avoid relying on 'logits_all == true' in perplexity_v2

This commit is contained in:
Jia Liu 2024-08-20 17:16:27 +08:00
parent cbb5dd7b12
commit b0c6ad778d

View file

@ -367,17 +367,15 @@ static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params &
return {tokens, -1, logit_history, prob_history}; return {tokens, -1, logit_history, prob_history};
} }
const int calc_chunk = n_ctx; fprintf(stderr, "%s: have %zu tokens. Calculation chunk = %d\n", __func__, tokens.size(), n_ctx);
fprintf(stderr, "%s: have %zu tokens. Calculation chunk = %d\n", __func__, tokens.size(), calc_chunk); if (int(tokens.size()) <= n_ctx) {
if (int(tokens.size()) <= calc_chunk) {
fprintf(stderr, "%s: there are only %zu tokens, this is not enough for a context size of %d and stride %d\n",__func__, fprintf(stderr, "%s: there are only %zu tokens, this is not enough for a context size of %d and stride %d\n",__func__,
tokens.size(), n_ctx, params.ppl_stride); tokens.size(), n_ctx, params.ppl_stride);
return {tokens, -1, logit_history, prob_history}; return {tokens, -1, logit_history, prob_history};
} }
const int n_chunk_max = (tokens.size() - calc_chunk + params.ppl_stride - 1) / params.ppl_stride; const int n_chunk_max = (tokens.size() - n_ctx + params.ppl_stride - 1) / params.ppl_stride;
const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max); const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
const int n_vocab = llama_n_vocab(llama_get_model(ctx)); const int n_vocab = llama_n_vocab(llama_get_model(ctx));
@ -386,13 +384,13 @@ static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params &
int count = 0; int count = 0;
double nll = 0.0; double nll = 0.0;
const int num_batches = (n_ctx + n_batch - 1) / n_batch;
fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch); fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch);
for (int i = 0; i < n_chunk; ++i) { for (int i = 0; i < n_chunk; ++i) {
const int start = i * params.ppl_stride; const int start = i * params.ppl_stride;
const int end = start + calc_chunk; const int end = start + n_ctx;
const int num_batches = (calc_chunk + n_batch - 1) / n_batch;
//fprintf(stderr, "%s: evaluating %d...%d using %d batches\n", __func__, start, end, num_batches); //fprintf(stderr, "%s: evaluating %d...%d using %d batches\n", __func__, start, end, num_batches);
std::vector<float> logits; std::vector<float> logits;
@ -406,13 +404,27 @@ static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params &
const int batch_start = start + j * n_batch; const int batch_start = start + j * n_batch;
const int batch_size = std::min(end - batch_start, n_batch); const int batch_size = std::min(end - batch_start, n_batch);
llama_batch batch = llama_batch_init(batch_size, 0, 1);
for (int k = 0; k < batch_size; ++k) {
const int idx = batch_start + k;
batch.token [k] = tokens[idx];
batch.output [k] = 1;
}
batch.n_tokens = batch_size;
batch.pos = nullptr;
batch.n_seq_id = nullptr;
batch.seq_id = nullptr;
batch.all_pos_0 = j*n_batch;
batch.all_pos_1 = 1;
batch.all_seq_id = 0;
//fprintf(stderr, " Batch %d: starts at %d, size is %d, n_past is %d\n",j,batch_start,batch_size,j * n_batch); //fprintf(stderr, " Batch %d: starts at %d, size is %d, n_past is %d\n",j,batch_start,batch_size,j * n_batch);
// TODO: use llama_batch.output instead of relying on logits_all == true if (llama_decode(ctx, batch)) {
if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) {
//fprintf(stderr, "%s : failed to eval\n", __func__); //fprintf(stderr, "%s : failed to eval\n", __func__);
return {tokens, -1, logit_history, prob_history}; return {tokens, -1, logit_history, prob_history};
} }
llama_batch_free(batch);
// save original token and restore it after eval // save original token and restore it after eval
const auto token_org = tokens[batch_start]; const auto token_org = tokens[batch_start];