sycl : refactored helper headers into multiple files

This commit is contained in:
Alberto Cabrera 2024-07-04 22:10:36 +01:00
parent 44cee5dc89
commit af514c8d77
13 changed files with 2977 additions and 2931 deletions

View file

@ -12,31 +12,32 @@
#include <algorithm>
#include <assert.h>
#include <atomic>
#include <cinttypes>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <float.h>
#include <limits>
#include <stdint.h>
#include <stdio.h>
#include <vector>
#include <cmath>
#include <iostream>
#include <fstream>
#include <stdio.h>
#include <stdlib.h>
#include <regex>
#include <sycl/sycl.hpp>
#include <sycl/half_type.hpp>
#include <oneapi/mkl.hpp>
#include "ggml-sycl.h"
#include "ggml.h"
#include "ggml-backend-impl.h"
#include "ggml-sycl/backend.hpp"
#include "ggml-sycl/dpct/atomic.hpp"
#include "ggml-sycl/dpct/blas.hpp"
#include "ggml-sycl/dpct/helper.hpp"
#include "ggml-sycl/dpct/math.hpp"
#include "ggml-sycl/dpct/memory.hpp"
#include "ggml-sycl/presets.hpp"
bool ggml_sycl_loaded(void);

View file

@ -13,10 +13,12 @@
#ifndef GGML_SYCL_COMMON_HPP
#define GGML_SYCL_COMMON_HPP
#include <fstream>
#include <iostream>
#include "dpct/helper.hpp"
#include "dpct/defs.hpp"
#include "dpct/device.hpp"
#include "dpct/util.hpp"
#include "ggml-sycl.h"
#include "presets.hpp"
@ -34,19 +36,6 @@ static int g_ggml_sycl_debug = 0;
fprintf(stderr, __VA_ARGS__); \
} while (0)
#define CHECK_TRY_ERROR(expr) \
[&]() { \
try { \
expr; \
return dpct::success; \
} catch (std::exception const& e) { \
std::cerr << e.what() << "\nException caught at file:" << __FILE__ \
<< ", line:" << __LINE__ << ", func:" << __func__ \
<< std::endl; \
return dpct::default_error; \
} \
}()
// #define DEBUG_SYCL_MALLOC
static int g_work_group_size = 0;

View file

@ -0,0 +1,85 @@
//
// MIT license
// Copyright (C) 2024 Intel Corporation
// SPDX-License-Identifier: MIT
//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
/***************************************************************************
*
* Copyright (C) Codeplay Software Ltd.
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM
* Exceptions. See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
**************************************************************************/
#pragma once
#include <sycl/sycl.hpp>
namespace dpct {
template <typename T,
sycl::access::address_space addressSpace =
sycl::access::address_space::global_space,
sycl::memory_order memoryOrder = sycl::memory_order::relaxed,
sycl::memory_scope memoryScope = sycl::memory_scope::device>
inline T atomic_fetch_add(T *addr, T operand) {
auto atm =
sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(addr[0]);
return atm.fetch_add(operand);
}
template <sycl::access::address_space addressSpace =
sycl::access::address_space::global_space,
sycl::memory_order memoryOrder = sycl::memory_order::relaxed,
sycl::memory_scope memoryScope = sycl::memory_scope::device,
typename T1, typename T2>
inline T1 atomic_fetch_add(T1 *addr, T2 operand) {
auto atm =
sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(addr[0]);
return atm.fetch_add(operand);
}
template <typename T, sycl::access::address_space addressSpace =
sycl::access::address_space::global_space>
inline T atomic_fetch_add(T *addr, T operand,
sycl::memory_order memoryOrder) {
switch (memoryOrder) {
case sycl::memory_order::relaxed:
return atomic_fetch_add<T, addressSpace, sycl::memory_order::relaxed,
sycl::memory_scope::device>(addr, operand);
case sycl::memory_order::acq_rel:
return atomic_fetch_add<T, addressSpace, sycl::memory_order::acq_rel,
sycl::memory_scope::device>(addr, operand);
case sycl::memory_order::seq_cst:
return atomic_fetch_add<T, addressSpace, sycl::memory_order::seq_cst,
sycl::memory_scope::device>(addr, operand);
default:
assert(false && "Invalid memory_order for atomics. Valid memory_order for "
"atomics are: sycl::memory_order::relaxed, "
"sycl::memory_order::acq_rel, sycl::memory_order::seq_cst!");
}
}
template <sycl::access::address_space addressSpace =
sycl::access::address_space::global_space,
typename T1, typename T2>
inline T1 atomic_fetch_add(T1 *addr, T2 operand,
sycl::memory_order memoryOrder) {
atomic_fetch_add<T1, addressSpace>(addr, operand, memoryOrder);
}
}

View file

@ -0,0 +1,585 @@
//
// MIT license
// Copyright (C) 2024 Intel Corporation
// SPDX-License-Identifier: MIT
//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
/***************************************************************************
*
* Copyright (C) Codeplay Software Ltd.
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM
* Exceptions. See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
**************************************************************************/
#pragma once
#include <oneapi/mkl.hpp>
#include <sycl/sycl.hpp>
#include "common.hpp"
namespace dpct {
enum class library_data_t : unsigned char {
real_float = 0,
complex_float,
real_double,
complex_double,
real_half,
complex_half,
real_bfloat16,
complex_bfloat16,
real_int4,
complex_int4,
real_uint4,
complex_uint4,
real_int8,
complex_int8,
real_uint8,
complex_uint8,
real_int16,
complex_int16,
real_uint16,
complex_uint16,
real_int32,
complex_int32,
real_uint32,
complex_uint32,
real_int64,
complex_int64,
real_uint64,
complex_uint64,
real_int8_4,
real_int8_32,
real_uint8_4,
library_data_t_size
};
namespace detail {
template <class Ta, class Tb, class Tc, class Ts>
inline void gemm_batch_impl(sycl::queue &q, oneapi::mkl::transpose a_trans,
oneapi::mkl::transpose b_trans, int m, int n, int k,
const void *alpha, const void **a, int lda,
const void **b, int ldb, const void *beta, void **c,
int ldc, int batch_size) {
struct matrix_info_t {
oneapi::mkl::transpose transpose_info[2];
Ts value_info[2];
std::int64_t size_info[3];
std::int64_t ld_info[3];
std::int64_t groupsize_info;
};
Ts alpha_value = dpct::get_value(reinterpret_cast<const Ts *>(alpha), q);
Ts beta_value = dpct::get_value(reinterpret_cast<const Ts *>(beta), q);
matrix_info_t *matrix_info =
(matrix_info_t *)std::malloc(sizeof(matrix_info_t));
matrix_info->transpose_info[0] = a_trans;
matrix_info->transpose_info[1] = b_trans;
matrix_info->value_info[0] = alpha_value;
matrix_info->value_info[1] = beta_value;
matrix_info->size_info[0] = m;
matrix_info->size_info[1] = n;
matrix_info->size_info[2] = k;
matrix_info->ld_info[0] = lda;
matrix_info->ld_info[1] = ldb;
matrix_info->ld_info[2] = ldc;
matrix_info->groupsize_info = batch_size;
sycl::event e = oneapi::mkl::blas::column_major::gemm_batch(
q, matrix_info->transpose_info, matrix_info->transpose_info + 1,
matrix_info->size_info, matrix_info->size_info + 1,
matrix_info->size_info + 2, matrix_info->value_info,
reinterpret_cast<const Ta **>(a), matrix_info->ld_info,
reinterpret_cast<const Tb **>(b), matrix_info->ld_info + 1,
matrix_info->value_info + 1, reinterpret_cast<Tc **>(c),
matrix_info->ld_info + 2, 1, &(matrix_info->groupsize_info));
q.submit([&](sycl::handler &cgh) {
cgh.depends_on(e);
cgh.host_task([=] { std::free(matrix_info); });
});
}
template <class Ta, class Tb, class Tc, class Ts>
inline void gemm_batch_impl(sycl::queue &q, oneapi::mkl::transpose a_trans,
oneapi::mkl::transpose b_trans, int m, int n, int k,
const void *alpha, const void *a, int lda,
long long int stride_a, const void *b, int ldb,
long long int stride_b, const void *beta, void *c,
int ldc, long long int stride_c, int batch_size) {
Ts alpha_value = dpct::get_value(reinterpret_cast<const Ts *>(alpha), q);
Ts beta_value = dpct::get_value(reinterpret_cast<const Ts *>(beta), q);
auto data_a = get_memory<const Ta>(a);
auto data_b = get_memory<const Tb>(b);
auto data_c = get_memory<Tc>(c);
oneapi::mkl::blas::column_major::gemm_batch(
q, a_trans, b_trans, m, n, k, alpha_value, data_a, lda, stride_a,
data_b, ldb, stride_b, beta_value, data_c, ldc, stride_c, batch_size);
}
template <typename ArgT>
inline constexpr std::uint64_t get_type_combination_id(ArgT Val) {
static_assert((unsigned char)library_data_t::library_data_t_size <=
std::numeric_limits<unsigned char>::max() &&
"library_data_t size exceeds limit.");
static_assert(std::is_same_v<ArgT, library_data_t>, "Unsupported ArgT");
return (std::uint64_t)Val;
}
template <typename FirstT, typename... RestT>
inline constexpr std::uint64_t get_type_combination_id(FirstT FirstVal,
RestT... RestVal) {
static_assert((std::uint8_t)library_data_t::library_data_t_size <=
std::numeric_limits<unsigned char>::max() &&
"library_data_t size exceeds limit.");
static_assert(sizeof...(RestT) <= 8 && "Too many parameters");
static_assert(std::is_same_v<FirstT, library_data_t>, "Unsupported FirstT");
return get_type_combination_id(RestVal...) << 8 | ((std::uint64_t)FirstVal);
}
template <class Ta, class Tb, class Tc, class Ts>
inline void gemm_impl(sycl::queue &q, oneapi::mkl::transpose a_trans,
oneapi::mkl::transpose b_trans, int m, int n, int k,
const void *alpha, const void *a, int lda, const void *b,
int ldb, const void *beta, void *c, int ldc) {
Ts alpha_value = dpct::get_value(reinterpret_cast<const Ts *>(alpha), q);
Ts beta_value = dpct::get_value(reinterpret_cast<const Ts *>(beta), q);
auto data_a = get_memory<const Ta>(a);
auto data_b = get_memory<const Tb>(b);
auto data_c = get_memory<Tc>(c);
oneapi::mkl::blas::column_major::gemm(q, a_trans, b_trans, m, n, k,
alpha_value, data_a, lda, data_b, ldb,
beta_value, data_c, ldc);
}
} // namespace detail
inline void gemm(sycl::queue &q, oneapi::mkl::transpose a_trans,
oneapi::mkl::transpose b_trans, int m, int n, int k,
const void *alpha, const void *a, library_data_t a_type,
int lda, const void *b, library_data_t b_type, int ldb,
const void *beta, void *c, library_data_t c_type, int ldc,
library_data_t scaling_type) {
if (scaling_type == library_data_t::real_float &&
c_type == library_data_t::complex_float) {
scaling_type = library_data_t::complex_float;
} else if (scaling_type == library_data_t::real_double &&
c_type == library_data_t::complex_double) {
scaling_type = library_data_t::complex_double;
}
std::uint64_t key =
detail::get_type_combination_id(a_type, b_type, c_type, scaling_type);
switch (key) {
case detail::get_type_combination_id(
library_data_t::real_float, library_data_t::real_float,
library_data_t::real_float, library_data_t::real_float): {
detail::gemm_impl<float, float, float, float>(
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
break;
}
case detail::get_type_combination_id(
library_data_t::real_double, library_data_t::real_double,
library_data_t::real_double, library_data_t::real_double): {
detail::gemm_impl<double, double, double, double>(
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
break;
}
case detail::get_type_combination_id(
library_data_t::complex_float, library_data_t::complex_float,
library_data_t::complex_float, library_data_t::complex_float): {
detail::gemm_impl<std::complex<float>, std::complex<float>,
std::complex<float>, std::complex<float>>(
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
break;
}
case detail::get_type_combination_id(
library_data_t::complex_double, library_data_t::complex_double,
library_data_t::complex_double, library_data_t::complex_double): {
detail::gemm_impl<std::complex<double>, std::complex<double>,
std::complex<double>, std::complex<double>>(
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
break;
}
case detail::get_type_combination_id(
library_data_t::real_half, library_data_t::real_half,
library_data_t::real_half, library_data_t::real_half): {
detail::gemm_impl<sycl::half, sycl::half, sycl::half, sycl::half>(
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
break;
}
#ifdef __INTEL_MKL__
case detail::get_type_combination_id(
library_data_t::real_bfloat16, library_data_t::real_bfloat16,
library_data_t::real_float, library_data_t::real_float): {
detail::gemm_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float,
float>(q, a_trans, b_trans, m, n, k, alpha, a, lda, b,
ldb, beta, c, ldc);
break;
}
case detail::get_type_combination_id(
library_data_t::real_half, library_data_t::real_half,
library_data_t::real_float, library_data_t::real_float): {
detail::gemm_impl<sycl::half, sycl::half, float, float>(
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
break;
}
case detail::get_type_combination_id(
library_data_t::real_half, library_data_t::real_half,
library_data_t::real_half, library_data_t::real_float): {
float alpha_value =
dpct::get_value(reinterpret_cast<const float *>(alpha), q);
float beta_value =
dpct::get_value(reinterpret_cast<const float *>(beta), q);
sycl::half alpha_half(alpha_value);
sycl::half beta_half(beta_value);
detail::gemm_impl<sycl::half, sycl::half, sycl::half, sycl::half>(
q, a_trans, b_trans, m, n, k, &alpha_half, a, lda, b, ldb,
&beta_half, c, ldc);
break;
}
case detail::get_type_combination_id(
library_data_t::real_int8, library_data_t::real_int8,
library_data_t::real_float, library_data_t::real_float): {
detail::gemm_impl<std::int8_t, std::int8_t, float, float>(
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
break;
}
case detail::get_type_combination_id(
library_data_t::real_bfloat16, library_data_t::real_bfloat16,
library_data_t::real_bfloat16, library_data_t::real_float): {
detail::gemm_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16,
oneapi::mkl::bfloat16, float>(
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
break;
}
case detail::get_type_combination_id(
library_data_t::real_int8, library_data_t::real_int8,
library_data_t::real_int32, library_data_t::real_int32): {
float alpha_float =
dpct::get_value(reinterpret_cast<const std::int32_t *>(alpha), q);
float beta_float =
dpct::get_value(reinterpret_cast<const std::int32_t *>(beta), q);
detail::gemm_impl<std::int8_t, std::int8_t, std::int32_t, float>(
q, a_trans, b_trans, m, n, k, &alpha_float, a, lda, b, ldb,
&beta_float, c, ldc);
break;
}
#endif // __INTEL_MKL__
default:
throw std::runtime_error("the combination of data type is unsupported");
}
} // gemm()
/// Computes a batch of matrix-matrix product with general matrices.
/// \param [in] q The queue where the routine should be executed.
/// \param [in] a_trans Specifies the operation applied to A.
/// \param [in] b_trans Specifies the operation applied to B.
/// \param [in] m Specifies the number of rows of the matrix op(A) and of the
/// matrix C. \param [in] n Specifies the number of columns of the matrix op(B)
/// and of the matrix C. \param [in] k Specifies the number of columns of the
/// matrix op(A) and the number of rows of the matrix op(B). \param [in] alpha
/// Scaling factor for the matrix-matrix product. \param [in] a Input matrix A.
/// \param [in] a_type Data type of the matrix A.
/// \param [in] lda Leading dimension of A.
/// \param [in] b Input matrix B.
/// \param [in] b_type Data type of the matrix B.
/// \param [in] ldb Leading dimension of B.
/// \param [in] beta Scaling factor for matrix C.
/// \param [in, out] c Input/Output matrix C.
/// \param [in] c_type Data type of the matrix C.
/// \param [in] ldc Leading dimension of C.
/// \param [in] batch_size Specifies the number of matrix multiply operations to
/// perform. \param [in] scaling_type Data type of the scaling factors.
inline void gemm_batch(sycl::queue &q, oneapi::mkl::transpose a_trans,
oneapi::mkl::transpose b_trans, int m, int n, int k,
const void *alpha, const void *a[],
library_data_t a_type, int lda, const void *b[],
library_data_t b_type, int ldb, const void *beta,
void *c[], library_data_t c_type, int ldc,
int batch_size, library_data_t scaling_type) {
if (scaling_type == library_data_t::real_float &&
c_type == library_data_t::complex_float) {
scaling_type = library_data_t::complex_float;
} else if (scaling_type == library_data_t::real_double &&
c_type == library_data_t::complex_double) {
scaling_type = library_data_t::complex_double;
}
std::uint64_t key =
detail::get_type_combination_id(a_type, b_type, c_type, scaling_type);
switch (key) {
case detail::get_type_combination_id(
library_data_t::real_float, library_data_t::real_float,
library_data_t::real_float, library_data_t::real_float): {
detail::gemm_batch_impl<float, float, float, float>(
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
batch_size);
break;
}
case detail::get_type_combination_id(
library_data_t::real_double, library_data_t::real_double,
library_data_t::real_double, library_data_t::real_double): {
detail::gemm_batch_impl<double, double, double, double>(
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
batch_size);
break;
}
case detail::get_type_combination_id(
library_data_t::complex_float, library_data_t::complex_float,
library_data_t::complex_float, library_data_t::complex_float): {
detail::gemm_batch_impl<std::complex<float>, std::complex<float>,
std::complex<float>, std::complex<float>>(
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
batch_size);
break;
}
case detail::get_type_combination_id(
library_data_t::complex_double, library_data_t::complex_double,
library_data_t::complex_double, library_data_t::complex_double): {
detail::gemm_batch_impl<std::complex<double>, std::complex<double>,
std::complex<double>, std::complex<double>>(
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
batch_size);
break;
}
case detail::get_type_combination_id(
library_data_t::real_half, library_data_t::real_half,
library_data_t::real_half, library_data_t::real_half): {
detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half, sycl::half>(
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
batch_size);
break;
}
#ifdef __INTEL_MKL__
case detail::get_type_combination_id(
library_data_t::real_bfloat16, library_data_t::real_bfloat16,
library_data_t::real_bfloat16, library_data_t::real_float): {
detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16,
oneapi::mkl::bfloat16, float>(
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
batch_size);
break;
}
case detail::get_type_combination_id(
library_data_t::real_bfloat16, library_data_t::real_bfloat16,
library_data_t::real_float, library_data_t::real_float): {
detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16,
float, float>(q, a_trans, b_trans, m, n, k,
alpha, a, lda, b, ldb, beta, c,
ldc, batch_size);
break;
}
case detail::get_type_combination_id(
library_data_t::real_int8, library_data_t::real_int8,
library_data_t::real_int32, library_data_t::real_int32): {
float alpha_float =
dpct::get_value(reinterpret_cast<const std::int32_t *>(alpha), q);
float beta_float =
dpct::get_value(reinterpret_cast<const std::int32_t *>(beta), q);
detail::gemm_batch_impl<std::int8_t, std::int8_t, std::int32_t, float>(
q, a_trans, b_trans, m, n, k, &alpha_float, a, lda, b, ldb,
&beta_float, c, ldc, batch_size);
break;
}
case detail::get_type_combination_id(
library_data_t::real_int8, library_data_t::real_int8,
library_data_t::real_float, library_data_t::real_float): {
detail::gemm_batch_impl<std::int8_t, std::int8_t, float, float>(
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
batch_size);
break;
}
case detail::get_type_combination_id(
library_data_t::real_half, library_data_t::real_half,
library_data_t::real_float, library_data_t::real_float): {
detail::gemm_batch_impl<sycl::half, sycl::half, float, float>(
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
batch_size);
break;
}
#endif
case detail::get_type_combination_id(
library_data_t::real_half, library_data_t::real_half,
library_data_t::real_half, library_data_t::real_float): {
float alpha_value =
dpct::get_value(reinterpret_cast<const float *>(alpha), q);
float beta_value =
dpct::get_value(reinterpret_cast<const float *>(beta), q);
sycl::half alpha_half(alpha_value);
sycl::half beta_half(beta_value);
detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half, sycl::half>(
q, a_trans, b_trans, m, n, k, &alpha_half, a, lda, b, ldb,
&beta_half, c, ldc, batch_size);
break;
}
default:
throw std::runtime_error("the combination of data type is unsupported");
}
}
/// Computes a batch of matrix-matrix product with general matrices.
/// \param [in] q The queue where the routine should be executed.
/// \param [in] a_trans Specifies the operation applied to A.
/// \param [in] b_trans Specifies the operation applied to B.
/// \param [in] m Specifies the number of rows of the matrix op(A) and of the
/// matrix C. \param [in] n Specifies the number of columns of the matrix op(B)
/// and of the matrix C. \param [in] k Specifies the number of columns of the
/// matrix op(A) and the number of rows of the matrix op(B). \param [in] alpha
/// Scaling factor for the matrix-matrix product. \param [in] a Input matrix A.
/// \param [in] a_type Data type of the matrix A.
/// \param [in] lda Leading dimension of A.
/// \param [in] stride_a Stride between the different A matrices.
/// \param [in] b Input matrix B.
/// \param [in] b_type Data type of the matrix B.
/// \param [in] ldb Leading dimension of B.
/// \param [in] stride_b Stride between the different B matrices.
/// \param [in] beta Scaling factor for matrix C.
/// \param [in, out] c Input/Output matrix C.
/// \param [in] c_type Data type of the matrix C.
/// \param [in] ldc Leading dimension of C.
/// \param [in] stride_c Stride between the different C matrices.
/// \param [in] batch_size Specifies the number of matrix multiply operations to
/// perform. \param [in] scaling_type Data type of the scaling factors.
inline void gemm_batch(sycl::queue &q, oneapi::mkl::transpose a_trans,
oneapi::mkl::transpose b_trans, int m, int n, int k,
const void *alpha, const void *a, library_data_t a_type,
int lda, long long int stride_a, const void *b,
library_data_t b_type, int ldb, long long int stride_b,
const void *beta, void *c, library_data_t c_type,
int ldc, long long int stride_c, int batch_size,
library_data_t scaling_type) {
if (scaling_type == library_data_t::real_float &&
c_type == library_data_t::complex_float) {
scaling_type = library_data_t::complex_float;
} else if (scaling_type == library_data_t::real_double &&
c_type == library_data_t::complex_double) {
scaling_type = library_data_t::complex_double;
}
std::uint64_t key =
detail::get_type_combination_id(a_type, b_type, c_type, scaling_type);
switch (key) {
case detail::get_type_combination_id(
library_data_t::real_float, library_data_t::real_float,
library_data_t::real_float, library_data_t::real_float): {
detail::gemm_batch_impl<float, float, float, float>(
q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb,
stride_b, beta, c, ldc, stride_c, batch_size);
break;
}
case detail::get_type_combination_id(
library_data_t::real_double, library_data_t::real_double,
library_data_t::real_double, library_data_t::real_double): {
detail::gemm_batch_impl<double, double, double, double>(
q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb,
stride_b, beta, c, ldc, stride_c, batch_size);
break;
}
case detail::get_type_combination_id(
library_data_t::complex_float, library_data_t::complex_float,
library_data_t::complex_float, library_data_t::complex_float): {
detail::gemm_batch_impl<std::complex<float>, std::complex<float>,
std::complex<float>, std::complex<float>>(
q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb,
stride_b, beta, c, ldc, stride_c, batch_size);
break;
}
case detail::get_type_combination_id(
library_data_t::complex_double, library_data_t::complex_double,
library_data_t::complex_double, library_data_t::complex_double): {
detail::gemm_batch_impl<std::complex<double>, std::complex<double>,
std::complex<double>, std::complex<double>>(
q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb,
stride_b, beta, c, ldc, stride_c, batch_size);
break;
}
case detail::get_type_combination_id(
library_data_t::real_half, library_data_t::real_half,
library_data_t::real_half, library_data_t::real_half): {
detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half, sycl::half>(
q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb,
stride_b, beta, c, ldc, stride_c, batch_size);
break;
}
#ifdef __INTEL_MKL__
case detail::get_type_combination_id(
library_data_t::real_bfloat16, library_data_t::real_bfloat16,
library_data_t::real_bfloat16, library_data_t::real_float): {
detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16,
oneapi::mkl::bfloat16, float>(
q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb,
stride_b, beta, c, ldc, stride_c, batch_size);
break;
}
case detail::get_type_combination_id(
library_data_t::real_bfloat16, library_data_t::real_bfloat16,
library_data_t::real_float, library_data_t::real_float): {
detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16,
float, float>(
q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb,
stride_b, beta, c, ldc, stride_c, batch_size);
break;
}
case detail::get_type_combination_id(
library_data_t::real_int8, library_data_t::real_int8,
library_data_t::real_int32, library_data_t::real_int32): {
detail::gemm_batch_impl<std::int8_t, std::int8_t, std::int32_t,
std::int32_t>(
q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb,
stride_b, beta, c, ldc, stride_c, batch_size);
break;
}
case detail::get_type_combination_id(
library_data_t::real_int8, library_data_t::real_int8,
library_data_t::real_float, library_data_t::real_float): {
detail::gemm_batch_impl<std::int8_t, std::int8_t, float, float>(
q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb,
stride_b, beta, c, ldc, stride_c, batch_size);
break;
}
case detail::get_type_combination_id(
library_data_t::real_half, library_data_t::real_half,
library_data_t::real_float, library_data_t::real_float): {
detail::gemm_batch_impl<sycl::half, sycl::half, float, float>(
q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb,
stride_b, beta, c, ldc, stride_c, batch_size);
break;
}
#endif
case detail::get_type_combination_id(
library_data_t::real_half, library_data_t::real_half,
library_data_t::real_half, library_data_t::real_float): {
float alpha_value =
dpct::get_value(reinterpret_cast<const float *>(alpha), q);
float beta_value =
dpct::get_value(reinterpret_cast<const float *>(beta), q);
sycl::half alpha_half(alpha_value);
sycl::half beta_half(beta_value);
detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half, sycl::half>(
q, a_trans, b_trans, m, n, k, &alpha_half, a, lda, stride_a, b, ldb,
stride_b, &beta_half, c, ldc, stride_c, batch_size);
break;
}
default:
throw std::runtime_error("the combination of data type is unsupported");
}
}
} // namespace dpct

View file

@ -0,0 +1,65 @@
//
// MIT license
// Copyright (C) 2024 Intel Corporation
// SPDX-License-Identifier: MIT
//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
/***************************************************************************
*
* Copyright (C) Codeplay Software Ltd.
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM
* Exceptions. See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
**************************************************************************/
#pragma once
#include <complex>
#include <sycl/sycl.hpp>
#include "memory.hpp"
namespace dpct {
namespace detail {
template <typename T> struct DataType { using T2 = T; };
template <typename T> struct DataType<sycl::vec<T, 2>> {
using T2 = std::complex<T>;
};
template <typename T>
inline typename DataType<T>::T2 get_value(const T *s, sycl::queue &q) {
using Ty = typename DataType<T>::T2;
Ty s_h;
if (get_pointer_attribute(q, s) == pointer_access_attribute::device_only) {
detail::dpct_memcpy(q, (void *)&s_h, (const void *)s, sizeof(T),
device_to_host)
.wait();
} else {
s_h = *reinterpret_cast<const Ty *>(s);
}
return s_h;
}
} // namespace detail
template <typename T> inline auto get_value(const T *s, sycl::queue &q) {
return detail::get_value(s, q);
}
} // namespace dpct

View file

@ -0,0 +1,61 @@
//
// MIT license
// Copyright (C) 2024 Intel Corporation
// SPDX-License-Identifier: MIT
//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
/***************************************************************************
*
* Copyright (C) Codeplay Software Ltd.
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM
* Exceptions. See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
**************************************************************************/
#pragma once
#define DPCT_COMPATIBILITY_TEMP (900)
#if defined(_MSC_VER)
#define __dpct_align__(n) __declspec(align(n))
#define __dpct_inline__ __forceinline
#else
#define __dpct_align__(n) __attribute__((aligned(n)))
#define __dpct_inline__ __inline__ __attribute__((always_inline))
#endif
#if defined(_MSC_VER)
#define __dpct_noinline__ __declspec(noinline)
#else
#define __dpct_noinline__ __attribute__((noinline))
#endif
namespace dpct {
enum error_code { success = 0, default_error = 999 };
}
#define CHECK_TRY_ERROR(expr) \
[&]() { \
try { \
expr; \
return dpct::success; \
} catch (std::exception const &e) { \
std::cerr << e.what() << "\nException caught at file:" << __FILE__ \
<< ", line:" << __LINE__ << ", func:" << __func__ \
<< std::endl; \
return dpct::default_error; \
} \
}()

View file

@ -0,0 +1,856 @@
//
// MIT license
// Copyright (C) 2024 Intel Corporation
// SPDX-License-Identifier: MIT
//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
/***************************************************************************
*
* Copyright (C) Codeplay Software Ltd.
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM
* Exceptions. See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
**************************************************************************/
#pragma once
#include <algorithm>
#include <cstring>
#include <initializer_list>
#include <iostream>
#include <map>
#include <mutex>
#include <vector>
#if defined(__linux__)
#include <sys/syscall.h>
#include <unistd.h>
#endif
#if defined(_WIN64)
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <windows.h>
#endif
#include <sycl/sycl.hpp>
#include "ggml.h"
#include "helper.hpp"
namespace dpct {
typedef sycl::queue *queue_ptr;
typedef sycl::event *event_ptr;
typedef char *device_ptr;
/// SYCL default exception handler
inline auto exception_handler = [](sycl::exception_list exceptions) {
for (std::exception_ptr const &e : exceptions) {
try {
std::rethrow_exception(e);
} catch (sycl::exception const &e) {
std::cerr << "Caught asynchronous SYCL exception:" << std::endl
<< e.what() << std::endl
<< "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
}
}
};
namespace detail {
static void get_version(const sycl::device &dev, int &major, int &minor) {
// Version string has the following format:
// a. OpenCL<space><major.minor><space><vendor-specific-information>
// b. <major.minor>
// c. <AmdGcnArchName> e.g gfx1030
std::string ver;
ver = dev.get_info<sycl::info::device::version>();
std::string::size_type i = 0;
while (i < ver.size()) {
if (isdigit(ver[i]))
break;
i++;
}
major = std::stoi(&(ver[i]));
while (i < ver.size()) {
if (ver[i] == '.')
break;
i++;
}
if (i < ver.size()) {
// a. and b.
i++;
minor = std::stoi(&(ver[i]));
} else {
// c.
minor = 0;
}
}
} // namespace detail
class device_info {
public:
// get interface
const char *get_name() const { return _name; }
char *get_name() { return _name; }
template <
typename WorkItemSizesTy = sycl::range<3>,
std::enable_if_t<std::is_same_v<WorkItemSizesTy, sycl::range<3>> ||
std::is_same_v<WorkItemSizesTy, int *>,
int> = 0>
auto get_max_work_item_sizes() const {
if constexpr (std::is_same_v<WorkItemSizesTy, sycl::range<3>>)
return sycl::range<3>(_max_work_item_sizes_i[0],
_max_work_item_sizes_i[1],
_max_work_item_sizes_i[2]);
else {
return _max_work_item_sizes_i;
}
}
template <
typename WorkItemSizesTy = sycl::range<3>,
std::enable_if_t<std::is_same_v<WorkItemSizesTy, sycl::range<3>> ||
std::is_same_v<WorkItemSizesTy, int *>,
int> = 0>
auto get_max_work_item_sizes() {
if constexpr (std::is_same_v<WorkItemSizesTy, sycl::range<3>>)
return sycl::range<3>(_max_work_item_sizes_i[0],
_max_work_item_sizes_i[1],
_max_work_item_sizes_i[2]);
else {
return _max_work_item_sizes_i;
}
}
bool get_host_unified_memory() const { return _host_unified_memory; }
int get_major_version() const { return _major; }
int get_minor_version() const { return _minor; }
int get_integrated() const { return _integrated; }
int get_max_clock_frequency() const { return _frequency; }
int get_max_compute_units() const { return _max_compute_units; }
int get_max_work_group_size() const { return _max_work_group_size; }
int get_max_sub_group_size() const { return _max_sub_group_size; }
int get_max_work_items_per_compute_unit() const {
return _max_work_items_per_compute_unit;
}
int get_max_register_size_per_work_group() const {
return _max_register_size_per_work_group;
}
template <typename NDRangeSizeTy = size_t *,
std::enable_if_t<std::is_same_v<NDRangeSizeTy, size_t *> ||
std::is_same_v<NDRangeSizeTy, int *>,
int> = 0>
auto get_max_nd_range_size() const {
if constexpr (std::is_same_v<NDRangeSizeTy, size_t *>)
return _max_nd_range_size;
else
return _max_nd_range_size_i;
}
template <typename NDRangeSizeTy = size_t *,
std::enable_if_t<std::is_same_v<NDRangeSizeTy, size_t *> ||
std::is_same_v<NDRangeSizeTy, int *>,
int> = 0>
auto get_max_nd_range_size() {
if constexpr (std::is_same_v<NDRangeSizeTy, size_t *>)
return _max_nd_range_size;
else
return _max_nd_range_size_i;
}
size_t get_global_mem_size() const { return _global_mem_size; }
size_t get_local_mem_size() const { return _local_mem_size; }
size_t get_max_mem_alloc_size() const { return _max_mem_alloc_size; }
/// Returns the maximum clock rate of device's global memory in kHz. If
/// compiler does not support this API then returns default value 3200000
/// kHz.
unsigned int get_memory_clock_rate() const { return _memory_clock_rate; }
/// Returns the maximum bus width between device and memory in bits. If
/// compiler does not support this API then returns default value 64 bits.
unsigned int get_memory_bus_width() const { return _memory_bus_width; }
uint32_t get_device_id() const { return _device_id; }
std::array<unsigned char, 16> get_uuid() const { return _uuid; }
/// Returns global memory cache size in bytes.
unsigned int get_global_mem_cache_size() const {
return _global_mem_cache_size;
}
// set interface
void set_name(const char *name) {
size_t length = strlen(name);
if (length < 256) {
std::memcpy(_name, name, length + 1);
} else {
std::memcpy(_name, name, 255);
_name[255] = '\0';
}
}
void set_max_work_item_sizes(const sycl::range<3> max_work_item_sizes) {
for (int i = 0; i < 3; ++i)
_max_work_item_sizes_i[i] = max_work_item_sizes[i];
}
[[deprecated]] void
set_max_work_item_sizes(const sycl::id<3> max_work_item_sizes) {
for (int i = 0; i < 3; ++i) {
_max_work_item_sizes_i[i] = max_work_item_sizes[i];
}
}
void set_host_unified_memory(bool host_unified_memory) {
_host_unified_memory = host_unified_memory;
}
void set_major_version(int major) { _major = major; }
void set_minor_version(int minor) { _minor = minor; }
void set_integrated(int integrated) { _integrated = integrated; }
void set_max_clock_frequency(int frequency) { _frequency = frequency; }
void set_max_compute_units(int max_compute_units) {
_max_compute_units = max_compute_units;
}
void set_global_mem_size(size_t global_mem_size) {
_global_mem_size = global_mem_size;
}
void set_local_mem_size(size_t local_mem_size) {
_local_mem_size = local_mem_size;
}
void set_max_mem_alloc_size(size_t max_mem_alloc_size) {
_max_mem_alloc_size = max_mem_alloc_size;
}
void set_max_work_group_size(int max_work_group_size) {
_max_work_group_size = max_work_group_size;
}
void set_max_sub_group_size(int max_sub_group_size) {
_max_sub_group_size = max_sub_group_size;
}
void
set_max_work_items_per_compute_unit(int max_work_items_per_compute_unit) {
_max_work_items_per_compute_unit = max_work_items_per_compute_unit;
}
void set_max_nd_range_size(int max_nd_range_size[]) {
for (int i = 0; i < 3; i++) {
_max_nd_range_size[i] = max_nd_range_size[i];
_max_nd_range_size_i[i] = max_nd_range_size[i];
}
}
void set_memory_clock_rate(unsigned int memory_clock_rate) {
_memory_clock_rate = memory_clock_rate;
}
void set_memory_bus_width(unsigned int memory_bus_width) {
_memory_bus_width = memory_bus_width;
}
void
set_max_register_size_per_work_group(int max_register_size_per_work_group) {
_max_register_size_per_work_group = max_register_size_per_work_group;
}
void set_device_id(uint32_t device_id) { _device_id = device_id; }
void set_uuid(std::array<unsigned char, 16> uuid) {
_uuid = std::move(uuid);
}
void set_global_mem_cache_size(unsigned int global_mem_cache_size) {
_global_mem_cache_size = global_mem_cache_size;
}
private:
char _name[256];
int _max_work_item_sizes_i[3];
bool _host_unified_memory = false;
int _major;
int _minor;
int _integrated = 0;
int _frequency;
// Set estimated value 3200000 kHz as default value.
unsigned int _memory_clock_rate = 3200000;
// Set estimated value 64 bits as default value.
unsigned int _memory_bus_width = 64;
unsigned int _global_mem_cache_size;
int _max_compute_units;
int _max_work_group_size;
int _max_sub_group_size;
int _max_work_items_per_compute_unit;
int _max_register_size_per_work_group;
size_t _global_mem_size;
size_t _local_mem_size;
size_t _max_mem_alloc_size;
size_t _max_nd_range_size[3];
int _max_nd_range_size_i[3];
uint32_t _device_id;
std::array<unsigned char, 16> _uuid;
};
static int get_major_version(const sycl::device &dev) {
int major, minor;
detail::get_version(dev, major, minor);
return major;
}
static int get_minor_version(const sycl::device &dev) {
int major, minor;
detail::get_version(dev, major, minor);
return minor;
}
static void get_device_info(device_info &out, const sycl::device &dev) {
device_info prop;
prop.set_name(dev.get_info<sycl::info::device::name>().c_str());
int major, minor;
detail::get_version(dev, major, minor);
prop.set_major_version(major);
prop.set_minor_version(minor);
prop.set_max_work_item_sizes(
#if (__SYCL_COMPILER_VERSION && __SYCL_COMPILER_VERSION < 20220902)
// oneAPI DPC++ compiler older than 2022/09/02, where
// max_work_item_sizes is an enum class element
dev.get_info<sycl::info::device::max_work_item_sizes>());
#else
// SYCL 2020-conformant code, max_work_item_sizes is a struct templated
// by an int
dev.get_info<sycl::info::device::max_work_item_sizes<3>>());
#endif
prop.set_host_unified_memory(dev.has(sycl::aspect::usm_host_allocations));
prop.set_max_clock_frequency(
dev.get_info<sycl::info::device::max_clock_frequency>() * 1000);
prop.set_max_compute_units(
dev.get_info<sycl::info::device::max_compute_units>());
prop.set_max_work_group_size(
dev.get_info<sycl::info::device::max_work_group_size>());
prop.set_global_mem_size(
dev.get_info<sycl::info::device::global_mem_size>());
prop.set_local_mem_size(dev.get_info<sycl::info::device::local_mem_size>());
prop.set_max_mem_alloc_size(
dev.get_info<sycl::info::device::max_mem_alloc_size>());
#if (defined(SYCL_EXT_INTEL_DEVICE_INFO) && SYCL_EXT_INTEL_DEVICE_INFO >= 6)
if (dev.has(sycl::aspect::ext_intel_memory_clock_rate)) {
unsigned int tmp =
dev.get_info<sycl::ext::intel::info::device::memory_clock_rate>();
if (tmp != 0)
prop.set_memory_clock_rate(1000 * tmp);
}
if (dev.has(sycl::aspect::ext_intel_memory_bus_width)) {
prop.set_memory_bus_width(
dev.get_info<sycl::ext::intel::info::device::memory_bus_width>());
}
if (dev.has(sycl::aspect::ext_intel_device_id)) {
prop.set_device_id(
dev.get_info<sycl::ext::intel::info::device::device_id>());
}
if (dev.has(sycl::aspect::ext_intel_device_info_uuid)) {
prop.set_uuid(dev.get_info<sycl::ext::intel::info::device::uuid>());
}
#elif defined(_MSC_VER) && !defined(__clang__)
#pragma message("get_device_info: querying memory_clock_rate and \
memory_bus_width are not supported by the compiler used. \
Use 3200000 kHz as memory_clock_rate default value. \
Use 64 bits as memory_bus_width default value.")
#else
#warning "get_device_info: querying memory_clock_rate and \
memory_bus_width are not supported by the compiler used. \
Use 3200000 kHz as memory_clock_rate default value. \
Use 64 bits as memory_bus_width default value."
#endif
size_t max_sub_group_size = 1;
std::vector<size_t> sub_group_sizes =
dev.get_info<sycl::info::device::sub_group_sizes>();
for (const auto &sub_group_size : sub_group_sizes) {
if (max_sub_group_size < sub_group_size)
max_sub_group_size = sub_group_size;
}
prop.set_max_sub_group_size(max_sub_group_size);
prop.set_max_work_items_per_compute_unit(
dev.get_info<sycl::info::device::max_work_group_size>());
int max_nd_range_size[] = {0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF};
prop.set_max_nd_range_size(max_nd_range_size);
// Estimates max register size per work group, feel free to update the value
// according to device properties.
prop.set_max_register_size_per_work_group(65536);
prop.set_global_mem_cache_size(
dev.get_info<sycl::info::device::global_mem_cache_size>());
out = prop;
}
/// dpct device extension
class device_ext : public sycl::device {
typedef std::mutex mutex_type;
public:
device_ext() : sycl::device() {}
~device_ext() {
std::lock_guard<mutex_type> lock(m_mutex);
clear_queues();
}
device_ext(const sycl::device &base) : sycl::device(base) {
std::lock_guard<mutex_type> lock(m_mutex);
init_queues();
}
int is_native_atomic_supported() { return 0; }
int get_major_version() const { return dpct::get_major_version(*this); }
