convert : use context managers with most file handles

This commit is contained in:
Jared Van Bortel 2024-03-27 12:57:40 -04:00
parent d852c61d5c
commit b2b63d1350

View file

@ -211,7 +211,8 @@ class Params:
@staticmethod @staticmethod
def loadHFTransformerJson(model: LazyModel, config_path: Path) -> Params: def loadHFTransformerJson(model: LazyModel, config_path: Path) -> Params:
config = json.load(open(config_path)) with open(config_path) as f:
config = json.load(f)
rope_scaling_type = f_rope_scale = n_orig_ctx = rope_finetuned = None rope_scaling_type = f_rope_scale = n_orig_ctx = rope_finetuned = None
rope_scaling = config.get("rope_scaling") rope_scaling = config.get("rope_scaling")
@ -265,7 +266,8 @@ class Params:
# {"dim": 8192, "multiple_of": 4096, "ffn_dim_multiplier": 1.3, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-05, "vocab_size": -1} # {"dim": 8192, "multiple_of": 4096, "ffn_dim_multiplier": 1.3, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-05, "vocab_size": -1}
@staticmethod @staticmethod
def loadOriginalParamsJson(model: LazyModel, config_path: Path) -> Params: def loadOriginalParamsJson(model: LazyModel, config_path: Path) -> Params:
config = json.load(open(config_path)) with open(config_path) as f:
config = json.load(f)
n_experts = None n_experts = None
n_experts_used = None n_experts_used = None
@ -361,7 +363,9 @@ class BpeVocab(Vocab):
name = "bpe" name = "bpe"
def __init__(self, fname_tokenizer: Path, fname_added_tokens: Path | None): def __init__(self, fname_tokenizer: Path, fname_added_tokens: Path | None):
bpe_tokenizer = json.loads(open(str(fname_tokenizer), encoding="utf-8").read()) with open(fname_tokenizer, encoding="utf-8") as f:
bpe_tokenizer = json.load(f)
if isinstance(bpe_tokenizer.get('model'), dict): if isinstance(bpe_tokenizer.get('model'), dict):
self.vocab = bpe_tokenizer["model"]["vocab"] self.vocab = bpe_tokenizer["model"]["vocab"]
else: else:
@ -369,14 +373,16 @@ class BpeVocab(Vocab):
added_tokens: dict[str, int] added_tokens: dict[str, int]
if fname_added_tokens is not None: if fname_added_tokens is not None:
# FIXME: Verify that added tokens here _cannot_ overlap with the main vocab. # FIXME: Verify that added tokens here _cannot_ overlap with the main vocab.
added_tokens = json.load(open(fname_added_tokens, encoding="utf-8")) with open(fname_added_tokens, encoding="utf-8") as f:
added_tokens = json.load(f)
else: else:
# Fall back to trying to find the added tokens in tokenizer.json # Fall back to trying to find the added tokens in tokenizer.json
tokenizer_json_file = fname_tokenizer.parent / 'tokenizer.json' tokenizer_json_file = fname_tokenizer.parent / 'tokenizer.json'
if not tokenizer_json_file.is_file(): if not tokenizer_json_file.is_file():
added_tokens = {} added_tokens = {}
else: else:
tokenizer_json = json.load(open(tokenizer_json_file, encoding="utf-8")) with open(tokenizer_json_file, encoding="utf-8") as f:
tokenizer_json = json.load(f)
added_tokens = dict( added_tokens = dict(
(item['content'], item['id']) (item['content'], item['id'])
for item in tokenizer_json.get('added_tokens', []) for item in tokenizer_json.get('added_tokens', [])
@ -424,7 +430,8 @@ class SentencePieceVocab(Vocab):
self.sentencepiece_tokenizer = SentencePieceProcessor(str(fname_tokenizer)) self.sentencepiece_tokenizer = SentencePieceProcessor(str(fname_tokenizer))
added_tokens: dict[str, int] added_tokens: dict[str, int]
if fname_added_tokens is not None: if fname_added_tokens is not None:
added_tokens = json.load(open(fname_added_tokens, encoding="utf-8")) with open(fname_added_tokens, encoding="utf-8") as f:
added_tokens = json.load(f)
else: else:
added_tokens = {} added_tokens = {}
@ -818,7 +825,7 @@ class LazyUnpickler(pickle.Unpickler):
def load(offset: int, elm_count: int) -> NDArray: def load(offset: int, elm_count: int) -> NDArray:
dtype = data_type.dtype dtype = data_type.dtype
fp = self.zip_file.open(info) with self.zip_file.open(info) as fp:
fp.seek(offset * dtype.itemsize) fp.seek(offset * dtype.itemsize)
size = elm_count * dtype.itemsize size = elm_count * dtype.itemsize
data = fp.read(size) data = fp.read(size)