama_context * ctx, const gpt_params & params) {
|
void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
||||||
// Calculates perplexity over each line of the prompt
|
// Calculates hellaswag score (acc_norm) from prompt
|
||||||
|
//
|
||||||
|
// Data extracted from the HellaSwag validation dataset (MIT license) https://github.com/rowanz/hellaswag/blob/master/data/hellaswag_val.jsonl
|
||||||
|
// All used data fields are preprocessed as in https://github.com/EleutherAI/lm-evaluation-harness/blob/df3da98c5405deafd519c2ddca52bb7c3fe36bef/lm_eval/tasks/hellaswag.py#L62-L68
|
||||||
|
//
|
||||||
|
// All 10042 examples should be extracted to keep the results standardized like other implementations.
|
||||||
|
//
|
||||||
|
// Datafile layout:
|
||||||
|
// ['??'] denotes json fields
|
||||||
|
// 6 lines per task:
|
||||||
|
// ['activity_label'] + ": " +['ctx'] - The first part of the query, the context
|
||||||
|
// ['label'] - The index the best common sense ending aka gold ending
|
||||||
|
// ['endings'][0] - Endings added to the first part of the query
|
||||||
|
// ['endings'][1]
|
||||||
|
// ['endings'][2]
|
||||||
|
// ['endings'][3]
|
||||||
|
|
||||||
std::vector<std::string> prompt_lines;
|
std::vector<std::string> prompt_lines;
|
||||||
std::istringstream strstream(params.prompt);
|
std::istringstream strstream(params.prompt);
|
||||||
|
@ -132,63 +147,148 @@ void perplexity_lines(llama_context * ctx, const gpt_params & params) {
|
||||||
prompt_lines.push_back(line);
|
prompt_lines.push_back(line);
|
||||||
}
|
}
|
||||||
|
|
||||||
const int n_vocab = llama_n_vocab(ctx);
|
if( prompt_lines.size() % 6 != 0) {
|
||||||
|
fprintf(stderr, "%s : number of lines in prompt not a multiple of 6.\n", __func__);
|
||||||
int counttotal = 0;
|
|
||||||
size_t n_lines = prompt_lines.size();
|
|
||||||
|
|
||||||
double nll = 0.0;
|
|
||||||
|
|
||||||
fprintf(stderr, "%s: calculating perplexity over %lu lines\n", __func__, n_lines);
|
|
||||||
|
|
||||||
printf("\nLine\tPPL line\tPPL cumulative\n");
|
|
||||||
|
|
||||||
for (size_t i = 0; i < n_lines; ++i) {
|
|
||||||
|
|
||||||
// Tokenize and insert BOS at start
|
|
||||||
std::vector<int> batch_embd = ::llama_tokenize(ctx, prompt_lines[i], true);
|
|
||||||
|
|
||||||
size_t batch_size = batch_embd.size();
|
|
||||||
|
|
||||||
// Stop if line is too long
|
|
||||||
if( batch_size > (size_t)params.n_ctx ) {
|
|
||||||
fprintf(stderr, "%s : tokens in line %lu > n_ctxl\n", __func__, i);
|
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (llama_eval(ctx, batch_embd.data(), batch_size, 0, params.n_threads)) {
|
size_t hs_task_count = prompt_lines.size()/6;
|
||||||
|
fprintf(stderr, "%s : loaded %lu examples from prompt.\n", __func__, hs_task_count);
|
||||||
|
|
||||||
|
// This is needed as usual for LLaMA models
|
||||||
|
bool prepend_bos = true;
|
||||||
|
|
||||||
|
// Number of examples to use when computing the score
|
||||||
|
if ( params.hellaswag_tasks < hs_task_count )
|
||||||
|
hs_task_count = params.hellaswag_tasks;
|
||||||
|
|
||||||
|
// The examples should be randomized so the score stabilizes quickly.
|
||||||
|
bool randomize_tasks = true;
|
||||||
|
|
||||||
|
// The random seed should not impact the final result if the computation is done over enough examples, so kept hardcoded for now
|
||||||
|
std::mt19937 rng(1);
|
||||||
|
|
||||||
|
// Dataholder for hellaswag tasks
|
||||||
|
struct hs_data_t {
|
||||||
|
std::string context;
|
||||||
|
size_t gold_ending_idx;
|
||||||
|
std::string ending[4];
|
||||||
|
size_t ending_logprob_count[4];
|
||||||
|
double ending_logprob[4];
|
||||||
|
};
|
||||||
|
|
||||||
|
fprintf(stderr, "%s : selecting %lu %s examples.\n", __func__, hs_task_count, (randomize_tasks?"randomized":"the first") );
|
||||||
|
|
||||||
|
// Select and read data from prompt lines
|
||||||
|
hs_data_t *hs_data = new hs_data_t[hs_task_count];
|
||||||
|
for (size_t i=0; i < hs_task_count; i++) {
|
||||||
|
size_t idx = i;
|
||||||
|
|
||||||
|
// Select a random example of those left in the prompt
|
||||||
|
if (randomize_tasks) {
|
||||||
|
std::uniform_int_distribution<size_t> dist(0, prompt_lines.size()/6-1 ) ;
|
||||||
|
idx = dist(rng);
|
||||||
|
}
|
||||||
|
|
||||||
|
hs_data[i].context = prompt_lines[idx*6];
|
||||||
|
hs_data[i].gold_ending_idx = std::stoi( prompt_lines[idx*6+1] );
|
||||||
|
for (size_t j=0; j < 4; j++) {
|
||||||
|
hs_data[i].ending[j] = " " + prompt_lines[idx*6+2+j];
|
||||||
|
}
|
||||||
|
|
||||||
|
// Delete the select random example from the prompt
|
||||||
|
if (randomize_tasks) {
|
||||||
|
prompt_lines.erase( std::next(prompt_lines.begin(),idx*6) , std::next(prompt_lines.begin(),idx*6+6) );
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fprintf(stderr, "%s : calculating hellaswag score over selected examples.\n", __func__);
|
||||||
|
printf("\ntask\tacc_norm\n");
|
||||||
|
|
||||||
|
double acc = 0.0f;
|
||||||
|
const int n_vocab = llama_n_vocab(ctx);
|
||||||
|
|
||||||
|
for (size_t task_idx = 0; task_idx < hs_task_count; task_idx++) {
|
||||||
|
|
||||||
|
// Tokenize the context to count tokens
|
||||||
|
std::vector<int> context_embd = ::llama_tokenize(ctx, hs_data[task_idx].context, prepend_bos);
|
||||||
|
size_t context_size = context_embd.size();
|
||||||
|
|
||||||
|
for (size_t ending_idx=0;ending_idx<4;ending_idx++) {
|
||||||
|
|
||||||
|
// Tokenize the query
|
||||||
|
std::vector<int> query_embd = ::llama_tokenize(ctx, hs_data[task_idx].context + hs_data[task_idx].ending[ending_idx], prepend_bos);
|
||||||
|
size_t query_size = query_embd.size();
|
||||||
|
|
||||||
|
// Stop if query wont fit the ctx window
|
||||||
|
if (query_size > (size_t)params.n_ctx) {
|
||||||
|
fprintf(stderr, "%s : number of tokens in query %lu > n_ctxl\n", __func__, query_size);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Speedup small evaluations by evaluating atleast 32 tokens
|
||||||
|
if (query_size < 32) {
|
||||||
|
query_embd.resize(32);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Evaluate the query
|
||||||
|
if (llama_eval(ctx, query_embd.data(), query_embd.size(), 0, params.n_threads)) {
|
||||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
const auto batch_logits = llama_get_logits(ctx);
|
const auto query_logits = llama_get_logits(ctx);
|
||||||
std::vector<float> logits;
|
std::vector<float> logits;
|
||||||
logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
|
logits.insert(logits.end(), query_logits, query_logits + query_size * n_vocab);
|
||||||
|
|
||||||
double nllline = 0.0;
|
hs_data[task_idx].ending_logprob_count[ending_idx] = 0;
|
||||||
int countline = 0;
|
hs_data[task_idx].ending_logprob[ending_idx] = 0.0f;
|
||||||
|
|
||||||
// Perplexity over second half of the line
|
// Calculate the logprobs over the ending
|
||||||
for (size_t j = batch_size/2; j < batch_size - 1; ++j) {
|
for (size_t j = context_size-1; j < query_size - 1; j++) {
|
||||||
// Calculate probability of next token, given the previous ones.
|
// Calculate probability of next token, given the previous ones.
|
||||||
const std::vector<float> tok_logits(
|
const std::vector<float> tok_logits(
|
||||||
logits.begin() + (j + 0) * n_vocab,
|
logits.begin() + (j + 0) * n_vocab,
|
||||||
logits.begin() + (j + 1) * n_vocab);
|
logits.begin() + (j + 1) * n_vocab);
|
||||||
|
|
||||||
const float prob = softmax(tok_logits)[batch_embd[ j + 1]];
|
const float prob = softmax(tok_logits)[query_embd[ j + 1]];
|
||||||
|
|
||||||
nllline += -std::log(prob);
|
hs_data[task_idx].ending_logprob[ending_idx] += std::log(prob);
|
||||||
++countline;
|
hs_data[task_idx].ending_logprob_count[ending_idx]++;
|
||||||
}
|
}
|
||||||
|
|
||||||
nll += nllline;
|
// Calculate the mean token logprob for acc_norm
|
||||||
counttotal += countline;
|
hs_data[task_idx].ending_logprob[ending_idx] /= hs_data[task_idx].ending_logprob_count[ending_idx];
|
||||||
|
|
||||||
// perplexity is e^(average negative log-likelihood)
|
|
||||||
printf("%lu\t%.8lf\t%.8lf\n", i + 1, std::exp(nllline/countline), std::exp(nll / counttotal) );
|
// printf("task %lu, ending %lu, whole_len %lu, context_len %lu, ending_logprob_count %lu, ending_logprob %.4f\n",
|
||||||
|
// task_idx,ending_idx,whole_size,context_size, hs_data[task_idx].ending_logprob_count[ending_idx], hs_data[task_idx].ending_logprob[ending_idx] );
|
||||||
|
}
|
||||||
|
|
||||||
|
// Find the ending with maximum logprob
|
||||||
|
size_t ending_logprob_max_idx = -1;
|
||||||
|
double ending_logprob_max_val = -INFINITY;
|
||||||
|
for (size_t j=0; j < 4; j++) {
|
||||||
|
if (hs_data[task_idx].ending_logprob[j] > ending_logprob_max_val) {
|
||||||
|
ending_logprob_max_idx = j;
|
||||||
|
ending_logprob_max_val = hs_data[task_idx].ending_logprob[j];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// printf("max logprob ending idx %lu, gold ending idx %lu\n", ending_logprob_max_idx, hs_data[task_idx].gold_ending_idx);
|
||||||
|
|
||||||
|
// If the gold ending got the maximum logprobe add one accuracy point
|
||||||
|
if (ending_logprob_max_idx == hs_data[task_idx].gold_ending_idx) {
|
||||||
|
acc += 1.0;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Print the accumulated accuracy mean x 100
|
||||||
|
printf("%li\t%.8lf\n",task_idx+1, acc/double(task_idx+1)*100.0);
|
||||||
fflush(stdout);
|
fflush(stdout);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
delete [] hs_data;
|
||||||
|
|
||||||
printf("\n");
|
printf("\n");
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -240,8 +340,8 @@ int main(int argc, char ** argv) {
|
||||||
params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
|
params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
|
||||||
}
|
}
|
||||||
|
|
||||||
if (params.perplexity_lines) {
|
if (params.hellaswag) {
|
||||||
perplexity_lines(ctx, params);
|
hellaswag_score(ctx, params);
|
||||||
} else {
|
} else {
|
||||||
perplexity(ctx, params);
|
perplexity(ctx, params);
|
||||||
}
|
}
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue