From 911e35bb8bb2fd1c7d3f40f27e96ff432eae7e14 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Sigbj=C3=B8rn=20Skj=C3=A6ret?= Date: Thu, 27 Jun 2024 09:46:41 +0200 Subject: [PATCH 01/38] llama : fix CodeLlama FIM token checks (#8144) * account for space prefix character * use find instead --- src/llama.cpp | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/src/llama.cpp b/src/llama.cpp index f78594a6f..080057332 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -5152,10 +5152,10 @@ static void llm_load_vocab( if (gen_name.find("code") != std::string::npos) { if (model.arch == LLM_ARCH_LLAMA && 32010 < vocab.id_to_token.size() - && vocab.id_to_token[32007].text == "
"
-              && vocab.id_to_token[32008].text == ""
-              && vocab.id_to_token[32009].text == ""
-              && vocab.id_to_token[32010].text == "") {
+              && vocab.id_to_token[32007].text.find("
") != std::string::npos
+              && vocab.id_to_token[32008].text.find("") != std::string::npos
+              && vocab.id_to_token[32009].text.find("") != std::string::npos
+              && vocab.id_to_token[32010].text.find("") != std::string::npos) {
                 vocab.special_prefix_id = 32007;
                 vocab.special_suffix_id = 32008;
                 vocab.special_middle_id = 32009;

From f675b20a3b7f878bf3be766b9a737e2c8321ff0d Mon Sep 17 00:00:00 2001
From: kustaaya <58045274+kustaaya@users.noreply.github.com>
Date: Thu, 27 Jun 2024 11:58:54 +0300
Subject: [PATCH 02/38] Added support for Viking pre-tokenizer (#8135)

Co-authored-by: kustaaya 
---
 convert-hf-to-gguf-update.py | 1 +
 convert-hf-to-gguf.py        | 3 +++
 include/llama.h              | 1 +
 src/llama.cpp                | 9 +++++++++
 4 files changed, 14 insertions(+)

diff --git a/convert-hf-to-gguf-update.py b/convert-hf-to-gguf-update.py
index 67598b561..2758214fa 100755
--- a/convert-hf-to-gguf-update.py
+++ b/convert-hf-to-gguf-update.py
@@ -85,6 +85,7 @@ models = [
     {"name": "smaug-bpe",      "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct", },
     {"name": "poro-chat",      "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LumiOpen/Poro-34B-chat", },
     {"name": "jina-v2-code",   "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-code", },
+    {"name": "viking",         "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LumiOpen/Viking-7B", }, # Also used for Viking 13B and 33B
 ]
 
 
diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py
index c26fad930..5bf69ef9f 100755
--- a/convert-hf-to-gguf.py
+++ b/convert-hf-to-gguf.py
@@ -487,6 +487,9 @@ class Model:
         if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
             # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
             res = "jina-v2-code"
+        if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
+            # ref: https://huggingface.co/LumiOpen/Viking-7B
+            res = "viking"
 
         if res is None:
             logger.warning("\n")
diff --git a/include/llama.h b/include/llama.h
index 88eecb0ed..cafeafb85 100644
--- a/include/llama.h
+++ b/include/llama.h
@@ -88,6 +88,7 @@ extern "C" {
         LLAMA_VOCAB_PRE_TYPE_DBRX           = 13,
         LLAMA_VOCAB_PRE_TYPE_SMAUG          = 14,
         LLAMA_VOCAB_PRE_TYPE_PORO           = 15,
+        LLAMA_VOCAB_PRE_TYPE_VIKING         = 16,
     };
 
     // note: these values should be synchronized with ggml_rope
diff --git a/src/llama.cpp b/src/llama.cpp
index 080057332..b97b5e279 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -5067,6 +5067,9 @@ static void llm_load_vocab(
             } else if (
                 tokenizer_pre == "poro-chat") {
                 vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_PORO;
+            } else if (
+                tokenizer_pre == "viking") {
+                vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_VIKING;
             } else {
                 throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
             }
@@ -13703,6 +13706,12 @@ struct llm_tokenizer_bpe {
                     " ?[^(\\s|.,!?…。,、।۔،)]+",
                 };
                 break;
+            case LLAMA_VOCAB_PRE_TYPE_VIKING:
+                regex_exprs = {
+                    "\\p{N}",
+                    " ?[^(\\s|.,!?…。,、।۔،)]+",
+                };
+                break;
             default:
                 // default regex for BPE tokenization pre-processing
                 regex_exprs = {

From 85a267daaa1c6f8fd69160445bcb88717031d10c Mon Sep 17 00:00:00 2001
From: =?UTF-8?q?Johannes=20G=C3=A4=C3=9Fler?= 
Date: Thu, 27 Jun 2024 16:26:05 +0200
Subject: [PATCH 03/38] CUDA: fix MMQ stream-k for --split-mode row (#8167)

---
 ggml/src/ggml-cuda/mmq.cuh | 2 +-
 1 file changed, 1 insertion(+), 1 deletion(-)

diff --git a/ggml/src/ggml-cuda/mmq.cuh b/ggml/src/ggml-cuda/mmq.cuh
index 31fcbf139..1396e7a75 100644
--- a/ggml/src/ggml-cuda/mmq.cuh
+++ b/ggml/src/ggml-cuda/mmq.cuh
@@ -2475,7 +2475,7 @@ static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & a
 
     const dim3 block_nums_mmq(nsm, 1, 1);
 
-    ggml_cuda_pool & pool = ctx.pool();
+    ggml_cuda_pool & pool = ctx.pool(id);
     ggml_cuda_pool_alloc tmp_fixup(pool, block_nums_mmq.x * mmq_x*mmq_y);
 
     if (args.ne01 % mmq_y == 0) {

From 6030c61281c8a7eb94eceb7396a608fac8b71555 Mon Sep 17 00:00:00 2001
From: =?UTF-8?q?Sigbj=C3=B8rn=20Skj=C3=A6ret?= 
Date: Thu, 27 Jun 2024 16:27:41 +0200
Subject: [PATCH 04/38] Add Qwen2MoE 57B-A14B model identifier (#8158)

* Add Qwen2MoE 57B-A14B

* Add Qwen2MoE 57B-A14B
---
 src/llama.cpp | 3 +++
 1 file changed, 3 insertions(+)

diff --git a/src/llama.cpp b/src/llama.cpp
index b97b5e279..3dc0f8535 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -2038,6 +2038,7 @@ enum e_model {
     MODEL_8x22B,
     MODEL_16x12B,
     MODEL_10B_128x3_66B,
+    MODEL_57B_A14B,
 };
 
 static const size_t kiB = 1024;
@@ -4267,6 +4268,7 @@ static const char * llama_model_type_name(e_model type) {
         case MODEL_8x22B:         return "8x22B";
         case MODEL_16x12B:        return "16x12B";
         case MODEL_10B_128x3_66B: return "10B+128x3.66B";
+        case MODEL_57B_A14B:      return "57B.A14B";
         default:                  return "?B";
     }
 }
@@ -4588,6 +4590,7 @@ static void llm_load_hparams(
                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
                 switch (hparams.n_layer) {
                     case 24: model.type = e_model::MODEL_A2_7B; break;
+                    case 28: model.type = e_model::MODEL_57B_A14B; break;
                     default: model.type = e_model::MODEL_UNKNOWN;
                 }
             } break;

From 387952651a8fc493f8c85ea4c9774bd4a5694f87 Mon Sep 17 00:00:00 2001
From: Raj Hammeer Singh Hada 
Date: Thu, 27 Jun 2024 20:09:29 +0530
Subject: [PATCH 05/38] Delete examples/llama.android/llama/CMakeLists.txt
 (#8165)

* Delete examples/llama.android/llama/CMakeLists.txt

https://github.com/ggerganov/llama.cpp/pull/8145#issuecomment-2194534244

This file is not being used for building on Android. `llama.cpp/examples/llama.android/llama/src/main/cpp/CMakeLists.txt` is being used instead.

* Update CMakeLists.txt

Pick local llama.cpp files instead of fetching content from git
---
 examples/llama.android/llama/CMakeLists.txt   | 55 -------------------
 .../llama/src/main/cpp/CMakeLists.txt         | 18 +++---
 2 files changed, 11 insertions(+), 62 deletions(-)
 delete mode 100644 examples/llama.android/llama/CMakeLists.txt

diff --git a/examples/llama.android/llama/CMakeLists.txt b/examples/llama.android/llama/CMakeLists.txt
deleted file mode 100644
index a5618cac0..000000000
--- a/examples/llama.android/llama/CMakeLists.txt
+++ /dev/null
@@ -1,55 +0,0 @@
-
-# For more information about using CMake with Android Studio, read the
-# documentation: https://d.android.com/studio/projects/add-native-code.html.
-# For more examples on how to use CMake, see https://github.com/android/ndk-samples.
-
-# Sets the minimum CMake version required for this project.
-cmake_minimum_required(VERSION 3.22.1)
-
-# Declares the project name. The project name can be accessed via ${ PROJECT_NAME},
-# Since this is the top level CMakeLists.txt, the project name is also accessible
-# with ${CMAKE_PROJECT_NAME} (both CMake variables are in-sync within the top level
-# build script scope).
-project("llama-android")
-
-## Fetch latest llama.cpp from GitHub
-#include(FetchContent)
-#FetchContent_Declare(
-#        llama
-#        GIT_REPOSITORY https://github.com/ggerganov/llama.cpp
-#        GIT_TAG        master
-#)
-#
-## Also provides "common"
-#FetchContent_MakeAvailable(llama)
-
-# llama.cpp CI uses the code from the current branch
-# ref: https://github.com/ggerganov/llama.cpp/pull/7341#issuecomment-2117617700
-add_subdirectory(../../../../../../ build-llama)
-
-# Creates and names a library, sets it as either STATIC
-# or SHARED, and provides the relative paths to its source code.
-# You can define multiple libraries, and CMake builds them for you.
-# Gradle automatically packages shared libraries with your APK.
-#
-# In this top level CMakeLists.txt, ${CMAKE_PROJECT_NAME} is used to define
-# the target library name; in the sub-module's CMakeLists.txt, ${PROJECT_NAME}
-# is preferred for the same purpose.
-#
-# In order to load a library into your app from Java/Kotlin, you must call
-# System.loadLibrary() and pass the name of the library defined here;
-# for GameActivity/NativeActivity derived applications, the same library name must be
-# used in the AndroidManifest.xml file.
-add_library(${CMAKE_PROJECT_NAME} SHARED
-    # List C/C++ source files with relative paths to this CMakeLists.txt.
-        llama-android.cpp)
-
-# Specifies libraries CMake should link to your target library. You
-# can link libraries from various origins, such as libraries defined in this
-# build script, prebuilt third-party libraries, or Android system libraries.
-target_link_libraries(${CMAKE_PROJECT_NAME}
-    # List libraries link to the target library
-    llama
-    common
-    android
-    log)
diff --git a/examples/llama.android/llama/src/main/cpp/CMakeLists.txt b/examples/llama.android/llama/src/main/cpp/CMakeLists.txt
index 42ebaad49..2de496574 100644
--- a/examples/llama.android/llama/src/main/cpp/CMakeLists.txt
+++ b/examples/llama.android/llama/src/main/cpp/CMakeLists.txt
@@ -11,15 +11,15 @@ cmake_minimum_required(VERSION 3.22.1)
 # build script scope).
 project("llama-android")
 
-include(FetchContent)
-FetchContent_Declare(
-        llama
-        GIT_REPOSITORY https://github.com/ggerganov/llama.cpp
-        GIT_TAG        master
-)
+#include(FetchContent)
+#FetchContent_Declare(
+#        llama
+#        GIT_REPOSITORY https://github.com/ggerganov/llama.cpp
+#        GIT_TAG        master
+#)
 
 # Also provides "common"
-FetchContent_MakeAvailable(llama)
+#FetchContent_MakeAvailable(llama)
 
 # Creates and names a library, sets it as either STATIC
 # or SHARED, and provides the relative paths to its source code.
@@ -30,6 +30,10 @@ FetchContent_MakeAvailable(llama)
 # the target library name; in the sub-module's CMakeLists.txt, ${PROJECT_NAME}
 # is preferred for the same purpose.
 #
+
+#load local llama.cpp
+add_subdirectory(../../../../../../ build-llama)
+
 # In order to load a library into your app from Java/Kotlin, you must call
 # System.loadLibrary() and pass the name of the library defined here;
 # for GameActivity/NativeActivity derived applications, the same library name must be

From 97877eb10bd8e7f8023420b5b5300bcbdadd62dc Mon Sep 17 00:00:00 2001
From: jukofyork <69222624+jukofyork@users.noreply.github.com>
Date: Thu, 27 Jun 2024 15:48:07 +0100
Subject: [PATCH 06/38] Control vector loading fixes (#8137)

* Fixed leak in llama_control_vector_load_one() and allow llama_control_vector_load() to grow

* refactored `llama_control_vector_load_one()`

* allow multiple directions for same layer in same file

* llama_control_vector_load_one() and llama_control_vector_load() now break on error

* removed unnecessary ggml_free() call
---
 common/common.cpp | 186 +++++++++++++++++++---------------------------
 1 file changed, 76 insertions(+), 110 deletions(-)

diff --git a/common/common.cpp b/common/common.cpp
index c76d0e2c3..70349ad70 100644
--- a/common/common.cpp
+++ b/common/common.cpp
@@ -2804,125 +2804,87 @@ float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n)
 //
 
 static llama_control_vector_data llama_control_vector_load_one(const llama_control_vector_load_info & load_info) {
-    int32_t n_tensors;
-
-    size_t n_bytes = 0;
-
-    uint32_t max_direction_layer = 0;
-
     llama_control_vector_data result = { -1, {} };
 
-    // calculate size of ctx needed for tensors, ensure tensors are f32, and find max layer
-    {
-        struct ggml_init_params meta_params = {
-            /* .mem_size   = */ ggml_tensor_overhead() * 128 + ggml_graph_overhead(),
-            /* .mem_buffer = */ nullptr,
-            /* .no_alloc   = */ true,
-        };
-        ggml_context * meta_ctx = ggml_init(meta_params);
-        struct gguf_init_params meta_gguf_params = {
-            /* .no_alloc = */ true,
-            /* .ctx      = */ &meta_ctx,
-        };
-        struct gguf_context * meta_ctx_gguf = gguf_init_from_file(load_info.fname.c_str(), meta_gguf_params);
-        if (!meta_ctx_gguf) {
-            fprintf(stderr, "%s: failed to load control vector from %s\n", __func__, load_info.fname.c_str());
-            ggml_free(meta_ctx);
-            return result;
-        }
-
-        n_tensors = gguf_get_n_tensors(meta_ctx_gguf);
-        for (int i = 0; i < n_tensors; i++) {
-            std::string name = gguf_get_tensor_name(meta_ctx_gguf, i);
-
-            // split on '.'
-            size_t dotpos = name.find('.');
-            if (dotpos != std::string::npos && name.substr(0, dotpos) == "direction") {
-                try {
-                    uint32_t layer = std::stoi(name.substr(dotpos + 1));
-                    if (layer == 0) {
-                        fprintf(stderr, "%s: direction tensor invalid in %s\n", __func__, load_info.fname.c_str());
-                        ggml_free(meta_ctx);
-                        gguf_free(meta_ctx_gguf);
-                        return result;
-                    }
-                    if (layer > max_direction_layer) {
-                        max_direction_layer = layer;
-                    }
-                } catch (...) {
-                    fprintf(stderr, "%s: direction tensor invalid in %s\n", __func__, load_info.fname.c_str());
-                    ggml_free(meta_ctx);
-                    gguf_free(meta_ctx_gguf);
-                    return result;
-                }
-            }
-
-            struct ggml_tensor * tensor_meta = ggml_get_tensor(meta_ctx, name.c_str());
-            if (tensor_meta->type != GGML_TYPE_F32 || ggml_n_dims(tensor_meta) != 1) {
-                fprintf(stderr, "%s: direction tensor invalid in %s\n", __func__, load_info.fname.c_str());
-                ggml_free(meta_ctx);
-                gguf_free(meta_ctx_gguf);
-                return result;
-            }
-            if (result.n_embd == -1) {
-                result.n_embd = ggml_nelements(tensor_meta);
-            } else if (ggml_nelements(tensor_meta) != result.n_embd) {
-                fprintf(stderr, "%s: direction tensor sizes mismatched in %s\n", __func__, load_info.fname.c_str());
-                ggml_free(meta_ctx);
-                gguf_free(meta_ctx_gguf);
-                return result;
-            }
-            n_bytes += ggml_nbytes(tensor_meta);
-        }
-        ggml_free(meta_ctx);
-        gguf_free(meta_ctx_gguf);
+    ggml_context * ctx = nullptr;
+    struct gguf_init_params meta_gguf_params = {
+        /* .no_alloc = */ false,
+        /* .ctx      = */ &ctx,
+    };
+    struct gguf_context * ctx_gguf = gguf_init_from_file(load_info.fname.c_str(), meta_gguf_params);
+    if (!ctx_gguf) {
+        fprintf(stderr, "%s: failed to load control vector file from %s\n", __func__, load_info.fname.c_str());
+        return result;
     }
 
+    int32_t n_tensors = gguf_get_n_tensors(ctx_gguf);
     if (n_tensors == 0) {
         fprintf(stderr, "%s: no direction tensors found in %s\n", __func__, load_info.fname.c_str());
-        return result;
     }
 
-    // load and scale tensors into final control vector context
-    struct ggml_init_params ggml_params = {
-        /* .mem_size   = */ ggml_tensor_overhead() * n_tensors + n_bytes,
-        /* .mem_buffer = */ nullptr,
-        /* .no_alloc   = */ false,
-    };
-    struct ggml_context * ctx = ggml_init(ggml_params);
+    for (int i = 0; i < n_tensors; i++) {
+        std::string name = gguf_get_tensor_name(ctx_gguf, i);
 
-    struct gguf_init_params params = {
-        /*.no_alloc = */ false,
-        /*.ctx      = */ &ctx,
-    };
-    struct gguf_context * ctx_gguf = gguf_init_from_file(load_info.fname.c_str(), params);
-    if (!ctx_gguf) {
-        fprintf(stderr, "%s: failed to load control vector from %s\n", __func__, load_info.fname.c_str());
-        ggml_free(ctx);
-        return result;
-    }
+        int layer_idx = -1;
 
-    // do not store data for layer 0 (it's not used)
-    result.data.resize(result.n_embd * max_direction_layer);
-
-    for (uint32_t il = 1; il <= max_direction_layer; il++) {
-        const std::string name = "direction." + std::to_string(il);
-        const ggml_tensor * tensor = ggml_get_tensor(ctx, name.c_str());
-
-        float * dst = result.data.data() + result.n_embd * (il - 1);
-
-        if (tensor) {
-            const float * src = (const float *) tensor->data;
-            for (int j = 0; j < result.n_embd; j++) {
-                dst[j] = src[j] * load_info.strength;
-            }
-        } else {
-            for (int j = 0; j < result.n_embd; j++) {
-                dst[j] = 0.0f;
+        // split on '.'
+        size_t dotpos = name.find('.');
+        if (dotpos != std::string::npos && name.substr(0, dotpos) == "direction") {
+            try {
+                layer_idx = std::stoi(name.substr(dotpos + 1));
+            } catch (...) {
+                layer_idx = -1;
             }
         }
+        if (layer_idx < 0) {
+            fprintf(stderr, "%s: invalid/unparsable direction tensor layer index in %s\n", __func__, load_info.fname.c_str());
+            result.n_embd = -1;
+            break;
+        } else if (layer_idx == 0) {
+            fprintf(stderr, "%s: invalid (zero) direction tensor layer index in %s\n", __func__, load_info.fname.c_str());
+            result.n_embd = -1;
+            break;
+        }
+
+        struct ggml_tensor * tensor = ggml_get_tensor(ctx, name.c_str());
+        if (tensor->type != GGML_TYPE_F32) {
+            fprintf(stderr, "%s: invalid (non-F32) direction tensor type in %s\n", __func__, load_info.fname.c_str());
+            result.n_embd = -1;
+            break;
+        }
+        if (ggml_n_dims(tensor) != 1) {
+            fprintf(stderr, "%s: invalid (non-1D) direction tensor shape in %s\n", __func__, load_info.fname.c_str());
+            result.n_embd = -1;
+            break;
+        }
+
+        if (result.n_embd == -1) {
+            result.n_embd = ggml_nelements(tensor);
+        } else if (ggml_nelements(tensor) != result.n_embd) {
+            fprintf(stderr, "%s: direction tensor in %s does not match previous dimensions\n", __func__, load_info.fname.c_str());
+            result.n_embd = -1;
+            break;
+        }
+
+        // extend if necessary - do not store data for layer 0 (it's not used)
+        result.data.resize(std::max(result.data.size(), static_cast(result.n_embd * layer_idx)), 0.0f);
+
+        const float * src = (const float *) tensor->data;
+        float * dst = result.data.data() + result.n_embd * (layer_idx - 1);  // layer 1 at [0]
+        for (int j = 0; j < result.n_embd; j++) {
+            dst[j] += src[j] * load_info.strength;  // allows multiple directions for same layer in same file
+        }
+
     }
 
+    if (result.n_embd == -1) {
+        fprintf(stderr, "%s: skipping %s due to invalid direction tensors\n", __func__, load_info.fname.c_str());
+        result.data.clear();
+    }
+
+    gguf_free(ctx_gguf);
+    ggml_free(ctx);
+
     return result;
 }
 
@@ -2933,16 +2895,19 @@ llama_control_vector_data llama_control_vector_load(const std::vector
Date: Thu, 27 Jun 2024 18:37:29 +0300
Subject: [PATCH 07/38] flake.lock: Update (#8071)
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit

Flake lock file updates:

• Updated input 'nixpkgs':
    'github:NixOS/nixpkgs/e9ee548d90ff586a6471b4ae80ae9cfcbceb3420?narHash=sha256-4Zu0RYRcAY/VWuu6awwq4opuiD//ahpc2aFHg2CWqFY%3D' (2024-06-13)
  → 'github:NixOS/nixpkgs/d603719ec6e294f034936c0d0dc06f689d91b6c3?narHash=sha256-k3JqJrkdoYwE3fHE6xGDY676AYmyh4U2Zw%2B0Bwe5DLU%3D' (2024-06-20)

Co-authored-by: github-actions[bot] 
Co-authored-by: Philip Taron 
---
 flake.lock | 6 +++---
 1 file changed, 3 insertions(+), 3 deletions(-)

diff --git a/flake.lock b/flake.lock
index 5278fb68a..79bb3f63f 100644
--- a/flake.lock
+++ b/flake.lock
@@ -20,11 +20,11 @@
     },
     "nixpkgs": {
       "locked": {
-        "lastModified": 1718318537,
-        "narHash": "sha256-4Zu0RYRcAY/VWuu6awwq4opuiD//ahpc2aFHg2CWqFY=",
+        "lastModified": 1718895438,
+        "narHash": "sha256-k3JqJrkdoYwE3fHE6xGDY676AYmyh4U2Zw+0Bwe5DLU=",
         "owner": "NixOS",
         "repo": "nixpkgs",
-        "rev": "e9ee548d90ff586a6471b4ae80ae9cfcbceb3420",
+        "rev": "d603719ec6e294f034936c0d0dc06f689d91b6c3",
         "type": "github"
       },
       "original": {

From 16791b8f0b4526aafbf5d0e5bbbd2e99c2253418 Mon Sep 17 00:00:00 2001
From: Xuan Son Nguyen 
Date: Thu, 27 Jun 2024 18:14:19 +0200
Subject: [PATCH 08/38] Add chatml fallback for cpp `llama_chat_apply_template`
 (#8160)

* add chatml fallback for cpp `llama_chat_apply_template`

* remove redundant code
---
 common/common.cpp | 19 ++++++++++++++++++-
 common/common.h   |  2 ++
 2 files changed, 20 insertions(+), 1 deletion(-)

diff --git a/common/common.cpp b/common/common.cpp
index 70349ad70..57d03a578 100644
--- a/common/common.cpp
+++ b/common/common.cpp
@@ -2618,6 +2618,7 @@ std::string llama_chat_apply_template(const struct llama_model * model,
         const std::vector & msgs,
         bool add_ass) {
     int alloc_size = 0;
+    bool fallback = false; // indicate if we must fallback to default chatml
     std::vector chat;
     for (auto & msg : msgs) {
         chat.push_back({msg.role.c_str(), msg.content.c_str()});
@@ -2630,10 +2631,26 @@ std::string llama_chat_apply_template(const struct llama_model * model,
     // run the first time to get the total output length
     int32_t res = llama_chat_apply_template(model, ptr_tmpl, chat.data(), chat.size(), add_ass, buf.data(), buf.size());
 
+    // error: chat template is not supported
+    if (res < 0) {
+        if (ptr_tmpl != nullptr) {
+            // if the custom "tmpl" is not supported, we throw an error
+            // this is a bit redundant (for good), since we're not sure if user validated the custom template with llama_chat_verify_template()
+            throw std::runtime_error("this custom template is not supported");
+        } else {
+            // If the built-in template is not supported, we default to chatml
+            res = llama_chat_apply_template(nullptr, "chatml", chat.data(), chat.size(), add_ass, buf.data(), buf.size());
+            fallback = true;
+        }
+    }
+
     // if it turns out that our buffer is too small, we resize it
     if ((size_t) res > buf.size()) {
         buf.resize(res);
-        res = llama_chat_apply_template(model, ptr_tmpl, chat.data(), chat.size(), add_ass, buf.data(), buf.size());
+        res = llama_chat_apply_template(
+            fallback ? nullptr : model,
+            fallback ? "chatml" : ptr_tmpl,
+            chat.data(), chat.size(), add_ass, buf.data(), buf.size());
     }
 
     std::string formatted_chat(buf.data(), res);
diff --git a/common/common.h b/common/common.h
index c541204f6..0486ba380 100644
--- a/common/common.h
+++ b/common/common.h
@@ -380,6 +380,8 @@ struct llama_chat_msg {
 bool llama_chat_verify_template(const std::string & tmpl);
 
 // CPP wrapper for llama_chat_apply_template
+// If the built-in template is not supported, we default to chatml
+// If the custom "tmpl" is not supported, we throw an error
 std::string llama_chat_apply_template(const struct llama_model * model,
         const std::string & tmpl,
         const std::vector & chat,

From 8172ee9da9921ca53d698c7438c2d792b3f3f2c8 Mon Sep 17 00:00:00 2001
From: slaren 
Date: Thu, 27 Jun 2024 20:04:39 +0200
Subject: [PATCH 09/38] cmake : fix deprecated option names not working (#8171)

* cmake : fix deprecated option names not working

* remove LlAMA_OPENMP
---
 CMakeLists.txt | 3 +--
 1 file changed, 1 insertion(+), 2 deletions(-)

diff --git a/CMakeLists.txt b/CMakeLists.txt
index 7a7197282..dba083089 100644
--- a/CMakeLists.txt
+++ b/CMakeLists.txt
@@ -86,7 +86,7 @@ set(GGML_CUDA_USE_GRAPHS    ON)
 function (llama_option_depr TYPE OLD NEW)
     if (${OLD})
         message(${TYPE} "${OLD} is deprecated and will be removed in the future.\nUse ${NEW} instead\n")
-        set(${NEW} ON)
+        set(${NEW} ON PARENT_SCOPE)
     endif()
 endfunction()
 
@@ -96,7 +96,6 @@ llama_option_depr(WARNING     LLAMA_KOMPUTE             GGML_KOMPUTE)
 llama_option_depr(WARNING     LLAMA_METAL               GGML_METAL)
 llama_option_depr(WARNING     LLAMA_METAL_EMBED_LIBRARY GGML_METAL_EMBED_LIBRARY)
 llama_option_depr(WARNING     LLAMA_NATIVE              GGML_NATIVE)
-llama_option_depr(WARNING     LLAMA_OPENMP              GGML_OPENMP)
 llama_option_depr(WARNING     LLAMA_RPC                 GGML_RPC)
 llama_option_depr(WARNING     LLAMA_SYCL                GGML_SYCL)
 llama_option_depr(WARNING     LLAMA_SYCL_F16            GGML_SYCL_F16)

From 558f44bf83d78242d4e5c4ab98d0be9125cb9780 Mon Sep 17 00:00:00 2001
From: loonerin <132926317+loonerin@users.noreply.github.com>
Date: Thu, 27 Jun 2024 15:01:23 -0400
Subject: [PATCH 10/38] CI: fix release build (Ubuntu+Mac) (#8170)

* CI: fix release build (Ubuntu)

PR #8006 changes defaults to build shared libs. However, CI for releases
expects static builds.

* CI: fix release build (Mac)

---------

Co-authored-by: loonerin 
---
 .github/workflows/build.yml | 6 +++---
 1 file changed, 3 insertions(+), 3 deletions(-)

diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml
index 208515287..adf67cecc 100644
--- a/.github/workflows/build.yml
+++ b/.github/workflows/build.yml
@@ -47,7 +47,7 @@ jobs:
           sysctl -a
           mkdir build
           cd build
-          cmake -DLLAMA_FATAL_WARNINGS=ON -DGGML_METAL_EMBED_LIBRARY=ON -DLLAMA_CURL=ON ..
+          cmake -DLLAMA_FATAL_WARNINGS=ON -DGGML_METAL_EMBED_LIBRARY=ON -DLLAMA_CURL=ON -DBUILD_SHARED_LIBS=OFF ..
           cmake --build . --config Release -j $(sysctl -n hw.logicalcpu)
 
       - name: Test
@@ -105,7 +105,7 @@ jobs:
           sysctl -a
           # Metal is disabled due to intermittent failures with Github runners not having a GPU:
           # https://github.com/ggerganov/llama.cpp/actions/runs/8635935781/job/23674807267#step:5:2313
-          cmake -B build -DLLAMA_FATAL_WARNINGS=ON -DGGML_METAL=OFF -DLLAMA_CURL=ON
+          cmake -B build -DLLAMA_FATAL_WARNINGS=ON -DGGML_METAL=OFF -DLLAMA_CURL=ON -DBUILD_SHARED_LIBS=OFF
           cmake --build build --config Release -j $(sysctl -n hw.logicalcpu)
 
       - name: Test
@@ -222,7 +222,7 @@ jobs:
         run: |
           mkdir build
           cd build
-          cmake .. -DLLAMA_FATAL_WARNINGS=ON -DLLAMA_CURL=ON
+          cmake .. -DLLAMA_FATAL_WARNINGS=ON -DLLAMA_CURL=ON -DBUILD_SHARED_LIBS=OFF
           cmake --build . --config Release -j $(nproc)
 
       - name: Test

From cb0b06a8a613f7a2ccb7253b2a3c00fdd397ba1c Mon Sep 17 00:00:00 2001
From: Olivier Chafik 
Date: Thu, 27 Jun 2024 22:08:42 +0100
Subject: [PATCH 11/38] `json`: update grammars/README w/ examples & note about
 additionalProperties (#8132)

* json: update grammars/README

* mention broken prefixItems

* add mention to llama-gbnf-validator

* json: explicit type: object for nested items object in cli example
---
 grammars/README.md | 245 +++++++++++++++++++++++++++++++++++++++++++--
 1 file changed, 235 insertions(+), 10 deletions(-)

diff --git a/grammars/README.md b/grammars/README.md
index 2f685eb6d..40f666240 100644
--- a/grammars/README.md
+++ b/grammars/README.md
@@ -126,19 +126,244 @@ You can use GBNF grammars:
     - in CLI, with [examples/json_schema_to_grammar.py](../examples/json_schema_to_grammar.py)
     - in JavaScript with [json-schema-to-grammar.mjs](../examples/server/public/json-schema-to-grammar.mjs) (this is used by the [server](../examples/server)'s Web UI)
 
-Take a look at [tests](../../tests/test-json-schema-to-grammar.cpp) to see which features are likely supported (you'll also find usage examples in https://github.com/ggerganov/llama.cpp/pull/5978, https://github.com/ggerganov/llama.cpp/pull/6659 & https://github.com/ggerganov/llama.cpp/pull/6555).
+Take a look at [tests](../tests/test-json-schema-to-grammar.cpp) to see which features are likely supported (you'll also find usage examples in https://github.com/ggerganov/llama.cpp/pull/5978, https://github.com/ggerganov/llama.cpp/pull/6659 & https://github.com/ggerganov/llama.cpp/pull/6555).
 
-Here is also a non-exhaustive list of **unsupported** features:
+```bash
+llama-cli \
+  -hfr bartowski/Phi-3-medium-128k-instruct-GGUF \
+  -hff Phi-3-medium-128k-instruct-Q8_0.gguf \
+  -j '{
+    "type": "array",
+    "items": {
+        "type": "object",
+        "properties": {
+            "name": {
+                "type": "string",
+                "minLength": 1,
+                "maxLength": 100
+            },
+            "age": {
+                "type": "integer",
+                "minimum": 0,
+                "maximum": 150
+            }
+        },
+        "required": ["name", "age"],
+        "additionalProperties": false
+    },
+    "minItems": 10,
+    "maxItems": 100
+  }' \
+  -p 'Generate a {name, age}[] JSON array with famous actors of all ages.'
+```
 
-- `additionalProperties`: to be fixed in https://github.com/ggerganov/llama.cpp/pull/7840
-- `minimum`, `exclusiveMinimum`, `maximum`, `exclusiveMaximum`
-    - `integer` constraints to be implemented in https://github.com/ggerganov/llama.cpp/pull/7797
-- Remote `$ref`s in the C++ version (Python & JavaScript versions fetch https refs)
-- Mixing `properties` w/ `anyOf` / `oneOf` in the same type (https://github.com/ggerganov/llama.cpp/issues/7703)
-- `string` formats `uri`, `email`
+
+ +Show grammar + +You can convert any schema in command-line with: + +```bash +examples/json_schema_to_grammar.py name-age-schema.json +``` + +``` +char ::= [^"\\\x7F\x00-\x1F] | [\\] (["\\bfnrt] | "u" [0-9a-fA-F]{4}) +item ::= "{" space item-name-kv "," space item-age-kv "}" space +item-age ::= ([0-9] | ([1-8] [0-9] | [9] [0-9]) | "1" ([0-4] [0-9] | [5] "0")) space +item-age-kv ::= "\"age\"" space ":" space item-age +item-name ::= "\"" char{1,100} "\"" space +item-name-kv ::= "\"name\"" space ":" space item-name +root ::= "[" space item ("," space item){9,99} "]" space +space ::= | " " | "\n" [ \t]{0,20} +``` + +
+ +Here is also a list of known limitations (contributions welcome): + +- Unsupported features are skipped silently. It is currently advised to use the command-line Python converter (see above) to see any warnings, and to inspect the resulting grammar / test it w/ [llama-gbnf-validator](../examples/gbnf-validator/gbnf-validator.cpp). +- Can't mix `properties` w/ `anyOf` / `oneOf` in the same type (https://github.com/ggerganov/llama.cpp/issues/7703) +- [prefixItems](https://json-schema.org/draft/2020-12/json-schema-core#name-prefixitems) is broken (but [items](https://json-schema.org/draft/2020-12/json-schema-core#name-items) works) +- `minimum`, `exclusiveMinimum`, `maximum`, `exclusiveMaximum`: only supported for `"type": "integer"` for now, not `number` +- Nested `$ref`s are broken (https://github.com/ggerganov/llama.cpp/issues/8073) +- [pattern](https://json-schema.org/draft/2020-12/json-schema-validation#name-pattern)s must start with `^` and end with `$` +- Remote `$ref`s not supported in the C++ version (Python & JavaScript versions fetch https refs) +- `string` [formats](https://json-schema.org/draft/2020-12/json-schema-validation#name-defined-formats) lack `uri`, `email` +- No [`patternProperties`](https://json-schema.org/draft/2020-12/json-schema-core#name-patternproperties) + +And a non-exhaustive list of other unsupported features that are unlikely to be implemented (hard and/or too slow to support w/ stateless grammars): + +- [`uniqueItems`](https://json-schema.org/draft/2020-12/json-schema-validation#name-uniqueitems) - [`contains`](https://json-schema.org/draft/2020-12/json-schema-core#name-contains) / `minContains` -- `uniqueItems` - `$anchor` (cf. [dereferencing](https://json-schema.org/draft/2020-12/json-schema-core#name-dereferencing)) - [`not`](https://json-schema.org/draft/2020-12/json-schema-core#name-not) - [Conditionals](https://json-schema.org/draft/2020-12/json-schema-core#name-keywords-for-applying-subsche) `if` / `then` / `else` / `dependentSchemas` -- [`patternProperties`](https://json-schema.org/draft/2020-12/json-schema-core#name-patternproperties) + +### A word about additionalProperties + +> [!WARNING] +> By default, `object`s accept [additional properties](https://json-schema.org/understanding-json-schema/reference/object#additionalproperties), which you might not want / not expect, and which will make sampling slower (not just because of the extra tokens, but also generates a slower grammar). +> You can set `"additionalProperties": false` on the schema of any object to ensure only properties listed in `properties` are generated (not needed for non-`object` types, e.g. `array` or `string`). + +If you're using [Pydantic](https://pydantic.dev/) to generate schemas, you can disable additional properties with the `extra` config on each model class: + +```python +# pip install pydantic +import json +from typing import Annotated, List +from pydantic import BaseModel, Extra, Field +class QAPair(BaseModel): + class Config: + extra = 'forbid' # triggers additionalProperties: false in the JSON schema + question: str + concise_answer: str + justification: str + +class Summary(BaseModel): + class Config: + extra = 'forbid' + key_facts: List[Annotated[str, Field(pattern='- .{5,}')]] + question_answers: List[Annotated[List[QAPair], Field(min_items=5)]] + +print(json.dumps(Summary.model_json_schema(), indent=2)) +``` + +
+Show JSON schema & grammar + +```json +{ + "$defs": { + "QAPair": { + "additionalProperties": false, + "properties": { + "question": { + "title": "Question", + "type": "string" + }, + "concise_answer": { + "title": "Concise Answer", + "type": "string" + }, + "justification": { + "title": "Justification", + "type": "string" + } + }, + "required": [ + "question", + "concise_answer", + "justification" + ], + "title": "QAPair", + "type": "object" + } + }, + "additionalProperties": false, + "properties": { + "key_facts": { + "items": { + "pattern": "^- .{5,}$", + "type": "string" + }, + "title": "Key Facts", + "type": "array" + }, + "question_answers": { + "items": { + "items": { + "$ref": "#/$defs/QAPair" + }, + "minItems": 5, + "type": "array" + }, + "title": "Question Answers", + "type": "array" + } + }, + "required": [ + "key_facts", + "question_answers" + ], + "title": "Summary", + "type": "object" +} +``` + +``` +QAPair ::= "{" space QAPair-question-kv "," space QAPair-concise-answer-kv "," space QAPair-justification-kv "}" space +QAPair-concise-answer-kv ::= "\"concise_answer\"" space ":" space string +QAPair-justification-kv ::= "\"justification\"" space ":" space string +QAPair-question-kv ::= "\"question\"" space ":" space string +char ::= [^"\\\x7F\x00-\x1F] | [\\] (["\\bfnrt] | "u" [0-9a-fA-F]{4}) +dot ::= [^\x0A\x0D] +key-facts ::= "[" space (key-facts-item ("," space key-facts-item)*)? "]" space +key-facts-item ::= "\"" "- " key-facts-item-1{5,} "\"" space +key-facts-item-1 ::= dot +key-facts-kv ::= "\"key_facts\"" space ":" space key-facts +question-answers ::= "[" space (question-answers-item ("," space question-answers-item)*)? "]" space +question-answers-item ::= "[" space question-answers-item-item ("," space question-answers-item-item){4,} "]" space +question-answers-item-item ::= QAPair +question-answers-kv ::= "\"question_answers\"" space ":" space question-answers +root ::= "{" space key-facts-kv "," space question-answers-kv "}" space +space ::= | " " | "\n" [ \t]{0,20} +string ::= "\"" char* "\"" space +``` + +
+ +If you're using [Zod](https://zod.dev/), you can make your objects explicitly strict w/ `z.object(...).strict()` or `z.strictObject(...)`. + +Note however that [zod-to-json-schema](https://github.com/StefanTerdell/zod-to-json-schema) currently always seems to set `"additionalProperties": false` anyway (even w/ zod schemas on which `nonstrict()` / `passthrough()` was called). + +```js +import { z } from 'zod'; +import { zodToJsonSchema } from 'zod-to-json-schema'; + +const Foo = z.object({ + age: z.number().positive(), + email: z.string().email(), +}).strict(); + +console.log(zodToJsonSchema(Foo)); +``` + +
+Show JSON schema & grammar + +```json +{ + "type": "object", + "properties": { + "age": { + "type": "number", + "exclusiveMinimum": 0 + }, + "email": { + "type": "string", + "format": "email" + } + }, + "required": [ + "age", + "email" + ], + "additionalProperties": false, + "$schema": "http://json-schema.org/draft-07/schema#" +} +``` + +``` +age-kv ::= "\"age\"" space ":" space number +char ::= [^"\\\x7F\x00-\x1F] | [\\] (["\\bfnrt] | "u" [0-9a-fA-F]{4}) +decimal-part ::= [0-9]{1,16} +email-kv ::= "\"email\"" space ":" space string +integral-part ::= [0] | [1-9] [0-9]{0,15} +number ::= ("-"? integral-part) ("." decimal-part)? ([eE] [-+]? integral-part)? space +root ::= "{" space age-kv "," space email-kv "}" space +space ::= | " " | "\n" [ \t]{0,20} +string ::= "\"" char* "\"" space +``` + +
From a27aa50ab7e07fe46aae619076b6e31d5663e914 Mon Sep 17 00:00:00 2001 From: Xuan Son Nguyen Date: Fri, 28 Jun 2024 02:19:11 +0200 Subject: [PATCH 12/38] Add missing items in makefile (#8177) --- Makefile | 2 ++ 1 file changed, 2 insertions(+) diff --git a/Makefile b/Makefile index bbfe0f12b..8ae4f1dc4 100644 --- a/Makefile +++ b/Makefile @@ -45,6 +45,7 @@ BUILD_TARGETS = \ TEST_TARGETS = \ tests/test-autorelease \ tests/test-backend-ops \ + tests/test-chat-template \ tests/test-double-float \ tests/test-grad0 \ tests/test-grammar-integration \ @@ -1070,6 +1071,7 @@ clean: rm -rvf src/*.o rm -rvf tests/*.o rm -rvf examples/*.o + rm -rvf common/*.o rm -rvf *.a rm -rvf *.dll rm -rvf *.so From e57dc62057d41211ac018056c19c02cd544694df Mon Sep 17 00:00:00 2001 From: pculliton Date: Fri, 28 Jun 2024 00:00:43 -0400 Subject: [PATCH 13/38] llama: Add support for Gemma2ForCausalLM (#8156) * Inference support for Gemma 2 model family * Update convert-hf-to-gguf.py, constants, and tensor mappings * cleanup * format fix * Fix special token vocab bug * Don't add space prefix * fix deleted lines * Update src/llama.cpp Co-authored-by: slaren * Add model type names * Add control vector * Fix model type identification --------- Co-authored-by: Andrei Betlen Co-authored-by: slaren --- convert-hf-to-gguf.py | 40 +++++++ gguf-py/gguf/constants.py | 23 ++++ gguf-py/gguf/tensor_mapping.py | 14 +++ src/llama.cpp | 198 ++++++++++++++++++++++++++++++++- 4 files changed, 274 insertions(+), 1 deletion(-) diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py index 5bf69ef9f..5bcc849db 100755 --- a/convert-hf-to-gguf.py +++ b/convert-hf-to-gguf.py @@ -2340,6 +2340,46 @@ class GemmaModel(Model): return [(self.map_tensor_name(name), data_torch)] +@Model.register("Gemma2ForCausalLM") +class Gemma2Model(Model): + model_arch = gguf.MODEL_ARCH.GEMMA2 + + def set_vocab(self): + self._set_vocab_llama_hf() + self.gguf_writer.add_add_space_prefix(False) + + def set_gguf_parameters(self): + hparams = self.hparams + block_count = hparams["num_hidden_layers"] + + self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name) + self.gguf_writer.add_context_length(hparams["max_position_embeddings"]) + self.gguf_writer.add_embedding_length(hparams["hidden_size"]) + self.gguf_writer.add_block_count(block_count) + self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"]) + self.gguf_writer.add_head_count(hparams["num_attention_heads"]) + self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"]) + self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"]) + self.gguf_writer.add_key_length(hparams["head_dim"]) + self.gguf_writer.add_value_length(hparams["head_dim"]) + self.gguf_writer.add_file_type(self.ftype) + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + del bid # unusem + + # lm_head is not used in llama.cpp, while autoawq will include this tensor in model + # To prevent errors, skip loading lm_head.weight. + if name == "lm_head.weight": + logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.") + return [] + + # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89 + if name.endswith("norm.weight"): + data_torch = data_torch + 1 + + return [(self.map_tensor_name(name), data_torch)] + + @Model.register("Starcoder2ForCausalLM") class StarCoder2Model(Model): model_arch = gguf.MODEL_ARCH.STARCODER2 diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py index 222a2d137..cf3d09e70 100644 --- a/gguf-py/gguf/constants.py +++ b/gguf-py/gguf/constants.py @@ -150,6 +150,7 @@ class MODEL_ARCH(IntEnum): INTERNLM2 = auto() MINICPM = auto() GEMMA = auto() + GEMMA2 = auto() STARCODER2 = auto() MAMBA = auto() XVERSE = auto() @@ -180,10 +181,13 @@ class MODEL_TENSOR(IntEnum): ATTN_NORM = auto() ATTN_NORM_2 = auto() ATTN_OUT_NORM = auto() + ATTN_POST_NORM = auto() ATTN_ROT_EMBD = auto() FFN_GATE_INP = auto() FFN_GATE_INP_SHEXP = auto() FFN_NORM = auto() + FFN_PRE_NORM = auto() + FFN_POST_NORM = auto() FFN_GATE = auto() FFN_DOWN = auto() FFN_UP = auto() @@ -270,6 +274,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = { MODEL_ARCH.INTERNLM2: "internlm2", MODEL_ARCH.MINICPM: "minicpm", MODEL_ARCH.GEMMA: "gemma", + MODEL_ARCH.GEMMA2: "gemma2", MODEL_ARCH.STARCODER2: "starcoder2", MODEL_ARCH.MAMBA: "mamba", MODEL_ARCH.XVERSE: "xverse", @@ -303,9 +308,12 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = { MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm", MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm", MODEL_TENSOR.ATTN_OUT_NORM: "blk.{bid}.attn_output_norm", + MODEL_TENSOR.ATTN_POST_NORM: "blk.{bid}.post_attention_norm", MODEL_TENSOR.FFN_GATE_INP: "blk.{bid}.ffn_gate_inp", MODEL_TENSOR.FFN_GATE_INP_SHEXP: "blk.{bid}.ffn_gate_inp_shexp", MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm", + MODEL_TENSOR.FFN_PRE_NORM: "blk.{bid}.ffn_norm", + MODEL_TENSOR.FFN_POST_NORM: "blk.{bid}.post_ffw_norm", MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate", MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down", MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up", @@ -751,6 +759,21 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_TENSOR.FFN_UP, MODEL_TENSOR.FFN_NORM, ], + MODEL_ARCH.GEMMA2: [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.OUTPUT_NORM, + MODEL_TENSOR.ATTN_Q, + MODEL_TENSOR.ATTN_K, + MODEL_TENSOR.ATTN_V, + MODEL_TENSOR.ATTN_OUT, + MODEL_TENSOR.FFN_GATE, + MODEL_TENSOR.FFN_DOWN, + MODEL_TENSOR.FFN_UP, + MODEL_TENSOR.ATTN_NORM, + MODEL_TENSOR.ATTN_POST_NORM, + MODEL_TENSOR.FFN_PRE_NORM, + MODEL_TENSOR.FFN_POST_NORM, + ], MODEL_ARCH.STARCODER2: [ MODEL_TENSOR.TOKEN_EMBD, MODEL_TENSOR.OUTPUT_NORM, diff --git a/gguf-py/gguf/tensor_mapping.py b/gguf-py/gguf/tensor_mapping.py index 7b047f241..0bed43939 100644 --- a/gguf-py/gguf/tensor_mapping.py +++ b/gguf-py/gguf/tensor_mapping.py @@ -187,6 +187,10 @@ class TensorNameMap: "transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx ), + MODEL_TENSOR.ATTN_POST_NORM: ( + "model.layers.{bid}.post_attention_layernorm", # gemma2 + ), + # Rotary embeddings MODEL_TENSOR.ATTN_ROT_EMBD: ( "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf @@ -210,6 +214,16 @@ class TensorNameMap: "transformer.decoder_layer.{bid}.rms_norm_2", # Grok ), + # Post feed-forward norm + MODEL_TENSOR.FFN_PRE_NORM: ( + "model.layers.{bid}.pre_feedforward_layernorm", # gemma2 + ), + + # Post feed-forward norm + MODEL_TENSOR.FFN_POST_NORM: ( + "model.layers.{bid}.post_feedforward_layernorm", # gemma2 + ), + MODEL_TENSOR.FFN_GATE_INP: ( "layers.{bid}.feed_forward.gate", # mixtral "model.layers.{bid}.block_sparse_moe.gate", # mixtral diff --git a/src/llama.cpp b/src/llama.cpp index 3dc0f8535..988ed4fdf 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -217,6 +217,7 @@ enum llm_arch { LLM_ARCH_INTERNLM2, LLM_ARCH_MINICPM, LLM_ARCH_GEMMA, + LLM_ARCH_GEMMA2, LLM_ARCH_STARCODER2, LLM_ARCH_MAMBA, LLM_ARCH_XVERSE, @@ -257,6 +258,7 @@ static const std::map LLM_ARCH_NAMES = { { LLM_ARCH_INTERNLM2, "internlm2" }, { LLM_ARCH_MINICPM, "minicpm" }, { LLM_ARCH_GEMMA, "gemma" }, + { LLM_ARCH_GEMMA2, "gemma2" }, { LLM_ARCH_STARCODER2, "starcoder2" }, { LLM_ARCH_MAMBA, "mamba" }, { LLM_ARCH_XVERSE, "xverse" }, @@ -478,10 +480,12 @@ enum llm_tensor { LLM_TENSOR_ATTN_NORM, LLM_TENSOR_ATTN_NORM_2, LLM_TENSOR_ATTN_OUT_NORM, + LLM_TENSOR_ATTN_POST_NORM, LLM_TENSOR_ATTN_ROT_EMBD, LLM_TENSOR_FFN_GATE_INP, LLM_TENSOR_FFN_GATE_INP_SHEXP, LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_POST_NORM, LLM_TENSOR_FFN_GATE, LLM_TENSOR_FFN_DOWN, LLM_TENSOR_FFN_UP, @@ -1004,6 +1008,24 @@ static const std::map> LLM_TENSOR_NA { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, + { + LLM_ARCH_GEMMA2, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_ATTN_POST_NORM, "blk.%d.post_attention_norm" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + { LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" }, + }, + }, { LLM_ARCH_STARCODER2, { @@ -2039,6 +2061,8 @@ enum e_model { MODEL_16x12B, MODEL_10B_128x3_66B, MODEL_57B_A14B, + MODEL_9B, + MODEL_27B, }; static const size_t kiB = 1024; @@ -2215,6 +2239,7 @@ struct llama_layer { struct ggml_tensor * attn_q_a_norm; struct ggml_tensor * attn_kv_a_norm; struct ggml_tensor * attn_sub_norm; + struct ggml_tensor * attn_post_norm; struct ggml_tensor * ffn_sub_norm; // attention @@ -2238,6 +2263,7 @@ struct llama_layer { // normalization struct ggml_tensor * ffn_norm; struct ggml_tensor * ffn_norm_b; + struct ggml_tensor * ffn_post_norm; struct ggml_tensor * layer_out_norm; struct ggml_tensor * layer_out_norm_b; struct ggml_tensor * ffn_norm_exps; @@ -4269,6 +4295,8 @@ static const char * llama_model_type_name(e_model type) { case MODEL_16x12B: return "16x12B"; case MODEL_10B_128x3_66B: return "10B+128x3.66B"; case MODEL_57B_A14B: return "57B.A14B"; + case MODEL_9B: return "9B"; + case MODEL_27B: return "27B"; default: return "?B"; } } @@ -4671,6 +4699,16 @@ static void llm_load_hparams( default: model.type = e_model::MODEL_UNKNOWN; } } break; + case LLM_ARCH_GEMMA2: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + + switch (hparams.n_layer) { + case 42: model.type = e_model::MODEL_9B; break; + case 46: model.type = e_model::MODEL_27B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; case LLM_ARCH_STARCODER2: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); @@ -6512,6 +6550,40 @@ static bool llm_load_tensors( layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); } } break; + case LLM_ARCH_GEMMA2: + { + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + + // output + model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading + + const int64_t n_ff = hparams.n_ff; + const int64_t n_embd_head_k = hparams.n_embd_head_k; + const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(); + const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(); + + for (uint32_t i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); + + auto & layer = model.layers[i]; + + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + + layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * hparams.n_head}); + layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}); + layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}); + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * hparams.n_head, n_embd}); + layer.attn_post_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}); + + layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); + layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); + layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); + layer.ffn_post_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}); + } + } break; case LLM_ARCH_STARCODER2: { model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); @@ -10923,6 +10995,125 @@ struct llm_build_context { return gf; } + struct ggml_cgraph * build_gemma2() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + + const int64_t n_embd_head_k = hparams.n_embd_head_k; + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); + + inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd)); + cb(inpL, "inp_scaled", -1); + + // inp_pos - contains the positions + struct ggml_tensor * inp_pos = build_inp_pos(); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); + + for (int il = 0; il < n_layer; ++il) { + // norm + cur = llm_build_norm(ctx0, inpL, hparams, + model.layers[il].attn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "attn_norm", il); + + // self-attention + { + // compute Q and K and RoPE them + struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); + cb(Qcur, "Qcur", il); + + struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); + cb(Kcur, "Kcur", il); + + struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); + cb(Vcur, "Vcur", il); + + Qcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos, nullptr, + n_embd_head_k, rope_type, n_ctx_orig, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow); + cb(Qcur, "Qcur", il); + + Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k))); + cb(Qcur, "Qcur_scaled", il); + + Kcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos, nullptr, + n_embd_head_k, rope_type, n_ctx_orig, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow); + cb(Kcur, "Kcur", il); + + cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, + model.layers[il].wo, NULL, + Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il); + } + + cur = llm_build_norm(ctx0, cur, hparams, + model.layers[il].attn_post_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "attn_post_norm", il); + + if (il == n_layer - 1) { + // skip computing output for unused tokens + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); + } + + struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL); + cb(sa_out, "sa_out", il); + + cur = llm_build_norm(ctx0, sa_out, hparams, + model.layers[il].ffn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "ffn_norm", il); + + // feed-forward network + { + cur = llm_build_ffn(ctx0, cur, + model.layers[il].ffn_up, NULL, NULL, + model.layers[il].ffn_gate, NULL, NULL, + model.layers[il].ffn_down, NULL, NULL, + NULL, + LLM_FFN_GELU, LLM_FFN_PAR, cb, il); + cb(cur, "ffn_out", il); + } + + cur = llm_build_norm(ctx0, cur, hparams, + model.layers[il].ffn_post_norm, NULL, + LLM_NORM_RMS, cb, -1); + cb(cur, "ffn_post_norm", -1); + + cur = ggml_add(ctx0, cur, sa_out); + cur = lctx.cvec.apply_to(ctx0, cur, il); + cb(cur, "l_out", il); + + // input for next layer + inpL = cur; + } + + cur = inpL; + + cur = llm_build_norm(ctx0, cur, hparams, + model.output_norm, NULL, + LLM_NORM_RMS, cb, -1); + cb(cur, "result_norm", -1); + + // lm_head + cur = ggml_mul_mat(ctx0, model.output, cur); + cb(cur, "result_output", -1); + + ggml_build_forward_expand(gf, cur); + + return gf; + } + + struct ggml_cgraph * build_starcoder2() { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); @@ -12303,6 +12494,10 @@ static struct ggml_cgraph * llama_build_graph( { result = llm.build_gemma(); } break; + case LLM_ARCH_GEMMA2: + { + result = llm.build_gemma2(); + } break; case LLM_ARCH_STARCODER2: { result = llm.build_starcoder2(); @@ -17597,6 +17792,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) { case LLM_ARCH_PHI2: case LLM_ARCH_PHI3: case LLM_ARCH_GEMMA: + case LLM_ARCH_GEMMA2: case LLM_ARCH_STARCODER2: case LLM_ARCH_GPTNEOX: return LLAMA_ROPE_TYPE_NEOX; @@ -19486,7 +19682,7 @@ static int32_t llama_chat_apply_template_internal( if (add_ass) { ss << "assistant\n"; } - } else if (tmpl == "gemma" || tmpl.find("") != std::string::npos) { + } else if (tmpl == "gemma" || tmpl == "gemma2" || tmpl.find("") != std::string::npos) { // google/gemma-7b-it std::string system_prompt = ""; for (auto message : chat) { From 139cc621e90b4f61830515c3c124cf35b3d7a6dc Mon Sep 17 00:00:00 2001 From: Olivier Chafik Date: Fri, 28 Jun 2024 09:26:45 +0100 Subject: [PATCH 14/38] `json`: restore default additionalProperties to false, fix some pattern escapes (#8180) * json: expand ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS charset * json: revert default of additionalProperties to false * Update README.md --- common/json-schema-to-grammar.cpp | 4 +- examples/json_schema_to_grammar.py | 6 +-- .../server/public/json-schema-to-grammar.mjs | 4 +- grammars/README.md | 37 ++++++++++++------ tests/test-grammar-integration.cpp | 39 ++++++++++++++++++- tests/test-json-schema-to-grammar.cpp | 31 ++------------- 6 files changed, 73 insertions(+), 48 deletions(-) diff --git a/common/json-schema-to-grammar.cpp b/common/json-schema-to-grammar.cpp index 2f233e2e7..881eb49e3 100644 --- a/common/json-schema-to-grammar.cpp +++ b/common/json-schema-to-grammar.cpp @@ -316,7 +316,7 @@ std::unordered_map GRAMMAR_LITERAL_ESCAPES = { }; std::unordered_set NON_LITERAL_SET = {'|', '.', '(', ')', '[', ']', '{', '}', '*', '+', '?'}; -std::unordered_set ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS = {'[', ']', '(', ')', '|', '{', '}', '*', '+', '?'}; +std::unordered_set ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS = {'^', '$', '.', '[', ']', '(', ')', '|', '{', '}', '*', '+', '?'}; template std::string join(Iterator begin, Iterator end, const std::string & separator) { @@ -720,7 +720,7 @@ private: } prop_names.push_back(prop_name); } - if (!(additional_properties.is_boolean() && !additional_properties.get())) { + if ((additional_properties.is_boolean() && additional_properties.get()) || additional_properties.is_object()) { std::string sub_name = name + (name.empty() ? "" : "-") + "additional"; std::string value_rule = additional_properties.is_object() ? visit(additional_properties, sub_name + "-value") diff --git a/examples/json_schema_to_grammar.py b/examples/json_schema_to_grammar.py index 92f6e3d47..072a230f7 100755 --- a/examples/json_schema_to_grammar.py +++ b/examples/json_schema_to_grammar.py @@ -231,7 +231,7 @@ GRAMMAR_RANGE_LITERAL_ESCAPE_RE = re.compile(r'[\r\n"\]\-\\]') GRAMMAR_LITERAL_ESCAPES = {'\r': '\\r', '\n': '\\n', '"': '\\"', '-': '\\-', ']': '\\]'} NON_LITERAL_SET = set('|.()[]{}*+?') -ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS = set('[]()|{}*+?') +ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS = set('^$.[]()|{}*+?') class SchemaConverter: @@ -602,7 +602,7 @@ class SchemaConverter: else: add_component(t, is_required=True) - return self._add_rule(rule_name, self._build_object_rule(properties, required, hybrid_name, additional_properties=[])) + return self._add_rule(rule_name, self._build_object_rule(properties, required, hybrid_name, additional_properties=None)) elif schema_type in (None, 'array') and ('items' in schema or 'prefixItems' in schema): items = schema.get('items') or schema['prefixItems'] @@ -691,7 +691,7 @@ class SchemaConverter: required_props = [k for k in sorted_props if k in required] optional_props = [k for k in sorted_props if k not in required] - if additional_properties != False: + if additional_properties is not None and additional_properties != False: sub_name = f'{name}{"-" if name else ""}additional' value_rule = self.visit(additional_properties, f'{sub_name}-value') if isinstance(additional_properties, dict) else \ self._add_primitive('value', PRIMITIVE_RULES['value']) diff --git a/examples/server/public/json-schema-to-grammar.mjs b/examples/server/public/json-schema-to-grammar.mjs index 06d76edde..7267f3f9c 100644 --- a/examples/server/public/json-schema-to-grammar.mjs +++ b/examples/server/public/json-schema-to-grammar.mjs @@ -259,7 +259,7 @@ const GRAMMAR_RANGE_LITERAL_ESCAPE_RE = /[\n\r"\]\-\\]/g; const GRAMMAR_LITERAL_ESCAPES = { '\r': '\\r', '\n': '\\n', '"': '\\"', '-': '\\-', ']': '\\]' }; const NON_LITERAL_SET = new Set('|.()[]{}*+?'); -const ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS = new Set('[]()|{}*+?'); +const ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS = new Set('^$.[]()|{}*+?'); export class SchemaConverter { constructor(options) { @@ -751,7 +751,7 @@ export class SchemaConverter { const requiredProps = sortedProps.filter(k => required.has(k)); const optionalProps = sortedProps.filter(k => !required.has(k)); - if (additionalProperties !== false) { + if (additionalProperties) { const subName = `${name ?? ''}${name ? '-' : ''}additional`; const valueRule = additionalProperties != null && typeof additionalProperties === 'object' ? this.visit(additionalProperties, `${subName}-value`) diff --git a/grammars/README.md b/grammars/README.md index 40f666240..886023f77 100644 --- a/grammars/README.md +++ b/grammars/README.md @@ -182,6 +182,8 @@ space ::= | " " | "\n" [ \t]{0,20} Here is also a list of known limitations (contributions welcome): +- `additionalProperties` defaults to `false` (produces faster grammars + reduces hallucinations). +- `"additionalProperties": true` may produce keys that contain unescaped newlines. - Unsupported features are skipped silently. It is currently advised to use the command-line Python converter (see above) to see any warnings, and to inspect the resulting grammar / test it w/ [llama-gbnf-validator](../examples/gbnf-validator/gbnf-validator.cpp). - Can't mix `properties` w/ `anyOf` / `oneOf` in the same type (https://github.com/ggerganov/llama.cpp/issues/7703) - [prefixItems](https://json-schema.org/draft/2020-12/json-schema-core#name-prefixitems) is broken (but [items](https://json-schema.org/draft/2020-12/json-schema-core#name-items) works) @@ -203,10 +205,11 @@ And a non-exhaustive list of other unsupported features that are unlikely to be ### A word about additionalProperties > [!WARNING] -> By default, `object`s accept [additional properties](https://json-schema.org/understanding-json-schema/reference/object#additionalproperties), which you might not want / not expect, and which will make sampling slower (not just because of the extra tokens, but also generates a slower grammar). -> You can set `"additionalProperties": false` on the schema of any object to ensure only properties listed in `properties` are generated (not needed for non-`object` types, e.g. `array` or `string`). +> The JSON schemas spec states `object`s accept [additional properties](https://json-schema.org/understanding-json-schema/reference/object#additionalproperties) by default. +> Since this is slow and seems prone to hallucinations, we default to no additional properties. +> You can set `"additionalProperties": true` in the the schema of any object to explicitly allow additional properties. -If you're using [Pydantic](https://pydantic.dev/) to generate schemas, you can disable additional properties with the `extra` config on each model class: +If you're using [Pydantic](https://pydantic.dev/) to generate schemas, you can enable additional properties with the `extra` config on each model class: ```python # pip install pydantic @@ -215,14 +218,14 @@ from typing import Annotated, List from pydantic import BaseModel, Extra, Field class QAPair(BaseModel): class Config: - extra = 'forbid' # triggers additionalProperties: false in the JSON schema + extra = 'allow' # triggers additionalProperties: true in the JSON schema question: str concise_answer: str justification: str class Summary(BaseModel): class Config: - extra = 'forbid' + extra = 'allow' key_facts: List[Annotated[str, Field(pattern='- .{5,}')]] question_answers: List[Annotated[List[QAPair], Field(min_items=5)]] @@ -236,7 +239,7 @@ print(json.dumps(Summary.model_json_schema(), indent=2)) { "$defs": { "QAPair": { - "additionalProperties": false, + "additionalProperties": true, "properties": { "question": { "title": "Question", @@ -260,7 +263,7 @@ print(json.dumps(Summary.model_json_schema(), indent=2)) "type": "object" } }, - "additionalProperties": false, + "additionalProperties": true, "properties": { "key_facts": { "items": { @@ -292,30 +295,40 @@ print(json.dumps(Summary.model_json_schema(), indent=2)) ``` ``` -QAPair ::= "{" space QAPair-question-kv "," space QAPair-concise-answer-kv "," space QAPair-justification-kv "}" space +QAPair ::= "{" space QAPair-question-kv "," space QAPair-concise-answer-kv "," space QAPair-justification-kv ( "," space ( QAPair-additional-kv ( "," space QAPair-additional-kv )* ) )? "}" space +QAPair-additional-k ::= ["] ( [c] ([o] ([n] ([c] ([i] ([s] ([e] ([_] ([a] ([n] ([s] ([w] ([e] ([r] char+ | [^"r] char*) | [^"e] char*) | [^"w] char*) | [^"s] char*) | [^"n] char*) | [^"a] char*) | [^"_] char*) | [^"e] char*) | [^"s] char*) | [^"i] char*) | [^"c] char*) | [^"n] char*) | [^"o] char*) | [j] ([u] ([s] ([t] ([i] ([f] ([i] ([c] ([a] ([t] ([i] ([o] ([n] char+ | [^"n] char*) | [^"o] char*) | [^"i] char*) | [^"t] char*) | [^"a] char*) | [^"c] char*) | [^"i] char*) | [^"f] char*) | [^"i] char*) | [^"t] char*) | [^"s] char*) | [^"u] char*) | [q] ([u] ([e] ([s] ([t] ([i] ([o] ([n] char+ | [^"n] char*) | [^"o] char*) | [^"i] char*) | [^"t] char*) | [^"s] char*) | [^"e] char*) | [^"u] char*) | [^"cjq] char* )? ["] space +QAPair-additional-kv ::= QAPair-additional-k ":" space value QAPair-concise-answer-kv ::= "\"concise_answer\"" space ":" space string QAPair-justification-kv ::= "\"justification\"" space ":" space string QAPair-question-kv ::= "\"question\"" space ":" space string +additional-k ::= ["] ( [k] ([e] ([y] ([_] ([f] ([a] ([c] ([t] ([s] char+ | [^"s] char*) | [^"t] char*) | [^"c] char*) | [^"a] char*) | [^"f] char*) | [^"_] char*) | [^"y] char*) | [^"e] char*) | [q] ([u] ([e] ([s] ([t] ([i] ([o] ([n] ([_] ([a] ([n] ([s] ([w] ([e] ([r] ([s] char+ | [^"s] char*) | [^"r] char*) | [^"e] char*) | [^"w] char*) | [^"s] char*) | [^"n] char*) | [^"a] char*) | [^"_] char*) | [^"n] char*) | [^"o] char*) | [^"i] char*) | [^"t] char*) | [^"s] char*) | [^"e] char*) | [^"u] char*) | [^"kq] char* )? ["] space +additional-kv ::= additional-k ":" space value +array ::= "[" space ( value ("," space value)* )? "]" space +boolean ::= ("true" | "false") space char ::= [^"\\\x7F\x00-\x1F] | [\\] (["\\bfnrt] | "u" [0-9a-fA-F]{4}) +decimal-part ::= [0-9]{1,16} dot ::= [^\x0A\x0D] +integral-part ::= [0] | [1-9] [0-9]{0,15} key-facts ::= "[" space (key-facts-item ("," space key-facts-item)*)? "]" space key-facts-item ::= "\"" "- " key-facts-item-1{5,} "\"" space key-facts-item-1 ::= dot key-facts-kv ::= "\"key_facts\"" space ":" space key-facts +null ::= "null" space +number ::= ("-"? integral-part) ("." decimal-part)? ([eE] [-+]? integral-part)? space +object ::= "{" space ( string ":" space value ("," space string ":" space value)* )? "}" space question-answers ::= "[" space (question-answers-item ("," space question-answers-item)*)? "]" space question-answers-item ::= "[" space question-answers-item-item ("," space question-answers-item-item){4,} "]" space question-answers-item-item ::= QAPair question-answers-kv ::= "\"question_answers\"" space ":" space question-answers -root ::= "{" space key-facts-kv "," space question-answers-kv "}" space +root ::= "{" space key-facts-kv "," space question-answers-kv ( "," space ( additional-kv ( "," space additional-kv )* ) )? "}" space space ::= | " " | "\n" [ \t]{0,20} string ::= "\"" char* "\"" space +value ::= object | array | string | number | boolean | null ``` -If you're using [Zod](https://zod.dev/), you can make your objects explicitly strict w/ `z.object(...).strict()` or `z.strictObject(...)`. - -Note however that [zod-to-json-schema](https://github.com/StefanTerdell/zod-to-json-schema) currently always seems to set `"additionalProperties": false` anyway (even w/ zod schemas on which `nonstrict()` / `passthrough()` was called). +If you're using [Zod](https://zod.dev/), you can make your objects to explicitly allow extra properties w/ `nonstrict()` / `passthrough()` (or explicitly no extra props w/ `z.object(...).strict()` or `z.strictObject(...)`) but note that [zod-to-json-schema](https://github.com/StefanTerdell/zod-to-json-schema) currently always sets `"additionalProperties": false` anyway. ```js import { z } from 'zod'; diff --git a/tests/test-grammar-integration.cpp b/tests/test-grammar-integration.cpp index 0e21dc795..975658f79 100644 --- a/tests/test-grammar-integration.cpp +++ b/tests/test-grammar-integration.cpp @@ -993,6 +993,40 @@ static void test_json_schema() { } ); + test_schema( + "simple pattern", + // Schema + R"""({ + "pattern": "^[a-zA-Z0-9_-]*$" + })""", + // Passing strings + { + R"""("")""", + R"""("He_llo-12")""", + }, + // Failing strings + { + R"""("!")""", + R"""("Hello World")""", + } + ); + + test_schema( + "pattern with escapes", + // Schema + R"""({ + "pattern": "^a\\^\\$\\.\\[\\]\\(\\)\\|\\{\\}\\*\\+\\?b$" + })""", + // Passing strings + { + R"""("a^$.[]()|{}*+?b")""", + }, + // Failing strings + { + R"""("ab")""", + } + ); + test_schema( "", // Schema @@ -1062,8 +1096,6 @@ static void test_json_schema() { R"""({ "number": 1600, "street_name": "Pennsylvania" })""", // "By extension, even an empty object is valid" R"""({})""", - // "By default, providing additional properties is valid" - R"""({ "number": 1600, "street_name": "Pennsylvania", "street_type":"Avenue", "direction":"NW"})""", R"""({ "number": 1600, "street_name": "Pennsylvania", "street_type": "Avenue" })""", }, // Failing strings @@ -1074,6 +1106,9 @@ static void test_json_schema() { R"""({ "street_name": "Pennsylvania", "number": 1600 })""", // Reorder properties R"""({ "number": "1600", "street_name": "Pennsylvania", "street_type":"Avenue"})""", + // "Additional properties default to false for generation, even though the spec says true. + R"""({ "number": 1600, "street_name": "Pennsylvania", "street_type":"Avenue", "direction":"NW"})""", + } ); diff --git a/tests/test-json-schema-to-grammar.cpp b/tests/test-json-schema-to-grammar.cpp index 3aaa11833..720a949c7 100755 --- a/tests/test-json-schema-to-grammar.cpp +++ b/tests/test-json-schema-to-grammar.cpp @@ -1120,28 +1120,15 @@ static void test_all(const std::string & lang, std::function Date: Fri, 28 Jun 2024 12:37:45 +0200 Subject: [PATCH 15/38] cmake : allow user to override default options (#8178) --- CMakeLists.txt | 11 +++++++++-- 1 file changed, 9 insertions(+), 2 deletions(-) diff --git a/CMakeLists.txt b/CMakeLists.txt index dba083089..e3a0cc369 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -79,8 +79,15 @@ set(GGML_SANITIZE_ADDRESS ${LLAMA_SANITIZE_ADDRESS}) set(GGML_SANITIZE_UNDEFINED ${LLAMA_SANITIZE_UNDEFINED}) set(GGML_ALL_WARNINGS ${LLAMA_ALL_WARNINGS}) set(GGML_FATAL_WARNINGS ${LLAMA_FATAL_WARNINGS}) -set(GGML_LLAMAFILE ON) -set(GGML_CUDA_USE_GRAPHS ON) + +# change the default for these ggml options +if (NOT DEFINED GGML_LLAMAFILE) + set(GGML_LLAMAFILE ON) +endif() + +if (NOT DEFINED GGML_CUDA_USE_GRAPHS) + set(GGML_CUDA_USE_GRAPHS ON) +endif() # transition helpers function (llama_option_depr TYPE OLD NEW) From 38373cfbab5397cc2ab5c3694a3dee12a9e58f45 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Sigbj=C3=B8rn=20Skj=C3=A6ret?= Date: Fri, 28 Jun 2024 12:53:43 +0200 Subject: [PATCH 16/38] Add SPM infill support (#8016) * add --spm-infill option * support --spm-infill * support --spm-infill --- common/common.cpp | 6 ++++++ common/common.h | 2 ++ examples/infill/README.md | 1 + examples/infill/infill.cpp | 24 +++++++++++++----------- examples/server/README.md | 1 + examples/server/server.cpp | 16 +++++++++++----- 6 files changed, 34 insertions(+), 16 deletions(-) diff --git a/common/common.cpp b/common/common.cpp index 57d03a578..6a00d25be 100644 --- a/common/common.cpp +++ b/common/common.cpp @@ -1026,6 +1026,10 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa params.input_suffix = argv[i]; return true; } + if (arg == "--spm-infill") { + params.spm_infill = true; + return true; + } if (arg == "--grammar") { CHECK_ARG sparams.grammar = argv[i]; @@ -1409,6 +1413,8 @@ void gpt_params_print_usage(int /*argc*/, char ** argv, const gpt_params & param options.push_back({ "main infill", " --in-prefix-bos", "prefix BOS to user inputs, preceding the `--in-prefix` string" }); options.push_back({ "main infill", " --in-prefix STRING", "string to prefix user inputs with (default: empty)" }); options.push_back({ "main infill", " --in-suffix STRING", "string to suffix after user inputs with (default: empty)" }); + options.push_back({ "server infill", + " --spm-infill", "use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this. (default: %s)", params.spm_infill ? "enabled" : "disabled" }); options.push_back({ "sampling" }); options.push_back({ "*", " --samplers SAMPLERS", "samplers that will be used for generation in the order, separated by \';\'\n" diff --git a/common/common.h b/common/common.h index 0486ba380..d6cb814b9 100644 --- a/common/common.h +++ b/common/common.h @@ -250,6 +250,8 @@ struct gpt_params { std::string cvector_outfile = "control_vector.gguf"; std::string cvector_positive_file = "examples/cvector-generator/positive.txt"; std::string cvector_negative_file = "examples/cvector-generator/negative.txt"; + + bool spm_infill = false; // suffix/prefix/middle pattern for infill }; void gpt_params_handle_model_default(gpt_params & params); diff --git a/examples/infill/README.md b/examples/infill/README.md index 74f42d2fc..810a0c5e7 100644 --- a/examples/infill/README.md +++ b/examples/infill/README.md @@ -15,6 +15,7 @@ In this section, we cover the most commonly used options for running the `infill - `-i, --interactive`: Run the program in interactive mode, allowing you to provide input directly and receive real-time responses. - `-n N, --n-predict N`: Set the number of tokens to predict when generating text. Adjusting this value can influence the length of the generated text. - `-c N, --ctx-size N`: Set the size of the prompt context. The default is 512, but LLaMA models were built with a context of 2048, which will provide better results for longer input/inference. +- `--spm-infill`: Use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this. ## Input Prompts diff --git a/examples/infill/infill.cpp b/examples/infill/infill.cpp index 3e82e4a81..ca71dd687 100644 --- a/examples/infill/infill.cpp +++ b/examples/infill/infill.cpp @@ -210,6 +210,7 @@ int main(int argc, char ** argv) { suff_rm_leading_spc = false; } std::vector embd_inp; + std::vector embd_end; std::vector inp_pfx = ::llama_tokenize(ctx, params.input_prefix, false); std::vector inp_sfx = ::llama_tokenize(ctx, params.input_suffix, false); const int space_token = 29871; @@ -217,12 +218,13 @@ int main(int argc, char ** argv) { inp_sfx.erase(inp_sfx.begin()); } inp_pfx.insert(inp_pfx.begin(), llama_token_prefix(model)); - if (add_bos) { - inp_pfx.insert(inp_pfx.begin(), llama_token_bos(model)); - } inp_sfx.insert(inp_sfx.begin(), llama_token_suffix(model)); - embd_inp = inp_pfx; - embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end()); + embd_inp = params.spm_infill ? inp_sfx : inp_pfx; + embd_end = params.spm_infill ? inp_pfx : inp_sfx; + if (add_bos) { + embd_inp.insert(embd_inp.begin(), llama_token_bos(model)); + } + embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end()); const llama_token middle_token = llama_token_middle(model); if (middle_token >= 0) { @@ -526,14 +528,14 @@ int main(int argc, char ** argv) { inp_sfx.erase(inp_sfx.begin()); } inp_pfx.insert(inp_pfx.begin(), llama_token_prefix(model)); - if (add_bos) { - inp_pfx.insert(inp_pfx.begin(), llama_token_bos(model)); - } inp_sfx.insert(inp_sfx.begin(), llama_token_suffix(model)); - embd_inp = inp_pfx; - embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end()); + embd_inp = params.spm_infill ? inp_sfx : inp_pfx; + embd_end = params.spm_infill ? inp_pfx : inp_sfx; + if (add_bos) { + embd_inp.insert(embd_inp.begin(), llama_token_bos(model)); + } + embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end()); - const llama_token middle_token = llama_token_middle(model); if (middle_token >= 0) { embd_inp.push_back(middle_token); } diff --git a/examples/server/README.md b/examples/server/README.md index e7fb0bf64..4fab006bb 100644 --- a/examples/server/README.md +++ b/examples/server/README.md @@ -73,6 +73,7 @@ The project is under active development, and we are [looking for feedback and co - `-fa`, `--flash-attn` : enable flash attention (default: disabled). - `-ctk TYPE`, `--cache-type-k TYPE` : KV cache data type for K (default: `f16`, options `f32`, `f16`, `q8_0`, `q4_0`, `q4_1`, `iq4_nl`, `q5_0`, or `q5_1`) - `-ctv TYPE`, `--cache-type-v TYPE` : KV cache type for V (default `f16`, see `-ctk` for options) +- `--spm-infill` : Use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this. **If compiled with `LLAMA_SERVER_SSL=ON`** - `--ssl-key-file FNAME`: path to file a PEM-encoded SSL private key diff --git a/examples/server/server.cpp b/examples/server/server.cpp index ae768097b..d7fb61812 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -2020,6 +2020,7 @@ struct server_context { slot.t_start_generation = 0; if (slot.infill) { + const bool add_bos = llama_should_add_bos_token(model); bool suff_rm_leading_spc = true; if (params.input_suffix.find_first_of(' ') == 0 && params.input_suffix.size() > 1) { params.input_suffix.erase(0, 1); @@ -2035,16 +2036,21 @@ struct server_context { } prefix_tokens.insert(prefix_tokens.begin(), llama_token_prefix(model)); - prefix_tokens.insert(prefix_tokens.begin(), llama_token_bos(model)); // always add BOS - prefix_tokens.insert(prefix_tokens.end(), llama_token_suffix(model)); - prefix_tokens.insert(prefix_tokens.end(), suffix_tokens.begin(), suffix_tokens.end()); + suffix_tokens.insert(suffix_tokens.begin(), llama_token_suffix(model)); + + auto embd_inp = params.spm_infill ? suffix_tokens : prefix_tokens; + auto embd_end = params.spm_infill ? prefix_tokens : suffix_tokens; + if (add_bos) { + embd_inp.insert(embd_inp.begin(), llama_token_bos(model)); + } + embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end()); const llama_token middle_token = llama_token_middle(model); if (middle_token >= 0) { - prefix_tokens.push_back(middle_token); + embd_inp.push_back(middle_token); } - prompt_tokens = prefix_tokens; + prompt_tokens = embd_inp; } else { prompt_tokens = tokenize(slot.prompt, system_prompt.empty()); // add BOS if there isn't system prompt } From 26a39bbd6b0bbd66118bb68569f0276d7fe7df6c Mon Sep 17 00:00:00 2001 From: Xuan Son Nguyen Date: Fri, 28 Jun 2024 15:11:44 +0200 Subject: [PATCH 17/38] Add MiniCPM, Deepseek V2 chat template + clean up `llama_chat_apply_template_internal` (#8172) * tmp_contains * minicpm chat template * add DeepSeek Lite template * change deepseek-lite to deepseek2 * correct code comment * correct code from master branch --- src/llama.cpp | 64 ++++++++++++++++++++++++++---------- tests/test-chat-template.cpp | 10 +++++- 2 files changed, 56 insertions(+), 18 deletions(-) diff --git a/src/llama.cpp b/src/llama.cpp index 988ed4fdf..3edaa98e8 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -19613,7 +19613,10 @@ static int32_t llama_chat_apply_template_internal( std::string & dest, bool add_ass) { // Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527 std::stringstream ss; - if (tmpl == "chatml" || tmpl.find("<|im_start|>") != std::string::npos) { + auto tmpl_contains = [&tmpl](std::string haystack) -> bool { + return tmpl.find(haystack) != std::string::npos; + }; + if (tmpl == "chatml" || tmpl_contains("<|im_start|>")) { // chatml template for (auto message : chat) { ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n"; @@ -19621,16 +19624,16 @@ static int32_t llama_chat_apply_template_internal( if (add_ass) { ss << "<|im_start|>assistant\n"; } - } else if (tmpl == "llama2" || tmpl == "mistral" || tmpl.find("[INST]") != std::string::npos) { + } else if (tmpl == "llama2" || tmpl == "mistral" || tmpl_contains("[INST]")) { // llama2 template and its variants // [variant] support system message - bool support_system_message = tmpl.find("<>") != std::string::npos || tmpl == "mistral"; + bool support_system_message = tmpl_contains("<>") || tmpl == "mistral"; // [variant] space before + after response - bool space_around_response = tmpl.find("' ' + eos_token") != std::string::npos; + bool space_around_response = tmpl_contains("' ' + eos_token"); // [variant] add BOS inside history - bool add_bos_inside_history = tmpl.find("bos_token + '[INST]") != std::string::npos; + bool add_bos_inside_history = tmpl_contains("bos_token + '[INST]"); // [variant] trim spaces from the input message - bool strip_message = tmpl.find("content.strip()") != std::string::npos; + bool strip_message = tmpl_contains("content.strip()"); // construct the prompt bool is_inside_turn = true; // skip BOS at the beginning ss << "[INST] "; @@ -19656,7 +19659,7 @@ static int32_t llama_chat_apply_template_internal( } } // llama2 templates seem to not care about "add_generation_prompt" - } else if (tmpl == "phi3" || (tmpl.find("<|assistant|>") != std::string::npos && tmpl.find("<|end|>") != std::string::npos)) { + } else if (tmpl == "phi3" || (tmpl_contains("<|assistant|>") && tmpl_contains("<|end|>"))) { // Phi 3 for (auto message : chat) { std::string role(message->role); @@ -19665,7 +19668,7 @@ static int32_t llama_chat_apply_template_internal( if (add_ass) { ss << "<|assistant|>\n"; } - } else if (tmpl == "zephyr" || tmpl.find("<|user|>") != std::string::npos) { + } else if (tmpl == "zephyr" || tmpl_contains("<|user|>")) { // zephyr template for (auto message : chat) { ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n"; @@ -19673,7 +19676,7 @@ static int32_t llama_chat_apply_template_internal( if (add_ass) { ss << "<|assistant|>\n"; } - } else if (tmpl == "monarch" || tmpl.find("bos_token + message['role']") != std::string::npos) { + } else if (tmpl == "monarch" || tmpl_contains("bos_token + message['role']")) { // mlabonne/AlphaMonarch-7B template (the is included inside history) for (auto message : chat) { std::string bos = (message == chat.front()) ? "" : ""; // skip BOS for first message @@ -19682,7 +19685,7 @@ static int32_t llama_chat_apply_template_internal( if (add_ass) { ss << "assistant\n"; } - } else if (tmpl == "gemma" || tmpl == "gemma2" || tmpl.find("") != std::string::npos) { + } else if (tmpl == "gemma" || tmpl == "gemma2" || tmpl_contains("")) { // google/gemma-7b-it std::string system_prompt = ""; for (auto message : chat) { @@ -19704,7 +19707,7 @@ static int32_t llama_chat_apply_template_internal( if (add_ass) { ss << "model\n"; } - } else if (tmpl == "orion" || tmpl.find("'\\n\\nAssistant: ' + eos_token") != std::string::npos) { + } else if (tmpl == "orion" || tmpl_contains("'\\n\\nAssistant: ' + eos_token")) { // OrionStarAI/Orion-14B-Chat std::string system_prompt = ""; for (auto message : chat) { @@ -19724,7 +19727,7 @@ static int32_t llama_chat_apply_template_internal( ss << message->content << ""; } } - } else if (tmpl == "openchat" || tmpl.find("GPT4 Correct ") != std::string::npos) { + } else if (tmpl == "openchat" || tmpl_contains("GPT4 Correct ")) { // openchat/openchat-3.5-0106, for (auto message : chat) { std::string role(message->role); @@ -19738,13 +19741,13 @@ static int32_t llama_chat_apply_template_internal( if (add_ass) { ss << "GPT4 Correct Assistant:"; } - } else if (tmpl == "vicuna" || tmpl == "vicuna-orca" || (tmpl.find("USER: ") != std::string::npos && tmpl.find("ASSISTANT: ") != std::string::npos)) { + } else if (tmpl == "vicuna" || tmpl == "vicuna-orca" || (tmpl_contains("USER: ") && tmpl_contains("ASSISTANT: "))) { // eachadea/vicuna-13b-1.1 (and Orca variant) for (auto message : chat) { std::string role(message->role); if (role == "system") { // Orca-Vicuna variant uses a system prefix - if (tmpl == "vicuna-orca" || tmpl.find("SYSTEM: ") != std::string::npos) { + if (tmpl == "vicuna-orca" || tmpl_contains("SYSTEM: ")) { ss << "SYSTEM: " << message->content << "\n"; } else { ss << message->content << "\n\n"; @@ -19758,7 +19761,7 @@ static int32_t llama_chat_apply_template_internal( if (add_ass) { ss << "ASSISTANT:"; } - } else if (tmpl == "deepseek" || (tmpl.find("### Instruction:") != std::string::npos && tmpl.find("<|EOT|>") != std::string::npos)) { + } else if (tmpl == "deepseek" || (tmpl_contains("### Instruction:") && tmpl_contains("<|EOT|>"))) { // deepseek-ai/deepseek-coder-33b-instruct for (auto message : chat) { std::string role(message->role); @@ -19773,7 +19776,7 @@ static int32_t llama_chat_apply_template_internal( if (add_ass) { ss << "### Response:\n"; } - } else if (tmpl == "command-r" || (tmpl.find("<|START_OF_TURN_TOKEN|>") != std::string::npos && tmpl.find("<|USER_TOKEN|>") != std::string::npos)) { + } else if (tmpl == "command-r" || (tmpl_contains("<|START_OF_TURN_TOKEN|>") && tmpl_contains("<|USER_TOKEN|>"))) { // CohereForAI/c4ai-command-r-plus for (auto message : chat) { std::string role(message->role); @@ -19788,7 +19791,7 @@ static int32_t llama_chat_apply_template_internal( if (add_ass) { ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>"; } - } else if (tmpl == "llama3" || (tmpl.find("<|start_header_id|>") != std::string::npos && tmpl.find("<|end_header_id|>") != std::string::npos)) { + } else if (tmpl == "llama3" || (tmpl_contains("<|start_header_id|>") && tmpl_contains("<|end_header_id|>"))) { // Llama 3 for (auto message : chat) { std::string role(message->role); @@ -19797,6 +19800,33 @@ static int32_t llama_chat_apply_template_internal( if (add_ass) { ss << "<|start_header_id|>assistant<|end_header_id|>\n\n"; } + } else if (tmpl == "minicpm" || tmpl_contains(u8"<用户>")) { + // MiniCPM-3B-OpenHermes-2.5-v2-GGUF + for (auto message : chat) { + std::string role(message->role); + if (role == "user") { + ss << u8"<用户>"; + ss << trim(message->content); + ss << ""; + } else { + ss << trim(message->content); + } + } + } else if (tmpl == "deepseek2" || tmpl_contains("'Assistant: ' + message['content'] + eos_token")) { + // DeepSeek-V2 + for (auto message : chat) { + std::string role(message->role); + if (role == "system") { + ss << message->content << "\n\n"; + } else if (role == "user") { + ss << "User: " << message->content << "\n\n"; + } else if (role == "assistant") { + ss << "Assistant: " << message->content << u8"<|end▁of▁sentence|>"; + } + } + if (add_ass) { + ss << "Assistant:"; + } } else { // template not supported return -1; diff --git a/tests/test-chat-template.cpp b/tests/test-chat-template.cpp index d19ba8633..b154038b2 100644 --- a/tests/test-chat-template.cpp +++ b/tests/test-chat-template.cpp @@ -57,7 +57,11 @@ int main(void) { //Phi-3-medium "{% for message in messages %}{% if (message['role'] == 'user') %}{{'<|user|>' + '\n' + message['content'] + '<|end|>' + '\n' + '<|assistant|>' + '\n'}}{% elif (message['role'] == 'assistant') %}{{message['content'] + '<|end|>' + '\n'}}{% endif %}{% endfor %}", //Phi-3-vision - "{% for message in messages %}{{'<|' + message['role'] + '|>' + '\n' + message['content'] + '<|end|>\n' }}{% endfor %}{% if add_generation_prompt and messages[-1]['role'] != 'assistant' %}{{- '<|assistant|>\n' -}}{% endif %}" + "{% for message in messages %}{{'<|' + message['role'] + '|>' + '\n' + message['content'] + '<|end|>\n' }}{% endfor %}{% if add_generation_prompt and messages[-1]['role'] != 'assistant' %}{{- '<|assistant|>\n' -}}{% endif %}", + // MiniCPM-3B-OpenHermes-2.5-v2-GGUF + u8"{% for message in messages %}{% if message['role'] == 'user' %}{{'<用户>' + message['content'].strip() + ''}}{% else %}{{message['content'].strip()}}{% endif %}{% endfor %}", + // DeepSeek-V2 + "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{{ bos_token }}{% for message in messages %}{% if message['role'] == 'user' %}{{ 'User: ' + message['content'] + '\n\n' }}{% elif message['role'] == 'assistant' %}{{ 'Assistant: ' + message['content'] + eos_token }}{% elif message['role'] == 'system' %}{{ message['content'] + '\n\n' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ 'Assistant:' }}{% endif %}", }; std::vector expected_output = { // teknium/OpenHermes-2.5-Mistral-7B @@ -94,6 +98,10 @@ int main(void) { "<|system|>\nYou are a helpful assistant<|end|>\n<|user|>\nHello<|end|>\n<|assistant|>\nHi there<|end|>\n<|user|>\nWho are you<|end|>\n<|assistant|>\n I am an assistant <|end|>\n<|user|>\nAnother question<|end|>\n<|assistant|>\n", //Phi-3-vision "<|system|>\nYou are a helpful assistant<|end|>\n<|user|>\nHello<|end|>\n<|assistant|>\nHi there<|end|>\n<|user|>\nWho are you<|end|>\n<|assistant|>\n I am an assistant <|end|>\n<|user|>\nAnother question<|end|>\n<|assistant|>\n", + // MiniCPM-3B-OpenHermes-2.5-v2-GGUF + u8"You are a helpful assistant<用户>HelloHi there<用户>Who are youI am an assistant<用户>Another question", + // DeepSeek-V2 + u8"You are a helpful assistant\n\nUser: Hello\n\nAssistant: Hi there<|end▁of▁sentence|>User: Who are you\n\nAssistant: I am an assistant <|end▁of▁sentence|>User: Another question\n\nAssistant:", }; std::vector formatted_chat(1024); int32_t res; From 8748d8ac6f172b99826ab18f01d9a3a165987d54 Mon Sep 17 00:00:00 2001 From: Olivier Chafik Date: Fri, 28 Jun 2024 18:02:05 +0100 Subject: [PATCH 18/38] json: attempt to skip slow tests when running under emulator (#8189) --- .github/workflows/build.yml | 1 + tests/test-json-schema-to-grammar.cpp | 40 +++++++++++++++------------ 2 files changed, 23 insertions(+), 18 deletions(-) diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml index adf67cecc..1e344db6b 100644 --- a/.github/workflows/build.yml +++ b/.github/workflows/build.yml @@ -799,6 +799,7 @@ jobs: 7z x "-o${env:RUNNER_TEMP}" $env:RUNNER_TEMP/sde.tar $sde = $(join-path $env:RUNNER_TEMP sde-external-${env:SDE_VERSION}-win/sde.exe) cd build + $env:LLAMA_SKIP_TESTS_SLOW_ON_EMULATOR = 1 & $sde -future -- ctest -L main -C Release --verbose --timeout 900 - name: Determine tag name diff --git a/tests/test-json-schema-to-grammar.cpp b/tests/test-json-schema-to-grammar.cpp index 720a949c7..65486ac5c 100755 --- a/tests/test-json-schema-to-grammar.cpp +++ b/tests/test-json-schema-to-grammar.cpp @@ -1239,26 +1239,30 @@ int main() { } }); - if (getenv("LLAMA_PYTHON_AVAILABLE") || (std::system("python -c \"import sys; exit(1) if sys.version_info < (3, 8) else print('Python version is sufficient')\"") == 0)) { - test_all("Python", [](const TestCase & tc) { - write("test-json-schema-input.tmp", tc.schema); - tc.verify_status(std::system( - "python ./examples/json_schema_to_grammar.py test-json-schema-input.tmp > test-grammar-output.tmp") == 0 ? SUCCESS : FAILURE); - tc.verify(read("test-grammar-output.tmp")); - }); + if (getenv("LLAMA_SKIP_TESTS_SLOW_ON_EMULATOR")) { + fprintf(stderr, "\033[33mWARNING: Skipping slow tests on emulator.\n\033[0m"); } else { - fprintf(stderr, "\033[33mWARNING: Python not found (min version required is 3.8), skipping Python JSON schema -> grammar tests.\n\033[0m"); - } + if (getenv("LLAMA_PYTHON_AVAILABLE") || (std::system("python -c \"import sys; exit(1) if sys.version_info < (3, 8) else print('Python version is sufficient')\"") == 0)) { + test_all("Python", [](const TestCase & tc) { + write("test-json-schema-input.tmp", tc.schema); + tc.verify_status(std::system( + "python ./examples/json_schema_to_grammar.py test-json-schema-input.tmp > test-grammar-output.tmp") == 0 ? SUCCESS : FAILURE); + tc.verify(read("test-grammar-output.tmp")); + }); + } else { + fprintf(stderr, "\033[33mWARNING: Python not found (min version required is 3.8), skipping Python JSON schema -> grammar tests.\n\033[0m"); + } - if (getenv("LLAMA_NODE_AVAILABLE") || (std::system("node --version") == 0)) { - test_all("JavaScript", [](const TestCase & tc) { - write("test-json-schema-input.tmp", tc.schema); - tc.verify_status(std::system( - "node ./tests/run-json-schema-to-grammar.mjs test-json-schema-input.tmp > test-grammar-output.tmp") == 0 ? SUCCESS : FAILURE); - tc.verify(read("test-grammar-output.tmp")); - }); - } else { - fprintf(stderr, "\033[33mWARNING: Node not found, skipping JavaScript JSON schema -> grammar tests.\n\033[0m"); + if (getenv("LLAMA_NODE_AVAILABLE") || (std::system("node --version") == 0)) { + test_all("JavaScript", [](const TestCase & tc) { + write("test-json-schema-input.tmp", tc.schema); + tc.verify_status(std::system( + "node ./tests/run-json-schema-to-grammar.mjs test-json-schema-input.tmp > test-grammar-output.tmp") == 0 ? SUCCESS : FAILURE); + tc.verify(read("test-grammar-output.tmp")); + }); + } else { + fprintf(stderr, "\033[33mWARNING: Node not found, skipping JavaScript JSON schema -> grammar tests.\n\033[0m"); + } } test_all("Check Expectations Validity", [](const TestCase & tc) { From 72272b83a3878e91251218c981b4c6ec16c33912 Mon Sep 17 00:00:00 2001 From: Xuan Son Nguyen Date: Sat, 29 Jun 2024 00:14:20 +0200 Subject: [PATCH 19/38] fix code typo in llama-cli (#8198) --- examples/main/main.cpp | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/examples/main/main.cpp b/examples/main/main.cpp index cfaf6a6e8..1114073b8 100644 --- a/examples/main/main.cpp +++ b/examples/main/main.cpp @@ -810,7 +810,7 @@ int main(int argc, char ** argv) { is_antiprompt = true; } - chat_add_and_format(model, chat_msgs, "system", assistant_ss.str()); + chat_add_and_format(model, chat_msgs, "assistant", assistant_ss.str()); is_interacting = true; printf("\n"); } From 1c5eba6f8e628fb0a98afb27d8aaeb3b0e136451 Mon Sep 17 00:00:00 2001 From: Andrei Date: Sat, 29 Jun 2024 20:44:08 -0700 Subject: [PATCH 20/38] llama: Add attention and final logit soft-capping, update scaling factor to Gemma2 (#8197) * Add attention and final logit softcapping. * fix * Add custom add_ functions * Disable flash attention for Gemma2 * Update src/llama.cpp Co-authored-by: slaren * Add default value for attention and final logit softcap value * Add custom kq scaling from Gemma2Attention * Remove custom pre attention scaling and use computed value instead. --------- Co-authored-by: slaren --- convert-hf-to-gguf.py | 6 ++++++ gguf-py/gguf/constants.py | 2 ++ gguf-py/gguf/gguf_writer.py | 6 ++++++ src/llama.cpp | 35 ++++++++++++++++++++++++++++++++--- 4 files changed, 46 insertions(+), 3 deletions(-) diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py index 5bcc849db..3ef2f69e7 100755 --- a/convert-hf-to-gguf.py +++ b/convert-hf-to-gguf.py @@ -2363,6 +2363,12 @@ class Gemma2Model(Model): self.gguf_writer.add_key_length(hparams["head_dim"]) self.gguf_writer.add_value_length(hparams["head_dim"]) self.gguf_writer.add_file_type(self.ftype) + self.gguf_writer.add_attn_logit_softcapping( + self.hparams["attn_logit_softcapping"] + ) + self.gguf_writer.add_final_logit_softcapping( + self.hparams["final_logit_softcapping"] + ) def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: del bid # unusem diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py index cf3d09e70..9bfa891d5 100644 --- a/gguf-py/gguf/constants.py +++ b/gguf-py/gguf/constants.py @@ -50,6 +50,8 @@ class Keys: POOLING_TYPE = "{arch}.pooling_type" LOGIT_SCALE = "{arch}.logit_scale" DECODER_START_TOKEN_ID = "{arch}.decoder_start_token_id" + ATTN_LOGIT_SOFTCAPPING = "{arch}.attn_logit_softcapping" + FINAL_LOGIT_SOFTCAPPING = "{arch}.final_logit_softcapping" class Attention: HEAD_COUNT = "{arch}.attention.head_count" diff --git a/gguf-py/gguf/gguf_writer.py b/gguf-py/gguf/gguf_writer.py index 9869f6fe3..1aeb0d9b0 100644 --- a/gguf-py/gguf/gguf_writer.py +++ b/gguf-py/gguf/gguf_writer.py @@ -516,6 +516,12 @@ class GGUFWriter: def add_logit_scale(self, value: float) -> None: self.add_float32(Keys.LLM.LOGIT_SCALE.format(arch=self.arch), value) + def add_attn_logit_softcapping(self, value: float) -> None: + self.add_float32(Keys.LLM.ATTN_LOGIT_SOFTCAPPING.format(arch=self.arch), value) + + def add_final_logit_softcapping(self, value: float) -> None: + self.add_float32(Keys.LLM.FINAL_LOGIT_SOFTCAPPING.format(arch=self.arch), value) + def add_expert_count(self, count: int) -> None: self.add_uint32(Keys.LLM.EXPERT_COUNT.format(arch=self.arch), count) diff --git a/src/llama.cpp b/src/llama.cpp index 3edaa98e8..2a4d73856 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -302,6 +302,8 @@ enum llm_kv { LLM_KV_POOLING_TYPE, LLM_KV_LOGIT_SCALE, LLM_KV_DECODER_START_TOKEN_ID, + LLM_KV_ATTN_LOGIT_SOFTCAPPING, + LLM_KV_FINAL_LOGIT_SOFTCAPPING, LLM_KV_ATTENTION_HEAD_COUNT, LLM_KV_ATTENTION_HEAD_COUNT_KV, @@ -392,6 +394,8 @@ static const std::map LLM_KV_NAMES = { { LLM_KV_POOLING_TYPE , "%s.pooling_type" }, { LLM_KV_LOGIT_SCALE, "%s.logit_scale" }, { LLM_KV_DECODER_START_TOKEN_ID, "%s.decoder_start_token_id" }, + { LLM_KV_ATTN_LOGIT_SOFTCAPPING, "%s.attn_logit_softcapping" }, + { LLM_KV_FINAL_LOGIT_SOFTCAPPING, "%s.final_logit_softcapping" }, { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" }, { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" }, @@ -2099,6 +2103,9 @@ struct llama_hparams { float f_norm_eps; float f_norm_rms_eps; + float f_attn_logit_softcapping = 50.0f; + float f_final_logit_softcapping = 30.0f; + float rope_attn_factor = 1.0f; float rope_freq_base_train; float rope_freq_scale_train; @@ -2115,8 +2122,9 @@ struct llama_hparams { float f_max_alibi_bias = 0.0f; float f_logit_scale = 0.0f; - bool causal_attn = true; - bool use_alibi = false; + bool causal_attn = true; + bool use_alibi = false; + bool attn_soft_cap = false; enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE; enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE; @@ -4702,6 +4710,9 @@ static void llm_load_hparams( case LLM_ARCH_GEMMA2: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + ml.get_key(LLM_KV_ATTN_LOGIT_SOFTCAPPING, hparams.f_attn_logit_softcapping, false); + ml.get_key(LLM_KV_FINAL_LOGIT_SOFTCAPPING, hparams.f_final_logit_softcapping, false); + hparams.attn_soft_cap = true; switch (hparams.n_layer) { case 42: model.type = e_model::MODEL_9B; break; @@ -7579,6 +7590,12 @@ static struct ggml_tensor * llm_build_kqv( kq = ggml_scale(ctx, kq, 30); } + if (hparams.attn_soft_cap) { + kq = ggml_scale(ctx, kq, 1.0f / hparams.f_attn_logit_softcapping); + kq = ggml_tanh(ctx, kq); + kq = ggml_scale(ctx, kq, hparams.f_attn_logit_softcapping); + } + kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, hparams.f_max_alibi_bias); cb(kq, "kq_soft_max_ext", il); @@ -11039,7 +11056,7 @@ struct llm_build_context { ext_factor, attn_factor, beta_fast, beta_slow); cb(Qcur, "Qcur", il); - Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k))); + Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd / n_head))); cb(Qcur, "Qcur_scaled", il); Kcur = ggml_rope_ext( @@ -11106,6 +11123,12 @@ struct llm_build_context { // lm_head cur = ggml_mul_mat(ctx0, model.output, cur); + + // final logit soft-capping + cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_final_logit_softcapping); + cur = ggml_tanh(ctx0, cur); + cur = ggml_scale(ctx0, cur, hparams.f_final_logit_softcapping); + cb(cur, "result_output", -1); ggml_build_forward_expand(gf, cur); @@ -17379,6 +17402,12 @@ struct llama_context * llama_new_context_with_model( params.flash_attn = false; } + if (params.flash_attn && model->hparams.attn_soft_cap) { + LLAMA_LOG_WARN("%s: flash_attn is not compatible with attn_soft_cap - forcing off\n", __func__); + params.flash_attn = false; + } + + if (params.flash_attn && model->hparams.n_embd_head_k != model->hparams.n_embd_head_v) { LLAMA_LOG_WARN("%s: flash_attn requires n_embd_head_k == n_embd_head_v - forcing off\n", __func__); params.flash_attn = false; From 9ef07800622e4c371605f9419864d15667c3558f Mon Sep 17 00:00:00 2001 From: Xuan Son Nguyen Date: Sun, 30 Jun 2024 20:27:13 +0200 Subject: [PATCH 21/38] Fix new line issue with chat template, disable template when in-prefix/suffix is set (#8203) * preserve new line llama_chat_format_single * disable chat template if in-prefix/suffix is set * remove redundant change --- common/common.cpp | 16 +++++++++++++--- common/common.h | 1 + examples/main/main.cpp | 11 +++++++---- tests/test-chat-template.cpp | 4 ++-- 4 files changed, 23 insertions(+), 9 deletions(-) diff --git a/common/common.cpp b/common/common.cpp index 6a00d25be..5a0d0ee03 100644 --- a/common/common.cpp +++ b/common/common.cpp @@ -1014,16 +1014,19 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa } if (arg == "--in-prefix-bos") { params.input_prefix_bos = true; + params.enable_chat_template = false; return true; } if (arg == "--in-prefix") { CHECK_ARG params.input_prefix = argv[i]; + params.enable_chat_template = false; return true; } if (arg == "--in-suffix") { CHECK_ARG params.input_suffix = argv[i]; + params.enable_chat_template = false; return true; } if (arg == "--spm-infill") { @@ -1406,7 +1409,7 @@ void gpt_params_print_usage(int /*argc*/, char ** argv, const gpt_params & param "halt generation at PROMPT, return control in interactive mode\n" "can be specified more than once for multiple prompts" }); options.push_back({ "main", "-sp, --special", "special tokens output enabled (default: %s)", params.special ? "true" : "false" }); - options.push_back({ "main", "-cnv, --conversation", "run in conversation mode (does not print special tokens and suffix/prefix) (default: %s)", params.conversation ? "true" : "false" }); + options.push_back({ "main", "-cnv, --conversation", "run in conversation mode (does not print special tokens and suffix/prefix, use default chat template) (default: %s)", params.conversation ? "true" : "false" }); options.push_back({ "main infill", "-i, --interactive", "run in interactive mode (default: %s)", params.interactive ? "true" : "false" }); options.push_back({ "main infill", "-if, --interactive-first", "run in interactive mode and wait for input right away (default: %s)", params.interactive_first ? "true" : "false" }); options.push_back({ "main infill", "-mli, --multiline-input", "allows you to write or paste multiple lines without ending each in '\\'" }); @@ -2668,12 +2671,19 @@ std::string llama_chat_format_single(const struct llama_model * model, const std::vector & past_msg, const llama_chat_msg & new_msg, bool add_ass) { + std::ostringstream ss; auto fmt_past_msg = llama_chat_apply_template(model, tmpl, past_msg, false); std::vector chat_new(past_msg); + // if the past_msg ends with a newline, we must preserve it in the formatted version + if (add_ass && !fmt_past_msg.empty() && fmt_past_msg.back() == '\n') { + ss << "\n"; + }; + // format chat with new_msg chat_new.push_back(new_msg); auto fmt_new_msg = llama_chat_apply_template(model, tmpl, chat_new, add_ass); - auto formatted = fmt_new_msg.substr(fmt_past_msg.size(), fmt_new_msg.size() - fmt_past_msg.size()); - return formatted; + // get the diff part + ss << fmt_new_msg.substr(fmt_past_msg.size(), fmt_new_msg.size() - fmt_past_msg.size()); + return ss.str(); } std::string llama_chat_format_example(const struct llama_model * model, diff --git a/common/common.h b/common/common.h index d6cb814b9..627b7ed85 100644 --- a/common/common.h +++ b/common/common.h @@ -200,6 +200,7 @@ struct gpt_params { std::string public_path = ""; std::string chat_template = ""; std::string system_prompt = ""; + bool enable_chat_template = true; std::vector api_keys; diff --git a/examples/main/main.cpp b/examples/main/main.cpp index 1114073b8..d512953b9 100644 --- a/examples/main/main.cpp +++ b/examples/main/main.cpp @@ -261,7 +261,7 @@ int main(int argc, char ** argv) { std::vector embd_inp; { - auto prompt = params.conversation + auto prompt = (params.conversation && params.enable_chat_template) ? chat_add_and_format(model, chat_msgs, "system", params.prompt) // format the system prompt in conversation mode : params.prompt; if (params.interactive_first || !params.prompt.empty() || session_tokens.empty()) { @@ -810,7 +810,9 @@ int main(int argc, char ** argv) { is_antiprompt = true; } - chat_add_and_format(model, chat_msgs, "assistant", assistant_ss.str()); + if (params.enable_chat_template) { + chat_add_and_format(model, chat_msgs, "assistant", assistant_ss.str()); + } is_interacting = true; printf("\n"); } @@ -872,12 +874,13 @@ int main(int argc, char ** argv) { string_process_escapes(buffer); } - std::string user_inp = params.conversation + bool format_chat = params.conversation && params.enable_chat_template; + std::string user_inp = format_chat ? chat_add_and_format(model, chat_msgs, "user", std::move(buffer)) : std::move(buffer); // TODO: one inconvenient of current chat template implementation is that we can't distinguish between user input and special tokens (prefix/postfix) const auto line_pfx = ::llama_tokenize(ctx, params.input_prefix, false, true); - const auto line_inp = ::llama_tokenize(ctx, user_inp, false, params.conversation); + const auto line_inp = ::llama_tokenize(ctx, user_inp, false, format_chat); const auto line_sfx = ::llama_tokenize(ctx, params.input_suffix, false, true); LOG("input tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, line_inp).c_str()); diff --git a/tests/test-chat-template.cpp b/tests/test-chat-template.cpp index b154038b2..03f536910 100644 --- a/tests/test-chat-template.cpp +++ b/tests/test-chat-template.cpp @@ -142,9 +142,9 @@ int main(void) { std::cout << "fmt_single(" << tmpl << ")\n" << output << "\n-------------------------\n"; return output; }; - assert(fmt_single("chatml") == "<|im_start|>user\nHow are you<|im_end|>\n<|im_start|>assistant\n"); + assert(fmt_single("chatml") == "\n<|im_start|>user\nHow are you<|im_end|>\n<|im_start|>assistant\n"); assert(fmt_single("llama2") == "[INST] How are you [/INST]"); - assert(fmt_single("gemma") == "user\nHow are you\nmodel\n"); + assert(fmt_single("gemma") == "\nuser\nHow are you\nmodel\n"); assert(fmt_single("llama3") == "<|start_header_id|>user<|end_header_id|>\n\nHow are you<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"); return 0; From d0a7145ba99ed3a8bc3145aa785b5c86ffe65020 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Mon, 1 Jul 2024 02:09:34 +0300 Subject: [PATCH 22/38] flake.lock: Update (#8218) --- flake.lock | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/flake.lock b/flake.lock index 79bb3f63f..973ff4e56 100644 --- a/flake.lock +++ b/flake.lock @@ -20,11 +20,11 @@ }, "nixpkgs": { "locked": { - "lastModified": 1718895438, - "narHash": "sha256-k3JqJrkdoYwE3fHE6xGDY676AYmyh4U2Zw+0Bwe5DLU=", + "lastModified": 1719506693, + "narHash": "sha256-C8e9S7RzshSdHB7L+v9I51af1gDM5unhJ2xO1ywxNH8=", "owner": "NixOS", "repo": "nixpkgs", - "rev": "d603719ec6e294f034936c0d0dc06f689d91b6c3", + "rev": "b2852eb9365c6de48ffb0dc2c9562591f652242a", "type": "github" }, "original": { From 197fe6c1d7bec6718ce901f0141b2725240f298c Mon Sep 17 00:00:00 2001 From: zhentaoyu Date: Mon, 1 Jul 2024 19:39:06 +0800 Subject: [PATCH 23/38] [SYCL] Update SYCL-Rope op and Refactor (#8157) * align with rope.cu and move sycl-op to a single file --- ggml/src/ggml-sycl.cpp | 305 +-------------------------------- ggml/src/ggml-sycl/backend.hpp | 1 + ggml/src/ggml-sycl/rope.cpp | 275 +++++++++++++++++++++++++++++ ggml/src/ggml-sycl/rope.hpp | 22 +++ 4 files changed, 300 insertions(+), 303 deletions(-) create mode 100644 ggml/src/ggml-sycl/rope.cpp create mode 100644 ggml/src/ggml-sycl/rope.hpp diff --git a/ggml/src/ggml-sycl.cpp b/ggml/src/ggml-sycl.cpp index 4a668a2c3..30d8a5b33 100644 --- a/ggml/src/ggml-sycl.cpp +++ b/ggml/src/ggml-sycl.cpp @@ -978,114 +978,6 @@ static void cpy_f32_q(const char * cx, char * cdst, const int ne, cpy_blck(cx + x_offset, cdst + dst_offset); } -static float rope_yarn_ramp(const float low, const float high, const int i0) { - const float y = (i0 / 2 - low) / sycl::max(0.001f, high - low); - return 1.0f - sycl::min(1.0f, sycl::max(0.0f, y)); -} - -struct rope_corr_dims { - float v[4]; -}; - -// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn -// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng. -static void rope_yarn( - float theta_extrap, float freq_scale, rope_corr_dims corr_dims, int64_t i0, float ext_factor, float mscale, - float * cos_theta, float * sin_theta -) { - // Get n-d rotational scaling corrected for extrapolation - float theta_interp = freq_scale * theta_extrap; - float theta = theta_interp; - if (ext_factor != 0.0f) { - float ramp_mix = rope_yarn_ramp(corr_dims.v[0], corr_dims.v[1], i0) * ext_factor; - theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix; - - // Get n-d magnitude scaling corrected for interpolation - mscale *= 1.0f + 0.1f * sycl::log(1.0f / freq_scale); - } - *cos_theta = sycl::cos(theta) * mscale; - *sin_theta = sycl::sin(theta) * mscale; -} - -// rope == RoPE == rotary positional embedding -template -static void rope( - const T * x, T * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base, - float ext_factor, float attn_factor, rope_corr_dims corr_dims -, - const sycl::nd_item<3> &item_ct1) { - const int col = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) + - item_ct1.get_local_id(1)); - - if (col >= ncols) { - return; - } - - const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) + - item_ct1.get_local_id(2); - const int i = row*ncols + col; - const int i2 = row/p_delta_rows; - - const int p = has_pos ? pos[i2] : 0; - const float theta_base = p * dpct::pow(freq_base, -float(col) / ncols); - - float cos_theta, sin_theta; - rope_yarn(theta_base, freq_scale, corr_dims, col, ext_factor, attn_factor, &cos_theta, &sin_theta); - - const float x0 = x[i + 0]; - const float x1 = x[i + 1]; - - dst[i + 0] = x0*cos_theta - x1*sin_theta; - dst[i + 1] = x0*sin_theta + x1*cos_theta; -} - -template -static void rope_neox( - const T * x, T * dst, int ncols, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows, - float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, float inv_ndims, - const float * freq_factors, const sycl::nd_item<3> &item_ct1) { - const int col = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) + - item_ct1.get_local_id(1)); - - if (col >= ncols) { - return; - } - - const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) + - item_ct1.get_local_id(2); - const int ib = col / n_dims; - const int ic = col % n_dims; - - if (ib > 0) { - const int i = row*ncols + ib*n_dims + ic; - - dst[i + 0] = x[i + 0]; - dst[i + 1] = x[i + 1]; - - return; - } - - const int i = row*ncols + ib*n_dims + ic/2; - const int i2 = row/p_delta_rows; - - float cur_rot = inv_ndims * ic - ib; - - const int p = has_pos ? pos[i2] : 0; - const float freq_factor = has_freq_facs ? freq_factors[ic/2] : 1.0f; - - const float theta_base = - p * freq_scale * dpct::pow(theta_scale, col / 2.0f)/freq_factor; - - float cos_theta, sin_theta; - rope_yarn(theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta); - - const float x0 = x[i + 0]; - const float x1 = x[i + n_dims/2]; - - dst[i + 0] = x0*cos_theta - x1*sin_theta; - dst[i + n_dims/2] = x0*sin_theta + x1*cos_theta; -} - static void k_sum_rows_f32(const float * x, float * dst, const int ncols, const sycl::nd_item<3> &item_ct1) { const int row = item_ct1.get_group(1); @@ -2241,110 +2133,6 @@ static void clamp_f32_sycl(const float *x, float *dst, const float min, }); } -template -static void rope_sycl(const T *x, T *dst, int ncols, int nrows, - const int32_t *pos, float freq_scale, int p_delta_rows, - float freq_base, float ext_factor, float attn_factor, - rope_corr_dims corr_dims, queue_ptr stream) { - GGML_ASSERT(ncols % 2 == 0); - const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1); - const int num_blocks_x = (ncols + 2*SYCL_ROPE_BLOCK_SIZE - 1) / (2*SYCL_ROPE_BLOCK_SIZE); - const sycl::range<3> block_nums(1, num_blocks_x, nrows); - if (pos == nullptr) { - /* - DPCT1049:40: The work-group size passed to the SYCL kernel may exceed - the limit. To get the device limit, query - info::device::max_work_group_size. Adjust the work-group size if needed. - */ - dpct::has_capability_or_fail(stream->get_device(), - {sycl::aspect::fp16}); - - stream->parallel_for( - sycl::nd_range<3>(block_nums * block_dims, block_dims), - [=](sycl::nd_item<3> item_ct1) { - rope(x, dst, ncols, pos, freq_scale, p_delta_rows, - freq_base, ext_factor, attn_factor, corr_dims, - item_ct1); - }); - } else { - /* - DPCT1049:41: The work-group size passed to the SYCL kernel may exceed - the limit. To get the device limit, query - info::device::max_work_group_size. Adjust the work-group size if needed. - */ - dpct::has_capability_or_fail(stream->get_device(), - {sycl::aspect::fp16}); - - stream->parallel_for( - sycl::nd_range<3>(block_nums * block_dims, block_dims), - [=](sycl::nd_item<3> item_ct1) { - rope(x, dst, ncols, pos, freq_scale, p_delta_rows, - freq_base, ext_factor, attn_factor, corr_dims, - item_ct1); - }); - } -} - -template -static void rope_neox_sycl(const T *x, T *dst, int ncols, int n_dims, int nrows, - const int32_t *pos, float freq_scale, - int p_delta_rows, float freq_base, float ext_factor, - float attn_factor, rope_corr_dims corr_dims, - const float * freq_factors, queue_ptr stream) { - GGML_ASSERT(ncols % 2 == 0); - const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1); - const int num_blocks_x = (ncols + 2*SYCL_ROPE_BLOCK_SIZE - 1) / (2*SYCL_ROPE_BLOCK_SIZE); - const sycl::range<3> block_nums(1, num_blocks_x, nrows); - - const float theta_scale = powf(freq_base, -2.0f/n_dims); - const float inv_ndims = -1.0f / n_dims; - - if (pos == nullptr) { - dpct::has_capability_or_fail(stream->get_device(), - {sycl::aspect::fp16}); - if (freq_factors == nullptr) { - stream->parallel_for( - sycl::nd_range<3>(block_nums * block_dims, block_dims), - [=](sycl::nd_item<3> item_ct1) { - rope_neox(x, dst, ncols, n_dims, pos, freq_scale, - p_delta_rows, ext_factor, attn_factor, - corr_dims, theta_scale, inv_ndims, freq_factors, - item_ct1); - }); - } else { - stream->parallel_for( - sycl::nd_range<3>(block_nums * block_dims, block_dims), - [=](sycl::nd_item<3> item_ct1) { - rope_neox(x, dst, ncols, n_dims, pos, freq_scale, - p_delta_rows, ext_factor, attn_factor, - corr_dims, theta_scale, inv_ndims, freq_factors, - item_ct1); - }); - } - } else { - dpct::has_capability_or_fail(stream->get_device(), - {sycl::aspect::fp16}); - - if (freq_factors == nullptr) { - stream->parallel_for( - sycl::nd_range<3>(block_nums * block_dims, block_dims), - [=](sycl::nd_item<3> item_ct1) { - rope_neox(x, dst, ncols, n_dims, pos, freq_scale, - p_delta_rows, ext_factor, attn_factor, - corr_dims, theta_scale, inv_ndims, freq_factors, item_ct1); - }); - } else { - stream->parallel_for( - sycl::nd_range<3>(block_nums * block_dims, block_dims), - [=](sycl::nd_item<3> item_ct1) { - rope_neox(x, dst, ncols, n_dims, pos, freq_scale, - p_delta_rows, ext_factor, attn_factor, - corr_dims, theta_scale, inv_ndims, freq_factors, item_ct1); - }); - } - } -} - static void sum_rows_f32_sycl(const float *x, float *dst, const int ncols, const int nrows, queue_ptr stream) { const sycl::range<3> block_dims(1, 1, WARP_SIZE); @@ -3461,97 +3249,6 @@ catch (sycl::exception const &exc) { std::exit(1); } -inline void ggml_sycl_op_rope(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1, - ggml_tensor *dst, const float *src0_dd, - const float *src1_dd, float *dst_dd, - const queue_ptr &main_stream) { - const ggml_tensor * src2 = dst->src[2]; - - GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); - GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); - GGML_ASSERT(src0->type == dst->type); - - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne2 = dst->ne[2]; - const int64_t nrows = ggml_nrows(src0); - - //const int n_past = ((int32_t *) dst->op_params)[0]; - const int n_dims = ((int32_t *) dst->op_params)[1]; - const int mode = ((int32_t *) dst->op_params)[2]; - //const int n_ctx = ((int32_t *) dst->op_params)[3]; - const int n_ctx_orig = ((int32_t *) dst->op_params)[4]; - - // RoPE alteration for extended context - float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow; - memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float)); - memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float)); - memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float)); - memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float)); - memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float)); - memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float)); - - const float * freq_factors = nullptr; - const int32_t * pos = nullptr; - if ((mode & 1) == 0) { - GGML_ASSERT(src1->type == GGML_TYPE_I32); - GGML_ASSERT(src1->ne[0] == ne2); - pos = (const int32_t *) src1_dd; - } - - const bool is_neox = mode & 2; - -#pragma message("TODO: update rope NORM mode to match NEOX mode") -#pragma message(" https://github.com/ggerganov/llama.cpp/pull/7634") - - if (is_neox) { - pos = (const int32_t *) src1_dd; - - if (src2 != nullptr) { - freq_factors = (const float *) src2->data; - } - } else { - GGML_ASSERT(src2 == nullptr && "TODO: freq_factors not implemented for !is_neox"); - } - - rope_corr_dims corr_dims; - ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims.v); - - // compute - if (is_neox) { - if (src0->type == GGML_TYPE_F32) { - rope_neox_sycl( - (const float *)src0_dd, (float *)dst_dd, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor, - attn_factor, corr_dims, freq_factors, main_stream - ); - } else if (src0->type == GGML_TYPE_F16) { - rope_neox_sycl((const sycl::half *)src0_dd, (sycl::half *)dst_dd, - ne00, n_dims, nrows, pos, freq_scale, ne01, - freq_base, ext_factor, attn_factor, corr_dims, - freq_factors, main_stream); - } else { - GGML_ASSERT(false); - } - } else { - if (src0->type == GGML_TYPE_F32) { - rope_sycl( - (const float *)src0_dd, (float *)dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor, - attn_factor, corr_dims, main_stream - ); - } else if (src0->type == GGML_TYPE_F16) { - rope_sycl((const sycl::half *)src0_dd, (sycl::half *)dst_dd, ne00, - nrows, pos, freq_scale, ne01, freq_base, ext_factor, - attn_factor, corr_dims, main_stream); - } else { - GGML_ASSERT(false); - } - } - - (void) src1; - (void) dst; - (void) src1_dd; -} - static void ggml_sycl_op_pool2d(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst, const float *src0_dd, const float *src1_dd, @@ -6241,7 +5938,9 @@ GGML_CALL static bool ggml_backend_sycl_supports_op(ggml_backend_t backend, cons case GGML_OP_CONT: case GGML_OP_DIAG_MASK_INF: case GGML_OP_SOFT_MAX: + return true; case GGML_OP_ROPE: + return ggml_is_contiguous(op->src[0]); case GGML_OP_IM2COL: case GGML_OP_POOL_2D: case GGML_OP_SUM_ROWS: diff --git a/ggml/src/ggml-sycl/backend.hpp b/ggml/src/ggml-sycl/backend.hpp index 2d37e271f..d5a63cd71 100644 --- a/ggml/src/ggml-sycl/backend.hpp +++ b/ggml/src/ggml-sycl/backend.hpp @@ -19,5 +19,6 @@ #include "dmmv.hpp" #include "mmq.hpp" #include "mmvq.hpp" +#include "rope.hpp" #endif // GGML_SYCL_BACKEND_HPP diff --git a/ggml/src/ggml-sycl/rope.cpp b/ggml/src/ggml-sycl/rope.cpp new file mode 100644 index 000000000..eabf1693e --- /dev/null +++ b/ggml/src/ggml-sycl/rope.cpp @@ -0,0 +1,275 @@ +#include "rope.hpp" + +struct rope_corr_dims { + float v[2]; +}; + +static float rope_yarn_ramp(const float low, const float high, const int i0) { + const float y = (i0 / 2 - low) / sycl::max(0.001f, high - low); + return 1.0f - sycl::min(1.0f, sycl::max(0.0f, y)); +} + +// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn +// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng. +static void rope_yarn( + float theta_extrap, float freq_scale, rope_corr_dims corr_dims, int64_t i0, float ext_factor, float mscale, + float * cos_theta, float * sin_theta) { + // Get n-d rotational scaling corrected for extrapolation + float theta_interp = freq_scale * theta_extrap; + float theta = theta_interp; + if (ext_factor != 0.0f) { + float ramp_mix = rope_yarn_ramp(corr_dims.v[0], corr_dims.v[1], i0) * ext_factor; + theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix; + + // Get n-d magnitude scaling corrected for interpolation + mscale *= 1.0f + 0.1f * sycl::log(1.0f / freq_scale); + } + *cos_theta = sycl::cos(theta) * mscale; + *sin_theta = sycl::sin(theta) * mscale; +} + +template +static void rope_norm( + const T * x, T * dst, int ne0, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows, + float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, const float * freq_factors, + const sycl::nd_item<3> &item_ct1) { + const int i0 = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) + + item_ct1.get_local_id(1)); + + if (i0 >= ne0) { + return; + } + + const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) + + item_ct1.get_local_id(2); + + if (i0 >= n_dims) { + const int i = row*ne0 + i0; + + dst[i + 0] = x[i + 0]; + dst[i + 1] = x[i + 1]; + + return; + } + + const int i = row*ne0 + i0; + const int i2 = row/p_delta_rows; + + const float theta_base = pos[i2]*powf(theta_scale, i0/2.0f); + + const float freq_factor = has_ff ? freq_factors[i0/2] : 1.0f; + + float cos_theta; + float sin_theta; + + rope_yarn(theta_base/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta); + + const float x0 = x[i + 0]; + const float x1 = x[i + 1]; + + dst[i + 0] = x0*cos_theta - x1*sin_theta; + dst[i + 1] = x0*sin_theta + x1*cos_theta; +} + +template +static void rope_neox( + const T * x, T * dst, int ne0, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows, + float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, const float * freq_factors, + const sycl::nd_item<3> &item_ct1) { + const int i0 = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) + + item_ct1.get_local_id(1)); + + if (i0 >= ne0) { + return; + } + + const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) + + item_ct1.get_local_id(2); + + if (i0 >= n_dims) { + const int i = row*ne0 + i0; + + dst[i + 0] = x[i + 0]; + dst[i + 1] = x[i + 1]; + + return; + } + + const int i = row*ne0 + i0/2; + const int i2 = row/p_delta_rows; + + const float theta_base = pos[i2]*powf(theta_scale, i0/2.0f); + + const float freq_factor = has_ff ? freq_factors[i0/2] : 1.0f; + + float cos_theta; + float sin_theta; + + rope_yarn(theta_base/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta); + + const float x0 = x[i + 0]; + const float x1 = x[i + n_dims/2]; + + dst[i + 0] = x0*cos_theta - x1*sin_theta; + dst[i + n_dims/2] = x0*sin_theta + x1*cos_theta; +} + +template +static void rope_norm_sycl( + const T *x, T *dst, int ne0, int n_dims, int nr, const int32_t *pos, float freq_scale, int p_delta_rows, + float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, queue_ptr stream) { + GGML_ASSERT(ne0 % 2 == 0); + const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1); + const int num_blocks_x = (ne0 + 2*SYCL_ROPE_BLOCK_SIZE - 1) / (2*SYCL_ROPE_BLOCK_SIZE); + const sycl::range<3> block_nums(1, num_blocks_x, nr); + + const float theta_scale = powf(freq_base, -2.0f/n_dims); + + dpct::has_capability_or_fail(stream->get_device(), + {sycl::aspect::fp16}); + + if (freq_factors == nullptr) { + /* + DPCT1049:40: The work-group size passed to the SYCL kernel may exceed + the limit. To get the device limit, query + info::device::max_work_group_size. Adjust the work-group size if needed. + */ + stream->parallel_for( + sycl::nd_range<3>(block_nums * block_dims, block_dims), + [=](sycl::nd_item<3> item_ct1) { + rope_norm(x, dst, ne0, n_dims, pos, freq_scale, p_delta_rows, + ext_factor, attn_factor, corr_dims, theta_scale, freq_factors, + item_ct1); + }); + } else { + /* + DPCT1049:41: The work-group size passed to the SYCL kernel may exceed + the limit. To get the device limit, query + info::device::max_work_group_size. Adjust the work-group size if needed. + */ + stream->parallel_for( + sycl::nd_range<3>(block_nums * block_dims, block_dims), + [=](sycl::nd_item<3> item_ct1) { + rope_norm(x, dst, ne0, n_dims, pos, freq_scale, p_delta_rows, + ext_factor, attn_factor, corr_dims, theta_scale, freq_factors, + item_ct1); + }); + } +} + +template +static void rope_neox_sycl( + const T *x, T *dst, int ne0, int n_dims, int nr, const int32_t *pos, float freq_scale, int p_delta_rows, + float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, queue_ptr stream) { + GGML_ASSERT(ne0 % 2 == 0); + const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1); + const int num_blocks_x = (ne0 + 2*SYCL_ROPE_BLOCK_SIZE - 1) / (2*SYCL_ROPE_BLOCK_SIZE); + const sycl::range<3> block_nums(1, num_blocks_x, nr); + + const float theta_scale = powf(freq_base, -2.0f/n_dims); + + dpct::has_capability_or_fail(stream->get_device(), + {sycl::aspect::fp16}); + + if (freq_factors == nullptr) { + stream->parallel_for( + sycl::nd_range<3>(block_nums * block_dims, block_dims), + [=](sycl::nd_item<3> item_ct1) { + rope_neox(x, dst, ne0, n_dims, pos, freq_scale, + p_delta_rows, ext_factor, attn_factor, + corr_dims, theta_scale, freq_factors, + item_ct1); + }); + } else { + stream->parallel_for( + sycl::nd_range<3>(block_nums * block_dims, block_dims), + [=](sycl::nd_item<3> item_ct1) { + rope_neox(x, dst, ne0, n_dims, pos, freq_scale, + p_delta_rows, ext_factor, attn_factor, + corr_dims, theta_scale, freq_factors, + item_ct1); + }); + } +} + +void ggml_sycl_op_rope( + ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst, + const float *src0_dd, const float *src1_dd, float *dst_dd, const queue_ptr &main_stream) { + const ggml_tensor * src2 = dst->src[2]; + + GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); + GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); + GGML_ASSERT(src0->type == dst->type); + + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t nr = ggml_nrows(src0); + + //const int n_past = ((int32_t *) dst->op_params)[0]; + const int n_dims = ((int32_t *) dst->op_params)[1]; + const int mode = ((int32_t *) dst->op_params)[2]; + //const int n_ctx = ((int32_t *) dst->op_params)[3]; + const int n_ctx_orig = ((int32_t *) dst->op_params)[4]; + + // RoPE alteration for extended context + float freq_base; + float freq_scale; + float ext_factor; + float attn_factor; + float beta_fast; + float beta_slow; + + memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float)); + memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float)); + memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float)); + memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float)); + memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float)); + memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float)); + + const bool is_neox = mode & 2; + + const int32_t * pos = (const int32_t *) src1_dd; + + const float * freq_factors = nullptr; + if (src2 != nullptr) { + freq_factors = (const float *) src2->data; + } + + rope_corr_dims corr_dims; + ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims.v); + + // compute + if (is_neox) { + if (src0->type == GGML_TYPE_F32) { + rope_neox_sycl( + (const float *)src0_dd, (float *)dst_dd, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor, + attn_factor, corr_dims, freq_factors, main_stream + ); + } else if (src0->type == GGML_TYPE_F16) { + rope_neox_sycl( + (const sycl::half *)src0_dd, (sycl::half *)dst_dd, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor, + attn_factor, corr_dims, freq_factors, main_stream + ); + } else { + GGML_ASSERT(false); + } + } else { + if (src0->type == GGML_TYPE_F32) { + rope_norm_sycl( + (const float *)src0_dd, (float *)dst_dd, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor, + attn_factor, corr_dims, freq_factors, main_stream + ); + } else if (src0->type == GGML_TYPE_F16) { + rope_norm_sycl( + (const sycl::half *)src0_dd, (sycl::half *)dst_dd, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor, + attn_factor, corr_dims, freq_factors, main_stream + ); + } else { + GGML_ASSERT(false); + } + } + + (void) src1; + (void) dst; + (void) src1_dd; +} diff --git a/ggml/src/ggml-sycl/rope.hpp b/ggml/src/ggml-sycl/rope.hpp new file mode 100644 index 000000000..00354c313 --- /dev/null +++ b/ggml/src/ggml-sycl/rope.hpp @@ -0,0 +1,22 @@ +// +// MIT license +// Copyright (C) 2024 Intel Corporation +// SPDX-License-Identifier: MIT +// + +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// + +#ifndef GGML_SYCL_ROPE_HPP +#define GGML_SYCL_ROPE_HPP + +#include "common.hpp" + +void ggml_sycl_op_rope( + ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst, + const float *src0_dd, const float *src1_dd, float *dst_dd, const queue_ptr &main_stream); + +#endif // GGML_SYCL_ROPE_HPP From 694c59cb42d1ebd6a7d912ca65d3d7363e0f14c9 Mon Sep 17 00:00:00 2001 From: iacore <74560659+iacore@users.noreply.github.com> Date: Mon, 1 Jul 2024 11:40:58 +0000 Subject: [PATCH 24/38] Document BERT support. (#8205) * Update README.md document BERT support * Update README.md --- README.md | 1 + 1 file changed, 1 insertion(+) diff --git a/README.md b/README.md index 99b16f6e2..153d837e3 100644 --- a/README.md +++ b/README.md @@ -108,6 +108,7 @@ Typically finetunes of the base models below are supported as well. - [X] [Falcon](https://huggingface.co/models?search=tiiuae/falcon) - [X] [Chinese LLaMA / Alpaca](https://github.com/ymcui/Chinese-LLaMA-Alpaca) and [Chinese LLaMA-2 / Alpaca-2](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2) - [X] [Vigogne (French)](https://github.com/bofenghuang/vigogne) +- [X] [BERT](https://github.com/ggerganov/llama.cpp/pull/5423) - [X] [Koala](https://bair.berkeley.edu/blog/2023/04/03/koala/) - [X] [Baichuan 1 & 2](https://huggingface.co/models?search=baichuan-inc/Baichuan) + [derivations](https://huggingface.co/hiyouga/baichuan-7b-sft) - [X] [Aquila 1 & 2](https://huggingface.co/models?search=BAAI/Aquila) From 257f8e41e24b5bbfc27d9e907189a3e0cdb650d4 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Mon, 1 Jul 2024 14:46:18 +0300 Subject: [PATCH 25/38] nix : remove OpenCL remnants (#8235) * nix : remove OpenCL remnants * minor : remove parentheses --- .devops/nix/package.nix | 11 ++--------- 1 file changed, 2 insertions(+), 9 deletions(-) diff --git a/.devops/nix/package.nix b/.devops/nix/package.nix index 4ee0d62cb..b75d7ff9e 100644 --- a/.devops/nix/package.nix +++ b/.devops/nix/package.nix @@ -17,18 +17,15 @@ rocmPackages, vulkan-headers, vulkan-loader, - clblast, useBlas ? builtins.all (x: !x) [ useCuda useMetalKit - useOpenCL useRocm useVulkan ] && blas.meta.available, useCuda ? config.cudaSupport, - useMetalKit ? stdenv.isAarch64 && stdenv.isDarwin && !useOpenCL, + useMetalKit ? stdenv.isAarch64 && stdenv.isDarwin, useMpi ? false, # Increases the runtime closure size by ~700M - useOpenCL ? false, useRocm ? config.rocmSupport, useVulkan ? false, llamaVersion ? "0.0.0", # Arbitrary version, substituted by the flake @@ -56,7 +53,6 @@ let ++ lib.optionals useCuda [ "CUDA" ] ++ lib.optionals useMetalKit [ "MetalKit" ] ++ lib.optionals useMpi [ "MPI" ] - ++ lib.optionals useOpenCL [ "OpenCL" ] ++ lib.optionals useRocm [ "ROCm" ] ++ lib.optionals useVulkan [ "Vulkan" ]; @@ -198,7 +194,6 @@ effectiveStdenv.mkDerivation ( optionals effectiveStdenv.isDarwin darwinBuildInputs ++ optionals useCuda cudaBuildInputs ++ optionals useMpi [ mpi ] - ++ optionals useOpenCL [ clblast ] ++ optionals useRocm rocmBuildInputs ++ optionals useBlas [ blas ] ++ optionals useVulkan vulkanBuildInputs; @@ -210,7 +205,6 @@ effectiveStdenv.mkDerivation ( (cmakeBool "CMAKE_SKIP_BUILD_RPATH" true) (cmakeBool "GGML_NATIVE" false) (cmakeBool "GGML_BLAS" useBlas) - (cmakeBool "GGML_CLBLAST" useOpenCL) (cmakeBool "GGML_CUDA" useCuda) (cmakeBool "GGML_HIPBLAS" useRocm) (cmakeBool "GGML_METAL" useMetalKit) @@ -254,7 +248,6 @@ effectiveStdenv.mkDerivation ( useCuda useMetalKit useMpi - useOpenCL useRocm useVulkan ; @@ -281,7 +274,7 @@ effectiveStdenv.mkDerivation ( # Configurations we don't want even the CI to evaluate. Results in the # "unsupported platform" messages. This is mostly a no-op, because # cudaPackages would've refused to evaluate anyway. - badPlatforms = optionals (useCuda || useOpenCL) lib.platforms.darwin; + badPlatforms = optionals useCuda lib.platforms.darwin; # Configurations that are known to result in build failures. Can be # overridden by importing Nixpkgs with `allowBroken = true`. From 3840b6f593751a0ba636bfda73b630cd6c29d7b5 Mon Sep 17 00:00:00 2001 From: Michael Francis Date: Mon, 1 Jul 2024 07:47:04 -0400 Subject: [PATCH 26/38] nix : enable curl (#8043) Co-authored-by: Georgi Gerganov --- .devops/nix/package.nix | 6 +++++- 1 file changed, 5 insertions(+), 1 deletion(-) diff --git a/.devops/nix/package.nix b/.devops/nix/package.nix index b75d7ff9e..49e9b7528 100644 --- a/.devops/nix/package.nix +++ b/.devops/nix/package.nix @@ -17,6 +17,7 @@ rocmPackages, vulkan-headers, vulkan-loader, + curl, useBlas ? builtins.all (x: !x) [ useCuda useMetalKit @@ -27,6 +28,7 @@ useMetalKit ? stdenv.isAarch64 && stdenv.isDarwin, useMpi ? false, # Increases the runtime closure size by ~700M useRocm ? config.rocmSupport, + enableCurl ? true, useVulkan ? false, llamaVersion ? "0.0.0", # Arbitrary version, substituted by the flake @@ -196,13 +198,15 @@ effectiveStdenv.mkDerivation ( ++ optionals useMpi [ mpi ] ++ optionals useRocm rocmBuildInputs ++ optionals useBlas [ blas ] - ++ optionals useVulkan vulkanBuildInputs; + ++ optionals useVulkan vulkanBuildInputs + ++ optionals enableCurl [ curl ]; cmakeFlags = [ (cmakeBool "LLAMA_BUILD_SERVER" true) (cmakeBool "BUILD_SHARED_LIBS" (!enableStatic)) (cmakeBool "CMAKE_SKIP_BUILD_RPATH" true) + (cmakeBool "LLAMA_CURL" enableCurl) (cmakeBool "GGML_NATIVE" false) (cmakeBool "GGML_BLAS" useBlas) (cmakeBool "GGML_CUDA" useCuda) From 0ddeff10230b88f1fa9866bbe5fe0d71ba2323a0 Mon Sep 17 00:00:00 2001 From: Roni Date: Mon, 1 Jul 2024 14:48:16 +0200 Subject: [PATCH 27/38] readme : update tool list (#8209) * Added gppm to Tool list in README * Update README.md --------- Co-authored-by: Georgi Gerganov --- README.md | 1 + 1 file changed, 1 insertion(+) diff --git a/README.md b/README.md index 153d837e3..c136d4a5c 100644 --- a/README.md +++ b/README.md @@ -218,6 +218,7 @@ Unless otherwise noted these projects are open-source with permissive licensing: **Tools:** - [akx/ggify](https://github.com/akx/ggify) – download PyTorch models from HuggingFace Hub and convert them to GGML +[crashr/gppm](https://github.com/crashr/gppm) – launch llama.cpp instances utilizing NVIDIA Tesla P40 or P100 GPUs with reduced idle power consumption --- From 49122a873f54615626d1b49a2a39013ed4be98d5 Mon Sep 17 00:00:00 2001 From: Xuan Son Nguyen Date: Mon, 1 Jul 2024 18:48:34 +0200 Subject: [PATCH 28/38] gemma2: add sliding window mask (#8227) * gemma2: add sliding window mask * fix data_swa uninitialized * better naming * add co-author Co-authored-by: Arlo Phoenix * replace list with single tensor * update * llama : minor styling * convert : add sanity check for query_pre_attn_scalar * fix small typo in README --------- Co-authored-by: Arlo Phoenix Co-authored-by: Georgi Gerganov --- README.md | 2 +- convert-hf-to-gguf.py | 6 +++ gguf-py/gguf/constants.py | 1 + gguf-py/gguf/gguf_writer.py | 3 ++ src/llama.cpp | 99 +++++++++++++++++++++++++------------ 5 files changed, 79 insertions(+), 32 deletions(-) diff --git a/README.md b/README.md index c136d4a5c..daba70717 100644 --- a/README.md +++ b/README.md @@ -218,7 +218,7 @@ Unless otherwise noted these projects are open-source with permissive licensing: **Tools:** - [akx/ggify](https://github.com/akx/ggify) – download PyTorch models from HuggingFace Hub and convert them to GGML -[crashr/gppm](https://github.com/crashr/gppm) – launch llama.cpp instances utilizing NVIDIA Tesla P40 or P100 GPUs with reduced idle power consumption +- [crashr/gppm](https://github.com/crashr/gppm) – launch llama.cpp instances utilizing NVIDIA Tesla P40 or P100 GPUs with reduced idle power consumption --- diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py index 3ef2f69e7..4a7f500ff 100755 --- a/convert-hf-to-gguf.py +++ b/convert-hf-to-gguf.py @@ -2369,6 +2369,12 @@ class Gemma2Model(Model): self.gguf_writer.add_final_logit_softcapping( self.hparams["final_logit_softcapping"] ) + self.gguf_writer.add_sliding_window(self.hparams["sliding_window"]) + + # sanity check + attn_scalar = self.hparams["query_pre_attn_scalar"] + if attn_scalar != hparams["hidden_size"] / hparams["num_attention_heads"]: + raise ValueError("query_pre_attn_scalar must be equal to n_embd / n_head") def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: del bid # unusem diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py index 9bfa891d5..e87c58266 100644 --- a/gguf-py/gguf/constants.py +++ b/gguf-py/gguf/constants.py @@ -66,6 +66,7 @@ class Keys: Q_LORA_RANK = "{arch}.attention.q_lora_rank" KV_LORA_RANK = "{arch}.attention.kv_lora_rank" REL_BUCKETS_COUNT = "{arch}.attention.relative_buckets_count" + SLIDING_WINDOW = "{arch}.attention.sliding_window" class Rope: DIMENSION_COUNT = "{arch}.rope.dimension_count" diff --git a/gguf-py/gguf/gguf_writer.py b/gguf-py/gguf/gguf_writer.py index 1aeb0d9b0..75a8b2636 100644 --- a/gguf-py/gguf/gguf_writer.py +++ b/gguf-py/gguf/gguf_writer.py @@ -552,6 +552,9 @@ class GGUFWriter: def add_relative_attn_buckets_count(self, value: int) -> None: self.add_uint32(Keys.Attention.REL_BUCKETS_COUNT.format(arch=self.arch), value) + def add_sliding_window(self, value: int) -> None: + self.add_uint32(Keys.Attention.SLIDING_WINDOW.format(arch=self.arch), value) + def add_pooling_type(self, value: PoolingType) -> None: self.add_uint32(Keys.LLM.POOLING_TYPE.format(arch=self.arch), value.value) diff --git a/src/llama.cpp b/src/llama.cpp index 2a4d73856..eea532f6a 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -317,6 +317,7 @@ enum llm_kv { LLM_KV_ATTENTION_Q_LORA_RANK, LLM_KV_ATTENTION_KV_LORA_RANK, LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, + LLM_KV_ATTENTION_SLIDING_WINDOW, LLM_KV_ROPE_DIMENSION_COUNT, LLM_KV_ROPE_FREQ_BASE, @@ -409,6 +410,7 @@ static const std::map LLM_KV_NAMES = { { LLM_KV_ATTENTION_Q_LORA_RANK, "%s.attention.q_lora_rank" }, { LLM_KV_ATTENTION_KV_LORA_RANK, "%s.attention.kv_lora_rank" }, { LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, "%s.attention.relative_buckets_count" }, + { LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" }, { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" }, { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" }, @@ -2085,6 +2087,7 @@ struct llama_hparams { uint32_t n_head_kv; uint32_t n_layer; uint32_t n_rot; + uint32_t n_swa = 0; // sliding window attention (SWA) uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head uint32_t n_ff; @@ -2139,6 +2142,7 @@ struct llama_hparams { if (this->n_head_kv != other.n_head_kv) return true; if (this->n_layer != other.n_layer) return true; if (this->n_rot != other.n_rot) return true; + if (this->n_swa != other.n_swa) return true; if (this->n_embd_head_k != other.n_embd_head_k) return true; if (this->n_embd_head_v != other.n_embd_head_v) return true; if (this->n_ff != other.n_ff) return true; @@ -2649,17 +2653,18 @@ struct llama_context { void * abort_callback_data = nullptr; // input tensors - struct ggml_tensor * inp_tokens; // I32 [n_batch] - struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch] - struct ggml_tensor * inp_pos; // I32 [n_batch] - struct ggml_tensor * inp_out_ids; // I32 [n_outputs] - struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch] - struct ggml_tensor * inp_K_shift; // I32 [kv_size] - struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch] - struct ggml_tensor * inp_cls; // I32 [n_batch] - struct ggml_tensor * inp_s_copy; // I32 [kv_size] - struct ggml_tensor * inp_s_mask; // F32 [1, n_kv] - struct ggml_tensor * inp_s_seq; // I32 [n_kv, n_batch] + struct ggml_tensor * inp_tokens; // I32 [n_batch] + struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch] + struct ggml_tensor * inp_pos; // I32 [n_batch] + struct ggml_tensor * inp_out_ids; // I32 [n_outputs] + struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch] + struct ggml_tensor * inp_KQ_mask_swa; // F32 [kv_size, n_batch] + struct ggml_tensor * inp_K_shift; // I32 [kv_size] + struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch] + struct ggml_tensor * inp_cls; // I32 [n_batch] + struct ggml_tensor * inp_s_copy; // I32 [kv_size] + struct ggml_tensor * inp_s_mask; // F32 [1, n_kv] + struct ggml_tensor * inp_s_seq; // I32 [n_kv, n_batch] // control vectors struct llama_control_vector cvec; @@ -4709,6 +4714,8 @@ static void llm_load_hparams( } break; case LLM_ARCH_GEMMA2: { + hparams.n_swa = 4096; // default value of gemma 2 + ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); ml.get_key(LLM_KV_ATTN_LOGIT_SOFTCAPPING, hparams.f_attn_logit_softcapping, false); ml.get_key(LLM_KV_FINAL_LOGIT_SOFTCAPPING, hparams.f_final_logit_softcapping, false); @@ -5419,6 +5426,7 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) { LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv); LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer); LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot); + LLAMA_LOG_INFO("%s: n_swa = %u\n", __func__, hparams.n_swa); LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k); LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v); LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa()); @@ -7775,17 +7783,18 @@ struct llm_build_context { ctx0 = ggml_init(params); - lctx.inp_tokens = nullptr; - lctx.inp_embd = nullptr; - lctx.inp_pos = nullptr; - lctx.inp_out_ids = nullptr; - lctx.inp_KQ_mask = nullptr; - lctx.inp_K_shift = nullptr; - lctx.inp_mean = nullptr; - lctx.inp_cls = nullptr; - lctx.inp_s_copy = nullptr; - lctx.inp_s_mask = nullptr; - lctx.inp_s_seq = nullptr; + lctx.inp_tokens = nullptr; + lctx.inp_embd = nullptr; + lctx.inp_pos = nullptr; + lctx.inp_out_ids = nullptr; + lctx.inp_KQ_mask = nullptr; + lctx.inp_KQ_mask_swa = nullptr; + lctx.inp_K_shift = nullptr; + lctx.inp_mean = nullptr; + lctx.inp_cls = nullptr; + lctx.inp_s_copy = nullptr; + lctx.inp_s_mask = nullptr; + lctx.inp_s_seq = nullptr; } void free() { @@ -7804,7 +7813,6 @@ struct llm_build_context { cb(lctx.inp_K_shift, "K_shift", -1); ggml_set_input(lctx.inp_K_shift); - for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * rope_factors = build_rope_factors(il); struct ggml_tensor * tmp = @@ -7939,16 +7947,27 @@ struct llm_build_context { } struct ggml_tensor * build_inp_KQ_mask(bool causal = true) { - if (causal) { - lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD)); - } else { - lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD)); - } + lctx.inp_KQ_mask = causal + ? ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD)) + : ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD)); cb(lctx.inp_KQ_mask, "KQ_mask", -1); ggml_set_input(lctx.inp_KQ_mask); + return flash_attn ? ggml_cast(ctx0, lctx.inp_KQ_mask, GGML_TYPE_F16) : lctx.inp_KQ_mask; } + struct ggml_tensor * build_inp_KQ_mask_swa(bool causal = true) { + GGML_ASSERT(hparams.n_swa > 0); + + lctx.inp_KQ_mask_swa = causal + ? ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD)) + : ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD)); + cb(lctx.inp_KQ_mask_swa, "KQ_mask_swa", -1); + ggml_set_input(lctx.inp_KQ_mask_swa); + + return flash_attn ? ggml_cast(ctx0, lctx.inp_KQ_mask_swa, GGML_TYPE_F16) : lctx.inp_KQ_mask_swa; + } + struct ggml_tensor * build_inp_mean() { lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens); cb(lctx.inp_mean, "inp_mean", -1); @@ -11029,9 +11048,14 @@ struct llm_build_context { struct ggml_tensor * inp_pos = build_inp_pos(); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); + // gemma 2 requires different mask for layers using sliding window (SWA) + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(true); + struct ggml_tensor * KQ_mask_swa = build_inp_KQ_mask_swa(true); for (int il = 0; il < n_layer; ++il) { + // (il % 2) layers use SWA + struct ggml_tensor * KQ_mask_l = (il % 2 == 0) ? KQ_mask_swa : KQ_mask; + // norm cur = llm_build_norm(ctx0, inpL, hparams, model.layers[il].attn_norm, NULL, @@ -11067,7 +11091,7 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, NULL, - Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il); + Kcur, Vcur, Qcur, KQ_mask_l, n_tokens, kv_head, n_kv, 1.0f, cb, il); } cur = llm_build_norm(ctx0, cur, hparams, @@ -12670,7 +12694,12 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) { GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer)); - float * data = (float *) lctx.inp_KQ_mask->data; + float * data = (float *) lctx.inp_KQ_mask->data; + float * data_swa = nullptr; + + if (lctx.inp_KQ_mask_swa) { + data_swa = (float *) lctx.inp_KQ_mask_swa->data; + } // For causal attention, use only the previous KV cells // of the correct sequence for each token of the batch. @@ -12692,6 +12721,14 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) { } } data[h*(n_kv*n_tokens) + j*n_kv + i] = f; + + // may need to cut off old tokens for sliding window + if (data_swa) { + if (pos - lctx.kv_self.cells[i].pos >= (int32_t)hparams.n_swa) { + f = -INFINITY; + } + data_swa[h*(n_kv*n_tokens) + j*n_kv + i] = f; + } } } From dae57a1ebc1c9bd5693ab999e19d77c5506ae559 Mon Sep 17 00:00:00 2001 From: Mateusz Charytoniuk Date: Mon, 1 Jul 2024 19:13:22 +0200 Subject: [PATCH 29/38] readme: add Paddler to the list of projects (#8239) --- README.md | 4 ++++ 1 file changed, 4 insertions(+) diff --git a/README.md b/README.md index daba70717..3569b2bbb 100644 --- a/README.md +++ b/README.md @@ -220,6 +220,10 @@ Unless otherwise noted these projects are open-source with permissive licensing: - [akx/ggify](https://github.com/akx/ggify) – download PyTorch models from HuggingFace Hub and convert them to GGML - [crashr/gppm](https://github.com/crashr/gppm) – launch llama.cpp instances utilizing NVIDIA Tesla P40 or P100 GPUs with reduced idle power consumption +**Infrastructure:** + +- [Paddler](https://github.com/distantmagic/paddler) - Stateful load balancer custom-tailored for llama.cpp + --- Here is a typical run using LLaMA v2 13B on M2 Ultra: From cb5fad4c6c2cbef92e9b8b63449e1cb7664e4846 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Johannes=20G=C3=A4=C3=9Fler?= Date: Mon, 1 Jul 2024 20:39:06 +0200 Subject: [PATCH 30/38] CUDA: refactor and optimize IQ MMVQ (#8215) * CUDA: refactor and optimize IQ MMVQ * uint -> uint32_t * __dp4a -> ggml_cuda_dp4a * remove MIN_CC_DP4A checks * change default * try CI fix --- ggml/src/ggml-common.h | 14 +- ggml/src/ggml-cuda.cu | 12 +- ggml/src/ggml-cuda/common.cuh | 76 +++- ggml/src/ggml-cuda/fattn-common.cuh | 50 +- ggml/src/ggml-cuda/mmvq.cu | 26 +- ggml/src/ggml-cuda/vecdotq.cuh | 682 +++++++++++++--------------- ggml/src/ggml-sycl/mmvq.cpp | 12 +- ggml/src/ggml-sycl/vecdotq.hpp | 21 - 8 files changed, 406 insertions(+), 487 deletions(-) diff --git a/ggml/src/ggml-common.h b/ggml/src/ggml-common.h index e8efceb76..c74060cc4 100644 --- a/ggml/src/ggml-common.h +++ b/ggml/src/ggml-common.h @@ -106,19 +106,19 @@ typedef sycl::half2 ggml_half2; #define QR6_K 2 #define QI2_XXS (QK_K / (4*QR2_XXS)) -#define QR2_XXS 8 +#define QR2_XXS 4 #define QI2_XS (QK_K / (4*QR2_XS)) -#define QR2_XS 8 +#define QR2_XS 4 #define QI2_S (QK_K / (4*QR2_S)) -#define QR2_S 8 +#define QR2_S 4 #define QI3_XXS (QK_K / (4*QR3_XXS)) -#define QR3_XXS 8 +#define QR3_XXS 4 #define QI3_XS (QK_K / (4*QR3_XS)) -#define QR3_XS 8 +#define QR3_XS 4 #define QI1_S (QK_K / (4*QR1_S)) #define QR1_S 8 @@ -130,10 +130,10 @@ typedef sycl::half2 ggml_half2; #define QR4_NL 2 #define QI4_XS (QK_K / (4*QR4_XS)) -#define QR4_XS 8 +#define QR4_XS 2 #define QI3_S (QK_K / (4*QR3_S)) -#define QR3_S 8 +#define QR3_S 4 #endif // GGML_COMMON_DECL_CUDA || GGML_COMMON_DECL_HIP diff --git a/ggml/src/ggml-cuda.cu b/ggml/src/ggml-cuda.cu index 0acfda91d..649ef5a08 100644 --- a/ggml/src/ggml-cuda.cu +++ b/ggml/src/ggml-cuda.cu @@ -1882,6 +1882,11 @@ static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor bool use_mul_mat_q = ggml_is_quantized(src0->type) && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32; + // if mmvq is available it's a better choice than dmmv: +#ifndef GGML_CUDA_FORCE_DMMV + use_dequantize_mul_mat_vec = use_dequantize_mul_mat_vec && !use_mul_mat_vec_q; +#endif // GGML_CUDA_FORCE_DMMV + bool any_gpus_with_slow_fp16 = false; if (split) { @@ -1894,22 +1899,15 @@ static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor } const int cc = ggml_cuda_info().devices[id].cc; - use_mul_mat_vec_q = use_mul_mat_vec_q && cc >= MIN_CC_DP4A; use_mul_mat_q = use_mul_mat_q && ggml_cuda_should_use_mmq(src0->type, cc, src1->ne[1]); any_gpus_with_slow_fp16 = any_gpus_with_slow_fp16 || !fast_fp16_available(cc); } } else { const int cc = ggml_cuda_info().devices[ctx.device].cc; - use_mul_mat_vec_q = use_mul_mat_vec_q && cc >= MIN_CC_DP4A; use_mul_mat_q = use_mul_mat_q && ggml_cuda_should_use_mmq(src0->type, cc, src1->ne[1]); any_gpus_with_slow_fp16 = any_gpus_with_slow_fp16 || !fast_fp16_available(cc); } - // if mmvq is available it's a better choice than dmmv: -#ifndef GGML_CUDA_FORCE_DMMV - use_dequantize_mul_mat_vec = use_dequantize_mul_mat_vec && !use_mul_mat_vec_q; -#endif // GGML_CUDA_FORCE_DMMV - // debug helpers //printf("src0: %8d %8d %8d %8d\n", src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3]); //printf(" %8d %8d %8d %8d\n", src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3]); diff --git a/ggml/src/ggml-cuda/common.cuh b/ggml/src/ggml-cuda/common.cuh index 8d00db6c1..472f4ace1 100644 --- a/ggml/src/ggml-cuda/common.cuh +++ b/ggml/src/ggml-cuda/common.cuh @@ -3,6 +3,7 @@ #include "ggml.h" #include "ggml-cuda.h" +#include #include #if defined(GGML_USE_HIPBLAS) @@ -268,30 +269,15 @@ static __device__ __forceinline__ unsigned int __vcmpeq4(unsigned int a, unsigne return c; } -static __device__ __forceinline__ int __dp4a(const int a, const int b, int c) { -#if defined(__gfx906__) || defined(__gfx908__) || defined(__gfx90a__) || defined(__gfx1030__) - c = __builtin_amdgcn_sdot4(a, b, c, false); -#elif defined(RDNA3) - c = __builtin_amdgcn_sudot4( true, a, true, b, c, false); -#elif defined(__gfx1010__) || defined(__gfx900__) - int tmp1; - int tmp2; - asm("\n \ - v_mul_i32_i24 %1, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_0 src1_sel:BYTE_0 \n \ - v_mul_i32_i24 %2, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_1 src1_sel:BYTE_1 \n \ - v_add3_u32 %0, %1, %2, %0 \n \ - v_mul_i32_i24 %1, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_2 src1_sel:BYTE_2 \n \ - v_mul_i32_i24 %2, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_3 src1_sel:BYTE_3 \n \ - v_add3_u32 %0, %1, %2, %0 \n \ - " - : "+v"(c), "=&v"(tmp1), "=&v"(tmp2) - : "v"(a), "v"(b) - ); -#else - const int8x4_t va = reinterpret_cast(a); - const int8x4_t vb = reinterpret_cast(b); - c += va[0] * vb[0] + va[1] * vb[1] + va[2] * vb[2] + va[3] * vb[3]; -#endif +static __device__ __forceinline__ unsigned int __vcmpne4(unsigned int a, unsigned int b) { + const uint8x4_t& va = reinterpret_cast(a); + const uint8x4_t& vb = reinterpret_cast(b); + unsigned int c; + uint8x4_t& vc = reinterpret_cast(c); +#pragma unroll + for (int i = 0; i < 4; ++i) { + vc[i] = va[i] == vb[i] ? 0x00 : 0xff; + } return c; } @@ -467,8 +453,48 @@ static __device__ __forceinline__ uint32_t __hgt2_mask(const half2 a, const half } #endif // CUDART_VERSION < 12000 +static __device__ __forceinline__ int ggml_cuda_dp4a(const int a, const int b, int c) { +#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) +#if defined(__gfx906__) || defined(__gfx908__) || defined(__gfx90a__) || defined(__gfx1030__) + c = __builtin_amdgcn_sdot4(a, b, c, false); +#elif defined(RDNA3) + c = __builtin_amdgcn_sudot4( true, a, true, b, c, false); +#elif defined(__gfx1010__) || defined(__gfx900__) + int tmp1; + int tmp2; + asm("\n \ + v_mul_i32_i24 %1, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_0 src1_sel:BYTE_0 \n \ + v_mul_i32_i24 %2, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_1 src1_sel:BYTE_1 \n \ + v_add3_u32 %0, %1, %2, %0 \n \ + v_mul_i32_i24 %1, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_2 src1_sel:BYTE_2 \n \ + v_mul_i32_i24 %2, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_3 src1_sel:BYTE_3 \n \ + v_add3_u32 %0, %1, %2, %0 \n \ + " + : "+v"(c), "=&v"(tmp1), "=&v"(tmp2) + : "v"(a), "v"(b) + ); +#else + const int8x4_t va = reinterpret_cast(a); + const int8x4_t vb = reinterpret_cast(b); + c += va[0] * vb[0] + va[1] * vb[1] + va[2] * vb[2] + va[3] * vb[3]; +#endif + return c; + +#else // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) + +#if __CUDA_ARCH__ >= MIN_CC_DP4A + return __dp4a(a, b, c); +#else // __CUDA_ARCH__ >= MIN_CC_DP4A + const int8_t * a8 = (const int8_t *) &a; + const int8_t * b8 = (const int8_t *) &b; + return c + a8[0]*b8[0] + a8[1]*b8[1] + a8[2]*b8[2] + a8[3]*b8[3]; +#endif // __CUDA_ARCH__ >= MIN_CC_DP4A + +#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) +} + // TODO: move to ggml-common.h -static const __device__ int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113}; +static constexpr __device__ int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113}; typedef void (*dequantize_kernel_t)(const void * vx, const int64_t ib, const int iqs, dfloat2 & v); diff --git a/ggml/src/ggml-cuda/fattn-common.cuh b/ggml/src/ggml-cuda/fattn-common.cuh index bd7993595..650780fd2 100644 --- a/ggml/src/ggml-cuda/fattn-common.cuh +++ b/ggml/src/ggml-cuda/fattn-common.cuh @@ -54,12 +54,11 @@ typedef float (*vec_dot_KQ_f32_t)( template static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q4_0( const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) { -#if __CUDA_ARCH__ >= MIN_CC_DP4A const block_q4_0 * K_q4_0 = (const block_q4_0 *) K_c; GGML_UNUSED(Q_v); - half sum = 0.0f; + T sum = 0.0f; #pragma unroll for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) { @@ -72,7 +71,7 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q4_0( const int v = (get_int_from_uint8(K_q4_0[ib].qs, iqs4) >> shift) & 0x0F0F0F0F; const int u = Q_q8[k_KQ_0/WARP_SIZE]; - const int sumi = __dp4a(v, u, 0); + const int sumi = ggml_cuda_dp4a(v, u, 0); #ifdef FP16_AVAILABLE if (std::is_same::value) { @@ -90,19 +89,11 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q4_0( } return sum; -#else - GGML_UNUSED(K_c); - GGML_UNUSED(Q_v); - GGML_UNUSED(Q_q8); - GGML_UNUSED(Q_ds_v); - NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= MIN_CC_DP4A } template static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q4_1( const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) { -#if __CUDA_ARCH__ >= MIN_CC_DP4A const block_q4_1 * K_q4_1 = (const block_q4_1 *) K_c; GGML_UNUSED(Q_v); @@ -120,7 +111,7 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q4_1( const int v = (get_int_from_uint8_aligned(K_q4_1[ib].qs, iqs4) >> shift) & 0x0F0F0F0F; const int u = Q_q8[k_KQ_0/WARP_SIZE]; - const int sumi = __dp4a(v, u, 0); + const int sumi = ggml_cuda_dp4a(v, u, 0); #ifdef FP16_AVAILABLE if (std::is_same::value) { @@ -142,19 +133,11 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q4_1( } return sum; -#else - GGML_UNUSED(K_c); - GGML_UNUSED(Q_v); - GGML_UNUSED(Q_q8); - GGML_UNUSED(Q_ds_v); - NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= MIN_CC_DP4A } template static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q5_0( const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) { -#if __CUDA_ARCH__ >= MIN_CC_DP4A const block_q5_0 * K_q5_0 = (const block_q5_0 *) K_c; GGML_UNUSED(Q_v); @@ -179,7 +162,7 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q5_0( const int u = Q_q8[k_KQ_0/WARP_SIZE]; - const int sumi = __dp4a(v, u, 0); + const int sumi = ggml_cuda_dp4a(v, u, 0); #ifdef FP16_AVAILABLE if (std::is_same::value) { @@ -197,19 +180,11 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q5_0( } return sum; -#else - GGML_UNUSED(K_c); - GGML_UNUSED(Q_v); - GGML_UNUSED(Q_q8); - GGML_UNUSED(Q_ds_v); - NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= MIN_CC_DP4A } template static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q5_1( const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) { -#if __CUDA_ARCH__ >= MIN_CC_DP4A const block_q5_1 * K_q5_1 = (const block_q5_1 *) K_c; GGML_UNUSED(Q_v); @@ -234,7 +209,7 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q5_1( const int u = Q_q8[k_KQ_0/WARP_SIZE]; - const int sumi = __dp4a(v, u, 0); + const int sumi = ggml_cuda_dp4a(v, u, 0); #ifdef FP16_AVAILABLE if (std::is_same::value) { @@ -256,19 +231,11 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q5_1( } return sum; -#else - GGML_UNUSED(K_c); - GGML_UNUSED(Q_v); - GGML_UNUSED(Q_q8); - GGML_UNUSED(Q_ds_v); - NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= MIN_CC_DP4A } template static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q8_0( const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) { -#if __CUDA_ARCH__ >= MIN_CC_DP4A const block_q8_0 * K_q8_0 = (const block_q8_0 *) K_c; GGML_UNUSED(Q_v); @@ -297,13 +264,6 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q8_0( } return sum; -#else - GGML_UNUSED(K_c); - GGML_UNUSED(Q_v); - GGML_UNUSED(Q_q8); - GGML_UNUSED(Q_ds_v); - NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= MIN_CC_DP4A } template diff --git a/ggml/src/ggml-cuda/mmvq.cu b/ggml/src/ggml-cuda/mmvq.cu index e8d157169..e22faf69b 100644 --- a/ggml/src/ggml-cuda/mmvq.cu +++ b/ggml/src/ggml-cuda/mmvq.cu @@ -28,16 +28,22 @@ static constexpr __device__ vec_dot_q_cuda_t get_vec_dot_q_cuda(ggml_type type) static constexpr __device__ int get_vdr_mmvq(ggml_type type) { return type == GGML_TYPE_Q4_0 ? VDR_Q4_0_Q8_1_MMVQ : - type == GGML_TYPE_Q4_1 ? VDR_Q4_1_Q8_1_MMVQ : - type == GGML_TYPE_Q5_0 ? VDR_Q5_0_Q8_1_MMVQ : - type == GGML_TYPE_Q5_1 ? VDR_Q5_1_Q8_1_MMVQ : - type == GGML_TYPE_Q8_0 ? VDR_Q8_0_Q8_1_MMVQ : - type == GGML_TYPE_Q2_K ? VDR_Q2_K_Q8_1_MMVQ : - type == GGML_TYPE_Q3_K ? VDR_Q3_K_Q8_1_MMVQ : - type == GGML_TYPE_Q4_K ? VDR_Q4_K_Q8_1_MMVQ : - type == GGML_TYPE_Q5_K ? VDR_Q5_K_Q8_1_MMVQ : - type == GGML_TYPE_Q6_K ? VDR_Q6_K_Q8_1_MMVQ : - type == GGML_TYPE_IQ4_NL ? VDR_Q4_K_Q8_1_MMVQ : + type == GGML_TYPE_Q4_1 ? VDR_Q4_1_Q8_1_MMVQ : + type == GGML_TYPE_Q5_0 ? VDR_Q5_0_Q8_1_MMVQ : + type == GGML_TYPE_Q5_1 ? VDR_Q5_1_Q8_1_MMVQ : + type == GGML_TYPE_Q8_0 ? VDR_Q8_0_Q8_1_MMVQ : + type == GGML_TYPE_Q2_K ? VDR_Q2_K_Q8_1_MMVQ : + type == GGML_TYPE_Q3_K ? VDR_Q3_K_Q8_1_MMVQ : + type == GGML_TYPE_Q4_K ? VDR_Q4_K_Q8_1_MMVQ : + type == GGML_TYPE_Q5_K ? VDR_Q5_K_Q8_1_MMVQ : + type == GGML_TYPE_Q6_K ? VDR_Q6_K_Q8_1_MMVQ : + type == GGML_TYPE_IQ2_XXS ? VDR_IQ2_XXS_Q8_1_MMVQ : + type == GGML_TYPE_IQ2_XS ? VDR_IQ2_XS_Q8_1_MMVQ : + type == GGML_TYPE_IQ2_S ? VDR_IQ2_S_Q8_1_MMVQ : + type == GGML_TYPE_IQ3_XXS ? VDR_IQ3_XXS_Q8_1_MMVQ : + type == GGML_TYPE_IQ3_S ? VDR_IQ3_S_Q8_1_MMVQ : + type == GGML_TYPE_IQ4_NL ? VDR_IQ4_NL_Q8_1_MMVQ : + type == GGML_TYPE_IQ4_XS ? VDR_IQ4_XS_Q8_1_MMVQ : 1; } diff --git a/ggml/src/ggml-cuda/vecdotq.cuh b/ggml/src/ggml-cuda/vecdotq.cuh index 3b12d6566..3f3a87c75 100644 --- a/ggml/src/ggml-cuda/vecdotq.cuh +++ b/ggml/src/ggml-cuda/vecdotq.cuh @@ -1,4 +1,5 @@ #include "common.cuh" +#include static __device__ __forceinline__ int get_int_from_int8(const int8_t * x8, const int & i32) { const uint16_t * x16 = (const uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment @@ -28,6 +29,18 @@ static __device__ __forceinline__ int get_int_from_uint8_aligned(const uint8_t * return *((const int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment } +static __device__ __forceinline__ int get_int_b2(const void * x, const int & i32) { + const uint16_t * x16 = (const uint16_t *) x; + + int x32 = x16[2*i32 + 0] << 0; + x32 |= x16[2*i32 + 1] << 16; + + return x32; +} + +static __device__ __forceinline__ int get_int_b4(const void * x, const int & i32) { + return ((const int *) x)[i32]; // assume at least 4 byte alignment +} // VDR = vec dot ratio, how many contiguous integers each thread processes when the vec dot kernel is called // MMVQ = mul_mat_vec_q, MMQ = mul_mat_q @@ -38,7 +51,6 @@ static __device__ __forceinline__ int get_int_from_uint8_aligned(const uint8_t * template static __device__ __forceinline__ float vec_dot_q4_0_q8_1_impl( const int * v, const int * u, const float & d4, const half2 & ds8) { -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics int sumi = 0; #pragma unroll @@ -47,17 +59,14 @@ template static __device__ __forceinline__ float vec_dot_q4_0_q8_1_imp const int vi1 = (v[i] >> 4) & 0x0F0F0F0F; // SIMD dot product of quantized values - sumi = __dp4a(vi0, u[2*i+0], sumi); - sumi = __dp4a(vi1, u[2*i+1], sumi); + sumi = ggml_cuda_dp4a(vi0, u[2*i+0], sumi); + sumi = ggml_cuda_dp4a(vi1, u[2*i+1], sumi); } const float2 ds8f = __half22float2(ds8); // second part effectively subtracts 8 from each quant value return d4 * (sumi * ds8f.x - (8*vdr/QI4_0) * ds8f.y); -#else - NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= MIN_CC_DP4A } #define VDR_Q4_1_Q8_1_MMVQ 2 @@ -66,7 +75,6 @@ template static __device__ __forceinline__ float vec_dot_q4_0_q8_1_imp template static __device__ __forceinline__ float vec_dot_q4_1_q8_1_impl( const int * v, const int * u, const half2 & dm4, const half2 & ds8) { -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics int sumi = 0; #pragma unroll @@ -75,8 +83,8 @@ template static __device__ __forceinline__ float vec_dot_q4_1_q8_1_imp const int vi1 = (v[i] >> 4) & 0x0F0F0F0F; // SIMD dot product of quantized values - sumi = __dp4a(vi0, u[2*i+0], sumi); - sumi = __dp4a(vi1, u[2*i+1], sumi); + sumi = ggml_cuda_dp4a(vi0, u[2*i+0], sumi); + sumi = ggml_cuda_dp4a(vi1, u[2*i+1], sumi); } #ifdef GGML_CUDA_F16 @@ -92,9 +100,6 @@ template static __device__ __forceinline__ float vec_dot_q4_1_q8_1_imp // scale second part of sum by QI8_1/(vdr * QR4_1) to compensate for multiple threads adding it return sumi * d4d8 + m4s8 / (QI8_1 / (vdr * QR4_1)); -#else - NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= MIN_CC_DP4A } #define VDR_Q5_0_Q8_1_MMVQ 2 @@ -103,7 +108,6 @@ template static __device__ __forceinline__ float vec_dot_q4_1_q8_1_imp template static __device__ __forceinline__ float vec_dot_q5_0_q8_1_impl( const int * vl, const int * vh, const int * u, const float & d5, const half2 & ds8) { -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics int sumi = 0; #pragma unroll @@ -113,23 +117,20 @@ template static __device__ __forceinline__ float vec_dot_q5_0_q8_1_imp vi0 |= (vh[i] << 11) & 0x00001000; // 1 -> 12 vi0 |= (vh[i] << 18) & 0x00100000; // 2 -> 20 vi0 |= (vh[i] << 25) & 0x10000000; // 3 -> 28 - sumi = __dp4a(vi0, u[2*i+0], sumi); // SIMD dot product of quantized values + sumi = ggml_cuda_dp4a(vi0, u[2*i+0], sumi); // SIMD dot product of quantized values int vi1 = (vl[i] >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits vi1 |= (vh[i] >> 12) & 0x00000010; // 16 -> 4 vi1 |= (vh[i] >> 5) & 0x00001000; // 17 -> 12 vi1 |= (vh[i] << 2) & 0x00100000; // 18 -> 20 vi1 |= (vh[i] << 9) & 0x10000000; // 19 -> 28 - sumi = __dp4a(vi1, u[2*i+1], sumi); // SIMD dot product of quantized values + sumi = ggml_cuda_dp4a(vi1, u[2*i+1], sumi); // SIMD dot product of quantized values } const float2 ds8f = __half22float2(ds8); // second part effectively subtracts 16 from each quant value return d5 * (sumi * ds8f.x - (16*vdr/QI5_0) * ds8f.y); -#else - NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= MIN_CC_DP4A } #define VDR_Q5_1_Q8_1_MMVQ 2 @@ -138,7 +139,6 @@ template static __device__ __forceinline__ float vec_dot_q5_0_q8_1_imp template static __device__ __forceinline__ float vec_dot_q5_1_q8_1_impl( const int * vl, const int * vh, const int * u, const half2 & dm5, const half2 & ds8) { -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics int sumi = 0; #pragma unroll @@ -148,14 +148,14 @@ template static __device__ __forceinline__ float vec_dot_q5_1_q8_1_imp vi0 |= (vh[i] << 11) & 0x00001000; // 1 -> 12 vi0 |= (vh[i] << 18) & 0x00100000; // 2 -> 20 vi0 |= (vh[i] << 25) & 0x10000000; // 3 -> 28 - sumi = __dp4a(vi0, u[2*i+0], sumi); // SIMD dot product of quantized values + sumi = ggml_cuda_dp4a(vi0, u[2*i+0], sumi); // SIMD dot product of quantized values int vi1 = (vl[i] >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits vi1 |= (vh[i] >> 12) & 0x00000010; // 16 -> 4 vi1 |= (vh[i] >> 5) & 0x00001000; // 17 -> 12 vi1 |= (vh[i] << 2) & 0x00100000; // 18 -> 20 vi1 |= (vh[i] << 9) & 0x10000000; // 19 -> 28 - sumi = __dp4a(vi1, u[2*i+1], sumi); // SIMD dot product of quantized values + sumi = ggml_cuda_dp4a(vi1, u[2*i+1], sumi); // SIMD dot product of quantized values } #ifdef GGML_CUDA_F16 @@ -171,10 +171,6 @@ template static __device__ __forceinline__ float vec_dot_q5_1_q8_1_imp // scale second part of sum by QI5_1 / vdr to compensate for multiple threads adding it return sumi*d5d8 + m5s8 / (QI5_1 / vdr); - -#else - NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= MIN_CC_DP4A } #define VDR_Q8_0_Q8_1_MMVQ 2 @@ -183,31 +179,26 @@ template static __device__ __forceinline__ float vec_dot_q5_1_q8_1_imp template static __device__ __forceinline__ T vec_dot_q8_0_q8_1_impl( const int * v, const int * u, const T & d8_0, const T & d8_1) { -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics int sumi = 0; #pragma unroll for (int i = 0; i < vdr; ++i) { // SIMD dot product of quantized values - sumi = __dp4a(v[i], u[i], sumi); + sumi = ggml_cuda_dp4a(v[i], u[i], sumi); } return d8_0*d8_1 * ((T) sumi); -#else - NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= MIN_CC_DP4A } template static __device__ __forceinline__ float vec_dot_q8_1_q8_1_impl( const int * v, const int * u, const half2 & dm8, const half2 & ds8) { -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics int sumi = 0; #pragma unroll for (int i = 0; i < vdr; ++i) { // SIMD dot product of quantized values - sumi = __dp4a(v[i], u[i], sumi); + sumi = ggml_cuda_dp4a(v[i], u[i], sumi); } #ifdef GGML_CUDA_F16 @@ -223,9 +214,6 @@ template static __device__ __forceinline__ float vec_dot_q8_1_q8_1_imp // scale second part of sum by QI8_1/ vdr to compensate for multiple threads adding it return sumi*d8d8 + m8s8 / (QI8_1 / vdr); -#else - NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= MIN_CC_DP4A } #define VDR_Q2_K_Q8_1_MMVQ 1 @@ -236,7 +224,6 @@ static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmvq( const int & v, const int * __restrict__ u, const uint8_t * __restrict__ scales, const half2 & dm2, const float * __restrict__ d8) { -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics float sumf_d = 0.0f; float sumf_m = 0.0f; @@ -246,28 +233,24 @@ static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmvq( const int vi = (v >> (2*i)) & 0x03030303; - sumf_d += d8[i] * (__dp4a(vi, u[i], 0) * (sc & 0xF)); // SIMD dot product + sumf_d += d8[i] * (ggml_cuda_dp4a(vi, u[i], 0) * (sc & 0xF)); // SIMD dot product // fill int with 4x m int m = sc >> 4; m |= m << 8; m |= m << 16; - sumf_m += d8[i] * __dp4a(m, u[i], 0); // multiply constant q2_K part with sum of q8_1 values + sumf_m += d8[i] * ggml_cuda_dp4a(m, u[i], 0); // multiply constant q2_K part with sum of q8_1 values } const float2 dm2f = __half22float2(dm2); return dm2f.x*sumf_d - dm2f.y*sumf_m; -#else - NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= MIN_CC_DP4A } // contiguous u/y values static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmq( const int * __restrict__ v, const int * __restrict__ u, const half2 * dm2, const float & d8) { -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics float sumf_d = 0.0f; float sumf_m = 0.0f; @@ -281,8 +264,8 @@ static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmq( #pragma unroll for (int i = i0; i < i0 + QI8_1/2; ++i) { const int vi = (vi0 >> (2*(i % (QI8_1/2)))) & 0x03030303; - sumi_d = __dp4a(vi, u[i], sumi_d); // SIMD dot product - sumi_m = __dp4a(0x01010101, u[i], sumi_m); + sumi_d = ggml_cuda_dp4a(vi, u[i], sumi_d); // SIMD dot product + sumi_m = ggml_cuda_dp4a(0x01010101, u[i], sumi_m); } sumf_d += dm2f.x * sumi_d; @@ -290,9 +273,6 @@ static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmq( } return d8*(sumf_d - sumf_m); -#else - NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= MIN_CC_DP4A } #define VDR_Q3_K_Q8_1_MMVQ 1 @@ -303,7 +283,6 @@ static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmvq( const int & vl, const int & vh, const int * __restrict__ u, const uint8_t * __restrict__ scales, const int & scale_offset, const float & d3, const float * __restrict__ d8) { -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics float sumf = 0.0f; #pragma unroll @@ -326,13 +305,10 @@ static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmvq( const int vi = __vsubss4(vil, vih); - sumf += d8[i] * (__dp4a(vi, u[i], 0) * sc); // SIMD dot product + sumf += d8[i] * (ggml_cuda_dp4a(vi, u[i], 0) * sc); // SIMD dot product } return d3 * sumf; -#else - NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= MIN_CC_DP4A } // contiguous u/y values @@ -340,7 +316,6 @@ static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmq( const int * __restrict__ v, const int * __restrict__ u, const int8_t * __restrict__ scales, const float & d3, const float & d8) { -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics int sumi = 0; #pragma unroll @@ -350,16 +325,13 @@ static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmq( #pragma unroll for (int i = i0; i < i0 + QI8_1/2; ++i) { const int vi = __vsubss4((v[i/2] >> (4*(i%2))) & 0x0F0F0F0F, 0x04040404); - sumi_sc = __dp4a(vi, u[i], sumi_sc); // SIMD dot product + sumi_sc = ggml_cuda_dp4a(vi, u[i], sumi_sc); // SIMD dot product } sumi += sumi_sc * scales[i0 / (QI8_1/2)]; } return d3*d8 * sumi; -#else - NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= MIN_CC_DP4A } #define VDR_Q4_K_Q8_1_MMVQ 2 @@ -370,7 +342,6 @@ static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_vmmq( const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc, const uint8_t * __restrict__ m, const half2 & dm4, const float * __restrict__ d8) { -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics float sumf_d = 0.0f; float sumf_m = 0.0f; @@ -379,8 +350,8 @@ static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_vmmq( const int v0i = (v[0] >> (4*i)) & 0x0F0F0F0F; const int v1i = (v[1] >> (4*i)) & 0x0F0F0F0F; - const int dot1 = __dp4a(v1i, u[2*i+1], __dp4a(v0i, u[2*i+0], 0)); // SIMD dot product - const int dot2 = __dp4a(0x01010101, u[2*i+1], __dp4a(0x01010101, u[2*i+0], 0)); // sum of u + const int dot1 = ggml_cuda_dp4a(v1i, u[2*i+1], ggml_cuda_dp4a(v0i, u[2*i+0], 0)); // SIMD dot product + const int dot2 = ggml_cuda_dp4a(0x01010101, u[2*i+1], ggml_cuda_dp4a(0x01010101, u[2*i+0], 0)); // sum of u sumf_d += d8[i] * (dot1 * sc[i]); sumf_m += d8[i] * (dot2 * m[i]); // multiply constant part of q4_K with sum of q8_1 values @@ -389,10 +360,6 @@ static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_vmmq( const float2 dm4f = __half22float2(dm4); return dm4f.x*sumf_d - dm4f.y*sumf_m; - -#else - NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= MIN_CC_DP4A } // contiguous u/y values @@ -400,7 +367,6 @@ static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_mmq( const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc, const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) { -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics float sumf_d = 0.0f; float sumf_m = 0.0f; @@ -410,7 +376,7 @@ static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_mmq( #pragma unroll for (int j = 0; j < QI8_1; ++j) { - sumi_d = __dp4a((v[j] >> (4*i)) & 0x0F0F0F0F, u[i*QI8_1 + j], sumi_d); // SIMD dot product + sumi_d = ggml_cuda_dp4a((v[j] >> (4*i)) & 0x0F0F0F0F, u[i*QI8_1 + j], sumi_d); // SIMD dot product } const float2 ds8f = __half22float2(ds8[i]); @@ -422,10 +388,6 @@ static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_mmq( const float2 dm4f = __half22float2(dm4); return dm4f.x*sumf_d - dm4f.y*sumf_m; - -#else - NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= MIN_CC_DP4A } #define VDR_Q5_K_Q8_1_MMVQ 2 @@ -436,7 +398,6 @@ static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_vmmq( const int * __restrict__ vl, const int * __restrict__ vh, const int * __restrict__ u, const uint8_t * __restrict__ sc, const uint8_t * __restrict__ m, const half2 & dm5, const float * __restrict__ d8) { -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics float sumf_d = 0.0f; float sumf_m = 0.0f; @@ -451,8 +412,8 @@ static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_vmmq( const int v0i = vl0i | vh0i; const int v1i = vl1i | vh1i; - const int dot1 = __dp4a(v0i, u[2*i+0], __dp4a(v1i, u[2*i+1], 0)); // SIMD dot product - const int dot2 = __dp4a(0x01010101, u[2*i+0], __dp4a(0x01010101, u[2*i+1], 0)); // sum of u + const int dot1 = ggml_cuda_dp4a(v0i, u[2*i+0], ggml_cuda_dp4a(v1i, u[2*i+1], 0)); // SIMD dot product + const int dot2 = ggml_cuda_dp4a(0x01010101, u[2*i+0], ggml_cuda_dp4a(0x01010101, u[2*i+1], 0)); // sum of u sumf_d += d8[i] * (dot1 * sc[i]); sumf_m += d8[i] * (dot2 * m[i]); @@ -462,10 +423,6 @@ static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_vmmq( const float2 dm5f = __half22float2(dm5); return dm5f.x*sumf_d - dm5f.y*sumf_m; - -#else - NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= MIN_CC_DP4A } // contiguous u/y values @@ -473,7 +430,6 @@ static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_mmq( const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc, const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) { -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics float sumf_d = 0.0f; float sumf_m = 0.0f; @@ -483,7 +439,7 @@ static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_mmq( #pragma unroll for (int j = 0; j < QI8_1; ++j) { - sumi_d = __dp4a(v[i*QI8_1 + j], u[i*QI8_1 + j], sumi_d); // SIMD dot product + sumi_d = ggml_cuda_dp4a(v[i*QI8_1 + j], u[i*QI8_1 + j], sumi_d); // SIMD dot product } const float2 ds8f = __half22float2(ds8[i]); @@ -495,10 +451,6 @@ static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_mmq( const float2 dm4f = __half22float2(dm4); return dm4f.x*sumf_d - dm4f.y*sumf_m; - -#else - NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= MIN_CC_DP4A } #define VDR_Q6_K_Q8_1_MMVQ 1 @@ -509,7 +461,6 @@ static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmvq( const int & vl, const int & vh, const int * __restrict__ u, const int8_t * __restrict__ scales, const float & d, const float * __restrict__ d8) { -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics float sumf = 0.0f; #pragma unroll @@ -522,13 +473,10 @@ static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmvq( const int vi = __vsubss4((vil | vih), 0x20202020); // vi = (vil | vih) - 32 - sumf += d8[i] * (__dp4a(vi, u[i], 0) * sc); // SIMD dot product + sumf += d8[i] * (ggml_cuda_dp4a(vi, u[i], 0) * sc); // SIMD dot product } return d*sumf; -#else - NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= MIN_CC_DP4A } // contiguous u/y values @@ -536,7 +484,6 @@ static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmq( const int * __restrict__ v, const int * __restrict__ u, const int8_t * __restrict__ sc, const float & d6, const float * __restrict__ d8) { -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics float sumf_d = 0.0f; #pragma unroll @@ -545,21 +492,17 @@ static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmq( #pragma unroll for (int i = i0; i < i0 + 2; ++i) { - sumi_d.x = __dp4a(v[2*i+0], u[2*i+0], sumi_d.x); // SIMD dot product - sumi_d.x = __dp4a(v[2*i+1], u[2*i+1], sumi_d.x); // SIMD dot product + sumi_d.x = ggml_cuda_dp4a(v[2*i+0], u[2*i+0], sumi_d.x); // SIMD dot product + sumi_d.x = ggml_cuda_dp4a(v[2*i+1], u[2*i+1], sumi_d.x); // SIMD dot product - sumi_d.y = __dp4a(v[2*i+4], u[2*i+4], sumi_d.y); // SIMD dot product - sumi_d.y = __dp4a(v[2*i+5], u[2*i+5], sumi_d.y); // SIMD dot product + sumi_d.y = ggml_cuda_dp4a(v[2*i+4], u[2*i+4], sumi_d.y); // SIMD dot product + sumi_d.y = ggml_cuda_dp4a(v[2*i+5], u[2*i+5], sumi_d.y); // SIMD dot product } sumf_d += d8[i0/4] * (sc[i0/2+0]*sumi_d.x + sc[i0/2+1]*sumi_d.y); } return d6 * sumf_d; - -#else - NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= MIN_CC_DP4A } static __device__ __forceinline__ float vec_dot_q4_0_q8_1( @@ -572,9 +515,9 @@ static __device__ __forceinline__ float vec_dot_q4_0_q8_1( #pragma unroll for (int i = 0; i < VDR_Q4_0_Q8_1_MMVQ; ++i) { - v[i] = get_int_from_uint8(bq4_0->qs, iqs + i); - u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i); - u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_0); + v[i] = get_int_b2(bq4_0->qs, iqs + i); + u[2*i+0] = get_int_b4(bq8_1->qs, iqs + i); + u[2*i+1] = get_int_b4(bq8_1->qs, iqs + i + QI4_0); } return vec_dot_q4_0_q8_1_impl(v, u, bq4_0->d, bq8_1->ds); @@ -591,9 +534,9 @@ static __device__ __forceinline__ float vec_dot_q4_1_q8_1( #pragma unroll for (int i = 0; i < VDR_Q4_1_Q8_1_MMVQ; ++i) { - v[i] = get_int_from_uint8_aligned(bq4_1->qs, iqs + i); - u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i); - u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_1); + v[i] = get_int_b4(bq4_1->qs, iqs + i); + u[2*i+0] = get_int_b4(bq8_1->qs, iqs + i); + u[2*i+1] = get_int_b4(bq8_1->qs, iqs + i + QI4_1); } return vec_dot_q4_1_q8_1_impl(v, u, bq4_1->dm, bq8_1->ds); @@ -610,10 +553,10 @@ static __device__ __forceinline__ float vec_dot_q5_0_q8_1( #pragma unroll for (int i = 0; i < VDR_Q5_0_Q8_1_MMVQ; ++i) { - vl[i] = get_int_from_uint8(bq5_0->qs, iqs + i); - vh[i] = get_int_from_uint8(bq5_0->qh, 0) >> (4 * (iqs + i)); - u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i); - u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_0); + vl[i] = get_int_b2(bq5_0->qs, iqs + i); + vh[i] = get_int_b2(bq5_0->qh, 0) >> (4 * (iqs + i)); + u[2*i+0] = get_int_b4(bq8_1->qs, iqs + i); + u[2*i+1] = get_int_b4(bq8_1->qs, iqs + i + QI5_0); } return vec_dot_q5_0_q8_1_impl(vl, vh, u, bq5_0->d, bq8_1->ds); @@ -630,10 +573,10 @@ static __device__ __forceinline__ float vec_dot_q5_1_q8_1( #pragma unroll for (int i = 0; i < VDR_Q5_1_Q8_1_MMVQ; ++i) { - vl[i] = get_int_from_uint8_aligned(bq5_1->qs, iqs + i); - vh[i] = get_int_from_uint8_aligned(bq5_1->qh, 0) >> (4 * (iqs + i)); - u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i); - u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_1); + vl[i] = get_int_b4(bq5_1->qs, iqs + i); + vh[i] = get_int_b4(bq5_1->qh, 0) >> (4 * (iqs + i)); + u[2*i+0] = get_int_b4(bq8_1->qs, iqs + i); + u[2*i+1] = get_int_b4(bq8_1->qs, iqs + i + QI5_1); } return vec_dot_q5_1_q8_1_impl(vl, vh, u, bq5_1->dm, bq8_1->ds); @@ -649,8 +592,8 @@ static __device__ __forceinline__ float vec_dot_q8_0_q8_1( #pragma unroll for (int i = 0; i < VDR_Q8_0_Q8_1_MMVQ; ++i) { - v[i] = get_int_from_int8(bq8_0->qs, iqs + i); - u[i] = get_int_from_int8_aligned(bq8_1->qs, iqs + i); + v[i] = get_int_b2(bq8_0->qs, iqs + i); + u[i] = get_int_b4(bq8_1->qs, iqs + i); } return vec_dot_q8_0_q8_1_impl(v, u, bq8_0->d, __low2half(bq8_1->ds)); @@ -666,13 +609,13 @@ static __device__ __forceinline__ float vec_dot_q2_K_q8_1( const uint8_t * scales = bq2_K->scales + scale_offset; - const int v = get_int_from_uint8_aligned(bq2_K->qs, iqs); + const int v = get_int_b4(bq2_K->qs, iqs); int u[QR2_K]; float d8[QR2_K]; #pragma unroll for (int i = 0; i < QR2_K; ++ i) { - u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1); + u[i] = get_int_b4(bq8_1[bq8_offset + i].qs, iqs % QI8_1); d8[i] = __low2float(bq8_1[bq8_offset + i].ds); } @@ -689,17 +632,17 @@ static __device__ __forceinline__ float vec_dot_q3_K_q8_1( const float d = bq3_K->d; - const int vl = get_int_from_uint8(bq3_K->qs, iqs); + const int vl = get_int_b2(bq3_K->qs, iqs); // invert the mask with ~ so that a 0/1 results in 4/0 being subtracted - const int vh = ~get_int_from_uint8(bq3_K->hmask, iqs % (QI3_K/2)) >> bq8_offset; + const int vh = ~get_int_b2(bq3_K->hmask, iqs % (QI3_K/2)) >> bq8_offset; int u[QR3_K]; float d8[QR3_K]; #pragma unroll for (int i = 0; i < QR3_K; ++i) { - u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1); + u[i] = get_int_b4(bq8_1[bq8_offset + i].qs, iqs % QI8_1); d8[i] = __low2float(bq8_1[bq8_offset + i].ds); } @@ -807,8 +750,8 @@ static __device__ __forceinline__ float vec_dot_q6_K_q8_1( const int scale_offset = (QI6_K/4) * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/8); const int vh_shift = 2 * ((iqs % (QI6_K/2)) / (QI6_K/4)); - const int vl = get_int_from_uint8(bq6_K->ql, iqs); - const int vh = get_int_from_uint8(bq6_K->qh, (QI6_K/4) * (iqs / (QI6_K/2)) + iqs % (QI6_K/4)) >> vh_shift; + const int vl = get_int_b2(bq6_K->ql, iqs); + const int vh = get_int_b2(bq6_K->qh, (QI6_K/4) * (iqs / (QI6_K/2)) + iqs % (QI6_K/4)) >> vh_shift; const int8_t * scales = bq6_K->scales + scale_offset; @@ -817,335 +760,342 @@ static __device__ __forceinline__ float vec_dot_q6_K_q8_1( #pragma unroll for (int i = 0; i < QR6_K; ++i) { - u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + 2*i].qs, iqs % QI8_1); + u[i] = get_int_b4(bq8_1[bq8_offset + 2*i].qs, iqs % QI8_1); d8[i] = __low2float(bq8_1[bq8_offset + 2*i].ds); } return vec_dot_q6_K_q8_1_impl_mmvq(vl, vh, u, scales, bq6_K->d, d8); } +#define VDR_IQ2_XXS_Q8_1_MMVQ 2 + static __device__ __forceinline__ float vec_dot_iq2_xxs_q8_1( const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) { + const block_iq2_xxs * bq2 = (const block_iq2_xxs *) vbq + kbx; -#if QR2_XXS == 8 - const int ib32 = iqs; - const uint16_t * q2 = bq2->qs + 4*ib32; - const uint8_t * aux8 = (const uint8_t *)q2; - const int8_t * q8 = bq8_1[ib32].qs; - uint32_t aux32 = q2[2] | (q2[3] << 16); + const int q2 = get_int_b2(bq2->qs, iqs); + const uint8_t * aux8 = (const uint8_t *) &q2; + const uint32_t aux32 = get_int_b2(bq2->qs, iqs + 1); + int sumi = 0; - for (int l = 0; l < 4; ++l) { - const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]); - const uint8_t signs = ksigns_iq2xs[aux32 & 127]; - for (int j = 0; j < 8; ++j) { - sumi += q8[j] * grid[j] * (signs & kmask_iq2xs[j] ? -1 : 1); - } - q8 += 8; - aux32 >>= 7; +#pragma unroll + for (int k0 = 0; k0 < 8; k0 += 2) { + const int * grid_pos = (const int *) (iq2xxs_grid + aux8[k0/2]); + const int signs_packed = ksigns_iq2xs[(aux32 >> (7*k0/2)) & 0x7F]; + + const int signs0 = __vcmpne4(((signs_packed & 0x03) << 7) | ((signs_packed & 0x0C) << 21), 0x00000000); + const int grid0 = __vsub4(grid_pos[0] ^ signs0, signs0); + const int u0 = get_int_b4(bq8_1[iqs/2].qs, k0 + 0); + sumi = ggml_cuda_dp4a(grid0, u0, sumi); + + const int signs1 = __vcmpne4(((signs_packed & 0x30) << 3) | ((signs_packed & 0xC0) << 17), 0x00000000); + const int grid1 = __vsub4(grid_pos[1] ^ signs1, signs1); + const int u1 = get_int_b4(bq8_1[iqs/2].qs, k0 + 1); + sumi = ggml_cuda_dp4a(grid1, u1, sumi); } - const float d = (float)bq2->d * (0.5f + aux32) * __low2float(bq8_1[ib32].ds) * 0.25f; + + const int ls = aux32 >> 28; + sumi = (ls*sumi + sumi/2)/4; + const float d = __half2float(bq2->d) * __low2float(bq8_1[iqs/2].ds); return d * sumi; -#else - // iqs is 0...15 - const int ib32 = iqs/2; - const int il = iqs%2; - const uint16_t * q2 = bq2->qs + 4*ib32; - const uint8_t * aux8 = (const uint8_t *)q2; - const uint8_t * grid1 = (const uint8_t *)(iq2xxs_grid + aux8[2*il+0]); - const uint8_t * grid2 = (const uint8_t *)(iq2xxs_grid + aux8[2*il+1]); - const uint32_t aux32 = q2[2] | (q2[3] << 16); - const float d = (float)bq2->d * (0.5f + (aux32 >> 28)) * __low2float(bq8_1[ib32].ds) * 0.25f; - const uint8_t signs1 = ksigns_iq2xs[(aux32 >> 14*il) & 127]; - const uint8_t signs2 = ksigns_iq2xs[(aux32 >> (14*il + 7)) & 127]; - const int8_t * q8 = bq8_1[ib32].qs + 16*il; - int sumi1 = 0, sumi2 = 0; - for (int j = 0; j < 8; ++j) { - sumi1 += q8[j+0] * grid1[j] * (signs1 & kmask_iq2xs[j] ? -1 : 1); - sumi2 += q8[j+8] * grid2[j] * (signs2 & kmask_iq2xs[j] ? -1 : 1); - } - return d * (sumi1 + sumi2); -#endif } +#define VDR_IQ2_XS_Q8_1_MMVQ 2 + static __device__ __forceinline__ float vec_dot_iq2_xs_q8_1( const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) { -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics + const block_iq2_xs * bq2 = (const block_iq2_xs *) vbq + kbx; - const int ib32 = iqs; - const uint16_t * q2 = bq2->qs + 4*ib32; - const int8_t * q8 = bq8_1[ib32].qs; - const uint8_t ls1 = bq2->scales[ib32] & 0xf; - const uint8_t ls2 = bq2->scales[ib32] >> 4; + const int2 q2_packed = make_int2(get_int_b2(bq2->qs, iqs + 0), get_int_b2(bq2->qs, iqs + 1)); + const uint16_t * q2 = (const uint16_t *) &q2_packed; + const int ls0 = bq2->scales[iqs/2] & 0x0F; + const int ls1 = bq2->scales[iqs/2] >> 4; + + int sumi0 = 0; int sumi1 = 0; - for (int l = 0; l < 2; ++l) { - const uint32_t * grid = (const uint32_t *)(iq2xs_grid + (q2[l] & 511)); - const uint32_t * signs = (const uint32_t *)(ksigns64 + (q2[l] >> 9)); - const int grid_l = __vsub4(grid[0] ^ signs[0], signs[0]); - const int grid_h = __vsub4(grid[1] ^ signs[1], signs[1]); - sumi1 = __dp4a(grid_l, *((const int *)q8 + 0), sumi1); - sumi1 = __dp4a(grid_h, *((const int *)q8 + 1), sumi1); - q8 += 8; +#pragma unroll + for (int l0 = 0; l0 < 8; l0 += 2) { + const uint32_t * grid_pos = (const uint32_t *)(iq2xs_grid + (q2[l0/2] & 0x000001FF)); + const uint32_t * signs = (const uint32_t *)(ksigns64 + (q2[l0/2] >> 9)); + + const int grid_l = __vsub4(grid_pos[0] ^ signs[0], signs[0]); + const int grid_h = __vsub4(grid_pos[1] ^ signs[1], signs[1]); + + const int u0 = get_int_b4(bq8_1[iqs/2].qs, l0 + 0); + const int u1 = get_int_b4(bq8_1[iqs/2].qs, l0 + 1); + + if (l0 < 4) { + sumi0 = ggml_cuda_dp4a(grid_l, u0, sumi0); + sumi0 = ggml_cuda_dp4a(grid_h, u1, sumi0); + } else { + sumi1 = ggml_cuda_dp4a(grid_l, u0, sumi1); + sumi1 = ggml_cuda_dp4a(grid_h, u1, sumi1); + } } - int sumi2 = 0; - for (int l = 2; l < 4; ++l) { - const uint32_t * grid = (const uint32_t *)(iq2xs_grid + (q2[l] & 511)); - const uint32_t * signs = (const uint32_t *)(ksigns64 + (q2[l] >> 9)); - const int grid_l = __vsub4(grid[0] ^ signs[0], signs[0]); - const int grid_h = __vsub4(grid[1] ^ signs[1], signs[1]); - sumi2 = __dp4a(grid_l, *((const int *)q8 + 0), sumi2); - sumi2 = __dp4a(grid_h, *((const int *)q8 + 1), sumi2); - q8 += 8; - } - const float d = (float)bq2->d * __low2float(bq8_1[ib32].ds) * 0.25f; - return d * ((0.5f + ls1) * sumi1 + (0.5f + ls2) * sumi2); -#else - GGML_UNUSED(ksigns64); - NO_DEVICE_CODE; -#endif + const int sumi = (sumi0*ls0 + sumi1*ls1 + (sumi0 + sumi1)/2)/4; + const float d = __half2float(bq2->d) * __low2float(bq8_1[iqs/2].ds); + return d * sumi; } -// TODO +#define VDR_IQ2_S_Q8_1_MMVQ 2 + static __device__ __forceinline__ float vec_dot_iq2_s_q8_1( const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) { -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics + const block_iq2_s * bq2 = (const block_iq2_s *) vbq + kbx; - const int ib32 = iqs; - const int8_t * q8 = bq8_1[ib32].qs; - const uint8_t * signs = bq2->qs + QK_K/8 + 4*ib32; - const uint8_t ls1 = bq2->scales[ib32] & 0xf; - const uint8_t ls2 = bq2->scales[ib32] >> 4; + const int qs_packed = get_int_b2(bq2->qs, iqs/2); + const uint8_t * qs = (const uint8_t *) &qs_packed; + + const int qh = bq2->qh[iqs/2]; + + const int signs_packed_32 = get_int_b2(bq2->qs, QK_K/32 + iqs/2); + const uint8_t * signs_packed_8 = (const uint8_t *) &signs_packed_32; + + const int ls0 = bq2->scales[iqs/2] & 0x0F; + const int ls1 = bq2->scales[iqs/2] >> 4; + + int sumi0 = 0; int sumi1 = 0; - for (int l = 0; l < 2; ++l) { - const uint32_t * grid = (const uint32_t *)(iq2s_grid + (bq2->qs[4*ib32+l] | ((bq2->qh[ib32] << (8-2*l)) & 0x300))); - const uint32_t signs0 = __vcmpeq4(((signs[l] & 0xf) * 0x01010101) & 0x08040201, 0x08040201); - const uint32_t signs1 = __vcmpeq4(((signs[l] >> 4) * 0x01010101) & 0x08040201, 0x08040201); - const int grid_l = __vsub4(grid[0] ^ signs0, signs0); - const int grid_h = __vsub4(grid[1] ^ signs1, signs1); - sumi1 = __dp4a(grid_l, *((const int *)q8 + 0), sumi1); - sumi1 = __dp4a(grid_h, *((const int *)q8 + 1), sumi1); - q8 += 8; +#pragma unroll + for (int l0 = 0; l0 < 8; l0 += 2) { + const int * grid_pos = (const int *)(iq2s_grid + (qs[l0/2] | ((qh << (8-l0)) & 0x300))); + + const int signs0 = __vcmpne4(((signs_packed_8[l0/2] & 0x03) << 7) | ((signs_packed_8[l0/2] & 0x0C) << 21), 0x00000000); + const int signs1 = __vcmpne4(((signs_packed_8[l0/2] & 0x30) << 3) | ((signs_packed_8[l0/2] & 0xC0) << 17), 0x00000000); + + const int grid_l = __vsub4(grid_pos[0] ^ signs0, signs0); + const int grid_h = __vsub4(grid_pos[1] ^ signs1, signs1); + + const int u0 = get_int_b4(bq8_1[iqs/2].qs, l0 + 0); + const int u1 = get_int_b4(bq8_1[iqs/2].qs, l0 + 1); + + if (l0 < 4) { + sumi0 = ggml_cuda_dp4a(grid_l, u0, sumi0); + sumi0 = ggml_cuda_dp4a(grid_h, u1, sumi0); + } else { + sumi1 = ggml_cuda_dp4a(grid_l, u0, sumi1); + sumi1 = ggml_cuda_dp4a(grid_h, u1, sumi1); + } } - int sumi2 = 0; - for (int l = 2; l < 4; ++l) { - const uint32_t * grid = (const uint32_t *)(iq2s_grid + (bq2->qs[4*ib32+l] | ((bq2->qh[ib32] << (8-2*l)) & 0x300))); - const uint32_t signs0 = __vcmpeq4(((signs[l] & 0xf) * 0x01010101) & 0x08040201, 0x08040201); - const uint32_t signs1 = __vcmpeq4(((signs[l] >> 4) * 0x01010101) & 0x08040201, 0x08040201); - const int grid_l = __vsub4(grid[0] ^ signs0, signs0); - const int grid_h = __vsub4(grid[1] ^ signs1, signs1); - sumi2 = __dp4a(grid_l, *((const int *)q8 + 0), sumi2); - sumi2 = __dp4a(grid_h, *((const int *)q8 + 1), sumi2); - q8 += 8; - } - const float d = (float)bq2->d * __low2float(bq8_1[ib32].ds) * 0.25f; - return d * ((0.5f + ls1) * sumi1 + (0.5f + ls2) * sumi2); -#else - GGML_UNUSED(ksigns64); - NO_DEVICE_CODE; -#endif + const int sumi = (sumi0*ls0 + sumi1*ls1 + (sumi0 + sumi1)/2)/4; + + const float d = __half2float(bq2->d) * __low2float(bq8_1[iqs/2].ds); + return d * sumi; } +#define VDR_IQ3_XXS_Q8_1_MMVQ 2 + static __device__ __forceinline__ float vec_dot_iq3_xxs_q8_1( const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) { -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics - const block_iq3_xxs * bq2 = (const block_iq3_xxs *) vbq + kbx; - const int ib32 = iqs; - const uint8_t * q3 = bq2->qs + 8*ib32; - const uint16_t * gas = (const uint16_t *)(bq2->qs + QK_K/4) + 2*ib32; - const int8_t * q8 = bq8_1[ib32].qs; - uint32_t aux32 = gas[0] | (gas[1] << 16); + const block_iq3_xxs * bq3 = (const block_iq3_xxs *) vbq + kbx; + + const int2 q3_packed = make_int2(get_int_b2(bq3->qs, iqs), get_int_b2(bq3->qs, iqs+1)); + const uint8_t * q3 = (const uint8_t *) &q3_packed; + const uint32_t aux32 = get_int_b2(bq3->qs, QK_K/16 + iqs/2); + int sumi = 0; - for (int l = 0; l < 4; ++l) { - const uint32_t * grid1 = iq3xxs_grid + q3[2*l+0]; - const uint32_t * grid2 = iq3xxs_grid + q3[2*l+1]; - const uint32_t * signs = (const uint32_t *)(ksigns64 + (aux32 & 127)); - const int grid_l = __vsub4(grid1[0] ^ signs[0], signs[0]); - const int grid_h = __vsub4(grid2[0] ^ signs[1], signs[1]); - sumi = __dp4a(grid_l, *((int *)q8+0), sumi); - sumi = __dp4a(grid_h, *((int *)q8+1), sumi); - q8 += 8; - aux32 >>= 7; +#pragma unroll + for (int l0 = 0; l0 < 8; l0 += 2) { + const int2 grid_pos = make_int2(iq3xxs_grid[q3[l0 + 0]], iq3xxs_grid[q3[l0 + 1]]); + + const int * signs = (const int *)(ksigns64 + ((aux32 >> (7*l0/2)) & 0x7F)); + + const int grid_l = __vsub4(grid_pos.x ^ signs[0], signs[0]); + const int grid_h = __vsub4(grid_pos.y ^ signs[1], signs[1]); + + const int u0 = get_int_b4(bq8_1[iqs/2].qs, l0 + 0); + const int u1 = get_int_b4(bq8_1[iqs/2].qs, l0 + 1); + + sumi = ggml_cuda_dp4a(grid_l, u0, sumi); + sumi = ggml_cuda_dp4a(grid_h, u1, sumi); } - const float d = (float)bq2->d * (0.5f + aux32) * __low2float(bq8_1[ib32].ds) * 0.5f; + + const int ls = aux32 >> 28; + sumi = (ls*sumi + sumi/2)/2; + const float d = __half2float(bq3->d) * __low2float(bq8_1[iqs/2].ds); return d * sumi; -#else - NO_DEVICE_CODE; -#endif } +#define VDR_IQ3_S_Q8_1_MMVQ 2 + // TODO: don't use lookup table for signs static __device__ __forceinline__ float vec_dot_iq3_s_q8_1( const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) { -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics - const block_iq3_s * bq2 = (const block_iq3_s *) vbq + kbx; - const int ib32 = iqs; - const uint8_t * qs = bq2->qs + 8*ib32; - const int8_t * q8 = bq8_1[ib32].qs; + const block_iq3_s * bq3 = (const block_iq3_s *) vbq + kbx; + + const int2 qs_packed = make_int2(get_int_b2(bq3->qs, iqs + 0), get_int_b2(bq3->qs, iqs + 1)); + const uint8_t * qs = (const uint8_t *) &qs_packed; + + const int qh = bq3->qh[iqs/2]; + + const int signs_packed_32 = get_int_b2(bq3->signs, iqs/2); + const uint8_t * signs_packed_8 = (const uint8_t *) &signs_packed_32; + int sumi = 0; - for (int l = 0; l < 4; ++l) { - const uint32_t * grid1 = iq3s_grid + (qs[2*l+0] | ((bq2->qh[ib32] << (8 - 2*l)) & 256)); - const uint32_t * grid2 = iq3s_grid + (qs[2*l+1] | ((bq2->qh[ib32] << (7 - 2*l)) & 256)); - uint32_t signs0 = __vcmpeq4(((bq2->signs[4*ib32+l] & 0xf) * 0x01010101) & 0x08040201, 0x08040201); - uint32_t signs1 = __vcmpeq4(((bq2->signs[4*ib32+l] >> 4) * 0x01010101) & 0x08040201, 0x08040201); - const int grid_l = __vsub4(grid1[0] ^ signs0, signs0); - const int grid_h = __vsub4(grid2[0] ^ signs1, signs1); - sumi = __dp4a(grid_l, *((int *)q8+0), sumi); - sumi = __dp4a(grid_h, *((int *)q8+1), sumi); - q8 += 8; +#pragma unroll + for (int l0 = 0; l0 < 8; l0 += 2) { + const int2 grid_pos = make_int2( + iq3s_grid[qs[l0 + 0] | ((qh << (8 - l0)) & 0x100)], + iq3s_grid[qs[l0 + 1] | ((qh << (7 - l0)) & 0x100)]); + + const int signs0 = __vcmpne4(((signs_packed_8[l0/2] & 0x03) << 7) | ((signs_packed_8[l0/2] & 0x0C) << 21), 0x00000000); + const int signs1 = __vcmpne4(((signs_packed_8[l0/2] & 0x30) << 3) | ((signs_packed_8[l0/2] & 0xC0) << 17), 0x00000000); + + const int grid_l = __vsub4(grid_pos.x ^ signs0, signs0); + const int grid_h = __vsub4(grid_pos.y ^ signs1, signs1); + + const int u0 = get_int_b4(bq8_1[iqs/2].qs, l0 + 0); + const int u1 = get_int_b4(bq8_1[iqs/2].qs, l0 + 1); + + sumi = ggml_cuda_dp4a(grid_l, u0, sumi); + sumi = ggml_cuda_dp4a(grid_h, u1, sumi); } - const float d = (float)bq2->d * (1 + 2*((bq2->scales[ib32/2] >> 4*(ib32%2)) & 0xf)) * __low2float(bq8_1[ib32].ds); + + sumi *= 1 + 2*((bq3->scales[iqs/4] >> ((iqs << 1) & 0x04)) & 0x0F); + + const float d = __half2float(bq3->d) * __low2float(bq8_1[iqs/2].ds); return d * sumi; -#else - NO_DEVICE_CODE; -#endif } static __device__ __forceinline__ float vec_dot_iq1_s_q8_1( const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) { const block_iq1_s * bq1 = (const block_iq1_s *) vbq + kbx; - const int ib32 = iqs; + const int qs_packed = get_int_b2(bq1->qs, iqs); + const uint8_t * qs = (const uint8_t *) &qs_packed; + + const int qh = bq1->qh[iqs]; + int sumi = 0; -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics - const int * q8 = (const int *)bq8_1[ib32].qs; - for (int l = 0; l < 4; ++l) { - const int * grid = (const int *)(iq1s_grid_gpu + (bq1->qs[4*ib32+l] | (((bq1->qh[ib32] >> 3*l) & 7) << 8))); - int grid0 = grid[0] & 0x0f0f0f0f; - int grid1 = (grid[0] >> 4) & 0x0f0f0f0f; - sumi = __dp4a(q8[2*l+1], grid1, __dp4a(q8[2*l+0], grid0, sumi)); +#pragma unroll + for (int l0 = 0; l0 < 8; l0 += 2) { + const int grid = iq1s_grid_gpu[qs[l0/2] | (((qh >> 3*(l0/2)) & 0x07) << 8)]; + + const int grid0 = (grid >> 0) & 0x0F0F0F0F; + const int grid1 = (grid >> 4) & 0x0F0F0F0F; + + const int u0 = get_int_b4(bq8_1[iqs].qs, l0 + 0); + const int u1 = get_int_b4(bq8_1[iqs].qs, l0 + 1); + + sumi = ggml_cuda_dp4a(grid0, u0, sumi); + sumi = ggml_cuda_dp4a(grid1, u1, sumi); } -#else - const int8_t * q8 = bq8_1[ib32].qs; - for (int l = 0; l < 4; ++l) { - const uint8_t * grid = (const uint8_t *)(iq1s_grid_gpu + (bq1->qs[4*ib32+l] | (((bq1->qh[ib32] >> 3*l) & 7) << 8))); - for (int j = 0; j < 4; ++j) { - sumi += q8[j] * (grid[j] & 0xf) + q8[j+4] * (grid[j] >> 4); - } - q8 += 8; - } -#endif - const float delta = bq1->qh[ib32] & 0x8000 ? -1-IQ1S_DELTA : -1+IQ1S_DELTA; - const float d1q = (float)bq1->d * (2*((bq1->qh[ib32] >> 12) & 7) + 1); - const float d = d1q * __low2float (bq8_1[ib32].ds); - const float m = d1q * __high2float(bq8_1[ib32].ds); - return d * sumi + m * delta; + + const float d1q = __half2float(bq1->d) * (((qh >> 11) & 0x0E) + 1); + const float delta = -1.0f + IQ1S_DELTA - (qh & 0x8000) * (2.0f*IQ1S_DELTA/0x8000); + const float2 ds = __half22float2(bq8_1[iqs].ds); + return d1q * (ds.x*sumi + ds.y*delta); } static __device__ __forceinline__ float vec_dot_iq1_m_q8_1( const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) { + const block_iq1_m * bq1 = (const block_iq1_m *) vbq + kbx; - const int ib32 = iqs; - int sumi[2] = {0, 0}; - float sumf[2] = {0.f, 0.f}; -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics - const int * q8 = (const int *)bq8_1[ib32].qs; - for (int l = 0; l < 4; ++l) { - const int * grid = (const int *)(iq1s_grid_gpu + (bq1->qs[4*ib32+l] | (((bq1->qh[2*ib32+l/2] >> 4*(l%2)) & 7) << 8))); - int grid0 = grid[0] & 0x0f0f0f0f; - int grid1 = (grid[0] >> 4) & 0x0f0f0f0f; - sumi[l/2] = __dp4a(q8[2*l+1], grid1, __dp4a(q8[2*l+0], grid0, sumi[l/2])); - const float delta = (bq1->qh[2*ib32+l/2] >> 4*(l%2)) & 0x08 ? -1-IQ1M_DELTA : -1+IQ1M_DELTA; - const int sumy = __dp4a(q8[2*l+1], 0x01010101, __dp4a(q8[2*l+0], 0x01010101, 0)); - sumf[l/2] += delta*sumy; - } -#else - const int8_t * q8 = bq8_1[ib32].qs; - for (int l = 0; l < 4; ++l) { - const uint8_t * grid = (const uint8_t *)(iq1s_grid_gpu + (bq1->qs[4*ib32+l] | (((bq1->qh[ib32] >> 3*l) & 7) << 8))); + const int qs_packed = get_int_b4(bq1->qs, iqs); + const uint8_t * qs = (const uint8_t *) &qs_packed; + + int sumi[2] = {0}; + float sumf[2] = {0.0f}; +#pragma unroll + for (int l0 = 0; l0 < 8; l0 += 2) { + const int qhl = bq1->qh[2*iqs + l0/4] >> (4 * ((l0/2) % 2)); + + const int grid = iq1s_grid_gpu[qs[l0/2] | ((qhl & 0x07) << 8)]; + + const int grid0 = (grid >> 0) & 0x0F0F0F0F; + const int grid1 = (grid >> 4) & 0x0F0F0F0F; + + const int u0 = get_int_b4(bq8_1[iqs].qs, l0 + 0); + const int u1 = get_int_b4(bq8_1[iqs].qs, l0 + 1); + + sumi[l0/4] = ggml_cuda_dp4a(grid0, u0, sumi[l0/4]); + sumi[l0/4] = ggml_cuda_dp4a(grid1, u1, sumi[l0/4]); + + const float delta = -1.0f + IQ1M_DELTA - (qhl & 0x08) * (2.0f*IQ1M_DELTA/0x08); int sumy = 0; - for (int j = 0; j < 4; ++j) { - sumi[l/2] += q8[j] * (grid[j] & 0xf) + q8[j+4] * (grid[j] >> 4); - sumy += q8[j] + q8[j+4]; - } - const float delta = (bq1->qh[2*ib32+l/2] >> 4*(l%2)) & 0x08 ? -1-IQ1M_DELTA : -1+IQ1M_DELTA; - sumf[l/2] += delta*sumy; - q8 += 8; + sumy = ggml_cuda_dp4a(u0, 0x01010101, sumy); + sumy = ggml_cuda_dp4a(u1, 0x01010101, sumy); + sumf[l0/4] += delta*sumy; } -#endif + + const uint16_t * sc = (const uint16_t *) bq1->scales; + iq1m_scale_t scale; - const uint16_t * sc = (const uint16_t *)bq1->scales; - scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000); - const float d = (float)scale.f16 * __low2float (bq8_1[ib32].ds); - return d * ((sumi[0] + sumf[0]) * (2*((sc[ib32/2] >> 6*(ib32%2)) & 0x7) + 1) + (sumi[1] + sumf[1]) * (2*((sc[ib32/2] >> (6*(ib32%2)+3)) & 0x7) + 1)); + scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00F0) | ((sc[2] >> 4) & 0x0F00) | (sc[3] & 0xF000); + const float d = __half2float(scale.f16) * __low2float(bq8_1[iqs].ds); + + const int tmp = sc[iqs/2] >> (6*(iqs%2)); + const int sc0 = 2*((tmp >> 0) & 0x07) + 1; + const int sc1 = 2*((tmp >> 3) & 0x07) + 1; + return d * ((sumi[0] + sumf[0]) * sc0 + (sumi[1] + sumf[1]) * sc1); } -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics -static __device__ __forceinline__ void get_int_from_table_16(const uint32_t & q4, const uint8_t * values, - int & val1, int & val2) { +static __device__ __forceinline__ int2 get_int_from_table_16(const int & q4) { + const int q0_32 = (q4 >> 0) & 0x0F0F0F0F; + const int8_t * q0_8 = (const int8_t *) &q0_32; + const char4 val0_8 = make_char4( + kvalues_iq4nl[q0_8[0]], kvalues_iq4nl[q0_8[1]], kvalues_iq4nl[q0_8[2]], kvalues_iq4nl[q0_8[3]]); - uint32_t aux32; const uint8_t * q8 = (const uint8_t *)&aux32; - aux32 = q4 & 0x0f0f0f0f; - uint16_t v1 = values[q8[0]] | (values[q8[1]] << 8); - uint16_t v2 = values[q8[2]] | (values[q8[3]] << 8); - val1 = v1 | (v2 << 16); - aux32 = (q4 >> 4) & 0x0f0f0f0f; - v1 = values[q8[0]] | (values[q8[1]] << 8); - v2 = values[q8[2]] | (values[q8[3]] << 8); - val2 = v1 | (v2 << 16); + const int q1_32 = (q4 >> 4) & 0x0F0F0F0F; + const int8_t * q1_8 = (const int8_t *) &q1_32; + const char4 val1_8 = make_char4( + kvalues_iq4nl[q1_8[0]], kvalues_iq4nl[q1_8[1]], kvalues_iq4nl[q1_8[2]], kvalues_iq4nl[q1_8[3]]); + + return make_int2(*((const int *) &val0_8), *((const int *) &val1_8)); } -#endif + +#define VDR_IQ4_NL_Q8_1_MMVQ 2 static __device__ __forceinline__ float vec_dot_iq4_nl_q8_1( const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) { - const block_iq4_nl * bq = (const block_iq4_nl *) vbq + kbx; + const block_iq4_nl * bq4 = (const block_iq4_nl *) vbq + kbx; -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics - const uint16_t * q4 = (const uint16_t *)bq->qs + 2*iqs; - const int32_t * q8 = (const int32_t *)bq8_1->qs + iqs; + const int * q8 = (const int *) bq8_1->qs + iqs; - const uint8_t * values = (const uint8_t *)kvalues_iq4nl; - - int v1, v2; - int sumi1 = 0, sumi2 = 0; + int sumi = 0; +#pragma unroll for (int l = 0; l < VDR_Q4_0_Q8_1_MMVQ; ++l) { - const uint32_t aux = q4[2*l] | (q4[2*l+1] << 16); - get_int_from_table_16(aux, values, v1, v2); - sumi1 = __dp4a(v1, q8[l+0], sumi1); - sumi2 = __dp4a(v2, q8[l+4], sumi2); + const int aux_q4 = get_int_b2(bq4->qs, iqs + l); + const int2 v = get_int_from_table_16(aux_q4); + + sumi = ggml_cuda_dp4a(v.x, q8[l + 0], sumi); + sumi = ggml_cuda_dp4a(v.y, q8[l + 4], sumi); } -#else - const uint8_t * q4 = bq->qs + 4*iqs; - const int8_t * q8 = bq8_1->qs + 4*iqs; - - int sumi1 = 0, sumi2 = 0; - for (int l = 0; l < 4*VDR_Q4_0_Q8_1_MMVQ; ++l) { - sumi1 += q8[l+ 0] * kvalues_iq4nl[q4[l] & 0xf]; - sumi2 += q8[l+16] * kvalues_iq4nl[q4[l] >> 4]; - } -#endif - const float d = (float)bq->d * __low2float(bq8_1->ds); - return d * (sumi1 + sumi2); + const float d = __half2float(bq4->d) * __low2float(bq8_1->ds); + return d * sumi; } +#define VDR_IQ4_XS_Q8_1_MMVQ 4 + static __device__ __forceinline__ float vec_dot_iq4_xs_q8_1( const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) { -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics const block_iq4_xs * bq4 = (const block_iq4_xs *) vbq + kbx; - const uint8_t * values = (const uint8_t *)kvalues_iq4nl; - // iqs is 0...7 - const int ib32 = iqs; - const int32_t * q8 = (const int *)bq8_1[ib32].qs; - const uint32_t * q4 = (const uint32_t *)bq4->qs + 4*ib32; - const int8_t ls = ((bq4->scales_l[ib32/2] >> 4*(ib32%2)) & 0xf) | (((bq4->scales_h >> 2*ib32) & 3) << 4); - const float d = (float)bq4->d * (ls - 32) * __low2float(bq8_1[ib32].ds); - int v1, v2; - int sumi1 = 0, sumi2 = 0; + int sumi = 0; +#pragma unroll for (int j = 0; j < 4; ++j) { - get_int_from_table_16(q4[j], values, v1, v2); - sumi1 = __dp4a(v1, q8[j+0], sumi1); - sumi2 = __dp4a(v2, q8[j+4], sumi2); + const int aux_q4 = get_int_b4(bq4->qs, iqs + j); + const int2 v = get_int_from_table_16(aux_q4); + + const int u0 = get_int_b4(bq8_1[iqs/4].qs, j + 0); + const int u1 = get_int_b4(bq8_1[iqs/4].qs, j + 4); + + sumi = ggml_cuda_dp4a(v.x, u0, sumi); + sumi = ggml_cuda_dp4a(v.y, u1, sumi); } - return d * (sumi1 + sumi2); -#else - return vec_dot_iq4_xs_q8_1(vbq, bq8_1, kbx, iqs); -#endif + + const int ls = ((bq4->scales_l[iqs/8] >> (iqs & 0x04)) & 0x0F) | (((bq4->scales_h >> (iqs/2)) & 0x03) << 4); + sumi *= ls - 32; + + const float d = __half2float(bq4->d) * __low2float(bq8_1[iqs/4].ds); + return d * sumi; } diff --git a/ggml/src/ggml-sycl/mmvq.cpp b/ggml/src/ggml-sycl/mmvq.cpp index 23227649e..9b751f3c6 100644 --- a/ggml/src/ggml-sycl/mmvq.cpp +++ b/ggml/src/ggml-sycl/mmvq.cpp @@ -735,7 +735,7 @@ static void mul_mat_vec_iq2_xxs_q8_1_sycl(const void *vx, const void *vy, sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] { - mul_mat_vec_q_iq2_xxs_q8_1( + mul_mat_vec_q_iq2_xxs_q8_1( vx, vy, dst, ncols, nrows, item_ct1); }); }); @@ -760,7 +760,7 @@ static void mul_mat_vec_iq2_xs_q8_1_sycl(const void *vx, const void *vy, sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] { - mul_mat_vec_q_iq2_xs_q8_1( + mul_mat_vec_q_iq2_xs_q8_1( vx, vy, dst, ncols, nrows, item_ct1); }); }); @@ -785,7 +785,7 @@ static void mul_mat_vec_iq2_s_q8_1_sycl(const void *vx, const void *vy, sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] { - mul_mat_vec_q_iq2_s_q8_1( + mul_mat_vec_q_iq2_s_q8_1( vx, vy, dst, ncols, nrows, item_ct1); }); }); @@ -810,7 +810,7 @@ static void mul_mat_vec_iq3_xxs_q8_1_sycl(const void *vx, const void *vy, sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] { - mul_mat_vec_q_iq3_xxs_q8_1( + mul_mat_vec_q_iq3_xxs_q8_1( vx, vy, dst, ncols, nrows, item_ct1); }); }); @@ -834,7 +834,7 @@ static void mul_mat_vec_iq3_s_q8_1_sycl(const void *vx, const void *vy, sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] { - mul_mat_vec_q_iq3_s_q8_1( + mul_mat_vec_q_iq3_s_q8_1( vx, vy, dst, ncols, nrows, item_ct1); }); }); @@ -924,7 +924,7 @@ static void mul_mat_vec_iq4_xs_q8_1_sycl(const void *vx, const void *vy, sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] { - mul_mat_vec_q_iq4_xs_q8_1( + mul_mat_vec_q_iq4_xs_q8_1( vx, vy, dst, ncols, nrows, item_ct1); }); }); diff --git a/ggml/src/ggml-sycl/vecdotq.hpp b/ggml/src/ggml-sycl/vecdotq.hpp index 5e2e82546..d2dccade2 100644 --- a/ggml/src/ggml-sycl/vecdotq.hpp +++ b/ggml/src/ggml-sycl/vecdotq.hpp @@ -820,7 +820,6 @@ vec_dot_iq2_xxs_q8_1(const void *__restrict__ vbq, #if QK_K == 256 const block_iq2_xxs * bq2 = (const block_iq2_xxs *) vbq; -#if QR2_XXS == 8 const int ib32 = iqs; const uint16_t * q2 = bq2->qs + 4*ib32; const uint8_t * aux8 = (const uint8_t *)q2; @@ -838,26 +837,6 @@ vec_dot_iq2_xxs_q8_1(const void *__restrict__ vbq, } const float d = (float)bq2->d * (0.5f + aux32) * bq8_1[ib32].ds[0] * 0.25f; return d * sumi; -#else - // iqs is 0...15 - const int ib32 = iqs/2; - const int il = iqs%2; - const uint16_t * q2 = bq2->qs + 4*ib32; - const uint8_t * aux8 = (const uint8_t *)q2; - const uint8_t * grid1 = (const uint8_t *)(iq2xxs_grid + aux8[2*il+0]); - const uint8_t * grid2 = (const uint8_t *)(iq2xxs_grid + aux8[2*il+1]); - const uint32_t aux32 = q2[2] | (q2[3] << 16); - const float d = (float)bq2->d * (0.5f + (aux32 >> 28)) * bq8_1[ib32].ds[0] * 0.25f; - const uint8_t signs1 = ksigns_iq2xs[(aux32 >> 14*il) & 127]; - const uint8_t signs2 = ksigns_iq2xs[(aux32 >> (14*il + 7)) & 127]; - const int8_t * q8 = bq8_1[ib32].qs + 16*il; - int sumi1 = 0, sumi2 = 0; - for (int j = 0; j < 8; ++j) { - sumi1 += q8[j+0] * grid1[j] * (signs1 & kmask_iq2xs[j] ? -1 : 1); - sumi2 += q8[j+8] * grid2[j] * (signs2 & kmask_iq2xs[j] ? -1 : 1); - } - return d * (sumi1 + sumi2); -#endif #else assert(false); return 0.f; From 5fac350b9cc49d0446fc291b9c4ad53666c77591 Mon Sep 17 00:00:00 2001 From: Xuan Son Nguyen Date: Tue, 2 Jul 2024 01:07:23 +0200 Subject: [PATCH 31/38] Fix gemma2 tokenizer convert (#8244) * fix gemma2 tokenizer convert * remove scores * improve code, fix new line issue --- convert-hf-to-gguf.py | 37 +++++++++++++++++++++++++++---------- 1 file changed, 27 insertions(+), 10 deletions(-) diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py index 4a7f500ff..6833e9437 100755 --- a/convert-hf-to-gguf.py +++ b/convert-hf-to-gguf.py @@ -576,7 +576,19 @@ class Model: special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"]) special_vocab.add_to_gguf(self.gguf_writer) - def _set_vocab_sentencepiece(self): + def _set_vocab_sentencepiece(self, add_to_gguf=True): + tokens, scores, toktypes = self._create_vocab_sentencepiece() + + self.gguf_writer.add_tokenizer_model("llama") + self.gguf_writer.add_tokenizer_pre("default") + self.gguf_writer.add_token_list(tokens) + self.gguf_writer.add_token_scores(scores) + self.gguf_writer.add_token_types(toktypes) + + special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) + special_vocab.add_to_gguf(self.gguf_writer) + + def _create_vocab_sentencepiece(self): from sentencepiece import SentencePieceProcessor tokenizer_path = self.dir_model / 'tokenizer.model' @@ -638,14 +650,7 @@ class Model: scores.append(-1000.0) toktypes.append(SentencePieceTokenTypes.UNUSED) - self.gguf_writer.add_tokenizer_model("llama") - self.gguf_writer.add_tokenizer_pre("default") - self.gguf_writer.add_token_list(tokens) - self.gguf_writer.add_token_scores(scores) - self.gguf_writer.add_token_types(toktypes) - - special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) - special_vocab.add_to_gguf(self.gguf_writer) + return tokens, scores, toktypes def _set_vocab_llama_hf(self): vocab = gguf.LlamaHfVocab(self.dir_model) @@ -2345,7 +2350,19 @@ class Gemma2Model(Model): model_arch = gguf.MODEL_ARCH.GEMMA2 def set_vocab(self): - self._set_vocab_llama_hf() + tokens, scores, toktypes = self._create_vocab_sentencepiece() + # hack: This is required so that we can properly use start/end-of-turn for chat template + for i in range(108): + # including , , + toktypes[i] = SentencePieceTokenTypes.CONTROL + self.gguf_writer.add_tokenizer_model("llama") + self.gguf_writer.add_tokenizer_pre("default") + self.gguf_writer.add_token_list(tokens) + self.gguf_writer.add_token_scores(scores) + self.gguf_writer.add_token_types(toktypes) + + special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) + special_vocab.add_to_gguf(self.gguf_writer) self.gguf_writer.add_add_space_prefix(False) def set_gguf_parameters(self): From d08c20eddedb24515a3212e2de66bdff41a26b8c Mon Sep 17 00:00:00 2001 From: luoyu-intel Date: Tue, 2 Jul 2024 02:16:00 +0000 Subject: [PATCH 32/38] [SYCL] Fix the sub group size of Intel (#8106) * use warp_size macro for all sycl kernels * fix mask of permute_sub_group_by_xor * fix rms_norm with correct warp number * fix rms_norm_f32/group_norm_f32 * move norm to norm.cpp file * fix quantize bug * fix mmvq's batch size --- ggml/src/CMakeLists.txt | 4 +- ggml/src/ggml-sycl.cpp | 472 +++------------------------------ ggml/src/ggml-sycl/backend.hpp | 1 + ggml/src/ggml-sycl/common.hpp | 55 ++++ ggml/src/ggml-sycl/dmmv.cpp | 44 +-- ggml/src/ggml-sycl/mmvq.cpp | 113 ++++---- ggml/src/ggml-sycl/norm.cpp | 370 ++++++++++++++++++++++++++ ggml/src/ggml-sycl/norm.hpp | 35 +++ ggml/src/ggml-sycl/presets.hpp | 2 +- 9 files changed, 587 insertions(+), 509 deletions(-) create mode 100644 ggml/src/ggml-sycl/norm.cpp create mode 100644 ggml/src/ggml-sycl/norm.hpp diff --git a/ggml/src/CMakeLists.txt b/ggml/src/CMakeLists.txt index d0f4097d8..a18198f16 100644 --- a/ggml/src/CMakeLists.txt +++ b/ggml/src/CMakeLists.txt @@ -486,9 +486,11 @@ if (GGML_SYCL) add_compile_options(-I./) #include DPCT set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-narrowing") - set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O3") if (GGML_SYCL_TARGET STREQUAL "NVIDIA") set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsycl-targets=nvptx64-nvidia-cuda") + add_compile_definitions(GGML_SYCL_WARP_SIZE=32) + else() + add_compile_definitions(GGML_SYCL_WARP_SIZE=16) endif() file(GLOB GGML_HEADERS_SYCL "ggml-sycl/*.hpp") diff --git a/ggml/src/ggml-sycl.cpp b/ggml/src/ggml-sycl.cpp index 30d8a5b33..76bad57e2 100644 --- a/ggml/src/ggml-sycl.cpp +++ b/ggml/src/ggml-sycl.cpp @@ -74,51 +74,6 @@ typedef void (*ggml_sycl_op_flatten_t)(ggml_backend_sycl_context & ctx, const gg const float *src1_dd, float *dst_dd, const queue_ptr &main_stream); -static __dpct_inline__ float warp_reduce_sum(float x, - const sycl::nd_item<3> &item_ct1) { -#pragma unroll - for (int mask = 16; mask > 0; mask >>= 1) { - /* - DPCT1096:98: The right-most dimension of the work-group used in the SYCL - kernel that calls this function may be less than "32". The function - "dpct::permute_sub_group_by_xor" may return an unexpected result on the - CPU device. Modify the size of the work-group to ensure that the value - of the right-most dimension is a multiple of "32". - */ - x += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), x, mask); - } - return x; -} - -static __dpct_inline__ sycl::float2 -warp_reduce_sum(sycl::float2 a, const sycl::nd_item<3> &item_ct1) { -#pragma unroll - for (int mask = 16; mask > 0; mask >>= 1) { - a.x() += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), a.x(), - mask); - a.y() += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), a.y(), - mask); - } - return a; -} - -static __dpct_inline__ float warp_reduce_max(float x, - const sycl::nd_item<3> &item_ct1) { -#pragma unroll - for (int mask = 16; mask > 0; mask >>= 1) { - /* - DPCT1096:97: The right-most dimension of the work-group used in the SYCL - kernel that calls this function may be less than "32". The function - "dpct::permute_sub_group_by_xor" may return an unexpected result on the - CPU device. Modify the size of the work-group to ensure that the value - of the right-most dimension is a multiple of "32". - */ - x = sycl::fmax(x, dpct::permute_sub_group_by_xor( - item_ct1.get_sub_group(), x, mask)); - } - return x; -} - static __dpct_inline__ float op_repeat(const float a, const float b) { return b; GGML_UNUSED(a); @@ -336,47 +291,6 @@ static void sqr_f32(const float * x, float * dst, const int k, dst[i] = x[i] * x[i]; } -static void norm_f32(const float * x, float * dst, const int ncols, const float eps, - const sycl::nd_item<3> &item_ct1, sycl::float2 *s_sum, int block_size) { - const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) + - item_ct1.get_local_id(1); - const int tid = item_ct1.get_local_id(2); - - sycl::float2 mean_var = sycl::float2(0.f, 0.f); - - for (int col = tid; col < ncols; col += block_size) { - const float xi = x[row*ncols + col]; - mean_var.x() += xi; - mean_var.y() += xi * xi; - } - - // sum up partial sums - mean_var = warp_reduce_sum(mean_var, item_ct1); - if (block_size > WARP_SIZE) { - - int warp_id = item_ct1.get_local_id(2) / WARP_SIZE; - int lane_id = item_ct1.get_local_id(2) % WARP_SIZE; - if (lane_id == 0) { - s_sum[warp_id] = mean_var; - } - /* - DPCT1118:0: SYCL group functions and algorithms must be encountered in - converged control flow. You may need to adjust the code. - */ - item_ct1.barrier(sycl::access::fence_space::local_space); - mean_var = s_sum[lane_id]; - mean_var = warp_reduce_sum(mean_var, item_ct1); - } - - const float mean = mean_var.x() / ncols; - const float var = mean_var.y() / ncols - mean * mean; - const float inv_std = sycl::rsqrt(var + eps); - - for (int col = tid; col < ncols; col += block_size) { - dst[row*ncols + col] = (x[row*ncols + col] - mean) * inv_std; - } -} - static void concat_f32(const float *x,const float *y, float *dst, const int ne0, const int ne02, const sycl::nd_item<3> &item_ct1) { int nidx = item_ct1.get_local_id(2) + @@ -444,126 +358,11 @@ static void pad_f32(const float *x, float *dst, const int ne0, const int ne00, } } -static void group_norm_f32(const float * x, float * dst, const int group_size, const int ne_elements, const float eps, - const sycl::nd_item<3> &item_ct1, float *s_sum, int block_size) { - int start = item_ct1.get_group(2) * group_size; - int end = start + group_size; - - start += item_ct1.get_local_id(2); - - if (end >= ne_elements) { - end = ne_elements; - } - - float tmp = 0.0f; // partial sum for thread in warp - - for (int j = start; j < end; j += block_size) { - tmp += x[j]; - } - - tmp = warp_reduce_sum(tmp, item_ct1); - if (block_size > WARP_SIZE) { - - int warp_id = item_ct1.get_local_id(2) / WARP_SIZE; - int lane_id = item_ct1.get_local_id(2) % WARP_SIZE; - if (lane_id == 0) { - s_sum[warp_id] = tmp; - } - /* - DPCT1118:1: SYCL group functions and algorithms must be encountered in - converged control flow. You may need to adjust the code. - */ - /* - DPCT1065:54: Consider replacing sycl::nd_item::barrier() with - sycl::nd_item::barrier(sycl::access::fence_space::local_space) for - better performance if there is no access to global memory. - */ - item_ct1.barrier(); - tmp = s_sum[lane_id]; - tmp = warp_reduce_sum(tmp, item_ct1); - } - - float mean = tmp / group_size; - tmp = 0.0f; - - for (int j = start; j < end; j += block_size) { - float xi = x[j] - mean; - dst[j] = xi; - tmp += xi * xi; - } - - tmp = warp_reduce_sum(tmp, item_ct1); - if (block_size > WARP_SIZE) { - - int warp_id = item_ct1.get_local_id(2) / WARP_SIZE; - int lane_id = item_ct1.get_local_id(2) % WARP_SIZE; - if (lane_id == 0) { - s_sum[warp_id] = tmp; - } - /* - DPCT1118:2: SYCL group functions and algorithms must be encountered in - converged control flow. You may need to adjust the code. - */ - /* - DPCT1065:55: Consider replacing sycl::nd_item::barrier() with - sycl::nd_item::barrier(sycl::access::fence_space::local_space) for - better performance if there is no access to global memory. - */ - item_ct1.barrier(); - tmp = s_sum[lane_id]; - tmp = warp_reduce_sum(tmp, item_ct1); - } - - float variance = tmp / group_size; - float scale = sycl::rsqrt(variance + eps); - for (int j = start; j < end; j += block_size) { - dst[j] *= scale; - } -} - -static void rms_norm_f32(const float * x, float * dst, const int ncols, const float eps, - const sycl::nd_item<3> &item_ct1, float *s_sum, int block_size) { - const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) + - item_ct1.get_local_id(1); - const int tid = item_ct1.get_local_id(2); - - float tmp = 0.0f; // partial sum for thread in warp - - for (int col = tid; col < ncols; col += block_size) { - const float xi = x[row*ncols + col]; - tmp += xi * xi; - } - - // sum up partial sums - tmp = warp_reduce_sum(tmp, item_ct1); - if (block_size > WARP_SIZE) { - - int warp_id = item_ct1.get_local_id(2) / WARP_SIZE; - int lane_id = item_ct1.get_local_id(2) % WARP_SIZE; - if (lane_id == 0) { - s_sum[warp_id] = tmp; - } - /* - DPCT1118:3: SYCL group functions and algorithms must be encountered in - converged control flow. You may need to adjust the code. - */ - item_ct1.barrier(sycl::access::fence_space::local_space); - tmp = s_sum[lane_id]; - tmp = warp_reduce_sum(tmp, item_ct1); - } - - const float mean = tmp / ncols; - const float scale = sycl::rsqrt(mean + eps); - - for (int col = tid; col < ncols; col += block_size) { - dst[row*ncols + col] = scale * x[row*ncols + col]; - } -} - +template static void quantize_q8_1(const float * __restrict__ x, void * __restrict__ vy, const int kx, const int kx_padded, const sycl::nd_item<3> &item_ct1) { - const int ix = item_ct1.get_local_range(2) * item_ct1.get_group(2) + - item_ct1.get_local_id(2); + const int ix = (item_ct1.get_local_range(2) * item_ct1.get_group(2) + + item_ct1.get_local_id(2)) * QUANT_BLOCK_TILE; if (ix >= kx_padded) { return; @@ -578,23 +377,39 @@ static void quantize_q8_1(const float * __restrict__ x, void * __restrict__ vy, const int ib = i_padded / QK8_1; // block index const int iqs = i_padded % QK8_1; // quant index - - const float xi = ix < kx ? x[iy*kx + ix] : 0.0f; - float amax = sycl::fabs((float)xi); - float sum = xi; - + typedef sycl::vec TC; + typedef sycl::vec TQ; + TC zeros; + TQ qzeros; #pragma unroll - for (int mask = 16; mask > 0; mask >>= 1) { - amax = sycl::fmax(amax, dpct::permute_sub_group_by_xor( - item_ct1.get_sub_group(), amax, mask)); - sum += - dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), sum, mask); + for (int i = 0; i < QUANT_BLOCK_TILE; i++) + { + zeros[i] = 0.f; + qzeros[i] = 0; } + const TC xi = ix < kx ? *(TC *)&x[iy * kx + ix] : zeros; + float sum = xi[0]; + float amax = sycl::fabs(xi[0]); +#pragma unroll + for (int i = 1; i < QUANT_BLOCK_TILE; i++) + { + sum += xi[i]; + amax = sycl::fmax(sycl::fabs(xi[i]), amax); + } + sum = warp_reduce_sum(sum, item_ct1); + amax = warp_reduce_max(amax, item_ct1); const float d = amax / 127; - const int8_t q = amax == 0.0f ? 