diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py index 7b1c25b77..ad48f38ce 100755 --- a/convert-hf-to-gguf.py +++ b/convert-hf-to-gguf.py @@ -1323,8 +1323,7 @@ class StableLMModel(Model): # map tensor names new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) if new_name is None: - print(f"Can not map tensor {name!r}") - sys.exit() + raise ValueError(f"Can not map tensor {name!r}") n_dims = len(data.shape) data_dtype = data.dtype @@ -1341,7 +1340,7 @@ class StableLMModel(Model): if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and not new_name.endswith("_norm.weight") and n_dims == 2: data = data.astype(np.float16) - print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") + logger.debug(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") self.gguf_writer.add_tensor(new_name, data) @@ -1357,8 +1356,7 @@ class StableLMModel(Model): merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight" new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias")) if new_name is None: - print(f"Can not map tensor {name!r}") - sys.exit() + raise ValueError(f"Can not map tensor {name!r}") if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")): data = data.astype(np.float32) @@ -1366,7 +1364,7 @@ class StableLMModel(Model): if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and not new_name.endswith("_norm.weight") and n_dims == 2: data = data.astype(np.float16) - print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}") + logger.debug(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}") self.gguf_writer.add_tensor(new_name, data) @@ -1933,10 +1931,9 @@ class Qwen2MoeModel(Model): new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias")) if new_name is None: - print(f"Can not map tensor {name!r}") - sys.exit() + raise ValueError(f"Can not map tensor {name!r}") - print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}") + logger.debug(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}") self.gguf_writer.add_tensor(new_name, data) continue @@ -1944,8 +1941,7 @@ class Qwen2MoeModel(Model): # map tensor names new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) if new_name is None: - print(f"Can not map tensor {name!r}") - sys.exit() + raise ValueError(f"Can not map tensor {name!r}") n_dims = len(data.shape) data_dtype = data.dtype @@ -1962,7 +1958,7 @@ class Qwen2MoeModel(Model): if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: data = data.astype(np.float16) - print(f"{new_name}, n_dims = {n_dims}, shape = {data.shape}, {old_dtype} --> {data.dtype}") + logger.debug(f"{new_name}, n_dims = {n_dims}, shape = {data.shape}, {old_dtype} --> {data.dtype}") self.gguf_writer.add_tensor(new_name, data) @@ -2642,7 +2638,7 @@ class GemmaModel(Model): # lm_head is not used in llama.cpp, while autoawq will include this tensor in model # To prevent errors, skip loading lm_head.weight. if name == "lm_head.weight": - print(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.") + logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.") continue old_dtype = data_torch.dtype