llama : remove sampling from llama_context

ggml-ci
This commit is contained in:
Georgi Gerganov 2024-08-05 12:59:59 +03:00
parent cc53500f65
commit ae9d3f68e9
No known key found for this signature in database
GPG key ID: 449E073F9DC10735
25 changed files with 75 additions and 137 deletions

View file

@ -264,6 +264,10 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
params.kv_overrides.back().key[0] = 0;
}
if (params.sparams.seed == LLAMA_DEFAULT_SEED) {
params.sparams.seed = time(NULL);
}
return true;
}
@ -294,8 +298,6 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
if (arg == "-s" || arg == "--seed") {
CHECK_ARG
// TODO: this is temporary, in the future the sampling state will be moved fully to llama_sampling_context.
params.seed = std::stoul(argv[i]);
sparams.seed = std::stoul(argv[i]);
return true;
}
@ -1414,7 +1416,6 @@ void gpt_params_print_usage(int /*argc*/, char ** argv, const gpt_params & param
options.push_back({ "*", " --verbose-prompt", "print a verbose prompt before generation (default: %s)", params.verbose_prompt ? "true" : "false" });
options.push_back({ "*", " --no-display-prompt", "don't print prompt at generation (default: %s)", !params.display_prompt ? "true" : "false" });
options.push_back({ "*", "-co, --color", "colorise output to distinguish prompt and user input from generations (default: %s)", params.use_color ? "true" : "false" });
options.push_back({ "*", "-s, --seed SEED", "RNG seed (default: %d, use random seed for < 0)", params.seed });
options.push_back({ "*", "-t, --threads N", "number of threads to use during generation (default: %d)", params.n_threads });
options.push_back({ "*", "-tb, --threads-batch N", "number of threads to use during batch and prompt processing (default: same as --threads)" });
options.push_back({ "speculative", "-td, --threads-draft N", "number of threads to use during generation (default: same as --threads)" });
@ -1465,6 +1466,7 @@ void gpt_params_print_usage(int /*argc*/, char ** argv, const gpt_params & param
" --spm-infill", "use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this. (default: %s)", params.spm_infill ? "enabled" : "disabled" });
options.push_back({ "sampling" });
options.push_back({ "*", "-s, --seed SEED", "RNG seed (default: %d, use random seed for < 0)", sparams.seed });
options.push_back({ "*", " --samplers SAMPLERS", "samplers that will be used for generation in the order, separated by \';\'\n"
"(default: %s)", sampler_type_names.c_str() });
options.push_back({ "*", " --sampling-seq SEQUENCE",
@ -2239,7 +2241,6 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
cparams.n_ubatch = params.n_ubatch;
cparams.n_threads = params.n_threads;
cparams.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
cparams.seed = params.seed;
cparams.logits_all = params.logits_all;
cparams.embeddings = params.embedding;
cparams.rope_scaling_type = params.rope_scaling_type;
@ -3249,7 +3250,6 @@ void yaml_dump_non_result_info(FILE * stream, const gpt_params & params, const l
fprintf(stream, "rope_freq_base: %f # default: 10000.0\n", params.rope_freq_base);
fprintf(stream, "rope_freq_scale: %f # default: 1.0\n", params.rope_freq_scale);
fprintf(stream, "seed: %u # default: -1 (random seed)\n", params.seed);
fprintf(stream, "simple_io: %s # default: false\n", params.simple_io ? "true" : "false");
fprintf(stream, "cont_batching: %s # default: false\n", params.cont_batching ? "true" : "false");
fprintf(stream, "flash_attn: %s # default: false\n", params.flash_attn ? "true" : "false");

View file

@ -68,8 +68,6 @@ enum dimre_method {
};
struct gpt_params {
uint32_t seed = LLAMA_DEFAULT_SEED; // RNG seed
int32_t n_threads = cpu_get_num_math();
int32_t n_threads_draft = -1;
int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads)

View file

@ -3,19 +3,10 @@
#include <random>
struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_params & params, const struct llama_model * model) {
auto result = llama_sampling_init(params, llama_sampling_init(model, params.grammar.c_str(), "root"));
result->owned = true;
return result;
}
struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_params & params, struct llama_sampling * smpl) {
struct llama_sampling_context * result = new llama_sampling_context();
result->params = params;
result->owned = false;
result->smpl = smpl;
result->smpl = llama_sampling_init(model, params.grammar.c_str(), "root");
result->prev.resize(params.n_prev);
@ -27,9 +18,7 @@ struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_
}
void llama_sampling_free(struct llama_sampling_context * ctx) {
if (ctx->owned) {
llama_sampling_free(ctx->smpl);
}
llama_sampling_free(ctx->smpl);
delete ctx;
}

View file

@ -71,8 +71,6 @@ struct llama_sampling_context {
// mirostat sampler state
float mirostat_mu;
bool owned;
llama_sampling * smpl;
// TODO: replace with ring-buffer
@ -86,7 +84,6 @@ struct llama_sampling_context {
// Create a new sampling context instance.
struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_params & params, const struct llama_model * model);
struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_params & params, struct llama_sampling * smpl);
void llama_sampling_free(struct llama_sampling_context * ctx);

View file

@ -27,7 +27,6 @@ guard let model = llama_load_model_from_file(modelPath.cString(using: .utf8), mo
print("Failed to load model")
exit(1)
}
defer {
llama_free_model(model)
}
@ -37,24 +36,29 @@ var tokens = tokenize(text: prompt, add_bos: true)
let n_kv_req = UInt32(tokens.count) + UInt32((n_len - Int(tokens.count)) * n_parallel)
var context_params = llama_context_default_params()
context_params.seed = 1234
context_params.n_ctx = n_kv_req
context_params.n_batch = UInt32(max(n_len, n_parallel))
context_params.n_threads = 8
context_params.n_threads_batch = 8
let context = llama_new_context_with_model(model, context_params)
let smpl = llama_get_sampling(context)
guard context != nil else {
print("Failed to initialize context")
exit(1)
}
defer {
llama_free(context)
}
let smpl = llama_sampling_init(model, nil, nil)
guard smpl != nil else {
print("Failed to initialize sampling")
exit(1)
}
defer {
llama_sampling_free(smpl)
}
let n_ctx = llama_n_ctx(context)
print("\nn_len = \(n_len), n_ctx = \(n_ctx), n_batch = \(context_params.n_batch), n_parallel = \(n_parallel), n_kv_req = \(n_kv_req)\n")

View file

@ -64,7 +64,7 @@ int main(int argc, char ** argv) {
ctx_params.n_batch = std::max(n_predict, n_parallel);
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
llama_sampling * smpl = llama_get_sampling(ctx);
llama_sampling * smpl = llama_sampling_init(model, nullptr, nullptr);
if (ctx == NULL) {
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);

View file

@ -90,13 +90,7 @@ int main(int argc, char ** argv) {
print_build_info();
if (params.seed == LLAMA_DEFAULT_SEED) {
params.seed = time(NULL);
}
fprintf(stderr, "%s: seed = %u\n", __func__, params.seed);
std::mt19937 rng(params.seed);
LOG_TEE("%s: seed = %u\n", __func__, params.sparams.seed);
llama_backend_init();
llama_numa_init(params.numa);

View file

@ -151,8 +151,6 @@ int main(int argc, char ** argv) {
print_build_info();
std::mt19937 rng(params.seed);
llama_backend_init();
llama_numa_init(params.numa);

View file

@ -92,11 +92,10 @@ static std::vector<std::vector<float>> encode(llama_context * ctx, const std::ve
return result;
}
static std::string generate(llama_context * ctx, const std::string & prompt, bool stream) {
static std::string generate(llama_context * ctx, llama_sampling * smpl, const std::string & prompt, bool stream) {
std::string result;
const llama_model * model = llama_get_model(ctx);
llama_sampling * smpl = llama_get_sampling(ctx);
llama_token eos_token = llama_token_eos(model);
llama_kv_cache_clear(ctx);
@ -117,7 +116,7 @@ static std::string generate(llama_context * ctx, const std::string & prompt, boo
inputs.clear();
llama_decode(ctx, bat);
auto logits = llama_get_logits_ith(ctx, bat.n_tokens - 1);
auto * logits = llama_get_logits_ith(ctx, bat.n_tokens - 1);
auto candidates = std::vector<llama_token_data>(llama_n_vocab(model));
auto n_candidates = (int32_t)candidates.size();
@ -173,6 +172,8 @@ int main(int argc, char * argv[]) {
// create generation context
llama_context * ctx = llama_new_context_with_model(model, cparams);
llama_sampling * smpl = llama_sampling_init(model, nullptr, nullptr);
// ### Embedding/Representation ###
// samples taken from: https://github.com/ContextualAI/gritlm#basic
{
@ -209,9 +210,10 @@ int main(int argc, char * argv[]) {
// GritLM models are not finetuned with system prompts, as you can just include system-like instructions together with your user instruction
{
const std::string prompt = "<|user|>\nPlease write me a poem about my recent hike of Mt. Fuji at midnight in the style of Shakespeare.\n<|assistant|>\n";
std::string response = generate(ctx, prompt, true);
std::string response = generate(ctx, smpl, prompt, true);
}
llama_sampling_free(smpl);
llama_free(ctx);
llama_free_model(model);
llama_backend_free();

View file

@ -156,16 +156,9 @@ int main(int argc, char ** argv) {
LOG_TEE("%s: warning: scaling RoPE frequency by %g.\n", __func__, params.rope_freq_scale);
}
LOG_TEE("%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
LOG_TEE("%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET);
print_build_info();
if (params.seed == LLAMA_DEFAULT_SEED) {
params.seed = time(NULL);
}
LOG_TEE("%s: seed = %u\n", __func__, params.seed);
std::mt19937 rng(params.seed);
LOG_TEE("%s: seed = %u\n", __func__, params.sparams.seed);
LOG("%s: llama backend init\n", __func__);
llama_backend_init();
@ -351,7 +344,7 @@ int main(int argc, char ** argv) {
std::vector<llama_token> embd;
ctx_sampling = llama_sampling_init(sparams, llama_get_sampling(ctx));
ctx_sampling = llama_sampling_init(sparams, model);
while (n_remain != 0 || params.interactive) {
// predict

View file

@ -120,7 +120,6 @@ Java_android_llama_cpp_LLamaAndroid_new_1context(JNIEnv *env, jobject, jlong jmo
LOGi("Using %d threads", n_threads);
llama_context_params ctx_params = llama_context_default_params();
ctx_params.seed = 1234;
ctx_params.n_ctx = 2048;
ctx_params.n_threads = n_threads;
ctx_params.n_threads_batch = n_threads;
@ -380,12 +379,13 @@ Java_android_llama_cpp_LLamaAndroid_completion_1loop(
JNIEnv * env,
jobject,
jlong context_pointer,
jlong sampling_pointer,
jlong batch_pointer,
jint n_len,
jobject intvar_ncur
) {
const auto context = reinterpret_cast<llama_context *>(context_pointer);
const auto sampling = reinterpret_cast<llama_sampling *>(llama_get_sampling(context));
const auto sampling = reinterpret_cast<llama_sampling *>(sampling_pointer);
const auto batch = reinterpret_cast<llama_batch *>(batch_pointer);
const auto model = llama_get_model(context);

View file

@ -43,14 +43,14 @@ actor LlamaContext {
self.tokens_list = []
self.batch = llama_batch_init(512, 0, 1)
self.temporary_invalid_cchars = []
self.sampling = llama_get_sampling(context)
self.sampling = llama_sampling_init(context, nil, nil);
}
deinit {
llama_sampling_free(sampling)
llama_batch_free(batch)
llama_free(context)
llama_free_model(model)
llama_sampling_free(sampling)
llama_backend_free()
}
@ -72,7 +72,6 @@ actor LlamaContext {
print("Using \(n_threads) threads")
var ctx_params = llama_context_default_params()
ctx_params.seed = 1234
ctx_params.n_ctx = 2048
ctx_params.n_threads = UInt32(n_threads)
ctx_params.n_threads_batch = UInt32(n_threads)

View file

@ -191,7 +191,7 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
LOG_TEE("\n");
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params->sparams, llama_get_sampling(ctx_llava->ctx_llama));
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params->sparams, ctx_llava->model);
if (!ctx_sampling) {
fprintf(stderr, "%s: failed to initialize sampling subsystem\n", __func__);
exit(1);

View file

@ -161,7 +161,7 @@ static const char * sample(struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_llama,
int * n_past) {
const llama_token id = llama_sampling_sample(ctx_sampling, ctx_llama, NULL);
llama_sampling_accept(ctx_sampling, ctx_llama, id, true);
llama_sampling_accept(ctx_sampling, id, true);
static std::string ret;
if (llama_token_is_eog(llama_get_model(ctx_llama), id)) {
ret = "</s>";
@ -218,7 +218,7 @@ static struct llama_sampling_context * llama_init(struct llava_context * ctx_lla
LOG_TEE("\n");
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params->sparams);
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params->sparams, ctx_llava->model);
return ctx_sampling;
}
@ -299,7 +299,7 @@ int main(int argc, char ** argv) {
}
}
printf("\n");
llama_print_timings(ctx_llava->ctx_llama);
llama_print_timings(ctx_llava->ctx_llama, nullptr);
ctx_llava->model = NULL;
llava_free(ctx_llava);

View file

@ -1,7 +1,6 @@
#include "common.h"
#include "llama.h"
#include <cmath>
#include <cstdio>
#include <string>
#include <vector>
@ -118,7 +117,7 @@ int main(int argc, char ** argv) {
llama_batch batch = llama_batch_init(params.n_ctx, 0, W + G + 1);
// target model sampling context
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params.sparams, llama_get_sampling(ctx));
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params.sparams, model);
// verification n-grams
std::vector<ngram_data> ngrams_cur(G);

View file

@ -3,13 +3,11 @@
#include "common.h"
#include "ngram-cache.h"
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <fstream>
#include <string>
#include <vector>
#include <unordered_map>
int main(int argc, char ** argv){
gpt_params params;
@ -106,7 +104,7 @@ int main(int argc, char ** argv){
bool has_eos = false;
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params.sparams, llama_get_sampling(ctx));
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params.sparams, model);
std::vector<llama_token> draft;

View file

@ -183,16 +183,9 @@ int main(int argc, char ** argv) {
LOG_TEE("%s: warning: scaling RoPE frequency by %g.\n", __func__, params.rope_freq_scale);
}
LOG_TEE("%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
LOG_TEE("%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET);
print_build_info();
if (params.seed == LLAMA_DEFAULT_SEED) {
params.seed = time(NULL);
}
LOG_TEE("%s: seed = %u\n", __func__, params.seed);
std::mt19937 rng(params.seed);
LOG_TEE("%s: seed = %u\n", __func__, params.sparams.seed);
LOG("%s: llama backend init\n", __func__);
llama_backend_init();
@ -535,7 +528,7 @@ int main(int argc, char ** argv) {
antiprompt_ids.emplace_back(::llama_tokenize(ctx, antiprompt, false, true));
}
ctx_sampling = llama_sampling_init(sparams, llama_get_sampling(ctx));
ctx_sampling = llama_sampling_init(sparams, model);
if (!ctx_sampling) {
fprintf(stderr, "%s: failed to initialize sampling subsystem\n", __func__);
exit(1);

View file

@ -26,8 +26,6 @@ int main(int argc, char ** argv) {
return 1;
}
srand(params.seed == LLAMA_DEFAULT_SEED ? time(NULL) : params.seed);
int n_junk = params.n_junk;
int n_keep = params.n_keep;
int n_grp = params.grp_attn_n;
@ -85,7 +83,7 @@ int main(int argc, char ** argv) {
return 1;
}
llama_sampling * smpl = llama_get_sampling(ctx);
llama_sampling * smpl = llama_sampling_init(model, nullptr, nullptr);
// tokenize the prompt
std::vector<llama_token> tokens_list;
@ -274,6 +272,7 @@ int main(int argc, char ** argv) {
llama_batch_free(batch);
llama_sampling_free(smpl);
llama_free(ctx);
llama_free_model(model);

View file

@ -2007,13 +2007,7 @@ int main(int argc, char ** argv) {
print_build_info();
if (params.seed == LLAMA_DEFAULT_SEED) {
params.seed = time(NULL);
}
fprintf(stderr, "%s: seed = %u\n", __func__, params.seed);
std::mt19937 rng(params.seed);
LOG_TEE("%s: seed = %u\n", __func__, params.sparams.seed);
llama_backend_init();
llama_numa_init(params.numa);

View file

@ -319,8 +319,7 @@ int main(int argc, char ** argv) {
}
auto cparams = llama_context_default_params();
cparams.n_ctx = 256;
cparams.seed = 1;
cparams.n_ctx = 256;
ctx = llama_new_context_with_model(model, cparams);

View file

@ -3,7 +3,6 @@
#include <vector>
#include <cstdio>
#include <chrono>
int main(int argc, char ** argv) {
gpt_params params;
@ -38,7 +37,7 @@ int main(int argc, char ** argv) {
return 1;
}
llama_sampling * smpl = llama_get_sampling(ctx);
llama_sampling * smpl = llama_sampling_init(model, nullptr, nullptr);
// tokenize prompt
auto tokens = llama_tokenize(ctx, params.prompt, true);
@ -98,7 +97,7 @@ int main(int argc, char ** argv) {
// make new context
auto * ctx2 = llama_new_context_with_model(model, llama_context_params_from_gpt_params(params));
llama_sampling * smpl2 = llama_get_sampling(ctx2);
llama_sampling * smpl2 = llama_sampling_init(model, nullptr, nullptr);
printf("\nsecond run: %s", params.prompt.c_str());
@ -163,7 +162,7 @@ int main(int argc, char ** argv) {
// make new context
auto * ctx3 = llama_new_context_with_model(model, llama_context_params_from_gpt_params(params));
llama_sampling * smpl3 = llama_get_sampling(ctx3);
llama_sampling * smpl3 = llama_sampling_init(model, nullptr, nullptr);
printf("\nsingle seq run: %s", params.prompt.c_str());
@ -246,6 +245,10 @@ int main(int argc, char ** argv) {
printf("\n");
llama_sampling_free(smpl);
llama_sampling_free(smpl2);
llama_sampling_free(smpl3);
llama_free(ctx3);
llama_free_model(model);

View file

@ -55,7 +55,7 @@ int main(int argc, char ** argv) {
return 1;
}
llama_sampling * smpl = llama_get_sampling(ctx);
llama_sampling * smpl = llama_sampling_init(model, nullptr, nullptr);
// tokenize the prompt
@ -168,6 +168,7 @@ int main(int argc, char ** argv) {
llama_batch_free(batch);
llama_sampling_free(smpl);
llama_free(ctx);
llama_free_model(model);

View file

@ -43,10 +43,7 @@ int main(int argc, char ** argv) {
// probability threshold for splitting a draft branch (only for n_seq_dft > 1)
const float p_split = params.p_split;
if (params.seed == LLAMA_DEFAULT_SEED) {
params.seed = time(NULL);
}
std::default_random_engine rng(params.seed);
std::default_random_engine rng(params.sparams.seed);
std::uniform_real_distribution<> u_dist;
#ifndef LOG_DISABLE_LOGS
@ -179,7 +176,7 @@ int main(int argc, char ** argv) {
bool has_eos = false;
// target model sampling context (reuse the llama_context's sampling instance)
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params.sparams, llama_get_sampling(ctx_tgt));
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params.sparams, model_tgt);
// draft sequence data
std::vector<seq_draft> drafts(n_seq_dft);

View file

@ -300,7 +300,6 @@ extern "C" {
// NOTE: changing the default values of parameters marked as [EXPERIMENTAL] may cause crashes or incorrect results in certain configurations
// https://github.com/ggerganov/llama.cpp/pull/7544
struct llama_context_params {
uint32_t seed; // RNG seed, -1 for random
uint32_t n_ctx; // text context, 0 = from model
uint32_t n_batch; // logical maximum batch size that can be submitted to llama_decode
uint32_t n_ubatch; // physical maximum batch size
@ -407,6 +406,7 @@ extern "C" {
LLAMA_API void llama_free_model(struct llama_model * model);
// TODO: rename to llama_init_from_model
LLAMA_API struct llama_context * llama_new_context_with_model(
struct llama_model * model,
struct llama_context_params params);
@ -432,8 +432,7 @@ extern "C" {
LLAMA_API int32_t llama_n_embd (const struct llama_model * model);
LLAMA_API int32_t llama_n_layer (const struct llama_model * model);
LLAMA_API const struct llama_model * llama_get_model (const struct llama_context * ctx);
LLAMA_API struct llama_sampling * llama_get_sampling( struct llama_context * ctx);
LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
LLAMA_API enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx);
LLAMA_API enum llama_vocab_type llama_vocab_type (const struct llama_model * model);
@ -663,7 +662,7 @@ extern "C" {
//
// Returns the *actual* size in bytes of the state
// (rng, logits, embedding and kv_cache)
// (logits, embedding and kv_cache)
// Only use when saving the state, not when restoring it, otherwise the size may be too small.
LLAMA_API size_t llama_state_get_size(struct llama_context * ctx);
LLAMA_API DEPRECATED(size_t llama_get_state_size(struct llama_context * ctx),

View file

@ -2673,7 +2673,6 @@ struct llama_model {
struct llama_context {
llama_context(const llama_model & model)
: model(model)
, sampling(model.vocab, nullptr, nullptr) // by default, no grammar
, t_start_us(model.t_start_us)
, t_load_us(model.t_load_us) {}
@ -2690,7 +2689,6 @@ struct llama_context {
const struct llama_model & model;
struct llama_cparams cparams;
struct llama_sampling sampling;
struct llama_kv_cache kv_self;
struct llama_control_vector cvec;
@ -16442,7 +16440,6 @@ struct llama_model_params llama_model_default_params() {
struct llama_context_params llama_context_default_params() {
struct llama_context_params result = {
/*.seed =*/ LLAMA_DEFAULT_SEED,
/*.n_ctx =*/ 512,
/*.n_batch =*/ 2048,
/*.n_ubatch =*/ 512,
@ -16721,10 +16718,6 @@ struct llama_context * llama_new_context_with_model(
cparams.causal_attn = params.attention_type == LLAMA_ATTENTION_TYPE_CAUSAL;
}
if (params.seed == LLAMA_DEFAULT_SEED) {
params.seed = time(NULL);
}
LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx);
LLAMA_LOG_INFO("%s: n_batch = %u\n", __func__, cparams.n_batch);
LLAMA_LOG_INFO("%s: n_ubatch = %u\n", __func__, cparams.n_ubatch);
@ -16735,8 +16728,6 @@ struct llama_context * llama_new_context_with_model(
ctx->abort_callback = params.abort_callback;
ctx->abort_callback_data = params.abort_callback_data;
llama_sampling_set_rng_seed_impl(ctx->sampling, params.seed);
ctx->logits_all = params.logits_all;
// build worst-case graph for encoder if a model contains encoder
@ -17056,10 +17047,6 @@ const struct llama_model * llama_get_model(const struct llama_context * ctx) {
return &ctx->model;
}
struct llama_sampling * llama_get_sampling(struct llama_context * ctx) {
return &ctx->sampling;
}
enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx) {
return ctx->cparams.pooling_type;
}
@ -17532,14 +17519,14 @@ struct llama_data_write {
// TODO: add more model-specific info which should prevent loading the session file if not identical
}
void write_rng(const std::mt19937 & rng) {
std::ostringstream rng_ss;
rng_ss << rng;
//void write_rng(const std::mt19937 & rng) {
// std::ostringstream rng_ss;
// rng_ss << rng;
const std::string & rng_str = rng_ss.str();
// const std::string & rng_str = rng_ss.str();
write_string(rng_str);
}
// write_string(rng_str);
//}
void write_output_ids(const struct llama_context * ctx) {
const uint32_t n_outputs = ctx->n_outputs;
@ -17757,17 +17744,17 @@ struct llama_data_read {
// TODO: add more info which needs to be identical but which is not verified otherwise
}
void read_rng(std::mt19937 & rng) {
std::string rng_str;
read_string(rng_str);
//void read_rng(std::mt19937 & rng) {
// std::string rng_str;
// read_string(rng_str);
std::istringstream rng_ss(rng_str);
rng_ss >> rng;
// std::istringstream rng_ss(rng_str);
// rng_ss >> rng;
if (rng_ss.fail()) {
throw std::runtime_error("failed to load RNG state");
}
}
// if (rng_ss.fail()) {
// throw std::runtime_error("failed to load RNG state");
// }
//}
void read_output_ids(struct llama_context * ctx) {
std::vector<int32_t> output_pos;
@ -18181,8 +18168,6 @@ static size_t llama_state_get_data_internal(struct llama_context * ctx, llama_da
data_ctx.write_model_info(ctx);
data_ctx.write_rng(ctx->sampling.rng);
// copy outputs
data_ctx.write_output_ids(ctx);
data_ctx.write_logits(ctx);
@ -18220,9 +18205,6 @@ static size_t llama_state_set_data_internal(struct llama_context * ctx, llama_da
data_ctx.read_model_info(ctx);
// set rng
data_ctx.read_rng(ctx->sampling.rng);
// set outputs
data_ctx.read_output_ids(ctx);
data_ctx.read_logits(ctx);
@ -19261,12 +19243,12 @@ void llama_print_timings(struct llama_context * ctx, struct llama_sampling * smp
/*.t_start_ms =*/ 1e-3 * ctx->t_start_us,
/*.t_end_ms =*/ 1.00 * ggml_time_ms(),
/*.t_load_ms =*/ 1e-3 * ctx->t_load_us,
/*.t_sampling_ms =*/ 1e-3 * (smpl ? smpl->t_total_us : ctx->sampling.t_total_us),
/*.t_sampling_ms =*/ 1e-3 * (smpl ? smpl->t_total_us : 0.0),
/*.t_grammar_ms =*/ 1e-3 * (smpl && smpl->grammar ? smpl->grammar->t_total_us : 0.0),
/*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
/*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us,
/*.n_sampling =*/ std::max(0, smpl ? smpl->n_sample : ctx->sampling.n_sample),
/*.n_sampling =*/ std::max(0, smpl ? smpl->n_sample : 0),
/*.n_grammar_sample =*/ std::max(0, smpl && smpl->grammar ? smpl->grammar->n_sample : 0),
/*.n_grammar_accept =*/ std::max(0, smpl && smpl->grammar ? smpl->grammar->n_accept : 0),
/*.n_p_eval =*/ std::max(0, ctx->n_p_eval),