add option to save train-text-from-scratch output every N iterations

This commit is contained in:
xaedes 2023-08-30 16:26:05 +02:00
parent f3590ad8d9
commit b26bd4c34c
No known key found for this signature in database
GPG key ID: 30030EDD817EA2B1

View file

@ -793,6 +793,15 @@ void shuffle_ints(int * begin, int * end) {
});
}
std::string replace_str(const char * s, const char * needle, const char * replacement) {
std::string str = s;
size_t pos = str.find(needle);
if (pos != std::string::npos) {
str.replace(pos, strlen(needle), replacement);
}
return str;
}
#define GGUF_GET_KEY(ctx, dst, func, type, req, key) \
{ \
const std::string skey(key); \
@ -1174,14 +1183,17 @@ void save_llama_model_gguf(struct gguf_context * fctx, const char * fn_vocab_mod
}
}
void save_llama_model_file(const char * filename, const char * fn_vocab_model, struct my_llama_model * model) {
void save_llama_model_file(const char * filename, const char * fn_vocab_model, struct my_llama_model * model, const char * pattern_it, int iteration, const char * latest) {
std::string sit = (iteration >= 0) ? std::to_string(iteration) : std::string(latest);
std::string fn = replace_str(filename, pattern_it, sit.c_str());
printf("%s: saving to %s\n", __func__, fn.c_str());
struct gguf_context * fctx = gguf_init_empty();
save_llama_model_gguf(fctx, fn_vocab_model, model);
// write file
const bool only_meta = false;
gguf_write_to_file(fctx, filename, only_meta);
gguf_write_to_file(fctx, fn.c_str(), only_meta);
gguf_free(fctx);
}
@ -1234,14 +1246,17 @@ bool load_checkpoint_file(const char * filename, struct my_llama_model * model,
return true;
}
void save_checkpoint_file(const char * filename, const char * fn_vocab_model, struct my_llama_model * model, struct ggml_opt_context * opt) {
void save_checkpoint_file(const char * filename, const char * fn_vocab_model, struct my_llama_model * model, struct ggml_opt_context * opt, const char * pattern_it, int iteration, const char * latest) {
std::string sit = (iteration >= 0) ? std::to_string(iteration) : std::string(latest);
std::string fn = replace_str(filename, pattern_it, sit.c_str());
printf("%s: saving to %s\n", __func__, fn.c_str());
struct gguf_context * fctx = gguf_init_empty();
save_checkpoint_gguf(fctx, fn_vocab_model, model, opt);
// write file
const bool only_meta = false;
gguf_write_to_file(fctx, filename, only_meta);
gguf_write_to_file(fctx, fn.c_str(), only_meta);
gguf_free(fctx);
}
@ -1270,6 +1285,10 @@ struct train_params {
const char * fn_checkpoint_in;
const char * fn_checkpoint_out;
const char * fn_model_out;
const char * pattern_fn_it;
const char * fn_latest;
int save_every;
uint32_t seed;
@ -1329,6 +1348,10 @@ struct train_params get_default_train_params() {
params.fn_checkpoint_in = "checkpoint.bin";
params.fn_checkpoint_out = "checkpoint.bin";
params.fn_model_out = "ggml-checkpoint-f32.bin";
params.pattern_fn_it = "ITERATION";
params.fn_latest = "LATEST";
params.save_every = 10;
params.seed = -1;
@ -1392,6 +1415,9 @@ void train_print_usage(int /*argc*/, char ** argv, const struct train_params * p
fprintf(stderr, " --checkpoint-in FNAME path from which to load training checkpoint (default '%s')\n", params->fn_checkpoint_in);
fprintf(stderr, " --checkpoint-out FNAME path to save training checkpoint (default '%s')\n", params->fn_checkpoint_out);
fprintf(stderr, " --model-out FNAME path to save ggml model (default '%s')\n", params->fn_model_out);
fprintf(stderr, " --pattern-fn-it STR pattern in output filenames to be replaced by iteration number (default '%s')\n", params->pattern_fn_it);
fprintf(stderr, " --fn-latest STR string to use instead of iteration number for saving latest output (default '%s')\n", params->fn_latest);
fprintf(stderr, " --save-every N save checkpoint and lora every N iterations. Disabled when N <= 0. (default '%d')\n", params->save_every);
fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1, use random seed for -1)\n");
fprintf(stderr, " -c N, --ctx N Context size used during training (default %d)\n", params->n_ctx);
fprintf(stderr, " --embd N Embedding size used for new models (default %d)\n", params->n_embd);
@ -1481,6 +1507,24 @@ bool train_params_parse(int argc, char ** argv, struct train_params * params) {
break;
}
params->fn_model_out = argv[i];
} else if (arg == "--pattern-fn-it") {
if (++i >= argc) {
invalid_param = true;
break;
}
params->pattern_fn_it = argv[i];
} else if (arg == "--fn-latest") {
if (++i >= argc) {
invalid_param = true;
break;
}
params->fn_latest = argv[i];
} else if (arg == "--save-every") {
if (++i >= argc) {
invalid_param = true;
break;
}
params->save_every = std::stoi(argv[i]);
} else if (arg == "-s" || arg == "--seed") {
if (++i >= argc) {
invalid_param = true;
@ -1722,7 +1766,9 @@ bool train_params_parse(int argc, char ** argv, struct train_params * params) {
struct opt_callback_data {
struct train_params * params;
struct ggml_opt_context * opt;
struct my_llama_model * model;
struct llama_context * lctx;
int last_save_iter;
llama_token * tokens_data;
size_t tokens_size;
int * samples_data;
@ -1738,6 +1784,26 @@ void opt_callback(void * vdata, float * sched) {
struct train_params * params = data->params;
struct ggml_opt_context * opt = data->opt;
int n_batch = params->n_batch;
int n_ctx = params->n_ctx;
const bool save_now = (params->save_every > 0) && (opt->iter - data->last_save_iter >= params->save_every);
if (save_now) {
int new_iters = opt->iter - data->last_save_iter;
data->model->train_its += new_iters;
data->model->train_samples += new_iters * n_batch;
data->model->train_tokens += new_iters * n_batch * n_ctx;
if (strlen(params->fn_checkpoint_out) > 0) {
save_checkpoint_file(params->fn_checkpoint_out, params->fn_vocab_model, data->model, opt, params->pattern_fn_it, opt->iter, params->fn_latest);
save_checkpoint_file(params->fn_checkpoint_out, params->fn_vocab_model, data->model, opt, params->pattern_fn_it, -1, params->fn_latest);
}
if (strlen(params->fn_model_out) > 0) {
save_llama_model_file(params->fn_model_out, params->fn_vocab_model, data->model, params->pattern_fn_it, opt->iter, params->fn_latest);
save_llama_model_file(params->fn_model_out, params->fn_vocab_model, data->model, params->pattern_fn_it, -1, params->fn_latest);
}
data->last_save_iter = opt->iter;
}
*sched = (opt->iter < params->warmup)
? (float) opt->iter / (float) params->warmup
@ -1929,7 +1995,9 @@ int main(int argc, char ** argv) {
struct opt_callback_data opt_cb_data;
opt_cb_data.params = &params;
opt_cb_data.opt = opt;
opt_cb_data.model = &model;
opt_cb_data.lctx = lctx;
opt_cb_data.last_save_iter = opt->iter;
opt_cb_data.tokens_data = train_tokens.data();
opt_cb_data.tokens_size = train_tokens.size();
opt_cb_data.samples_data = train_samples.data();
@ -2038,14 +2106,23 @@ int main(int argc, char ** argv) {
double dd = (double) d * 1e-3;
printf("%s: total training time=%f seconds\n", __func__, dd);
int new_iters = opt->iter - opt_cb_data.last_save_iter;
model.train_its += new_iters;
model.train_samples += new_iters * n_batch;
model.train_tokens += new_iters * n_batch * n_tokens;
if (params.n_examples > 0) {
save_checkpoint_file(params.fn_checkpoint_out, params.fn_vocab_model, &model, opt);
save_checkpoint_file(params.fn_checkpoint_out, params.fn_vocab_model, &model, opt, params.pattern_fn_it, opt->iter, params.fn_latest);
save_checkpoint_file(params.fn_checkpoint_out, params.fn_vocab_model, &model, opt, params.pattern_fn_it, -1, params.fn_latest);
}
if (strlen(params.fn_model_out) > 0) {
save_llama_model_file(params.fn_model_out, params.fn_vocab_model, &model);
save_llama_model_file(params.fn_model_out, params.fn_vocab_model, &model, params.pattern_fn_it, opt->iter, params.fn_latest);
save_llama_model_file(params.fn_model_out, params.fn_vocab_model, &model, params.pattern_fn_it, -1, params.fn_latest);
}
opt_cb_data.last_save_iter = opt->iter;
if (alloc) {
ggml_allocr_free(alloc);
}