int get_minor_version() const { return dpct::get_minor_version(*this); }
int get_max_compute_units() const {
return get_device_info().get_max_compute_units();
}
/// Return the maximum clock frequency of this device in KHz.
int get_max_clock_frequency() const {
return get_device_info().get_max_clock_frequency();
}
int get_integrated() const { return get_device_info().get_integrated(); }
int get_max_sub_group_size() const {
return get_device_info().get_max_sub_group_size();
}
int get_max_register_size_per_work_group() const {
return get_device_info().get_max_register_size_per_work_group();
}
int get_max_work_group_size() const {
return get_device_info().get_max_work_group_size();
}
int get_mem_base_addr_align() const {
return get_info<sycl::info::device::mem_base_addr_align>();
}
size_t get_global_mem_size() const {
return get_device_info().get_global_mem_size();
}
size_t get_max_mem_alloc_size() const {
return get_device_info().get_max_mem_alloc_size();
}
/// Get the number of bytes of free and total memory on the SYCL device.
/// \param [out] free_memory The number of bytes of free memory on the
/// SYCL device. \param [out] total_memory The number of bytes of total
/// memory on the SYCL device.
void get_memory_info(size_t &free_memory, size_t &total_memory) {
total_memory = get_device_info().get_global_mem_size();
const char *warning_info =
"get_memory_info: [warning] ext_intel_free_memory is not "
"supported (export/set ZES_ENABLE_SYSMAN=1 to support), "
"use total memory as free memory";
#if (defined(__SYCL_COMPILER_VERSION) && __SYCL_COMPILER_VERSION >= 20221105)
if (!has(sycl::aspect::ext_intel_free_memory)) {
std::cerr << warning_info << std::endl;
free_memory = total_memory;
} else {
free_memory =
get_info<sycl::ext::intel::info::device::free_memory>();
}
#else
std::cerr << warning_info << std::endl;
free_memory = total_memory;
#if defined(_MSC_VER) && !defined(__clang__)
#pragma message("Querying the number of bytes of free memory is not supported")
#else
#warning "Querying the number of bytes of free memory is not supported"
#endif
#endif
}
void get_device_info(device_info &out) const {
dpct::get_device_info(out, *this);
}
device_info get_device_info() const {
device_info prop;
dpct::get_device_info(prop, *this);
return prop;
}
void reset() {
std::lock_guard<mutex_type> lock(m_mutex);
clear_queues();
init_queues();
}
sycl::queue &in_order_queue() { return _q_in_order; }
sycl::queue &out_of_order_queue() { return _q_out_of_order; }
sycl::queue &default_queue() { return in_order_queue(); }
void queues_wait_and_throw() {
std::unique_lock<mutex_type> lock(m_mutex);
lock.unlock();
for (auto &q : _queues) {
q.wait_and_throw();
}
// Guard the destruct of current_queues to make sure the ref count is
// safe.
lock.lock();
}
sycl::queue create_queue(bool enable_exception_handler = false) {
return create_in_order_queue(enable_exception_handler);
}
sycl::queue create_queue(sycl::device device,
bool enable_exception_handler = false) {
return create_in_order_queue(device, enable_exception_handler);
}
sycl::queue create_in_order_queue(bool enable_exception_handler = false) {
std::lock_guard<mutex_type> lock(m_mutex);
return create_queue_impl(enable_exception_handler,
sycl::property::queue::in_order());
}
sycl::queue create_in_order_queue(sycl::device device,
bool enable_exception_handler = false) {
std::lock_guard<mutex_type> lock(m_mutex);
return create_queue_impl(device, enable_exception_handler,
sycl::property::queue::in_order());
}
sycl::queue
create_out_of_order_queue(bool enable_exception_handler = false) {
std::lock_guard<mutex_type> lock(m_mutex);
return create_queue_impl(enable_exception_handler);
}
void destroy_queue(sycl::queue queue) {
std::lock_guard<mutex_type> lock(m_mutex);
_queues.clear();
}
void set_saved_queue(sycl::queue q) {
std::lock_guard<mutex_type> lock(m_mutex);
_saved_queue = q;
}
sycl::queue get_saved_queue() const {
std::lock_guard<mutex_type> lock(m_mutex);
return _saved_queue;
}
private:
void clear_queues() { _queues.clear(); }
void init_queues() {
_q_in_order =
create_queue_impl(true, sycl::property::queue::in_order());
_q_out_of_order = create_queue_impl(true);
_saved_queue = default_queue();
}
/// Caller should acquire resource \p m_mutex before calling this
/// function.
template <class... Properties>
sycl::queue create_queue_impl(bool enable_exception_handler,
Properties... properties) {
sycl::async_handler eh = {};
if (enable_exception_handler) {
eh = exception_handler;
}
auto q = sycl::queue(*this, eh,
sycl::property_list(
#ifdef DPCT_PROFILING_ENABLED
sycl::property::queue::enable_profiling(),
#endif
properties...));
_queues.push_back(q);
return _queues.back();
}
template <class... Properties>
sycl::queue create_queue_impl(sycl::device device,
bool enable_exception_handler,
Properties... properties) {
sycl::async_handler eh = {};
if (enable_exception_handler) {
eh = exception_handler;
}
_queues.push_back(
sycl::queue(device, eh,
sycl::property_list(
#ifdef DPCT_PROFILING_ENABLED
sycl::property::queue::enable_profiling(),
#endif
properties...)));
return _queues.back();
}
void get_version(int &major, int &minor) const {
detail::get_version(*this, major, minor);
}
sycl::queue _q_in_order, _q_out_of_order;
sycl::queue _saved_queue;
std::vector<sycl::queue> _queues;
mutable mutex_type m_mutex;
};
static inline unsigned int get_tid() {
#if defined(__linux__)
return syscall(SYS_gettid);
#elif defined(_WIN64)
return GetCurrentThreadId();
#else
#error "Only support Windows and Linux."
#endif
}
/// device manager
class dev_mgr {
public:
device_ext &current_device() {
unsigned int dev_id = current_device_id();
check_id(dev_id);
return *_devs[dev_id];
}
device_ext &cpu_device() const {
std::lock_guard<std::recursive_mutex> lock(m_mutex);
if (_cpu_device == -1) {
throw std::runtime_error("no valid cpu device");
} else {
return *_devs[_cpu_device];
}
}
device_ext &get_device(unsigned int id) const {
std::lock_guard<std::recursive_mutex> lock(m_mutex);
check_id(id);
return *_devs[id];
}
unsigned int current_device_id() const {
std::lock_guard<std::recursive_mutex> lock(m_mutex);
auto it = _thread2dev_map.find(get_tid());
if (it != _thread2dev_map.end())
return it->second;
return DEFAULT_DEVICE_ID;
}
/// Select device with a device ID.
/// \param [in] id The id of the device which can
/// be obtained through get_device_id(const sycl::device).
void select_device(unsigned int id) {
std::lock_guard<std::recursive_mutex> lock(m_mutex);
check_id(id);
_thread2dev_map[get_tid()] = id;
}
unsigned int device_count() { return _devs.size(); }
unsigned int get_device_id(const sycl::device &dev) {
unsigned int id = 0;
for (auto dev_item : _devs) {
if (*dev_item == dev) {
break;
}
id++;
}
return id;
}
template <class DeviceSelector>
std::enable_if_t<
std::is_invocable_r_v<int, DeviceSelector, const sycl::device &>>
select_device(const DeviceSelector &selector = sycl::gpu_selector_v) {
sycl::device selected_device = sycl::device(selector);
unsigned int selected_device_id = get_device_id(selected_device);
select_device(selected_device_id);
}
/// Returns the instance of device manager singleton.
static dev_mgr &instance() {
static dev_mgr d_m;
return d_m;
}
dev_mgr(const dev_mgr &) = delete;
dev_mgr &operator=(const dev_mgr &) = delete;
dev_mgr(dev_mgr &&) = delete;
dev_mgr &operator=(dev_mgr &&) = delete;
private:
mutable std::recursive_mutex m_mutex;
static bool compare_dev(sycl::device &device1, sycl::device &device2) {
sycl::backend backend1 = device1.get_backend();
sycl::backend backend2 = device2.get_backend();
// levelzero backends always come first
if (backend1 == sycl::backend::ext_oneapi_level_zero &&
backend2 != sycl::backend::ext_oneapi_level_zero)
return true;
if (backend1 != sycl::backend::ext_oneapi_level_zero &&
backend2 == sycl::backend::ext_oneapi_level_zero)
return false;
dpct::device_info prop1;
dpct::get_device_info(prop1, device1);
dpct::device_info prop2;
dpct::get_device_info(prop2, device2);
return prop1.get_max_compute_units() > prop2.get_max_compute_units();
}
static int convert_backend_index(std::string &backend) {
if (backend == "ext_oneapi_level_zero:gpu")
return 0;
if (backend == "opencl:gpu")
return 1;
if (backend == "ext_oneapi_cuda:gpu")
return 2;
if (backend == "ext_oneapi_hip:gpu")
return 3;
if (backend == "opencl:cpu")
return 4;
if (backend == "opencl:acc")
return 5;
printf("convert_backend_index: can't handle backend=%s\n",
backend.c_str());
GGML_ASSERT(false);
}
static bool compare_backend(std::string &backend1, std::string &backend2) {
return convert_backend_index(backend1) <
convert_backend_index(backend2);
}
dev_mgr() {
sycl::device default_device = sycl::device(sycl::default_selector_v);
_devs.push_back(std::make_shared<device_ext>(default_device));
std::vector<sycl::device> sycl_all_devs;
// Collect other devices except for the default device.
if (default_device.is_cpu())
_cpu_device = 0;
auto Platforms = sycl::platform::get_platforms();
// Keep track of the number of devices per backend
std::map<sycl::backend, size_t> DeviceNums;
std::map<std::string, std::vector<sycl::device>> backend_devices;
while (!Platforms.empty()) {
auto Platform = Platforms.back();
Platforms.pop_back();
auto devices = Platform.get_devices();
std::string backend_type = get_device_backend_and_type(devices[0]);
for (const auto &device : devices) {
backend_devices[backend_type].push_back(device);
}
}
std::vector<std::string> keys;
for (auto it = backend_devices.begin(); it != backend_devices.end();
++it) {
keys.push_back(it->first);
}
std::sort(keys.begin(), keys.end(), compare_backend);
for (auto &key : keys) {
std::vector<sycl::device> devs = backend_devices[key];
std::sort(devs.begin(), devs.end(), compare_dev);
for (const auto &dev : devs) {
sycl_all_devs.push_back(dev);
}
}
for (auto &dev : sycl_all_devs) {
if (dev == default_device) {
continue;
}
_devs.push_back(std::make_shared<device_ext>(dev));
if (_cpu_device == -1 && dev.is_cpu()) {
_cpu_device = _devs.size() - 1;
}
}
}
void check_id(unsigned int id) const {
if (id >= _devs.size()) {
throw std::runtime_error("invalid device id");
}
}
std::vector<std::shared_ptr<device_ext>> _devs;
/// DEFAULT_DEVICE_ID is used, if current_device_id() can not find current
/// thread id in _thread2dev_map, which means default device should be used
/// for the current thread.
const unsigned int DEFAULT_DEVICE_ID = 0;
/// thread-id to device-id map.
std::map<unsigned int, unsigned int> _thread2dev_map;
int _cpu_device = -1;
};
static void destroy_event(event_ptr event) { delete event; }
static inline sycl::queue &get_default_queue() {
return dev_mgr::instance().current_device().default_queue();
}
static inline unsigned int select_device(unsigned int id) {
dev_mgr::instance().select_device(id);
return id;
}
inline void
has_capability_or_fail(const sycl::device &dev,
const std::initializer_list<sycl::aspect> &props) {
for (const auto &it : props) {
if (dev.has(it))
continue;
switch (it) {
case sycl::aspect::fp64:
throw std::runtime_error("'double' is not supported in '" +
dev.get_info<sycl::info::device::name>() +
"' device");
break;
case sycl::aspect::fp16:
throw std::runtime_error("'half' is not supported in '" +
dev.get_info<sycl::info::device::name>() +
"' device");
break;
default:
#define __SYCL_ASPECT(ASPECT, ID) \
case sycl::aspect::ASPECT: \
return #ASPECT;
#define __SYCL_ASPECT_DEPRECATED(ASPECT, ID, MESSAGE) __SYCL_ASPECT(ASPECT, ID)
#define __SYCL_ASPECT_DEPRECATED_ALIAS(ASPECT, ID, MESSAGE)
auto getAspectNameStr = [](sycl::aspect AspectNum) -> std::string {
switch (AspectNum) {
#include <sycl/info/aspects.def>
#include <sycl/info/aspects_deprecated.def>
default:
return "unknown aspect";
}
};
#undef __SYCL_ASPECT_DEPRECATED_ALIAS
#undef __SYCL_ASPECT_DEPRECATED
#undef __SYCL_ASPECT
throw std::runtime_error(
"'" + getAspectNameStr(it) + "' is not supported in '" +
dev.get_info<sycl::info::device::name>() + "' device");
}
break;
}
}
static inline unsigned int get_current_device_id() {
return dev_mgr::instance().current_device_id();
}
static inline device_ext &get_current_device() {
return dev_mgr::instance().current_device();
}
static inline sycl::queue &get_in_order_queue() {
return dev_mgr::instance().current_device().in_order_queue();
}
} // namespace dpct

