convert : use context managers with most file handles
This commit is contained in:
parent
d852c61d5c
commit
b2b63d1350
1 changed files with 17 additions and 10 deletions
27
convert.py
27
convert.py
|
@ -211,7 +211,8 @@ class Params:
|
|||
|
||||
@staticmethod
|
||||
def loadHFTransformerJson(model: LazyModel, config_path: Path) -> Params:
|
||||
config = json.load(open(config_path))
|
||||
with open(config_path) as f:
|
||||
config = json.load(f)
|
||||
|
||||
rope_scaling_type = f_rope_scale = n_orig_ctx = rope_finetuned = None
|
||||
rope_scaling = config.get("rope_scaling")
|
||||
|
@ -265,7 +266,8 @@ class Params:
|
|||
# {"dim": 8192, "multiple_of": 4096, "ffn_dim_multiplier": 1.3, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-05, "vocab_size": -1}
|
||||
@staticmethod
|
||||
def loadOriginalParamsJson(model: LazyModel, config_path: Path) -> Params:
|
||||
config = json.load(open(config_path))
|
||||
with open(config_path) as f:
|
||||
config = json.load(f)
|
||||
|
||||
n_experts = None
|
||||
n_experts_used = None
|
||||
|
@ -361,7 +363,9 @@ class BpeVocab(Vocab):
|
|||
name = "bpe"
|
||||
|
||||
def __init__(self, fname_tokenizer: Path, fname_added_tokens: Path | None):
|
||||
bpe_tokenizer = json.loads(open(str(fname_tokenizer), encoding="utf-8").read())
|
||||
with open(fname_tokenizer, encoding="utf-8") as f:
|
||||
bpe_tokenizer = json.load(f)
|
||||
|
||||
if isinstance(bpe_tokenizer.get('model'), dict):
|
||||
self.vocab = bpe_tokenizer["model"]["vocab"]
|
||||
else:
|
||||
|
@ -369,14 +373,16 @@ class BpeVocab(Vocab):
|
|||
added_tokens: dict[str, int]
|
||||
if fname_added_tokens is not None:
|
||||
# FIXME: Verify that added tokens here _cannot_ overlap with the main vocab.
|
||||
added_tokens = json.load(open(fname_added_tokens, encoding="utf-8"))
|
||||
with open(fname_added_tokens, encoding="utf-8") as f:
|
||||
added_tokens = json.load(f)
|
||||
else:
|
||||
# Fall back to trying to find the added tokens in tokenizer.json
|
||||
tokenizer_json_file = fname_tokenizer.parent / 'tokenizer.json'
|
||||
if not tokenizer_json_file.is_file():
|
||||
added_tokens = {}
|
||||
else:
|
||||
tokenizer_json = json.load(open(tokenizer_json_file, encoding="utf-8"))
|
||||
with open(tokenizer_json_file, encoding="utf-8") as f:
|
||||
tokenizer_json = json.load(f)
|
||||
added_tokens = dict(
|
||||
(item['content'], item['id'])
|
||||
for item in tokenizer_json.get('added_tokens', [])
|
||||
|
@ -424,7 +430,8 @@ class SentencePieceVocab(Vocab):
|
|||
self.sentencepiece_tokenizer = SentencePieceProcessor(str(fname_tokenizer))
|
||||
added_tokens: dict[str, int]
|
||||
if fname_added_tokens is not None:
|
||||
added_tokens = json.load(open(fname_added_tokens, encoding="utf-8"))
|
||||
with open(fname_added_tokens, encoding="utf-8") as f:
|
||||
added_tokens = json.load(f)
|
||||
else:
|
||||
added_tokens = {}
|
||||
|
||||
|
@ -818,10 +825,10 @@ class LazyUnpickler(pickle.Unpickler):
|
|||
|
||||
def load(offset: int, elm_count: int) -> NDArray:
|
||||
dtype = data_type.dtype
|
||||
fp = self.zip_file.open(info)
|
||||
fp.seek(offset * dtype.itemsize)
|
||||
size = elm_count * dtype.itemsize
|
||||
data = fp.read(size)
|
||||
with self.zip_file.open(info) as fp:
|
||||
fp.seek(offset * dtype.itemsize)
|
||||
size = elm_count * dtype.itemsize
|
||||
data = fp.read(size)
|
||||
assert len(data) == size
|
||||
return np.frombuffer(data, dtype)
|
||||
description = f'storage data_type={data_type} path-in-zip={filename} path={self.zip_file.filename}'
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue