Merge branch 'master' of https://github.com/ggerganov/llama.cpp into jon/use-hardware-cores

This commit is contained in:
jon-chuang 2023-04-14 03:07:49 +08:00
commit b17d54eda3
19 changed files with 501 additions and 120 deletions

View file

@ -14,3 +14,6 @@ indent_size = 4
[Makefile]
indent_style = tab
[prompts/*.txt]
insert_final_newline = unset

1
.gitignore vendored
View file

@ -23,6 +23,7 @@ models/*
/result
/perplexity
/embedding
/benchmark-q4_0-matmult
/Pipfile
arm_neon.h

View file

@ -56,6 +56,10 @@ option(LLAMA_AVX "llama: enable AVX"
option(LLAMA_AVX2 "llama: enable AVX2" ON)
option(LLAMA_AVX512 "llama: enable AVX512" OFF)
option(LLAMA_FMA "llama: enable FMA" ON)
# in MSVC F16C is implied with AVX2/AVX512
if (NOT MSVC)
option(LLAMA_F16C "llama: enable F16C" ON)
endif()
# 3rd party libs
option(LLAMA_ACCELERATE "llama: enable Accelerate framework" ON)
@ -207,7 +211,9 @@ elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "^(x86_64|i686|AMD64)$")
add_compile_options(/arch:AVX)
endif()
else()
if (LLAMA_F16C)
add_compile_options(-mf16c)
endif()
if (LLAMA_FMA)
add_compile_options(-mfma)
endif()
@ -247,7 +253,6 @@ endif()
add_library(llama
llama.cpp
llama.h
llama_internal.h
llama_util.h)
target_include_directories(llama PUBLIC .)

View file

@ -142,14 +142,14 @@ default: main quantize perplexity embedding
ggml.o: ggml.c ggml.h
$(CC) $(CFLAGS) -c ggml.c -o ggml.o
llama.o: llama.cpp llama.h llama_util.h llama_internal.h
llama.o: llama.cpp llama.h llama_util.h
$(CXX) $(CXXFLAGS) -c llama.cpp -o llama.o
common.o: examples/common.cpp examples/common.h
$(CXX) $(CXXFLAGS) -c examples/common.cpp -o common.o
clean:
rm -vf *.o main quantize quantize-stats perplexity embedding
rm -vf *.o main quantize quantize-stats perplexity embedding benchmark-q4_0-matmult
main: examples/main/main.cpp ggml.o llama.o common.o
$(CXX) $(CXXFLAGS) examples/main/main.cpp ggml.o llama.o common.o -o main $(LDFLAGS)
@ -171,10 +171,15 @@ embedding: examples/embedding/embedding.cpp ggml.o llama.o common.o
libllama.so: llama.o ggml.o
$(CXX) $(CXXFLAGS) -shared -fPIC -o libllama.so llama.o ggml.o $(LDFLAGS)
#
# Tests
#
benchmark: ggml.o
$(CXX) $(CXXFLAGS) examples/benchmark/benchmark-q4_0-matmult.c ggml.o -o benchmark-q4_0-matmult $(LDFLAGS)
./benchmark-q4_0-matmult
.PHONY: tests
tests:
bash ./tests/run-tests.sh

View file

@ -49,6 +49,7 @@ New features will probably be added mostly through community contributions.
- Python: [abetlen/llama-cpp-python](https://github.com/abetlen/llama-cpp-python)
- Go: [go-skynet/go-llama.cpp](https://github.com/go-skynet/go-llama.cpp)
- Node.js: [hlhr202/llama-node](https://github.com/hlhr202/llama-node)
**UI:**
@ -149,21 +150,43 @@ https://user-images.githubusercontent.com/1991296/224442907-7693d4be-acaa-4e01-8
## Usage
Here are the step for the LLaMA-7B model:
Here are the step for the LLaMA-7B model.
### Get the Code
```bash
# build this repo
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp
make
```
#For Windows and CMake, use the following command instead:
cd <path_to_llama_folder>
### Build
Note: For Windows, CMake or Zig can be used.
1. Use `make`
```bash
make
```
1. Use CMake
```bash
mkdir build
cd build
cmake ..
cmake --build . --config Release
```
1. Use Zig
```bash
zig build -Drelease-fast
```
### Prepare Data & Run
```bash
# obtain the original LLaMA model weights and place them in ./models
ls ./models
65B 30B 13B 7B tokenizer_checklist.chk tokenizer.model
@ -181,8 +204,6 @@ python3 convert-pth-to-ggml.py models/7B/ 1
./main -m ./models/7B/ggml-model-q4_0.bin -n 128
```
Currently, it's best to use Python 3.9 or Python 3.10, as `sentencepiece` has not yet published a wheel for Python 3.11.
When running the larger models, make sure you have enough disk space to store all the intermediate files.
### Memory/Disk Requirements