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,237 @@
//
// MIT license
// Copyright (C) 2024 Intel Corporation
// SPDX-License-Identifier: MIT
//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
/***************************************************************************
*
* Copyright (C) Codeplay Software Ltd.
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM
* Exceptions. See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
**************************************************************************/
#pragma once
#include <cstdint>
#include <type_traits>
#include <sycl/sycl.hpp>
namespace dpct {
namespace detail {
template <typename VecT, class BinaryOperation, class = void>
class vectorized_binary {
public:
inline VecT operator()(VecT a, VecT b, const BinaryOperation binary_op) {
VecT v4;
for (size_t i = 0; i < v4.size(); ++i) {
v4[i] = binary_op(a[i], b[i]);
}
return v4;
}
};
template <typename VecT, class BinaryOperation>
class vectorized_binary<
VecT, BinaryOperation,
std::void_t<std::invoke_result_t<BinaryOperation, VecT, VecT>>> {
public:
inline VecT operator()(VecT a, VecT b, const BinaryOperation binary_op) {
return binary_op(a, b).template as<VecT>();
}
};
} // namespace detail
template <typename T> sycl::vec<T, 4> extract_and_sign_or_zero_extend4(T val) {
return sycl::vec<T, 1>(val)
.template as<sycl::vec<
std::conditional_t<std::is_signed_v<T>, int8_t, uint8_t>, 4>>()
.template convert<T>();
}
template <typename T1, typename T2>
using dot_product_acc_t =
std::conditional_t<std::is_unsigned_v<T1> && std::is_unsigned_v<T2>,
uint32_t, int32_t>;
template <typename T1, typename T2, typename T3>
inline auto dp4a(T1 a, T2 b, T3 c) {
#if defined(__SYCL_DEVICE_ONLY__) && defined(__NVPTX__) && \
defined(__SYCL_CUDA_ARCH__) && __SYCL_CUDA_ARCH__ >= 610
dot_product_acc_t<T1, T2> res;
if constexpr (std::is_same_v<dot_product_acc_t<T1, T2>, uint32_t>) {
asm volatile("dp4a.u32.u32 %0, %1, %2, %3;"
: "=r"(res)
: "r"(a), "r"(b), "r"(c));
} else {
asm volatile("dp4a.s32.s32 %0, %1, %2, %3;"
: "=r"(res)
: "r"(a), "r"(b), "r"(c));
}
return res;
#else
dot_product_acc_t<T1, T2> res = c;
auto va = extract_and_sign_or_zero_extend4(a);
auto vb = extract_and_sign_or_zero_extend4(b);
res += va[0] * vb[0];
res += va[1] * vb[1];
res += va[2] * vb[2];
res += va[3] * vb[3];
return res;
#endif
}
struct sub_sat {
template <typename T> auto operator()(const T x, const T y) const {
return sycl::sub_sat(x, y);
}
};
template <typename S, typename T> inline T vectorized_min(T a, T b) {
sycl::vec<T, 1> v0{a}, v1{b};
auto v2 = v0.template as<S>();
auto v3 = v1.template as<S>();
auto v4 = sycl::min(v2, v3);
v0 = v4.template as<sycl::vec<T, 1>>();
return v0;
}
inline float pow(const float a, const int b) { return sycl::pown(a, b); }
inline double pow(const double a, const int b) { return sycl::pown(a, b); }
inline float pow(const float a, const float b) { return sycl::pow(a, b); }
inline double pow(const double a, const double b) { return sycl::pow(a, b); }
template <typename T, typename U>
inline typename std::enable_if_t<std::is_floating_point_v<T>, T>
pow(const T a, const U b) {
return sycl::pow(a, static_cast<T>(b));
}
template <typename T, typename U>
inline typename std::enable_if_t<!std::is_floating_point_v<T>, double>
pow(const T a, const U b) {
return sycl::pow(static_cast<double>(a), static_cast<double>(b));
}
inline double min(const double a, const float b) {
return sycl::fmin(a, static_cast<double>(b));
}
inline double min(const float a, const double b) {
return sycl::fmin(static_cast<double>(a), b);
}
inline float min(const float a, const float b) { return sycl::fmin(a, b); }
inline double min(const double a, const double b) { return sycl::fmin(a, b); }
inline std::uint32_t min(const std::uint32_t a, const std::int32_t b) {
return sycl::min(a, static_cast<std::uint32_t>(b));
}
inline std::uint32_t min(const std::int32_t a, const std::uint32_t b) {
return sycl::min(static_cast<std::uint32_t>(a), b);
}
inline std::int32_t min(const std::int32_t a, const std::int32_t b) {
return sycl::min(a, b);
}
inline std::uint32_t min(const std::uint32_t a, const std::uint32_t b) {
return sycl::min(a, b);
}
inline std::uint64_t min(const std::uint64_t a, const std::int64_t b) {
return sycl::min(a, static_cast<std::uint64_t>(b));
}
inline std::uint64_t min(const std::int64_t a, const std::uint64_t b) {
return sycl::min(static_cast<std::uint64_t>(a), b);
}
inline std::int64_t min(const std::int64_t a, const std::int64_t b) {
return sycl::min(a, b);
}
inline std::uint64_t min(const std::uint64_t a, const std::uint64_t b) {
return sycl::min(a, b);
}
inline std::uint64_t min(const std::uint64_t a, const std::int32_t b) {
return sycl::min(a, static_cast<std::uint64_t>(b));
}
inline std::uint64_t min(const std::int32_t a, const std::uint64_t b) {
return sycl::min(static_cast<std::uint64_t>(a), b);
}
inline std::uint64_t min(const std::uint64_t a, const std::uint32_t b) {
return sycl::min(a, static_cast<std::uint64_t>(b));
}
inline std::uint64_t min(const std::uint32_t a, const std::uint64_t b) {
return sycl::min(static_cast<std::uint64_t>(a), b);
}
// max function overloads.
// For floating-point types, `float` or `double` arguments are acceptable.
// For integer types, `std::uint32_t`, `std::int32_t`, `std::uint64_t` or
// `std::int64_t` type arguments are acceptable.
inline double max(const double a, const float b) {
return sycl::fmax(a, static_cast<double>(b));
}
inline double max(const float a, const double b) {
return sycl::fmax(static_cast<double>(a), b);
}
inline float max(const float a, const float b) { return sycl::fmax(a, b); }
inline double max(const double a, const double b) { return sycl::fmax(a, b); }
inline std::uint32_t max(const std::uint32_t a, const std::int32_t b) {
return sycl::max(a, static_cast<std::uint32_t>(b));
}
inline std::uint32_t max(const std::int32_t a, const std::uint32_t b) {
return sycl::max(static_cast<std::uint32_t>(a), b);
}
inline std::int32_t max(const std::int32_t a, const std::int32_t b) {
return sycl::max(a, b);
}
inline std::uint32_t max(const std::uint32_t a, const std::uint32_t b) {
return sycl::max(a, b);
}
inline std::uint64_t max(const std::uint64_t a, const std::int64_t b) {
return sycl::max(a, static_cast<std::uint64_t>(b));
}
inline std::uint64_t max(const std::int64_t a, const std::uint64_t b) {
return sycl::max(static_cast<std::uint64_t>(a), b);
}
inline std::int64_t max(const std::int64_t a, const std::int64_t b) {
return sycl::max(a, b);
}
inline std::uint64_t max(const std::uint64_t a, const std::uint64_t b) {
return sycl::max(a, b);
}
inline std::uint64_t max(const std::uint64_t a, const std::int32_t b) {
return sycl::max(a, static_cast<std::uint64_t>(b));
}
inline std::uint64_t max(const std::int32_t a, const std::uint64_t b) {
return sycl::max(static_cast<std::uint64_t>(a), b);
}
inline std::uint64_t max(const std::uint64_t a, const std::uint32_t b) {
return sycl::max(a, static_cast<std::uint64_t>(b));
}
inline std::uint64_t max(const std::uint32_t a, const std::uint64_t b) {
return sycl::max(static_cast<std::uint64_t>(a), b);
}
template <typename VecT, class BinaryOperation>
inline unsigned vectorized_binary(unsigned a, unsigned b,
const BinaryOperation binary_op) {
sycl::vec<unsigned, 1> v0{a}, v1{b};
auto v2 = v0.as<VecT>();
auto v3 = v1.as<VecT>();
auto v4 =
detail::vectorized_binary<VecT, BinaryOperation>()(v2, v3, binary_op);
v0 = v4.template as<sycl::vec<unsigned, 1>>();
return v0;
}
} // namespace dpct