0 : sycl::round(xi / d); + TQ q = qzeros; + if (amax != 0.0f) + { +#pragma unroll + for (int i = 0; i < QUANT_BLOCK_TILE; i++) { + q[i] = sycl::round(xi[i] / d); + } + } - y[ib].qs[iqs] = q; + *(TQ *)&y[ib].qs[iqs] = q; if (iqs > 0) { return; @@ -728,7 +543,7 @@ static void mul_mat_p021_f16_f32( // sum up partial sums and write back result #pragma unroll - for (int mask = 16; mask > 0; mask >>= 1) { + for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { tmp += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); } @@ -781,7 +596,7 @@ static void mul_mat_vec_nc_f16_f32( // nc == non-contiguous // sum up partial sums and write back result #pragma unroll - for (int mask = 16; mask > 0; mask >>= 1) { + for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { tmp += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); } @@ -1643,99 +1458,6 @@ static void sqr_f32_sycl(const float *x, float *dst, const int k, }); } -static void norm_f32_sycl(const float *x, float *dst, const int ncols, - const int nrows, const float eps, - queue_ptr stream) { - GGML_ASSERT(ncols % WARP_SIZE == 0); - if (ncols < 1024) { - const sycl::range<3> block_dims(1, 1, WARP_SIZE); - stream->submit([&](sycl::handler &cgh) { - sycl::local_accessor s_sum_acc_ct1( - sycl::range<1>(32), cgh); - - cgh.parallel_for( - sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims, - block_dims), - [=](sycl::nd_item<3> item_ct1) - [[intel::reqd_sub_group_size(32)]] { - norm_f32(x, dst, ncols, eps, item_ct1, - s_sum_acc_ct1.get_pointer(), WARP_SIZE); - }); - }); - } else { - const int work_group_size = get_work_group_size(stream->get_device()); - const sycl::range<3> block_dims(1, 1, work_group_size); - /* - DPCT1049:17: The work-group size passed to the SYCL kernel may exceed - the limit. To get the device limit, query - info::device::max_work_group_size. Adjust the work-group size if needed. - */ - stream->submit([&](sycl::handler &cgh) { - sycl::local_accessor s_sum_acc_ct1( - sycl::range<1>(32), cgh); - - cgh.parallel_for( - sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims, - block_dims), - [=](sycl::nd_item<3> item_ct1) - [[intel::reqd_sub_group_size(32)]] { - norm_f32(x, dst, ncols, eps, item_ct1, - s_sum_acc_ct1.get_pointer(), work_group_size); - }); - }); - } -} - -static void group_norm_f32_sycl(const float *x, float *dst, - const int num_groups, const int group_size, - const int ne_elements, queue_ptr stream) { - static const float eps = 1e-6f; - if (group_size < 1024) { - const sycl::range<3> block_dims(1, 1, WARP_SIZE); - stream->submit([&](sycl::handler &cgh) { - sycl::local_accessor s_sum_acc_ct1(sycl::range<1>(32), - cgh); - - const float eps_ct4 = eps; - - cgh.parallel_for( - sycl::nd_range<3>(sycl::range<3>(1, 1, num_groups) * block_dims, - block_dims), - [=](sycl::nd_item<3> item_ct1) - [[intel::reqd_sub_group_size(32)]] { - group_norm_f32( - x, dst, group_size, ne_elements, eps_ct4, item_ct1, - s_sum_acc_ct1.get_pointer(), WARP_SIZE); - }); - }); - } else { - const int work_group_size = get_work_group_size(stream->get_device()); - const sycl::range<3> block_dims(1, 1, work_group_size); - /* - DPCT1049:18: The work-group size passed to the SYCL kernel may exceed - the limit. To get the device limit, query - info::device::max_work_group_size. Adjust the work-group size if needed. - */ - - stream->submit([&](sycl::handler &cgh) { - sycl::local_accessor s_sum_acc_ct1(sycl::range<1>(32), - cgh); - - const float eps_ct4 = eps; - - cgh.parallel_for( - sycl::nd_range<3>(sycl::range<3>(1, 1, num_groups) * block_dims, - block_dims), - [=](sycl::nd_item<3> item_ct1) - [[intel::reqd_sub_group_size(32)]] { - group_norm_f32(x, dst, group_size, ne_elements, - eps_ct4, item_ct1, - s_sum_acc_ct1.get_pointer(), work_group_size); - }); - }); - } -} - static void concat_f32_sycl(const float *x, const float *y, float *dst, const int ne0, int ne1, int ne2, int ne02, queue_ptr stream) { @@ -1777,64 +1499,22 @@ static void pad_f32_sycl(const float *x, float *dst, const int ne00, }); } -static void rms_norm_f32_sycl(const float *x, float *dst, const int ncols, - const int nrows, const float eps, - queue_ptr stream) { - GGML_ASSERT(ncols % WARP_SIZE == 0); - // printf("%s ncols=%d, nrows=%d, WARP_SIZE=%d\n", __func__, ncols, nrows, WARP_SIZE); - if (ncols < 1024) { - const sycl::range<3> block_dims(1, 1, WARP_SIZE); - stream->submit([&](sycl::handler &cgh) { - sycl::local_accessor s_sum_acc_ct1(sycl::range<1>(32), - cgh); - - cgh.parallel_for( - sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims, - block_dims), - [=](sycl::nd_item<3> item_ct1) - [[intel::reqd_sub_group_size(32)]] { - rms_norm_f32(x, dst, ncols, eps, item_ct1, - s_sum_acc_ct1.get_pointer(), WARP_SIZE); - }); - }); - } else { - const int work_group_size = get_work_group_size(stream->get_device()); - const sycl::range<3> block_dims(1, 1, work_group_size); - /* - DPCT1049:19: The work-group size passed to the SYCL kernel may exceed - the limit. To get the device limit, query - info::device::max_work_group_size. Adjust the work-group size if needed. - */ - stream->submit([&](sycl::handler &cgh) { - sycl::local_accessor s_sum_acc_ct1(sycl::range<1>(32), - cgh); - - cgh.parallel_for( - sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims, - block_dims), - [=](sycl::nd_item<3> item_ct1) - [[intel::reqd_sub_group_size(32)]] { - rms_norm_f32(x, dst, ncols, eps, item_ct1, - s_sum_acc_ct1.get_pointer(), work_group_size); - }); - }); - } -} - static void quantize_row_q8_1_sycl(const float *x, void *vy, const int kx, const int ky, const int kx_padded, queue_ptr stream) { const int block_num_x = (kx_padded + SYCL_QUANTIZE_BLOCK_SIZE - 1) / SYCL_QUANTIZE_BLOCK_SIZE; const sycl::range<3> num_blocks(1, ky, block_num_x); - const sycl::range<3> block_size(1, 1, SYCL_DEQUANTIZE_BLOCK_SIZE); + int constexpr QUANT_BLOCK_TILE = QK8_1 / WARP_SIZE; + static_assert(QK8_1 % WARP_SIZE == 0); + const sycl::range<3> block_size(1, 1, SYCL_QUANTIZE_BLOCK_SIZE / QUANT_BLOCK_TILE); { dpct::has_capability_or_fail(stream->get_device(), {sycl::aspect::fp16}); stream->parallel_for( sycl::nd_range<3>(num_blocks * block_size, block_size), - [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] { - quantize_q8_1(x, vy, kx, kx_padded, item_ct1); + [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { + quantize_q8_1(x, vy, kx, kx_padded, item_ct1); }); } } @@ -1854,7 +1534,7 @@ static void ggml_mul_mat_p021_f16_f32_sycl(const void *vx, const float *y, stream->parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), - [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] { + [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { mul_mat_p021_f16_f32(vx, y, dst, ncols_x, nrows_x, nchannels_x, nchannels_y, item_ct1); }); @@ -1874,7 +1554,7 @@ static void ggml_mul_mat_vec_nc_f16_f32_sycl( stream->parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), - [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] { + [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { mul_mat_vec_nc_f16_f32(vx, y, dst, ncols_x, nrows_x, row_stride_x, channel_stride_x, nchannels_y / nchannels_x, item_ct1); @@ -2139,7 +1819,7 @@ static void sum_rows_f32_sycl(const float *x, float *dst, const int ncols, const sycl::range<3> block_nums(1, nrows, 1); stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) - [[intel::reqd_sub_group_size(32)]] { + [[intel::reqd_sub_group_size(WARP_SIZE)]] { k_sum_rows_f32(x, dst, ncols, item_ct1); }); } @@ -2220,7 +1900,7 @@ static void soft_max_f32_submitter(const float * x, const float * mask, float * cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), - [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] { + [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { soft_max_f32(x, mask, dst, ncols_par, nrows_y, scale, max_bias, m0, m1, n_head_log2, item_ct1, @@ -2400,12 +2080,6 @@ static inline int get_sycl_env(const char *env_name, int default_val) { return user_number; } -static inline int get_work_group_size(const sycl::device& device) { - dpct::device_info prop; - dpct::get_device_info(prop, device); - return prop.get_max_work_group_size(); -} - static void ggml_check_sycl() try { static bool initialized = false; @@ -2964,45 +2638,6 @@ inline void ggml_sycl_op_sqr(ggml_backend_sycl_context & ctx, const ggml_tensor (void) src1_dd; } -inline void ggml_sycl_op_norm(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1, - ggml_tensor *dst, const float *src0_dd, - const float *src1_dd, float *dst_dd, - const queue_ptr &main_stream) { - - GGML_ASSERT(src0->type == GGML_TYPE_F32); - GGML_ASSERT( dst->type == GGML_TYPE_F32); - - const int64_t ne00 = src0->ne[0]; - const int64_t nrows = ggml_nrows(src0); - - float eps; - memcpy(&eps, dst->op_params, sizeof(float)); - - norm_f32_sycl(src0_dd, dst_dd, ne00, nrows, eps, main_stream); - - (void) src1; - (void) dst; - (void) src1_dd; -} - -inline void ggml_sycl_op_group_norm(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, - const ggml_tensor *src1, ggml_tensor *dst, - const float *src0_dd, const float *src1_dd, - float *dst_dd, - const queue_ptr &main_stream) { - - GGML_ASSERT(src0->type == GGML_TYPE_F32); - GGML_ASSERT( dst->type == GGML_TYPE_F32); - - int num_groups = dst->op_params[0]; - int group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups); - group_norm_f32_sycl(src0_dd, dst_dd, num_groups, group_size, src0->ne[0] * src0->ne[1] * src0->ne[2], main_stream); - - (void) src1; - (void) dst; - (void) src1_dd; -} - inline void ggml_sycl_op_concat(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst, const float *src0_dd, const float *src1_dd, @@ -3066,28 +2701,6 @@ inline void ggml_sycl_op_pad(ggml_backend_sycl_context & ctx, const ggml_tensor (void) src1_dd; } -inline void ggml_sycl_op_rms_norm(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, - const ggml_tensor *src1, ggml_tensor *dst, - const float *src0_dd, const float *src1_dd, - float *dst_dd, - const queue_ptr &main_stream) { - - GGML_ASSERT(src0->type == GGML_TYPE_F32); - GGML_ASSERT( dst->type == GGML_TYPE_F32); - - const int64_t ne00 = src0->ne[0]; - const int64_t nrows = ggml_nrows(src0); - - float eps; - memcpy(&eps, dst->op_params, sizeof(float)); - - rms_norm_f32_sycl(src0_dd, dst_dd, ne00, nrows, eps, main_stream); - - (void) src1; - (void) dst; - (void) src1_dd; -} - static int64_t get_row_rounding(ggml_type type, const std::array & tensor_split) { int64_t min_compute_capability = INT_MAX; int64_t max_compute_capability = INT_MIN; @@ -4273,7 +3886,6 @@ bool ggml_sycl_supports_dmmv(enum ggml_type type) { static void ggml_sycl_mul_mat(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { const bool split = ggml_backend_buffer_is_sycl_split(src0->buffer); - int64_t min_compute_capability = INT_MAX; if (split) { diff --git a/ggml/src/ggml-sycl/backend.hpp b/ggml/src/ggml-sycl/backend.hpp index d5a63cd71..3afa33919 100644 --- a/ggml/src/ggml-sycl/backend.hpp +++ b/ggml/src/ggml-sycl/backend.hpp @@ -20,5 +20,6 @@ #include "mmq.hpp" #include "mmvq.hpp" #include "rope.hpp" +#include "norm.hpp" #endif // GGML_SYCL_BACKEND_HPP diff --git a/ggml/src/ggml-sycl/common.hpp b/ggml/src/ggml-sycl/common.hpp index e01f91633..dfd4a7c2c 100644 --- a/ggml/src/ggml-sycl/common.hpp +++ b/ggml/src/ggml-sycl/common.hpp @@ -295,5 +295,60 @@ struct ggml_backend_sycl_context { } }; +// common host functions + +static inline int get_work_group_size(const sycl::device& device) { + dpct::device_info prop; + dpct::get_device_info(prop, device); + return prop.get_max_work_group_size(); +} + + +// common device functions + +static __dpct_inline__ float warp_reduce_sum(float x, + const sycl::nd_item<3>& item_ct1) { +#pragma unroll + for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { + /* + DPCT1096:98: The right-most dimension of the work-group used in the SYCL + kernel that calls this function may be less than "32". The function + "dpct::permute_sub_group_by_xor" may return an unexpected result on the + CPU device. Modify the size of the work-group to ensure that the value + of the right-most dimension is a multiple of "32". + */ + x += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), x, mask); + } + return x; +} + +static __dpct_inline__ sycl::float2 +warp_reduce_sum(sycl::float2 a, const sycl::nd_item<3>& item_ct1) { +#pragma unroll + for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { + a.x() += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), a.x(), + mask); + a.y() += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), a.y(), + mask); + } + return a; +} + +static __dpct_inline__ float warp_reduce_max(float x, + const sycl::nd_item<3>& item_ct1) { +#pragma unroll + for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { + /* + DPCT1096:97: The right-most dimension of the work-group used in the SYCL + kernel that calls this function may be less than "32". The function + "dpct::permute_sub_group_by_xor" may return an unexpected result on the + CPU device. Modify the size of the work-group to ensure that the value + of the right-most dimension is a multiple of "32". + */ + x = sycl::fmax(x, dpct::permute_sub_group_by_xor( + item_ct1.get_sub_group(), x, mask)); + } + return x; +} #endif // GGML_SYCL_COMMON_HPP diff --git a/ggml/src/ggml-sycl/dmmv.cpp b/ggml/src/ggml-sycl/dmmv.cpp index 3a87d3ef8..927819281 100644 --- a/ggml/src/ggml-sycl/dmmv.cpp +++ b/ggml/src/ggml-sycl/dmmv.cpp @@ -76,7 +76,7 @@ static void dequantize_mul_mat_vec(const void * __restrict__ vx, const dfloat * // sum up partial sums and write back result #pragma unroll - for (int mask = 16; mask > 0; mask >>= 1) { + for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { tmp += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); } @@ -104,7 +104,7 @@ static void convert_mul_mat_vec_f16_sycl(const void *vx, const dfloat *y, stream->parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), - [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] { + [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { dequantize_mul_mat_vec<1, 1, convert_f16>(vx, y, dst, ncols, nrows, item_ct1); }); @@ -227,7 +227,7 @@ static void dequantize_mul_mat_vec_q2_k(const void *__restrict__ vx, // sum up partial sums and write back result #pragma unroll - for (int mask = 16; mask > 0; mask >>= 1) { + for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { tmp += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); } @@ -346,7 +346,7 @@ static void dequantize_mul_mat_vec_q3_k(const void *__restrict__ vx, // sum up partial sums and write back result #pragma unroll - for (int mask = 16; mask > 0; mask >>= 1) { + for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { tmp += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); } @@ -499,7 +499,7 @@ static void dequantize_mul_mat_vec_q4_k(const void *__restrict__ vx, // sum up partial sums and write back result #pragma unroll - for (int mask = 16; mask > 0; mask >>= 1) { + for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { tmp += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); } @@ -633,7 +633,7 @@ static void dequantize_mul_mat_vec_q5_k(const void *__restrict__ vx, // sum up partial sums and write back result #pragma unroll - for (int mask = 16; mask > 0; mask >>= 1) { + for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { tmp += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); } @@ -748,7 +748,7 @@ static void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx, const floa // sum up partial sums and write back result #pragma unroll - for (int mask = 16; mask > 0; mask >>= 1) { + for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { tmp += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); } @@ -774,7 +774,7 @@ static void dequantize_mul_mat_vec_q4_0_sycl(const void *vx, const dfloat *y, stream->parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), - [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] { + [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { dequantize_mul_mat_vec( vx, y, dst, ncols, nrows, item_ct1); }); @@ -795,7 +795,7 @@ static void dequantize_mul_mat_vec_q4_1_sycl(const void *vx, const dfloat *y, stream->parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), - [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] { + [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { dequantize_mul_mat_vec( vx, y, dst, ncols, nrows, item_ct1); }); @@ -816,7 +816,7 @@ static void dequantize_mul_mat_vec_q5_0_sycl(const void *vx, const dfloat *y, stream->parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), - [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] { + [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { dequantize_mul_mat_vec( vx, y, dst, ncols, nrows, item_ct1); }); @@ -837,7 +837,7 @@ static void dequantize_mul_mat_vec_q5_1_sycl(const void *vx, const dfloat *y, stream->parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), - [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] { + [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { dequantize_mul_mat_vec( vx, y, dst, ncols, nrows, item_ct1); }); @@ -858,7 +858,7 @@ static void dequantize_mul_mat_vec_q8_0_sycl(const void *vx, const dfloat *y, stream->parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), - [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] { + [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { dequantize_mul_mat_vec( vx, y, dst, ncols, nrows, item_ct1); }); @@ -873,10 +873,10 @@ static void dequantize_mul_mat_vec_q2_K_sycl(const void *vx, const float *y, const int ny = 2; // very slightly faster than 1 even when K_QUANTS_PER_ITERATION = 2 const int block_num_y = (nrows + ny - 1) / ny; const sycl::range<3> block_nums(1, 1, block_num_y); - const sycl::range<3> block_dims(1, ny, 32); + const sycl::range<3> block_dims(1, ny, WARP_SIZE); stream->parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), - [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] { + [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { dequantize_mul_mat_vec_q2_k(vx, y, dst, ncols, nrows, item_ct1); }); } @@ -889,10 +889,10 @@ static void dequantize_mul_mat_vec_q3_K_sycl(const void *vx, const float *y, const int ny = 2 / K_QUANTS_PER_ITERATION; const int block_num_y = (nrows + ny - 1) / ny; const sycl::range<3> block_nums(1, 1, block_num_y); - const sycl::range<3> block_dims(1, ny, 32); + const sycl::range<3> block_dims(1, ny, WARP_SIZE); stream->parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), - [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] { + [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { dequantize_mul_mat_vec_q3_k(vx, y, dst, ncols, nrows, item_ct1); }); } @@ -905,10 +905,10 @@ static void dequantize_mul_mat_vec_q4_K_sycl(const void *vx, const float *y, const int ny = 2 / K_QUANTS_PER_ITERATION; const int block_num_y = (nrows + ny - 1) / ny; const sycl::range<3> block_nums(1, 1, block_num_y); - const sycl::range<3> block_dims(1, ny, 32); + const sycl::range<3> block_dims(1, ny, WARP_SIZE); stream->parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), - [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] { + [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { dequantize_mul_mat_vec_q4_k(vx, y, dst, ncols, nrows, item_ct1); }); } @@ -918,10 +918,10 @@ static void dequantize_mul_mat_vec_q5_K_sycl(const void *vx, const float *y, const int nrows, dpct::queue_ptr stream) { GGML_ASSERT(ncols % QK_K == 0); - const sycl::range<3> block_dims(1, 1, 32); + const sycl::range<3> block_dims(1, 1, WARP_SIZE); stream->parallel_for( sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims, block_dims), - [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] { + [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { dequantize_mul_mat_vec_q5_k(vx, y, dst, ncols, item_ct1); }); } @@ -934,10 +934,10 @@ static void dequantize_mul_mat_vec_q6_K_sycl(const void *vx, const float *y, const int ny = 2 / K_QUANTS_PER_ITERATION; const int block_num_y = (nrows + ny - 1) / ny; const sycl::range<3> block_nums(1, 1, block_num_y); - const sycl::range<3> block_dims(1, ny, 32); + const sycl::range<3> block_dims(1, ny, WARP_SIZE); stream->parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), - [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] { + [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { dequantize_mul_mat_vec_q6_k(vx, y, dst, ncols, nrows, item_ct1); }); } diff --git a/ggml/src/ggml-sycl/mmvq.cpp b/ggml/src/ggml-sycl/mmvq.cpp index 9b751f3c6..3fbc4dd60 100644 --- a/ggml/src/ggml-sycl/mmvq.cpp +++ b/ggml/src/ggml-sycl/mmvq.cpp @@ -37,7 +37,7 @@ static void mul_mat_vec_q(const void * __restrict__ vx, const void * __restrict_ // sum up partial sums and write back result #pragma unroll - for (int mask = 16; mask > 0; mask >>= 1) { + for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { tmp += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); } @@ -85,7 +85,7 @@ static void mul_mat_vec_q_iq2_xxs_q8_1(const void *__restrict__ vx, // sum up partial sums and write back result #pragma unroll - for (int mask = 16; mask > 0; mask >>= 1) { + for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { tmp += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); } @@ -133,7 +133,7 @@ static void mul_mat_vec_q_iq2_xs_q8_1(const void *__restrict__ vx, // sum up partial sums and write back result #pragma unroll - for (int mask = 16; mask > 0; mask >>= 1) { + for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { tmp += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); } @@ -181,7 +181,7 @@ static void mul_mat_vec_q_iq2_s_q8_1(const void *__restrict__ vx, // sum up partial sums and write back result #pragma unroll - for (int mask = 16; mask > 0; mask >>= 1) { + for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { tmp += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); } @@ -229,7 +229,7 @@ static void mul_mat_vec_q_iq3_xxs_q8_1(const void *__restrict__ vx, // sum up partial sums and write back result #pragma unroll - for (int mask = 16; mask > 0; mask >>= 1) { + for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { tmp += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); } @@ -277,7 +277,7 @@ static void mul_mat_vec_q_iq3_s_q8_1(const void *__restrict__ vx, // sum up partial sums and write back result #pragma unroll - for (int mask = 16; mask > 0; mask >>= 1) { + for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { tmp += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); } @@ -325,7 +325,7 @@ static void mul_mat_vec_q_iq1_s_q8_1(const void *__restrict__ vx, // sum up partial sums and write back result #pragma unroll - for (int mask = 16; mask > 0; mask >>= 1) { + for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { tmp += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); } @@ -373,7 +373,7 @@ static void mul_mat_vec_q_iq1_m_q8_1(const void *__restrict__ vx, // sum up partial sums and write back result #pragma unroll - for (int mask = 16; mask > 0; mask >>= 1) { + for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { tmp += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); } @@ -421,7 +421,7 @@ static void mul_mat_vec_q_iq4_nl_q8_1(const void *__restrict__ vx, // sum up partial sums and write back result #pragma unroll - for (int mask = 16; mask > 0; mask >>= 1) { + for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { tmp += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); } @@ -470,7 +470,7 @@ static void mul_mat_vec_q_iq4_xs_q8_1(const void *__restrict__ vx, // sum up partial sums and write back result #pragma unroll - for (int mask = 16; mask > 0; mask >>= 1) { + for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { tmp += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); } @@ -495,7 +495,7 @@ static void mul_mat_vec_q4_0_q8_1_sycl(const void *vx, const void *vy, cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) - [[intel::reqd_sub_group_size(32)]] { + [[intel::reqd_sub_group_size(WARP_SIZE)]] { mul_mat_vec_q( vx, vy, dst, ncols, nrows, item_ct1); @@ -519,7 +519,7 @@ static void mul_mat_vec_q4_1_q8_1_sycl(const void *vx, const void *vy, cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) - [[intel::reqd_sub_group_size(32)]] { + [[intel::reqd_sub_group_size(WARP_SIZE)]] { mul_mat_vec_q( vx, vy, dst, ncols, nrows, item_ct1); @@ -543,7 +543,7 @@ static void mul_mat_vec_q5_0_q8_1_sycl(const void *vx, const void *vy, cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) - [[intel::reqd_sub_group_size(32)]] { + [[intel::reqd_sub_group_size(WARP_SIZE)]] { mul_mat_vec_q( vx, vy, dst, ncols, nrows, item_ct1); @@ -567,7 +567,7 @@ static void mul_mat_vec_q5_1_q8_1_sycl(const void *vx, const void *vy, cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) - [[intel::reqd_sub_group_size(32)]] { + [[intel::reqd_sub_group_size(WARP_SIZE)]] { mul_mat_vec_q( vx, vy, dst, ncols, nrows, item_ct1); @@ -591,7 +591,7 @@ static void mul_mat_vec_q8_0_q8_1_sycl(const void *vx, const void *vy, cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) - [[intel::reqd_sub_group_size(32)]] { + [[intel::reqd_sub_group_size(WARP_SIZE)]] { mul_mat_vec_q( vx, vy, dst, ncols, nrows, item_ct1); @@ -615,7 +615,7 @@ static void mul_mat_vec_q2_K_q8_1_sycl(const void *vx, const void *vy, cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) - [[intel::reqd_sub_group_size(32)]] { + [[intel::reqd_sub_group_size(WARP_SIZE)]] { mul_mat_vec_q( vx, vy, dst, ncols, nrows, item_ct1); @@ -639,7 +639,7 @@ static void mul_mat_vec_q3_K_q8_1_sycl(const void *vx, const void *vy, cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) - [[intel::reqd_sub_group_size(32)]] { + [[intel::reqd_sub_group_size(WARP_SIZE)]] { mul_mat_vec_q( vx, vy, dst, ncols, nrows, item_ct1); @@ -663,7 +663,7 @@ static void mul_mat_vec_q4_K_q8_1_sycl(const void *vx, const void *vy, cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) - [[intel::reqd_sub_group_size(32)]] { + [[intel::reqd_sub_group_size(WARP_SIZE)]] { mul_mat_vec_q( vx, vy, dst, ncols, nrows, item_ct1); @@ -687,7 +687,7 @@ static void mul_mat_vec_q5_K_q8_1_sycl(const void *vx, const void *vy, cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) - [[intel::reqd_sub_group_size(32)]] { + [[intel::reqd_sub_group_size(WARP_SIZE)]] { mul_mat_vec_q( vx, vy, dst, ncols, nrows, item_ct1); @@ -711,7 +711,7 @@ static void mul_mat_vec_q6_K_q8_1_sycl(const void *vx, const void *vy, cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) - [[intel::reqd_sub_group_size(32)]] { + [[intel::reqd_sub_group_size(WARP_SIZE)]] { mul_mat_vec_q( vx, vy, dst, ncols, nrows, item_ct1); @@ -734,7 +734,7 @@ static void mul_mat_vec_iq2_xxs_q8_1_sycl(const void *vx, const void *vy, cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) - [[intel::reqd_sub_group_size(32)]] { + [[intel::reqd_sub_group_size(WARP_SIZE)]] { mul_mat_vec_q_iq2_xxs_q8_1( vx, vy, dst, ncols, nrows, item_ct1); }); @@ -759,7 +759,7 @@ static void mul_mat_vec_iq2_xs_q8_1_sycl(const void *vx, const void *vy, cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) - [[intel::reqd_sub_group_size(32)]] { + [[intel::reqd_sub_group_size(WARP_SIZE)]] { mul_mat_vec_q_iq2_xs_q8_1( vx, vy, dst, ncols, nrows, item_ct1); }); @@ -784,7 +784,7 @@ static void mul_mat_vec_iq2_s_q8_1_sycl(const void *vx, const void *vy, cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) - [[intel::reqd_sub_group_size(32)]] { + [[intel::reqd_sub_group_size(WARP_SIZE)]] { mul_mat_vec_q_iq2_s_q8_1( vx, vy, dst, ncols, nrows, item_ct1); }); @@ -809,7 +809,7 @@ static void mul_mat_vec_iq3_xxs_q8_1_sycl(const void *vx, const void *vy, cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) - [[intel::reqd_sub_group_size(32)]] { + [[intel::reqd_sub_group_size(WARP_SIZE)]] { mul_mat_vec_q_iq3_xxs_q8_1( vx, vy, dst, ncols, nrows, item_ct1); }); @@ -833,7 +833,7 @@ static void mul_mat_vec_iq3_s_q8_1_sycl(const void *vx, const void *vy, cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) - [[intel::reqd_sub_group_size(32)]] { + [[intel::reqd_sub_group_size(WARP_SIZE)]] { mul_mat_vec_q_iq3_s_q8_1( vx, vy, dst, ncols, nrows, item_ct1); }); @@ -858,7 +858,7 @@ static void mul_mat_vec_iq1_s_q8_1_sycl(const void *vx, const void *vy, cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) - [[intel::reqd_sub_group_size(32)]] { + [[intel::reqd_sub_group_size(WARP_SIZE)]] { mul_mat_vec_q_iq1_s_q8_1( vx, vy, dst, ncols, nrows, item_ct1); }); @@ -879,7 +879,7 @@ static void mul_mat_vec_iq1_m_q8_1_sycl(const void *vx, const void *vy, cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) - [[intel::reqd_sub_group_size(32)]] { + [[intel::reqd_sub_group_size(WARP_SIZE)]] { mul_mat_vec_q_iq1_m_q8_1( vx, vy, dst, ncols, nrows, item_ct1); }); @@ -901,7 +901,7 @@ static void mul_mat_vec_iq4_nl_q8_1_sycl(const void *vx, const void *vy, cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) - [[intel::reqd_sub_group_size(32)]] { + [[intel::reqd_sub_group_size(WARP_SIZE)]] { mul_mat_vec_q_iq4_nl_q8_1( vx, vy, dst, ncols, nrows, item_ct1); }); @@ -923,7 +923,7 @@ static void mul_mat_vec_iq4_xs_q8_1_sycl(const void *vx, const void *vy, cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) - [[intel::reqd_sub_group_size(32)]] { + [[intel::reqd_sub_group_size(WARP_SIZE)]] { mul_mat_vec_q_iq4_xs_q8_1( vx, vy, dst, ncols, nrows, item_ct1); }); @@ -936,7 +936,7 @@ void ggml_sycl_op_mul_mat_vec_q( const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst, const char *src0_dd_i, const float *src1_ddf_i, const char *src1_ddq_i, float *dst_dd_i, const int64_t row_low, const int64_t row_high, - const int64_t src1_ncols, const int64_t src1_padded_row_size, + const int64_t src1_ncols, const int64_t src1_padded_col_size, const dpct::queue_ptr &stream) { const int64_t ne10 = src1->ne[0]; @@ -948,77 +948,80 @@ void ggml_sycl_op_mul_mat_vec_q( int id; SYCL_CHECK( CHECK_TRY_ERROR(id = get_current_device_id())); - + const size_t q8_1_ts = sizeof(block_q8_1); + const size_t q8_1_bs = QK8_1; // the main device has a larger memory buffer to hold the results from all GPUs // nrows_dst == nrows of the matrix that the kernel writes into const int64_t nrows_dst = id == ctx.device ? ne00 : row_diff; - - switch (src0->type) { + for (int i = 0; i < src1_ncols; i++) + { + const size_t src1_ddq_i_offset = i * src1_padded_col_size * q8_1_ts / q8_1_bs; + const char* src1_ddq_i_bs = src1_ddq_i + src1_ddq_i_offset; + float* dst_dd_i_bs = dst_dd_i + i * dst->ne[0]; + switch (src0->type) { case GGML_TYPE_Q4_0: - mul_mat_vec_q4_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); + mul_mat_vec_q4_0_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); break; case GGML_TYPE_Q4_1: - mul_mat_vec_q4_1_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); + mul_mat_vec_q4_1_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); break; case GGML_TYPE_Q5_0: - mul_mat_vec_q5_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); + mul_mat_vec_q5_0_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); break; case GGML_TYPE_Q5_1: - mul_mat_vec_q5_1_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); + mul_mat_vec_q5_1_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); break; case GGML_TYPE_Q8_0: - mul_mat_vec_q8_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); + mul_mat_vec_q8_0_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); break; case GGML_TYPE_Q2_K: - mul_mat_vec_q2_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); + mul_mat_vec_q2_K_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); break; case GGML_TYPE_Q3_K: - mul_mat_vec_q3_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); + mul_mat_vec_q3_K_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); break; case GGML_TYPE_Q4_K: - mul_mat_vec_q4_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); + mul_mat_vec_q4_K_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); break; case GGML_TYPE_Q5_K: - mul_mat_vec_q5_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); + mul_mat_vec_q5_K_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); break; case GGML_TYPE_Q6_K: - mul_mat_vec_q6_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); + mul_mat_vec_q6_K_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); break; case GGML_TYPE_IQ1_S: - mul_mat_vec_iq1_s_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); + mul_mat_vec_iq1_s_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); break; case GGML_TYPE_IQ1_M: - mul_mat_vec_iq1_m_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); + mul_mat_vec_iq1_m_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); break; case GGML_TYPE_IQ2_XXS: - mul_mat_vec_iq2_xxs_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); + mul_mat_vec_iq2_xxs_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); break; case GGML_TYPE_IQ2_XS: - mul_mat_vec_iq2_xs_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); + mul_mat_vec_iq2_xs_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); break; case GGML_TYPE_IQ2_S: - mul_mat_vec_iq2_s_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); + mul_mat_vec_iq2_s_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); break; case GGML_TYPE_IQ3_XXS: - mul_mat_vec_iq3_xxs_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); + mul_mat_vec_iq3_xxs_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); break; case GGML_TYPE_IQ3_S: - mul_mat_vec_iq3_s_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); + mul_mat_vec_iq3_s_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); break; case GGML_TYPE_IQ4_NL: - mul_mat_vec_iq4_nl_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); + mul_mat_vec_iq4_nl_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); break; case GGML_TYPE_IQ4_XS: - mul_mat_vec_iq4_xs_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); + mul_mat_vec_iq4_xs_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); break; default: GGML_ASSERT(false); break; + } } - (void) src1; (void) dst; (void) src1_ddf_i; - (void) src1_ncols; - (void) src1_padded_row_size; } diff --git a/ggml/src/ggml-sycl/norm.cpp b/ggml/src/ggml-sycl/norm.cpp new file mode 100644 index 000000000..a77f7852c --- /dev/null +++ b/ggml/src/ggml-sycl/norm.cpp @@ -0,0 +1,370 @@ +#include "norm.hpp" + +static void norm_f32(const float* x, float* dst, const int ncols, const float eps, + const sycl::nd_item<3>& item_ct1, sycl::float2* s_sum, int block_size) { + const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) + + item_ct1.get_local_id(1); + const int tid = item_ct1.get_local_id(2); + + const int nthreads = item_ct1.get_local_range(2); + const int nwarps = nthreads / WARP_SIZE; + assert(nwarps % WARP_SIZE == 0); + sycl::float2 mean_var = sycl::float2(0.f, 0.f); + + for (int col = tid; col < ncols; col += block_size) { + const float xi = x[row * ncols + col]; + mean_var.x() += xi; + mean_var.y() += xi * xi; + } + + // sum up partial sums + mean_var = warp_reduce_sum(mean_var, item_ct1); + if (block_size > WARP_SIZE) { + + int warp_id = item_ct1.get_local_id(2) / WARP_SIZE; + int lane_id = item_ct1.get_local_id(2) % WARP_SIZE; + if (lane_id == 0) { + s_sum[warp_id] = mean_var; + } + /* + DPCT1118:0: SYCL group functions and algorithms must be encountered in + converged control flow. You may need to adjust the code. + */ + item_ct1.barrier(sycl::access::fence_space::local_space); + mean_var = 0.f; + int nreduce = nwarps / WARP_SIZE; + for (size_t i = 0; i < nreduce; i += 1) + { + mean_var += s_sum[lane_id + i * WARP_SIZE]; + } + mean_var = warp_reduce_sum(mean_var, item_ct1); + } + + const float mean = mean_var.x() / ncols; + const float var = mean_var.y() / ncols - mean * mean; + const float inv_std = sycl::rsqrt(var + eps); + + for (int col = tid; col < ncols; col += block_size) { + dst[row * ncols + col] = (x[row * ncols + col] - mean) * inv_std; + } +} + +static void group_norm_f32(const float* x, float* dst, const int group_size, const int ne_elements, const float eps, + const sycl::nd_item<3>& item_ct1, float* s_sum, int block_size) { + int start = item_ct1.get_group(2) * group_size; + int end = start + group_size; + const int nthreads = item_ct1.get_local_range(2); + const int nwarps = nthreads / WARP_SIZE; + assert(nwarps % WARP_SIZE == 0); + start += item_ct1.get_local_id(2); + + if (end >= ne_elements) { + end = ne_elements; + } + + float tmp = 0.0f; // partial sum for thread in warp + + for (int j = start; j < end; j += block_size) { + tmp += x[j]; + } + + tmp = warp_reduce_sum(tmp, item_ct1); + if (block_size > WARP_SIZE) { + + int warp_id = item_ct1.get_local_id(2) / WARP_SIZE; + int lane_id = item_ct1.get_local_id(2) % WARP_SIZE; + if (lane_id == 0) { + s_sum[warp_id] = tmp; + } + /* + DPCT1118:1: SYCL group functions and algorithms must be encountered in + converged control flow. You may need to adjust the code. + */ + /* + DPCT1065:54: Consider replacing sycl::nd_item::barrier() with + sycl::nd_item::barrier(sycl::access::fence_space::local_space) for + better performance if there is no access to global memory. + */ + item_ct1.barrier(); + tmp = 0.f; + int nreduce = nwarps / WARP_SIZE; + for (size_t i = 0; i < nreduce; i += 1) + { + tmp += s_sum[lane_id + i * WARP_SIZE]; + } + tmp = warp_reduce_sum(tmp, item_ct1); + } + + float mean = tmp / group_size; + tmp = 0.0f; + + for (int j = start; j < end; j += block_size) { + float xi = x[j] - mean; + dst[j] = xi; + tmp += xi * xi; + } + + tmp = warp_reduce_sum(tmp, item_ct1); + if (block_size > WARP_SIZE) { + + int warp_id = item_ct1.get_local_id(2) / WARP_SIZE; + int lane_id = item_ct1.get_local_id(2) % WARP_SIZE; + if (lane_id == 0) { + s_sum[warp_id] = tmp; + } + /* + DPCT1118:2: SYCL group functions and algorithms must be encountered in + converged control flow. You may need to adjust the code. + */ + /* + DPCT1065:55: Consider replacing sycl::nd_item::barrier() with + sycl::nd_item::barrier(sycl::access::fence_space::local_space) for + better performance if there is no access to global memory. + */ + item_ct1.barrier(); + tmp = s_sum[lane_id]; + tmp = warp_reduce_sum(tmp, item_ct1); + } + + float variance = tmp / group_size; + float scale = sycl::rsqrt(variance + eps); + for (int j = start; j < end; j += block_size) { + dst[j] *= scale; + } +} + +static void rms_norm_f32(const float* x, float* dst, const int ncols, const float eps, + const sycl::nd_item<3>& item_ct1, float* s_sum, int block_size) { + const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) + + item_ct1.get_local_id(1); + const int tid = item_ct1.get_local_id(2); + const int nthreads = item_ct1.get_local_range(2); + const int nwarps = nthreads / WARP_SIZE; + assert(nwarps % WARP_SIZE == 0); + float tmp = 0.0f; // partial sum for thread in warp + + for (int col = tid; col < ncols; col += block_size) { + const float xi = x[row * ncols + col]; + tmp += xi * xi; + } + + // sum up partial sums + tmp = warp_reduce_sum(tmp, item_ct1); + if (block_size > WARP_SIZE) { + + int warp_id = item_ct1.get_local_id(2) / WARP_SIZE; + int lane_id = item_ct1.get_local_id(2) % WARP_SIZE; + if (lane_id == 0) { + s_sum[warp_id] = tmp; + } + /* + DPCT1118:3: SYCL group functions and algorithms must be encountered in + converged control flow. You may need to adjust the code. + */ + item_ct1.barrier(sycl::access::fence_space::local_space); + int nreduce = nwarps / WARP_SIZE; + tmp = 0.f; + for (size_t i = 0; i < nreduce; i += 1) + { + tmp += s_sum[lane_id + i * WARP_SIZE]; + } + tmp = warp_reduce_sum(tmp, item_ct1); + } + + const float mean = tmp / ncols; + const float scale = sycl::rsqrt(mean + eps); + + for (int col = tid; col < ncols; col += block_size) { + dst[row * ncols + col] = scale * x[row * ncols + col]; + } +} + +static void norm_f32_sycl(const float* x, float* dst, const int ncols, + const int nrows, const float eps, + queue_ptr stream) { + GGML_ASSERT(ncols % WARP_SIZE == 0); + if (ncols < 1024) { + const sycl::range<3> block_dims(1, 1, WARP_SIZE); + stream->submit([&](sycl::handler& cgh) { + cgh.parallel_for( + sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims, + block_dims), + [=](sycl::nd_item<3> item_ct1) + [[intel::reqd_sub_group_size(WARP_SIZE)]] { + norm_f32(x, dst, ncols, eps, item_ct1, + nullptr, WARP_SIZE); + }); + }); + } + else { + const int work_group_size = get_work_group_size(stream->get_device()); + const sycl::range<3> block_dims(1, 1, work_group_size); + /* + DPCT1049:17: The work-group size passed to the SYCL kernel may exceed + the limit. To get the device limit, query + info::device::max_work_group_size. Adjust the work-group size if needed. + */ + stream->submit([&](sycl::handler& cgh) { + sycl::local_accessor s_sum_acc_ct1( + sycl::range<1>(work_group_size / WARP_SIZE), cgh); + + cgh.parallel_for( + sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims, + block_dims), + [=](sycl::nd_item<3> item_ct1) + [[intel::reqd_sub_group_size(WARP_SIZE)]] { + norm_f32(x, dst, ncols, eps, item_ct1, + s_sum_acc_ct1.get_pointer(), work_group_size); + }); + }); + } +} + +static void group_norm_f32_sycl(const float* x, float* dst, + const int num_groups, const int group_size, + const int ne_elements, queue_ptr stream) { + static const float eps = 1e-6f; + if (group_size < 1024) { + const sycl::range<3> block_dims(1, 1, WARP_SIZE); + stream->submit([&](sycl::handler& cgh) { + const float eps_ct4 = eps; + cgh.parallel_for( + sycl::nd_range<3>(sycl::range<3>(1, 1, num_groups) * block_dims, + block_dims), + [=](sycl::nd_item<3> item_ct1) + [[intel::reqd_sub_group_size(WARP_SIZE)]] { + group_norm_f32( + x, dst, group_size, ne_elements, eps_ct4, item_ct1, + nullptr, WARP_SIZE); + }); + }); + } + else { + const int work_group_size = get_work_group_size(stream->get_device()); + const sycl::range<3> block_dims(1, 1, work_group_size); + /* + DPCT1049:18: The work-group size passed to the SYCL kernel may exceed + the limit. To get the device limit, query + info::device::max_work_group_size. Adjust the work-group size if needed. + */ + + stream->submit([&](sycl::handler& cgh) { + sycl::local_accessor s_sum_acc_ct1(sycl::range<1>(work_group_size / WARP_SIZE), + cgh); + + const float eps_ct4 = eps; + + cgh.parallel_for( + sycl::nd_range<3>(sycl::range<3>(1, 1, num_groups) * block_dims, + block_dims), + [=](sycl::nd_item<3> item_ct1) + [[intel::reqd_sub_group_size(WARP_SIZE)]] { + group_norm_f32(x, dst, group_size, ne_elements, + eps_ct4, item_ct1, + s_sum_acc_ct1.get_pointer(), work_group_size); + }); + }); + } +} + +static void rms_norm_f32_sycl(const float* x, float* dst, const int ncols, + const int nrows, const float eps, + queue_ptr stream) { + GGML_ASSERT(ncols % WARP_SIZE == 0); + // printf("%s ncols=%d, nrows=%d, WARP_SIZE=%d\n", __func__, ncols, nrows, WARP_SIZE); + if (ncols < 1024) { + const sycl::range<3> block_dims(1, 1, WARP_SIZE); + stream->submit([&](sycl::handler& cgh) { + cgh.parallel_for( + sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims, + block_dims), + [=](sycl::nd_item<3> item_ct1) + [[intel::reqd_sub_group_size(WARP_SIZE)]] { + rms_norm_f32(x, dst, ncols, eps, item_ct1, + nullptr, WARP_SIZE); + }); + }); + } + else { + const int work_group_size = get_work_group_size(stream->get_device()); + const sycl::range<3> block_dims(1, 1, work_group_size); + /* + DPCT1049:19: The work-group size passed to the SYCL kernel may exceed + the limit. To get the device limit, query + info::device::max_work_group_size. Adjust the work-group size if needed. + */ + stream->submit([&](sycl::handler& cgh) { + sycl::local_accessor s_sum_acc_ct1(sycl::range<1>(work_group_size / WARP_SIZE), + cgh); + cgh.parallel_for( + sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims, + block_dims), + [=](sycl::nd_item<3> item_ct1) + [[intel::reqd_sub_group_size(WARP_SIZE)]] { + rms_norm_f32(x, dst, ncols, eps, item_ct1, + s_sum_acc_ct1.get_pointer(), work_group_size); + }); + }); + } +} + +void ggml_sycl_op_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* src0, const ggml_tensor* src1, + ggml_tensor* dst, const float* src0_dd, + const float* src1_dd, float* dst_dd, + const queue_ptr& main_stream) { + + GGML_ASSERT(src0->type == GGML_TYPE_F32); + GGML_ASSERT(dst->type == GGML_TYPE_F32); + + const int64_t ne00 = src0->ne[0]; + const int64_t nrows = ggml_nrows(src0); + + float eps; + memcpy(&eps, dst->op_params, sizeof(float)); + + norm_f32_sycl(src0_dd, dst_dd, ne00, nrows, eps, main_stream); + + (void)src1; + (void)dst; + (void)src1_dd; +} + +void ggml_sycl_op_group_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* src0, + const ggml_tensor* src1, ggml_tensor* dst, + const float* src0_dd, const float* src1_dd, + float* dst_dd, + const queue_ptr& main_stream) { + + GGML_ASSERT(src0->type == GGML_TYPE_F32); + GGML_ASSERT(dst->type == GGML_TYPE_F32); + + int num_groups = dst->op_params[0]; + int group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups); + group_norm_f32_sycl(src0_dd, dst_dd, num_groups, group_size, src0->ne[0] * src0->ne[1] * src0->ne[2], main_stream); + + (void)src1; + (void)dst; + (void)src1_dd; +} + +void ggml_sycl_op_rms_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* src0, + const ggml_tensor* src1, ggml_tensor* dst, + const float* src0_dd, const float* src1_dd, + float* dst_dd, + const queue_ptr& main_stream) { + + GGML_ASSERT(src0->type == GGML_TYPE_F32); + GGML_ASSERT(dst->type == GGML_TYPE_F32); + + const int64_t ne00 = src0->ne[0]; + const int64_t nrows = ggml_nrows(src0); + + float eps; + memcpy(&eps, dst->op_params, sizeof(float)); + + rms_norm_f32_sycl(src0_dd, dst_dd, ne00, nrows, eps, main_stream); + + (void)src1; + (void)dst; + (void)src1_dd; +} diff --git a/ggml/src/ggml-sycl/norm.hpp b/ggml/src/ggml-sycl/norm.hpp new file mode 100644 index 000000000..a9ad9156f --- /dev/null +++ b/ggml/src/ggml-sycl/norm.hpp @@ -0,0 +1,35 @@ +// +// MIT license +// Copyright (C) 2024 Intel Corporation +// SPDX-License-Identifier: MIT +// + +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// + +#ifndef GGML_SYCL_NORM_HPP +#define GGML_SYCL_NORM_HPP + +#include "common.hpp" + +void ggml_sycl_op_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* src0, const ggml_tensor* src1, + ggml_tensor* dst, const float* src0_dd, + const float* src1_dd, float* dst_dd, + const queue_ptr& main_stream); + +void ggml_sycl_op_rms_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* src0, + const ggml_tensor* src1, ggml_tensor* dst, + const float* src0_dd, const float* src1_dd, + float* dst_dd, + const queue_ptr& main_stream); + +void ggml_sycl_op_group_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* src0, + const ggml_tensor* src1, ggml_tensor* dst, + const float* src0_dd, const float* src1_dd, + float* dst_dd, + const queue_ptr& main_stream); + +#endif // GGML_SYCL_NORM_HPP diff --git a/ggml/src/ggml-sycl/presets.hpp b/ggml/src/ggml-sycl/presets.hpp index fe9d41770..c09c75dc7 100644 --- a/ggml/src/ggml-sycl/presets.hpp +++ b/ggml/src/ggml-sycl/presets.hpp @@ -16,7 +16,7 @@ #define GGML_SYCL_MAX_STREAMS 8 #define GGML_SYCL_MAX_BUFFERS 256 -#define WARP_SIZE 32 +#define WARP_SIZE GGML_SYCL_WARP_SIZE #define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses #define SYCL_GELU_BLOCK_SIZE 256 From a9f3b102157ba992cfe058909b7f6e1906d2d647 Mon Sep 17 00:00:00 2001 From: luoyu-intel Date: Tue, 2 Jul 2024 04:50:07 +0000 Subject: [PATCH 33/38] [SYCL] Fix win build conflict of math library (#8230) * fix win build conflict of math library * fix the condition: !(win32 & SYCL) * revert warp_size=16 --- CMakePresets.json | 1 + ggml/src/CMakeLists.txt | 6 ++++-- 2 files changed, 5 insertions(+), 2 deletions(-) diff --git a/CMakePresets.json b/CMakePresets.json index d69bc0344..bdad38952 100644 --- a/CMakePresets.json +++ b/CMakePresets.json @@ -19,6 +19,7 @@ "cacheVariables": { "CMAKE_EXPORT_COMPILE_COMMANDS": "ON", "CMAKE_CXX_COMPILER": "icx", + "CMAKE_C_COMPILER": "cl", "GGML_SYCL": "ON", "CMAKE_INSTALL_RPATH": "$ORIGIN;$ORIGIN/.." } diff --git a/ggml/src/CMakeLists.txt b/ggml/src/CMakeLists.txt index a18198f16..08b71d410 100644 --- a/ggml/src/CMakeLists.txt +++ b/ggml/src/CMakeLists.txt @@ -490,7 +490,7 @@ if (GGML_SYCL) set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsycl-targets=nvptx64-nvidia-cuda") add_compile_definitions(GGML_SYCL_WARP_SIZE=32) else() - add_compile_definitions(GGML_SYCL_WARP_SIZE=16) + add_compile_definitions(GGML_SYCL_WARP_SIZE=32) endif() file(GLOB GGML_HEADERS_SYCL "ggml-sycl/*.hpp") @@ -1168,7 +1168,9 @@ target_link_libraries(ggml PRIVATE Threads::Threads ${GGML_EXTRA_LIBS}) find_library(MATH_LIBRARY m) if (MATH_LIBRARY) - target_link_libraries(ggml PRIVATE ${MATH_LIBRARY}) + if (NOT WIN32 OR NOT GGML_SYCL) + target_link_libraries(ggml PRIVATE ${MATH_LIBRARY}) + endif() endif() if (BUILD_SHARED_LIBS) From 0e0590adab9f367b15ae2bf090a6d24f9df47ff1 Mon Sep 17 00:00:00 2001 From: slaren Date: Tue, 2 Jul 2024 08:39:38 +0200 Subject: [PATCH 34/38] cuda : update supports_op for matrix multiplication (#8245) --- ggml/src/ggml-cuda.cu | 47 ++++++++++++++++++++++++-------------- tests/test-backend-ops.cpp | 1 + 2 files changed, 31 insertions(+), 17 deletions(-) diff --git a/ggml/src/ggml-cuda.cu b/ggml/src/ggml-cuda.cu index 649ef5a08..1c9ccc8a1 100644 --- a/ggml/src/ggml-cuda.cu +++ b/ggml/src/ggml-cuda.cu @@ -2711,27 +2711,40 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons case GGML_OP_MUL_MAT: case GGML_OP_MUL_MAT_ID: { - struct ggml_tensor * a; - struct ggml_tensor * b; + struct ggml_tensor * a = op->src[0]; if (op->op == GGML_OP_MUL_MAT) { - a = op->src[0]; - b = op->src[1]; - } else { - a = op->src[2]; - b = op->src[1]; - } - if (a->ne[3] != b->ne[3]) { - return false; - } - ggml_type a_type = a->type; - if (a_type == GGML_TYPE_IQ2_XXS || a_type == GGML_TYPE_IQ2_XS || a_type == GGML_TYPE_IQ3_XXS || - a_type == GGML_TYPE_IQ1_S || a_type == GGML_TYPE_IQ4_NL || a_type == GGML_TYPE_IQ3_S || - a_type == GGML_TYPE_IQ1_M || a_type == GGML_TYPE_IQ2_S || a_type == GGML_TYPE_IQ4_XS) { - if (b->ne[1] == 1 && ggml_nrows(b) > 1) { + struct ggml_tensor * b = op->src[1]; + if (a->ne[3] != b->ne[3]) { return false; } } - return true; + switch (a->type) { + case GGML_TYPE_F32: + case GGML_TYPE_F16: + case GGML_TYPE_Q4_0: + case GGML_TYPE_Q4_1: + case GGML_TYPE_Q5_0: + case GGML_TYPE_Q5_1: + case GGML_TYPE_Q8_0: + case GGML_TYPE_Q2_K: + case GGML_TYPE_Q3_K: + case GGML_TYPE_Q4_K: + case GGML_TYPE_Q5_K: + case GGML_TYPE_Q6_K: + case GGML_TYPE_Q8_K: + case GGML_TYPE_IQ1_M: + case GGML_TYPE_IQ1_S: + case GGML_TYPE_IQ2_S: + case GGML_TYPE_IQ2_XS: + case GGML_TYPE_IQ2_XXS: + case GGML_TYPE_IQ3_S: + case GGML_TYPE_IQ3_XXS: + case GGML_TYPE_IQ4_NL: + case GGML_TYPE_IQ4_XS: + return true; + default: + return false; + } } break; case GGML_OP_GET_ROWS: { diff --git a/tests/test-backend-ops.cpp b/tests/test-backend-ops.cpp index f74c0db47..2bb71ac03 100644 --- a/tests/test-backend-ops.cpp +++ b/tests/test-backend-ops.cpp @@ -2052,6 +2052,7 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S, GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M, GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS, + GGML_TYPE_BF16, }; // unary ops From 023b8807e10bc3ade24a255f01c1ad2a01bb4228 Mon Sep 17 00:00:00 2001 From: Daniel Bevenius Date: Tue, 2 Jul 2024 08:40:49 +0200 Subject: [PATCH 35/38] convert-hf : print output file name when completed (#8181) * convert-hf : print output file name when completed This commit adds the output file name to the log message when the conversion is completed. The motivation for this change is that when `--outfile` option is not specified it migth not be obvious where the output file is written. With this change the output of running the script will be something like the following: ```console INFO:hf-to-gguf:Model successfully exported to models/gemma-2-9b-it.gguf. ``` Signed-off-by: Daniel Bevenius * squash! convert-hf : print output file name when completed Updates the output of to support printing the directory if the output is split into multiple files. Also the output file name is now retrieved from the model_instance object. Signed-off-by: Daniel Bevenius * squash! convert-hf : print output file name when completed Use parent attribute of Path object and string interpolation. Signed-off-by: Daniel Bevenius * squash! convert-hf : print output file name when completed Use os.sep instead of hardcoding the path separator. Signed-off-by: Daniel Bevenius --------- Signed-off-by: Daniel Bevenius --- convert-hf-to-gguf.py | 8 +++++--- 1 file changed, 5 insertions(+), 3 deletions(-) diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py index 6833e9437..05fd70171 100755 --- a/convert-hf-to-gguf.py +++ b/convert-hf-to-gguf.py @@ -3120,7 +3120,8 @@ def main() -> None: "auto": gguf.LlamaFileType.GUESSED, } - if args.use_temp_file and (args.split_max_tensors > 0 or args.split_max_size != "0"): + is_split = args.split_max_tensors > 0 or args.split_max_size != "0" + if args.use_temp_file and is_split: logger.error("Error: Cannot use temp file when splitting") sys.exit(1) @@ -3157,11 +3158,12 @@ def main() -> None: if args.vocab_only: logger.info("Exporting model vocab...") model_instance.write_vocab() - logger.info("Model vocab successfully exported.") + logger.info(f"Model vocab successfully exported to {model_instance.fname_out}") else: logger.info("Exporting model...") model_instance.write() - logger.info("Model successfully exported.") + out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out + logger.info(f"Model successfully exported to {out_path}") if __name__ == '__main__': From 968967376dc2c018d29f897c4883d335bbf384fb Mon Sep 17 00:00:00 2001 From: Faisal Zaghloul Date: Tue, 2 Jul 2024 10:36:00 -0400 Subject: [PATCH 36/38] Add `JAIS` model(s) (#8118) * Add `JAIS` model(s) * cleanup * address review comments * remove hack * un-hardcode max-alibi-bias * minor tweaks --------- Co-authored-by: fmz --- convert-hf-to-gguf-update.py | 1 + convert-hf-to-gguf.py | 93 ++++++++++++++++++ gguf-py/gguf/constants.py | 14 +++ gguf-py/gguf/tensor_mapping.py | 19 ++-- include/llama.h | 1 + src/llama.cpp | 169 +++++++++++++++++++++++++++++++++ 6 files changed, 288 insertions(+), 9 deletions(-) diff --git a/convert-hf-to-gguf-update.py b/convert-hf-to-gguf-update.py index 2758214fa..944e9d15a 100755 --- a/convert-hf-to-gguf-update.py +++ b/convert-hf-to-gguf-update.py @@ -86,6 +86,7 @@ models = [ {"name": "poro-chat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LumiOpen/Poro-34B-chat", }, {"name": "jina-v2-code", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-code", }, {"name": "viking", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LumiOpen/Viking-7B", }, # Also used for Viking 13B and 33B + {"name": "jais", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/core42/jais-13b", }, ] diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py index 05fd70171..6add27cbb 100755 --- a/convert-hf-to-gguf.py +++ b/convert-hf-to-gguf.py @@ -490,6 +490,9 @@ class Model: if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee": # ref: https://huggingface.co/LumiOpen/Viking-7B res = "viking" + if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901": + # ref: https://huggingface.co/core42/jais-13b + res = "jais" if res is None: logger.warning("\n") @@ -2965,6 +2968,96 @@ class T5Model(Model): return [(self.map_tensor_name(name), data_torch)] +@Model.register("JAISLMHeadModel") +class JaisModel(Model): + model_arch = gguf.MODEL_ARCH.JAIS + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + + # SwigLU activation + assert self.hparams["activation_function"] == "swiglu" + # ALiBi position embedding + assert self.hparams["position_embedding_type"] == "alibi" + + # Embeddings scale + self.embeddings_scale = 1.0 + # note: For some JAIS flavors, output is tied to (same as) wte in original model + self.output_is_wte = False + if 'mup_embeddings_scale' in self.hparams: + self.output_is_wte = True # Hack (?) + self.embeddings_scale = self.hparams['mup_embeddings_scale'] + elif 'embeddings_scale' in self.hparams: + self.embeddings_scale = self.hparams['embeddings_scale'] + else: + assert False + + self.width_scale = 1.0 + if 'mup_output_alpha' in self.hparams: + assert 'mup_width_scale' in self.hparams + self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale'] + elif 'width_scale' in self.hparams: + self.width_scale = self.hparams['width_scale'] + else: + assert False + + self.max_alibi_bias = 8.0 + + def set_vocab(self): + self._set_vocab_gpt2() + + def set_gguf_parameters(self): + self.gguf_writer.add_name(self.dir_model.name) + self.gguf_writer.add_block_count(self.hparams["n_layer"]) + self.gguf_writer.add_context_length(self.hparams["n_positions"]) + self.gguf_writer.add_embedding_length(self.hparams["n_embd"]) + self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"]) + self.gguf_writer.add_head_count(self.hparams["n_head"]) + self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"]) + self.gguf_writer.add_file_type(self.ftype) + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + del bid # unused + + tensors: list[tuple[str, Tensor]] = [] + + # we don't need these + if name.endswith((".attn.bias")): + return tensors + + if name.endswith(("relative_pe.slopes")): + # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation) + # Some other models has max_alibi_bias spelled out explicitly in the hyperparams, + # but Jais's PyTorch model simply precalculates the slope values and places them + # in relative_pes.slopes + n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"])) + first_val = float(data_torch._data[0]) + self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2) + + return tensors + + if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")): + data_torch = data_torch.transpose(1, 0) + + new_name = self.map_tensor_name(name) + + if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD): + tensors.append((new_name, data_torch * self.embeddings_scale)) + if self.output_is_wte: + tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch * self.width_scale)) + elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT): + assert not self.output_is_wte + tensors.append((new_name, data_torch * self.width_scale)) + else: + tensors.append((new_name, data_torch)) + + return tensors + + def write_tensors(self): + super().write_tensors() + self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias) + + ###### CONVERSION LOGIC ###### diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py index e87c58266..419f10cee 100644 --- a/gguf-py/gguf/constants.py +++ b/gguf-py/gguf/constants.py @@ -164,6 +164,7 @@ class MODEL_ARCH(IntEnum): DEEPSEEK2 = auto() BITNET = auto() T5 = auto() + JAIS = auto() class MODEL_TENSOR(IntEnum): @@ -288,6 +289,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = { MODEL_ARCH.DEEPSEEK2: "deepseek2", MODEL_ARCH.BITNET: "bitnet", MODEL_ARCH.T5: "t5", + MODEL_ARCH.JAIS: "jais", } TENSOR_NAMES: dict[MODEL_TENSOR, str] = { @@ -954,6 +956,18 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_TENSOR.ENC_FFN_UP, MODEL_TENSOR.ENC_OUTPUT_NORM, ], + MODEL_ARCH.JAIS: [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.OUTPUT_NORM, + MODEL_TENSOR.OUTPUT, + MODEL_TENSOR.ATTN_NORM, + MODEL_TENSOR.ATTN_QKV, + MODEL_TENSOR.ATTN_OUT, + MODEL_TENSOR.FFN_NORM, + MODEL_TENSOR.FFN_DOWN, + MODEL_TENSOR.FFN_GATE, + MODEL_TENSOR.FFN_UP, + ], # TODO } diff --git a/gguf-py/gguf/tensor_mapping.py b/gguf-py/gguf/tensor_mapping.py index 0bed43939..20e28423b 100644 --- a/gguf-py/gguf/tensor_mapping.py +++ b/gguf-py/gguf/tensor_mapping.py @@ -10,7 +10,7 @@ class TensorNameMap: # Token embeddings MODEL_TENSOR.TOKEN_EMBD: ( "gpt_neox.embed_in", # gptneox - "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx + "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais "transformer.word_embeddings", # falcon "word_embeddings", # bloom "model.embed_tokens", # llama-hf @@ -49,7 +49,7 @@ class TensorNameMap: # Output MODEL_TENSOR.OUTPUT: ( "embed_out", # gptneox - "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx + "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais "output", # llama-pth bloom internlm2 "word_embeddings_for_head", # persimmon "lm_head.linear", # phi2 @@ -58,7 +58,7 @@ class TensorNameMap: # Output norm MODEL_TENSOR.OUTPUT_NORM: ( "gpt_neox.final_layer_norm", # gptneox - "transformer.ln_f", # gpt2 gpt-j falcon + "transformer.ln_f", # gpt2 gpt-j falcon jais "model.norm", # llama-hf baichuan internlm2 "norm", # llama-pth "transformer.norm_f", # mpt dbrx @@ -81,7 +81,7 @@ class TensorNameMap: # Attention norm MODEL_TENSOR.ATTN_NORM: ( "gpt_neox.layers.{bid}.input_layernorm", # gptneox - "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen + "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen jais "transformer.blocks.{bid}.norm_1", # mpt "transformer.h.{bid}.input_layernorm", # falcon7b "h.{bid}.input_layernorm", # bloom @@ -109,7 +109,7 @@ class TensorNameMap: # Attention query-key-value MODEL_TENSOR.ATTN_QKV: ( "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox - "transformer.h.{bid}.attn.c_attn", # gpt2 qwen + "transformer.h.{bid}.attn.c_attn", # gpt2 qwen jais "transformer.blocks.{bid}.attn.Wqkv", # mpt "transformer.blocks.{bid}.norm_attn_norm.attn.Wqkv", # dbrx "transformer.h.{bid}.self_attention.query_key_value", # falcon @@ -160,7 +160,7 @@ class TensorNameMap: # Attention output MODEL_TENSOR.ATTN_OUT: ( "gpt_neox.layers.{bid}.attention.dense", # gptneox - "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen + "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen jais "transformer.blocks.{bid}.attn.out_proj", # mpt "transformer.h.{bid}.self_attention.dense", # falcon "h.{bid}.self_attention.dense", # bloom @@ -202,7 +202,7 @@ class TensorNameMap: # Feed-forward norm MODEL_TENSOR.FFN_NORM: ( "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox - "transformer.h.{bid}.ln_2", # gpt2 refact qwen + "transformer.h.{bid}.ln_2", # gpt2 refact qwen jais "h.{bid}.post_attention_layernorm", # bloom "transformer.blocks.{bid}.norm_2", # mpt "model.layers.{bid}.post_attention_layernorm", # llama-hf @@ -239,7 +239,7 @@ class TensorNameMap: # Feed-forward up MODEL_TENSOR.FFN_UP: ( "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox - "transformer.h.{bid}.mlp.c_fc", # gpt2 + "transformer.h.{bid}.mlp.c_fc", # gpt2 jais "transformer.blocks.{bid}.ffn.up_proj", # mpt "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon "h.{bid}.mlp.dense_h_to_4h", # bloom @@ -285,6 +285,7 @@ class TensorNameMap: "model.layers.{bid}.mlp.gate_proj", # llama-hf refact "layers.{bid}.feed_forward.w1", # llama-pth "transformer.h.{bid}.mlp.w2", # qwen + "transformer.h.{bid}.mlp.c_fc2", # jais "model.layers.layers.{bid}.mlp.gate_proj", # plamo "model.layers.{bid}.feed_forward.w1", # internlm2 "encoder.layers.{bid}.mlp.fc12", # nomic-bert @@ -308,7 +309,7 @@ class TensorNameMap: # Feed-forward down MODEL_TENSOR.FFN_DOWN: ( "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox - "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen + "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen jais "transformer.blocks.{bid}.ffn.down_proj", # mpt "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon "h.{bid}.mlp.dense_4h_to_h", # bloom diff --git a/include/llama.h b/include/llama.h index cafeafb85..c5b618292 100644 --- a/include/llama.h +++ b/include/llama.h @@ -89,6 +89,7 @@ extern "C" { LLAMA_VOCAB_PRE_TYPE_SMAUG = 14, LLAMA_VOCAB_PRE_TYPE_PORO = 15, LLAMA_VOCAB_PRE_TYPE_VIKING = 16, + LLAMA_VOCAB_PRE_TYPE_JAIS = 17, }; // note: these values should be synchronized with ggml_rope diff --git a/src/llama.cpp b/src/llama.cpp index eea532f6a..73f52435a 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -228,6 +228,7 @@ enum llm_arch { LLM_ARCH_DEEPSEEK2, LLM_ARCH_BITNET, LLM_ARCH_T5, + LLM_ARCH_JAIS, LLM_ARCH_UNKNOWN, }; @@ -269,6 +270,7 @@ static const std::map LLM_ARCH_NAMES = { { LLM_ARCH_DEEPSEEK2, "deepseek2" }, { LLM_ARCH_BITNET, "bitnet" }, { LLM_ARCH_T5, "t5" }, + { LLM_ARCH_JAIS, "jais" }, { LLM_ARCH_UNKNOWN, "(unknown)" }, }; @@ -1236,6 +1238,21 @@ static const std::map> LLM_TENSOR_NA { LLM_TENSOR_ENC_FFN_UP, "enc.blk.%d.ffn_up" }, }, }, + { + LLM_ARCH_JAIS, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + }, + }, { LLM_ARCH_UNKNOWN, { @@ -2035,6 +2052,7 @@ enum e_model { MODEL_410M, MODEL_0_5B, MODEL_1B, + MODEL_1_3B, MODEL_1_4B, MODEL_2B, MODEL_2_8B, @@ -4276,6 +4294,7 @@ static const char * llama_model_type_name(e_model type) { case MODEL_410M: return "410M"; case MODEL_0_5B: return "0.5B"; case MODEL_1B: return "1B"; + case MODEL_1_3B: return "1.3B"; case MODEL_1_4B: return "1.4B"; case MODEL_2B: return "2B"; case MODEL_2_8B: return "2.8B"; @@ -4898,6 +4917,18 @@ static void llm_load_hparams( default: model.type = e_model::MODEL_UNKNOWN; } } break; + case LLM_ARCH_JAIS: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); + ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias); + + switch (hparams.n_layer) { + case 24: model.type = e_model::MODEL_1_3B; break; + case 40: model.type = e_model::MODEL_13B; break; + /* TODO: add variants */ + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; default: (void)0; } @@ -5129,6 +5160,9 @@ static void llm_load_vocab( } else if ( tokenizer_pre == "viking") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_VIKING; + } else if ( + tokenizer_pre == "jais") { + vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_JAIS; } else { throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str())); } @@ -6962,6 +6996,44 @@ static bool llm_load_tensors( layer.ffn_up_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "scale", i), {1}); } } break; + case LLM_ARCH_JAIS: + { + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + + // Output + { + model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); + } + for (int i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); + + auto & layer = model.layers[i]; + + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); + + layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); + layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}); + + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); + + layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); + layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}); + + layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); + layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}); + + layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); + layer.ffn_gate_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}); + + layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}); + } + } break; default: throw std::runtime_error("unknown architecture"); } @@ -12354,6 +12426,97 @@ struct llm_build_context { return gf; } + struct ggml_cgraph * build_jais() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + + const int64_t n_embd_head = hparams.n_embd_head_v; + const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); + + for (int il = 0; il < n_layer; ++il) { + cur = llm_build_norm(ctx0, inpL, hparams, + model.layers[il].attn_norm, + model.layers[il].attn_norm_b, + LLM_NORM, cb, il); + cb(cur, "attn_norm", il); + + // self-attention + { + cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur); + cb(cur, "wqkv", il); + + cur = ggml_add(ctx0, cur, model.layers[il].bqkv); + cb(cur, "bqkv", il); + + struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*cur->nb[0]*(n_embd))); + struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*cur->nb[0]*(n_embd))); + struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*cur->nb[0]*(n_embd + n_embd_gqa))); + + cb(Qcur, "Qcur", il); + cb(Kcur, "Kcur", il); + cb(Vcur, "Vcur", il); + + Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); + + cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, + model.layers[il].wo, model.layers[il].bo, + Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/float(n_embd_head), cb, il); + } + + if (il == n_layer - 1) { + // skip computing output for unused tokens + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); + } + + // add the input + struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL); + cb(ffn_inp, "ffn_inp", il); + + // FF + { + cur = llm_build_norm(ctx0, ffn_inp, hparams, + model.layers[il].ffn_norm, + model.layers[il].ffn_norm_b, + LLM_NORM, cb, il); + cb(cur, "ffn_norm", il); + + cur = llm_build_ffn(ctx0, cur, + model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL, + model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL, + model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, + NULL, + LLM_FFN_SILU, LLM_FFN_PAR, cb, il); + cb(cur, "ffn_out", il); + } + + inpL = ggml_add(ctx0, cur, ffn_inp); + cb(inpL, "l_out", il); + } + + cur = llm_build_norm(ctx0, inpL, hparams, + model.output_norm, + model.output_norm_b, + LLM_NORM, cb, -1); + cb(cur, "result_norm", -1); + + cur = ggml_mul_mat(ctx0, model.output, cur); + + cb(cur, "result_output", -1); + + ggml_build_forward_expand(gf, cur); + + return gf; + } }; static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector & ids) { @@ -12585,6 +12748,10 @@ static struct ggml_cgraph * llama_build_graph( { result = llm.build_bitnet(); } break; + case LLM_ARCH_JAIS: + { + result = llm.build_jais(); + } break; default: GGML_ASSERT(false); } @@ -13947,6 +14114,7 @@ struct llm_tokenizer_bpe { break; case LLAMA_VOCAB_PRE_TYPE_GPT2: case LLAMA_VOCAB_PRE_TYPE_OLMO: + case LLAMA_VOCAB_PRE_TYPE_JAIS: regex_exprs = { "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)", }; @@ -17826,6 +17994,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) { case LLM_ARCH_MAMBA: case LLM_ARCH_JINA_BERT_V2: case LLM_ARCH_T5: + case LLM_ARCH_JAIS: return LLAMA_ROPE_TYPE_NONE; // use what we call a normal RoPE, operating on pairs of consecutive head values From 07a3fc0608a68c0c93a5fbfa9c58f4c9ec64cb81 Mon Sep 17 00:00:00 2001 From: Clint Herron Date: Tue, 2 Jul 2024 12:18:10 -0400 Subject: [PATCH 37/38] Removes multiple newlines at the end of files that is breaking the editorconfig step of CI. (#8258) --- .github/ISSUE_TEMPLATE/config.yml | 2 -- common/common.h | 1 - examples/embedding/README.md | 1 - examples/infill/infill.cpp | 1 - examples/lookup/README.md | 1 - examples/main-cmake-pkg/.gitignore | 1 - examples/main-cmake-pkg/CMakeLists.txt | 1 - examples/server-embd.py | 1 - examples/server/tests/features/passkey.feature | 1 - examples/server/themes/buttons-top/index.html | 1 - examples/server/themes/wild/index.html | 1 - examples/sycl/run-llama2.sh | 1 - examples/sycl/win-build-sycl.bat | 1 - examples/sycl/win-run-llama2.bat | 2 -- ggml/include/ggml-metal.h | 1 - ggml/src/ggml-cuda/cpy.cu | 1 - ggml/src/ggml-metal.metal | 1 - ggml/src/ggml-quants.h | 1 - ggml/src/ggml-vulkan-shaders.hpp | 1 - scripts/pod-llama.sh | 1 - src/unicode-data.cpp | 1 - tests/test-rope.cpp | 1 - 22 files changed, 24 deletions(-) diff --git a/.github/ISSUE_TEMPLATE/config.yml b/.github/ISSUE_TEMPLATE/config.yml index c88134dbb..eb8c4b472 100644 --- a/.github/ISSUE_TEMPLATE/config.yml +++ b/.github/ISSUE_TEMPLATE/config.yml @@ -9,5 +9,3 @@ contact_links: - name: Want to contribute? url: https://github.com/ggerganov/llama.cpp/wiki/contribute about: Head to the contribution guide page of the wiki for areas you can help with - - diff --git a/common/common.h b/common/common.h index 627b7ed85..65c0ef81a 100644 --- a/common/common.h +++ b/common/common.h @@ -459,4 +459,3 @@ void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const cha void yaml_dump_non_result_info( FILE * stream, const gpt_params & params, const llama_context * lctx, const std::string & timestamp, const std::vector & prompt_tokens, const char * model_desc); - diff --git a/examples/embedding/README.md b/examples/embedding/README.md index 86df18958..e3705b454 100644 --- a/examples/embedding/README.md +++ b/examples/embedding/README.md @@ -58,4 +58,3 @@ The above command will output space-separated float values. ```powershell embedding.exe -p 'Castle<#sep#>Stronghold<#sep#>Dog<#sep#>Cat' --embd-separator '<#sep#>' --embd-normalize 2 --embd-output-format '' -m './path/to/model.gguf' --n-gpu-layers 99 --log-disable 2>/dev/null ``` - diff --git a/examples/infill/infill.cpp b/examples/infill/infill.cpp index ca71dd687..0e682154d 100644 --- a/examples/infill/infill.cpp +++ b/examples/infill/infill.cpp @@ -659,4 +659,3 @@ int main(int argc, char ** argv) { return 0; } - diff --git a/examples/lookup/README.md b/examples/lookup/README.md index 5bfb0de93..71c345c03 100644 --- a/examples/lookup/README.md +++ b/examples/lookup/README.md @@ -10,4 +10,3 @@ More info: https://github.com/ggerganov/llama.cpp/pull/4484 https://github.com/ggerganov/llama.cpp/issues/4226 - diff --git a/examples/main-cmake-pkg/.gitignore b/examples/main-cmake-pkg/.gitignore index e32c11c7f..67c01d64c 100644 --- a/examples/main-cmake-pkg/.gitignore +++ b/examples/main-cmake-pkg/.gitignore @@ -48,4 +48,3 @@ build*/ out/ tmp/ - diff --git a/examples/main-cmake-pkg/CMakeLists.txt b/examples/main-cmake-pkg/CMakeLists.txt index a97ded365..3b38db292 100644 --- a/examples/main-cmake-pkg/CMakeLists.txt +++ b/examples/main-cmake-pkg/CMakeLists.txt @@ -30,4 +30,3 @@ target_include_directories(${TARGET} PRIVATE ${_common_path}) install(TARGETS ${TARGET} RUNTIME) target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) target_compile_features(${TARGET} PRIVATE cxx_std_11) - diff --git a/examples/server-embd.py b/examples/server-embd.py index 118e04271..a9a36a44c 100644 --- a/examples/server-embd.py +++ b/examples/server-embd.py @@ -31,4 +31,3 @@ for i in range(n-1): embedding2 = np.array(result[j]) similarity = np.dot(embedding1, embedding2) / (np.linalg.norm(embedding1) * np.linalg.norm(embedding2)) print(f"Similarity between {i} and {j}: {similarity:.2f}") - diff --git a/examples/server/tests/features/passkey.feature b/examples/server/tests/features/passkey.feature index 1bde7aab8..6a5a84e6a 100644 --- a/examples/server/tests/features/passkey.feature +++ b/examples/server/tests/features/passkey.feature @@ -52,4 +52,3 @@ Feature: Passkey / Self-extend with context shift #| TheBloke/Llama-2-7B-GGUF | llama-2-7b.Q2_K.gguf | 4096 | 3 | 16384 | 512 | 4 | 512 | 500 | 300 | 1234 | 5 | 1234 | #| TheBloke/Mixtral-8x7B-v0.1-GGUF | mixtral-8x7b-v0.1.Q2_K.gguf | 32768 | 2 | 16384 | 512 | 4 | 512 | 500 | 100 | 0987 | 5 | 0 # 987 | - diff --git a/examples/server/themes/buttons-top/index.html b/examples/server/themes/buttons-top/index.html index 6af30d307..8334bcde5 100644 --- a/examples/server/themes/buttons-top/index.html +++ b/examples/server/themes/buttons-top/index.html @@ -1054,4 +1054,3 @@ - diff --git a/examples/server/themes/wild/index.html b/examples/server/themes/wild/index.html index 772e716cd..8361c5774 100644 --- a/examples/server/themes/wild/index.html +++ b/examples/server/themes/wild/index.html @@ -1058,4 +1058,3 @@ - diff --git a/examples/sycl/run-llama2.sh b/examples/sycl/run-llama2.sh index da0e4aaba..111366fb0 100755 --- a/examples/sycl/run-llama2.sh +++ b/examples/sycl/run-llama2.sh @@ -34,4 +34,3 @@ fi #use multiple GPUs with same max compute units #ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m models/llama-2-7b.Q4_0.gguf -p "${INPUT2}" -n 400 -e -ngl 33 -s 0 - diff --git a/examples/sycl/win-build-sycl.bat b/examples/sycl/win-build-sycl.bat index cdae5a528..17dd1ff5c 100644 --- a/examples/sycl/win-build-sycl.bat +++ b/examples/sycl/win-build-sycl.bat @@ -31,4 +31,3 @@ exit /B 0 :ERROR echo comomand error: %errorlevel% exit /B %errorlevel% - diff --git a/examples/sycl/win-run-llama2.bat b/examples/sycl/win-run-llama2.bat index 1d4d7d2cd..f0385cdf0 100644 --- a/examples/sycl/win-run-llama2.bat +++ b/examples/sycl/win-run-llama2.bat @@ -7,5 +7,3 @@ set INPUT2="Building a website can be done in 10 simple steps:\nStep 1:" .\build\bin\main.exe -m models\llama-2-7b.Q4_0.gguf -p %INPUT2% -n 400 -e -ngl 33 -s 0 - - diff --git a/ggml/include/ggml-metal.h b/ggml/include/ggml-metal.h index e7543ae79..6c3226c37 100644 --- a/ggml/include/ggml-metal.h +++ b/ggml/include/ggml-metal.h @@ -63,4 +63,3 @@ GGML_API void ggml_backend_metal_capture_next_compute(ggml_backend_t backend); #ifdef __cplusplus } #endif - diff --git a/ggml/src/ggml-cuda/cpy.cu b/ggml/src/ggml-cuda/cpy.cu index 12d741f01..3db57034b 100644 --- a/ggml/src/ggml-cuda/cpy.cu +++ b/ggml/src/ggml-cuda/cpy.cu @@ -487,4 +487,3 @@ void* ggml_cuda_cpy_fn(const ggml_tensor * src0, ggml_tensor * src1) { GGML_ASSERT(false); } } - diff --git a/ggml/src/ggml-metal.metal b/ggml/src/ggml-metal.metal index e2796fd60..c3503479b 100644 --- a/ggml/src/ggml-metal.metal +++ b/ggml/src/ggml-metal.metal @@ -6537,4 +6537,3 @@ template [[host_name("kernel_mul_mv_id_iq3_s_f32")]] kernel kernel_mul_mv_id_t template [[host_name("kernel_mul_mv_id_iq2_s_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; template [[host_name("kernel_mul_mv_id_iq4_nl_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; template [[host_name("kernel_mul_mv_id_iq4_xs_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; - diff --git a/ggml/src/ggml-quants.h b/ggml/src/ggml-quants.h index 4d436a8f0..30983b872 100644 --- a/ggml/src/ggml-quants.h +++ b/ggml/src/ggml-quants.h @@ -130,4 +130,3 @@ void iq3xs_free_impl(int grid_size); #ifdef __cplusplus } #endif - diff --git a/ggml/src/ggml-vulkan-shaders.hpp b/ggml/src/ggml-vulkan-shaders.hpp index 01ff66f71..f0c4c6baf 100644 --- a/ggml/src/ggml-vulkan-shaders.hpp +++ b/ggml/src/ggml-vulkan-shaders.hpp @@ -144954,4 +144954,3 @@ unsigned char sum_rows_f32_data[] = { }; const uint64_t sum_rows_f32_len = 2112; - diff --git a/scripts/pod-llama.sh b/scripts/pod-llama.sh index 586d6ea18..0d6d4032d 100644 --- a/scripts/pod-llama.sh +++ b/scripts/pod-llama.sh @@ -210,4 +210,3 @@ fi # more benches #GGML_CUDA=1 make -j && ./llama-batched-bench ./models/codellama-7b/ggml-model-q4_k.gguf 4096 1 99 1 512,3200 128,128,800 1 #GGML_CUDA=1 make -j && ./llama-batched-bench ./models/codellama-13b/ggml-model-q4_k.gguf 4096 1 99 1 512,3200 128,128,800 1 - diff --git a/src/unicode-data.cpp b/src/unicode-data.cpp index 4a939898b..02bdf7823 100644 --- a/src/unicode-data.cpp +++ b/src/unicode-data.cpp @@ -7030,4 +7030,3 @@ const std::vector unicode_ranges_nfd = { // start, last, nfd {0x02FA1C, 0x02FA1C, 0x009F3B}, {0x02FA1D, 0x02FA1D, 0x02A600}, }; - diff --git a/tests/test-rope.cpp b/tests/test-rope.cpp index f0895ffaa..8159e276a 100644 --- a/tests/test-rope.cpp +++ b/tests/test-rope.cpp @@ -218,4 +218,3 @@ int main(int /*argc*/, const char ** /*argv*/) { return 0; } - From 3e2618bc7bf9e9fbf58c32cc3c8dd7d5df1de27e Mon Sep 17 00:00:00 2001 From: Clint Herron Date: Tue, 2 Jul 2024 13:19:56 -0400 Subject: [PATCH 38/38] Adding step to `clean` target to remove legacy binary names to reduce upgrade / migration confusion arising from #7809. (#8257) --- Makefile | 6 ++++++ 1 file changed, 6 insertions(+) diff --git a/Makefile b/Makefile index 8ae4f1dc4..2730d8b60 100644 --- a/Makefile +++ b/Makefile @@ -62,6 +62,11 @@ TEST_TARGETS = \ tests/test-tokenizer-1-bpe \ tests/test-tokenizer-1-spm +# Legacy build targets that were renamed in #7809, but should still be removed when the project is cleaned +LEGACY_TARGETS = main quantize quantize-stats perplexity imatrix embedding vdot q8dot train-text-from-scratch convert-llama2c-to-ggml \ + simple batched batched-bench save-load-state server gguf gguf-split eval-callback llama-bench libllava.a llava-cli baby-llama \ + retrieval speculative infill tokenize benchmark-matmult parallel finetune export-lora lookahead lookup passkey gritlm + # Deprecation aliases ifdef LLAMA_CUBLAS $(error LLAMA_CUBLAS is removed. Use GGML_CUDA instead.) @@ -1086,6 +1091,7 @@ clean: rm -vrf ggml/src/ggml-cuda/template-instances/*.o rm -rvf $(BUILD_TARGETS) rm -rvf $(TEST_TARGETS) + rm -rvf $(LEGACY_TARGETS) find examples pocs -type f -name "*.o" -delete #