View file

@ -1,16 +1,14 @@
const std = @import("std");
pub fn build(b: *std.Build) void {
pub fn build(b: *std.build.Builder) void {
const target = b.standardTargetOptions(.{});
const optimize = b.standardOptimizeOption(.{});
const optimize = b.standardReleaseOptions();
const want_lto = b.option(bool, "lto", "Want -fLTO");
const lib = b.addStaticLibrary(.{
.name = "llama",
.target = target,
.optimize = optimize,
});
const lib = b.addStaticLibrary("llama", null);
lib.want_lto = want_lto;
lib.setTarget(target);
lib.setBuildMode(optimize);
lib.linkLibCpp();
lib.addIncludePath(".");
lib.addIncludePath("examples");
@ -44,16 +42,12 @@ pub fn build(b: *std.Build) void {
fn build_example(comptime name: []const u8, args: anytype) *std.build.LibExeObjStep {
const b = args.b;
const lib = args.lib;
const target = args.target;
const optimize = args.optimize;
const want_lto = args.want_lto;
const exe = b.addExecutable(.{
.name = name,
.target = target,
.optimize = optimize,
});
const exe = b.addExecutable(name, null);
exe.want_lto = want_lto;
lib.setTarget(args.target);
lib.setBuildMode(args.optimize);
exe.addIncludePath(".");
exe.addIncludePath("examples");
exe.addCSourceFiles(&.{

View file

@ -7,4 +7,4 @@
cd `dirname $0`
cd ..
./main -m ./models/ggml-alpaca-7b-q4.bin --color -f ./prompts/alpaca.txt -ins -b 256 --top_k 10000 --temp 0.2 --repeat_penalty 1 -t 7
./main -m ./models/ggml-alpaca-7b-q4.bin --color -f ./prompts/alpaca.txt --ctx_size 2048 -n -1 -ins -b 256 --top_k 10000 --temp 0.2 --repeat_penalty 1 -t 7

View file

@ -0,0 +1,270 @@
/*
License: MIT License
Changelog:
- 2023-03-31 Initial version by Sebastian Apel (https://github.com/SebastianApel)
*/
#include <locale.h>
#include "ggml.h"
#include <assert.h>
#include <math.h>
#include <cstring>
#include <cstdio>
#include <cinttypes>
#include <unordered_map>
#include <queue>
#include <string.h>
#include <cassert>
#include <fstream>
#include <string>
#include <iterator>
#include <algorithm>
float tensor_sum_elements(struct ggml_tensor * tensor) {
float sum = 0;
if (tensor->type==6) {
for (int j = 0; j < tensor->ne[1]; j++) {
for (int k = 0; k < tensor->ne[0]; k++) {
sum += ((float *) tensor->data)[j*tensor->ne[0]+k];
}
}
}
return sum;
}
/*
These are mapping to unknown
GGML_TYPE_I8,
GGML_TYPE_I16,
GGML_TYPE_I32,
GGML_TYPE_COUNT,
*/
#define TENSOR_TYPE_AS_STR(TYPE) TYPE == GGML_TYPE_F32 ? "FP32" : TYPE == GGML_TYPE_F16 ? "FP16" : TYPE == GGML_TYPE_Q4_0 ? "Q4_0" : TYPE == GGML_TYPE_Q4_1 ? "Q4_1" : "UNKNOWN"
#define TENSOR_DUMP(TENSOR) printf("%15s: type = %i (%5s) ne = %5d x %5d x %5d, nb = (%5li, %5li, %5li) - ", #TENSOR, \
TENSOR->type,TENSOR_TYPE_AS_STR(TENSOR->type),\
TENSOR->ne[0], TENSOR->ne[1], TENSOR->ne[2], TENSOR->nb[0], TENSOR->nb[1], TENSOR->nb[2]); \
{ float sum = tensor_sum_elements(TENSOR); printf("Sum of tensor %s is %6.2f\n",#TENSOR, sum); }
struct benchmark_params_struct {
int32_t n_threads = 1;
int32_t n_iterations = 10;
};
void print_usage(int /*argc*/, char ** argv, struct benchmark_params_struct params) {
fprintf(stderr, "usage: %s [options]\n", argv[0]);
fprintf(stderr, "\n");
fprintf(stderr, "options:\n");
fprintf(stderr, " -h, --help show this help message and exit\n");
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
fprintf(stderr, " -i N, --iter N number of iterations to use during computation (default: %d)\n", params.n_iterations);
fprintf(stderr, "\n");
}
int main(int argc, char ** argv) {
struct benchmark_params_struct benchmark_params;
bool invalid_param = false;
std::string arg;
for (int i = 1; i < argc; i++) {
arg = argv[i];
if (arg == "-t" || arg == "--threads") {
if (++i >= argc) {
invalid_param = true;
break;
}
benchmark_params.n_threads = std::stoi(argv[i]);
} else if (arg == "-i" || arg == "--iter") {
if (++i >= argc) {
invalid_param = true;
break;
}
benchmark_params.n_iterations = std::stoi(argv[i]);
} else if (arg == "-h" || arg == "--help") {
print_usage(argc, argv, benchmark_params);
exit(0);
}
if (invalid_param) {
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
print_usage(argc, argv, benchmark_params);
exit(1);
}
}
// create the ggml context
printf("Starting Test\n");
struct ggml_context * ctx;
//const int sizex = 4096;
//const int sizey = 11008;
#undef VERBOSE_DEBUGGING
#ifndef VERBOSE_DEBUGGING
const int sizey = 4096;
const int sizex = 11008;
const int sizez = 128;
#else
/* Working - let's increase size */
const int sizey = 1;
const int sizex = (8*32);
const int sizez = 1;
/*const int sizey = 1;
const int sizex = 3*(8*32);
const int sizez = 1;*/
#endif
//printf("Memsize required = %i\n", sizex*sizex);
ggml_type wtype = GGML_TYPE_F32;
size_t ctx_size = 0;
ctx_size += sizex*sizey*ggml_type_sizef(wtype);
ctx_size += sizex*sizey*ggml_type_sizef(wtype);
ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32);
ctx_size += sizex*sizeof(float);
ctx_size += 1024*1024*100;
printf("Allocating Memory of size %li byes, %li MB\n",ctx_size, (ctx_size/1024/1024));
struct ggml_init_params params = {
/*.mem_size =*/ ctx_size,
/*.mem_buffer =*/ NULL,
/* no_alloc =*/ 0
};
ctx = ggml_init(params);
if (!ctx) {
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
return false;
}
printf("Creating new tensors\n");
// printf("Creating new tensor m1\n");
struct ggml_tensor * m11 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizey);
ggml_set_f32(m11, 1.0f);
// printf("Creating new tensor m1\n");
struct ggml_tensor * m12 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizey);
ggml_set_f32(m12, 1.5f);
// printf("Creating new tensor m2\n");
struct ggml_tensor * m2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizez);
ggml_set_f32(m2, 2.0f);
printf("\n------ Test 1 - Matrix Mult via F32 code ------------------------------------------------------------------------------\n");
// printf("Creating new tensor m11xm2\n");
struct ggml_tensor * m11xm2 = ggml_mul_mat(ctx, m11, m2);
// printf("Creating compute graph\n");
struct ggml_cgraph gf = ggml_build_forward(m11xm2);
gf.n_threads=benchmark_params.n_threads;
printf("cgraph->n_threads=%i\n",gf.n_threads);
TENSOR_DUMP(m11);
TENSOR_DUMP(m2);
ggml_graph_compute(ctx, &gf);
TENSOR_DUMP(gf.nodes[0]);
printf("\n------ Test 2 - Matrix Mult via Q4_0 code ------------------------------------------------------------------------------\n");
int32_t nelements = sizex*sizey;
int32_t ne[2] = { sizex, sizey };
std::vector<int64_t> hist_cur(1 << 4, 0);
// Set up a the benchmark matrices
// printf("Creating new tensor q11 & Running quantize\n");
struct ggml_tensor * q11 = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, sizex, sizey);
ggml_quantize_q4_0((const float *) m11->data, q11->data, nelements, ne[0], hist_cur.data());
// Set up a the compute graph
// printf("Creating new tensor q31\n");
struct ggml_tensor * q31 = ggml_mul_mat(ctx, q11, m2);
// printf("Creating compute graph\n");
struct ggml_cgraph gf31 = ggml_build_forward(q31);
gf31.n_threads=benchmark_params.n_threads;
// Set up a second graph computation to make sure we override the CPU cache lines
// printf("Creating new tensor q12 & Running quantize\n");
struct ggml_tensor * q12 = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, sizex, sizey);
ggml_quantize_q4_0((const float *) m12->data, q12->data, nelements, ne[0], hist_cur.data());
// printf("Creating new tensor q32\n");
struct ggml_tensor * q32 = ggml_mul_mat(ctx, q12, m2);
//printf("Creating compute graph\n");
struct ggml_cgraph gf32 = ggml_build_forward(q32);
gf32.n_threads=benchmark_params.n_threads;
printf("cgraph->n_threads=%i\n",gf31.n_threads);
const int dimx = sizex;
const int dimy = sizey;
const int dimz = sizez;
long long int flops_per_dot_product = dimy + dimy;
long long int flops_per_matrix = flops_per_dot_product * dimx * dimz; ;
printf("Matrix Multiplication of (%i,%i,%i) x (%i,%i,%i) - aboout %6.2f gFLOPS\n\n", sizex, sizey, 1, sizex, sizez, 1, 1.0f*flops_per_matrix / 1000 / 1000 / 1000);
// Let's use the F32 result from above as a reference for the q4_0 multiplication
float sum_of_F32_reference = tensor_sum_elements(gf.nodes[0]);
printf("Iteration;NThreads; SizeX; SizeY; SizeZ; Required_FLOPS; Elapsed_u_Seconds; FLOPS_per_u_Second\n");
printf("==============================================================================================\n");
for (int i=0;i<benchmark_params.n_iterations ;i++) {
long long int start = ggml_time_us();
//printf("Running ggml_graph_compute\n");
ggml_graph_compute(ctx, &gf31);
long long int stop = ggml_time_us();
long long int usec = stop-start;
float sec = usec/1000000;
float flops_per_usec = (1.0f*flops_per_matrix)/usec;
printf("%9i;%8i;%6i;%6i;%6i;%15lli;%18lli;%19.2f\n",
i,
gf31.n_threads,
sizex, sizey, sizez, flops_per_matrix,
usec,flops_per_usec);
#ifdef VERBOSE_DEBUGGING
TENSOR_DUMP("res",gf31.nodes[0])
#endif
// Check that the matrix multiplication result is in the right ballpark
// We cannot use the exact value from the F32 multiplication because the quantizuation will be slightly different
float sum_of_Q4_result = tensor_sum_elements(gf31.nodes[0]);
float delta = abs(sum_of_Q4_result - sum_of_F32_reference);
float allowed_delta = (sum_of_F32_reference) / 1000 / 1000; // Let's accept an epsilon of 10^-6
if (delta > allowed_delta) {
printf("\nABORT - ERROR in Matrix Multiplication result - expected %6.2f, got %6.2f (delta %6.2f > allowed_delta %6.2f)\n",
sum_of_F32_reference,
sum_of_Q4_result,
delta,
allowed_delta
);
exit(0);
}
// Running a different graph computation to make sure we override the CPU cache lines
ggml_graph_compute(ctx, &gf32);
}
}

View file

@ -7,12 +7,6 @@
#include <iterator>
#include <algorithm>
#if defined(_MSC_VER) || defined(__MINGW32__)
#include <malloc.h> // using malloc.h with MSC/MINGW
#elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
#include <alloca.h>
#endif
#if defined (_WIN32)
#include <fcntl.h>
#include <io.h>

View file

@ -10,6 +10,6 @@ cd ..
./main --color --instruct --threads 4 \
--model ./models/gpt4all-7B/gpt4all-lora-quantized.bin \
--file ./prompts/alpaca.txt \
--batch_size 8 --ctx_size 2048 \
--batch_size 8 --ctx_size 2048 -n -1 \
--repeat_last_n 64 --repeat_penalty 1.3 \
--n_predict 128 --temp 0.1 --top_k 40 --top_p 0.95

View file

@ -1,6 +1,7 @@
#include "ggml.h"
#define LLAMA_API_INTERNAL
#include "llama.h"
#include "llama_internal.h"
#include <algorithm>
#include <cassert>

View file

@ -28,10 +28,8 @@
];
installPhase = ''
mkdir -p $out/bin
mv bin/main $out/bin/llama
mv bin/quantize $out/bin/quantize
mv bin/embedding $out/bin/embedding
mv bin/perplexity $out/bin/perplexity
mv bin/* $out/bin/
mv $out/bin/main $out/bin/llama
echo "#!${llama-python}/bin/python" > $out/bin/convert-pth-to-ggml
cat ${./convert-pth-to-ggml.py} >> $out/bin/convert-pth-to-ggml

192
ggml.c
View file

@ -114,6 +114,14 @@ typedef void* thread_ret_t;
#define GGML_MEM_ALIGN 16
#endif
#if defined(_MSC_VER) || defined(__MINGW32__)
#define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
#define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
#else
#define GGML_ALIGNED_MALLOC(size) aligned_alloc(GGML_MEM_ALIGN, size)
#define GGML_ALIGNED_FREE(ptr) free(ptr)
#endif
#define UNUSED(x) (void)(x)
#define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
@ -483,6 +491,77 @@ static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
}
#endif
#if __ARM_NEON
#if !defined(__aarch64__)
inline static uint16_t vaddvq_u8(uint8x16_t v) {
return
(uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
(uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
(uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
(uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
(uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
(uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
(uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
(uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
}
inline static int32_t vaddvq_s16(int16x8_t v) {
return
(int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
(int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
(int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
(int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
}
inline static uint32_t vaddvq_u16(uint16x8_t v) {
return
(uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
(uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
(uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
(uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
}
inline static int32_t vaddvq_s32(int32x4_t v) {
return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
}
inline static float vaddvq_f32(float32x4_t v) {
return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
}
inline float vminvq_f32(float32x4_t v) {
return
MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
}
inline float vmaxvq_f32(float32x4_t v) {
return
MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
}
inline int8x8_t vzip1_s8(int8x8_t a, int8x8_t b) {
return vget_low_s8(vcombine_s8(a, b));
}
inline int8x8_t vzip2_s8(int8x8_t a, int8x8_t b) {
return vget_high_s8(vcombine_s8(a, b));
}
inline uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
return vget_low_u8(vcombine_u8(a, b));
}
inline uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
return vget_high_u8(vcombine_u8(a, b));
}
#endif
#endif
// method 5
// blocks of QK elements
// represented with a single float (delta) and QK/2 8-bit ints (i.e QK 4-bit signed integer factors)
@ -1210,15 +1289,7 @@ static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, in
#define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
#define GGML_F32x4_ADD vaddq_f32
#define GGML_F32x4_MUL vmulq_f32
#if defined(__ARM_FEATURE_QRDMX)
#define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
#else
#define GGML_F32x4_REDUCE_ONE(x) \
(vgetq_lane_f32(x, 0) + \
vgetq_lane_f32(x, 1) + \
vgetq_lane_f32(x, 2) + \
vgetq_lane_f32(x, 3))
#endif
#define GGML_F32x4_REDUCE(res, x) \
{ \
for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
@ -1841,55 +1912,43 @@ static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * rest
// 4-bit -> 8-bit
const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8(v0_0, m4b));
const int8x16_t v1_0l = vreinterpretq_s8_u8(vandq_u8(v1_0, m4b));
const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
const int8x16_t v1_0h = vreinterpretq_s8_u8(vshrq_n_u8(v1_0, 4));
const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8(v0_1, m4b));
const int8x16_t v1_1l = vreinterpretq_s8_u8(vandq_u8(v1_1, m4b));
const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
const int8x16_t v1_1h = vreinterpretq_s8_u8(vshrq_n_u8(v1_1, 4));
// sub 8
const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
const int8x16_t v1_0ls = vsubq_s8(v1_0l, s8b);
const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
const int8x16_t v1_0hs = vsubq_s8(v1_0h, s8b);
const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
const int8x16_t v1_1ls = vsubq_s8(v1_1l, s8b);
const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
const int8x16_t v1_1hs = vsubq_s8(v1_1h, s8b);
#if defined(__ARM_FEATURE_DOTPROD)
// dot product into int16x8_t
// dot product into int32x4_t
int32x4_t p_0 = vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls);
int32x4_t p_1 = vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls);
p_0 = vdotq_s32(p_0, v0_0hs, v1_0hs);
p_1 = vdotq_s32(p_1, v0_1hs, v1_1hs);
// scalar
#if defined(__ARM_FEATURE_QRDMX)
sum0 += x0->d*y0->d*vaddvq_s32(p_0);
sum1 += x1->d*y1->d*vaddvq_s32(p_1);
#else
sum0 += x0->d * y0->d * (vgetq_lane_s32(p_0, 0) + vgetq_lane_s32(p_0, 1) + vgetq_lane_s32(p_0, 2) + vgetq_lane_s32(p_0, 3));
sum1 += x1->d * y1->d * (vgetq_lane_s32(p_1, 0) + vgetq_lane_s32(p_1, 1) + vgetq_lane_s32(p_1, 2) + vgetq_lane_s32(p_1, 3));
#endif
#else
const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
@ -1902,14 +1961,8 @@ static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * rest
const int16x8_t p_0 = vaddq_s16(pl_0, ph_0);
const int16x8_t p_1 = vaddq_s16(pl_1, ph_1);
// scalar
#if defined(__ARM_FEATURE_QRDMX)
sum0 += x0->d*y0->d*vaddvq_s16(p_0);
sum1 += x1->d*y1->d*vaddvq_s16(p_1);
#else
sum0 += x0->d * y0->d * (vgetq_lane_s16(p_0, 0) + vgetq_lane_s16(p_0, 1) + vgetq_lane_s16(p_0, 2) + vgetq_lane_s16(p_0, 3) + vgetq_lane_s16(p_0, 4) + vgetq_lane_s16(p_0, 5) + vgetq_lane_s16(p_0, 6) + vgetq_lane_s16(p_0, 7));
sum1 += x1->d * y1->d * (vgetq_lane_s16(p_1, 0) + vgetq_lane_s16(p_1, 1) + vgetq_lane_s16(p_1, 2) + vgetq_lane_s16(p_1, 3) + vgetq_lane_s16(p_1, 4) + vgetq_lane_s16(p_1, 5) + vgetq_lane_s16(p_1, 6) + vgetq_lane_s16(p_1, 7));
#endif
#endif
}
@ -2152,18 +2205,20 @@ static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * rest
const uint8_t * restrict p0 = x[i].qs;
const uint8_t * restrict p1 = y[i].qs;
int sumi = 0;
for (int j = 0; j < QK/2; j++) {
const uint8_t v0 = p0[j];
const uint8_t v1 = p1[j];
const float f0 = d0*((int8_t) (v0 & 0xf) - 8);
const float f1 = d0*((int8_t) (v0 >> 4) - 8);
const int8_t i0 = (int8_t) (v0 & 0xf) - 8;
const int8_t i1 = (int8_t) (v0 >> 4) - 8;
const float f2 = d1*((int8_t) (v1 & 0xf) - 8);
const float f3 = d1*((int8_t) (v1 >> 4) - 8);
const int8_t i2 = (int8_t) (v1 & 0xf) - 8;
const int8_t i3 = (int8_t) (v1 >> 4) - 8;
sumf += f0*f2 + f1*f3;
sumi += i0*i2 + i1*i3;
}
sumf += d0 * d1 * sumi;
}
#endif
@ -2255,36 +2310,71 @@ static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * rest
float sum10 = 0.0f;
float sum11 = 0.0f;
for (int i = 0; i < nb; ++i) {
for (int i = 0; i < nb; i += 2) {
const block_q4_1 * restrict x0 = &x[i + 0];
const block_q4_1 * restrict y0 = &y[i + 0];
const block_q4_1 * restrict x1 = &x[i + 1];
const block_q4_1 * restrict y1 = &y[i + 1];
const uint8x16_t m4b = vdupq_n_u8(0xf);
const uint8x16_t v0_0 = vld1q_u8(x0->qs);
const uint8x16_t v1_0 = vld1q_u8(y0->qs);
const uint8x16_t v0_1 = vld1q_u8(x1->qs);
const uint8x16_t v1_1 = vld1q_u8(y1->qs);
// and with 0xf
// 4-bit -> 8-bit
const uint8x16_t v0_0l = vandq_u8(v0_0, m4b);
const uint8x16_t v1_0l = vandq_u8(v1_0, m4b);
const uint8x16_t v0_0h = vshrq_n_u8(v0_0, 4);
const uint8x16_t v1_0h = vshrq_n_u8(v1_0, 4);
// dot product into uint16x8_t
const uint16x8_t pl0l = vmull_u8(vget_low_u8 (v0_0l), vget_low_u8 (v1_0l));
const uint16x8_t pl0h = vmull_u8(vget_high_u8(v0_0l), vget_high_u8(v1_0l));
const uint16x8_t ph0l = vmull_u8(vget_low_u8 (v0_0h), vget_low_u8 (v1_0h));
const uint16x8_t ph0h = vmull_u8(vget_high_u8(v0_0h), vget_high_u8(v1_0h));
const uint16x8_t pl0 = vaddq_u16(pl0l, pl0h);
const uint16x8_t ph0 = vaddq_u16(ph0l, ph0h);
const uint8x16_t v0_1l = vandq_u8(v0_1, m4b);
const uint8x16_t v1_1l = vandq_u8(v1_1, m4b);
const uint8x16_t v0_1h = vshrq_n_u8(v0_1, 4);
const uint8x16_t v1_1h = vshrq_n_u8(v1_1, 4);
sum00 += x0->m*y0->m;
sum01 += y0->m*x0->d*(vaddvq_u8(v0_0l) + vaddvq_u8(v0_0h));
sum10 += x0->m*y0->d*(vaddvq_u8(v1_0l) + vaddvq_u8(v1_0h));
sum11 += x0->d*y0->d*vaddvq_u16(vaddq_u16(pl0, ph0));
sum00 += x1->m*y1->m;
sum01 += y1->m*x1->d*(vaddvq_u8(v0_1l) + vaddvq_u8(v0_1h));
sum10 += x1->m*y1->d*(vaddvq_u8(v1_1l) + vaddvq_u8(v1_1h));
#if defined(__ARM_FEATURE_DOTPROD)
// dot product into int32x4_t
int32x4_t p_0 = vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l);
int32x4_t p_1 = vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l);
p_0 = vdotq_s32(p_0, v0_0h, v1_0h);
p_1 = vdotq_s32(p_1, v0_1h, v1_1h);
sum11 += x0->d*y0->d*vaddvq_s32(p_0);
sum11 += x1->d*y1->d*vaddvq_s32(p_1);
#else
const uint16x8_t pl0l = vmull_u8(vget_low_u8 (v0_0l), vget_low_u8 (v1_0l));
const uint16x8_t pl0h = vmull_u8(vget_high_u8(v0_0l), vget_high_u8(v1_0l));
const uint16x8_t ph0l = vmull_u8(vget_low_u8 (v0_0h), vget_low_u8 (v1_0h));
const uint16x8_t ph0h = vmull_u8(vget_high_u8(v0_0h), vget_high_u8(v1_0h));
const uint16x8_t pl1l = vmull_u8(vget_low_u8 (v0_1l), vget_low_u8 (v1_1l));
const uint16x8_t pl1h = vmull_u8(vget_high_u8(v0_1l), vget_high_u8(v1_1l));
const uint16x8_t ph1l = vmull_u8(vget_low_u8 (v0_1h), vget_low_u8 (v1_1h));
const uint16x8_t ph1h = vmull_u8(vget_high_u8(v0_1h), vget_high_u8(v1_1h));
const uint16x8_t pl_0 = vaddq_u16(pl0l, pl0h);
const uint16x8_t ph_0 = vaddq_u16(ph0l, ph0h);
const uint16x8_t pl_1 = vaddq_u16(pl1l, pl1h);
const uint16x8_t ph_1 = vaddq_u16(ph1l, ph1h);
const uint16x8_t p_0 = vaddq_u16(pl_0, ph_0);
const uint16x8_t p_1 = vaddq_u16(pl_1, ph_1);
sum11 += x0->d*y0->d*vaddvq_u16(p_0);
sum11 += x1->d*y1->d*vaddvq_u16(p_1);
#endif
}
sumf = QK*sum00 + sum01 + sum10 + sum11;
@ -2966,7 +3056,7 @@ struct ggml_context * ggml_init(struct ggml_init_params params) {
*ctx = (struct ggml_context) {
/*.mem_size =*/ params.mem_size,
/*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : malloc(params.mem_size),
/*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(params.mem_size),
/*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
/*.no_alloc =*/ params.no_alloc,
/*.n_objects =*/ 0,
@ -3001,7 +3091,7 @@ void ggml_free(struct ggml_context * ctx) {
__func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
if (ctx->mem_buffer_owned) {
free(ctx->mem_buffer);
GGML_ALIGNED_FREE(ctx->mem_buffer);
}
found = true;
@ -6435,7 +6525,7 @@ static void ggml_compute_forward_mul_mat_f32(
cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
ne11, ne01, ne10,
1.0f, y, ne10,
x, ne10,
x, ne00,
0.0f, d, ne01);
}
}
@ -6607,7 +6697,7 @@ static void ggml_compute_forward_mul_mat_f16_f32(
cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
ne11, ne01, ne10,
1.0f, y, ne10,
x, ne10,
x, ne00,
0.0f, d, ne01);
}
}
@ -6820,7 +6910,7 @@ static void ggml_compute_forward_mul_mat_q_f32(
cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
ne11, ne01, ne10,
1.0f, y, ne10,
x, ne10,
x, ne00,
0.0f, d, ne01);
}
}
@ -9273,7 +9363,7 @@ struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
struct ggml_cgraph result = {
/*.n_nodes =*/ 0,
/*.n_leafs =*/ 0,
/*.n_threads =*/ 0,
/*.n_threads =*/ GGML_DEFAULT_N_THREADS,
/*.work_size =*/ 0,
/*.work =*/ NULL,
/*.nodes =*/ { NULL },

1
ggml.h
View file

@ -182,6 +182,7 @@ extern "C" {
#define GGML_MAX_PARAMS 16
#define GGML_MAX_CONTEXTS 64
#define GGML_MAX_OPT 4
#define GGML_DEFAULT_N_THREADS 4
#ifdef __ARM_NEON
// we use the built-in 16-bit float type

View file

@ -5,7 +5,6 @@
#include "llama_util.h"
#include "llama.h"
#include "llama_internal.h"
#include "ggml.h"

11
llama.h
View file

@ -179,4 +179,15 @@ extern "C" {
}
#endif
// Internal API to be implemented by llama.cpp and used by tests/benchmarks only
#ifdef LLAMA_API_INTERNAL
#include <vector>
#include <string>
struct ggml_tensor;
std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx);
#endif
#endif // LLAMA_H

View file

@ -1,12 +0,0 @@
// Internal header to be included by llama.cpp and tests/benchmarks only.
#ifndef LLAMA_INTERNAL_H
#define LLAMA_INTERNAL_H
#include <vector>
#include <string>
struct ggml_tensor;
std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx);
#endif // LLAMA_INTERNAL_H