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,64 @@
//
// MIT license
// Copyright (C) 2024 Intel Corporation
// SPDX-License-Identifier: MIT
//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
/***************************************************************************
*
* Copyright (C) Codeplay Software Ltd.
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM
* Exceptions. See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
**************************************************************************/
#pragma once
#include <sycl/sycl.hpp>
namespace dpct {
namespace detail {
template <typename tag, typename T> class generic_error_type {
public:
generic_error_type() = default;
generic_error_type(T value) : value{value} {}
operator T() const { return value; }
private:
T value;
};
} // namespace detail
template <typename T>
T permute_sub_group_by_xor(sycl::sub_group g, T x, unsigned int mask,
unsigned int logical_sub_group_size = 32) {
unsigned int id = g.get_local_linear_id();
unsigned int start_index =
id / logical_sub_group_size * logical_sub_group_size;
unsigned int target_offset = (id % logical_sub_group_size) ^ mask;
return sycl::select_from_group(g, x,
target_offset < logical_sub_group_size
? start_index + target_offset
: id);
}
using err0 = detail::generic_error_type<struct err0_tag, int>;
using err1 = detail::generic_error_type<struct err1_tag, int>;
} // namespace dpct

View file

@ -1,5 +1,9 @@
#include "rope.hpp"
#include <cmath>
#include <sycl/sycl.hpp>
struct rope_corr_dims {
float v[2];
};

View file

@ -13,7 +13,7 @@
#ifndef GGML_SYCL_VECDOTQ_HPP
#define GGML_SYCL_VECDOTQ_HPP
#include "dpct/helper.hpp"
#include "dpct/math.hpp"
typedef float (*vec_dot_q_sycl_t)(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs);