diff --git a/.devops/main-intel.Dockerfile b/.devops/main-intel.Dockerfile index 572e5d8ea..274b91b71 100644 --- a/.devops/main-intel.Dockerfile +++ b/.devops/main-intel.Dockerfile @@ -10,14 +10,12 @@ WORKDIR /app COPY . . -RUN mkdir build && \ - cd build && \ - if [ "${LLAMA_SYCL_F16}" = "ON" ]; then \ +RUN if [ "${LLAMA_SYCL_F16}" = "ON" ]; then \ echo "LLAMA_SYCL_F16 is set" && \ export OPT_SYCL_F16="-DLLAMA_SYCL_F16=ON"; \ fi && \ - cmake .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx ${OPT_SYCL_F16} && \ - cmake --build . --config Release --target main + cmake -B build -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx ${OPT_SYCL_F16} && \ + cmake --build build --config Release --target main FROM intel/oneapi-basekit:$ONEAPI_VERSION as runtime diff --git a/.devops/main-vulkan.Dockerfile b/.devops/main-vulkan.Dockerfile index bca460365..6c2b2ed5b 100644 --- a/.devops/main-vulkan.Dockerfile +++ b/.devops/main-vulkan.Dockerfile @@ -14,10 +14,8 @@ RUN wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key # Build it WORKDIR /app COPY . . -RUN mkdir build && \ - cd build && \ - cmake .. -DLLAMA_VULKAN=1 && \ - cmake --build . --config Release --target main +RUN cmake -B build -DLLAMA_VULKAN=1 && \ + cmake --build build --config Release --target main # Clean up WORKDIR / diff --git a/.devops/server-intel.Dockerfile b/.devops/server-intel.Dockerfile index 304487335..a8e451fa9 100644 --- a/.devops/server-intel.Dockerfile +++ b/.devops/server-intel.Dockerfile @@ -10,14 +10,12 @@ WORKDIR /app COPY . . -RUN mkdir build && \ - cd build && \ - if [ "${LLAMA_SYCL_F16}" = "ON" ]; then \ +RUN if [ "${LLAMA_SYCL_F16}" = "ON" ]; then \ echo "LLAMA_SYCL_F16 is set" && \ export OPT_SYCL_F16="-DLLAMA_SYCL_F16=ON"; \ fi && \ - cmake .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_CURL=ON ${OPT_SYCL_F16} && \ - cmake --build . --config Release --target server + cmake -B build -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_CURL=ON ${OPT_SYCL_F16} && \ + cmake --build build --config Release --target server FROM intel/oneapi-basekit:$ONEAPI_VERSION as runtime diff --git a/.devops/server-vulkan.Dockerfile b/.devops/server-vulkan.Dockerfile index 7e5a5283b..6e757e171 100644 --- a/.devops/server-vulkan.Dockerfile +++ b/.devops/server-vulkan.Dockerfile @@ -18,10 +18,8 @@ RUN apt-get update && \ # Build it WORKDIR /app COPY . . -RUN mkdir build && \ - cd build && \ - cmake .. -DLLAMA_VULKAN=1 -DLLAMA_CURL=1 && \ - cmake --build . --config Release --target server +RUN cmake -B build -DLLAMA_VULKAN=1 -DLLAMA_CURL=1 && \ + cmake --build build --config Release --target server # Clean up WORKDIR / diff --git a/.flake8 b/.flake8 index 18fba2c15..d64c2564a 100644 --- a/.flake8 +++ b/.flake8 @@ -1,3 +1,17 @@ [flake8] max-line-length = 125 -ignore = W503 +ignore = E203,E211,E221,E225,E231,E241,E251,E261,E266,E501,E701,E704,W503 +exclude = + # Do not traverse examples + examples, + # Do not include package initializers + __init__.py, + # No need to traverse our git directory + .git, + # There's no value in checking cache directories + __pycache__, + # No need to include the build path + build, + # This contains builds that we don't want to check + dist # This is generated with `python build .` for package releases +# max-complexity = 10 diff --git a/.github/workflows/bench.yml b/.github/workflows/bench.yml index d50af0b70..de0d994c8 100644 --- a/.github/workflows/bench.yml +++ b/.github/workflows/bench.yml @@ -32,7 +32,7 @@ on: - cron: '04 2 * * *' concurrency: - group: ${{ github.workflow }}-${{ github.ref || github.run_id }}-${{ github.event.inputs.sha }} + group: ${{ github.workflow }}-${{ github.ref }}-${{ github.head_ref || github.run_id }}-${{ github.event.inputs.sha }} cancel-in-progress: true jobs: @@ -52,7 +52,19 @@ jobs: ftype: q4_0 pr_comment_enabled: "true" - if: ${{ github.event.inputs.gpu-series == 'Standard_NC4as_T4_v3' || github.event.schedule || github.event.pull_request || github.head_ref == 'master' || github.ref_name == 'master' || github.event.push.ref == 'refs/heads/master' }} + if: | + inputs.gpu-series == 'Standard_NC4as_T4_v3' + || ( + github.event_name == 'schedule' + && github.ref_name == 'master' + && github.repository_owner == 'ggerganov' + ) + || github.event_name == 'pull_request_target' + || ( + github.event_name == 'push' + && github.event.ref == 'refs/heads/master' + && github.repository_owner == 'ggerganov' + ) steps: - name: Clone id: checkout @@ -96,9 +108,7 @@ jobs: id: cmake_build run: | set -eux - mkdir build - cd build - cmake .. \ + cmake -B build \ -DLLAMA_NATIVE=OFF \ -DLLAMA_BUILD_SERVER=ON \ -DLLAMA_CURL=ON \ @@ -109,7 +119,7 @@ jobs: -DLLAMA_FATAL_WARNINGS=OFF \ -DLLAMA_ALL_WARNINGS=OFF \ -DCMAKE_BUILD_TYPE=Release; - cmake --build . --config Release -j $(nproc) --target server + cmake --build build --config Release -j $(nproc) --target server - name: Download the dataset id: download_dataset diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml index 50f76db3c..2d747e688 100644 --- a/.github/workflows/build.yml +++ b/.github/workflows/build.yml @@ -593,6 +593,63 @@ jobs: run: | make swift + windows-msys2: + runs-on: windows-latest + + strategy: + fail-fast: false + matrix: + include: + - { sys: UCRT64, env: ucrt-x86_64, build: Release } + - { sys: CLANG64, env: clang-x86_64, build: Release } + + steps: + - name: Clone + uses: actions/checkout@v4 + + - name: Setup ${{ matrix.sys }} + uses: msys2/setup-msys2@v2 + with: + update: true + msystem: ${{matrix.sys}} + install: >- + base-devel + mingw-w64-${{matrix.env}}-toolchain + mingw-w64-${{matrix.env}}-cmake + mingw-w64-${{matrix.env}}-openblas + + - name: Build using make + shell: msys2 {0} + run: | + make -j $(nproc) + + - name: Clean after building using make + shell: msys2 {0} + run: | + make clean + + - name: Build using make w/ OpenBLAS + shell: msys2 {0} + run: | + make LLAMA_OPENBLAS=1 -j $(nproc) + + - name: Build using CMake + shell: msys2 {0} + run: | + cmake -B build + cmake --build build --config ${{ matrix.build }} -j $(nproc) + + - name: Clean after building using CMake + shell: msys2 {0} + run: | + rm -rf build + + - name: Build using CMake w/ OpenBLAS + shell: msys2 {0} + run: | + cmake -B build -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS + cmake --build build --config ${{ matrix.build }} -j $(nproc) + windows-latest-cmake: runs-on: windows-latest diff --git a/.github/workflows/close-issue.yml b/.github/workflows/close-issue.yml index 7f21daec0..69c9f4f69 100644 --- a/.github/workflows/close-issue.yml +++ b/.github/workflows/close-issue.yml @@ -12,7 +12,7 @@ jobs: steps: - uses: actions/stale@v5 with: - exempt-issue-labels: "refactor,help wanted,good first issue,research" + exempt-issue-labels: "refactor,help wanted,good first issue,research,bug" days-before-issue-stale: 30 days-before-issue-close: 14 stale-issue-label: "stale" diff --git a/.github/workflows/python-lint.yml b/.github/workflows/python-lint.yml index f4ae65495..a8d46f31d 100644 --- a/.github/workflows/python-lint.yml +++ b/.github/workflows/python-lint.yml @@ -20,5 +20,4 @@ jobs: - name: flake8 Lint uses: py-actions/flake8@v2 with: - ignore: "E203,E211,E221,E225,E231,E241,E251,E261,E266,E501,E701,E704,W503" - exclude: "examples/*,examples/*/**,*/**/__init__.py" + plugins: "flake8-no-print" diff --git a/.github/workflows/server.yml b/.github/workflows/server.yml index 3e68a3c8c..afac89c5b 100644 --- a/.github/workflows/server.yml +++ b/.github/workflows/server.yml @@ -23,7 +23,7 @@ on: - cron: '2 4 * * *' concurrency: - group: ${{ github.workflow }}-${{ github.ref || github.run_id }} + group: ${{ github.workflow }}-${{ github.ref }}-${{ github.head_ref || github.run_id }} cancel-in-progress: true jobs: @@ -41,23 +41,16 @@ jobs: sanitizer: "" fail-fast: false # While -DLLAMA_SANITIZE_THREAD=ON is broken - container: - image: ubuntu:latest - ports: - - 8888 - options: --cpus 4 - steps: - name: Dependencies id: depends run: | - apt-get update - apt-get -y install \ + sudo apt-get update + sudo apt-get -y install \ build-essential \ xxd \ git \ cmake \ - python3-pip \ curl \ wget \ language-pack-en \ @@ -70,6 +63,17 @@ jobs: fetch-depth: 0 ref: ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha || github.head_ref || github.ref_name }} + - name: Python setup + id: setup_python + uses: actions/setup-python@v5 + with: + python-version: '3.11' + + - name: Tests dependencies + id: test_dependencies + run: | + pip install -r examples/server/tests/requirements.txt + - name: Verify server deps id: verify_server_deps run: | @@ -90,20 +94,14 @@ jobs: - name: Build id: cmake_build run: | - mkdir build - cd build - cmake .. \ + cmake -B build \ -DLLAMA_NATIVE=OFF \ -DLLAMA_BUILD_SERVER=ON \ -DLLAMA_CURL=ON \ -DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \ -DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON ; - cmake --build . --config ${{ matrix.build_type }} -j $(nproc) --target server + cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target server - - name: Tests dependencies - id: test_dependencies - run: | - pip install -r examples/server/tests/requirements.txt - name: Tests id: server_integration_tests @@ -129,6 +127,7 @@ jobs: uses: actions/checkout@v4 with: fetch-depth: 0 + ref: ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha || github.head_ref || github.ref_name }} - name: libCURL id: get_libcurl @@ -142,10 +141,8 @@ jobs: - name: Build id: cmake_build run: | - mkdir build - cd build - cmake .. -DLLAMA_CURL=ON -DCURL_LIBRARY="$env:RUNNER_TEMP/libcurl/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:RUNNER_TEMP/libcurl/include" - cmake --build . --config Release -j ${env:NUMBER_OF_PROCESSORS} --target server + cmake -B build -DLLAMA_CURL=ON -DCURL_LIBRARY="$env:RUNNER_TEMP/libcurl/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:RUNNER_TEMP/libcurl/include" + cmake --build build --config Release -j ${env:NUMBER_OF_PROCESSORS} --target server - name: Python setup id: setup_python diff --git a/.gitignore b/.gitignore index 5c1490084..50ae0973a 100644 --- a/.gitignore +++ b/.gitignore @@ -2,6 +2,7 @@ *.a *.so *.gguf +*.gguf.json *.bin *.exe *.dll @@ -108,3 +109,18 @@ examples/server/*.mjs.hpp poetry.lock poetry.toml nppBackup + +# Test binaries +/tests/test-grammar-parser +/tests/test-llama-grammar +/tests/test-double-float +/tests/test-grad0 +/tests/test-opt +/tests/test-quantize-fns +/tests/test-quantize-perf +/tests/test-sampling +/tests/test-tokenizer-0 +/tests/test-tokenizer-1-spm +/tests/test-tokenizer-1-bpe +/tests/test-rope +/tests/test-backend-ops diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index 65796fe2e..91d791628 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -3,13 +3,14 @@ exclude: prompts/.*.txt repos: - repo: https://github.com/pre-commit/pre-commit-hooks - rev: v3.2.0 + rev: v4.6.0 hooks: - id: trailing-whitespace - id: end-of-file-fixer - id: check-yaml - id: check-added-large-files - repo: https://github.com/PyCQA/flake8 - rev: 6.0.0 + rev: 7.0.0 hooks: - id: flake8 + additional_dependencies: [flake8-no-print] diff --git a/CMakeLists.txt b/CMakeLists.txt index 58a1805ba..0e22ee230 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -43,11 +43,7 @@ else() set(LLAMA_METAL_DEFAULT OFF) endif() -if (CMAKE_SYSTEM_NAME MATCHES "ANDROID") - set(LLAMA_LLAMAFILE_DEFAULT OFF) -else() - set(LLAMA_LLAMAFILE_DEFAULT ON) -endif() +set(LLAMA_LLAMAFILE_DEFAULT ON) # general option(BUILD_SHARED_LIBS "build shared libraries" OFF) @@ -107,6 +103,8 @@ set(LLAMA_CUDA_KQUANTS_ITER "2" CACHE STRING "llama: iters./thread per block for set(LLAMA_CUDA_PEER_MAX_BATCH_SIZE "128" CACHE STRING "llama: max. batch size for using peer access") option(LLAMA_CUDA_NO_PEER_COPY "llama: do not use peer to peer copies" OFF) +option(LLAMA_CUDA_NO_VMM "llama: do not try to use CUDA VMM" OFF) + option(LLAMA_CURL "llama: use libcurl to download model from an URL" OFF) option(LLAMA_HIPBLAS "llama: use hipBLAS" OFF) option(LLAMA_HIP_UMA "llama: use HIP unified memory architecture" OFF) @@ -413,6 +411,9 @@ if (LLAMA_CUDA) if (LLAMA_CUDA_FORCE_MMQ) add_compile_definitions(GGML_CUDA_FORCE_MMQ) endif() + if (LLAMA_CUDA_NO_VMM) + add_compile_definitions(GGML_CUDA_NO_VMM) + endif() add_compile_definitions(GGML_CUDA_DMMV_X=${LLAMA_CUDA_DMMV_X}) add_compile_definitions(GGML_CUDA_MMV_Y=${LLAMA_CUDA_MMV_Y}) if (DEFINED LLAMA_CUDA_DMMV_Y) @@ -438,7 +439,11 @@ if (LLAMA_CUDA) set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} CUDA::cudart CUDA::cublas CUDA::cublasLt) endif() - set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} CUDA::cuda_driver) + if (LLAMA_CUDA_NO_VMM) + # No VMM requested, no need to link directly with the cuda driver lib (libcuda.so) + else() + set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} CUDA::cuda_driver) # required by cuDeviceGetAttribute(), cuMemGetAllocationGranularity(...), ... + endif() if (NOT DEFINED CMAKE_CUDA_ARCHITECTURES) # 52 == lowest CUDA 12 standard diff --git a/Makefile b/Makefile index 24acb8013..c568dd008 100644 --- a/Makefile +++ b/Makefile @@ -6,11 +6,23 @@ BUILD_TARGETS = \ # Binaries only useful for tests TEST_TARGETS = \ - tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt \ - tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0-llama \ - tests/test-tokenizer-0-falcon tests/test-tokenizer-1-llama tests/test-tokenizer-1-bpe tests/test-rope \ - tests/test-backend-ops tests/test-model-load-cancel tests/test-autorelease \ - tests/test-json-schema-to-grammar tests/test-grammar-integration + tests/test-autorelease \ + tests/test-backend-ops \ + tests/test-double-float \ + tests/test-grad0 \ + tests/test-grammar-integration \ + tests/test-grammar-parser \ + tests/test-json-schema-to-grammar \ + tests/test-llama-grammar \ + tests/test-model-load-cancel \ + tests/test-opt \ + tests/test-quantize-fns \ + tests/test-quantize-perf \ + tests/test-rope \ + tests/test-sampling \ + tests/test-tokenizer-0 \ + tests/test-tokenizer-1-bpe \ + tests/test-tokenizer-1-spm # Code coverage output files COV_TARGETS = *.gcno tests/*.gcno *.gcda tests/*.gcda *.gcov tests/*.gcov lcov-report gcovr-report @@ -27,6 +39,17 @@ ifndef UNAME_M UNAME_M := $(shell uname -m) endif +# In GNU make default CXX is g++ instead of c++. Let's fix that so that users +# of non-gcc compilers don't have to provide g++ alias or wrapper. +DEFCC := cc +DEFCXX := c++ +ifeq ($(origin CC),default) +CC := $(DEFCC) +endif +ifeq ($(origin CXX),default) +CXX := $(DEFCXX) +endif + # Mac OS + Arm can report x86_64 # ref: https://github.com/ggerganov/whisper.cpp/issues/66#issuecomment-1282546789 ifeq ($(UNAME_S),Darwin) @@ -49,11 +72,16 @@ default: $(BUILD_TARGETS) test: $(TEST_TARGETS) @failures=0; \ for test_target in $(TEST_TARGETS); do \ - if [ "$$test_target" = "tests/test-tokenizer-0-llama" ]; then \ - ./$$test_target $(CURDIR)/models/ggml-vocab-llama.gguf; \ - elif [ "$$test_target" = "tests/test-tokenizer-0-falcon" ]; then \ + if [ "$$test_target" = "tests/test-tokenizer-0" ]; then \ + ./$$test_target $(CURDIR)/models/ggml-vocab-llama-spm.gguf; \ + ./$$test_target $(CURDIR)/models/ggml-vocab-llama-bpe.gguf; \ + ./$$test_target $(CURDIR)/models/ggml-vocab-phi-3.gguf; \ ./$$test_target $(CURDIR)/models/ggml-vocab-falcon.gguf; \ - elif [ "$$test_target" = "tests/test-tokenizer-1-llama" ]; then \ + ./$$test_target $(CURDIR)/models/ggml-vocab-bert-bge.gguf; \ + ./$$test_target $(CURDIR)/models/ggml-vocab-starcoder.gguf; \ + ./$$test_target $(CURDIR)/models/ggml-vocab-gpt-2.gguf; \ + ./$$test_target $(CURDIR)/models/ggml-vocab-refact.gguf; \ + elif [ "$$test_target" = "tests/test-tokenizer-1-spm" ]; then \ continue; \ elif [ "$$test_target" = "tests/test-tokenizer-1-bpe" ]; then \ continue; \ @@ -768,7 +796,7 @@ batched-bench: examples/batched-bench/batched-bench.cpp build-info.o ggml. $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) -quantize: examples/quantize/quantize.cpp build-info.o ggml.o llama.o $(OBJS) +quantize: examples/quantize/quantize.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) @@ -971,11 +999,7 @@ tests/test-sampling: tests/test-sampling.cpp ggml.o llama.o $(OBJS) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) -tests/test-tokenizer-0-falcon: tests/test-tokenizer-0-falcon.cpp ggml.o llama.o $(COMMON_DEPS) console.o $(OBJS) - $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) - $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) - -tests/test-tokenizer-0-llama: tests/test-tokenizer-0-llama.cpp ggml.o llama.o $(COMMON_DEPS) console.o $(OBJS) +tests/test-tokenizer-0: tests/test-tokenizer-0.cpp ggml.o llama.o $(COMMON_DEPS) console.o $(OBJS) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) @@ -983,7 +1007,7 @@ tests/test-tokenizer-1-bpe: tests/test-tokenizer-1-bpe.cpp ggml.o llama.o $(COMM $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) -tests/test-tokenizer-1-llama: tests/test-tokenizer-1-llama.cpp ggml.o llama.o $(COMMON_DEPS) console.o $(OBJS) +tests/test-tokenizer-1-spm: tests/test-tokenizer-1-spm.cpp ggml.o llama.o $(COMMON_DEPS) console.o $(OBJS) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) diff --git a/README-sycl.md b/README-sycl.md index dc98c7b3e..cfa248a95 100644 --- a/README-sycl.md +++ b/README-sycl.md @@ -185,9 +185,8 @@ Upon a successful installation, SYCL is enabled for the available intel devices, ```sh git clone https://github.com/oneapi-src/oneMKL cd oneMKL -mkdir -p buildWithCublas && cd buildWithCublas -cmake ../ -DCMAKE_CXX_COMPILER=icpx -DCMAKE_C_COMPILER=icx -DENABLE_MKLGPU_BACKEND=OFF -DENABLE_MKLCPU_BACKEND=OFF -DENABLE_CUBLAS_BACKEND=ON -DTARGET_DOMAINS=blas -make +cmake -B buildWithCublas -DCMAKE_CXX_COMPILER=icpx -DCMAKE_C_COMPILER=icx -DENABLE_MKLGPU_BACKEND=OFF -DENABLE_MKLCPU_BACKEND=OFF -DENABLE_CUBLAS_BACKEND=ON -DTARGET_DOMAINS=blas +cmake --build buildWithCublas --config Release ``` @@ -227,16 +226,15 @@ Similarly, user targeting Nvidia GPUs should expect at least one SYCL-CUDA devic source /opt/intel/oneapi/setvars.sh # Build LLAMA with MKL BLAS acceleration for intel GPU -mkdir -p build && cd build # Option 1: Use FP32 (recommended for better performance in most cases) -cmake .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx +cmake -B build -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx # Option 2: Use FP16 -cmake .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL_F16=ON +cmake -B build -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL_F16=ON -#build all binary -cmake --build . --config Release -j -v +# build all binary +cmake --build build --config Release -j -v ``` #### Nvidia GPU @@ -248,16 +246,15 @@ export CPLUS_INCLUDE_DIR=/path/to/oneMKL/buildWithCublas/include:$CPLUS_INCLUDE_ export CPLUS_INCLUDE_DIR=/path/to/oneMKL/include:$CPLUS_INCLUDE_DIR # Build LLAMA with Nvidia BLAS acceleration through SYCL -mkdir -p build && cd build # Option 1: Use FP32 (recommended for better performance in most cases) -cmake .. -DLLAMA_SYCL=ON -DLLAMA_SYCL_TARGET=NVIDIA -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx +cmake -B build -DLLAMA_SYCL=ON -DLLAMA_SYCL_TARGET=NVIDIA -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx # Option 2: Use FP16 -cmake .. -DLLAMA_SYCL=ON -DLLAMA_SYCL_TARGET=NVIDIA -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL_F16=ON +cmake -B build -DLLAMA_SYCL=ON -DLLAMA_SYCL_TARGET=NVIDIA -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL_F16=ON -#build all binary -cmake --build . --config Release -j -v +# build all binary +cmake --build build --config Release -j -v ``` @@ -412,17 +409,15 @@ b. Download & install mingw-w64 make for Windows provided by w64devkit On the oneAPI command line window, step into the llama.cpp main directory and run the following: ``` -mkdir -p build -cd build @call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64 --force # Option 1: Use FP32 (recommended for better performance in most cases) -cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release +cmake -B build -G "MinGW Makefiles" -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release # Option 2: Or FP16 -cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release -DLLAMA_SYCL_F16=ON +cmake -B build -G "MinGW Makefiles" -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release -DLLAMA_SYCL_F16=ON -make -j +cmake --build build --config Release -j ``` Otherwise, run the `win-build-sycl.bat` wrapper which encapsulates the former instructions: diff --git a/README.md b/README.md index 1d4e9d417..156860470 100644 --- a/README.md +++ b/README.md @@ -20,7 +20,9 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others) ### Hot topics -- **MoE memory layout has been updated - reconvert models for `mmap` support and regenerate `imatrix` https://github.com/ggerganov/llama.cpp/pull/6387** +- **Initial Flash-Attention support: https://github.com/ggerganov/llama.cpp/pull/5021** +- BPE pre-tokenization support has been added: https://github.com/ggerganov/llama.cpp/pull/6920 +- MoE memory layout has been updated - reconvert models for `mmap` support and regenerate `imatrix` https://github.com/ggerganov/llama.cpp/pull/6387 - Model sharding instructions using `gguf-split` https://github.com/ggerganov/llama.cpp/discussions/6404 - Fix major bug in Metal batched inference https://github.com/ggerganov/llama.cpp/pull/6225 - Multi-GPU pipeline parallelism support https://github.com/ggerganov/llama.cpp/pull/6017 @@ -93,6 +95,7 @@ Typically finetunes of the base models below are supported as well. - [X] LLaMA 🦙 - [x] LLaMA 2 🦙🦙 +- [x] LLaMA 3 🦙🦙🦙 - [X] [Mistral 7B](https://huggingface.co/mistralai/Mistral-7B-v0.1) - [x] [Mixtral MoE](https://huggingface.co/models?search=mistral-ai/Mixtral) - [x] [DBRX](https://huggingface.co/databricks/dbrx-instruct) @@ -119,8 +122,9 @@ Typically finetunes of the base models below are supported as well. - [x] [CodeShell](https://github.com/WisdomShell/codeshell) - [x] [Gemma](https://ai.google.dev/gemma) - [x] [Mamba](https://github.com/state-spaces/mamba) +- [x] [Grok-1](https://huggingface.co/keyfan/grok-1-hf) - [x] [Xverse](https://huggingface.co/models?search=xverse) -- [x] [Command-R](https://huggingface.co/CohereForAI/c4ai-command-r-v01) +- [x] [Command-R models](https://huggingface.co/models?search=CohereForAI/c4ai-command-r) - [x] [SEA-LION](https://huggingface.co/models?search=sea-lion) - [x] [GritLM-7B](https://huggingface.co/GritLM/GritLM-7B) + [GritLM-8x7B](https://huggingface.co/GritLM/GritLM-8x7B) - [x] [OLMo](https://allenai.org/olmo) @@ -135,6 +139,7 @@ Typically finetunes of the base models below are supported as well. - [x] [ShareGPT4V](https://huggingface.co/models?search=Lin-Chen/ShareGPT4V) - [x] [MobileVLM 1.7B/3B models](https://huggingface.co/models?search=mobileVLM) - [x] [Yi-VL](https://huggingface.co/models?search=Yi-VL) +- [x] [Mini CPM](https://huggingface.co/models?search=MiniCPM) **HTTP server** @@ -303,6 +308,8 @@ In order to build llama.cpp you have three different options. make ``` + **Note**: for `Debug` builds, run `make LLAMA_DEBUG=1` + - On Windows: 1. Download the latest fortran version of [w64devkit](https://github.com/skeeto/w64devkit/releases). @@ -317,12 +324,26 @@ In order to build llama.cpp you have three different options. - Using `CMake`: ```bash - mkdir build - cd build - cmake .. - cmake --build . --config Release + cmake -B build + cmake --build build --config Release ``` + **Note**: for `Debug` builds, there are two cases: + + - Single-config generators (e.g. default = `Unix Makefiles`; note that they just ignore the `--config` flag): + + ```bash + cmake -B build -DCMAKE_BUILD_TYPE=Debug + cmake --build build + ``` + + - Multi-config generators (`-G` param set to Visual Studio, XCode...): + + ```bash + cmake -B build -G "Xcode" + cmake --build build --config Debug + ``` + - Using `Zig` (version 0.11 or later): Building for optimization levels and CPU features can be accomplished using standard build arguments, for example AVX2, FMA, F16C, @@ -434,10 +455,8 @@ Building the program with BLAS support may lead to some performance improvements - Using `CMake` on Linux: ```bash - mkdir build - cd build - cmake .. -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS - cmake --build . --config Release + cmake -B build -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS + cmake --build build --config Release ``` - #### BLIS @@ -457,11 +476,9 @@ Building the program with BLAS support may lead to some performance improvements - Using manual oneAPI installation: By default, `LLAMA_BLAS_VENDOR` is set to `Generic`, so if you already sourced intel environment script and assign `-DLLAMA_BLAS=ON` in cmake, the mkl version of Blas will automatically been selected. Otherwise please install oneAPI and follow the below steps: ```bash - mkdir build - cd build source /opt/intel/oneapi/setvars.sh # You can skip this step if in oneapi-basekit docker image, only required for manual installation - cmake .. -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=Intel10_64lp -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_NATIVE=ON - cmake --build . --config Release + cmake -B build -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=Intel10_64lp -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_NATIVE=ON + cmake --build build --config Release ``` - Using oneAPI docker image: @@ -482,10 +499,8 @@ Building the program with BLAS support may lead to some performance improvements - Using `CMake`: ```bash - mkdir build - cd build - cmake .. -DLLAMA_CUDA=ON - cmake --build . --config Release + cmake -B build -DLLAMA_CUDA=ON + cmake --build build --config Release ``` The environment variable [`CUDA_VISIBLE_DEVICES`](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#env-vars) can be used to specify which GPU(s) will be used. The following compilation options are also available to tweak performance: @@ -512,8 +527,8 @@ Building the program with BLAS support may lead to some performance improvements - Using `CMake` for Linux (assuming a gfx1030-compatible AMD GPU): ```bash CC=/opt/rocm/llvm/bin/clang CXX=/opt/rocm/llvm/bin/clang++ \ - cmake -H. -Bbuild -DLLAMA_HIPBLAS=ON -DAMDGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \ - && cmake --build build -- -j 16 + cmake -B build -DLLAMA_HIPBLAS=ON -DAMDGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \ + && cmake --build build --config Release -- -j 16 ``` On Linux it is also possible to use unified memory architecture (UMA) to share main memory between the CPU and integrated GPU by setting `-DLLAMA_HIP_UMA=ON"`. However, this hurts performance for non-integrated GPUs (but enables working with integrated GPUs). @@ -559,15 +574,14 @@ Building the program with BLAS support may lead to some performance improvements ```sh git clone --recurse-submodules https://github.com/KhronosGroup/OpenCL-SDK.git - mkdir OpenCL-SDK/build - cd OpenCL-SDK/build - cmake .. -DBUILD_DOCS=OFF \ + cd OpenCL-SDK + cmake -B build -DBUILD_DOCS=OFF \ -DBUILD_EXAMPLES=OFF \ -DBUILD_TESTING=OFF \ -DOPENCL_SDK_BUILD_SAMPLES=OFF \ -DOPENCL_SDK_TEST_SAMPLES=OFF - cmake --build . --config Release - cmake --install . --prefix /some/path + cmake --build build + cmake --install build --prefix /some/path ``` @@ -589,23 +603,23 @@ Building the program with BLAS support may lead to some performance improvements ```cmd set OPENCL_SDK_ROOT="C:/OpenCL-SDK-v2023.04.17-Win-x64" git clone https://github.com/CNugteren/CLBlast.git - mkdir CLBlast\build - cd CLBlast\build - cmake .. -DBUILD_SHARED_LIBS=OFF -DOVERRIDE_MSVC_FLAGS_TO_MT=OFF -DTUNERS=OFF -DOPENCL_ROOT=%OPENCL_SDK_ROOT% -G "Visual Studio 17 2022" -A x64 - cmake --build . --config Release - cmake --install . --prefix C:/CLBlast + cd CLBlast + cmake -B build -DBUILD_SHARED_LIBS=OFF -DOVERRIDE_MSVC_FLAGS_TO_MT=OFF -DTUNERS=OFF -DOPENCL_ROOT=%OPENCL_SDK_ROOT% -G "Visual Studio 17 2022" -A x64 + cmake --build build --config Release + cmake --install build --prefix C:/CLBlast ``` + (note: `--config Release` at build time is the default and only relevant for Visual Studio builds - or multi-config Ninja builds) + -
Unix: ```sh git clone https://github.com/CNugteren/CLBlast.git - mkdir CLBlast/build - cd CLBlast/build - cmake .. -DBUILD_SHARED_LIBS=OFF -DTUNERS=OFF - cmake --build . --config Release - cmake --install . --prefix /some/path + cd CLBlast + cmake -B build -DBUILD_SHARED_LIBS=OFF -DTUNERS=OFF + cmake --build build --config Release + cmake --install build --prefix /some/path ``` Where `/some/path` is where the built library will be installed (default is `/usr/local`). @@ -619,21 +633,17 @@ Building the program with BLAS support may lead to some performance improvements ``` - CMake (Unix): ```sh - mkdir build - cd build - cmake .. -DLLAMA_CLBLAST=ON -DCLBlast_DIR=/some/path - cmake --build . --config Release + cmake -B build -DLLAMA_CLBLAST=ON -DCLBlast_DIR=/some/path + cmake --build build --config Release ``` - CMake (Windows): ```cmd set CL_BLAST_CMAKE_PKG="C:/CLBlast/lib/cmake/CLBlast" git clone https://github.com/ggerganov/llama.cpp cd llama.cpp - mkdir build - cd build - cmake .. -DBUILD_SHARED_LIBS=OFF -DLLAMA_CLBLAST=ON -DCMAKE_PREFIX_PATH=%CL_BLAST_CMAKE_PKG% -G "Visual Studio 17 2022" -A x64 - cmake --build . --config Release - cmake --install . --prefix C:/LlamaCPP + cmake -B build -DBUILD_SHARED_LIBS=OFF -DLLAMA_CLBLAST=ON -DCMAKE_PREFIX_PATH=%CL_BLAST_CMAKE_PKG% -G "Visual Studio 17 2022" -A x64 + cmake --build build --config Release + cmake --install build --prefix C:/LlamaCPP ``` ##### Running Llama with CLBlast @@ -689,10 +699,8 @@ Building the program with BLAS support may lead to some performance improvements Then, build llama.cpp using the cmake command below: ```bash - mkdir -p build - cd build - cmake .. -DLLAMA_VULKAN=1 - cmake --build . --config Release + cmake -B build -DLLAMA_VULKAN=1 + cmake --build build --config Release # Test the output binary (with "-ngl 33" to offload all layers to GPU) ./bin/main -m "PATH_TO_MODEL" -p "Hi you how are you" -n 50 -e -ngl 33 -t 4 @@ -704,6 +712,8 @@ Building the program with BLAS support may lead to some performance improvements To obtain the official LLaMA 2 weights please see the Obtaining and using the Facebook LLaMA 2 model section. There is also a large selection of pre-quantized `gguf` models available on Hugging Face. +Note: `convert.py` does not support LLaMA 3, you can use `convert-hf-to-gguf.py` with LLaMA 3 downloaded from Hugging Face. + ```bash # obtain the official LLaMA model weights and place them in ./models ls ./models @@ -925,17 +935,25 @@ If your issue is with model generation quality, then please at least scan the fo ### Android +#### Build on Android using Termux +[Termux](https://github.com/termux/termux-app#installation) is a method to execute `llama.cpp` on an Android device (no root required). +``` +apt update && apt upgrade -y +apt install git make cmake +``` + +It's recommended to move your model inside the `~/` directory for best performance: +``` +cd storage/downloads +mv model.gguf ~/ +``` + +[Get the code](https://github.com/ggerganov/llama.cpp#get-the-code) & [follow the Linux build instructions](https://github.com/ggerganov/llama.cpp#build) to build `llama.cpp`. + #### Building the Project using Android NDK -You can easily run `llama.cpp` on Android device with [termux](https://termux.dev/). - -First, install the essential packages for termux: -``` -pkg install clang wget git cmake -``` -Second, obtain the [Android NDK](https://developer.android.com/ndk) and then build with CMake: - -You can execute the following commands on your computer to avoid downloading the NDK to your mobile. Of course, you can also do this in Termux. +Obtain the [Android NDK](https://developer.android.com/ndk) and then build with CMake. +Execute the following commands on your computer to avoid downloading the NDK to your mobile. Alternatively, you can also do this in Termux: ``` $ mkdir build-android $ cd build-android @@ -943,7 +961,9 @@ $ export NDK= $ cmake -DCMAKE_TOOLCHAIN_FILE=$NDK/build/cmake/android.toolchain.cmake -DANDROID_ABI=arm64-v8a -DANDROID_PLATFORM=android-23 -DCMAKE_C_FLAGS=-march=armv8.4a+dotprod .. $ make ``` -Install [termux](https://termux.dev/) on your device and run `termux-setup-storage` to get access to your SD card. + +Install [termux](https://github.com/termux/termux-app#installation) on your device and run `termux-setup-storage` to get access to your SD card (if Android 11+ then run the command twice). + Finally, copy these built `llama` binaries and the model file to your device storage. Because the file permissions in the Android sdcard cannot be changed, you can copy the executable files to the `/data/data/com.termux/files/home/bin` path, and then execute the following commands in Termux to add executable permission: (Assumed that you have pushed the built executable files to the /sdcard/llama.cpp/bin path using `adb push`) @@ -965,53 +985,10 @@ $cd /data/data/com.termux/files/home/bin $./main -m ../model/llama-2-7b-chat.Q4_K_M.gguf -n 128 -cml ``` -Here is a demo of an interactive session running on Pixel 5 phone: +Here's a demo of an interactive session running on Pixel 5 phone: https://user-images.githubusercontent.com/271616/225014776-1d567049-ad71-4ef2-b050-55b0b3b9274c.mp4 -#### Building the Project using Termux (F-Droid) -Termux from F-Droid offers an alternative route to execute the project on an Android device. This method empowers you to construct the project right from within the terminal, negating the requirement for a rooted device or SD Card. - -Outlined below are the directives for installing the project using OpenBLAS and CLBlast. This combination is specifically designed to deliver peak performance on recent devices that feature a GPU. - -If you opt to utilize OpenBLAS, you'll need to install the corresponding package. -``` -apt install libopenblas -``` - -Subsequently, if you decide to incorporate CLBlast, you'll first need to install the requisite OpenCL packages: -``` -apt install ocl-icd opencl-headers opencl-clhpp clinfo -``` - -In order to compile CLBlast, you'll need to first clone the respective Git repository, which can be found at this URL: https://github.com/CNugteren/CLBlast. Alongside this, clone this repository into your home directory. Once this is done, navigate to the CLBlast folder and execute the commands detailed below: -``` -cmake . -make -cp libclblast.so* $PREFIX/lib -cp ./include/clblast.h ../llama.cpp -``` - -Following the previous steps, navigate to the LlamaCpp directory. To compile it with OpenBLAS and CLBlast, execute the command provided below: -``` -cp /data/data/com.termux/files/usr/include/openblas/cblas.h . -cp /data/data/com.termux/files/usr/include/openblas/openblas_config.h . -make LLAMA_CLBLAST=1 //(sometimes you need to run this command twice) -``` - -Upon completion of the aforementioned steps, you will have successfully compiled the project. To run it using CLBlast, a slight adjustment is required: a command must be issued to direct the operations towards your device's physical GPU, rather than the virtual one. The necessary command is detailed below: -``` -GGML_OPENCL_PLATFORM=0 -GGML_OPENCL_DEVICE=0 -export LD_LIBRARY_PATH=/vendor/lib64:$LD_LIBRARY_PATH -``` - -(Note: some Android devices, like the Zenfone 8, need the following command instead - "export LD_LIBRARY_PATH=/system/vendor/lib64:$LD_LIBRARY_PATH". Source: https://www.reddit.com/r/termux/comments/kc3ynp/opencl_working_in_termux_more_in_comments/ ) - -For easy and swift re-execution, consider documenting this final part in a .sh script file. This will enable you to rerun the process with minimal hassle. - -Place your desired model into the `~/llama.cpp/models/` directory and execute the `./main (...)` script. - ### Docker #### Prerequisites @@ -1117,7 +1094,9 @@ docker run --gpus all -v /path/to/models:/models local/llama.cpp:server-cuda -m - Clean-up any trailing whitespaces, use 4 spaces for indentation, brackets on the same line, `void * ptr`, `int & a` - See [good first issues](https://github.com/ggerganov/llama.cpp/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22) for tasks suitable for first contributions - Tensors store data in row-major order. We refer to dimension 0 as columns, 1 as rows, 2 as matrices -- Matrix multiplication is unconventional: [`z = ggml_mul_mat(ctx, x, y)`](https://github.com/ggerganov/llama.cpp/blob/880e352277fc017df4d5794f0c21c44e1eae2b84/ggml.h#L1058-L1064) means `zT = x @ yT` +- Matrix multiplication is unconventional: [`C = ggml_mul_mat(ctx, A, B)`](https://github.com/ggerganov/llama.cpp/blob/880e352277fc017df4d5794f0c21c44e1eae2b84/ggml.h#L1058-L1064) means $C^T = A B^T \Leftrightarrow C = B A^T.$ + +![matmul](media/matmul.png) ### Docs diff --git a/ci/run.sh b/ci/run.sh index 085dfd42f..e67c1a5ff 100755 --- a/ci/run.sh +++ b/ci/run.sh @@ -161,6 +161,7 @@ function gg_run_test_scripts_debug { set -e (cd ./examples/gguf-split && time bash tests.sh "$SRC/build-ci-debug/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log + (cd ./examples/quantize && time bash tests.sh "$SRC/build-ci-debug/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log set +e } @@ -184,6 +185,7 @@ function gg_run_test_scripts_release { set -e (cd ./examples/gguf-split && time bash tests.sh "$SRC/build-ci-release/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log + (cd ./examples/quantize && time bash tests.sh "$SRC/build-ci-release/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log set +e } @@ -333,7 +335,8 @@ function gg_run_open_llama_3b_v2 { (time ./bin/imatrix --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log - (time ./bin/save-load-state --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log + (time ./bin/save-load-state --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log + (time ./bin/save-load-state -fa --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log function check_ppl { qnt="$1" @@ -514,7 +517,10 @@ function gg_run_open_llama_7b_v2 { (time ./bin/imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log - (time ./bin/save-load-state --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log + (time ./bin/save-load-state -ngl 10 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log + (time ./bin/save-load-state -fa -ngl 10 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log + (time ./bin/save-load-state -ngl 99 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log + (time ./bin/save-load-state -fa -ngl 99 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log function check_ppl { qnt="$1" @@ -688,8 +694,10 @@ test $ret -eq 0 && gg_run ctest_release if [ -z ${GG_BUILD_LOW_PERF} ]; then test $ret -eq 0 && gg_run embd_bge_small - test $ret -eq 0 && gg_run test_scripts_debug - test $ret -eq 0 && gg_run test_scripts_release + if [ -z ${GG_BUILD_CLOUD} ] || [ ${GG_BUILD_EXTRA_TESTS_0} ]; then + test $ret -eq 0 && gg_run test_scripts_debug + test $ret -eq 0 && gg_run test_scripts_release + fi if [ -z ${GG_BUILD_VRAM_GB} ] || [ ${GG_BUILD_VRAM_GB} -ge 8 ]; then if [ -z ${GG_BUILD_CUDA} ]; then diff --git a/common/common.cpp b/common/common.cpp index 06f252ea6..0535508ba 100644 --- a/common/common.cpp +++ b/common/common.cpp @@ -1,4 +1,6 @@ #include "common.h" +// Change JSON_ASSERT from assert() to GGML_ASSERT: +#define JSON_ASSERT GGML_ASSERT #include "json.hpp" #include "json-schema-to-grammar.h" #include "llama.h" @@ -67,7 +69,6 @@ #include #endif #define LLAMA_CURL_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083 -#define LLAMA_CURL_MAX_HEADER_LENGTH 256 #endif // LLAMA_USE_CURL using json = nlohmann::ordered_json; @@ -77,7 +78,7 @@ int32_t get_num_physical_cores() { // enumerate the set of thread siblings, num entries is num cores std::unordered_set siblings; for (uint32_t cpu=0; cpu < UINT32_MAX; ++cpu) { - std::ifstream thread_siblings("/sys/devices/system/cpu" + std::ifstream thread_siblings("/sys/devices/system/cpu/cpu" + std::to_string(cpu) + "/topology/thread_siblings"); if (!thread_siblings.is_open()) { break; // no more cpus @@ -234,15 +235,63 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { return result; } +bool parse_kv_override(const char * data, std::vector & overrides) { + const char * sep = strchr(data, '='); + if (sep == nullptr || sep - data >= 128) { + fprintf(stderr, "%s: malformed KV override '%s'\n", __func__, data); + return false; + } + llama_model_kv_override kvo; + std::strncpy(kvo.key, data, sep - data); + kvo.key[sep - data] = 0; + sep++; + if (strncmp(sep, "int:", 4) == 0) { + sep += 4; + kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT; + kvo.val_i64 = std::atol(sep); + } else if (strncmp(sep, "float:", 6) == 0) { + sep += 6; + kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT; + kvo.val_f64 = std::atof(sep); + } else if (strncmp(sep, "bool:", 5) == 0) { + sep += 5; + kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL; + if (std::strcmp(sep, "true") == 0) { + kvo.val_bool = true; + } else if (std::strcmp(sep, "false") == 0) { + kvo.val_bool = false; + } else { + fprintf(stderr, "%s: invalid boolean value for KV override '%s'\n", __func__, data); + return false; + } + } else if (strncmp(sep, "str:", 4) == 0) { + sep += 4; + kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR; + if (strlen(sep) > 127) { + fprintf(stderr, "%s: malformed KV override '%s', value cannot exceed 127 chars\n", __func__, data); + return false; + } + strncpy(kvo.val_str, sep, 127); + kvo.val_str[127] = '\0'; + } else { + fprintf(stderr, "%s: invalid type for KV override '%s'\n", __func__, data); + return false; + } + overrides.emplace_back(std::move(kvo)); + return true; +} + bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param) { - llama_sampling_params& sparams = params.sparams; + llama_sampling_params & sparams = params.sparams; if (arg == "-s" || arg == "--seed") { if (++i >= argc) { invalid_param = true; return true; } + // This is temporary, in the future the samplign state will be moved fully to llama_sampling_context. params.seed = std::stoul(argv[i]); + sparams.seed = std::stoul(argv[i]); return true; } if (arg == "-t" || arg == "--threads") { @@ -845,7 +894,7 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa invalid_param = true; return true; } - params.image = argv[i]; + params.image.emplace_back(argv[i]); return true; } if (arg == "-i" || arg == "--interactive") { @@ -864,6 +913,10 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa params.instruct = true; return true; } + if (arg == "-cnv" || arg == "--conversation") { + params.conversation = true; + return true; + } if (arg == "-cml" || arg == "--chatml") { params.chatml = true; return true; @@ -900,6 +953,10 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa params.cont_batching = true; return true; } + if (arg == "-fa" || arg == "--flash-attn") { + params.flash_attn = true; + return true; + } if (arg == "--color") { params.use_color = true; return true; @@ -1087,6 +1144,10 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa params.n_print = std::stoi(argv[i]); return true; } + if (arg == "--check-tensors") { + params.check_tensors = true; + return true; + } if (arg == "--ppl-output-type") { if (++i >= argc) { invalid_param = true; @@ -1238,47 +1299,11 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa invalid_param = true; return true; } - char* sep = strchr(argv[i], '='); - if (sep == nullptr || sep - argv[i] >= 128) { - fprintf(stderr, "error: Malformed KV override: %s\n", argv[i]); - invalid_param = true; - return true; - } - struct llama_model_kv_override kvo; - std::strncpy(kvo.key, argv[i], sep - argv[i]); - kvo.key[sep - argv[i]] = 0; - sep++; - if (strncmp(sep, "int:", 4) == 0) { - sep += 4; - kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT; - kvo.int_value = std::atol(sep); - } - else if (strncmp(sep, "float:", 6) == 0) { - sep += 6; - kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT; - kvo.float_value = std::atof(sep); - } - else if (strncmp(sep, "bool:", 5) == 0) { - sep += 5; - kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL; - if (std::strcmp(sep, "true") == 0) { - kvo.bool_value = true; - } - else if (std::strcmp(sep, "false") == 0) { - kvo.bool_value = false; - } - else { - fprintf(stderr, "error: Invalid boolean value for KV override: %s\n", argv[i]); - invalid_param = true; - return true; - } - } - else { + if (!parse_kv_override(argv[i], params.kv_overrides)) { fprintf(stderr, "error: Invalid type for KV override: %s\n", argv[i]); invalid_param = true; return true; } - params.kv_overrides.push_back(kvo); return true; } #ifndef LOG_DISABLE_LOGS @@ -1308,6 +1333,29 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa return false; } +void gpt_params_handle_model_default(gpt_params & params) { + if (!params.hf_repo.empty()) { + // short-hand to avoid specifying --hf-file -> default it to --model + if (params.hf_file.empty()) { + if (params.model.empty()) { + throw std::invalid_argument("error: --hf-repo requires either --hf-file or --model\n"); + } + params.hf_file = params.model; + } else if (params.model.empty()) { + params.model = "models/" + string_split(params.hf_file, '/').back(); + } + } else if (!params.model_url.empty()) { + if (params.model.empty()) { + auto f = string_split(params.model_url, '#').front(); + f = string_split(f, '?').front(); + f = string_split(f, '/').back(); + params.model = "models/" + f; + } + } else if (params.model.empty()) { + params.model = DEFAULT_MODEL_PATH; + } +} + bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) { bool invalid_param = false; std::string arg; @@ -1336,10 +1384,7 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) { throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n"); } - // short-hand to avoid specifying --hf-file -> default it to --model - if (!params.hf_repo.empty() && params.hf_file.empty()) { - params.hf_file = params.model; - } + gpt_params_handle_model_default(params); if (params.escape) { process_escapes(params.prompt); @@ -1378,6 +1423,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { printf(" --version show version and build info\n"); printf(" -i, --interactive run in interactive mode\n"); printf(" --interactive-first run in interactive mode and wait for input right away\n"); + printf(" -cnv, --conversation run in conversation mode (does not print special tokens and suffix/prefix)\n"); printf(" -ins, --instruct run in instruction mode (use with Alpaca models)\n"); printf(" -cml, --chatml run in chatml mode (use with ChatML-compatible models)\n"); printf(" --multiline-input allows you to write or paste multiple lines without ending each in '\\'\n"); @@ -1478,8 +1524,9 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { printf(" -ns N, --sequences N number of sequences to decode (default: %d)\n", params.n_sequences); printf(" -ps N, --p-split N speculative decoding split probability (default: %.1f)\n", (double)params.p_split); printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n"); + printf(" -fa, --flash-attn enable Flash Attention (default: %s)\n", params.flash_attn ? "enabled" : "disabled"); printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA. see examples/llava/README.md\n"); - printf(" --image IMAGE_FILE path to an image file. use with multimodal models\n"); + printf(" --image IMAGE_FILE path to an image file. use with multimodal models. Specify multiple times for batching\n"); if (llama_supports_mlock()) { printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n"); } @@ -1532,7 +1579,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { printf(" --control-vector-layer-range START END\n"); printf(" layer range to apply the control vector(s) to, start and end inclusive\n"); printf(" -m FNAME, --model FNAME\n"); - printf(" model path (default: %s)\n", params.model.c_str()); + printf(" model path (default: models/$filename with filename from --hf-file or --model-url if set, otherwise %s)\n", DEFAULT_MODEL_PATH); printf(" -md FNAME, --model-draft FNAME\n"); printf(" draft model for speculative decoding (default: unused)\n"); printf(" -mu MODEL_URL, --model-url MODEL_URL\n"); @@ -1549,9 +1596,10 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { printf(" path to dynamic lookup cache to use for lookup decoding (updated by generation)\n"); printf(" --override-kv KEY=TYPE:VALUE\n"); printf(" advanced option to override model metadata by key. may be specified multiple times.\n"); - printf(" types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n"); + printf(" types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n"); printf(" -ptc N, --print-token-count N\n"); printf(" print token count every N tokens (default: %d)\n", params.n_print); + printf(" --check-tensors check model tensor data for invalid values\n"); printf("\n"); #ifndef LOG_DISABLE_LOGS log_print_usage(); @@ -1676,6 +1724,18 @@ std::vector string_split(std::string input, char separator) { return parts; } +std::string string_strip(const std::string & str) { + size_t start = 0; + size_t end = str.size(); + while (start < end && std::isspace(str[start])) { + start++; + } + while (end > start && std::isspace(str[end - 1])) { + end--; + } + return str.substr(start, end - start); +} + std::vector sampler_types_from_names(const std::vector & names, bool allow_alt_names) { std::unordered_map sampler_canonical_name_map { {"top_k", llama_sampler_type::TOP_K}, @@ -1772,6 +1832,7 @@ struct llama_model_params llama_model_params_from_gpt_params(const gpt_params & mparams.tensor_split = params.tensor_split; mparams.use_mmap = params.use_mmap; mparams.use_mlock = params.use_mlock; + mparams.check_tensors = params.check_tensors; if (params.kv_overrides.empty()) { mparams.kv_overrides = NULL; } else { @@ -1836,6 +1897,7 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param cparams.cb_eval = params.cb_eval; cparams.cb_eval_user_data = params.cb_eval_user_data; cparams.offload_kqv = !params.no_kv_offload; + cparams.flash_attn = params.flash_attn; cparams.type_k = kv_cache_type_from_str(params.cache_type_k); cparams.type_v = kv_cache_type_from_str(params.cache_type_v); @@ -1866,59 +1928,75 @@ void llama_batch_add( #ifdef LLAMA_USE_CURL -static bool llama_download_file(CURL * curl, const char * url, const char * path) { +static bool starts_with(const std::string & str, const std::string & prefix) { + // While we wait for C++20's std::string::starts_with... + return str.rfind(prefix, 0) == 0; +} + +static bool llama_download_file(const std::string & url, const std::string & path) { + + // Initialize libcurl + std::unique_ptr curl(curl_easy_init(), &curl_easy_cleanup); + if (!curl) { + fprintf(stderr, "%s: error initializing libcurl\n", __func__); + return false; + } + bool force_download = false; // Set the URL, allow to follow http redirection - curl_easy_setopt(curl, CURLOPT_URL, url); - curl_easy_setopt(curl, CURLOPT_FOLLOWLOCATION, 1L); + curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str()); + curl_easy_setopt(curl.get(), CURLOPT_FOLLOWLOCATION, 1L); #if defined(_WIN32) // CURLSSLOPT_NATIVE_CA tells libcurl to use standard certificate store of // operating system. Currently implemented under MS-Windows. - curl_easy_setopt(curl, CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA); + curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA); #endif // Check if the file already exists locally struct stat model_file_info; - auto file_exists = (stat(path, &model_file_info) == 0); + auto file_exists = (stat(path.c_str(), &model_file_info) == 0); - // If the file exists, check for ${path_model}.etag or ${path_model}.lastModified files - char etag[LLAMA_CURL_MAX_HEADER_LENGTH] = {0}; - char etag_path[PATH_MAX] = {0}; - snprintf(etag_path, sizeof(etag_path), "%s.etag", path); - - char last_modified[LLAMA_CURL_MAX_HEADER_LENGTH] = {0}; - char last_modified_path[PATH_MAX] = {0}; - snprintf(last_modified_path, sizeof(last_modified_path), "%s.lastModified", path); + // If the file exists, check its JSON metadata companion file. + std::string metadata_path = path + ".json"; + nlohmann::json metadata; + std::string etag; + std::string last_modified; if (file_exists) { - auto * f_etag = fopen(etag_path, "r"); - if (f_etag) { - if (!fgets(etag, sizeof(etag), f_etag)) { - fprintf(stderr, "%s: unable to read file %s\n", __func__, etag_path); - } else { - fprintf(stderr, "%s: previous file found %s: %s\n", __func__, etag_path, etag); + // Try and read the JSON metadata file (note: stream autoclosed upon exiting this block). + std::ifstream metadata_in(metadata_path); + if (metadata_in.good()) { + try { + metadata_in >> metadata; + fprintf(stderr, "%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(), metadata.dump().c_str()); + if (metadata.contains("url") && metadata.at("url").is_string()) { + auto previous_url = metadata.at("url").get(); + if (previous_url != url) { + fprintf(stderr, "%s: Model URL mismatch: %s != %s\n", __func__, url.c_str(), previous_url.c_str()); + return false; + } + } + if (metadata.contains("etag") && metadata.at("etag").is_string()) { + etag = metadata.at("etag"); + } + if (metadata.contains("lastModified") && metadata.at("lastModified").is_string()) { + last_modified = metadata.at("lastModified"); + } + } catch (const nlohmann::json::exception & e) { + fprintf(stderr, "%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what()); + return false; } - fclose(f_etag); - } - - auto * f_last_modified = fopen(last_modified_path, "r"); - if (f_last_modified) { - if (!fgets(last_modified, sizeof(last_modified), f_last_modified)) { - fprintf(stderr, "%s: unable to read file %s\n", __func__, last_modified_path); - } else { - fprintf(stderr, "%s: previous file found %s: %s\n", __func__, last_modified_path, - last_modified); - } - fclose(f_last_modified); } + } else { + fprintf(stderr, "%s: no previous model file found %s\n", __func__, path.c_str()); } // Send a HEAD request to retrieve the etag and last-modified headers struct llama_load_model_from_url_headers { - char etag[LLAMA_CURL_MAX_HEADER_LENGTH] = {0}; - char last_modified[LLAMA_CURL_MAX_HEADER_LENGTH] = {0}; + std::string etag; + std::string last_modified; }; llama_load_model_from_url_headers headers; { @@ -1926,38 +2004,37 @@ static bool llama_download_file(CURL * curl, const char * url, const char * path auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t { llama_load_model_from_url_headers *headers = (llama_load_model_from_url_headers *) userdata; - // Convert header field name to lowercase - for (size_t i = 0; i < n_items && buffer[i] != ':'; ++i) { - buffer[i] = tolower(buffer[i]); - } + static std::regex header_regex("([^:]+): (.*)\r\n"); + static std::regex etag_regex("ETag", std::regex_constants::icase); + static std::regex last_modified_regex("Last-Modified", std::regex_constants::icase); - const char * etag_prefix = "etag: "; - if (strncmp(buffer, etag_prefix, strlen(etag_prefix)) == 0) { - strncpy(headers->etag, buffer + strlen(etag_prefix), n_items - strlen(etag_prefix) - 2); // Remove CRLF - } - - const char * last_modified_prefix = "last-modified: "; - if (strncmp(buffer, last_modified_prefix, strlen(last_modified_prefix)) == 0) { - strncpy(headers->last_modified, buffer + strlen(last_modified_prefix), - n_items - strlen(last_modified_prefix) - 2); // Remove CRLF + std::string header(buffer, n_items); + std::smatch match; + if (std::regex_match(header, match, header_regex)) { + const std::string & key = match[1]; + const std::string & value = match[2]; + if (std::regex_match(key, match, etag_regex)) { + headers->etag = value; + } else if (std::regex_match(key, match, last_modified_regex)) { + headers->last_modified = value; + } } return n_items; }; - curl_easy_setopt(curl, CURLOPT_NOBODY, 1L); // will trigger the HEAD verb - curl_easy_setopt(curl, CURLOPT_NOPROGRESS, 1L); // hide head request progress - curl_easy_setopt(curl, CURLOPT_HEADERFUNCTION, static_cast(header_callback)); - curl_easy_setopt(curl, CURLOPT_HEADERDATA, &headers); + curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 1L); // will trigger the HEAD verb + curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L); // hide head request progress + curl_easy_setopt(curl.get(), CURLOPT_HEADERFUNCTION, static_cast(header_callback)); + curl_easy_setopt(curl.get(), CURLOPT_HEADERDATA, &headers); - CURLcode res = curl_easy_perform(curl); + CURLcode res = curl_easy_perform(curl.get()); if (res != CURLE_OK) { - curl_easy_cleanup(curl); fprintf(stderr, "%s: curl_easy_perform() failed: %s\n", __func__, curl_easy_strerror(res)); return false; } long http_code = 0; - curl_easy_getinfo(curl, CURLINFO_RESPONSE_CODE, &http_code); + curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &http_code); if (http_code != 200) { // HEAD not supported, we don't know if the file has changed // force trigger downloading @@ -1966,28 +2043,30 @@ static bool llama_download_file(CURL * curl, const char * url, const char * path } } - // If the ETag or the Last-Modified headers are different: trigger a new download - bool should_download = !file_exists - || force_download - || (strlen(headers.etag) > 0 && strcmp(etag, headers.etag) != 0) - || (strlen(headers.last_modified) > 0 && strcmp(last_modified, headers.last_modified) != 0); + bool should_download = !file_exists || force_download; + if (!should_download) { + if (!etag.empty() && etag != headers.etag) { + fprintf(stderr, "%s: ETag header is different (%s != %s): triggering a new download\n", __func__, etag.c_str(), headers.etag.c_str()); + should_download = true; + } else if (!last_modified.empty() && last_modified != headers.last_modified) { + fprintf(stderr, "%s: Last-Modified header is different (%s != %s): triggering a new download\n", __func__, last_modified.c_str(), headers.last_modified.c_str()); + should_download = true; + } + } if (should_download) { - char path_temporary[PATH_MAX] = {0}; - snprintf(path_temporary, sizeof(path_temporary), "%s.downloadInProgress", path); + std::string path_temporary = path + ".downloadInProgress"; if (file_exists) { - fprintf(stderr, "%s: deleting previous downloaded file: %s\n", __func__, path); - if (remove(path) != 0) { - curl_easy_cleanup(curl); - fprintf(stderr, "%s: unable to delete file: %s\n", __func__, path); + fprintf(stderr, "%s: deleting previous downloaded file: %s\n", __func__, path.c_str()); + if (remove(path.c_str()) != 0) { + fprintf(stderr, "%s: unable to delete file: %s\n", __func__, path.c_str()); return false; } } // Set the output file - auto * outfile = fopen(path_temporary, "wb"); + std::unique_ptr outfile(fopen(path_temporary.c_str(), "wb"), fclose); if (!outfile) { - curl_easy_cleanup(curl); - fprintf(stderr, "%s: error opening local file for writing: %s\n", __func__, path); + fprintf(stderr, "%s: error opening local file for writing: %s\n", __func__, path.c_str()); return false; } @@ -1995,12 +2074,12 @@ static bool llama_download_file(CURL * curl, const char * url, const char * path auto write_callback = [](void * data, size_t size, size_t nmemb, void * fd) -> size_t { return fwrite(data, size, nmemb, (FILE *)fd); }; - curl_easy_setopt(curl, CURLOPT_NOBODY, 0L); - curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, static_cast(write_callback)); - curl_easy_setopt(curl, CURLOPT_WRITEDATA, outfile); + curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 0L); + curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast(write_callback)); + curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, outfile.get()); // display download progress - curl_easy_setopt(curl, CURLOPT_NOPROGRESS, 0L); + curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 0L); // helper function to hide password in URL auto llama_download_hide_password_in_url = [](const std::string & url) -> std::string { @@ -2019,51 +2098,34 @@ static bool llama_download_file(CURL * curl, const char * url, const char * path // start the download fprintf(stderr, "%s: downloading from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__, - llama_download_hide_password_in_url(url).c_str(), path, headers.etag, headers.last_modified); - auto res = curl_easy_perform(curl); + llama_download_hide_password_in_url(url).c_str(), path.c_str(), headers.etag.c_str(), headers.last_modified.c_str()); + auto res = curl_easy_perform(curl.get()); if (res != CURLE_OK) { - fclose(outfile); - curl_easy_cleanup(curl); fprintf(stderr, "%s: curl_easy_perform() failed: %s\n", __func__, curl_easy_strerror(res)); return false; } long http_code = 0; - curl_easy_getinfo (curl, CURLINFO_RESPONSE_CODE, &http_code); + curl_easy_getinfo (curl.get(), CURLINFO_RESPONSE_CODE, &http_code); if (http_code < 200 || http_code >= 400) { - fclose(outfile); - curl_easy_cleanup(curl); fprintf(stderr, "%s: invalid http status code received: %ld\n", __func__, http_code); return false; } - // Clean up - fclose(outfile); + // Causes file to be closed explicitly here before we rename it. + outfile.reset(); - // Write the new ETag to the .etag file - if (strlen(headers.etag) > 0) { - auto * etag_file = fopen(etag_path, "w"); - if (etag_file) { - fputs(headers.etag, etag_file); - fclose(etag_file); - fprintf(stderr, "%s: file etag saved %s: %s\n", __func__, etag_path, headers.etag); - } - } + // Write the updated JSON metadata file. + metadata.update({ + {"url", url}, + {"etag", headers.etag}, + {"lastModified", headers.last_modified} + }); + std::ofstream(metadata_path) << metadata.dump(4); + fprintf(stderr, "%s: file metadata saved: %s\n", __func__, metadata_path.c_str()); - // Write the new lastModified to the .etag file - if (strlen(headers.last_modified) > 0) { - auto * last_modified_file = fopen(last_modified_path, "w"); - if (last_modified_file) { - fputs(headers.last_modified, last_modified_file); - fclose(last_modified_file); - fprintf(stderr, "%s: file last modified saved %s: %s\n", __func__, last_modified_path, - headers.last_modified); - } - } - - if (rename(path_temporary, path) != 0) { - curl_easy_cleanup(curl); - fprintf(stderr, "%s: unable to rename file: %s to %s\n", __func__, path_temporary, path); + if (rename(path_temporary.c_str(), path.c_str()) != 0) { + fprintf(stderr, "%s: unable to rename file: %s to %s\n", __func__, path_temporary.c_str(), path.c_str()); return false; } } @@ -2081,15 +2143,7 @@ struct llama_model * llama_load_model_from_url( return NULL; } - // Initialize libcurl - auto * curl = curl_easy_init(); - - if (!curl) { - fprintf(stderr, "%s: error initializing libcurl\n", __func__); - return NULL; - } - - if (!llama_download_file(curl, model_url, path_model)) { + if (!llama_download_file(model_url, path_model)) { return NULL; } @@ -2103,7 +2157,6 @@ struct llama_model * llama_load_model_from_url( auto * ctx_gguf = gguf_init_from_file(path_model, gguf_params); if (!ctx_gguf) { fprintf(stderr, "\n%s: failed to load input GGUF from %s\n", __func__, path_model); - curl_easy_cleanup(curl); return NULL; } @@ -2115,8 +2168,6 @@ struct llama_model * llama_load_model_from_url( gguf_free(ctx_gguf); } - curl_easy_cleanup(curl); - if (n_split > 1) { char split_prefix[PATH_MAX] = {0}; char split_url_prefix[LLAMA_CURL_MAX_URL_LENGTH] = {0}; @@ -2147,11 +2198,7 @@ struct llama_model * llama_load_model_from_url( char split_url[LLAMA_CURL_MAX_URL_LENGTH] = {0}; llama_split_path(split_url, sizeof(split_url), split_url_prefix, download_idx, n_split); - auto * curl = curl_easy_init(); - bool res = llama_download_file(curl, split_url, split_path); - curl_easy_cleanup(curl); - - return res; + return llama_download_file(split_url, split_path); }, idx)); } @@ -2326,12 +2373,12 @@ std::vector llama_tokenize( return result; } -std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) { +std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) { std::vector result(8, 0); - const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), true); + const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special); if (n_tokens < 0) { result.resize(-n_tokens); - int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), true); + int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special); GGML_ASSERT(check == -n_tokens); } else { result.resize(n_tokens); @@ -2638,7 +2685,7 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l fprintf(stream, "mirostat_ent: %f # default: 5.0\n", sparams.mirostat_tau); fprintf(stream, "mirostat_lr: %f # default: 0.1\n", sparams.mirostat_eta); fprintf(stream, "mlock: %s # default: false\n", params.use_mlock ? "true" : "false"); - fprintf(stream, "model: %s # default: models/7B/ggml-model.bin\n", params.model.c_str()); + fprintf(stream, "model: %s # default: %s\n", params.model.c_str(), DEFAULT_MODEL_PATH); fprintf(stream, "model_draft: %s # default:\n", params.model_draft.c_str()); fprintf(stream, "multiline_input: %s # default: false\n", params.multiline_input ? "true" : "false"); fprintf(stream, "n_gpu_layers: %d # default: -1\n", params.n_gpu_layers); @@ -2673,6 +2720,7 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l fprintf(stream, "seed: %u # default: -1 (random seed)\n", params.seed); fprintf(stream, "simple_io: %s # default: false\n", params.simple_io ? "true" : "false"); fprintf(stream, "cont_batching: %s # default: false\n", params.cont_batching ? "true" : "false"); + fprintf(stream, "flash_attn: %s # default: false\n", params.flash_attn ? "true" : "false"); fprintf(stream, "temp: %f # default: 0.8\n", sparams.temp); const std::vector tensor_split_vector(params.tensor_split, params.tensor_split + llama_max_devices()); diff --git a/common/common.h b/common/common.h index cca44268e..6f00a2cca 100644 --- a/common/common.h +++ b/common/common.h @@ -31,6 +31,8 @@ fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); \ } while(0) +#define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf" + // build info extern int LLAMA_BUILD_NUMBER; extern char const *LLAMA_COMMIT; @@ -86,13 +88,13 @@ struct gpt_params { ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED; - llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED; - llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings + enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED; + enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings // // sampling parameters struct llama_sampling_params sparams; - std::string model = "models/7B/ggml-model-f16.gguf"; // model path + std::string model = ""; // model path std::string model_draft = ""; // draft model for speculative decoding std::string model_alias = "unknown"; // model alias std::string model_url = ""; // model url to download @@ -133,11 +135,12 @@ struct gpt_params { bool multiple_choice = false; // compute TruthfulQA score over random tasks from datafile supplied in prompt size_t multiple_choice_tasks = 0; // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed - bool kl_divergence = false; // compute KL-divergence + bool kl_divergence = false; // compute KL divergence bool random_prompt = false; // do not randomize prompt if none provided bool use_color = false; // use color to distinguish generations and inputs bool interactive = false; // interactive mode + bool conversation = false; // conversation mode (does not print special tokens and suffix/prefix) bool chatml = false; // chatml mode (used for models trained on chatml syntax) bool prompt_cache_all = false; // save user input and generations to prompt cache bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it @@ -148,6 +151,7 @@ struct gpt_params { bool multiline_input = false; // reverse the usage of `\` bool simple_io = false; // improves compatibility with subprocesses and limited consoles bool cont_batching = true; // insert new sequences for decoding on-the-fly + bool flash_attn = false; // flash attention bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix bool ignore_eos = false; // ignore generated EOS tokens @@ -161,15 +165,20 @@ struct gpt_params { bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes bool no_kv_offload = false; // disable KV offloading bool warmup = true; // warmup run + bool check_tensors = false; // validate tensor data std::string cache_type_k = "f16"; // KV cache data type for the K std::string cache_type_v = "f16"; // KV cache data type for the V // multimodal models (see examples/llava) - std::string mmproj = ""; // path to multimodal projector - std::string image = ""; // path to an image file + std::string mmproj = ""; // path to multimodal projector + std::vector image; // path to image file(s) }; +void gpt_params_handle_model_default(gpt_params & params); + +bool parse_kv_override(const char * data, std::vector & overrides); + bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params); bool gpt_params_parse(int argc, char ** argv, gpt_params & params); @@ -193,6 +202,7 @@ bool validate_file_name(const std::string & filename); std::vector sampler_types_from_names(const std::vector & names, bool allow_alt_names); std::vector sampler_types_from_chars(const std::string & names_string); std::vector string_split(std::string input, char separator); +std::string string_strip(const std::string & str); std::string sampler_type_to_name_string(llama_sampler_type sampler_type); // @@ -237,11 +247,12 @@ std::vector llama_tokenize( bool add_special, bool parse_special = false); -// tokenizes a token into a piece +// tokenizes a token into a piece, optionally renders special/control tokens // should work similar to Python's `tokenizer.id_to_piece` std::string llama_token_to_piece( const struct llama_context * ctx, - llama_token token); + llama_token token, + bool special = true); // TODO: these should be moved in llama.h C-style API under single `llama_detokenize` function // that takes into account the tokenizer type and decides how to handle the leading space diff --git a/common/json-schema-to-grammar.h b/common/json-schema-to-grammar.h index e1abed303..41623b346 100644 --- a/common/json-schema-to-grammar.h +++ b/common/json-schema-to-grammar.h @@ -1,4 +1,8 @@ #pragma once + +#include "ggml.h" +// Change JSON_ASSERT from assert() to GGML_ASSERT: +#define JSON_ASSERT GGML_ASSERT #include "json.hpp" std::string json_schema_to_grammar(const nlohmann::ordered_json& schema); diff --git a/common/log.h b/common/log.h index e4edcac7d..6934c57b2 100644 --- a/common/log.h +++ b/common/log.h @@ -234,7 +234,7 @@ inline std::string log_filename_generator_impl(LogTriState multilog, const std:: // INTERNAL, DO NOT USE // USE LOG() INSTEAD // -#if !defined(_MSC_VER) or defined(__INTEL_LLVM_COMPILER) +#if !defined(_MSC_VER) || defined(__INTEL_LLVM_COMPILER) || defined(__clang__) #define LOG_IMPL(str, ...) \ do { \ if (LOG_TARGET != nullptr) \ @@ -257,7 +257,7 @@ inline std::string log_filename_generator_impl(LogTriState multilog, const std:: // INTERNAL, DO NOT USE // USE LOG_TEE() INSTEAD // -#if !defined(_MSC_VER) or defined(__INTEL_LLVM_COMPILER) +#if !defined(_MSC_VER) || defined(__INTEL_LLVM_COMPILER) || defined(__clang__) #define LOG_TEE_IMPL(str, ...) \ do { \ if (LOG_TARGET != nullptr) \ diff --git a/common/sampling.cpp b/common/sampling.cpp index 45d68b26c..3715a7985 100644 --- a/common/sampling.cpp +++ b/common/sampling.cpp @@ -1,4 +1,6 @@ +#define LLAMA_API_INTERNAL #include "sampling.h" +#include struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_params & params) { struct llama_sampling_context * result = new llama_sampling_context(); @@ -33,6 +35,10 @@ struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_ result->prev.resize(params.n_prev); + result->n_considered = 0; + + llama_sampling_set_rng_seed(result, params.seed); + return result; } @@ -60,6 +66,14 @@ void llama_sampling_reset(llama_sampling_context * ctx) { std::fill(ctx->prev.begin(), ctx->prev.end(), 0); ctx->cur.clear(); + ctx->n_considered = 0; +} + +void llama_sampling_set_rng_seed(struct llama_sampling_context * ctx, uint32_t seed) { + if (seed == LLAMA_DEFAULT_SEED) { + seed = std::random_device{}(); + } + ctx->rng.seed(seed); } void llama_sampling_cp(llama_sampling_context * src, llama_sampling_context * dst) { @@ -203,7 +217,7 @@ static llama_token llama_sampling_sample_impl( sampler_queue(ctx_main, params, cur_p, min_keep); - id = llama_sample_token(ctx_main, &cur_p); + id = llama_sample_token_with_rng(ctx_main, &cur_p, ctx_sampling->rng); //{ // const int n_top = 10; @@ -242,6 +256,8 @@ static llama_token llama_sampling_sample_impl( } } + ctx_sampling->n_considered = cur_p.size; + return id; } diff --git a/common/sampling.h b/common/sampling.h index 639b819ab..5b73ecdcd 100644 --- a/common/sampling.h +++ b/common/sampling.h @@ -4,9 +4,10 @@ #include "grammar-parser.h" +#include #include -#include #include +#include // sampler types enum class llama_sampler_type : char { @@ -20,25 +21,26 @@ enum class llama_sampler_type : char { // sampling parameters typedef struct llama_sampling_params { - int32_t n_prev = 64; // number of previous tokens to remember - int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens. - int32_t min_keep = 0; // 0 = disabled, otherwise samplers should return at least min_keep tokens - int32_t top_k = 40; // <= 0 to use vocab size - float top_p = 0.95f; // 1.0 = disabled - float min_p = 0.05f; // 0.0 = disabled - float tfs_z = 1.00f; // 1.0 = disabled - float typical_p = 1.00f; // 1.0 = disabled - float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities - float dynatemp_range = 0.00f; // 0.0 = disabled - float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler - int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size) - float penalty_repeat = 1.00f; // 1.0 = disabled - float penalty_freq = 0.00f; // 0.0 = disabled - float penalty_present = 0.00f; // 0.0 = disabled - int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0 - float mirostat_tau = 5.00f; // target entropy - float mirostat_eta = 0.10f; // learning rate - bool penalize_nl = false; // consider newlines as a repeatable token + int32_t n_prev = 64; // number of previous tokens to remember + int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens. + int32_t min_keep = 0; // 0 = disabled, otherwise samplers should return at least min_keep tokens + int32_t top_k = 40; // <= 0 to use vocab size + float top_p = 0.95f; // 1.0 = disabled + float min_p = 0.05f; // 0.0 = disabled + float tfs_z = 1.00f; // 1.0 = disabled + float typical_p = 1.00f; // 1.0 = disabled + float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities + float dynatemp_range = 0.00f; // 0.0 = disabled + float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler + int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size) + float penalty_repeat = 1.00f; // 1.0 = disabled + float penalty_freq = 0.00f; // 0.0 = disabled + float penalty_present = 0.00f; // 0.0 = disabled + int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0 + float mirostat_tau = 5.00f; // target entropy + float mirostat_eta = 0.10f; // learning rate + bool penalize_nl = false; // consider newlines as a repeatable token + uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampling_context std::vector samplers_sequence = { llama_sampler_type::TOP_K, @@ -79,6 +81,9 @@ struct llama_sampling_context { // TODO: replace with ring-buffer std::vector prev; std::vector cur; + size_t n_considered; + + std::mt19937 rng; }; #include "common.h" @@ -93,6 +98,9 @@ void llama_sampling_free(struct llama_sampling_context * ctx); // - reset grammar void llama_sampling_reset(llama_sampling_context * ctx); +// Set the sampler seed +void llama_sampling_set_rng_seed(struct llama_sampling_context * ctx, uint32_t seed); + // Copy the sampler context void llama_sampling_cp(llama_sampling_context * src, llama_sampling_context * dst); diff --git a/convert-hf-to-gguf-update.py b/convert-hf-to-gguf-update.py new file mode 100755 index 000000000..a26f45a5f --- /dev/null +++ b/convert-hf-to-gguf-update.py @@ -0,0 +1,306 @@ +#!/usr/bin/env python3 + +# This script downloads the tokenizer models of the specified models from Huggingface and +# generates the get_vocab_base_pre() function for convert-hf-to-gguf.py +# +# This is necessary in order to analyze the type of pre-tokenizer used by the model and +# provide the necessary information to llama.cpp via the GGUF header in order to implement +# the same pre-tokenizer. +# +# ref: https://github.com/ggerganov/llama.cpp/pull/6920 +# +# Instructions: +# +# - Add a new model to the "models" list +# - Run the script with your huggingface token: +# +# python3 convert-hf-to-gguf-update.py +# +# - Copy-paste the generated get_vocab_base_pre() function into convert-hf-to-gguf.py +# - Update llama.cpp with the new pre-tokenizer if necessary +# +# TODO: generate tokenizer tests for llama.cpp +# TODO: automate the update of convert-hf-to-gguf.py +# + +import logging +import os +import requests +import sys +import json + +from hashlib import sha256 +from enum import IntEnum, auto +from transformers import AutoTokenizer + +logging.basicConfig(level=logging.DEBUG) +logger = logging.getLogger("convert-hf-to-gguf-update") + + +class TOKENIZER_TYPE(IntEnum): + SPM = auto() + BPE = auto() + WPM = auto() + + +# TODO: this string has to exercise as much pre-tokenizer functionality as possible +# will be updated with time - contributions welcome +chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````\"\"\"\"......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL' + +if len(sys.argv) == 2: + token = sys.argv[1] +else: + logger.info("Usage: python convert-hf-to-gguf-update.py ") + sys.exit(1) + +# TODO: add models here, base models preferred +models = [ + {"name": "llama-spm", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/meta-llama/Llama-2-7b-hf", }, + {"name": "llama-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Meta-Llama-3-8B", }, + {"name": "phi-3", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct", }, + {"name": "deepseek-llm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-llm-7b-base", }, + {"name": "deepseek-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base", }, + {"name": "falcon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/falcon-7b", }, + {"name": "bert-bge", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/BAAI/bge-small-en-v1.5", }, + {"name": "mpt", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mosaicml/mpt-7b", }, + {"name": "starcoder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigcode/starcoder2-3b", }, + {"name": "gpt-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/openai-community/gpt2", }, + {"name": "refact", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/smallcloudai/Refact-1_6-base", }, + {"name": "command-r", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/CohereForAI/c4ai-command-r-v01", }, + {"name": "qwen2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Qwen/Qwen1.5-7B", }, + {"name": "olmo", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/allenai/OLMo-1.7-7B-hf", }, + {"name": "dbrx", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/databricks/dbrx-base", }, +] + +# make directory "models/tokenizers" if it doesn't exist +if not os.path.exists("models/tokenizers"): + os.makedirs("models/tokenizers") + + +def download_file_with_auth(url, token, save_path): + headers = {"Authorization": f"Bearer {token}"} + response = requests.get(url, headers=headers) + if response.status_code == 200: + with open(save_path, 'wb') as f: + f.write(response.content) + logger.info(f"File {save_path} downloaded successfully") + else: + logger.info(f"Failed to download file. Status code: {response.status_code}") + + +# download the tokenizer models +for model in models: + name = model["name"] + repo = model["repo"] + tokt = model["tokt"] + + if not os.path.exists(f"models/tokenizers/{name}"): + os.makedirs(f"models/tokenizers/{name}") + else: + logger.info(f"Directory models/tokenizers/{name} already exists - skipping") + continue + + logger.info(f"Downloading {name} to models/tokenizers/{name}") + + url = f"{repo}/raw/main/config.json" + save_path = f"models/tokenizers/{name}/config.json" + download_file_with_auth(url, token, save_path) + + url = f"{repo}/raw/main/tokenizer.json" + save_path = f"models/tokenizers/{name}/tokenizer.json" + download_file_with_auth(url, token, save_path) + + # if downloaded file is less than 1KB, we likely need to download an LFS instead + if os.path.getsize(save_path) < 1024: + # remove the file + os.remove(save_path) + url = f"{repo}/resolve/main/tokenizer.json" + save_path = f"models/tokenizers/{name}/tokenizer.json" + download_file_with_auth(url, token, save_path) + + if tokt == TOKENIZER_TYPE.SPM: + url = f"{repo}/resolve/main/tokenizer.model" + save_path = f"models/tokenizers/{name}/tokenizer.model" + download_file_with_auth(url, token, save_path) + + url = f"{repo}/raw/main/tokenizer_config.json" + save_path = f"models/tokenizers/{name}/tokenizer_config.json" + download_file_with_auth(url, token, save_path) + +# generate the source code for the convert-hf-to-gguf.py:get_vocab_base_pre() function: +# TODO: auto-update convert-hf-to-gguf.py with the generated function + +src_ifs = "" +for model in models: + name = model["name"] + tokt = model["tokt"] + + if tokt == TOKENIZER_TYPE.SPM: + continue + + # create the tokenizer + tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}") + + chktok = tokenizer.encode(chktxt) + chkhsh = sha256(str(chktok).encode()).hexdigest() + + logger.info(f"model: {name}") + logger.info(f"tokt: {tokt}") + logger.info(f"repo: {model['repo']}") + logger.info(f"chktok: {chktok}") + logger.info(f"chkhsh: {chkhsh}") + + # print the "pre_tokenizer" content from the tokenizer.json + with open(f"models/tokenizers/{name}/tokenizer.json", "r", encoding="utf-8") as f: + cfg = json.load(f) + normalizer = cfg["normalizer"] + logger.info("normalizer: " + json.dumps(normalizer, indent=4)) + pre_tokenizer = cfg["pre_tokenizer"] + logger.info("pre_tokenizer: " + json.dumps(pre_tokenizer, indent=4)) + + logger.info("") + + src_ifs += f" if chkhsh == \"{chkhsh}\":\n" + src_ifs += f" # ref: {model['repo']}\n" + src_ifs += f" res = \"{name}\"\n" + +src_func = f""" + def get_vocab_base_pre(self, tokenizer) -> str: + # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that + # is specific for the BPE pre-tokenizer used by the model + # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can + # use in llama.cpp to implement the same pre-tokenizer + + chktxt = {repr(chktxt)} + + chktok = tokenizer.encode(chktxt) + chkhsh = sha256(str(chktok).encode()).hexdigest() + + logger.debug(f"chktok: {{chktok}}") + logger.debug(f"chkhsh: {{chkhsh}}") + + res = None + + # NOTE: if you get an error here, you need to update the convert-hf-to-gguf-update.py script + # or pull the latest version of the model from Huggingface + # don't edit the hashes manually! +{src_ifs} + if res is None: + logger.warning("\\n") + logger.warning("**************************************************************************************") + logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!") + logger.warning("** There are 2 possible reasons for this:") + logger.warning("** - the model has not been added to convert-hf-to-gguf-update.py yet") + logger.warning("** - the pre-tokenization config has changed upstream") + logger.warning("** Check your model files and convert-hf-to-gguf-update.py and update them accordingly.") + logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920") + logger.warning("**") + logger.warning(f"** chkhsh: {{chkhsh}}") + logger.warning("**************************************************************************************") + logger.warning("\\n") + raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()") + + logger.debug(f"tokenizer.ggml.pre: {{repr(res)}}") + logger.debug(f"chkhsh: {{chkhsh}}") + + return res +""" + +print(src_func) # noqa: NP100 + +logger.info("\n") +logger.info("!!! Copy-paste the function above into convert-hf-to-gguf.py !!!") +logger.info("\n") + +# generate tests for each tokenizer model + +tests = [ + "ied 4 ½ months", + "Führer", + "", + " ", + " ", + " ", + "\t", + "\n", + "\n\n", + "\n\n\n", + "\t\n", + "Hello world", + " Hello world", + "Hello World", + " Hello World", + " Hello World!", + "Hello, world!", + " Hello, world!", + " this is 🦙.cpp", + "w048 7tuijk dsdfhu", + "нещо на Български", + "កាន់តែពិសេសអាចខលចេញ", + "🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)", + "Hello", + " Hello", + " Hello", + " Hello", + " Hello", + " Hello\n Hello", + " (", + "\n =", + "' era", + "Hello, y'all! How are you 😁 ?我想在apple工作1314151天~", + "3", + "33", + "333", + "3333", + "33333", + "333333", + "3333333", + "33333333", + "333333333", + chktxt, +] + +# write the tests to ./models/ggml-vocab-{name}.gguf.inp +# the format is: +# +# test0 +# __ggml_vocab_test__ +# test1 +# __ggml_vocab_test__ +# ... +# + +# with each model, encode all tests and write the results in ./models/ggml-vocab-{name}.gguf.out +# for each test, write the resulting tokens on a separate line + +for model in models: + name = model["name"] + tokt = model["tokt"] + + # create the tokenizer + tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}") + + with open(f"models/ggml-vocab-{name}.gguf.inp", "w", encoding="utf-8") as f: + for text in tests: + f.write(f"{text}") + f.write("\n__ggml_vocab_test__\n") + + with open(f"models/ggml-vocab-{name}.gguf.out", "w") as f: + for text in tests: + res = tokenizer.encode(text, add_special_tokens=False) + for r in res: + f.write(f" {r}") + f.write("\n") + + logger.info(f"Tests for {name} written in ./models/ggml-vocab-{name}.gguf.*") + +# generate commands for creating vocab files + +logger.info("\nRun the following commands to generate the vocab files for testing:\n") + +for model in models: + name = model["name"] + + print(f"python3 convert-hf-to-gguf.py models/tokenizers/{name}/ --outfile models/ggml-vocab-{name}.gguf --vocab-only") # noqa: NP100 + +logger.info("\n") diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py index 4fd916cba..454e9fcdd 100755 --- a/convert-hf-to-gguf.py +++ b/convert-hf-to-gguf.py @@ -2,6 +2,7 @@ from __future__ import annotations +import logging import argparse import contextlib import json @@ -11,6 +12,7 @@ import sys from abc import ABC, abstractmethod from enum import IntEnum from pathlib import Path +from hashlib import sha256 from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterator, Sequence, TypeVar, cast import numpy as np @@ -25,6 +27,8 @@ import gguf from convert import LlamaHfVocab, permute +logger = logging.getLogger("hf-to-gguf") + ###### MODEL DEFINITIONS ###### @@ -75,7 +79,7 @@ class Model(ABC): def get_tensors(self) -> Iterator[tuple[str, Tensor]]: for part_name in self.part_names: - print(f"gguf: loading model part '{part_name}'") + logger.info(f"gguf: loading model part '{part_name}'") ctx: ContextManager[Any] if self.is_safetensors: from safetensors import safe_open @@ -94,42 +98,42 @@ class Model(ABC): if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None: self.gguf_writer.add_context_length(n_ctx) - print(f"gguf: context length = {n_ctx}") + logger.info(f"gguf: context length = {n_ctx}") n_embd = self.find_hparam(["hidden_size", "n_embd"]) self.gguf_writer.add_embedding_length(n_embd) - print(f"gguf: embedding length = {n_embd}") + logger.info(f"gguf: embedding length = {n_embd}") if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None: self.gguf_writer.add_feed_forward_length(n_ff) - print(f"gguf: feed forward length = {n_ff}") + logger.info(f"gguf: feed forward length = {n_ff}") n_head = self.find_hparam(["num_attention_heads", "n_head"]) self.gguf_writer.add_head_count(n_head) - print(f"gguf: head count = {n_head}") + logger.info(f"gguf: head count = {n_head}") if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None: self.gguf_writer.add_head_count_kv(n_head_kv) - print(f"gguf: key-value head count = {n_head_kv}") + logger.info(f"gguf: key-value head count = {n_head_kv}") if (rope_theta := self.hparams.get("rope_theta")) is not None: self.gguf_writer.add_rope_freq_base(rope_theta) - print(f"gguf: rope theta = {rope_theta}") + logger.info(f"gguf: rope theta = {rope_theta}") if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None: self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps) - print(f"gguf: rms norm epsilon = {f_rms_eps}") + logger.info(f"gguf: rms norm epsilon = {f_rms_eps}") if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None: self.gguf_writer.add_layer_norm_eps(f_norm_eps) - print(f"gguf: layer norm epsilon = {f_norm_eps}") + logger.info(f"gguf: layer norm epsilon = {f_norm_eps}") if (n_experts := self.hparams.get("num_local_experts")) is not None: self.gguf_writer.add_expert_count(n_experts) - print(f"gguf: expert count = {n_experts}") + logger.info(f"gguf: expert count = {n_experts}") if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None: self.gguf_writer.add_expert_used_count(n_experts_used) - print(f"gguf: experts used count = {n_experts_used}") + logger.info(f"gguf: experts used count = {n_experts_used}") self.gguf_writer.add_file_type(self.ftype) - print(f"gguf: file type = {self.ftype}") + logger.info(f"gguf: file type = {self.ftype}") def write_tensors(self): block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer"))) @@ -150,8 +154,7 @@ class Model(ABC): # map tensor names new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) if new_name is None: - print(f"Can not map tensor {name!r}") - sys.exit() + raise ValueError(f"Can not map tensor {name!r}") n_dims = len(data.shape) data_dtype = data.dtype @@ -168,7 +171,7 @@ class Model(ABC): if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: data = data.astype(np.float16) - print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") + logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") self.gguf_writer.add_tensor(new_name, data) @@ -229,7 +232,7 @@ class Model(ABC): return (f"pytorch_model-{n:05}-of-{self.num_parts:05}.bin" for n in range(1, self.num_parts + 1)) # used for GPT-2 BPE and WordPiece vocabs - def get_basic_vocab(self) -> tuple[list[str], list[int]]: + def get_vocab_base(self) -> tuple[list[str], list[int], str]: tokens: list[str] = [] toktypes: list[int] = [] @@ -238,6 +241,8 @@ class Model(ABC): vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab)) assert max(tokenizer.vocab.values()) < vocab_size + tokpre = self.get_vocab_base_pre(tokenizer) + reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()} added_vocab = tokenizer.get_added_vocab() @@ -255,11 +260,94 @@ class Model(ABC): tokens.append(reverse_vocab[i]) toktypes.append(gguf.TokenType.NORMAL) - return tokens, toktypes + return tokens, toktypes, tokpre + + # NOTE: this function is generated by convert-hf-to-gguf-update.py + # do not modify it manually! + # ref: https://github.com/ggerganov/llama.cpp/pull/6920 + def get_vocab_base_pre(self, tokenizer) -> str: + # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that + # is specific for the BPE pre-tokenizer used by the model + # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can + # use in llama.cpp to implement the same pre-tokenizer + + chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL' + + chktok = tokenizer.encode(chktxt) + chkhsh = sha256(str(chktok).encode()).hexdigest() + + logger.debug(f"chktok: {chktok}") + logger.debug(f"chkhsh: {chkhsh}") + + res = None + + # NOTE: if you get an error here, you need to update the convert-hf-to-gguf-update.py script + # or pull the latest version of the model from Huggingface + # don't edit the hashes manually! + if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5": + # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B + res = "llama-bpe" + if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754": + # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base + res = "deepseek-llm" + if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821": + # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base + res = "deepseek-coder" + if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed": + # ref: https://huggingface.co/tiiuae/falcon-7b + res = "falcon" + if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f": + # ref: https://huggingface.co/BAAI/bge-small-en-v1.5 + res = "bert-bge" + if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166": + # ref: https://huggingface.co/mosaicml/mpt-7b + res = "mpt" + if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34": + # ref: https://huggingface.co/bigcode/starcoder2-3b + res = "starcoder" + if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454": + # ref: https://huggingface.co/openai-community/gpt2 + res = "gpt-2" + if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff": + # ref: https://huggingface.co/smallcloudai/Refact-1_6-base + res = "refact" + if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8": + # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01 + res = "command-r" + if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea": + # ref: https://huggingface.co/Qwen/Qwen1.5-7B + res = "qwen2" + if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166": + # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf + res = "olmo" + if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e": + # ref: https://huggingface.co/databricks/dbrx-instruct + res = "dbrx" + + if res is None: + logger.warning("\n") + logger.warning("**************************************************************************************") + logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!") + logger.warning("** There are 2 possible reasons for this:") + logger.warning("** - the model has not been added to convert-hf-to-gguf-update.py yet") + logger.warning("** - the pre-tokenization config has changed upstream") + logger.warning("** Check your model files and convert-hf-to-gguf-update.py and update them accordingly.") + logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920") + logger.warning("**") + logger.warning(f"** chkhsh: {chkhsh}") + logger.warning("**************************************************************************************") + logger.warning("\n") + raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()") + + logger.debug(f"tokenizer.ggml.pre: {repr(res)}") + logger.debug(f"chkhsh: {chkhsh}") + + return res def _set_vocab_gpt2(self) -> None: - tokens, toktypes = self.get_basic_vocab() + tokens, toktypes, tokpre = self.get_vocab_base() self.gguf_writer.add_tokenizer_model("gpt2") + self.gguf_writer.add_tokenizer_pre(tokpre) self.gguf_writer.add_token_list(tokens) self.gguf_writer.add_token_types(toktypes) @@ -277,6 +365,8 @@ class Model(ABC): vocab_size = hparams["vocab_size"] assert max(tokenizer.get_vocab().values()) < vocab_size + tokpre = self.get_vocab_base_pre(tokenizer) + merges = [] vocab = {} mergeable_ranks = tokenizer.mergeable_ranks @@ -304,6 +394,7 @@ class Model(ABC): toktypes.append(gguf.TokenType.NORMAL) self.gguf_writer.add_tokenizer_model("gpt2") + self.gguf_writer.add_tokenizer_pre(tokpre) self.gguf_writer.add_token_list(tokens) self.gguf_writer.add_token_types(toktypes) @@ -363,9 +454,18 @@ class Model(ABC): scores.append(-1000.0) toktypes.append(SentencePieceTokenTypes.USER_DEFINED) + if vocab_size > len(tokens): + pad_count = vocab_size - len(tokens) + logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]") + for i in range(1, pad_count + 1): + tokens.append(f"[PAD{i}]") + scores.append(-1000.0) + toktypes.append(SentencePieceTokenTypes.UNUSED) + assert len(tokens) == vocab_size self.gguf_writer.add_tokenizer_model("llama") + self.gguf_writer.add_tokenizer_pre("default") self.gguf_writer.add_token_list(tokens) self.gguf_writer.add_token_scores(scores) self.gguf_writer.add_token_types(toktypes) @@ -387,6 +487,7 @@ class Model(ABC): assert len(tokens) == vocab.vocab_size self.gguf_writer.add_tokenizer_model("llama") + self.gguf_writer.add_tokenizer_pre("default") self.gguf_writer.add_token_list(tokens) self.gguf_writer.add_token_scores(scores) self.gguf_writer.add_token_types(toktypes) @@ -467,7 +568,7 @@ class BloomModel(Model): ), axis=0, ) - print("re-format attention.linear_qkv.weight") + logger.info("re-format attention.linear_qkv.weight") elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name): qkv_bias = data.reshape((n_head, 3, n_embed // n_head)) data = np.concatenate( @@ -478,13 +579,12 @@ class BloomModel(Model): ), axis=0, ) - print("re-format attention.linear_qkv.bias") + logger.info("re-format attention.linear_qkv.bias") # map tensor names new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) if new_name is None: - print(f"Can not map tensor {name!r}") - sys.exit() + raise ValueError(f"Can not map tensor {name!r}") n_dims = len(data.shape) data_dtype = data.dtype @@ -501,13 +601,13 @@ class BloomModel(Model): if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: data = data.astype(np.float16) - print(f"=> {new_name}, shape = {data.shape}, {old_dtype} --> {data.dtype}") + logger.info(f"=> {new_name}, shape = {data.shape}, {old_dtype} --> {data.dtype}") self.gguf_writer.add_tensor(new_name, data) if not has_lm_head and name == "word_embeddings.weight": self.gguf_writer.add_tensor("output.weight", data) - print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}") + logger.info(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}") @Model.register("MPTForCausalLM") @@ -567,8 +667,7 @@ class MPTModel(Model): else: new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) if new_name is None: - print(f"Can not map tensor {name!r}") - sys.exit() + raise ValueError(f"Can not map tensor {name!r}") n_dims = len(data.shape) data_dtype = data.dtype @@ -585,7 +684,7 @@ class MPTModel(Model): if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: data = data.astype(np.float16) - print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") + logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") self.gguf_writer.add_tensor(new_name, data) @@ -611,8 +710,7 @@ class OrionModel(Model): elif "model_max_length" in self.hparams: ctx_length = self.hparams["model_max_length"] else: - print("gguf: can not find ctx length parameter.") - sys.exit() + raise ValueError("gguf: can not find ctx length parameter.") self.gguf_writer.add_file_type(self.ftype) self.gguf_writer.add_name(self.dir_model.name) @@ -650,8 +748,7 @@ class OrionModel(Model): # map tensor names new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) if new_name is None: - print(f"Can not map tensor {name!r}") - sys.exit() + raise ValueError(f"Can not map tensor {name!r}") n_dims = len(data.shape) data_dtype = data.dtype @@ -668,7 +765,7 @@ class OrionModel(Model): if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: data = data.astype(np.float16) - print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") + logger.info(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") self.gguf_writer.add_tensor(new_name, data) @@ -693,8 +790,7 @@ class BaichuanModel(Model): elif "model_max_length" in self.hparams: ctx_length = self.hparams["model_max_length"] else: - print("gguf: can not find ctx length parameter.") - sys.exit() + raise ValueError("gguf: can not find ctx length parameter.") self.gguf_writer.add_name(self.dir_model.name) self.gguf_writer.add_source_hf_repo(hf_repo) @@ -723,7 +819,7 @@ class BaichuanModel(Model): for i in range(block_count): if (w := model_kv.get(f"model.layers.{i}.self_attn.W_pack.weight")) is not None: - print(f"Unpacking and permuting layer {i}") + logger.info(f"Unpacking and permuting layer {i}") model_kv[f"model.layers.{i}.self_attn.q_proj.weight"] = \ self._reverse_hf_permute_part(w, 0, head_count, head_count) model_kv[f"model.layers.{i}.self_attn.k_proj.weight"] = \ @@ -748,8 +844,7 @@ class BaichuanModel(Model): # map tensor names new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) if new_name is None: - print(f"Can not map tensor {name!r}") - sys.exit() + raise ValueError(f"Can not map tensor {name!r}") n_dims = len(data.shape) data_dtype = data.dtype @@ -766,7 +861,7 @@ class BaichuanModel(Model): if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: data = data.astype(np.float16) - print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") + logger.info(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") self.gguf_writer.add_tensor(new_name, data) def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor: @@ -830,6 +925,7 @@ class XverseModel(Model): toktypes.append(toktype) self.gguf_writer.add_tokenizer_model("llama") + self.gguf_writer.add_tokenizer_pre("default") self.gguf_writer.add_token_list(tokens) self.gguf_writer.add_token_types(toktypes) @@ -850,8 +946,7 @@ class XverseModel(Model): elif "model_max_length" in self.hparams: ctx_length = self.hparams["model_max_length"] else: - print("gguf: can not find ctx length parameter.") - sys.exit() + raise ValueError("gguf: can not find ctx length parameter.") self.gguf_writer.add_name(self.dir_model.name) self.gguf_writer.add_source_hf_repo(hf_repo) @@ -900,8 +995,7 @@ class XverseModel(Model): # map tensor names new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) if new_name is None: - print(f"Can not map tensor {name!r}") - sys.exit() + raise ValueError(f"Can not map tensor {name!r}") n_dims = len(data.shape) data_dtype = data.dtype @@ -918,7 +1012,7 @@ class XverseModel(Model): if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: data = data.astype(np.float16) - print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") + logger.info(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") self.gguf_writer.add_tensor(new_name, data) def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor: @@ -1005,8 +1099,7 @@ class FalconModel(Model): # map tensor names new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) if new_name is None: - print(f"Can not map tensor {name!r}") - sys.exit() + raise ValueError(f"Can not map tensor {name!r}") n_dims = len(data.shape) data_dtype = data.dtype @@ -1023,7 +1116,7 @@ class FalconModel(Model): if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: data = data.astype(np.float16) - print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") + logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") self.gguf_writer.add_tensor(new_name, data) @@ -1110,8 +1203,7 @@ class RefactModel(Model): # map tensor names new_name = tensor_map.get_name(name, try_suffixes=(".weight",)) if new_name is None: - print(f"Can not map tensor {name!r}") - sys.exit() + raise ValueError(f"Can not map tensor {name!r}") n_dims = len(data.shape) data_dtype = data.dtype @@ -1128,7 +1220,7 @@ class RefactModel(Model): if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: data = data.astype(np.float16) - print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") + logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") self.gguf_writer.add_tensor(new_name, data) @@ -1177,10 +1269,9 @@ class PersimmonModel(Model): data = data_torch.to(torch.float32).squeeze().numpy() new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) if new_name is None: - print(f"Can not map tensor {name!r}") - sys.exit() + raise ValueError(f"Can not map tensor {name!r}") n_dims = len(data.shape) - print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") + logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") self.gguf_writer.add_tensor(new_name, data) @@ -1245,8 +1336,7 @@ class StableLMModel(Model): # map tensor names new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) if new_name is None: - print(f"Can not map tensor {name!r}") - sys.exit() + raise ValueError(f"Can not map tensor {name!r}") n_dims = len(data.shape) data_dtype = data.dtype @@ -1263,7 +1353,7 @@ class StableLMModel(Model): if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and not new_name.endswith("_norm.weight") and n_dims == 2: data = data.astype(np.float16) - print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") + logger.debug(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") self.gguf_writer.add_tensor(new_name, data) @@ -1279,8 +1369,7 @@ class StableLMModel(Model): merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight" new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias")) if new_name is None: - print(f"Can not map tensor {name!r}") - sys.exit() + raise ValueError(f"Can not map tensor {name!r}") if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")): data = data.astype(np.float32) @@ -1288,7 +1377,7 @@ class StableLMModel(Model): if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and not new_name.endswith("_norm.weight") and n_dims == 2: data = data.astype(np.float16) - print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}") + logger.debug(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}") self.gguf_writer.add_tensor(new_name, data) @@ -1325,6 +1414,11 @@ class LlamaModel(Model): self.gguf_writer.add_vocab_size(hparams["vocab_size"]) self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"]) + if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]: + if self.hparams["rope_scaling"].get("type") == "linear": + self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) + self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"]) + # Same as super class, but permuting q_proj, k_proj def write_tensors(self): block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer"))) @@ -1335,7 +1429,7 @@ class LlamaModel(Model): experts = dict() for name, data_torch in self.get_tensors(): # we don't need these - if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")): + if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")): continue old_dtype = data_torch.dtype @@ -1388,10 +1482,9 @@ class LlamaModel(Model): new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias")) if new_name is None: - print(f"Can not map tensor {name!r}") - sys.exit() + raise ValueError(f"Can not map tensor {name!r}") - print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}") + logger.info(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}") self.gguf_writer.add_tensor(new_name, data) continue @@ -1399,8 +1492,7 @@ class LlamaModel(Model): # map tensor names new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) if new_name is None: - print(f"Can not map tensor {name!r}") - sys.exit() + raise ValueError(f"Can not map tensor {name!r}") n_dims = len(data.shape) data_dtype = data.dtype @@ -1417,7 +1509,7 @@ class LlamaModel(Model): if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: data = data.astype(np.float16) - print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") + logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") self.gguf_writer.add_tensor(new_name, data) @@ -1492,10 +1584,9 @@ class GrokModel(Model): new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias")) if new_name is None: - print(f"Can not map tensor {name!r}") - sys.exit() + raise ValueError(f"Can not map tensor {name!r}") - print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}") + logger.info(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}") self.gguf_writer.add_tensor(new_name, data) continue @@ -1503,8 +1594,7 @@ class GrokModel(Model): # map tensor names new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) if new_name is None: - print(f"Can not map tensor {name!r}") - sys.exit() + raise ValueError(f"Can not map tensor {name!r}") n_dims = len(data.shape) data_dtype = data.dtype @@ -1521,7 +1611,7 @@ class GrokModel(Model): if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: data = data.astype(np.float16) - print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") + logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") self.gguf_writer.add_tensor(new_name, data) @@ -1554,7 +1644,7 @@ class DbrxModel(Model): self.gguf_writer.add_layer_norm_eps(1e-5) self.gguf_writer.add_file_type(self.ftype) - print(f"gguf: file type = {self.ftype}") + logger.info(f"gguf: file type = {self.ftype}") def write_tensors(self): block_count = self.hparams.get("n_layers") @@ -1597,8 +1687,7 @@ class DbrxModel(Model): # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15 new_name = tensor_map.get_name(name if not experts else name + ".weight", try_suffixes=(".weight",)) if new_name is None: - print(f"Can not map tensor {name!r}") - sys.exit() + raise ValueError(f"Can not map tensor {name!r}") n_dims = len(data.shape) data_dtype = data.dtype @@ -1606,8 +1695,7 @@ class DbrxModel(Model): # Most of the codebase that takes in 1D tensors only handles F32 tensors # and most of the outputs tensors are F32. if data_dtype != np.float32 and n_dims == 1: - print(f"Can not map tensor {name!r}: all 1D tensors must be F32") - sys.exit() + raise ValueError(f"Can not map tensor {name!r}: all 1D tensors must be F32") # if f32 desired, convert any float16 to float32 if self.ftype == 0 and data_dtype == np.float16: @@ -1617,7 +1705,7 @@ class DbrxModel(Model): if self.ftype == 1 and data_dtype == np.float32 and n_dims > 1: data = data.astype(np.float16) - print(f"{new_name}, n_dims = {n_dims}, shape = {data.shape}, {old_dtype} --> {data.dtype}") + logger.debug(f"{new_name}, n_dims = {n_dims}, shape = {data.shape}, {old_dtype} --> {data.dtype}") self.gguf_writer.add_tensor(new_name, data) @@ -1679,8 +1767,7 @@ class MiniCPMModel(Model): # map tensor names new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) if new_name is None: - print(f"Can not map tensor {name!r}") - sys.exit() + raise ValueError(f"Can not map tensor {name!r}") n_dims = len(data.shape) data_dtype = data.dtype @@ -1697,7 +1784,7 @@ class MiniCPMModel(Model): if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: data = data.astype(np.float16) - print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") + logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") self.gguf_writer.add_tensor(new_name, data) @@ -1763,8 +1850,7 @@ class QwenModel(Model): # map tensor names new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) if new_name is None: - print(f"Can not map tensor {name!r}") - sys.exit() + raise ValueError(f"Can not map tensor {name!r}") n_dims = len(data.shape) data_dtype = data.dtype @@ -1781,7 +1867,7 @@ class QwenModel(Model): if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: data = data.astype(np.float16) - print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") + logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") self.gguf_writer.add_tensor(new_name, data) @@ -1789,6 +1875,12 @@ class QwenModel(Model): class Qwen2Model(Model): model_arch = gguf.MODEL_ARCH.QWEN2 + def set_vocab(self): + try: + self._set_vocab_sentencepiece() + except FileNotFoundError: + self._set_vocab_gpt2() + @Model.register("Qwen2MoeForCausalLM") class Qwen2MoeModel(Model): @@ -1852,10 +1944,9 @@ class Qwen2MoeModel(Model): new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias")) if new_name is None: - print(f"Can not map tensor {name!r}") - sys.exit() + raise ValueError(f"Can not map tensor {name!r}") - print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}") + logger.debug(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}") self.gguf_writer.add_tensor(new_name, data) continue @@ -1863,8 +1954,7 @@ class Qwen2MoeModel(Model): # map tensor names new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) if new_name is None: - print(f"Can not map tensor {name!r}") - sys.exit() + raise ValueError(f"Can not map tensor {name!r}") n_dims = len(data.shape) data_dtype = data.dtype @@ -1881,7 +1971,7 @@ class Qwen2MoeModel(Model): if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: data = data.astype(np.float16) - print(f"{new_name}, n_dims = {n_dims}, shape = {data.shape}, {old_dtype} --> {data.dtype}") + logger.debug(f"{new_name}, n_dims = {n_dims}, shape = {data.shape}, {old_dtype} --> {data.dtype}") self.gguf_writer.add_tensor(new_name, data) @@ -1926,8 +2016,7 @@ class GPT2Model(Model): # map tensor names new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) if new_name is None: - print(f"Can not map tensor {name!r}") - sys.exit() + raise ValueError(f"Can not map tensor {name!r}") n_dims = len(data.shape) data_dtype = data.dtype @@ -1944,13 +2033,13 @@ class GPT2Model(Model): if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: data = data.astype(np.float16) - print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") + logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") self.gguf_writer.add_tensor(new_name, data) # note: GPT2 output is tied to (same as) wte in original model if new_name == "token_embd.weight": - print(f"output.weight, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") + logger.info(f"output.weight, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") self.gguf_writer.add_tensor("output.weight", data) @@ -1979,6 +2068,91 @@ class Phi2Model(Model): self.gguf_writer.add_add_bos_token(False) +@Model.register("Phi3ForCausalLM") +class Phi3MiniModel(Model): + model_arch = gguf.MODEL_ARCH.PHI3 + + def set_vocab(self): + from sentencepiece import SentencePieceProcessor + + tokenizer_path = self.dir_model / 'tokenizer.model' + + if not tokenizer_path.is_file(): + raise ValueError(f'Error: Missing {tokenizer_path}') + + tokenizer = SentencePieceProcessor(str(tokenizer_path)) + + vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size()) + + tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)] + scores: list[float] = [-10000.0] * vocab_size + toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size + + for token_id in range(tokenizer.vocab_size()): + + piece = tokenizer.id_to_piece(token_id) + text = piece.encode("utf-8") + score = tokenizer.get_score(token_id) + + toktype = SentencePieceTokenTypes.NORMAL + if tokenizer.is_unknown(token_id): + toktype = SentencePieceTokenTypes.UNKNOWN + elif tokenizer.is_control(token_id): + toktype = SentencePieceTokenTypes.CONTROL + elif tokenizer.is_unused(token_id): + toktype = SentencePieceTokenTypes.UNUSED + elif tokenizer.is_byte(token_id): + toktype = SentencePieceTokenTypes.BYTE + + tokens[token_id] = text + scores[token_id] = score + toktypes[token_id] = toktype + + added_tokens_file = self.dir_model / 'added_tokens.json' + if added_tokens_file.is_file(): + with open(added_tokens_file, "r", encoding="utf-8") as f: + added_tokens_json = json.load(f) + + for key in added_tokens_json: + token_id = added_tokens_json[key] + if (token_id >= vocab_size): + logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}') + continue + + tokens[token_id] = key.encode("utf-8") + scores[token_id] = -1000.0 + toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED + + self.gguf_writer.add_tokenizer_model("llama") + self.gguf_writer.add_tokenizer_pre("default") + self.gguf_writer.add_token_list(tokens) + self.gguf_writer.add_token_scores(scores) + self.gguf_writer.add_token_types(toktypes) + + special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) + special_vocab.add_to_gguf(self.gguf_writer) + + def set_gguf_parameters(self): + block_count = self.find_hparam(["num_hidden_layers", "n_layer"]) + + rot_pct = 1.0 + n_embd = self.find_hparam(["hidden_size", "n_embd"]) + n_head = self.find_hparam(["num_attention_heads", "n_head"]) + rms_eps = self.find_hparam(["rms_norm_eps"]) + + self.gguf_writer.add_name("Phi3") + self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"])) + + self.gguf_writer.add_embedding_length(n_embd) + self.gguf_writer.add_feed_forward_length(8192) + self.gguf_writer.add_block_count(block_count) + self.gguf_writer.add_head_count(n_head) + self.gguf_writer.add_head_count_kv(n_head) + self.gguf_writer.add_layer_norm_rms_eps(rms_eps) + self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head) + self.gguf_writer.add_file_type(self.ftype) + + @Model.register("PlamoForCausalLM") class PlamoModel(Model): model_arch = gguf.MODEL_ARCH.PLAMO @@ -2024,8 +2198,7 @@ class PlamoModel(Model): # map tensor names new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) if new_name is None: - print(f"Can not map tensor {name!r}") - sys.exit() + raise ValueError(f"Can not map tensor {name!r}") # shuffle for broadcasting of gqa in ggml_mul_mat if new_name.endswith("attn_q.weight"): @@ -2056,7 +2229,7 @@ class PlamoModel(Model): if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: data = data.astype(np.float16) - print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") + logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") self.gguf_writer.add_tensor(new_name, data) @@ -2102,8 +2275,7 @@ class CodeShellModel(Model): # map tensor names new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) if new_name is None: - print(f"Can not map tensor {name!r}") - sys.exit() + raise ValueError(f"Can not map tensor {name!r}") n_dims = len(data.shape) data_dtype = data.dtype @@ -2120,13 +2292,13 @@ class CodeShellModel(Model): if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: data = data.astype(np.float16) - print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") + logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") self.gguf_writer.add_tensor(new_name, data) if not has_lm_head and name == "transformer.wte.weight": self.gguf_writer.add_tensor("output.weight", data) - print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}") + logger.info(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}") @Model.register("InternLM2ForCausalLM") @@ -2148,7 +2320,7 @@ class InternLM2Model(Model): toktypes: list[int] = [] if not tokenizer_path.is_file(): - print(f'Error: Missing {tokenizer_path}', file=sys.stderr) + logger.error(f'Error: Missing {tokenizer_path}') sys.exit(1) sentencepiece_model = model.ModelProto() @@ -2165,7 +2337,7 @@ class InternLM2Model(Model): if text == b"\x00": # (TODO): fixme # Hack here and replace the \x00 characters. - print(f"InternLM2 convert token '{text}' to '🐉'!") + logger.debug(f"InternLM2 convert token '{text}' to '🐉'!") text = "🐉" toktype = SentencePieceTokenTypes.NORMAL @@ -2193,6 +2365,7 @@ class InternLM2Model(Model): toktypes.append(SentencePieceTokenTypes.USER_DEFINED) self.gguf_writer.add_tokenizer_model("llama") + self.gguf_writer.add_tokenizer_pre("default") self.gguf_writer.add_token_list(tokens) self.gguf_writer.add_token_scores(scores) self.gguf_writer.add_token_types(toktypes) @@ -2205,7 +2378,7 @@ class InternLM2Model(Model): # TODO: this is a hack, should be fixed # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048 special_vocab.special_token_ids["eos"] = self._try_get_sft_eos(tokenizer) - print(f"Replace eos:{old_eos} with a special token:{special_vocab.special_token_ids['eos']} \ + logger.warning(f"Replace eos:{old_eos} with a special token:{special_vocab.special_token_ids['eos']} \ in chat mode so that the conversation can end normally.") special_vocab.add_to_gguf(self.gguf_writer) @@ -2250,8 +2423,7 @@ in chat mode so that the conversation can end normally.") # map tensor names new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) if new_name is None: - print(f"Can not map tensor {name!r}") - sys.exit() + raise ValueError(f"Can not map tensor {name!r}") n_dims = len(data.shape) data_dtype = data.dtype @@ -2268,7 +2440,7 @@ in chat mode so that the conversation can end normally.") if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: data = data.astype(np.float16) - print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") + logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") self.gguf_writer.add_tensor(new_name, data) def write_tensors(self): @@ -2342,7 +2514,7 @@ class BertModel(Model): self.gguf_writer.add_pooling_type(pooling_type) def set_vocab(self): - tokens, toktypes = self.get_basic_vocab() + tokens, toktypes, tokpre = self.get_vocab_base() self.vocab_size = len(tokens) # we need this to validate the size of the token_type embeddings @@ -2360,6 +2532,7 @@ class BertModel(Model): # add vocab to gguf self.gguf_writer.add_tokenizer_model("bert") + self.gguf_writer.add_tokenizer_pre(tokpre) self.gguf_writer.add_token_list(tokens) self.gguf_writer.add_token_types(toktypes) @@ -2378,8 +2551,11 @@ class BertModel(Model): # map tensor names new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) if new_name is None: - print(f"Can not map tensor {name!r}") - sys.exit() + raise ValueError(f"Can not map tensor {name!r}") + + # convert any unsupported data types to float32 + if data_torch.dtype not in (torch.float16, torch.float32): + data_torch = data_torch.to(torch.float32) data = data_torch.squeeze().numpy() n_dims = len(data.shape) @@ -2395,7 +2571,7 @@ class BertModel(Model): # if f32 desired, convert any float16 to float32 new_dtype = np.float32 - print(f"{new_name}, n_dims = {n_dims}, {data_torch.dtype} --> {new_dtype}") + logger.info(f"{new_name}, n_dims = {n_dims}, {data_torch.dtype} --> {new_dtype}") if data.dtype != new_dtype: data = data.astype(new_dtype) @@ -2474,7 +2650,7 @@ class GemmaModel(Model): # lm_head is not used in llama.cpp, while autoawq will include this tensor in model # To prevent errors, skip loading lm_head.weight. if name == "lm_head.weight": - print(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.") + logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.") continue old_dtype = data_torch.dtype @@ -2491,8 +2667,7 @@ class GemmaModel(Model): # map tensor names new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) if new_name is None: - print(f"Can not map tensor {name!r}") - sys.exit() + raise ValueError(f"Can not map tensor {name!r}") n_dims = len(data.shape) data_dtype = data.dtype @@ -2503,7 +2678,7 @@ class GemmaModel(Model): if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: data = data.astype(np.float16) - print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") + logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") self.gguf_writer.add_tensor(new_name, data) @@ -2531,12 +2706,15 @@ class MambaModel(Model): else: # Use the GPT-NeoX tokenizer when no tokenizer files are present tokenizer_path = Path(sys.path[0]) / "models" / "ggml-vocab-gpt-neox.gguf" - print(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'") + logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'") neox_reader = gguf.GGUFReader(tokenizer_path, "r") field = neox_reader.get_field(gguf.Keys.Tokenizer.MODEL) self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1])) + field = neox_reader.get_field(gguf.Keys.Tokenizer.PRE) + self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1])) + field = neox_reader.get_field(gguf.Keys.Tokenizer.LIST) self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size]) @@ -2600,17 +2778,16 @@ class MambaModel(Model): # map tensor names new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) if new_name is None: - print(f"Can not map tensor {name!r}") - sys.exit() + raise ValueError(f"Can not map tensor {name!r}") if name.endswith(".A_log"): - print("A_log --> A ==> " + new_name) + logger.debug("A_log --> A ==> " + new_name) data_torch = -torch.exp(data_torch) # assuming token_embd.weight is seen before output.weight if tok_embd is not None and new_name == output_name: if torch.equal(tok_embd, data_torch): - print(f"{output_name} is equivalent to {tok_embd_name}, omitting") + logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting") continue if new_name == tok_embd_name: tok_embd = data_torch @@ -2633,7 +2810,7 @@ class MambaModel(Model): if self.ftype == 1 and data_dtype == np.float32 and new_weight_name.endswith((".ssm_in", ".ssm_out", "token_embd", "output")) and n_dims == 2: data = data.astype(np.float16) - print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") + logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") self.gguf_writer.add_tensor(new_name, data) @@ -2663,8 +2840,9 @@ class OlmoModel(Model): def set_gguf_parameters(self): super().set_gguf_parameters() self.gguf_writer.add_layer_norm_eps(1e-5) - if "clip_qkv" in self.hparams is not None: - self.gguf_writer.add_clamp_kqv(self.hparams["clip_qkv"]) + clip_qkv = self.hparams.get("clip_qkv") + if clip_qkv is not None: + self.gguf_writer.add_clamp_kqv(clip_qkv) # Same as super class, but permuting q_proj, k_proj # Copied from: LlamaModel @@ -2692,8 +2870,7 @@ class OlmoModel(Model): # map tensor names new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) if new_name is None: - print(f"Can not map tensor {name!r}") - sys.exit() + raise ValueError(f"Can not map tensor {name!r}") n_dims = len(data.shape) data_dtype = data.dtype @@ -2710,7 +2887,7 @@ class OlmoModel(Model): if self.ftype == 1 and data_dtype == np.float32 and n_dims == 2: data = data.astype(np.float16) - print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") + logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") self.gguf_writer.add_tensor(new_name, data) @@ -2742,6 +2919,8 @@ def parse_args() -> argparse.Namespace: help="directory containing model file", ) parser.add_argument("--use-temp-file", action="store_true", help="use the tempfile library while processing (helpful when running out of memory, process killed)") + parser.add_argument("--model-name", type=str, default=None, help="name of the model") + parser.add_argument("--verbose", action="store_true", help="increase output verbosity") return parser.parse_args() @@ -2749,6 +2928,8 @@ def parse_args() -> argparse.Namespace: def main() -> None: args = parse_args() + logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO) + dir_model = args.model if args.awq_path: @@ -2757,15 +2938,15 @@ def main() -> None: tmp_model_path = args.model / "weighted_model" dir_model = tmp_model_path if tmp_model_path.is_dir(): - print(f"{tmp_model_path} exists as a weighted model.") + logger.info(f"{tmp_model_path} exists as a weighted model.") else: tmp_model_path.mkdir(parents=True, exist_ok=True) - print("Saving new weighted model ...") + logger.info("Saving new weighted model ...") add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path)) - print(f"Saved weighted model at {tmp_model_path}.") + logger.info(f"Saved weighted model at {tmp_model_path}.") if not dir_model.is_dir(): - print(f'Error: {args.model} is not a directory', file=sys.stderr) + logger.error(f'Error: {args.model} is not a directory') sys.exit(1) ftype_map = { @@ -2779,7 +2960,7 @@ def main() -> None: # output in the same directory as the model by default fname_out = dir_model / f'ggml-model-{args.outtype}.gguf' - print(f"Loading model: {dir_model.name}") + logger.info(f"Loading model: {dir_model.name}") hparams = Model.load_hparams(dir_model) @@ -2787,20 +2968,20 @@ def main() -> None: model_class = Model.from_model_architecture(hparams["architectures"][0]) model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian, args.use_temp_file) - print("Set model parameters") + logger.info("Set model parameters") model_instance.set_gguf_parameters() - print("Set model tokenizer") + logger.info("Set model tokenizer") model_instance.set_vocab() if args.vocab_only: - print(f"Exporting model vocab to '{fname_out}'") + logger.info(f"Exporting model vocab to '{fname_out}'") model_instance.write_vocab() else: - print(f"Exporting model to '{fname_out}'") + logger.info(f"Exporting model to '{fname_out}'") model_instance.write() - print(f"Model successfully exported to '{fname_out}'") + logger.info(f"Model successfully exported to '{fname_out}'") if __name__ == '__main__': diff --git a/convert-llama-ggml-to-gguf.py b/convert-llama-ggml-to-gguf.py index cd9644fcb..9349de3b3 100755 --- a/convert-llama-ggml-to-gguf.py +++ b/convert-llama-ggml-to-gguf.py @@ -1,6 +1,7 @@ #!/usr/bin/env python3 from __future__ import annotations +import logging import argparse import os import struct @@ -14,6 +15,8 @@ if 'NO_LOCAL_GGUF' not in os.environ: sys.path.insert(1, str(Path(__file__).parent / 'gguf-py')) import gguf +logger = logging.getLogger("ggml-to-gguf") + class GGMLFormat(IntEnum): GGML = 0 @@ -125,7 +128,6 @@ class Tensor: self.start_offset = offset self.len_bytes = n_bytes offset += n_bytes - # print(n_dims, name_len, dtype, self.dims, self.name, pad) return offset - orig_offset @@ -175,7 +177,7 @@ class GGMLModel: offset += self.validate_header(data, offset) hp = Hyperparameters() offset += hp.load(data, offset) - print(f'* File format: {self.file_format.name}v{self.format_version} with ftype {hp.ftype.name}') + logger.info(f'* File format: {self.file_format.name}v{self.format_version} with ftype {hp.ftype.name}') self.validate_conversion(hp.ftype) vocab = Vocab(load_scores = self.file_format > GGMLFormat.GGML) offset += vocab.load(data, offset, hp.n_vocab) @@ -215,12 +217,12 @@ class GGMLToGGUF: if float(hp.n_head) / float(x) == gqa: n_kv_head = x assert n_kv_head is not None, "Couldn't determine n_kv_head from GQA param" - print(f'- Guessed n_kv_head = {n_kv_head} based on GQA {cfg.gqa}') + logger.info(f'- Guessed n_kv_head = {n_kv_head} based on GQA {cfg.gqa}') self.n_kv_head = n_kv_head self.name_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.LLAMA, ggml_model.hyperparameters.n_layer) def save(self): - print('* Preparing to save GGUF file') + logger.info('* Preparing to save GGUF file') gguf_writer = gguf.GGUFWriter( self.cfg.output, gguf.MODEL_ARCH_NAMES[gguf.MODEL_ARCH.LLAMA], @@ -230,11 +232,11 @@ class GGMLToGGUF: if self.special_vocab is not None: self.special_vocab.add_to_gguf(gguf_writer) self.add_tensors(gguf_writer) - print(" gguf: write header") + logger.info(" gguf: write header") gguf_writer.write_header_to_file() - print(" gguf: write metadata") + logger.info(" gguf: write metadata") gguf_writer.write_kv_data_to_file() - print(" gguf: write tensors") + logger.info(" gguf: write tensors") gguf_writer.write_tensors_to_file() gguf_writer.close() @@ -250,7 +252,7 @@ class GGMLToGGUF: name = cfg.name if cfg.name is not None else cfg.input.name except UnicodeDecodeError: name = None - print('* Adding model parameters and KV items') + logger.info('* Adding model parameters and KV items') if name is not None: gguf_writer.add_name(name) gguf_writer.add_description(desc) @@ -281,12 +283,13 @@ class GGMLToGGUF: def add_vocab(self, gguf_writer): hp = self.model.hyperparameters gguf_writer.add_tokenizer_model('llama') + gguf_writer.add_tokenizer_pre('default') tokens = [] scores = [] toktypes = [] if self.vocab_override is not None: vo = self.vocab_override - print('* Adding vocab item(s)') + logger.info('* Adding vocab item(s)') for (idx, (vbytes, score, ttype)) in enumerate(vo.all_tokens()): tokens.append(vbytes) scores.append(score) @@ -298,7 +301,7 @@ class GGMLToGGUF: if len(toktypes) > 0: gguf_writer.add_token_types(toktypes) return - print(f'* Adding {hp.n_vocab} vocab item(s)') + logger.info(f'* Adding {hp.n_vocab} vocab item(s)') assert len(self.model.vocab.items) >= 3, 'Cannot handle unexpectedly short model vocab' for (tokid, (vbytes, vscore)) in enumerate(self.model.vocab.items): tt = 1 # Normal @@ -333,7 +336,7 @@ class GGMLToGGUF: def add_tensors(self, gguf_writer): tensor_map = self.name_map data = self.data - print(f'* Adding {len(self.model.tensors)} tensor(s)') + logger.info(f'* Adding {len(self.model.tensors)} tensor(s)') for tensor in self.model.tensors: name = str(tensor.name, 'UTF-8') mapped_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias")) @@ -343,7 +346,6 @@ class GGMLToGGUF: temp = tempdims[1] tempdims[1] = tempdims[0] tempdims[0] = temp - # print(f'+ {tensor.name} | {mapped_name} {tensor.dims} :: {tempdims}') gguf_writer.add_tensor( mapped_name, data[tensor.start_offset:tensor.start_offset + tensor.len_bytes], @@ -400,33 +402,35 @@ def handle_args(): help="directory containing tokenizer.model, if separate from model file - only meaningful with --model-metadata-dir") parser.add_argument("--vocabtype", default="spm,hfft", help="vocab format - only meaningful with --model-metadata-dir and/or --vocab-dir (default: spm,hfft)") + parser.add_argument("--verbose", action="store_true", help="increase output verbosity") return parser.parse_args() def main(): cfg = handle_args() - print(f'* Using config: {cfg}') - print('\n=== WARNING === Be aware that this conversion script is best-effort. Use a native GGUF model if possible. === WARNING ===\n') + logging.basicConfig(level=logging.DEBUG if cfg.verbose else logging.INFO) + logger.info(f'* Using config: {cfg}') + logger.warning('=== WARNING === Be aware that this conversion script is best-effort. Use a native GGUF model if possible. === WARNING ===') if cfg.model_metadata_dir is None and (cfg.gqa == 1 or cfg.eps == '5.0e-06'): - print('- Note: If converting LLaMA2, specifying "--eps 1e-5" is required. 70B models also need "--gqa 8".') + logger.info('- Note: If converting LLaMA2, specifying "--eps 1e-5" is required. 70B models also need "--gqa 8".') data = np.memmap(cfg.input, mode = 'r') model = GGMLModel() - print('* Scanning GGML input file') + logger.info('* Scanning GGML input file') offset = model.load(data, 0) # noqa - print(f'* GGML model hyperparameters: {model.hyperparameters}') + logger.info(f'* GGML model hyperparameters: {model.hyperparameters}') vocab_override = None params_override = None special_vocab = None if cfg.model_metadata_dir is not None: (params_override, vocab_override, special_vocab) = handle_metadata(cfg, model.hyperparameters) - print('!! Note: When overriding params the --gqa, --eps and --context-length options are ignored.') - print(f'* Overriding params: {params_override}') - print(f'* Overriding vocab: {vocab_override}') - print(f'* Special vocab: {special_vocab}') + logger.info('!! Note: When overriding params the --gqa, --eps and --context-length options are ignored.') + logger.info(f'* Overriding params: {params_override}') + logger.info(f'* Overriding vocab: {vocab_override}') + logger.info(f'* Special vocab: {special_vocab}') else: - print('\n=== WARNING === Special tokens may not be converted correctly. Use --model-metadata-dir if possible === WARNING ===\n') + logger.warning('\n=== WARNING === Special tokens may not be converted correctly. Use --model-metadata-dir if possible === WARNING ===\n') if model.file_format == GGMLFormat.GGML: - print('! This is a very old GGML file that does not contain vocab scores. Strongly recommend using model metadata!') + logger.info('! This is a very old GGML file that does not contain vocab scores. Strongly recommend using model metadata!') converter = GGMLToGGUF( model, data, cfg, params_override = params_override, @@ -434,7 +438,7 @@ def main(): special_vocab = special_vocab ) converter.save() - print(f'* Successful completion. Output saved to: {cfg.output}') + logger.info(f'* Successful completion. Output saved to: {cfg.output}') if __name__ == '__main__': diff --git a/convert-lora-to-ggml.py b/convert-lora-to-ggml.py index 9a9936dec..f09fa85fe 100755 --- a/convert-lora-to-ggml.py +++ b/convert-lora-to-ggml.py @@ -1,6 +1,7 @@ #!/usr/bin/env python3 from __future__ import annotations +import logging import json import os import struct @@ -15,6 +16,9 @@ if 'NO_LOCAL_GGUF' not in os.environ: sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf')) import gguf +logging.basicConfig(level=logging.DEBUG) +logger = logging.getLogger("lora-to-gguf") + NUMPY_TYPE_TO_FTYPE: dict[str, int] = {"float32": 0, "float16": 1} @@ -48,11 +52,9 @@ def write_tensor_header(fout: BinaryIO, name: str, shape: Sequence[int], data_ty if __name__ == '__main__': if len(sys.argv) < 2: - print(f"Usage: python {sys.argv[0]} [arch]") - print( - "Path must contain HuggingFace PEFT LoRA files 'adapter_config.json' and 'adapter_model.bin'" - ) - print(f"Arch must be one of {list(gguf.MODEL_ARCH_NAMES.values())} (default: llama)") + logger.info(f"Usage: python {sys.argv[0]} [arch]") + logger.info("Path must contain HuggingFace PEFT LoRA files 'adapter_config.json' and 'adapter_model.bin'") + logger.info(f"Arch must be one of {list(gguf.MODEL_ARCH_NAMES.values())} (default: llama)") sys.exit(1) input_json = os.path.join(sys.argv[1], "adapter_config.json") @@ -70,7 +72,7 @@ if __name__ == '__main__': arch_name = sys.argv[2] if len(sys.argv) == 3 else "llama" if arch_name not in gguf.MODEL_ARCH_NAMES.values(): - print(f"Error: unsupported architecture {arch_name}") + logger.error(f"Error: unsupported architecture {arch_name}") sys.exit(1) arch = list(gguf.MODEL_ARCH_NAMES.keys())[list(gguf.MODEL_ARCH_NAMES.values()).index(arch_name)] @@ -80,21 +82,21 @@ if __name__ == '__main__': params = json.load(f) if params["peft_type"] != "LORA": - print(f"Error: unsupported adapter type {params['peft_type']}, expected LORA") + logger.error(f"Error: unsupported adapter type {params['peft_type']}, expected LORA") sys.exit(1) if params["fan_in_fan_out"] is True: - print("Error: param fan_in_fan_out is not supported") + logger.error("Error: param fan_in_fan_out is not supported") sys.exit(1) if params["bias"] is not None and params["bias"] != "none": - print("Error: param bias is not supported") + logger.error("Error: param bias is not supported") sys.exit(1) # TODO: these seem to be layers that have been trained but without lora. # doesn't seem widely used but eventually should be supported if params["modules_to_save"] is not None and len(params["modules_to_save"]) > 0: - print("Error: param modules_to_save is not supported") + logger.error("Error: param modules_to_save is not supported") sys.exit(1) with open(output_path, "wb") as fout: @@ -125,13 +127,13 @@ if __name__ == '__main__': suffix = k[-len(lora_suffixes[0]):] k = k[: -len(lora_suffixes[0])] else: - print(f"Error: unrecognized tensor name {orig_k}") + logger.error(f"Error: unrecognized tensor name {orig_k}") sys.exit(1) tname = name_map.get_name(k) if tname is None: - print(f"Error: could not map tensor name {orig_k}") - print(" Note: the arch parameter must be specified if the model is not llama") + logger.error(f"Error: could not map tensor name {orig_k}") + logger.error(" Note: the arch parameter must be specified if the model is not llama") sys.exit(1) if suffix == ".lora_A.weight": @@ -141,8 +143,8 @@ if __name__ == '__main__': else: assert False - print(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB") + logger.info(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB") write_tensor_header(fout, tname, t.shape, t.dtype) t.tofile(fout) - print(f"Converted {input_json} and {input_model} to {output_path}") + logger.info(f"Converted {input_json} and {input_model} to {output_path}") diff --git a/convert-persimmon-to-gguf.py b/convert-persimmon-to-gguf.py index 69be17f94..07dcade74 100755 --- a/convert-persimmon-to-gguf.py +++ b/convert-persimmon-to-gguf.py @@ -1,6 +1,7 @@ #!/usr/bin/env python3 from __future__ import annotations +import logging import argparse import os import sys @@ -14,6 +15,8 @@ if 'NO_LOCAL_GGUF' not in os.environ: sys.path.insert(1, str(Path(__file__).parent / 'gguf-py')) import gguf +logger = logging.getLogger("persimmon-to-gguf") + def _flatten_dict(dct, tensors, prefix=None): assert isinstance(dct, dict) @@ -30,9 +33,9 @@ def _flatten_dict(dct, tensors, prefix=None): def _get_sentencepiece_tokenizer_info(dir_model: Path): tokenizer_path = dir_model / 'adept_vocab.model' - print('gguf: getting sentencepiece tokenizer from', tokenizer_path) + logger.info('getting sentencepiece tokenizer from', tokenizer_path) tokenizer = SentencePieceProcessor(str(tokenizer_path)) - print('gguf: adding tokens') + logger.info('adding tokens') tokens: list[bytes] = [] scores: list[float] = [] toktypes: list[int] = [] @@ -67,8 +70,10 @@ def main(): parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input") parser.add_argument("--ckpt-path", type=Path, help="path to persimmon checkpoint .pt file") parser.add_argument("--model-dir", type=Path, help="directory containing model e.g. 8b_chat_model_release") - parser.add_argument("--adept-inference-dir", type=str, help="path to adept-inference code directory") + parser.add_argument("--adept-inference-dir", type=str, help="path to adept-inference code directory") + parser.add_argument("--verbose", action="store_true", help="increase output verbosity") args = parser.parse_args() + logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO) sys.path.append(str(args.adept_inference_dir)) persimmon_model = torch.load(args.ckpt_path) hparams = persimmon_model['args'] @@ -99,6 +104,7 @@ def main(): tokens, scores, toktypes = _get_sentencepiece_tokenizer_info(args.model_dir) gguf_writer.add_tokenizer_model('llama') + gguf_writer.add_tokenizer_pre('default') gguf_writer.add_token_list(tokens) gguf_writer.add_token_scores(scores) gguf_writer.add_token_types(toktypes) @@ -106,7 +112,7 @@ def main(): gguf_writer.add_eos_token_id(71013) tensor_map = gguf.get_tensor_name_map(arch, block_count) - print(tensor_map) + logger.info(tensor_map) for name in tensors.keys(): data_torch = tensors[name] if name.endswith(".self_attention.rotary_emb.inv_freq"): @@ -116,22 +122,21 @@ def main(): data = data_torch.to(torch.float32).squeeze().numpy() new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias")) if new_name is None: - print("Can not map tensor '" + name + "'") - sys.exit() + raise ValueError(f"Can not map tensor '{name}'") + n_dims = len(data.shape) - print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype)) + logger.debug(f"{new_name}, n_dims = {str(n_dims)}, {str(old_dtype)} --> {str(data.dtype)}") gguf_writer.add_tensor(new_name, data) - print("gguf: write header") + logger.info("gguf: write header") gguf_writer.write_header_to_file() - print("gguf: write metadata") + logger.info("gguf: write metadata") gguf_writer.write_kv_data_to_file() - print("gguf: write tensors") + logger.info("gguf: write tensors") gguf_writer.write_tensors_to_file() gguf_writer.close() - print(f"gguf: model successfully exported to '{args.outfile}'") - print("") + logger.info(f"gguf: model successfully exported to '{args.outfile}'") if __name__ == '__main__': diff --git a/convert.py b/convert.py index 1c700cf6a..aebfc50f3 100755 --- a/convert.py +++ b/convert.py @@ -1,6 +1,7 @@ #!/usr/bin/env python3 from __future__ import annotations +import logging import argparse import concurrent.futures import enum @@ -35,6 +36,8 @@ import gguf if TYPE_CHECKING: from typing_extensions import Self, TypeAlias +logger = logging.getLogger("convert") + if hasattr(faulthandler, 'register') and hasattr(signal, 'SIGUSR1'): faulthandler.register(signal.SIGUSR1) @@ -643,7 +646,6 @@ class LlamaHfVocab(Vocab): def permute(weights: NDArray, n_head: int, n_head_kv: int) -> NDArray: - # print( "permute debug " + str(weights.shape[0]) + " x " + str(weights.shape[1]) + " nhead " + str(n_head) + " nheadkv " + str(n_kv_head) ) if n_head_kv is not None and n_head != n_head_kv: n_head = n_head_kv return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) @@ -1033,12 +1035,12 @@ def check_vocab_size(params: Params, vocab: BaseVocab, pad_vocab: bool = False) # Check for a vocab size mismatch if params.n_vocab == vocab.vocab_size: - print("Ignoring added_tokens.json since model matches vocab size without it.") + logger.warning("Ignoring added_tokens.json since model matches vocab size without it.") return if pad_vocab and params.n_vocab > vocab.vocab_size: pad_count = params.n_vocab - vocab.vocab_size - print( + logger.debug( f"Padding vocab with {pad_count} token(s) - through " ) for i in range(1, pad_count + 1): @@ -1166,7 +1168,7 @@ class OutputFile: elapsed = time.time() - start size = ' x '.join(f"{dim:6d}" for dim in lazy_tensor.shape) padi = len(str(len(model))) - print( + logger.info( f"[{i + 1:{padi}d}/{len(model)}] Writing tensor {name:38s} | size {size:16} | type {lazy_tensor.data_type.name:4} | T+{int(elapsed):4}" ) self.gguf.write_tensor_data(ndarray) @@ -1281,12 +1283,12 @@ def convert_model_names(model: LazyModel, params: Params, skip_unknown: bool) -> # HF models permut or pack some of the tensors, so we need to undo that for i in itertools.count(): if f"model.layers.{i}.self_attn.q_proj.weight" in model: - print(f"Permuting layer {i}") + logger.debug(f"Permuting layer {i}") tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], params.n_head, params.n_head) tmp[f"model.layers.{i}.self_attn.k_proj.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], params.n_head, params.n_head_kv) # tmp[f"model.layers.{i}.self_attn.v_proj.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"] elif f"model.layers.{i}.self_attn.W_pack.weight" in model: - print(f"Unpacking and permuting layer {i}") + logger.debug(f"Unpacking and permuting layer {i}") tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 0, params.n_head, params.n_head) tmp[f"model.layers.{i}.self_attn.k_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 1, params.n_head, params.n_head_kv) tmp[f"model.layers.{i}.self_attn.v_proj.weight"] = part_lazy (model[f"model.layers.{i}.self_attn.W_pack.weight"], 2) @@ -1299,15 +1301,15 @@ def convert_model_names(model: LazyModel, params: Params, skip_unknown: bool) -> tensor_type, name_new = tmap.get_type_and_name(name, try_suffixes = (".weight", ".bias")) or (None, None) if name_new is None: if skip_unknown: - print(f"Unexpected tensor name: {name} - skipping") + logger.warning(f"Unexpected tensor name: {name} - skipping") continue raise ValueError(f"Unexpected tensor name: {name}. Use --skip-unknown to ignore it (e.g. LLaVA)") if tensor_type in should_skip: - print(f"skipping tensor {name_new}") + logger.debug(f"skipping tensor {name_new}") continue - print(f"{name:48s} -> {name_new:40s} | {lazy_tensor.data_type.name:6s} | {lazy_tensor.shape}") + logger.debug(f"{name:48s} -> {name_new:40s} | {lazy_tensor.data_type.name:6s} | {lazy_tensor.shape}") out[name_new] = lazy_tensor return out @@ -1372,7 +1374,7 @@ def load_some_model(path: Path) -> ModelPlus: paths = find_multifile_paths(path) models_plus: list[ModelPlus] = [] for path in paths: - print(f"Loading model file {path}") + logger.info(f"Loading model file {path}") models_plus.append(lazy_load_file(path)) model_plus = merge_multifile_models(models_plus) @@ -1413,7 +1415,7 @@ class VocabFactory: else: raise FileNotFoundError(f"Could not find a tokenizer matching any of {vocab_types}") - print(f"Loaded vocab file {vocab.fname_tokenizer!r}, type {vocab.name!r}") + logger.info(f"Loaded vocab file {vocab.fname_tokenizer!r}, type {vocab.name!r}") return vocab def load_vocab(self, vocab_types: list[str] | None, model_parent_path: Path) -> tuple[BaseVocab, gguf.SpecialVocab]: @@ -1438,19 +1440,19 @@ def default_outfile(model_paths: list[Path], file_type: GGMLFileType) -> Path: }[file_type] ret = model_paths[0].parent / f"ggml-model-{namestr}.gguf" if ret in model_paths: - sys.stderr.write( + logger.error( f"Error: Default output path ({ret}) would overwrite the input. " - "Please explicitly specify a path using --outfile.\n") + "Please explicitly specify a path using --outfile.") sys.exit(1) return ret def do_dump_model(model_plus: ModelPlus) -> None: - print(f"model_plus.paths = {model_plus.paths!r}") - print(f"model_plus.format = {model_plus.format!r}") - print(f"model_plus.vocab = {model_plus.vocab!r}") + print(f"model_plus.paths = {model_plus.paths!r}") # noqa: NP100 + print(f"model_plus.format = {model_plus.format!r}") # noqa: NP100 + print(f"model_plus.vocab = {model_plus.vocab!r}") # noqa: NP100 for name, lazy_tensor in model_plus.model.items(): - print(f"{name}: shape={lazy_tensor.shape} type={lazy_tensor.data_type}; {lazy_tensor.description}") + print(f"{name}: shape={lazy_tensor.shape} type={lazy_tensor.data_type}; {lazy_tensor.description}") # noqa: NP100 def main(args_in: list[str] | None = None) -> None: @@ -1473,8 +1475,18 @@ def main(args_in: list[str] | None = None) -> None: parser.add_argument("--big-endian", action="store_true", help="model is executed on big endian machine") parser.add_argument("--pad-vocab", action="store_true", help="add pad tokens when model vocab expects more than tokenizer metadata provides") parser.add_argument("--skip-unknown", action="store_true", help="skip unknown tensor names instead of failing") + parser.add_argument("--verbose", action="store_true", help="increase output verbosity") args = parser.parse_args(args_in) + + if args.verbose: + logging.basicConfig(level=logging.DEBUG) + elif args.dump_single or args.dump: + # Avoid printing anything besides the dump output + logging.basicConfig(level=logging.WARNING) + else: + logging.basicConfig(level=logging.INFO) + if args.no_vocab and args.vocab_only: raise ValueError("--vocab-only does not make sense with --no-vocab") @@ -1491,29 +1503,32 @@ def main(args_in: list[str] | None = None) -> None: if args.dump: do_dump_model(model_plus) return + endianess = gguf.GGUFEndian.LITTLE if args.big_endian: endianess = gguf.GGUFEndian.BIG - params = Params.load(model_plus) - if params.n_ctx == -1: - if args.ctx is None: - msg = """\ - The model doesn't have a context size, and you didn't specify one with --ctx - Please specify one with --ctx: - - LLaMA v1: --ctx 2048 - - LLaMA v2: --ctx 4096""" - parser.error(textwrap.dedent(msg)) - params.n_ctx = args.ctx + params = None + if args.pad_vocab or not args.vocab_only: + params = Params.load(model_plus) + if params.n_ctx == -1: + if args.ctx is None: + msg = """\ + The model doesn't have a context size, and you didn't specify one with --ctx + Please specify one with --ctx: + - LLaMA v1: --ctx 2048 + - LLaMA v2: --ctx 4096""" + parser.error(textwrap.dedent(msg)) + params.n_ctx = args.ctx - if args.outtype: - params.ftype = { - "f32": GGMLFileType.AllF32, - "f16": GGMLFileType.MostlyF16, - "q8_0": GGMLFileType.MostlyQ8_0, - }[args.outtype] + if args.outtype: + params.ftype = { + "f32": GGMLFileType.AllF32, + "f16": GGMLFileType.MostlyF16, + "q8_0": GGMLFileType.MostlyQ8_0, + }[args.outtype] - print(f"params = {params}") + logger.info(f"params = {params}") model_parent_path = model_plus.paths[0].parent vocab_path = Path(args.vocab_dir or args.model or model_parent_path) @@ -1526,17 +1541,27 @@ def main(args_in: list[str] | None = None) -> None: if not args.outfile: raise ValueError("need --outfile if using --vocab-only") outfile = args.outfile + if params is None: + params = Params( + n_vocab = vocab.vocab_size, + n_embd = 1, + n_layer = 1, + n_ctx = 1, + n_ff = 1, + n_head = 1, + n_head_kv = 1, + f_norm_eps = 1e-5, + ) OutputFile.write_vocab_only(outfile, params, vocab, special_vocab, endianess=endianess, pad_vocab=args.pad_vocab) - print(f"Wrote {outfile}") + logger.info(f"Wrote {outfile}") return if model_plus.vocab is not None and args.vocab_dir is None and not args.no_vocab: vocab = model_plus.vocab - print(f"Vocab info: {vocab}") - print(f"Special vocab info: {special_vocab}") - + logger.info(f"Vocab info: {vocab}") + logger.info(f"Special vocab info: {special_vocab}") model = model_plus.model model = convert_model_names(model, params, args.skip_unknown) ftype = pick_output_type(model, args.outtype) @@ -1544,11 +1569,11 @@ def main(args_in: list[str] | None = None) -> None: outfile = args.outfile or default_outfile(model_plus.paths, ftype) params.ftype = ftype - print(f"Writing {outfile}, format {ftype}") + logger.info(f"Writing {outfile}, format {ftype}") OutputFile.write_all(outfile, ftype, params, model, vocab, special_vocab, concurrency=args.concurrency, endianess=endianess, pad_vocab=args.pad_vocab) - print(f"Wrote {outfile}") + logger.info(f"Wrote {outfile}") if __name__ == '__main__': diff --git a/docs/BLIS.md b/docs/BLIS.md index 0bcd6eeef..c933766b7 100644 --- a/docs/BLIS.md +++ b/docs/BLIS.md @@ -23,7 +23,7 @@ Install BLIS: sudo make install ``` -We recommend using openmp since it's easier to modify the cores been used. +We recommend using openmp since it's easier to modify the cores being used. ### llama.cpp compilation diff --git a/docs/HOWTO-add-model.md b/docs/HOWTO-add-model.md index a56b78344..48769cdf6 100644 --- a/docs/HOWTO-add-model.md +++ b/docs/HOWTO-add-model.md @@ -96,9 +96,9 @@ NOTE: The dimensions in `ggml` are typically in the reverse order of the `pytorc This is the funniest part, you have to provide the inference graph implementation of the new model architecture in `llama_build_graph`. -Have a look to existing implementation like `build_llama`, `build_dbrx` or `build_bert`. +Have a look at existing implementation like `build_llama`, `build_dbrx` or `build_bert`. -When implementing a new graph, please note that the underlying `ggml` backends might not support them all, support of missing backend operations can be added in another PR. +When implementing a new graph, please note that the underlying `ggml` backends might not support them all, support for missing backend operations can be added in another PR. Note: to debug the inference graph: you can use [eval-callback](../examples/eval-callback). diff --git a/examples/batched-bench/batched-bench.cpp b/examples/batched-bench/batched-bench.cpp index 1e34de620..2924d8116 100644 --- a/examples/batched-bench/batched-bench.cpp +++ b/examples/batched-bench/batched-bench.cpp @@ -32,7 +32,7 @@ int main(int argc, char ** argv) { gpt_params params; if (argc == 1 || argv[1][0] == '-') { - printf("usage: %s MODEL_PATH [N_KV_MAX] [N_BATCH] [N_UBATCH] [IS_PP_SHARED] [NGL] \n" , argv[0]); + printf("usage: %s MODEL_PATH [N_KV_MAX] [N_BATCH] [N_UBATCH] [FATTN] [IS_PP_SHARED] [NGL] \n" , argv[0]); printf(" , and PL are comma-separated lists of numbers without spaces\n\n"); printf(" example: %s ggml-model-f16.gguf 2048 2048 512 0 999 128,256,512 128,256 1,2,4,8,16,32\n\n", argv[0]); return 1 ; @@ -41,6 +41,7 @@ int main(int argc, char ** argv) { int n_kv_max = 2048; int n_batch = 2048; int n_ubatch = 512; + bool flash_attn = false; int is_pp_shared = 0; int n_gpu_layers = 0; @@ -66,23 +67,27 @@ int main(int argc, char ** argv) { } if (argc >= 6) { - is_pp_shared = std::atoi(argv[5]); + flash_attn = std::atoi(argv[5]); } if (argc >= 7) { - n_gpu_layers = std::atoi(argv[6]); + is_pp_shared = std::atoi(argv[6]); } if (argc >= 8) { - n_pp = parse_list(argv[7]); + n_gpu_layers = std::atoi(argv[7]); } if (argc >= 9) { - n_tg = parse_list(argv[8]); + n_pp = parse_list(argv[8]); } if (argc >= 10) { - n_pl = parse_list(argv[9]); + n_tg = parse_list(argv[9]); + } + + if (argc >= 11) { + n_pl = parse_list(argv[10]); } // init LLM @@ -108,10 +113,11 @@ int main(int argc, char ** argv) { llama_context_params ctx_params = llama_context_default_params(); - ctx_params.seed = 1234; - ctx_params.n_ctx = n_kv_max; - ctx_params.n_batch = n_batch; - ctx_params.n_ubatch = n_ubatch; + ctx_params.seed = 1234; + ctx_params.n_ctx = n_kv_max; + ctx_params.n_batch = n_batch; + ctx_params.n_ubatch = n_ubatch; + ctx_params.flash_attn = flash_attn; ctx_params.n_threads = params.n_threads; ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch; @@ -169,7 +175,7 @@ int main(int argc, char ** argv) { } LOG_TEE("\n"); - LOG_TEE("%s: n_kv_max = %d, n_batch = %d, n_ubatch = %d, is_pp_shared = %d, n_gpu_layers = %d, n_threads = %u, n_threads_batch = %u\n", __func__, n_kv_max, n_batch, n_ubatch, is_pp_shared, n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch); + LOG_TEE("%s: n_kv_max = %d, n_batch = %d, n_ubatch = %d, flash_attn = %d, is_pp_shared = %d, n_gpu_layers = %d, n_threads = %u, n_threads_batch = %u\n", __func__, n_kv_max, n_batch, n_ubatch, flash_attn, is_pp_shared, n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch); LOG_TEE("\n"); LOG_TEE("|%6s | %6s | %4s | %6s | %8s | %8s | %8s | %8s | %8s | %8s |\n", "PP", "TG", "B", "N_KV", "T_PP s", "S_PP t/s", "T_TG s", "S_TG t/s", "T s", "S t/s"); diff --git a/examples/finetune/finetune.cpp b/examples/finetune/finetune.cpp index 3da5317b3..22743b1bf 100644 --- a/examples/finetune/finetune.cpp +++ b/examples/finetune/finetune.cpp @@ -575,7 +575,7 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs( GGML_ASSERT(tokens_input->type == GGML_TYPE_I32); auto add_to_f32 = [] (struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b) { - if (ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16) { + if (ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16 || a->type == GGML_TYPE_BF16) { return ggml_add_cast(ctx, a, b, GGML_TYPE_F32); } else if (a->type == GGML_TYPE_F32) { return ggml_add(ctx, a, b); diff --git a/examples/gguf-split/gguf-split.cpp b/examples/gguf-split/gguf-split.cpp index 39c75e0a7..e04feeae3 100644 --- a/examples/gguf-split/gguf-split.cpp +++ b/examples/gguf-split/gguf-split.cpp @@ -32,6 +32,7 @@ struct split_params { int n_split_tensors = 128; std::string input; std::string output; + bool no_tensor_first_split = false; bool dry_run = false; }; @@ -49,6 +50,7 @@ static void split_print_usage(const char * executable) { printf(" --merge merge multiple GGUF to a single GGUF\n"); printf(" --split-max-tensors max tensors in each split (default: %d)\n", default_params.n_split_tensors); printf(" --split-max-size N(M|G) max size per split\n"); + printf(" --no-tensor-first-split do not add tensors to the first split (disabled by default)\n"); printf(" --dry-run only print out a split plan and exit, without writing any new files\n"); printf("\n"); } @@ -100,6 +102,10 @@ static void split_params_parse_ex(int argc, const char ** argv, split_params & p arg_found = true; params.dry_run = true; } + if (arg == "--no-tensor-first-split") { + arg_found = true; + params.no_tensor_first_split = true; + } if (is_op_set) { throw std::invalid_argument("error: either --split or --merge can be specified, but not both"); @@ -200,10 +206,10 @@ struct split_strategy { // because we need to know list of tensors for each file in advance, we will build all the ctx_out for all output splits int i_split = -1; struct gguf_context * ctx_out = NULL; - auto new_ctx_out = [&]() { + auto new_ctx_out = [&](bool allow_no_tensors) { i_split++; if (ctx_out != NULL) { - if (gguf_get_n_tensors(ctx_out) == 0) { + if (gguf_get_n_tensors(ctx_out) == 0 && !allow_no_tensors) { fprintf(stderr, "error: one of splits have 0 tensors. Maybe size or tensors limit is too small\n"); exit(EXIT_FAILURE); } @@ -220,7 +226,12 @@ struct split_strategy { }; // initialize ctx_out for the first split - new_ctx_out(); + new_ctx_out(false); + + // skip first split if no_tensor_first_split is set + if (params.no_tensor_first_split) { + new_ctx_out(true); + } // process tensors one by one size_t curr_tensors_size = 0; // current size by counting only tensors size (without metadata) @@ -230,7 +241,7 @@ struct split_strategy { size_t n_bytes = GGML_PAD(ggml_nbytes(t), GGUF_DEFAULT_ALIGNMENT); size_t next_tensors_size = curr_tensors_size + n_bytes; if (should_split(i, next_tensors_size)) { - new_ctx_out(); + new_ctx_out(false); curr_tensors_size = n_bytes; } else { curr_tensors_size = next_tensors_size; diff --git a/examples/gguf-split/tests.sh b/examples/gguf-split/tests.sh old mode 100644 new mode 100755 index 879522f7e..7ca6fa7f2 --- a/examples/gguf-split/tests.sh +++ b/examples/gguf-split/tests.sh @@ -4,16 +4,16 @@ set -eu if [ $# -lt 1 ] then - echo "usage: $0 path_to_build_binary [path_to_temp_folder]" - echo "example: $0 ../../build/bin ../../tmp" - exit 1 + echo "usage: $0 path_to_build_binary [path_to_temp_folder]" + echo "example: $0 ../../build/bin ../../tmp" + exit 1 fi if [ $# -gt 1 ] then - TMP_DIR=$2 + TMP_DIR=$2 else - TMP_DIR=/tmp + TMP_DIR=/tmp fi set -x @@ -21,7 +21,7 @@ set -x SPLIT=$1/gguf-split MAIN=$1/main WORK_PATH=$TMP_DIR/gguf-split -CUR_DIR=$(pwd) +ROOT_DIR=$(realpath $(dirname $0)/../../) mkdir -p "$WORK_PATH" @@ -30,8 +30,8 @@ rm -f $WORK_PATH/ggml-model-split*.gguf $WORK_PATH/ggml-model-merge*.gguf # 1. Get a model ( - cd $WORK_PATH - "$CUR_DIR"/../../scripts/hf.sh --repo ggml-org/gemma-1.1-2b-it-Q8_0-GGUF --file gemma-1.1-2b-it.Q8_0.gguf +cd $WORK_PATH +"$ROOT_DIR"/scripts/hf.sh --repo ggml-org/gemma-1.1-2b-it-Q8_0-GGUF --file gemma-1.1-2b-it.Q8_0.gguf ) echo PASS @@ -55,15 +55,15 @@ $MAIN --model $WORK_PATH/ggml-model-merge.gguf --random-prompt --n-predict 32 echo PASS echo -# 4. Split with no tensor in metadata -#$SPLIT --split-max-tensors 32 --no-tensor-in-metadata $WORK_PATH/ggml-model-merge.gguf $WORK_PATH/ggml-model-split-32-tensors -#echo PASS -#echo +# 4. Split with no tensors in the first split +$SPLIT --split-max-tensors 32 --no-tensor-first-split $WORK_PATH/ggml-model-merge.gguf $WORK_PATH/ggml-model-split-32-tensors +echo PASS +echo # 4b. Test the sharded model is loading properly -#$MAIN --model $WORK_PATH/ggml-model-split-32-tensors-00001-of-00006.gguf --random-prompt --n-predict 32 -#echo PASS -#echo +$MAIN --model $WORK_PATH/ggml-model-split-32-tensors-00001-of-00007.gguf --random-prompt --n-predict 32 +echo PASS +echo # 5. Merge #$SPLIT --merge $WORK_PATH/ggml-model-split-32-tensors-00001-of-00006.gguf $WORK_PATH/ggml-model-merge-2.gguf diff --git a/examples/imatrix/imatrix.cpp b/examples/imatrix/imatrix.cpp index 98c0e93e4..82b19fc4f 100644 --- a/examples/imatrix/imatrix.cpp +++ b/examples/imatrix/imatrix.cpp @@ -19,10 +19,12 @@ struct Stats { std::vector values; + std::vector counts; int ncall = 0; }; struct StatParams { + std::string dataset; std::string ofile = "imatrix.dat"; int n_output_frequency = 10; int verbosity = 1; @@ -46,7 +48,7 @@ private: std::vector m_src1_data; std::vector m_ids; // the expert ids from ggml_mul_mat_id // - void save_imatrix(const char * file_name) const; + void save_imatrix(const char * file_name, const char * dataset) const; void keep_imatrix(int ncall) const; }; @@ -120,12 +122,10 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * auto & e = m_stats[wname]; ++e.ncall; - // NOTE: since we select top-k experts, the number of calls for the expert tensors will be k times larger - // using the following line, we can correct for that if needed by replacing the line above with: - //if (idx == t->src[0]->ne[0] - 1) ++e.ncall; if (e.values.empty()) { e.values.resize(src1->ne[0]*n_as, 0); + e.counts.resize(src1->ne[0]*n_as, 0); } else if (e.values.size() != (size_t)src1->ne[0]*n_as) { fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", wname.c_str(), (int)e.values.size(), (int)src1->ne[0]*n_as); @@ -152,6 +152,7 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * for (int j = 0; j < (int)src1->ne[0]; ++j) { e.values[e_start + j] += x[j]*x[j]; + e.counts[e_start + j]++; } } } @@ -169,6 +170,7 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * auto& e = m_stats[wname]; if (e.values.empty()) { e.values.resize(src1->ne[0], 0); + e.counts.resize(src1->ne[0], 0); } else if (e.values.size() != (size_t)src1->ne[0]) { fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", wname.c_str(), (int)e.values.size(), (int)src1->ne[0]); @@ -182,6 +184,7 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * const float * x = data + row * src1->ne[0]; for (int j = 0; j < (int)src1->ne[0]; ++j) { e.values[j] += x[j]*x[j]; + e.counts[j]++; } } if (e.ncall > m_last_call) { @@ -199,7 +202,7 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * } void IMatrixCollector::save_imatrix() const { - save_imatrix(m_params.ofile.empty() ? "imatrix.dat" : m_params.ofile.c_str()); + save_imatrix(m_params.ofile.empty() ? "imatrix.dat" : m_params.ofile.c_str(), m_params.dataset.c_str()); } void IMatrixCollector::keep_imatrix(int ncall) const { @@ -207,24 +210,39 @@ void IMatrixCollector::keep_imatrix(int ncall) const { if (file_name.empty()) file_name = "imatrix.dat"; file_name += ".at_"; file_name += std::to_string(ncall); - save_imatrix(file_name.c_str()); + save_imatrix(file_name.c_str(), m_params.dataset.c_str()); } -void IMatrixCollector::save_imatrix(const char * fname) const { +void IMatrixCollector::save_imatrix(const char * fname, const char * dataset) const { std::ofstream out(fname, std::ios::binary); int n_entries = m_stats.size(); - out.write((const char*)&n_entries, sizeof(n_entries)); - for (auto& p : m_stats) { + out.write((const char *) &n_entries, sizeof(n_entries)); + for (const auto & p : m_stats) { int len = p.first.size(); - out.write((const char*)&len, sizeof(len)); + out.write((const char *) &len, sizeof(len)); out.write(p.first.c_str(), len); - out.write((const char*)&p.second.ncall, sizeof(p.second.ncall)); + out.write((const char *) &p.second.ncall, sizeof(p.second.ncall)); int nval = p.second.values.size(); - out.write((const char*)&nval, sizeof(nval)); - if (nval > 0) out.write((const char*)p.second.values.data(), nval*sizeof(float)); + out.write((const char *) &nval, sizeof(nval)); + if (nval > 0) { + std::vector tmp(nval); + for (int i = 0; i < nval; i++) { + tmp[i] = (p.second.values[i] / static_cast(p.second.counts[i])) * static_cast(p.second.ncall); + } + out.write((const char*)tmp.data(), nval*sizeof(float)); + } } + + // Write the number of call the matrix was computed with + out.write((const char *) &m_last_call, sizeof(m_last_call)); + + // Write the dataset name at the end of the file to later on specify it in quantize + int n_dataset = strlen(dataset); + out.write((const char *) &n_dataset, sizeof(n_dataset)); + out.write(dataset, n_dataset); + if (m_params.verbosity > 0) { - fprintf(stderr, "\n%s: stored collected data after %d chunks in %s\n",__func__,m_last_call,fname); + fprintf(stderr, "\n%s: stored collected data after %d chunks in %s\n", __func__, m_last_call, fname); } } @@ -260,14 +278,28 @@ bool IMatrixCollector::load_imatrix(const char * imatrix_file, std::unordered_ma imatrix_data = {}; return false; } - e.values.resize(nval); - in.read((char*)e.values.data(), nval*sizeof(float)); + + // When re-called from load_imatrix() with add set, this will already be created. + if (e.values.empty()) { + e.values.resize(nval, 0); + e.counts.resize(nval, 0); + } + + std::vector tmp(nval); + in.read((char*)tmp.data(), nval*sizeof(float)); if (in.fail()) { printf("%s: failed reading data for entry %d\n",__func__,i); imatrix_data = {}; return false; } - e.ncall = ncall; + + // Recreate the state as expected by save_imatrix(), and corerct for weighted sum. + for (int i = 0; i < nval; i++) { + e.values[i] += tmp[i]; + e.counts[i] += ncall; + } + e.ncall += ncall; + } return true; } @@ -547,6 +579,29 @@ int main(int argc, char ** argv) { } } + gpt_params params; + params.n_batch = 512; + if (!gpt_params_parse(args.size(), args.data(), params)) { + return 1; + } + + params.logits_all = true; + params.n_batch = std::min(params.n_batch, params.n_ctx); + + print_build_info(); + + if (params.seed == LLAMA_DEFAULT_SEED) { + params.seed = time(NULL); + } + + fprintf(stderr, "%s: seed = %u\n", __func__, params.seed); + + std::mt19937 rng(params.seed); + if (params.random_prompt) { + params.prompt = gpt_random_prompt(rng); + } + + sparams.dataset = params.prompt_file; g_collector.set_parameters(std::move(sparams)); if (!combine_files.empty()) { @@ -585,28 +640,6 @@ int main(int argc, char ** argv) { } } - gpt_params params; - params.n_batch = 512; - if (!gpt_params_parse(args.size(), args.data(), params)) { - return 1; - } - - params.logits_all = true; - params.n_batch = std::min(params.n_batch, params.n_ctx); - - print_build_info(); - - if (params.seed == LLAMA_DEFAULT_SEED) { - params.seed = time(NULL); - } - - fprintf(stderr, "%s: seed = %u\n", __func__, params.seed); - - std::mt19937 rng(params.seed); - if (params.random_prompt) { - params.prompt = gpt_random_prompt(rng); - } - llama_backend_init(); llama_numa_init(params.numa); diff --git a/examples/llama-bench/llama-bench.cpp b/examples/llama-bench/llama-bench.cpp index 8b532c8b6..40128ec44 100644 --- a/examples/llama-bench/llama-bench.cpp +++ b/examples/llama-bench/llama-bench.cpp @@ -174,9 +174,11 @@ struct cmd_params { std::vector split_mode; std::vector main_gpu; std::vector no_kv_offload; + std::vector flash_attn; std::vector> tensor_split; std::vector use_mmap; std::vector embeddings; + ggml_numa_strategy numa; int reps; bool verbose; output_formats output_format; @@ -195,9 +197,11 @@ static const cmd_params cmd_params_defaults = { /* split_mode */ {LLAMA_SPLIT_MODE_LAYER}, /* main_gpu */ {0}, /* no_kv_offload */ {false}, + /* flash_attn */ {false}, /* tensor_split */ {std::vector(llama_max_devices(), 0.0f)}, /* use_mmap */ {true}, /* embeddings */ {false}, + /* numa */ GGML_NUMA_STRATEGY_DISABLED, /* reps */ 5, /* verbose */ false, /* output_format */ MARKDOWN @@ -220,7 +224,9 @@ static void print_usage(int /* argc */, char ** argv) { printf(" -sm, --split-mode (default: %s)\n", join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str()); printf(" -mg, --main-gpu (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str()); printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str()); + printf(" -fa, --flash-attn <0|1> (default: %s)\n", join(cmd_params_defaults.flash_attn, ",").c_str()); printf(" -mmp, --mmap <0|1> (default: %s)\n", join(cmd_params_defaults.use_mmap, ",").c_str()); + printf(" --numa (default: disabled)\n"); printf(" -embd, --embeddings <0|1> (default: %s)\n", join(cmd_params_defaults.embeddings, ",").c_str()); printf(" -ts, --tensor-split (default: 0)\n"); printf(" -r, --repetitions (default: %d)\n", cmd_params_defaults.reps); @@ -393,6 +399,24 @@ static cmd_params parse_cmd_params(int argc, char ** argv) { } auto p = split(argv[i], split_delim); params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end()); + } else if (arg == "--numa") { + if (++i >= argc) { + invalid_param = true; + break; + } else { + std::string value(argv[i]); + /**/ if (value == "distribute" || value == "" ) { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; } + else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; } + else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; } + else { invalid_param = true; break; } + } + } else if (arg == "-fa" || arg == "--flash-attn") { + if (++i >= argc) { + invalid_param = true; + break; + } + auto p = split(argv[i], split_delim); + params.flash_attn.insert(params.flash_attn.end(), p.begin(), p.end()); } else if (arg == "-mmp" || arg == "--mmap") { if (++i >= argc) { invalid_param = true; @@ -477,6 +501,7 @@ static cmd_params parse_cmd_params(int argc, char ** argv) { if (params.split_mode.empty()) { params.split_mode = cmd_params_defaults.split_mode; } if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; } if (params.no_kv_offload.empty()){ params.no_kv_offload = cmd_params_defaults.no_kv_offload; } + if (params.flash_attn.empty()) { params.flash_attn = cmd_params_defaults.flash_attn; } if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; } if (params.use_mmap.empty()) { params.use_mmap = cmd_params_defaults.use_mmap; } if (params.embeddings.empty()) { params.embeddings = cmd_params_defaults.embeddings; } @@ -498,6 +523,7 @@ struct cmd_params_instance { llama_split_mode split_mode; int main_gpu; bool no_kv_offload; + bool flash_attn; std::vector tensor_split; bool use_mmap; bool embeddings; @@ -532,6 +558,7 @@ struct cmd_params_instance { cparams.type_k = type_k; cparams.type_v = type_v; cparams.offload_kqv = !no_kv_offload; + cparams.flash_attn = flash_attn; cparams.embeddings = embeddings; return cparams; @@ -554,6 +581,7 @@ static std::vector get_cmd_params_instances(const cmd_param for (const auto & tk : params.type_k) for (const auto & tv : params.type_v) for (const auto & nkvo : params.no_kv_offload) + for (const auto & fa : params.flash_attn) for (const auto & nt : params.n_threads) { for (const auto & n_prompt : params.n_prompt) { if (n_prompt == 0) { @@ -572,6 +600,7 @@ static std::vector get_cmd_params_instances(const cmd_param /* .split_mode = */ sm, /* .main_gpu = */ mg, /* .no_kv_offload= */ nkvo, + /* .flash_attn = */ fa, /* .tensor_split = */ ts, /* .use_mmap = */ mmp, /* .embeddings = */ embd, @@ -596,6 +625,7 @@ static std::vector get_cmd_params_instances(const cmd_param /* .split_mode = */ sm, /* .main_gpu = */ mg, /* .no_kv_offload= */ nkvo, + /* .flash_attn = */ fa, /* .tensor_split = */ ts, /* .use_mmap = */ mmp, /* .embeddings = */ embd, @@ -633,6 +663,7 @@ struct test { llama_split_mode split_mode; int main_gpu; bool no_kv_offload; + bool flash_attn; std::vector tensor_split; bool use_mmap; bool embeddings; @@ -657,6 +688,7 @@ struct test { split_mode = inst.split_mode; main_gpu = inst.main_gpu; no_kv_offload = inst.no_kv_offload; + flash_attn = inst.flash_attn; tensor_split = inst.tensor_split; use_mmap = inst.use_mmap; embeddings = inst.embeddings; @@ -731,7 +763,7 @@ struct test { "n_batch", "n_ubatch", "n_threads", "type_k", "type_v", "n_gpu_layers", "split_mode", - "main_gpu", "no_kv_offload", + "main_gpu", "no_kv_offload", "flash_attn", "tensor_split", "use_mmap", "embeddings", "n_prompt", "n_gen", "test_time", "avg_ns", "stddev_ns", @@ -753,7 +785,7 @@ struct test { } if (field == "cuda" || field == "opencl" || field == "vulkan" || field == "kompute" || field == "metal" || field == "gpu_blas" || field == "blas" || field == "sycl" ||field == "f16_kv" || field == "no_kv_offload" || - field == "use_mmap" || field == "embeddings") { + field == "flash_attn" || field == "use_mmap" || field == "embeddings") { return BOOL; } if (field == "avg_ts" || field == "stddev_ts") { @@ -787,7 +819,7 @@ struct test { std::to_string(n_batch), std::to_string(n_ubatch), std::to_string(n_threads), ggml_type_name(type_k), ggml_type_name(type_v), std::to_string(n_gpu_layers), split_mode_str(split_mode), - std::to_string(main_gpu), std::to_string(no_kv_offload), + std::to_string(main_gpu), std::to_string(no_kv_offload), std::to_string(flash_attn), tensor_split_str, std::to_string(use_mmap), std::to_string(embeddings), std::to_string(n_prompt), std::to_string(n_gen), test_time, std::to_string(avg_ns()), std::to_string(stdev_ns()), @@ -955,6 +987,9 @@ struct markdown_printer : public printer { if (field == "no_kv_offload") { return "nkvo"; } + if (field == "flash_attn") { + return "fa"; + } if (field == "use_mmap") { return "mmap"; } @@ -1001,6 +1036,9 @@ struct markdown_printer : public printer { if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) { fields.emplace_back("no_kv_offload"); } + if (params.flash_attn.size() > 1 || params.flash_attn != cmd_params_defaults.flash_attn) { + fields.emplace_back("flash_attn"); + } if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) { fields.emplace_back("tensor_split"); } @@ -1191,6 +1229,7 @@ int main(int argc, char ** argv) { llama_log_set(llama_null_log_callback, NULL); } llama_backend_init(); + llama_numa_init(params.numa); // initialize printer std::unique_ptr p; diff --git a/examples/llava/README.md b/examples/llava/README.md index d4810d42e..4fb0cf381 100644 --- a/examples/llava/README.md +++ b/examples/llava/README.md @@ -56,7 +56,7 @@ python ./examples/llava/convert-image-encoder-to-gguf.py -m ../clip-vit-large-pa python ./convert.py ../llava-v1.5-7b --skip-unknown ``` -Now both the LLaMA part and the image encoder is in the `llava-v1.5-7b` directory. +Now both the LLaMA part and the image encoder are in the `llava-v1.5-7b` directory. ## LLaVA 1.6 gguf conversion 1) First clone a LLaVA 1.6 model: diff --git a/examples/llava/clip.cpp b/examples/llava/clip.cpp index e431c7f70..f568f470c 100644 --- a/examples/llava/clip.cpp +++ b/examples/llava/clip.cpp @@ -1325,7 +1325,7 @@ bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length } // Linear interpolation between two points -inline float lerp(float s, float e, float t) { +inline float clip_lerp(float s, float e, float t) { return s + (e - s) * t; } // Bilinear resize function @@ -1347,17 +1347,17 @@ static void bilinear_resize(const clip_image_u8& src, clip_image_u8& dst, int ta float y_lerp = py - y_floor; for (int c = 0; c < 3; c++) { - float top = lerp( + float top = clip_lerp( static_cast(src.buf[3 * (y_floor * src.nx + x_floor) + c]), static_cast(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]), x_lerp ); - float bottom = lerp( + float bottom = clip_lerp( static_cast(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]), static_cast(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]), x_lerp ); - dst.buf[3 * (y * target_width + x) + c] = static_cast(lerp(top, bottom, y_lerp)); + dst.buf[3 * (y * target_width + x) + c] = static_cast(clip_lerp(top, bottom, y_lerp)); } } } diff --git a/examples/llava/llava-cli.cpp b/examples/llava/llava-cli.cpp index a44c6cd76..157a680b5 100644 --- a/examples/llava/llava-cli.cpp +++ b/examples/llava/llava-cli.cpp @@ -113,11 +113,11 @@ struct llava_context { }; static void show_additional_info(int /*argc*/, char ** argv) { - LOG_TEE("\n example usage: %s -m --mmproj --image [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]); + LOG_TEE("\n example usage: %s -m --mmproj --image --image [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]); LOG_TEE(" note: a lower temperature value like 0.1 is recommended for better quality.\n"); } -static struct llava_image_embed * load_image(llava_context * ctx_llava, gpt_params * params) { +static struct llava_image_embed * load_image(llava_context * ctx_llava, gpt_params * params, const std::string & fname) { // load and preprocess the image llava_image_embed * embed = NULL; @@ -133,9 +133,9 @@ static struct llava_image_embed * load_image(llava_context * ctx_llava, gpt_para } params->prompt = remove_image_from_prompt(prompt); } else { - embed = llava_image_embed_make_with_filename(ctx_llava->ctx_clip, params->n_threads, params->image.c_str()); + embed = llava_image_embed_make_with_filename(ctx_llava->ctx_clip, params->n_threads, fname.c_str()); if (!embed) { - LOG_TEE("%s: is %s really an image file?\n", __func__, params->image.c_str()); + fprintf(stderr, "%s: is %s really an image file?\n", __func__, fname.c_str()); return NULL; } } @@ -207,17 +207,7 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_ printf("\n"); } - -static struct llava_context * llava_init(gpt_params * params) { - const char * clip_path = params->mmproj.c_str(); - - auto prompt = params->prompt; - if (prompt.empty()) { - prompt = "describe the image in detail."; - } - - auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1); - +static struct llama_model * llava_init(gpt_params * params) { llama_backend_init(); llama_numa_init(params->numa); @@ -228,6 +218,19 @@ static struct llava_context * llava_init(gpt_params * params) { LOG_TEE("%s: error: unable to load model\n" , __func__); return NULL; } + return model; +} + +static struct llava_context * llava_init_context(gpt_params * params, llama_model * model) { + const char * clip_path = params->mmproj.c_str(); + + auto prompt = params->prompt; + if (prompt.empty()) { + prompt = "describe the image in detail."; + } + + auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1); + llama_context_params ctx_params = llama_context_params_from_gpt_params(*params); ctx_params.n_ctx = params->n_ctx < 2048 ? 2048 : params->n_ctx; // we need a longer context size to process image embeddings @@ -286,24 +289,30 @@ int main(int argc, char ** argv) { show_additional_info(argc, argv); return 1; } - - auto ctx_llava = llava_init(¶ms); - if (ctx_llava == NULL) { - LOG_TEE("%s: error: failed to init llava\n", __func__); + auto model = llava_init(¶ms); + if (model == NULL) { + fprintf(stderr, "%s: error: failed to init llava model\n", __func__); return 1; } - auto image_embed = load_image(ctx_llava, ¶ms); - if (!image_embed) { - return 1; + for (auto & image : params.image) { + auto ctx_llava = llava_init_context(¶ms, model); + + auto image_embed = load_image(ctx_llava, ¶ms, image); + if (!image_embed) { + std::cerr << "error: failed to load image " << image << ". Terminating\n\n"; + return 1; + } + + // process the prompt + process_prompt(ctx_llava, image_embed, ¶ms, params.prompt); + + llama_print_timings(ctx_llava->ctx_llama); + llava_image_embed_free(image_embed); + ctx_llava->model = NULL; + llava_free(ctx_llava); } + llama_free_model(model); - // process the prompt - process_prompt(ctx_llava, image_embed, ¶ms, params.prompt); - - llama_print_timings(ctx_llava->ctx_llama); - - llava_image_embed_free(image_embed); - llava_free(ctx_llava); return 0; } diff --git a/examples/lookup/lookup-stats.cpp b/examples/lookup/lookup-stats.cpp index 41b62c2fe..87ecc0a4f 100644 --- a/examples/lookup/lookup-stats.cpp +++ b/examples/lookup/lookup-stats.cpp @@ -30,7 +30,6 @@ int main(int argc, char ** argv){ // load the model std::tie(model, ctx) = llama_init_from_gpt_params(params); - llama_set_rng_seed(ctx, params.seed); GGML_ASSERT(llama_n_vocab(model) < (1 << 16)); // tokenize the prompt diff --git a/examples/lookup/lookup.cpp b/examples/lookup/lookup.cpp index 9526e898f..eebbd00a5 100644 --- a/examples/lookup/lookup.cpp +++ b/examples/lookup/lookup.cpp @@ -38,7 +38,6 @@ int main(int argc, char ** argv){ // load the model std::tie(model, ctx) = llama_init_from_gpt_params(params); - llama_set_rng_seed(ctx, params.seed); GGML_ASSERT(llama_n_vocab(model) < (1 << 16)); // tokenize the prompt diff --git a/examples/main-cmake-pkg/README.md b/examples/main-cmake-pkg/README.md index f599fbaec..edf20d8db 100644 --- a/examples/main-cmake-pkg/README.md +++ b/examples/main-cmake-pkg/README.md @@ -17,11 +17,9 @@ In this case, CLBlast was already installed so the CMake package is referenced i ```cmd git clone https://github.com/ggerganov/llama.cpp cd llama.cpp -mkdir build -cd build -cmake .. -DBUILD_SHARED_LIBS=OFF -DLLAMA_CLBLAST=ON -DCMAKE_PREFIX_PATH=C:/CLBlast/lib/cmake/CLBlast -G "Visual Studio 17 2022" -A x64 -cmake --build . --config Release -cmake --install . --prefix C:/LlamaCPP +cmake -B build -DBUILD_SHARED_LIBS=OFF -DLLAMA_CLBLAST=ON -DCMAKE_PREFIX_PATH=C:/CLBlast/lib/cmake/CLBlast -G "Visual Studio 17 2022" -A x64 +cmake --build build --config Release +cmake --install build --prefix C:/LlamaCPP ``` ### Build main-cmake-pkg @@ -29,9 +27,7 @@ cmake --install . --prefix C:/LlamaCPP ```cmd cd ..\examples\main-cmake-pkg -mkdir build -cd build -cmake .. -DBUILD_SHARED_LIBS=OFF -DCMAKE_PREFIX_PATH="C:/CLBlast/lib/cmake/CLBlast;C:/LlamaCPP/lib/cmake/Llama" -G "Visual Studio 17 2022" -A x64 -cmake --build . --config Release -cmake --install . --prefix C:/MyLlamaApp +cmake -B build -DBUILD_SHARED_LIBS=OFF -DCMAKE_PREFIX_PATH="C:/CLBlast/lib/cmake/CLBlast;C:/LlamaCPP/lib/cmake/Llama" -G "Visual Studio 17 2022" -A x64 +cmake --build build --config Release +cmake --install build --prefix C:/MyLlamaApp ``` diff --git a/examples/main/README.md b/examples/main/README.md index 649f4e0f3..97e2ae4c2 100644 --- a/examples/main/README.md +++ b/examples/main/README.md @@ -66,7 +66,7 @@ main.exe -m models\7B\ggml-model.bin --ignore-eos -n -1 --random-prompt In this section, we cover the most commonly used options for running the `main` program with the LLaMA models: -- `-m FNAME, --model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.bin`). +- `-m FNAME, --model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.gguf`; inferred from `--model-url` if set). - `-mu MODEL_URL --model-url MODEL_URL`: Specify a remote http url to download the file (e.g https://huggingface.co/ggml-org/models/resolve/main/phi-2/ggml-model-q4_0.gguf). - `-i, --interactive`: Run the program in interactive mode, allowing you to provide input directly and receive real-time responses. - `-ins, --instruct`: Run the program in instruction mode, which is particularly useful when working with Alpaca models. @@ -143,7 +143,7 @@ The `--ctx-size` option allows you to set the size of the prompt context used by ### Extended Context Size -Some fine-tuned models have extended the context length by scaling RoPE. For example, if the original pre-trained model have a context length (max sequence length) of 4096 (4k) and the fine-tuned model have 32k. That is a scaling factor of 8, and should work by setting the above `--ctx-size` to 32768 (32k) and `--rope-scale` to 8. +Some fine-tuned models have extended the context length by scaling RoPE. For example, if the original pre-trained model has a context length (max sequence length) of 4096 (4k) and the fine-tuned model has 32k. That is a scaling factor of 8, and should work by setting the above `--ctx-size` to 32768 (32k) and `--rope-scale` to 8. - `--rope-scale N`: Where N is the linear scaling factor used by the fine-tuned model. @@ -286,7 +286,7 @@ These options help improve the performance and memory usage of the LLaMA models. - `--numa distribute`: Pin an equal proportion of the threads to the cores on each NUMA node. This will spread the load amongst all cores on the system, utilitizing all memory channels at the expense of potentially requiring memory to travel over the slow links between nodes. - `--numa isolate`: Pin all threads to the NUMA node that the program starts on. This limits the number of cores and amount of memory that can be used, but guarantees all memory access remains local to the NUMA node. -- `--numa numactl`: Pin threads to the CPUMAP that is passed to the program by starting it with the numactl utility. This is the most flexible mode, and allow arbitraty core usage patterns, for example a map that uses all the cores on one NUMA nodes, and just enough cores on a second node to saturate the inter-node memory bus. +- `--numa numactl`: Pin threads to the CPUMAP that is passed to the program by starting it with the numactl utility. This is the most flexible mode, and allow arbitrary core usage patterns, for example a map that uses all the cores on one NUMA nodes, and just enough cores on a second node to saturate the inter-node memory bus. These flags attempt optimizations that help on some systems with non-uniform memory access. This currently consists of one of the above strategies, and disabling prefetch and readahead for mmap. The latter causes mapped pages to be faulted in on first access instead of all at once, and in combination with pinning threads to NUMA nodes, more of the pages end up on the NUMA node where they are used. Note that if the model is already in the system page cache, for example because of a previous run without this option, this will have little effect unless you drop the page cache first. This can be done by rebooting the system or on Linux by writing '3' to '/proc/sys/vm/drop_caches' as root. diff --git a/examples/main/main.cpp b/examples/main/main.cpp index 1180734b9..49acd6bab 100644 --- a/examples/main/main.cpp +++ b/examples/main/main.cpp @@ -240,7 +240,6 @@ int main(int argc, char ** argv) { return 1; } session_tokens.resize(n_token_count_out); - llama_set_rng_seed(ctx, params.seed); LOG_TEE("%s: loaded a session with prompt size of %d tokens\n", __func__, (int)session_tokens.size()); } } @@ -325,7 +324,7 @@ int main(int argc, char ** argv) { log_tostr(embd_inp.empty()), n_matching_session_tokens, embd_inp.size(), session_tokens.size(), embd_inp.size()); // if we will use the cache for the full prompt without reaching the end of the cache, force - // reevaluation of the last token token to recalculate the cached logits + // reevaluation of the last token to recalculate the cached logits if (!embd_inp.empty() && n_matching_session_tokens == embd_inp.size() && session_tokens.size() > embd_inp.size()) { LOGLN("recalculate the cached logits (do): session_tokens.resize( %zu )", embd_inp.size() - 1); @@ -363,6 +362,9 @@ int main(int argc, char ** argv) { params.interactive_first = true; params.antiprompt.emplace_back("<|im_start|>user\n"); } + else if (params.conversation) { + params.interactive_first = true; + } // enable interactive mode if interactive start is specified if (params.interactive_first) { @@ -545,7 +547,7 @@ int main(int argc, char ** argv) { // if we run out of context: // - take the n_keep first tokens from the original prompt (via n_past) // - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches - if (n_past + (int) embd.size() + std::max(0, guidance_offset) > n_ctx) { + if (n_past + (int) embd.size() + std::max(0, guidance_offset) >= n_ctx) { if (params.n_predict == -2) { LOG_TEE("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict); break; @@ -734,7 +736,7 @@ int main(int argc, char ** argv) { // display text if (input_echo && display) { for (auto id : embd) { - const std::string token_str = llama_token_to_piece(ctx, id); + const std::string token_str = llama_token_to_piece(ctx, id, !params.conversation); printf("%s", token_str.c_str()); if (embd.size() > 1) { @@ -797,7 +799,7 @@ int main(int argc, char ** argv) { // deal with end of generation tokens in interactive mode if (llama_token_is_eog(model, llama_sampling_last(ctx_sampling))) { - LOG("found EOS token\n"); + LOG("found an EOG token\n"); if (params.interactive) { if (!params.antiprompt.empty()) { @@ -817,7 +819,7 @@ int main(int argc, char ** argv) { if (n_past > 0 && is_interacting) { LOG("waiting for user input\n"); - if (params.instruct || params.chatml) { + if (params.conversation || params.instruct || params.chatml) { printf("\n> "); } @@ -827,7 +829,7 @@ int main(int argc, char ** argv) { } std::string buffer; - if (!params.input_prefix.empty()) { + if (!params.input_prefix.empty() && !params.conversation) { LOG("appending input prefix: '%s'\n", params.input_prefix.c_str()); printf("%s", params.input_prefix.c_str()); } @@ -851,7 +853,7 @@ int main(int argc, char ** argv) { // Entering a empty line lets the user pass control back if (buffer.length() > 1) { // append input suffix if any - if (!params.input_suffix.empty()) { + if (!params.input_suffix.empty() && !params.conversation) { LOG("appending input suffix: '%s'\n", params.input_suffix.c_str()); printf("%s", params.input_suffix.c_str()); } diff --git a/examples/perplexity/README.md b/examples/perplexity/README.md index 1a8c0dd64..c5e2bc5de 100644 --- a/examples/perplexity/README.md +++ b/examples/perplexity/README.md @@ -1,8 +1,118 @@ -# perplexity +# Perplexity -TODO +The `perplexity` example can be used to calculate the so-called perplexity value of a language model over a given text corpus. +Perplexity measures how well the model can predict the next token with lower values being better. +Note that perplexity is **not** directly comparable between models, especially if they use different tokenizers. +Also note that finetunes typically result in a higher perplexity value even though the human-rated quality of outputs increases. + +Within llama.cpp the perplexity of base models is used primarily to judge the quality loss from e.g. quantized models vs. FP16. +The convention among contributors is to use the Wikitext-2 test set for testing unless noted otherwise (can be obtained with `scripts/get-wikitext-2.sh`). + +By default only the mean perplexity value and the corresponding uncertainty is calculated. +The uncertainty is determined empirically by assuming a Gaussian distribution of the "correct" logits per and then applying error propagation. + +More statistics can be obtained by recording the logits from the FP16 version of a model. +To do this, supply `perplexity` with `--kl-divergence-base path/to/logit/binary/file.kld`. +The program will then record all logits and save them to the provided path in binary format. +**The logit file will be very large, 11 GiB for LLaMA 2 or 37 GiB for LLaMA 3 when using the Wikitext-2 test set.** +Once you have the file, supply `perplexity` with the quantized model, the logits file via `--kl-divergence-base`, +and finally the `--kl-divergence` argument to indicate that the program should calculate the so-called Kullback-Leibler divergence. +This is a measure of how similar the FP16 and the quantized logit distributions are with a value of 0 indicating that the distribution are the same. +The uncertainty on the mean KL divergence is calculated by assuming the KL divergence per token follows a Gaussian distribution. + +In addition to the KL divergence the following statistics are calculated with `--kl-divergence`: + +* Ratio of mean FP16 PPL and quantized PPL. Uncertainty is estimated on logits, then propagated. The logarithm of this metric is also calculated and printed, it is 0 if the logit distributions are the same. +* Difference of mean FP16 PPL and quantized PPL. Uncertainty is estimated on logits, then propagated. +* Mean change in "correct" token probability. Positive values mean the model gets better at prediction, negative values mean it gets worse. +* Pearson correlation coefficient of the "correct" token probabilites between models. +* Percentiles of change in "correct" token probability. Positive values mean the model gets better at prediction, negative values mean it gets worse. Can be used to judge noise vs. quality loss from quantization. If the percentiles are symmetric then the quantization is essentially just adding noise. If the negative values are significantly larger than the positive values then this indicates that the model is actually becoming worse from the quantization. +* The root mean square of the change in token probabilities. If you were to assume that the quantization simply causes Gaussian noise on the token probabilities then this would be the standard deviation of said noise. The uncertainty on the value is calculated that the change in token probabilities follows a Gaussian distribution. Related discussion: https://github.com/ggerganov/llama.cpp/discussions/2875 . +* Same top p: Percentage of how often the token was assigned the highest probabilites by both models. The uncertainty is calculated from the Gaussian approximation of the binomial distribution. + +## LLaMA 3 8b Scoreboard + +Results are sorted by Kullback-Leibler divergence relative to FP16. +The "WT" importance matrices were created using varying numbers of Wikitext tokens and can be found [here](https://huggingface.co/JohannesGaessler/llama.cpp_importance_matrices/blob/main/imatrix-llama_3-8b-f16-2.7m_tokens.dat). + +| Quantization | imatrix | Model size [GiB] | PPL | ΔPPL | KLD | Mean Δp | RMS Δp | +|--------------|---------|------------------|------------------------|------------------------|-----------------------|-------------------|------------------| +| f16 | None | 14.97 | 6.233160 ± 0.037828 | - | - | - | - | +| q8_0 | None | 7.96 | 6.234284 ± 0.037878 | 0.002650 ± 0.001006 | 0.001355 ± 0.000006 | -0.019 ± 0.003 % | 1.198 ± 0.007 % | +| q6_K | None | 6.14 | 6.253382 ± 0.038078 | 0.021748 ± 0.001852 | 0.005452 ± 0.000035 | -0.007 ± 0.006 % | 2.295 ± 0.019 % | +| q5_K_M | None | 5.33 | 6.288607 ± 0.038338 | 0.056974 ± 0.002598 | 0.010762 ± 0.000079 | -0.114 ± 0.008 % | 3.160 ± 0.031 % | +| q5_K_S | None | 5.21 | 6.336598 ± 0.038755 | 0.104964 ± 0.003331 | 0.016595 ± 0.000122 | -0.223 ± 0.010 % | 3.918 ± 0.036 % | +| q5_1 | None | 5.65 | 6.337857 ± 0.038677 | 0.106223 ± 0.003476 | 0.018045 ± 0.000139 | -0.287 ± 0.011 % | 4.123 ± 0.039 % | +| q5_0 | None | 5.21 | 6.363224 ± 0.038861 | 0.131591 ± 0.003894 | 0.022239 ± 0.000166 | -0.416 ± 0.012 % | 4.634 ± 0.043 % | +| q4_K_M | WT 10m | 4.58 | 6.382937 ± 0.039055 | 0.151303 ± 0.004429 | 0.028152 ± 0.000240 | -0.389 ± 0.014 % | 5.251 ± 0.049 % | +| q4_K_M | None | 4.58 | 6.407115 ± 0.039119 | 0.175482 ± 0.004620 | 0.031273 ± 0.000238 | -0.596 ± 0.014 % | 5.519 ± 0.050 % | +| q4_K_S | WT 10m | 4.37 | 6.409697 ± 0.039189 | 0.178064 ± 0.004744 | 0.031951 ± 0.000259 | -0.531 ± 0.015 % | 5.645 ± 0.051 % | +| iq4_NL | WT 10m | 4.35 | 6.455593 ± 0.039630 | 0.223959 ± 0.005201 | 0.035742 ± 0.000288 | -0.590 ± 0.016 % | 5.998 ± 0.054 % | +| iq4_XS | WT 10m | 4.14 | 6.459705 ± 0.039595 | 0.228071 ± 0.005207 | 0.036334 ± 0.000284 | -0.668 ± 0.016 % | 6.044 ± 0.054 % | +| q4_K_S | None | 4.37 | 6.500529 ± 0.039778 | 0.268895 ± 0.005638 | 0.043136 ± 0.000314 | -0.927 ± 0.017 % | 6.562 ± 0.055 % | +| q4_1 | None | 4.78 | 6.682737 ± 0.041285 | 0.451103 ± 0.008030 | 0.071683 ± 0.000505 | -0.927 ± 0.017 % | 8.512 ± 0.063 % | +| q4_0 | None | 4.34 | 6.700147 ± 0.041226 | 0.468514 ± 0.007951 | 0.071940 ± 0.000491 | -1.588 ± 0.022 % | 8.434 ± 0.061 % | +| q3_K_L | WT 10m | 4.03 | 6.671223 ± 0.041427 | 0.439590 ± 0.008154 | 0.073077 ± 0.000529 | -0.940 ± 0.023 % | 8.662 ± 0.064 % | +| q3_K_M | WT 10m | 3.74 | 6.734255 ± 0.041838 | 0.502622 ± 0.008901 | 0.084358 ± 0.000588 | -1.198 ± 0.024 % | 9.292 ± 0.065 % | +| q3_K_L | None | 4.03 | 6.787876 ± 0.042104 | 0.556242 ± 0.009171 | 0.087176 ± 0.000614 | -1.532 ± 0.025 % | 9.432 ± 0.067 % | +| q3_K_M | None | 3.74 | 6.888498 ± 0.042669 | 0.656864 ± 0.010071 | 0.101913 ± 0.000677 | -1.990 ± 0.026 % | 10.203 ± 0.068 % | +| iq3_M | WT 10m | 3.53 | 6.898327 ± 0.041643 | 0.666694 ± 0.009449 | 0.102534 ± 0.000663 | -3.178 ± 0.026 % | 10.513 ± 0.066 % | +| iq3_S | WT 10m | 3.42 | 6.965501 ± 0.042406 | 0.733867 ± 0.010245 | 0.111278 ± 0.000710 | -3.066 ± 0.027 % | 10.845 ± 0.068 % | +| iq3_XS | WT 10m | 3.28 | 7.163043 ± 0.043772 | 0.931409 ± 0.012084 | 0.138693 ± 0.000857 | -3.667 ± 0.031 % | 12.148 ± 0.070 % | +| iq3_XXS | WT 10m | 3.05 | 7.458436 ± 0.046404 | 1.226803 ± 0.015234 | 0.183625 ± 0.001042 | -3.918 ± 0.035 % | 13.836 ± 0.074 % | +| q3_K_S | WT 10m | 3.41 | 7.602878 ± 0.046848 | 1.371244 ± 0.015688 | 0.199821 ± 0.001008 | -5.046 ± 0.037 % | 14.980 ± 0.070 % | +| q3_K_S | None | 3.41 | 7.863786 ± 0.048885 | 1.632152 ± 0.017733 | 0.228217 ± 0.001079 | -5.604 ± 0.038 % | 15.541 ± 0.070 % | +| iq2_M | WT 10m | 2.74 | 8.600799 ± 0.055124 | 2.369166 ± 0.025244 | 0.325989 ± 0.00160 | -6.463 ± 0.046 % | 18.519 ± 0.080 % | +| q2_K | WT 10k | 2.96 | 8.652290 ± 0.055572 | 2.420657 ± 0.025587 | 0.331393 ± 0.001562 | -6.606 ± 0.046 % | 18.790 ± 0.078 % | +| q2_K | WT 100k | 2.96 | 8.641993 ± 0.055406 | 2.410359 ± 0.025495 | 0.331672 ± 0.001569 | -6.628 ± 0.047 % | 18.856 ± 0.078 % | +| q2_K | WT 10m | 2.96 | 8.647825 ± 0.055610 | 2.416191 ± 0.025683 | 0.332223 ± 0.001572 | -6.500 ± 0.047 % | 18.881 ± 0.078 % | +| q2_K | WT 1m | 2.96 | 8.674365 ± 0.055743 | 2.442732 ± 0.025843 | 0.335308 ± 0.001576 | -6.634 ± 0.047 % | 19.009 ± 0.079 % | +| q2_K | WT 1k | 2.96 | 8.682605 ± 0.055916 | 2.450972 ± 0.026069 | 0.337093 ± 0.001596 | -6.596 ± 0.047 % | 18.977 ± 0.079 % | +| q2_K_S | WT 10m | 2.96 | 9.323778 ± 0.061551 | 3.092145 ± 0.031914 | 0.403360 ± 0.001787 | -7.131 ± 0.049 % | 20.050 ± 0.081 % | +| q2_K_S | WT 1m | 2.96 | 9.329321 ± 0.061378 | 3.097688 ± 0.031816 | 0.403590 ± 0.001797 | -7.289 ± 0.049 % | 20.123 ± 0.081 % | +| q2_K_S | WT 100k | 2.96 | 9.362973 ± 0.061740 | 3.131339 ± 0.032169 | 0.408367 ± 0.001802 | -7.198 ± 0.050 % | 20.132 ± 0.081 % | +| q2_K_S | WT 10k | 2.96 | 9.376479 ± 0.062045 | 3.144846 ± 0.032464 | 0.408662 ± 0.001819 | -7.141 ± 0.050 % | 20.120 ± 0.081 % | +| q2_K_S | WT 1k | 2.96 | 9.415200 ± 0.062475 | 3.183567 ± 0.032993 | 0.415865 ± 0.001846 | -7.153 ± 0.050 % | 20.311 ± 0.082 % | +| iq2_S | WT 10m | 2.56 | 9.650781 ± 0.063209 | 3.419148 ± 0.034017 | 0.439197 ± 0.001976 | -8.319 ± 0.052 % | 21.491 ± 0.083 % | +| q2_K | None | 2.96 | 9.751568 ± 0.063312 | 3.519934 ± 0.033863 | 0.445132 ± 0.001835 | -9.123 ± 0.051 % | 21.421 ± 0.079 % | +| iq2_XS | WT 10m | 2.43 | 10.761424 ± 0.071056 | 4.529791 ± 0.042229 | 0.546290 ± 0.002133 | -10.576 ± 0.056 % | 23.872 ± 0.082 % | +| iq2_XXS | WT 10m | 2.24 | 14.091782 ± 0.098396 | 7.860148 ± 0.070752 | 0.812022 ± 0.002741 | -14.363 ± 0.065 % | 28.576 ± 0.084 % | +| iq1_M | WT 10m | 2.01 | 25.493722 ± 0.177903 | 19.262089 ± 0.152396 | 1.393084 ± 0.003529 | -24.672 ± 0.077 % | 38.287 ± 0.084 % | +| iq1_S | WT 1m | 1.88 | 58.097760 ± 0.438604 | 51.866126 ± 0.416604 | 2.211278 ± 0.004688 | -32.471 ± 0.087 % | 46.418 ± 0.085 % | +| iq1_S | WT 1k | 1.88 | 58.267851 ± 0.446208 | 52.036218 ± 0.424373 | 2.214858 ± 0.004778 | -31.880 ± 0.089 % | 46.330 ± 0.086 % | +| iq1_S | WT 100k | 1.88 | 58.581498 ± 0.453145 | 52.349864 ± 0.431360 | 2.220834 ± 0.004818 | -32.261 ± 0.089 % | 46.002 ± 0.086 % | +| iq1_S | WT 10m | 1.88 | 60.694593 ± 0.471290 | 54.462959 ± 0.449644 | 2.254554 ± 0.004868 | -31.973 ± 0.088 % | 46.271 ± 0.086 % | +| iq1_S | WT 10k | 1.88 | 63.221324 ± 0.493077 | 56.989691 ± 0.471423 | 2.293527 ± 0.004885 | -32.261 ± 0.089 % | 46.562 ± 0.086 % | + +There seems to be no consistent improvement from using more Wikitext tokens for the importance matrix. +K-quants score better on mean Δp than the legacy quants than e.g. KL divergence would suggest. + +## LLaMA 2 vs. LLaMA 3 Quantization comparison + +| Metric | L2 7b q2_K | L3 8b q2_K | L2 7b q4_K_M | L3 8b q4_K_M | L2 7b q6_K | L3 8b q6_K | L2 7b q8_0 | L3 8b q8_0 | +|-----------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------| +| Mean PPL | 5.794552 ± 0.032298 | 9.751568 ± 0.063312 | 5.877078 ± 0.032781 | 6.407115 ± 0.039119 | 5.808494 ± 0.032425 | 6.253382 ± 0.038078 | 5.798542 ± 0.032366 | 6.234284 ± 0.037878 | +| Mean PPL ratio | 1.107955 ± 0.001427 | 1.564849 ± 0.004525 | 1.014242 ± 0.000432 | 1.028160 ± 0.000723 | 1.002406 ± 0.000191 | 1.003490 ± 0.000296 | 1.000689 ± 0.000107 | 1.000425 ± 0.000161 | +| Mean ΔPPL | 0.625552 ± 0.008725 | 3.519934 ± 0.033863 | 0.082526 ± 0.002530 | 0.175482 ± 0.004620 | 0.013941 ± 0.001110 | 0.021748 ± 0.001852 | 0.003990 ± 0.000624 | 0.002650 ± 0.001006 | +| PPL correlation | 97.36% | 89.62% | 99.71% | 99.34% | 99.94% | 99.88% | 99.98% | 99.96% | +| Mean KLD | 0.108903 ± 0.000645 | 0.445132 ± 0.001835 | 0.012686 ± 0.000079 | 0.031273 ± 0.000238 | 0.002098 ± 0.000014 | 0.005452 ± 0.000035 | 0.000369 ± 0.000007 | 0.001355 ± 0.000006 | +| Mean Δp | -2.710 ± 0.023 % | -9.123 ± 0.051 % | -0.416 ± 0.008 % | -0.596 ± 0.014 % | -0.035 ± 0.003 % | -0.007 ± 0.006 % | -0.005 ± 0.002 % | -0.019 ± 0.003 % | +| Maximum Δp | 85.136% | 94.268% | 45.209% | 95.054% | 23.593% | 53.601% | 43.925% | 28.734% | +| 99.9% Δp | 37.184% | 50.003% | 17.461% | 27.084% | 7.798% | 13.613% | 3.387% | 6.402% | +| 99.0% Δp | 18.131% | 25.875% | 7.798% | 12.084% | 3.838% | 6.407% | 1.867% | 3.544% | +| Median Δp | -0.391% | -2.476% | -0.026% | -0.024% | -0.001% | 0.000% | -0.000% | -0.000% | +| 1.0% Δp | -39.762% | -87.173% | -11.433% | -19.567% | -4.222% | -6.767% | -1.862% | -3.698% | +| 0.1% Δp | -79.002% | -98.897% | -26.433% | -56.054% | -9.091% | -16.584% | -3.252% | -6.579% | +| Minimum Δp | -99.915% | -99.965% | -83.383% | -98.699% | -43.142% | -68.487% | -9.343% | -24.301% | +| RMS Δp | 9.762 ± 0.053 % | 21.421 ± 0.079 % | 3.252 ± 0.024 % | 5.519 ± 0.050 % | 1.339 ± 0.010 % | 2.295 ± 0.019 % | 0.618 ± 0.011 % | 1.198 ± 0.007 % | +| Same top p | 85.584 ± 0.086 % | 71.138 ± 0.119 % | 94.665 ± 0.055 % | 91.901 ± 0.072 % | 97.520 ± 0.038 % | 96.031 ± 0.051 % | 98.846 ± 0.026 % | 97.674 ± 0.040 % | + + +## Old Numbers + +
+Llama 2 70B Scoreboard -## Llama 2 70B Scorechart | Quantization | Model size (GiB) | Perplexity | Delta to fp16 | |--------------|------------------|------------|---------------| | Q4_0 | 36.20 | 3.5550 | 3.61% | @@ -18,3 +128,5 @@ TODO | Q5_K_M | 45.41 | 3.4451 | 0.40% | | Q6_K | 52.70 | 3.4367 | 0.16% | | fp16 | 128.5 | 3.4313 | - | + +
diff --git a/examples/perplexity/perplexity.cpp b/examples/perplexity/perplexity.cpp index 9a3374fdc..db6e0949d 100644 --- a/examples/perplexity/perplexity.cpp +++ b/examples/perplexity/perplexity.cpp @@ -216,17 +216,22 @@ static void process_logits(std::ostream& out, int n_vocab, const float * logits, } struct kl_divergence_result { - double sum_nll = 0; - double sum_nll2 = 0; - double sum_kld = 0; - double sum_kld2 = 0; - double sum_nll_diff = 0; - double sum_nll_diff2 = 0; - size_t n_same_top = 0; - size_t count = 0; + double sum_nll = 0.0; + double sum_nll2 = 0.0; + double sum_nll_base = 0.0; + double sum_nll_base2 = 0.0; + double sum_nll_nll_base = 0.0; + double sum_kld = 0.0; + double sum_kld2 = 0.0; + double sum_p_diff = 0.0; + double sum_p_diff2 = 0.0; + double sum_p_diff4 = 0.0; + float max_p_diff = 0.0f; + size_t n_same_top = 0.0; + size_t count = 0.0; }; -static double log_softmax(int n_vocab, const float * logits, const uint16_t * base_log_prob, int tok, kl_divergence_result & kld) { +static std::pair log_softmax(int n_vocab, const float * logits, const uint16_t * base_log_prob, int tok, kl_divergence_result & kld) { float max_logit = logits[0]; int imax = 0; for (int i = 1; i < n_vocab; ++i) { @@ -244,12 +249,17 @@ static double log_softmax(int n_vocab, const float * logits, const uint16_t * ba const float scale = d[0]; const float min_log_prob = d[1]; base_log_prob += 4; - float nll = max_logit + log_sum_exp - logits[tok]; + + const float nll = max_logit + log_sum_exp - logits[tok]; kld.sum_nll += nll; kld.sum_nll2 += nll*nll; - nll += (scale*base_log_prob[tok] + min_log_prob); - kld.sum_nll_diff += nll; - kld.sum_nll_diff2 += nll*nll; + + const float nll_base = -(scale*base_log_prob[tok] + min_log_prob); + kld.sum_nll_base += nll_base; + kld.sum_nll_base2 += nll_base*nll_base; + + kld.sum_nll_nll_base += nll*nll_base; + max_logit += log_sum_exp; double sum = 0; int imax_base = -1; @@ -269,34 +279,50 @@ static double log_softmax(int n_vocab, const float * logits, const uint16_t * ba kld.sum_kld2 += sum*sum; ++kld.count; if (imax == imax_base) ++kld.n_same_top; - return sum; + + const float p_base = expf(-nll_base); + const float p = expf(-nll); + const float p_diff = p - p_base; + kld.sum_p_diff += p_diff; + const double p_diff2 = p_diff*p_diff; + kld.sum_p_diff2 += p_diff2; + kld.sum_p_diff4 += p_diff2*p_diff2; + kld.max_p_diff = std::max(kld.max_p_diff, std::fabs(p_diff)); + + return std::make_pair(sum, p_diff); } static void process_logits(int n_vocab, const float * logits, const int * tokens, int n_token, std::vector & workers, const std::vector & base_log_probs, kl_divergence_result & kld, - float * kld_values) { + float * kld_values, float * p_diff_values) { std::mutex mutex; const int nv = 2*((n_vocab + 1)/2) + 4; int counter = 0; - auto compute = [&mutex, &counter, &base_log_probs, &kld, n_vocab, logits, tokens, n_token, nv, kld_values] () { + auto compute = [&mutex, &counter, &base_log_probs, &kld, n_vocab, logits, tokens, n_token, nv, kld_values, p_diff_values] () { kl_divergence_result local_kld; while (true) { std::unique_lock lock(mutex); int i = counter++; if (i >= n_token) { - kld.sum_nll += local_kld.sum_nll; - kld.sum_nll2 += local_kld.sum_nll2; - kld.sum_kld += local_kld.sum_kld; - kld.sum_kld2 += local_kld.sum_kld2; - kld.sum_nll_diff += local_kld.sum_nll_diff; - kld.sum_nll_diff2 += local_kld.sum_nll_diff2; - kld.n_same_top += local_kld.n_same_top; - kld.count += local_kld.count; + kld.sum_nll += local_kld.sum_nll; + kld.sum_nll2 += local_kld.sum_nll2; + kld.sum_nll_base += local_kld.sum_nll_base; + kld.sum_nll_base2 += local_kld.sum_nll_base2; + kld.sum_nll_nll_base += local_kld.sum_nll_nll_base; + kld.sum_kld += local_kld.sum_kld; + kld.sum_kld2 += local_kld.sum_kld2; + kld.sum_p_diff += local_kld.sum_p_diff; + kld.sum_p_diff2 += local_kld.sum_p_diff2; + kld.sum_p_diff4 += local_kld.sum_p_diff4; + kld.n_same_top += local_kld.n_same_top; + kld.max_p_diff = std::max(kld.max_p_diff, local_kld.max_p_diff); + kld.count += local_kld.count; break; } lock.unlock(); - double v = log_softmax(n_vocab, logits + i*n_vocab, base_log_probs.data() + i*nv, tokens[i+1], local_kld); - kld_values[i] = (float)v; + std::pair v = log_softmax(n_vocab, logits + i*n_vocab, base_log_probs.data() + i*nv, tokens[i+1], local_kld); + kld_values[i] = (float)v.first; + p_diff_values[i] = v.second; } }; for (auto & w : workers) { @@ -1711,7 +1737,8 @@ static void kl_divergence(llama_context * ctx, const gpt_params & params) { GGML_ASSERT(llama_add_eos_token(llama_get_model(ctx)) != 1); std::vector log_probs_uint16(size_t(n_ctx - 1 - n_ctx/2) * nv); - std::vector kld_values(size_t(n_ctx - 1 - n_ctx/2)*n_chunk); + std::vector kld_values(size_t(n_ctx - 1 - n_ctx/2)*n_chunk); + std::vector p_diff_values(size_t(n_ctx - 1 - n_ctx/2)*n_chunk); std::vector logits; if (num_batches > 1) { logits.reserve(n_ctx * n_vocab); @@ -1728,9 +1755,18 @@ static void kl_divergence(llama_context * ctx, const gpt_params & params) { df = df > 0 && count > 10 ? sqrt(df/(count-1)) : 0.; return std::make_pair(f, df); }; + auto covariance = [] (double suma, double sumb, double sumab, size_t count) { + if (count < 10) { + return 0.0; + } + double var = sumab/count - (suma/count)*(sumb/count); + var /= count - 1; + return var; + }; kl_divergence_result kld; - auto kld_ptr = kld_values.data(); + auto kld_ptr = kld_values.data(); + auto p_diff_ptr = p_diff_values.data(); for (int i = 0; i < n_chunk; ++i) { const int start = i * n_ctx; @@ -1785,24 +1821,42 @@ static void kl_divergence(llama_context * ctx, const gpt_params & params) { } fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0); - printf("\nchunk PPL ln(PPL(Q)/PPL(base)) KL-Divergence Same top\n"); + printf("\nchunk PPL ln(PPL(Q)/PPL(base)) KL Divergence Δp RMS Same top p\n"); } const int first = n_ctx/2; const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits(ctx); process_logits(n_vocab, all_logits + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first, - workers, log_probs_uint16, kld, kld_ptr); - kld_ptr += n_ctx - 1 - first; + workers, log_probs_uint16, kld, kld_ptr, p_diff_ptr); + p_diff_ptr += n_ctx - 1 - first; + kld_ptr += n_ctx - 1 - first; - auto ppl = mean_and_uncertainty(kld.sum_nll, kld.sum_nll2, kld.count); - auto log_ppl_ratio = mean_and_uncertainty(kld.sum_nll_diff, kld.sum_nll_diff2, kld.count); - auto kl_div = mean_and_uncertainty(kld.sum_kld, kld.sum_kld2, kld.count); - auto p_top = 1.*kld.n_same_top/kld.count; - auto d_p_top = sqrt(p_top*(1 - p_top)/(kld.count - 1)); + printf("%4d", i+1); - printf("%4d %10.4lf %10.5lf ± %10.5f %10.5f ± %10.5lf %.5f ± %.5f\n", i+1, exp(ppl.first), - log_ppl_ratio.first, log_ppl_ratio.second, kl_div.first, kl_div.second, - p_top, d_p_top); + auto log_ppl = mean_and_uncertainty(kld.sum_nll, kld.sum_nll2, kld.count); + const double ppl_val = exp(log_ppl.first); + const double ppl_unc = ppl_val * log_ppl.second; // ppl_unc = sqrt( (dexp(x) / dx) ** 2 * log_ppl.second ** 2 ) + printf(" %9.4lf ± %9.4lf", ppl_val, ppl_unc); + + auto log_ppl_base = mean_and_uncertainty(kld.sum_nll_base, kld.sum_nll_base2, kld.count); + const double log_ppl_cov = covariance(kld.sum_nll, kld.sum_nll_base, kld.sum_nll_nll_base, kld.count); + const double log_ppl_ratio_val = log_ppl.first - log_ppl_base.first; + const double log_ppl_ratio_unc = sqrt(log_ppl.second*log_ppl.second + log_ppl_base.second*log_ppl_base.second - 2.0*log_ppl_cov); + printf(" %10.5lf ± %10.5lf", log_ppl_ratio_val, log_ppl_ratio_unc); + + auto kl_div = mean_and_uncertainty(kld.sum_kld, kld.sum_kld2, kld.count); + printf(" %10.5lf ± %10.5lf", kl_div.first, kl_div.second); + + auto p_diff_mse = mean_and_uncertainty(kld.sum_p_diff2, kld.sum_p_diff4, kld.count); + const double p_diff_rms_val = sqrt(p_diff_mse.first); + const double p_diff_rms_unc = 0.5/p_diff_rms_val * p_diff_mse.second; + printf(" %6.3lf ± %6.3lf %%", 100.0*p_diff_rms_val, 100.0*p_diff_rms_unc); + + double p_top_val = 1.*kld.n_same_top/kld.count; + double p_top_unc = sqrt(p_top_val*(1 - p_top_val)/(kld.count - 1)); + printf(" %6.3lf ± %6.3lf %%", 100.0*p_top_val, 100.0*p_top_unc); + + printf("\n"); fflush(stdout); @@ -1813,31 +1867,97 @@ static void kl_divergence(llama_context * ctx, const gpt_params & params) { if (kld.count < 100) return; // we do not wish to do statistics on so few values std::sort(kld_values.begin(), kld_values.end()); + std::sort(p_diff_values.begin(), p_diff_values.end()); - printf("===== KL-divergence statistics\n"); + printf("====== Perplexity statistics ======\n"); + + auto log_ppl = mean_and_uncertainty(kld.sum_nll, kld.sum_nll2, kld.count); + const double ppl_val = exp(log_ppl.first); + const double ppl_unc = ppl_val * log_ppl.second; // ppl_unc = sqrt( (dexp(x) / dx) ** 2 * log_ppl.second ** 2 ) + printf("Mean PPL(Q) : %10.6lf ± %10.6lf\n", ppl_val, ppl_unc); + + auto log_ppl_base = mean_and_uncertainty(kld.sum_nll_base, kld.sum_nll_base2, kld.count); + const double ppl_base_val = exp(log_ppl_base.first); + const double ppl_base_unc = ppl_base_val * log_ppl_base.second; // ppl_base_unc = sqrt( (dexp(x) / dx) ** 2 * log_ppl_base.second ** 2 ) + printf("Mean PPL(base) : %10.6lf ± %10.6lf\n", ppl_base_val, ppl_base_unc); + + const double log_ppl_cov = covariance(kld.sum_nll, kld.sum_nll_base, kld.sum_nll_nll_base, kld.count); + // printf("Cov(ln(PPL(Q)), ln(PPL(base))): %10.6lf\n", log_ppl_cov); + const double log_ppl_cor = log_ppl_cov / (log_ppl.second*log_ppl_base.second); + printf("Cor(ln(PPL(Q)), ln(PPL(base))): %6.2lf%%\n", 100.0*log_ppl_cor); + + const double log_ppl_ratio_val = log_ppl.first - log_ppl_base.first; + const double log_ppl_ratio_unc = sqrt(log_ppl.second*log_ppl.second + log_ppl_base.second*log_ppl_base.second - 2.0*log_ppl_cov); + printf("Mean ln(PPL(Q)/PPL(base)) : %10.6lf ± %10.6lf\n", log_ppl_ratio_val, log_ppl_ratio_unc); + + const double ppl_ratio_val = exp(log_ppl_ratio_val); + const double ppl_ratio_unc = ppl_ratio_val * log_ppl_ratio_unc; // ppl_ratio_unc = sqrt( (dexp(x) / dx) ** 2 * log_ppl_ratio.second ** 2 ) + printf("Mean PPL(Q)/PPL(base) : %10.6lf ± %10.6lf\n", ppl_ratio_val, ppl_ratio_unc); + + const double ppl_cov = ppl_val * ppl_base_val * log_ppl_cov; + const double ppl_diff_val = ppl_val - ppl_base_val; + const double ppl_diff_unc = sqrt(ppl_unc*ppl_unc + ppl_base_unc*ppl_base_unc - 2.0*ppl_cov); + printf("Mean PPL(Q)-PPL(base) : %10.6lf ± %10.6lf\n", ppl_diff_val, ppl_diff_unc); + + printf("\n"); + + printf("====== KL divergence statistics ======\n"); auto kl_div = mean_and_uncertainty(kld.sum_kld, kld.sum_kld2, kld.count); - printf("Average: %10.6f ±%10.6lf\n", kl_div.first, kl_div.second); + printf("Mean KLD: %10.6lf ± %10.6lf\n", kl_div.first, kl_div.second); auto kld_median = kld_values.size()%2 == 0 ? 0.5f*(kld_values[kld_values.size()/2] + kld_values[kld_values.size()/2-1]) : kld_values[kld_values.size()/2]; - printf("Median : %10.6f\n", kld_median); - auto percentile = [&kld_values] (float fraction) { - if (fraction <= 0) return kld_values.front(); - if (fraction >= 1) return kld_values.back(); - float p = fraction*(kld_values.size() - 1); + auto percentile = [] (std::vector values, float fraction) { + if (fraction <= 0) return values.front(); + if (fraction >= 1) return values.back(); + float p = fraction*(values.size() - 1); size_t ip = size_t(p); p -= ip; - return (1 - p)*kld_values[ip] + p*kld_values[std::min(ip+1, kld_values.size()-1)]; + return (1 - p)*values[ip] + p*values[std::min(ip+1, values.size()-1)]; }; - printf("Maximum: %10.6f\n", kld_values.back()); - printf("KLD_99 : %10.6f\n", percentile(0.99f)); - printf("KLD_95 : %10.6f\n", percentile(0.95f)); - printf("KLD_90 : %10.6f\n", percentile(0.90f)); + printf("Maximum KLD: %10.6f\n", kld_values.back()); + printf("99.9%% KLD: %10.6f\n", percentile(kld_values, 0.999f)); + printf("99.0%% KLD: %10.6f\n", percentile(kld_values, 0.990f)); + printf("99.0%% KLD: %10.6f\n", percentile(kld_values, 0.990f)); + printf("Median KLD: %10.6f\n", kld_median); + printf("10.0%% KLD: %10.6f\n", percentile(kld_values, 0.100f)); + printf(" 5.0%% KLD: %10.6f\n", percentile(kld_values, 0.050f)); + printf(" 1.0%% KLD: %10.6f\n", percentile(kld_values, 0.010f)); + printf("Minimum KLD: %10.6f\n", kld_values.front()); - printf("Minimum: %10.6f\n", kld_values.front()); - printf("KLD_01 : %10.6f\n", percentile(0.01f)); - printf("KLD_05 : %10.6f\n", percentile(0.05f)); - printf("KLD_10 : %10.6f\n", percentile(0.10f)); + printf("\n"); + + printf("====== Token probability statistics ======\n"); + + auto p_diff = mean_and_uncertainty(kld.sum_p_diff, kld.sum_p_diff2, kld.count); + printf("Mean Δp: %6.3lf ± %5.3lf %%\n", 100.0*p_diff.first, 100.0*p_diff.second); + + auto p_diff_median = p_diff_values.size()%2 == 0 ? 0.5f*(p_diff_values[p_diff_values.size()/2] + p_diff_values[p_diff_values.size()/2-1]) + : p_diff_values[p_diff_values.size()/2]; + + printf("Maximum Δp: %6.3lf%%\n", 100.0*p_diff_values.back()); + printf("99.9%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.999f)); + printf("99.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.990f)); + printf("95.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.950f)); + printf("90.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.900f)); + printf("75.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.750f)); + printf("Median Δp: %6.3lf%%\n", 100.0*p_diff_median); + printf("25.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.250f)); + printf("10.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.100f)); + printf(" 5.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.050f)); + printf(" 1.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.010f)); + printf(" 0.1%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.001f)); + printf("Minimum Δp: %6.3lf%%\n", 100.0*p_diff_values.front()); + + auto p_diff_mse = mean_and_uncertainty(kld.sum_p_diff2, kld.sum_p_diff4, kld.count); + // printf("MSE Δp : %10.6lf ± %10.6lf\n", p_diff_mse.first, p_diff_mse.second); + + const double p_diff_rms_val = sqrt(p_diff_mse.first); + const double p_diff_rms_unc = 0.5/p_diff_rms_val * p_diff_mse.second; + printf("RMS Δp : %6.3lf ± %5.3lf %%\n", 100.0*p_diff_rms_val, 100.0*p_diff_rms_unc); + + const double same_top_p = 1.0*kld.n_same_top/kld.count; + printf("Same top p: %6.3lf ± %5.3lf %%\n", 100.0*same_top_p, 100.0*sqrt(same_top_p*(1.0 - same_top_p)/(kld.count - 1))); } diff --git a/examples/quantize-stats/quantize-stats.cpp b/examples/quantize-stats/quantize-stats.cpp index 1d05f1391..746df8446 100644 --- a/examples/quantize-stats/quantize-stats.cpp +++ b/examples/quantize-stats/quantize-stats.cpp @@ -23,7 +23,7 @@ #endif struct quantize_stats_params { - std::string model = "models/7B/ggml-model-f16.gguf"; + std::string model = DEFAULT_MODEL_PATH; bool verbose = false; bool per_layer_stats = false; bool print_histogram = false; diff --git a/examples/quantize/CMakeLists.txt b/examples/quantize/CMakeLists.txt index 6f374a2bd..6b977fde8 100644 --- a/examples/quantize/CMakeLists.txt +++ b/examples/quantize/CMakeLists.txt @@ -1,6 +1,6 @@ set(TARGET quantize) add_executable(${TARGET} quantize.cpp) install(TARGETS ${TARGET} RUNTIME) -target_link_libraries(${TARGET} PRIVATE llama build_info ${CMAKE_THREAD_LIBS_INIT}) +target_link_libraries(${TARGET} PRIVATE llama common ${CMAKE_THREAD_LIBS_INIT}) target_include_directories(${TARGET} PRIVATE ../../common) target_compile_features(${TARGET} PRIVATE cxx_std_11) diff --git a/examples/quantize/quantize.cpp b/examples/quantize/quantize.cpp index 64cb6db19..909eab283 100644 --- a/examples/quantize/quantize.cpp +++ b/examples/quantize/quantize.cpp @@ -8,7 +8,6 @@ #include #include #include -#include struct quant_option { std::string name; @@ -47,12 +46,17 @@ static const std::vector QUANT_OPTIONS = { { "Q5_K_M", LLAMA_FTYPE_MOSTLY_Q5_K_M, " 4.45G, +0.0122 ppl @ LLaMA-v1-7B", }, { "Q6_K", LLAMA_FTYPE_MOSTLY_Q6_K, " 5.15G, +0.0008 ppl @ LLaMA-v1-7B", }, { "Q8_0", LLAMA_FTYPE_MOSTLY_Q8_0, " 6.70G, +0.0004 ppl @ LLaMA-v1-7B", }, - { "F16", LLAMA_FTYPE_MOSTLY_F16, "13.00G @ 7B", }, + { "F16", LLAMA_FTYPE_MOSTLY_F16, "14.00G, -0.0020 ppl @ Mistral-7B", }, + { "BF16", LLAMA_FTYPE_MOSTLY_BF16, "14.00G, -0.0050 ppl @ Mistral-7B", }, { "F32", LLAMA_FTYPE_ALL_F32, "26.00G @ 7B", }, // Note: Ensure COPY comes after F32 to avoid ftype 0 from matching. { "COPY", LLAMA_FTYPE_ALL_F32, "only copy tensors, no quantizing", }, }; +static const char * const LLM_KV_QUANTIZE_IMATRIX_FILE = "quantize.imatrix.file"; +static const char * const LLM_KV_QUANTIZE_IMATRIX_DATASET = "quantize.imatrix.dataset"; +static const char * const LLM_KV_QUANTIZE_IMATRIX_N_ENTRIES = "quantize.imatrix.entries_count"; +static const char * const LLM_KV_QUANTIZE_IMATRIX_N_CHUNKS = "quantize.imatrix.chunks_count"; static bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftype, std::string & ftype_str_out) { std::string ftype_str; @@ -97,6 +101,7 @@ static void usage(const char * executable) { printf(" --exclude-weights tensor_name: use importance matrix for this/these tensor(s)\n"); printf(" --output-tensor-type ggml_type: use this ggml_type for the output.weight tensor\n"); printf(" --token-embedding-type ggml_type: use this ggml_type for the token embeddings tensor\n"); + printf(" --keep-split: will generate quatized model in the same shards as input"); printf(" --override-kv KEY=TYPE:VALUE\n"); printf(" Advanced option to override model metadata by key in the quantized model. May be specified multiple times.\n"); printf("Note: --include-weights and --exclude-weights cannot be used together\n"); @@ -112,7 +117,7 @@ static void usage(const char * executable) { exit(1); } -static void load_imatrix(const std::string & imatrix_file, std::unordered_map> & imatrix_data) { +static int load_imatrix(const std::string & imatrix_file, std::string & imatrix_dataset, std::unordered_map> & imatrix_data) { std::ifstream in(imatrix_file.c_str(), std::ios::binary); if (!in) { printf("%s: failed to open %s\n",__func__, imatrix_file.c_str()); @@ -159,18 +164,33 @@ static void load_imatrix(const std::string & imatrix_file, std::unordered_map dataset_as_vec(dataset_len); + in.read(dataset_as_vec.data(), dataset_len); + imatrix_dataset.assign(dataset_as_vec.begin(), dataset_as_vec.end()); + printf("%s: imatrix dataset='%s'\n", __func__, imatrix_dataset.c_str()); + } + printf("%s: loaded %d importance matrix entries from %s computed on %d chunks\n", __func__, int(imatrix_data.size()), imatrix_file.c_str(), m_last_call); + return m_last_call; } -static void prepare_imatrix(const std::string & imatrix_file, +static int prepare_imatrix(const std::string & imatrix_file, + std::string & imatrix_dataset, const std::vector & included_weights, const std::vector & excluded_weights, std::unordered_map> & imatrix_data) { + int m_last_call = -1; if (!imatrix_file.empty()) { - load_imatrix(imatrix_file, imatrix_data); + m_last_call = load_imatrix(imatrix_file, imatrix_dataset, imatrix_data); } if (imatrix_data.empty()) { - return; + return m_last_call; } if (!excluded_weights.empty()) { for (auto& name : excluded_weights) { @@ -196,6 +216,7 @@ static void prepare_imatrix(const std::string & imatrix_file, if (!imatrix_data.empty()) { printf("%s: have %d importance matrix entries\n", __func__, int(imatrix_data.size())); } + return m_last_call; } static ggml_type parse_ggml_type(const char * arg) { @@ -210,43 +231,6 @@ static ggml_type parse_ggml_type(const char * arg) { return result; } -static bool parse_kv_override(const char * data, std::vector & overrides) { - const char* sep = strchr(data, '='); - if (sep == nullptr || sep - data >= 128) { - fprintf(stderr, "%s: malformed KV override '%s'\n", __func__, data); - return false; - } - llama_model_kv_override kvo; - std::strncpy(kvo.key, data, sep - data); - kvo.key[sep - data] = 0; - sep++; - if (strncmp(sep, "int:", 4) == 0) { - sep += 4; - kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT; - kvo.int_value = std::atol(sep); - } else if (strncmp(sep, "float:", 6) == 0) { - sep += 6; - kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT; - kvo.float_value = std::atof(sep); - } else if (strncmp(sep, "bool:", 5) == 0) { - sep += 5; - kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL; - if (std::strcmp(sep, "true") == 0) { - kvo.bool_value = true; - } else if (std::strcmp(sep, "false") == 0) { - kvo.bool_value = false; - } else { - fprintf(stderr, "%s: invalid boolean value for KV override '%s'\n", __func__, data); - return false; - } - } else { - fprintf(stderr, "%s: invalid type for KV override '%s'\n", __func__, data); - return false; - } - overrides.emplace_back(std::move(kvo)); - return true; -} - int main(int argc, char ** argv) { if (argc < 3) { usage(argv[0]); @@ -300,6 +284,8 @@ int main(int argc, char ** argv) { } else { usage(argv[0]); } + } else if (strcmp(argv[arg_idx], "--keep-split")) { + params.keep_split = true; } else { usage(argv[0]); } @@ -313,10 +299,43 @@ int main(int argc, char ** argv) { usage(argv[0]); } + std::string imatrix_dataset; std::unordered_map> imatrix_data; - prepare_imatrix(imatrix_file, included_weights, excluded_weights, imatrix_data); + int m_last_call = prepare_imatrix(imatrix_file, imatrix_dataset, included_weights, excluded_weights, imatrix_data); if (!imatrix_data.empty()) { params.imatrix = &imatrix_data; + { + llama_model_kv_override kvo; + std::strcpy(kvo.key, LLM_KV_QUANTIZE_IMATRIX_FILE); + kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR; + strncpy(kvo.val_str, imatrix_file.c_str(), 127); + kvo.val_str[127] = '\0'; + kv_overrides.emplace_back(std::move(kvo)); + } + if (!imatrix_dataset.empty()) { + llama_model_kv_override kvo; + std::strcpy(kvo.key, LLM_KV_QUANTIZE_IMATRIX_DATASET); + kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR; + strncpy(kvo.val_str, imatrix_dataset.c_str(), 127); + kvo.val_str[127] = '\0'; + kv_overrides.emplace_back(std::move(kvo)); + } + + { + llama_model_kv_override kvo; + std::strcpy(kvo.key, LLM_KV_QUANTIZE_IMATRIX_N_ENTRIES); + kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT; + kvo.val_i64 = imatrix_data.size(); + kv_overrides.emplace_back(std::move(kvo)); + } + + if (m_last_call > 0) { + llama_model_kv_override kvo; + std::strcpy(kvo.key, LLM_KV_QUANTIZE_IMATRIX_N_CHUNKS); + kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT; + kvo.val_i64 = m_last_call; + kv_overrides.emplace_back(std::move(kvo)); + } } if (!kv_overrides.empty()) { kv_overrides.emplace_back(); @@ -332,20 +351,28 @@ int main(int argc, char ** argv) { std::string fname_out; std::string ftype_str; + std::string suffix = ".gguf"; if (try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) { std::string fpath; const size_t pos = fname_inp.find_last_of("/\\"); if (pos != std::string::npos) { fpath = fname_inp.substr(0, pos + 1); } - // export as [inp path]/ggml-model-[ftype].gguf - fname_out = fpath + "ggml-model-" + ftype_str + ".gguf"; + + // export as [inp path]/ggml-model-[ftype]. Only add extension if there is no splitting + fname_out = fpath + "ggml-model-" + ftype_str; + if (!params.keep_split) { + fname_out += suffix; + } arg_idx++; if (ftype_str == "COPY") { params.only_copy = true; } } else { fname_out = argv[arg_idx]; + if (params.keep_split && fname_out.find(suffix) != std::string::npos) { + fname_out = fname_out.substr(0, fname_out.length() - suffix.length()); + } arg_idx++; if (argc <= arg_idx) { diff --git a/examples/quantize/tests.sh b/examples/quantize/tests.sh new file mode 100644 index 000000000..160c12bee --- /dev/null +++ b/examples/quantize/tests.sh @@ -0,0 +1,65 @@ +#!/bin/bash + +set -eu + +if [ $# -lt 1 ] +then + echo "usage: $0 path_to_build_binary [path_to_temp_folder]" + echo "example: $0 ../../build/bin ../../tmp" + exit 1 +fi + +if [ $# -gt 1 ] +then + TMP_DIR=$2 +else + TMP_DIR=/tmp +fi + +set -x + +SPLIT=$1/gguf-split +QUANTIZE=$1/quantize +MAIN=$1/main +WORK_PATH=$TMP_DIR/quantize +ROOT_DIR=$(realpath $(dirname $0)/../../) + +mkdir -p "$WORK_PATH" + +# Clean up in case of previously failed test +rm -f $WORK_PATH/ggml-model-split*.gguf $WORK_PATH/ggml-model-requant*.gguf + +# 1. Get a model +( +cd $WORK_PATH +"$ROOT_DIR"/scripts/hf.sh --repo ggml-org/gemma-1.1-2b-it-Q8_0-GGUF --file gemma-1.1-2b-it.Q8_0.gguf +) +echo PASS + +# 2. Split model +$SPLIT --split-max-tensors 28 $WORK_PATH/gemma-1.1-2b-it.Q8_0.gguf $WORK_PATH/ggml-model-split +echo PASS +echo + +# 3. Requant model with '--keep_split' +$QUANTIZE --allow-requantize --keep_split $WORK_PATH/ggml-model-split-00001-of-00006.gguf $WORK_PATH/ggml-model-requant.gguf Q4_K +echo PASS +echo + +# 3a. Test the requanted model is loading properly +$MAIN --model $WORK_PATH/ggml-model-requant-00001-of-00006.gguf --random-prompt --n-predict 32 +echo PASS +echo + +# 4. Requant mode without '--keep_split' +$QUANTIZE --allow-requantize $WORK_PATH/ggml-model-split-00001-of-00006.gguf $WORK_PATH/ggml-model-requant-merge.gguf Q4_K +echo PASS +echo + +# 4b. Test the requanted model is loading properly +$MAIN --model $WORK_PATH/ggml-model-requant-merge.gguf --random-prompt --n-predict 32 +echo PASS +echo + +# Clean up +rm -f $WORK_PATH/ggml-model-split*.gguf $WORK_PATH/ggml-model-requant*.gguf diff --git a/examples/server/README.md b/examples/server/README.md index 918ac1295..650317991 100644 --- a/examples/server/README.md +++ b/examples/server/README.md @@ -62,6 +62,18 @@ page cache before using this. See https://github.com/ggerganov/llama.cpp/issues/ - `--chat-template JINJA_TEMPLATE`: Set custom jinja chat template. This parameter accepts a string, not a file name. Default: template taken from model's metadata. We only support [some pre-defined templates](https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template) - `--log-disable`: Output logs to stdout only, not to `llama.log`. Default: enabled - `--log-format FORMAT`: Define the log output to FORMAT: json or text Default: `json` +- `--rope-scaling` : RoPE scaling method. Defaults to linear unless otherwise specified by the model. Options are `none`, `linear`, `yarn` +- `--rope-freq-base N` : RoPE frequency base (default: loaded from model) +- `--rope-freq-scale N`: RoPE frequency scaling factor, expands context by a factor of 1/N (e.g. 0.25) +- `--yarn-ext-factor N` : YaRN: extrapolation mix factor (Default: 1.0, 0.0 = full interpolation) +- `--yarn-attn-factor N` : YaRN: scale sqrt(t) or attention magnitude (default: 1.0) +- `--yarn-beta-slow N`: YaRN: High correction dim or alpha (default: 1.0) +- `--yarn-beta-fast N`: YaRN: low correction dim or beta (default: 32.0) +- `--pooling` : Pooling type for embeddings, use model default if unspecified. Options are `none`, `mean`, `cls` +- `-dt N`, `--defrag-thold N`: KV cache defragmentation threshold (default: -1.0, < 0 = disabled) +- `-fa`, `--flash-attn` : enable flash attention (default: disabled). +- `-ctk TYPE`, `--cache-type-k TYPE` : KV cache data type for K (default: `f16`, options `f32`, `f16`, `q8_0`, `q4_0`, `q4_1`, `iq4_nl`, `q5_0`, or `q5_1`) +- `-ctv TYPE`, `--cache-type-v TYPE` : KV cache type for V (default `f16`, see `-ctk` for options) **If compiled with `LLAMA_SERVER_SSL=ON`** - `--ssl-key-file FNAME`: path to file a PEM-encoded SSL private key @@ -74,15 +86,18 @@ page cache before using this. See https://github.com/ggerganov/llama.cpp/issues/ - Using `make`: ```bash - make + make server ``` - Using `CMake`: ```bash - cmake --build . --config Release + cmake -B build + cmake --build build --config Release -t server ``` + Binary is at `./build/bin/server` + ## Build with SSL `server` can also be built with SSL support using OpenSSL 3 @@ -99,10 +114,8 @@ page cache before using this. See https://github.com/ggerganov/llama.cpp/issues/ - Using `CMake`: ```bash - mkdir build - cd build - cmake .. -DLLAMA_SERVER_SSL=ON - make server + cmake -B build -DLLAMA_SERVER_SSL=ON + cmake --build build --config Release -t server ``` ## Quick Start @@ -259,7 +272,7 @@ node index.js `logit_bias`: Modify the likelihood of a token appearing in the generated text completion. For example, use `"logit_bias": [[15043,1.0]]` to increase the likelihood of the token 'Hello', or `"logit_bias": [[15043,-1.0]]` to decrease its likelihood. Setting the value to false, `"logit_bias": [[15043,false]]` ensures that the token `Hello` is never produced. The tokens can also be represented as strings, e.g. `[["Hello, World!",-0.5]]` will reduce the likelihood of all the individual tokens that represent the string `Hello, World!`, just like the `presence_penalty` does. Default: `[]` - `n_probs`: If greater than 0, the response also contains the probabilities of top N tokens for each generated token. Default: `0` + `n_probs`: If greater than 0, the response also contains the probabilities of top N tokens for each generated token given the sampling settings. Note that for temperature < 0 the tokens are sampled greedily but token probabilities are still being calculated via a simple softmax of the logits without considering any other sampler settings. Default: `0` `min_keep`: If greater than 0, force samplers to return N possible tokens at minimum. Default: `0` @@ -318,7 +331,7 @@ Notice that each `probs` is an array of length `n_probs`. `content`: Set the text to tokenize. - Note that a special `BOS` token is never inserted. + `add_special`: Boolean indicating if special tokens, i.e. `BOS`, should be inserted. Default: `false` - **POST** `/detokenize`: Convert tokens to text. diff --git a/examples/server/bench/bench.py b/examples/server/bench/bench.py index 6ca637bdd..86c5de101 100644 --- a/examples/server/bench/bench.py +++ b/examples/server/bench/bench.py @@ -268,6 +268,7 @@ def start_server_background(args): server_args.extend(['--defrag-thold', "0.1"]) server_args.append('--cont-batching') server_args.append('--metrics') + server_args.append('--flash-attn') server_args.extend(['--log-format', "text"]) args = [str(arg) for arg in [server_path, *server_args]] print(f"bench: starting server with: {' '.join(args)}") diff --git a/examples/server/bench/script.js b/examples/server/bench/script.js index c4c486cdf..bdf4f5abc 100644 --- a/examples/server/bench/script.js +++ b/examples/server/bench/script.js @@ -90,7 +90,8 @@ export default function () { "model": model, "stream": true, "seed": 42, - "max_tokens": max_tokens + "max_tokens": max_tokens, + "stop": ["<|im_end|>"] // This is temporary for phi-2 base (i.e. not instructed) since the server expects that the model always to emit BOS } const params = {method: 'POST', body: JSON.stringify(payload)}; diff --git a/examples/server/public/favicon.ico b/examples/server/public/favicon.ico new file mode 100644 index 000000000..89e154a0a Binary files /dev/null and b/examples/server/public/favicon.ico differ diff --git a/examples/server/public/index.html b/examples/server/public/index.html index 9fe61eb1b..2961999f2 100644 --- a/examples/server/public/index.html +++ b/examples/server/public/index.html @@ -881,11 +881,11 @@ .replace(/&/g, '&') .replace(//g, '>') - .replace(/^#{1,6} (.*)$/gim, '

$1

') - .replace(/\*\*(.*?)\*\*/g, '$1') - .replace(/__(.*?)__/g, '$1') - .replace(/\*(.*?)\*/g, '$1') - .replace(/_(.*?)_/g, '$1') + .replace(/(^|\n)#{1,6} ([^\n]*)(?=([^`]*`[^`]*`)*[^`]*$)/g, '$1

$2

') + .replace(/\*\*(.*?)\*\*(?=([^`]*`[^`]*`)*[^`]*$)/g, '$1') + .replace(/__(.*?)__(?=([^`]*`[^`]*`)*[^`]*$)/g, '$1') + .replace(/\*(.*?)\*(?=([^`]*`[^`]*`)*[^`]*$)/g, '$1') + .replace(/_(.*?)_(?=([^`]*`[^`]*`)*[^`]*$)/g, '$1') .replace(/```.*?\n([\s\S]*?)```/g, '
$1
') .replace(/`(.*?)`/g, '$1') .replace(/\n/gim, '
'); diff --git a/examples/server/server.cpp b/examples/server/server.cpp index 950fc8df4..6b3d597bf 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -12,6 +12,8 @@ // increase max payload length to allow use of larger context size #define CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 1048576 #include "httplib.h" +// Change JSON_ASSERT from assert() to GGML_ASSERT: +#define JSON_ASSERT GGML_ASSERT #include "json.hpp" // auto generated files (update with ./deps.sh) @@ -854,12 +856,12 @@ struct server_context { slot.sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl); slot.params.n_keep = json_value(data, "n_keep", slot.params.n_keep); slot.params.n_discard = json_value(data, "n_discard", default_params.n_discard); - slot.params.seed = json_value(data, "seed", default_params.seed); + slot.sparams.seed = json_value(data, "seed", default_sparams.seed); slot.sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs); slot.sparams.min_keep = json_value(data, "min_keep", default_sparams.min_keep); // process "json_schema" and "grammar" - if (data.contains("json_schema") && !data["json_schema"].is_null() && data.contains("grammar") && !data["grammar"].is_null()) { + if (data.contains("json_schema") && !data.at("json_schema").is_null() && data.contains("grammar") && !data.at("grammar").is_null()) { send_error(task, "Either \"json_schema\" or \"grammar\" can be specified, but not both", ERROR_TYPE_INVALID_REQUEST); return false; } else if (data.contains("json_schema") && !data.contains("grammar")) { @@ -1028,7 +1030,6 @@ struct server_context { send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST); return false; } - llama_set_rng_seed(ctx, slot.params.seed); } slot.command = SLOT_COMMAND_LOAD_PROMPT; @@ -1118,7 +1119,7 @@ struct server_context { bool process_token(completion_token_output & result, server_slot & slot) { // remember which tokens were sampled - used for repetition penalties during sampling - const std::string token_str = llama_token_to_piece(ctx, result.tok); + const std::string token_str = llama_token_to_piece(ctx, result.tok, false); slot.sampled = result.tok; // search stop word and delete it @@ -1208,6 +1209,27 @@ struct server_context { LOG_VERBOSE("eos token found", {}); } + auto n_ctx_train = llama_n_ctx_train(model); + if (slot.params.n_predict < 1 && slot.n_predict < 1 && slot.ga_n == 1 + && slot.n_prompt_tokens + slot.n_decoded >= n_ctx_train) { + LOG_WARNING("n_predict is not set and self-context extend is disabled." + " Limiting generated tokens to n_ctx_train to avoid EOS-less generation infinite loop", { + { "id_slot", slot.id }, + { "params.n_predict", slot.params.n_predict }, + { "slot.n_prompt_tokens", slot.n_prompt_tokens }, + { "slot.n_decoded", slot.n_decoded }, + { "slot.n_predict", slot.n_predict }, + { "n_slots", params.n_parallel }, + { "slot.n_ctx", slot.n_ctx }, + { "n_ctx", n_ctx }, + { "n_ctx_train", n_ctx_train }, + { "ga_n", slot.ga_n }, + }); + slot.truncated = true; + slot.stopped_limit = true; + slot.has_next_token = false; // stop prediction + } + LOG_VERBOSE("next token", { {"id_slot", slot.id}, {"id_task", slot.id_task}, @@ -1363,9 +1385,10 @@ struct server_context { if (!slot.params.stream && slot.stopped_word) { const std::vector stop_word_toks = llama_tokenize(ctx, slot.stopping_word, false); + size_t safe_offset = std::min(slot.generated_token_probs.size(), stop_word_toks.size()); probs = std::vector( slot.generated_token_probs.begin(), - slot.generated_token_probs.end() - stop_word_toks.size()); + slot.generated_token_probs.end() - safe_offset); } else { probs = std::vector( slot.generated_token_probs.begin(), @@ -1491,7 +1514,7 @@ struct server_context { // add subtasks for (int i = 0; i < prompt_count; i++) { json subtask_data = multiprompt_task.data; - subtask_data["prompt"] = subtask_data["prompt"][i]; + subtask_data["prompt"] = subtask_data.at("prompt")[i]; // subtasks inherit everything else (infill mode, embedding mode, etc.) request_completion(subtask_ids[i], id_multi, subtask_data, multiprompt_task.infill, multiprompt_task.embedding); @@ -1511,7 +1534,7 @@ struct server_context { } if (task.data.contains("system_prompt")) { - system_prompt_set(task.data["system_prompt"]); + system_prompt_set(task.data.at("system_prompt")); for (server_slot & slot : slots) { slot.n_past = 0; @@ -1623,7 +1646,7 @@ struct server_context { } break; case SERVER_TASK_TYPE_SLOT_SAVE: { - int id_slot = task.data["id_slot"]; + int id_slot = task.data.at("id_slot"); server_slot * slot = get_slot(id_slot); if (slot == nullptr) { send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST); @@ -1633,8 +1656,8 @@ struct server_context { const size_t token_count = slot->cache_tokens.size(); const int64_t t_start = ggml_time_us(); - std::string filename = task.data["filename"]; - std::string filepath = task.data["filepath"]; + std::string filename = task.data.at("filename"); + std::string filepath = task.data.at("filepath"); const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id + 1, slot->cache_tokens.data(), token_count); @@ -1658,7 +1681,7 @@ struct server_context { } break; case SERVER_TASK_TYPE_SLOT_RESTORE: { - int id_slot = task.data["id_slot"]; + int id_slot = task.data.at("id_slot"); server_slot * slot = get_slot(id_slot); if (slot == nullptr) { send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST); @@ -1667,8 +1690,8 @@ struct server_context { const int64_t t_start = ggml_time_us(); - std::string filename = task.data["filename"]; - std::string filepath = task.data["filepath"]; + std::string filename = task.data.at("filename"); + std::string filepath = task.data.at("filepath"); slot->cache_tokens.resize(slot->n_ctx); size_t token_count = 0; @@ -1700,7 +1723,7 @@ struct server_context { } break; case SERVER_TASK_TYPE_SLOT_ERASE: { - int id_slot = task.data["id_slot"]; + int id_slot = task.data.at("id_slot"); server_slot * slot = get_slot(id_slot); if (slot == nullptr) { send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST); @@ -2142,7 +2165,7 @@ struct server_context { }); // process the created batch of tokens - for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) { + for (int32_t i = 0; i < batch.n_tokens; i += n_batch) { const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i); for (auto & slot : slots) { @@ -2245,17 +2268,31 @@ struct server_context { llama_token_data_array cur_p = { slot.ctx_sampling->cur.data(), slot.ctx_sampling->cur.size(), false }; result.tok = id; - const int32_t n_probs = slot.sparams.n_probs; - if (slot.sparams.temp <= 0 && n_probs > 0) { - // for llama_sample_token_greedy we need to sort candidates - llama_sample_softmax(ctx, &cur_p); - } + const size_t n_probs = std::min(cur_p.size, (size_t) slot.sparams.n_probs); + if (n_probs > 0) { + const size_t n_considered = slot.ctx_sampling->n_considered; - for (size_t i = 0; i < std::min(cur_p.size, (size_t) n_probs); ++i) { - result.probs.push_back({ - cur_p.data[i].id, - cur_p.data[i].p - }); + // Make sure at least n_probs top tokens are at the front of the vector: + if (slot.sparams.temp == 0.0f && n_probs > n_considered) { + llama_sample_top_k(ctx, &cur_p, n_probs, 0); + } + + if (slot.sparams.temp == 0.0f) { + // With greedy sampling the probabilities have possibly not been calculated. + for (size_t i = 0; i < n_probs; ++i) { + result.probs.push_back({ + cur_p.data[i].id, + i == 0 ? 1.0f : 0.0f + }); + } + } else { + for (size_t i = 0; i < n_probs; ++i) { + result.probs.push_back({ + cur_p.data[i].id, + i >= n_considered ? 0.0f : cur_p.data[i].p // Tokens filtered out due to e.g. top_k have 0 probability. + }); + } + } } if (!process_token(result, slot)) { @@ -2333,7 +2370,7 @@ static void server_print_usage(const char * argv0, const gpt_params & params, co printf(" disable KV offload\n"); } printf(" -m FNAME, --model FNAME\n"); - printf(" model path (default: %s)\n", params.model.c_str()); + printf(" model path (default: models/$filename with filename from --hf-file or --model-url if set, otherwise %s)\n", DEFAULT_MODEL_PATH); printf(" -mu MODEL_URL, --model-url MODEL_URL\n"); printf(" model download url (default: unused)\n"); printf(" -hfr REPO, --hf-repo REPO\n"); @@ -2357,6 +2394,7 @@ static void server_print_usage(const char * argv0, const gpt_params & params, co printf(" --embeddings enable embedding vector output (default: %s)\n", params.embedding ? "enabled" : "disabled"); printf(" -np N, --parallel N number of slots for process requests (default: %d)\n", params.n_parallel); printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: enabled)\n"); + printf(" -fa, --flash-attn enable Flash Attention (default: %s)\n", params.flash_attn ? "enabled" : "disabled"); printf(" -spf FNAME, --system-prompt-file FNAME\n"); printf(" set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications.\n"); printf(" -ctk TYPE, --cache-type-k TYPE\n"); @@ -2372,7 +2410,7 @@ static void server_print_usage(const char * argv0, const gpt_params & params, co printf(" -n, --n-predict maximum tokens to predict (default: %d)\n", params.n_predict); printf(" --override-kv KEY=TYPE:VALUE\n"); printf(" advanced option to override model metadata by key. may be specified multiple times.\n"); - printf(" types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n"); + printf(" types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n"); printf(" -gan N, --grp-attn-n N set the group attention factor to extend context size through self-extend(default: 1=disabled), used together with group attention width `--grp-attn-w`\n"); printf(" -gaw N, --grp-attn-w N set the group attention width to extend context size through self-extend(default: 512), used together with group attention factor `--grp-attn-n`\n"); printf(" --chat-template JINJA_TEMPLATE\n"); @@ -2722,6 +2760,8 @@ static void server_params_parse(int argc, char ** argv, server_params & sparams, params.embedding = true; } else if (arg == "-cb" || arg == "--cont-batching") { params.cont_batching = true; + } else if (arg == "-fa" || arg == "--flash-attn") { + params.flash_attn = true; } else if (arg == "-np" || arg == "--parallel") { if (++i >= argc) { invalid_param = true; @@ -2803,43 +2843,11 @@ static void server_params_parse(int argc, char ** argv, server_params & sparams, invalid_param = true; break; } - char * sep = strchr(argv[i], '='); - if (sep == nullptr || sep - argv[i] >= 128) { - fprintf(stderr, "error: Malformed KV override: %s\n", argv[i]); - invalid_param = true; - break; - } - - struct llama_model_kv_override kvo; - std::strncpy(kvo.key, argv[i], sep - argv[i]); - kvo.key[sep - argv[i]] = 0; - sep++; - if (strncmp(sep, "int:", 4) == 0) { - sep += 4; - kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT; - kvo.int_value = std::atol(sep); - } else if (strncmp(sep, "float:", 6) == 0) { - sep += 6; - kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT; - kvo.float_value = std::atof(sep); - } else if (strncmp(sep, "bool:", 5) == 0) { - sep += 5; - kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL; - if (std::strcmp(sep, "true") == 0) { - kvo.bool_value = true; - } else if (std::strcmp(sep, "false") == 0) { - kvo.bool_value = false; - } else { - fprintf(stderr, "error: Invalid boolean value for KV override: %s\n", argv[i]); - invalid_param = true; - break; - } - } else { + if (!parse_kv_override(argv[i], params.kv_overrides)) { fprintf(stderr, "error: Invalid type for KV override: %s\n", argv[i]); invalid_param = true; break; } - params.kv_overrides.push_back(kvo); } else { fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); server_print_usage(argv[0], default_params, default_sparams); @@ -2847,6 +2855,8 @@ static void server_params_parse(int argc, char ** argv, server_params & sparams, } } + gpt_params_handle_model_default(params); + if (!params.kv_overrides.empty()) { params.kv_overrides.emplace_back(); params.kv_overrides.back().key[0] = 0; @@ -3135,8 +3145,8 @@ int main(int argc, char ** argv) { server_task_result result = ctx_server.queue_results.recv(task.id); ctx_server.queue_results.remove_waiting_task_id(task.id); - const int n_idle_slots = result.data["idle"]; - const int n_processing_slots = result.data["processing"]; + const int n_idle_slots = result.data.at("idle"); + const int n_processing_slots = result.data.at("processing"); json health = { {"status", "ok"}, @@ -3146,7 +3156,7 @@ int main(int argc, char ** argv) { res.status = 200; // HTTP OK if (sparams.slots_endpoint && req.has_param("include_slots")) { - health["slots"] = result.data["slots"]; + health["slots"] = result.data.at("slots"); } if (n_idle_slots == 0) { @@ -3190,7 +3200,7 @@ int main(int argc, char ** argv) { server_task_result result = ctx_server.queue_results.recv(task.id); ctx_server.queue_results.remove_waiting_task_id(task.id); - res.set_content(result.data["slots"].dump(), "application/json"); + res.set_content(result.data.at("slots").dump(), "application/json"); res.status = 200; // HTTP OK }; @@ -3217,32 +3227,32 @@ int main(int argc, char ** argv) { json data = result.data; - const uint64_t n_prompt_tokens_processed = data["n_prompt_tokens_processed"]; - const uint64_t t_prompt_processing = data["t_prompt_processing"]; + const uint64_t n_prompt_tokens_processed = data.at("n_prompt_tokens_processed"); + const uint64_t t_prompt_processing = data.at("t_prompt_processing"); - const uint64_t n_tokens_predicted = data["n_tokens_predicted"]; - const uint64_t t_tokens_generation = data["t_tokens_generation"]; + const uint64_t n_tokens_predicted = data.at("n_tokens_predicted"); + const uint64_t t_tokens_generation = data.at("t_tokens_generation"); - const int32_t kv_cache_used_cells = data["kv_cache_used_cells"]; + const int32_t kv_cache_used_cells = data.at("kv_cache_used_cells"); // metrics definition: https://prometheus.io/docs/practices/naming/#metric-names json all_metrics_def = json { {"counter", {{ {"name", "prompt_tokens_total"}, {"help", "Number of prompt tokens processed."}, - {"value", (uint64_t) data["n_prompt_tokens_processed_total"]} + {"value", (uint64_t) data.at("n_prompt_tokens_processed_total")} }, { {"name", "prompt_seconds_total"}, {"help", "Prompt process time"}, - {"value", (uint64_t) data["t_prompt_processing_total"] / 1.e3} + {"value", (uint64_t) data.at("t_prompt_processing_total") / 1.e3} }, { {"name", "tokens_predicted_total"}, {"help", "Number of generation tokens processed."}, - {"value", (uint64_t) data["n_tokens_predicted_total"]} + {"value", (uint64_t) data.at("n_tokens_predicted_total")} }, { {"name", "tokens_predicted_seconds_total"}, {"help", "Predict process time"}, - {"value", (uint64_t) data["t_tokens_generation_total"] / 1.e3} + {"value", (uint64_t) data.at("t_tokens_generation_total") / 1.e3} }}}, {"gauge", {{ {"name", "prompt_tokens_seconds"}, @@ -3259,15 +3269,15 @@ int main(int argc, char ** argv) { },{ {"name", "kv_cache_tokens"}, {"help", "KV-cache tokens."}, - {"value", (uint64_t) data["kv_cache_tokens_count"]} + {"value", (uint64_t) data.at("kv_cache_tokens_count")} },{ {"name", "requests_processing"}, {"help", "Number of request processing."}, - {"value", (uint64_t) data["processing"]} + {"value", (uint64_t) data.at("processing")} },{ {"name", "requests_deferred"}, {"help", "Number of request deferred."}, - {"value", (uint64_t) data["deferred"]} + {"value", (uint64_t) data.at("deferred")} }}} }; @@ -3278,8 +3288,8 @@ int main(int argc, char ** argv) { const auto & metrics_def = el.value(); for (const auto & metric_def : metrics_def) { - const std::string name = metric_def["name"]; - const std::string help = metric_def["help"]; + const std::string name = metric_def.at("name"); + const std::string help = metric_def.at("help"); auto value = json_value(metric_def, "value", 0.); prometheus << "# HELP llamacpp:" << name << " " << help << "\n" @@ -3288,7 +3298,7 @@ int main(int argc, char ** argv) { } } - const int64_t t_start = data["t_start"]; + const int64_t t_start = data.at("t_start"); res.set_header("Process-Start-Time-Unix", std::to_string(t_start)); res.set_content(prometheus.str(), "text/plain; version=0.0.4"); @@ -3297,7 +3307,7 @@ int main(int argc, char ** argv) { const auto handle_slots_save = [&ctx_server, &res_error, &sparams](const httplib::Request & req, httplib::Response & res, int id_slot) { json request_data = json::parse(req.body); - std::string filename = request_data["filename"]; + std::string filename = request_data.at("filename"); if (!validate_file_name(filename)) { res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST)); return; @@ -3327,7 +3337,7 @@ int main(int argc, char ** argv) { const auto handle_slots_restore = [&ctx_server, &res_error, &sparams](const httplib::Request & req, httplib::Response & res, int id_slot) { json request_data = json::parse(req.body); - std::string filename = request_data["filename"]; + std::string filename = request_data.at("filename"); if (!validate_file_name(filename)) { res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST)); return; @@ -3646,7 +3656,8 @@ int main(int argc, char ** argv) { std::vector tokens; if (body.count("content") != 0) { - tokens = ctx_server.tokenize(body["content"], false); + const bool add_special = json_value(body, "add_special", false); + tokens = ctx_server.tokenize(body.at("content"), add_special); } const json data = format_tokenizer_response(tokens); return res.set_content(data.dump(), "application/json; charset=utf-8"); @@ -3658,7 +3669,7 @@ int main(int argc, char ** argv) { std::string content; if (body.count("tokens") != 0) { - const std::vector tokens = body["tokens"]; + const std::vector tokens = body.at("tokens"); content = tokens_to_str(ctx_server.ctx, tokens.cbegin(), tokens.cend()); } @@ -3681,10 +3692,10 @@ int main(int argc, char ** argv) { json prompt; if (body.count("input") != 0) { is_openai = true; - prompt = body["input"]; + prompt = body.at("input"); } else if (body.count("content") != 0) { // with "content", we only support single prompt - prompt = std::vector{body["content"]}; + prompt = std::vector{body.at("content")}; } else { res_error(res, format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST)); return; @@ -3703,7 +3714,7 @@ int main(int argc, char ** argv) { if (!result.error) { if (result.data.count("results")) { // result for multi-task - responses = result.data["results"]; + responses = result.data.at("results"); } else { // result for single task responses = std::vector{result.data}; diff --git a/examples/server/tests/features/embeddings.feature b/examples/server/tests/features/embeddings.feature index dcf1434f9..6f163ce04 100644 --- a/examples/server/tests/features/embeddings.feature +++ b/examples/server/tests/features/embeddings.feature @@ -5,7 +5,7 @@ Feature: llama.cpp server Background: Server startup Given a server listening on localhost:8080 And a model url https://huggingface.co/ggml-org/models/resolve/main/bert-bge-small/ggml-model-f16.gguf - And a model file ggml-model-f16.gguf + And a model file bert-bge-small.gguf And a model alias bert-bge-small And 42 as server seed And 2 slots diff --git a/examples/server/tests/features/results.feature b/examples/server/tests/features/results.feature new file mode 100644 index 000000000..aa0b8d0c6 --- /dev/null +++ b/examples/server/tests/features/results.feature @@ -0,0 +1,81 @@ +@llama.cpp +@results +Feature: Results + + Background: Server startup + Given a server listening on localhost:8080 + And a model file tinyllamas/split/stories15M-00001-of-00003.gguf from HF repo ggml-org/models + And a model file test-model-00001-of-00003.gguf + And 128 as batch size + And 1024 KV cache size + And 128 max tokens to predict + And continuous batching + + Scenario Outline: consistent results with same seed + Given slots + Then the server is starting + Then the server is healthy + + Given 4 prompts "Title: Little Red Riding Hood But In Space\n\nSummary:" with seed 42 + + Given concurrent completion requests + Then the server is busy + Then the server is idle + And all slots are idle + Then all predictions are equal + Examples: + | n_slots | + | 1 | + | 2 | + + Scenario Outline: different results with different seed + Given slots + Then the server is starting + Then the server is healthy + + Given 1 prompts "Title: Little Red Riding Hood But In Space\n\nSummary:" with seed 42 + Given 1 prompts "Title: Little Red Riding Hood But In Space\n\nSummary:" with seed 43 + Given 1 prompts "Title: Little Red Riding Hood But In Space\n\nSummary:" with seed 44 + Given 1 prompts "Title: Little Red Riding Hood But In Space\n\nSummary:" with seed 45 + + Given concurrent completion requests + Then the server is busy + Then the server is idle + And all slots are idle + Then all predictions are different + Examples: + | n_slots | + | 1 | + | 2 | + + Scenario Outline: consistent results with same seed and varying batch size + Given 4 slots + And temperature + # And 0 as draft + Then the server is starting + Then the server is healthy + + Given 1 prompts "Write a very long story about AI." with seed 42 + And concurrent completion requests + # Then the server is busy # Not all slots will be utilized. + Then the server is idle + And all slots are idle + + Given prompts "Write a very long story about AI." with seed 42 + And concurrent completion requests + # Then the server is busy # Not all slots will be utilized. + Then the server is idle + And all slots are idle + + Then all predictions are equal + Examples: + | n_parallel | temp | + | 1 | 0.0 | + | 2 | 0.0 | + | 4 | 0.0 | + | 1 | 1.0 | + # FIXME: These tests fail on master. The problem seems to be the unified KV cache. + # See https://github.com/ggerganov/whisper.cpp/issues/1941#issuecomment-1986923227 + # and https://github.com/ggerganov/llama.cpp/pull/6122#discussion_r1531405574 . + # | 2 | 1.0 | + # | 4 | 1.0 | diff --git a/examples/server/tests/features/server.feature b/examples/server/tests/features/server.feature index 646a4e49d..d21c09135 100644 --- a/examples/server/tests/features/server.feature +++ b/examples/server/tests/features/server.feature @@ -7,6 +7,7 @@ Feature: llama.cpp server And a model file tinyllamas/stories260K.gguf from HF repo ggml-org/models And a model file test-model.gguf And a model alias tinyllama-2 + And BOS token is 1 And 42 as server seed # KV Cache corresponds to the total amount of tokens # that can be stored across all independent sequences: #4130 @@ -91,7 +92,18 @@ Feature: llama.cpp server """ What is the capital of France ? """ - Then tokens can be detokenize + Then tokens can be detokenized + And tokens do not begin with BOS + + Scenario: Tokenize w/ BOS + Given adding special tokens + When tokenizing: + """ + What is the capital of Germany? + """ + Then tokens begin with BOS + Given first token is removed + Then tokens can be detokenized Scenario: Models available Given available models diff --git a/examples/server/tests/features/steps/steps.py b/examples/server/tests/features/steps/steps.py index ca400efa4..0882a5d36 100644 --- a/examples/server/tests/features/steps/steps.py +++ b/examples/server/tests/features/steps/steps.py @@ -61,9 +61,11 @@ def step_server_config(context, server_fqdn, server_port): context.server_metrics = False context.server_process = None context.seed = None + context.draft = None context.server_seed = None context.user_api_key = None context.response_format = None + context.temperature = None context.tasks_result = [] context.concurrent_tasks = [] @@ -107,6 +109,11 @@ def step_n_gpu_layer(context, ngl): context.n_gpu_layer = ngl +@step('{draft:d} as draft') +def step_draft(context, draft): + context.draft = draft + + @step('{n_ctx:d} KV cache size') def step_n_ctx(context, n_ctx): context.n_ctx = n_ctx @@ -226,15 +233,17 @@ async def step_all_slots_status(context, expected_slot_status_string): @async_run_until_complete async def step_request_completion(context, api_error): expect_api_error = api_error == 'raised' + seeds = await completions_seed(context, num_seeds=1) completion = await request_completion(context.prompts.pop(), + seeds[0] if seeds is not None else seeds, context.base_url, debug=context.debug, n_predict=context.n_predict, cache_prompt=context.cache_prompt, id_slot=context.id_slot, - seed=await completions_seed(context), expect_api_error=expect_api_error, - user_api_key=context.user_api_key) + user_api_key=context.user_api_key, + temperature=context.temperature) context.tasks_result.append(completion) if context.debug: print(f"Completion response: {completion}") @@ -254,6 +263,24 @@ def step_n_tokens_predicted(context, predicted_n): assert_n_tokens_predicted(context.completion, predicted_n) +@step('all predictions are equal') +@async_run_until_complete +async def step_predictions_equal(context): + n_completions = await gather_tasks_results(context) + assert n_completions >= 2, "need at least 2 completions" + assert_all_predictions_equal(context.tasks_result) + context.tasks_result = [] + + +@step('all predictions are different') +@async_run_until_complete +async def step_predictions_equal(context): + n_completions = await gather_tasks_results(context) + assert n_completions >= 2, "need at least 2 completions" + assert_all_predictions_different(context.tasks_result) + context.tasks_result = [] + + @step('the completion is truncated') def step_assert_completion_truncated(context): step_assert_completion_truncated(context, '') @@ -296,6 +323,11 @@ def step_response_format(context, response_format): context.response_format = json.loads(response_format) +@step('{temperature:f} temperature') +def step_temperature(context, temperature): + context.temperature = temperature + + @step('streaming is {enable_streaming}') def step_streaming(context, enable_streaming): context.enable_streaming = enable_streaming == 'enabled' @@ -338,7 +370,15 @@ def step_n_ubatch(context, n_ubatch): @step('{seed:d} as seed') def step_seed(context, seed): - context.seed = seed + if context.seed is None: + context.seed = [seed] + else: + context.seed.append(seed) + + +@step('BOS token is {bos:d}') +def step_bos_token(context, bos): + context.bos = bos @step('a prefix prompt') @@ -398,7 +438,9 @@ async def step_oai_chat_completions(context, api_error): if context.debug: print(f"Submitting OAI compatible completions request...") expect_api_error = api_error == 'raised' + seeds = await completions_seed(context, num_seeds=1), completion = await oai_chat_completions(context.prompts.pop(), + seeds[0] if seeds is not None else seeds, context.system_prompt, context.base_url, '/v1/chat', @@ -414,8 +456,6 @@ async def step_oai_chat_completions(context, api_error): response_format=context.response_format if hasattr(context, 'response_format') else None, - seed=await completions_seed(context), - user_api_key=context.user_api_key if hasattr(context, 'user_api_key') else None, @@ -442,20 +482,31 @@ def step_a_prompt_prompt(context, prompt): context.n_prompts = len(context.prompts) +@step('{num_prompts:d} prompts {prompt} with seed {seed:d}') +def step_many_prompts(context, num_prompts, prompt, seed): + if context.seed is None: + context.seed = [] + for _ in range(num_prompts): + context.seed.append(seed) + context.prompts.append(prompt) + context.n_prompts = len(context.prompts) + + @step('concurrent completion requests') @async_run_until_complete() async def step_concurrent_completion_requests(context): - await concurrent_requests(context, - request_completion, - # prompt is inserted automatically - context.base_url, - debug=context.debug, - prompt_prefix=context.prompt_prefix, - prompt_suffix=context.prompt_suffix, - n_predict=context.n_predict if hasattr(context, 'n_predict') else None, - seed=await completions_seed(context), - user_api_key=context.user_api_key if hasattr(context, - 'user_api_key') else None) + await concurrent_requests( + context, + request_completion, + # prompt is inserted automatically + context.base_url, + debug=context.debug, + prompt_prefix=context.prompt_prefix, + prompt_suffix=context.prompt_suffix, + n_predict=context.n_predict if hasattr(context, 'n_predict') else None, + user_api_key=context.user_api_key if hasattr(context, 'user_api_key') else None, + temperature=context.temperature, + ) @step('concurrent OAI completions requests') @@ -475,7 +526,6 @@ async def step_oai_chat_completions(context): if hasattr(context, 'enable_streaming') else None, response_format=context.response_format if hasattr(context, 'response_format') else None, - seed=await completions_seed(context), user_api_key=context.user_api_key if hasattr(context, 'user_api_key') else None) @@ -497,10 +547,6 @@ async def step_oai_chat_completions(context): if hasattr(context, 'enable_streaming') else None, response_format=context.response_format if hasattr(context, 'response_format') else None, - seed=context.seed - if hasattr(context, 'seed') else - context.server_seed - if hasattr(context, 'server_seed') else None, user_api_key=context.user_api_key if hasattr(context, 'user_api_key') else None) @@ -529,7 +575,7 @@ async def all_prompts_are_predicted(context, expected_predicted_n=None): @async_run_until_complete async def step_compute_embedding(context): context.n_prompts = 1 - context.embeddings = await request_embedding(context_text(context), base_url=context.base_url) + context.embeddings = await request_embedding(context_text(context), None, base_url=context.base_url) @step('all embeddings are the same') @@ -570,7 +616,7 @@ def step_assert_embeddings(context): @async_run_until_complete async def step_oai_compute_embeddings(context): context.n_prompts = 1 - context.embeddings = await request_oai_embeddings(context_text(context), + context.embeddings = await request_oai_embeddings(context_text(context), None, base_url=context.base_url, user_api_key=context.user_api_key, model=context.model) @@ -579,7 +625,7 @@ async def step_oai_compute_embeddings(context): @step('an OAI compatible embeddings computation request for multiple inputs') @async_run_until_complete async def step_oai_compute_embeddings_multiple_inputs(context): - context.embeddings = await request_oai_embeddings(context.prompts, + context.embeddings = await request_oai_embeddings(context.prompts, None, base_url=context.base_url, user_api_key=context.user_api_key, model=context.model) @@ -615,21 +661,29 @@ async def all_embeddings_are_generated(context): assert_embeddings(context.tasks_result.pop().pop()) +@step('adding special tokens') +def step_tokenize_set_add_special(context): + context.tokenize_add_special = True + + @step('tokenizing') @async_run_until_complete async def step_tokenize(context): context.tokenized_text = context_text(context) async with aiohttp.ClientSession() as session: + tokenize_args = { + "content": context.tokenized_text, + } + if getattr(context, 'tokenize_add_special', None) is not None: + tokenize_args['add_special'] = context.tokenize_add_special async with session.post(f'{context.base_url}/tokenize', - json={ - "content": context.tokenized_text, - }) as response: + json=tokenize_args) as response: assert response.status == 200 tokenize_json = await response.json() context.tokens = tokenize_json['tokens'] -@step('tokens can be detokenize') +@step('tokens can be detokenized') @async_run_until_complete async def step_detokenize(context): assert len(context.tokens) > 0 @@ -644,6 +698,21 @@ async def step_detokenize(context): assert context.tokenized_text == detokenize_json['content'].strip() +@step('tokens begin with BOS') +def step_strings_for_tokenization(context): + assert context.tokens[0] == context.bos + + +@step('tokens do not begin with BOS') +def step_strings_for_tokenization(context): + assert context.tokens[0] != context.bos + + +@step('first token is removed') +def step_strings_for_tokenization(context): + context.tokens = context.tokens[1:] + + @step('an OPTIONS request is sent from {origin}') @async_run_until_complete async def step_options_request(context, origin): @@ -725,8 +794,9 @@ async def concurrent_requests(context, f_completion, *args, **kwargs): if context.debug: print(f"starting {context.n_prompts} concurrent completion requests...") assert context.n_prompts > 0 + seeds = await completions_seed(context) for prompt_no in range(context.n_prompts): - shifted_args = [context.prompts.pop(), *args] + shifted_args = [context.prompts.pop(), seeds[prompt_no], *args] context.concurrent_tasks.append(asyncio.create_task(f_completion(*shifted_args, **kwargs))) await asyncio.sleep(0.1) @@ -766,6 +836,7 @@ def step_server_responds_with_status_code(context, status_code): async def request_completion(prompt, + seed, base_url, debug=False, prompt_prefix=None, @@ -773,9 +844,9 @@ async def request_completion(prompt, n_predict=None, cache_prompt=False, id_slot=None, - seed=None, expect_api_error=None, - user_api_key=None): + user_api_key=None, + temperature=None): if debug: print(f"Sending completion request: {prompt}") origin = "my.super.domain" @@ -796,7 +867,8 @@ async def request_completion(prompt, "n_predict": n_predict if n_predict is not None else -1, "cache_prompt": cache_prompt, "id_slot": id_slot, - "seed": seed if seed is not None else 42 + "seed": seed if seed is not None else 42, + "temperature": temperature if temperature is not None else "0.8f", }, headers=headers, timeout=3600) as response: @@ -809,6 +881,7 @@ async def request_completion(prompt, async def oai_chat_completions(user_prompt, + seed, system_prompt, base_url, base_path, @@ -818,7 +891,6 @@ async def oai_chat_completions(user_prompt, n_predict=None, enable_streaming=None, response_format=None, - seed=None, user_api_key=None, expect_api_error=None): if debug: @@ -937,7 +1009,7 @@ async def oai_chat_completions(user_prompt, return completion_response -async def request_embedding(content, base_url=None): +async def request_embedding(content, seed, base_url=None): async with aiohttp.ClientSession() as session: async with session.post(f'{base_url}/embedding', json={ @@ -948,7 +1020,7 @@ async def request_embedding(content, base_url=None): return [response_json['embedding']] -async def request_oai_embeddings(input, +async def request_oai_embeddings(input, seed, base_url=None, user_api_key=None, model=None, async_client=False): # openai client always expects an api_key @@ -1020,6 +1092,33 @@ def assert_n_tokens_predicted(completion_response, expected_predicted_n=None, re assert n_predicted == expected_predicted_n, (f'invalid number of tokens predicted:' f' {n_predicted} <> {expected_predicted_n}') +def assert_all_predictions_equal(completion_responses): + if 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON': + for i, response_i in enumerate(completion_responses): + content_i = response_i['content'] + print(f"content {i}: {content_i}") + for i, response_i in enumerate(completion_responses): + content_i = response_i['content'] + for j, response_j in enumerate(completion_responses): + if i == j: + continue + content_j = response_j['content'] + assert content_i == content_j, "contents not equal" + + +def assert_all_predictions_different(completion_responses): + if 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON': + for i, response_i in enumerate(completion_responses): + content_i = response_i['content'] + print(f"content {i}: {content_i}") + for i, response_i in enumerate(completion_responses): + content_i = response_i['content'] + for j, response_j in enumerate(completion_responses): + if i == j: + continue + content_j = response_j['content'] + assert content_i != content_j, "contents not different" + async def gather_tasks_results(context): n_tasks = len(context.concurrent_tasks) @@ -1113,9 +1212,22 @@ def assert_slots_status(slots, expected_slots): f" = {expected[key]} != {slot[key]}") -async def completions_seed(context): - return context.seed if hasattr(context, 'seed') and context.seed is not None \ - else context.server_seed if hasattr(context, 'server_seed') else None +async def completions_seed(context, num_seeds=None): + if hasattr(context, "seed") and context.seed is not None: + assert len(context.seed) == context.n_prompts + if num_seeds is None: + num_seeds = context.n_prompts + assert num_seeds <= context.n_prompts + seeds = context.seed[:num_seeds] + context.seed = context.seed[num_seeds:] if num_seeds < context.n_prompts else None + return seeds + + if hasattr(context, "server_seed") and context.server_seed is not None: + if num_seeds is None: + return [context.server_seed] * context.n_prompts + else: + return [context.server_seed] * num_seeds + return None def context_text(context): @@ -1148,6 +1260,8 @@ def start_server_background(context): server_args.extend(['--ubatch-size', context.n_ubatch]) if context.n_gpu_layer: server_args.extend(['--n-gpu-layers', context.n_gpu_layer]) + if context.draft is not None: + server_args.extend(['--draft', context.draft]) if context.server_continuous_batching: server_args.append('--cont-batching') if context.server_embeddings: diff --git a/examples/server/tests/tests.sh b/examples/server/tests/tests.sh index 1c6c5695f..72a0fbad8 100755 --- a/examples/server/tests/tests.sh +++ b/examples/server/tests/tests.sh @@ -4,9 +4,8 @@ set -eu if [ $# -lt 1 ] then - # Start @llama.cpp scenario - behave --summary --stop --no-capture --exclude 'issues|wrong_usages|passkey' --tags llama.cpp + # Start @llama.cpp scenario + behave --summary --stop --no-capture --exclude 'issues|wrong_usages|passkey' --tags llama.cpp else - behave "$@" + behave "$@" fi - diff --git a/examples/server/themes/README.md b/examples/server/themes/README.md new file mode 100644 index 000000000..62e721a27 --- /dev/null +++ b/examples/server/themes/README.md @@ -0,0 +1,5 @@ +# LLaMA.cpp Server Wild Theme + +Simple themes directory of sample "public" directories. To try any of these add --path to your run like `server --path=wild`. + +![image](wild/wild.png) diff --git a/examples/server/themes/buttons-top/README.md b/examples/server/themes/buttons-top/README.md new file mode 100644 index 000000000..808c4cf81 --- /dev/null +++ b/examples/server/themes/buttons-top/README.md @@ -0,0 +1,7 @@ +# LLaMA.cpp Server Buttons Top Theme + +Simple tweaks to the UI. Chat buttons at the top of the page instead of bottom so you can hit Stop instead of chasing it down the page. + +To use simply run server with `--path=themes/buttons_top` + +![image](buttons_top.png) diff --git a/examples/server/themes/buttons-top/buttons_top.png b/examples/server/themes/buttons-top/buttons_top.png new file mode 100644 index 000000000..c54454519 Binary files /dev/null and b/examples/server/themes/buttons-top/buttons_top.png differ diff --git a/examples/server/themes/buttons-top/favicon.ico b/examples/server/themes/buttons-top/favicon.ico new file mode 100644 index 000000000..89e154a0a Binary files /dev/null and b/examples/server/themes/buttons-top/favicon.ico differ diff --git a/examples/server/themes/buttons-top/index.html b/examples/server/themes/buttons-top/index.html new file mode 100644 index 000000000..6af30d307 --- /dev/null +++ b/examples/server/themes/buttons-top/index.html @@ -0,0 +1,1057 @@ + + + + + + + llama.cpp - chat + + + + + + + +
+ +
+
+ + + + diff --git a/examples/server/themes/wild/README.md b/examples/server/themes/wild/README.md new file mode 100644 index 000000000..560bcc81b --- /dev/null +++ b/examples/server/themes/wild/README.md @@ -0,0 +1,5 @@ +# LLaMA.cpp Server Wild Theme + +Simple tweaks to the UI. To use simply run server with `--path=themes/wild` + +![image](wild.png) diff --git a/examples/server/themes/wild/favicon.ico b/examples/server/themes/wild/favicon.ico new file mode 100644 index 000000000..89e154a0a Binary files /dev/null and b/examples/server/themes/wild/favicon.ico differ diff --git a/examples/server/themes/wild/index.html b/examples/server/themes/wild/index.html new file mode 100644 index 000000000..772e716cd --- /dev/null +++ b/examples/server/themes/wild/index.html @@ -0,0 +1,1061 @@ + + + + + + + llama.cpp - chat + + + + + + + +
+ +
+
+ + + + diff --git a/examples/server/themes/wild/llama_cpp.png b/examples/server/themes/wild/llama_cpp.png new file mode 100644 index 000000000..bad1dc9fc Binary files /dev/null and b/examples/server/themes/wild/llama_cpp.png differ diff --git a/examples/server/themes/wild/llamapattern.png b/examples/server/themes/wild/llamapattern.png new file mode 100644 index 000000000..2a159ce6a Binary files /dev/null and b/examples/server/themes/wild/llamapattern.png differ diff --git a/examples/server/themes/wild/wild.png b/examples/server/themes/wild/wild.png new file mode 100644 index 000000000..46ffa0f3e Binary files /dev/null and b/examples/server/themes/wild/wild.png differ diff --git a/examples/server/utils.hpp b/examples/server/utils.hpp index 1a2212502..d872b63f5 100644 --- a/examples/server/utils.hpp +++ b/examples/server/utils.hpp @@ -3,6 +3,8 @@ #include "llama.h" #include "common.h" +// Change JSON_ASSERT from assert() to GGML_ASSERT: +#define JSON_ASSERT GGML_ASSERT #include "json.hpp" #include @@ -49,18 +51,18 @@ extern bool server_log_json; #define LOG_WARNING(MSG, ...) server_log("WARN", __func__, __LINE__, MSG, __VA_ARGS__) #define LOG_INFO( MSG, ...) server_log("INFO", __func__, __LINE__, MSG, __VA_ARGS__) -static inline void server_log(const char *level, const char *function, int line, const char *message, const nlohmann::ordered_json &extra); +static inline void server_log(const char * level, const char * function, int line, const char * message, const json & extra); template -static T json_value(const json &body, const std::string &key, const T &default_value) { +static T json_value(const json & body, const std::string & key, const T & default_value) { // Fallback null to default value - if (body.contains(key) && !body.at(key).is_null()){ + if (body.contains(key) && !body.at(key).is_null()) { try { - return body.value(key, default_value); - } - catch (nlohmann::json_abi_v3_11_3::detail::type_error const&){ - std::string message = "Wrong type supplied for parameter '" + key + "'. Expected '" + typeid(default_value).name() + "', using default value."; - server_log("WARN", __func__, __LINE__, message.c_str(), body); + return body.at(key); + } catch (NLOHMANN_JSON_NAMESPACE::detail::type_error const &) { + std::stringstream ss; + ss << "Wrong type supplied for parameter '" << key << "'. Expected '" << json(default_value).type_name() << "', using default value."; + LOG_WARNING(ss.str().c_str(), body); return default_value; } } else { @@ -68,16 +70,16 @@ static T json_value(const json &body, const std::string &key, const T &default_v } } -static inline void server_log(const char *level, const char *function, int line, const char *message, const nlohmann::ordered_json &extra) { +static inline void server_log(const char * level, const char * function, int line, const char * message, const json & extra) { std::stringstream ss_tid; ss_tid << std::this_thread::get_id(); - json log = nlohmann::ordered_json{ + json log = json{ {"tid", ss_tid.str()}, {"timestamp", time(nullptr)}, }; if (server_log_json) { - log.merge_patch( { + log.merge_patch({ {"level", level}, {"function", function}, {"line", line}, @@ -98,7 +100,7 @@ static inline void server_log(const char *level, const char *function, int line, } std::stringstream ss; ss << buf << " |"; - for (const auto& el : log.items()) + for (const auto & el : log.items()) { const std::string value = el.value().dump(-1, ' ', false, json::error_handler_t::replace); ss << " " << el.key() << "=" << value; @@ -373,11 +375,11 @@ static json oaicompat_completion_params_parse( llama_params["top_p"] = json_value(body, "top_p", 1.0); // Apply chat template to the list of messages - llama_params["prompt"] = format_chat(model, chat_template, body["messages"]); + llama_params["prompt"] = format_chat(model, chat_template, body.at("messages")); // Handle "stop" field - if (body.contains("stop") && body["stop"].is_string()) { - llama_params["stop"] = json::array({body["stop"].get()}); + if (body.contains("stop") && body.at("stop").is_string()) { + llama_params["stop"] = json::array({body.at("stop").get()}); } else { llama_params["stop"] = json_value(body, "stop", json::array()); } diff --git a/examples/sycl/README.md b/examples/sycl/README.md index b46f17f39..c589c2d3a 100644 --- a/examples/sycl/README.md +++ b/examples/sycl/README.md @@ -1,6 +1,6 @@ # llama.cpp/example/sycl -This example program provide the tools for llama.cpp for SYCL on Intel GPU. +This example program provides the tools for llama.cpp for SYCL on Intel GPU. ## Tool diff --git a/flake.lock b/flake.lock index 9c1b0af37..c9ead0bf7 100644 --- a/flake.lock +++ b/flake.lock @@ -5,11 +5,11 @@ "nixpkgs-lib": "nixpkgs-lib" }, "locked": { - "lastModified": 1712014858, - "narHash": "sha256-sB4SWl2lX95bExY2gMFG5HIzvva5AVMJd4Igm+GpZNw=", + "lastModified": 1714641030, + "narHash": "sha256-yzcRNDoyVP7+SCNX0wmuDju1NUCt8Dz9+lyUXEI0dbI=", "owner": "hercules-ci", "repo": "flake-parts", - "rev": "9126214d0a59633752a136528f5f3b9aa8565b7d", + "rev": "e5d10a24b66c3ea8f150e47dfdb0416ab7c3390e", "type": "github" }, "original": { @@ -20,11 +20,11 @@ }, "nixpkgs": { "locked": { - "lastModified": 1713537308, - "narHash": "sha256-XtTSSIB2DA6tOv+l0FhvfDMiyCmhoRbNB+0SeInZkbk=", + "lastModified": 1714635257, + "narHash": "sha256-4cPymbty65RvF1DWQfc+Bc8B233A1BWxJnNULJKQ1EY=", "owner": "NixOS", "repo": "nixpkgs", - "rev": "5c24cf2f0a12ad855f444c30b2421d044120c66f", + "rev": "63c3a29ca82437c87573e4c6919b09a24ea61b0f", "type": "github" }, "original": { @@ -36,20 +36,14 @@ }, "nixpkgs-lib": { "locked": { - "dir": "lib", - "lastModified": 1711703276, - "narHash": "sha256-iMUFArF0WCatKK6RzfUJknjem0H9m4KgorO/p3Dopkk=", - "owner": "NixOS", - "repo": "nixpkgs", - "rev": "d8fe5e6c92d0d190646fb9f1056741a229980089", - "type": "github" + "lastModified": 1714640452, + "narHash": "sha256-QBx10+k6JWz6u7VsohfSw8g8hjdBZEf8CFzXH1/1Z94=", + "type": "tarball", + "url": "https://github.com/NixOS/nixpkgs/archive/50eb7ecf4cd0a5756d7275c8ba36790e5bd53e33.tar.gz" }, "original": { - "dir": "lib", - "owner": "NixOS", - "ref": "nixos-unstable", - "repo": "nixpkgs", - "type": "github" + "type": "tarball", + "url": "https://github.com/NixOS/nixpkgs/archive/50eb7ecf4cd0a5756d7275c8ba36790e5bd53e33.tar.gz" } }, "root": { diff --git a/ggml-backend.c b/ggml-backend.c index e91d97cd9..f5bdcf078 100644 --- a/ggml-backend.c +++ b/ggml-backend.c @@ -1784,12 +1784,14 @@ void ggml_backend_sched_free(ggml_backend_sched_t sched) { void ggml_backend_sched_reset(ggml_backend_sched_t sched) { // reset state for the next run - size_t hash_size = sched->hash_set.size; - memset(sched->hash_set.keys, 0, sizeof(sched->hash_set.keys[0]) * hash_size); // NOLINT - memset(sched->tensor_backend_id, -1, sizeof(sched->tensor_backend_id[0]) * hash_size); - memset(sched->tensor_copies, 0, sizeof(sched->tensor_copies[0]) * hash_size); + if (!sched->is_reset) { + size_t hash_size = sched->hash_set.size; + memset(sched->hash_set.keys, 0, sizeof(sched->hash_set.keys[0]) * hash_size); // NOLINT + memset(sched->tensor_backend_id, -1, sizeof(sched->tensor_backend_id[0]) * hash_size); + memset(sched->tensor_copies, 0, sizeof(sched->tensor_copies[0]) * hash_size); - sched->is_reset = true; + sched->is_reset = true; + } sched->is_alloc = false; } diff --git a/ggml-cuda.cu b/ggml-cuda.cu index d277104d1..2d1742c82 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -14,6 +14,7 @@ #include "ggml-cuda/cpy.cuh" #include "ggml-cuda/diagmask.cuh" #include "ggml-cuda/dmmv.cuh" +#include "ggml-cuda/fattn.cuh" #include "ggml-cuda/getrows.cuh" #include "ggml-cuda/im2col.cuh" #include "ggml-cuda/mmq.cuh" @@ -112,7 +113,7 @@ static ggml_cuda_device_info ggml_cuda_init() { for (int id = 0; id < info.device_count; ++id) { int device_vmm = 0; -#if !defined(GGML_USE_HIPBLAS) +#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM) CUdevice device; CU_CHECK(cuDeviceGet(&device, id)); CU_CHECK(cuDeviceGetAttribute(&device_vmm, CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED, device)); @@ -140,6 +141,7 @@ static ggml_cuda_device_info ggml_cuda_init() { info.devices[id].cc = 100*prop.major + 10*prop.minor; #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) info.devices[id].smpb = prop.sharedMemPerBlock; + info.devices[id].nsm = prop.multiProcessorCount; } for (int id = 0; id < info.device_count; ++id) { @@ -257,7 +259,7 @@ struct ggml_cuda_pool_leg : public ggml_cuda_pool { }; // pool with virtual memory -#if !defined(GGML_USE_HIPBLAS) +#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM) struct ggml_cuda_pool_vmm : public ggml_cuda_pool { static const size_t CUDA_POOL_VMM_MAX_SIZE = 1ull << 35; // 32 GB @@ -354,7 +356,7 @@ struct ggml_cuda_pool_vmm : public ggml_cuda_pool { #endif // !defined(GGML_USE_HIPBLAS) std::unique_ptr ggml_backend_cuda_context::new_pool_for_device(int device) { -#if !defined(GGML_USE_HIPBLAS) +#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM) if (ggml_cuda_info().devices[device].vmm) { return std::unique_ptr(new ggml_cuda_pool_vmm(device)); } @@ -2290,6 +2292,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg case GGML_OP_ARGSORT: ggml_cuda_op_argsort(ctx, dst); break; + case GGML_OP_FLASH_ATTN_EXT: + ggml_cuda_flash_attn_ext(ctx, dst); + break; default: return false; } @@ -2564,6 +2569,7 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons case GGML_OP_ARANGE: case GGML_OP_TIMESTEP_EMBEDDING: case GGML_OP_LEAKY_RELU: + case GGML_OP_FLASH_ATTN_EXT: return true; default: return false; diff --git a/ggml-cuda/common.cuh b/ggml-cuda/common.cuh index 481065b2a..b2627b7b4 100644 --- a/ggml-cuda/common.cuh +++ b/ggml-cuda/common.cuh @@ -137,11 +137,13 @@ #define STRINGIZE(...) STRINGIZE_IMPL(__VA_ARGS__) #define WARP_SIZE 32 -#define CUDART_HMAX 11070 // CUDA 11.7, min. ver. for which __hmax and __hmax2 are known to work (may be higher than needed) +#define CUDART_HMAX 11070 // CUDA 11.7, min. ver. for which __hmax and __hmax2 are known to work (may be higher than needed) +#define CUDART_HMASK 12000 // CUDA 12.0, min. ver. for half2 -> uint mask comparisons #define CC_PASCAL 600 #define MIN_CC_DP4A 610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products #define CC_VOLTA 700 +#define CC_AMPERE 800 #define CC_OFFSET_AMD 1000000 #define CC_RDNA1 (CC_OFFSET_AMD + 1010) #define CC_RDNA2 (CC_OFFSET_AMD + 1030) @@ -271,7 +273,6 @@ static __device__ __forceinline__ float2 warp_reduce_sum(float2 a) { return a; } -#ifdef GGML_CUDA_F16 static __device__ __forceinline__ half2 warp_reduce_sum(half2 a) { #if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL #pragma unroll @@ -284,7 +285,6 @@ static __device__ __forceinline__ half2 warp_reduce_sum(half2 a) { NO_DEVICE_CODE; #endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL } -#endif // GGML_CUDA_F16 static __device__ __forceinline__ float warp_reduce_max(float x) { #pragma unroll @@ -294,19 +294,60 @@ static __device__ __forceinline__ float warp_reduce_max(float x) { return x; } -//static __device__ __forceinline__ half2 warp_reduce_max(half2 x) { -//#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL && CUDART_VERSION >= CUDART_HMAX -//#pragma unroll -// for (int mask = 16; mask > 0; mask >>= 1) { -// x = __hmax2(x, __shfl_xor_sync(0xffffffff, x, mask, 32)); -// } -// return x; -//#else -// GGML_UNUSED(x); -// NO_DEVICE_CODE; -//#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL && CUDART_VERSION >= CUDART_HMAX -//} +static __device__ __forceinline__ half ggml_cuda_hmax(const half a, const half b) { +#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) +#if CUDART_VERSION >= CUDART_HMAX + return __hmax(a, b); +#else + return __half2float(a) > __half2float(b) ? a : b; +#endif // CUDART_VERSION >= CUDART_HMAX + +#else + GGML_UNUSED(a); + GGML_UNUSED(b); + NO_DEVICE_CODE; +#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && CUDART_VERSION < CUDART_HMAX +} +static __device__ __forceinline__ half2 ggml_cuda_hmax2(const half2 a, const half2 b) { +#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) + +#if CUDART_VERSION >= CUDART_HMAX + return __hmax2(a, b); +#else + half2 ret; + reinterpret_cast(ret.x) = __low2float(a) > __low2float(b) ? __low2half(a) : __low2half(b); + reinterpret_cast(ret.y) = __high2float(a) > __high2float(b) ? __high2half(a) : __high2half(b); + return ret; +#endif // CUDART_VERSION >= CUDART_HMAX + +#else + GGML_UNUSED(a); + GGML_UNUSED(b); + NO_DEVICE_CODE; +#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && CUDART_VERSION < CUDART_HMAX +} + +static __device__ __forceinline__ half2 warp_reduce_max(half2 x) { +#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL +#pragma unroll + for (int mask = 16; mask > 0; mask >>= 1) { + x = ggml_cuda_hmax2(x, __shfl_xor_sync(0xffffffff, x, mask, 32)); + } + return x; +#else + GGML_UNUSED(x); + NO_DEVICE_CODE; +#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL +} + +#if CUDART_VERSION < CUDART_HMASK +static __device__ __forceinline__ uint32_t __hgt2_mask(const half2 a, const half2 b) { + const uint32_t mask_low = 0x0000FFFF * (float( __low2half(a)) > float( __low2half(b))); + const uint32_t mask_high = 0xFFFF0000 * (float(__high2half(a)) > float(__high2half(b))); + return mask_low | mask_high; +} +#endif // CUDART_VERSION < 12000 #if defined(GGML_USE_HIPBLAS) #define __CUDA_ARCH__ 1300 @@ -391,6 +432,11 @@ static __device__ __forceinline__ int __dp4a(const int a, const int b, int c) { } #endif // defined(GGML_USE_HIPBLAS) +#define FP16_AVAILABLE defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) ? \ + defined(RDNA1) || defined(RDNA2) || defined(RDNA3) : __CUDA_ARCH__ >= CC_PASCAL + +#define FP16_MMA_AVAILABLE !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_VOLTA + // TODO: move to ggml-common.h static const __device__ int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113}; @@ -404,6 +450,7 @@ struct ggml_cuda_device_info { struct cuda_device_info { int cc; // compute capability + int nsm; // number of streaming multiprocessors size_t smpb; // max. shared memory per block bool vmm; // virtual memory support size_t vmm_granularity; // granularity of virtual memory diff --git a/ggml-cuda/convert.cu b/ggml-cuda/convert.cu index b15e35782..75e50c985 100644 --- a/ggml-cuda/convert.cu +++ b/ggml-cuda/convert.cu @@ -5,16 +5,16 @@ template static __global__ void dequantize_block(const void * __restrict__ vx, dst_t * __restrict__ y, const int64_t k) { - const int64_t i = 2*(blockDim.x*blockIdx.x + threadIdx.x); + const int64_t i = (int64_t)2*(blockDim.x*blockIdx.x + threadIdx.x); if (i >= k) { return; } const int64_t ib = i/qk; // block index - const int iqs = (i%qk)/qr; // quant index - const int iybs = i - i%qk; // y block start index - const int y_offset = qr == 1 ? 1 : qk/2; + const int64_t iqs = (i%qk)/qr; // quant index + const int64_t iybs = i - i%qk; // y block start index + const int64_t y_offset = qr == 1 ? 1 : qk/2; // dequantize dfloat2 v; @@ -29,7 +29,7 @@ static __global__ void dequantize_block_q8_0_f16(const void * __restrict__ vx, h #if __CUDA_ARCH__ >= CC_PASCAL constexpr int nint = CUDA_Q8_0_NE_ALIGN/sizeof(int) + WARP_SIZE; - const int i0 = CUDA_Q8_0_NE_ALIGN*blockIdx.x; + const int64_t i0 = CUDA_Q8_0_NE_ALIGN*blockIdx.x; const int * x0 = ((int *) vx) + blockIdx.x * nint; half2 * y2 = (half2 *) (y + i0); @@ -73,9 +73,9 @@ static __global__ void dequantize_block_q4_0(const void * __restrict__ vx, dst_t const int64_t i = blockIdx.x; // assume 32 threads - const int tid = threadIdx.x; - const int il = tid/8; - const int ir = tid%8; + const int64_t tid = threadIdx.x; + const int64_t il = tid/8; + const int64_t ir = tid%8; const int64_t ib = 8*i + ir; if (ib >= nb32) { return; @@ -101,9 +101,9 @@ static __global__ void dequantize_block_q4_1(const void * __restrict__ vx, dst_t const int64_t i = blockIdx.x; // assume 32 threads - const int tid = threadIdx.x; - const int il = tid/8; - const int ir = tid%8; + const int64_t tid = threadIdx.x; + const int64_t il = tid/8; + const int64_t ir = tid%8; const int64_t ib = 8*i + ir; if (ib >= nb32) { return; @@ -127,14 +127,14 @@ static __global__ void dequantize_block_q4_1(const void * __restrict__ vx, dst_t template static __global__ void dequantize_block_q2_K(const void * __restrict__ vx, dst_t * __restrict__ yy) { - const int i = blockIdx.x; + const int64_t i = blockIdx.x; const block_q2_K * x = (const block_q2_K *) vx; - const int tid = threadIdx.x; + const int64_t tid = threadIdx.x; #if QK_K == 256 - const int n = tid/32; - const int l = tid - 32*n; - const int is = 8*n + l/16; + const int64_t n = tid/32; + const int64_t l = tid - 32*n; + const int64_t is = 8*n + l/16; const uint8_t q = x[i].qs[32*n + l]; dst_t * y = yy + i*QK_K + 128*n; @@ -146,8 +146,8 @@ static __global__ void dequantize_block_q2_K(const void * __restrict__ vx, dst_t y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4); y[l+96] = dall * (x[i].scales[is+6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is+6] >> 4); #else - const int is = tid/16; // 0 or 1 - const int il = tid%16; // 0...15 + const int64_t is = tid/16; // 0 or 1 + const int64_t il = tid%16; // 0...15 const uint8_t q = x[i].qs[il] >> (2*is); dst_t * y = yy + i*QK_K + 16*is + il; float dall = __low2half(x[i].dm); @@ -161,19 +161,19 @@ static __global__ void dequantize_block_q2_K(const void * __restrict__ vx, dst_t template static __global__ void dequantize_block_q3_K(const void * __restrict__ vx, dst_t * __restrict__ yy) { - const int i = blockIdx.x; + const int64_t i = blockIdx.x; const block_q3_K * x = (const block_q3_K *) vx; #if QK_K == 256 - const int r = threadIdx.x/4; - const int tid = r/2; - const int is0 = r%2; - const int l0 = 16*is0 + 4*(threadIdx.x%4); - const int n = tid / 4; - const int j = tid - 4*n; + const int64_t r = threadIdx.x/4; + const int64_t tid = r/2; + const int64_t is0 = r%2; + const int64_t l0 = 16*is0 + 4*(threadIdx.x%4); + const int64_t n = tid / 4; + const int64_t j = tid - 4*n; uint8_t m = 1 << (4*n + j); - int is = 8*n + 2*j + is0; + int64_t is = 8*n + 2*j + is0; int shift = 2*j; int8_t us = is < 4 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+8] >> 0) & 3) << 4) : @@ -189,11 +189,11 @@ static __global__ void dequantize_block_q3_K(const void * __restrict__ vx, dst_t for (int l = l0; l < l0+4; ++l) y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4)); #else - const int tid = threadIdx.x; - const int is = tid/16; // 0 or 1 - const int il = tid%16; // 0...15 - const int im = il/8; // 0...1 - const int in = il%8; // 0...7 + const int64_t tid = threadIdx.x; + const int64_t is = tid/16; // 0 or 1 + const int64_t il = tid%16; // 0...15 + const int64_t im = il/8; // 0...1 + const int64_t in = il%8; // 0...7 dst_t * y = yy + i*QK_K + 16*is + il; @@ -227,15 +227,15 @@ template static __global__ void dequantize_block_q4_K(const void * __restrict__ vx, dst_t * __restrict__ yy) { const block_q4_K * x = (const block_q4_K *) vx; - const int i = blockIdx.x; + const int64_t i = blockIdx.x; #if QK_K == 256 // assume 32 threads - const int tid = threadIdx.x; - const int il = tid/8; - const int ir = tid%8; - const int is = 2*il; - const int n = 4; + const int64_t tid = threadIdx.x; + const int64_t il = tid/8; + const int64_t ir = tid%8; + const int64_t is = 2*il; + const int64_t n = 4; dst_t * y = yy + i*QK_K + 64*il + n*ir; @@ -254,7 +254,7 @@ static __global__ void dequantize_block_q4_K(const void * __restrict__ vx, dst_t y[l +32] = d2 * (q[l] >> 4) - m2; } #else - const int tid = threadIdx.x; + const int64_t tid = threadIdx.x; const uint8_t * q = x[i].qs; dst_t * y = yy + i*QK_K; const float d = (float)x[i].dm[0]; @@ -268,14 +268,14 @@ template static __global__ void dequantize_block_q5_K(const void * __restrict__ vx, dst_t * __restrict__ yy) { const block_q5_K * x = (const block_q5_K *) vx; - const int i = blockIdx.x; + const int64_t i = blockIdx.x; #if QK_K == 256 // assume 64 threads - this is very slightly better than the one below - const int tid = threadIdx.x; - const int il = tid/16; // il is in 0...3 - const int ir = tid%16; // ir is in 0...15 - const int is = 2*il; // is is in 0...6 + const int64_t tid = threadIdx.x; + const int64_t il = tid/16; // il is in 0...3 + const int64_t ir = tid%16; // ir is in 0...15 + const int64_t is = 2*il; // is is in 0...6 dst_t * y = yy + i*QK_K + 64*il + 2*ir; @@ -298,11 +298,11 @@ static __global__ void dequantize_block_q5_K(const void * __restrict__ vx, dst_t y[32] = d2 * ((ql[ 0] >> 4) + (qh[ 0] & hm ? 16 : 0)) - m2; y[33] = d2 * ((ql[ 1] >> 4) + (qh[ 1] & hm ? 16 : 0)) - m2; #else - const int tid = threadIdx.x; + const int64_t tid = threadIdx.x; const uint8_t q = x[i].qs[tid]; - const int im = tid/8; // 0...3 - const int in = tid%8; // 0...7 - const int is = tid/16; // 0 or 1 + const int64_t im = tid/8; // 0...3 + const int64_t in = tid%8; // 0...7 + const int64_t is = tid/16; // 0 or 1 const uint8_t h = x[i].qh[in] >> im; const float d = x[i].d; dst_t * y = yy + i*QK_K + tid; @@ -359,13 +359,13 @@ static __global__ void dequantize_block_q6_K(const void * __restrict__ vx, dst_t template static __global__ void dequantize_block_iq2_xxs(const void * __restrict__ vx, dst_t * __restrict__ yy) { - const int i = blockIdx.x; + const int64_t i = blockIdx.x; const block_iq2_xxs * x = (const block_iq2_xxs *) vx; - const int tid = threadIdx.x; + const int64_t tid = threadIdx.x; #if QK_K == 256 - const int il = tid/8; // 0...3 - const int ib = tid%8; // 0...7 + const int64_t il = tid/8; // 0...3 + const int64_t ib = tid%8; // 0...7 dst_t * y = yy + i*QK_K + 32*ib + 8*il; const uint16_t * q2 = x[i].qs + 4*ib; const uint8_t * aux8 = (const uint8_t *)q2; @@ -383,13 +383,13 @@ static __global__ void dequantize_block_iq2_xxs(const void * __restrict__ vx, ds template static __global__ void dequantize_block_iq2_xs(const void * __restrict__ vx, dst_t * __restrict__ yy) { - const int i = blockIdx.x; + const int64_t i = blockIdx.x; const block_iq2_xs * x = (const block_iq2_xs *) vx; - const int tid = threadIdx.x; + const int64_t tid = threadIdx.x; #if QK_K == 256 - const int il = tid/8; // 0...3 - const int ib = tid%8; // 0...7 + const int64_t il = tid/8; // 0...3 + const int64_t ib = tid%8; // 0...7 dst_t * y = yy + i*QK_K + 32*ib + 8*il; const uint16_t * q2 = x[i].qs + 4*ib; const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[il] & 511)); @@ -405,13 +405,13 @@ static __global__ void dequantize_block_iq2_xs(const void * __restrict__ vx, dst template static __global__ void dequantize_block_iq2_s(const void * __restrict__ vx, dst_t * __restrict__ yy) { - const int i = blockIdx.x; + const int64_t i = blockIdx.x; const block_iq2_s * x = (const block_iq2_s *) vx; - const int tid = threadIdx.x; + const int64_t tid = threadIdx.x; #if QK_K == 256 - const int il = tid/8; // 0...3 - const int ib = tid%8; // 0...7 + const int64_t il = tid/8; // 0...3 + const int64_t ib = tid%8; // 0...7 dst_t * y = yy + i*QK_K + 32*ib + 8*il; const uint8_t * grid = (const uint8_t *)(iq2s_grid + (x[i].qs[4*ib+il] | ((x[i].qh[ib] << (8-2*il)) & 0x300))); const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f; @@ -426,13 +426,13 @@ static __global__ void dequantize_block_iq2_s(const void * __restrict__ vx, dst_ template static __global__ void dequantize_block_iq3_xxs(const void * __restrict__ vx, dst_t * __restrict__ yy) { - const int i = blockIdx.x; + const int64_t i = blockIdx.x; const block_iq3_xxs * x = (const block_iq3_xxs *) vx; - const int tid = threadIdx.x; + const int64_t tid = threadIdx.x; #if QK_K == 256 - const int il = tid/8; // 0...3 - const int ib = tid%8; // 0...7 + const int64_t il = tid/8; // 0...3 + const int64_t ib = tid%8; // 0...7 dst_t * y = yy + i*QK_K + 32*ib + 8*il; const uint8_t * q3 = x[i].qs + 8*ib; const uint16_t * gas = (const uint16_t *)(x[i].qs + QK_K/4) + 2*ib; @@ -454,13 +454,13 @@ static __global__ void dequantize_block_iq3_xxs(const void * __restrict__ vx, ds template static __global__ void dequantize_block_iq3_s(const void * __restrict__ vx, dst_t * __restrict__ yy) { - const int i = blockIdx.x; + const int64_t i = blockIdx.x; const block_iq3_s * x = (const block_iq3_s *) vx; - const int tid = threadIdx.x; + const int64_t tid = threadIdx.x; #if QK_K == 256 - const int il = tid/8; // 0...3 - const int ib = tid%8; // 0...7 + const int64_t il = tid/8; // 0...3 + const int64_t ib = tid%8; // 0...7 dst_t * y = yy + i*QK_K + 32*ib + 8*il; const uint8_t * qs = x[i].qs + 8*ib; const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*il+0] | ((x[i].qh[ib] << (8-2*il)) & 256))); @@ -480,13 +480,13 @@ static __global__ void dequantize_block_iq3_s(const void * __restrict__ vx, dst_ template static __global__ void dequantize_block_iq1_s(const void * __restrict__ vx, dst_t * __restrict__ yy) { - const int i = blockIdx.x; + const int64_t i = blockIdx.x; const block_iq1_s * x = (const block_iq1_s *) vx; - const int tid = threadIdx.x; + const int64_t tid = threadIdx.x; #if QK_K == 256 - const int il = tid/8; // 0...3 - const int ib = tid%8; // 0...7 + const int64_t il = tid/8; // 0...3 + const int64_t ib = tid%8; // 0...7 dst_t * y = yy + i*QK_K + 32*ib + 8*il; const float delta = x[i].qh[ib] & 0x8000 ? -1 - IQ1S_DELTA : -1 + IQ1S_DELTA; const float d = (float)x[i].d * (2*((x[i].qh[ib] >> 12) & 7) + 1); @@ -506,18 +506,18 @@ static __global__ void dequantize_block_iq1_s(const void * __restrict__ vx, dst_ template static __global__ void dequantize_block_iq1_m(const void * __restrict__ vx, dst_t * __restrict__ yy) { - const int i = blockIdx.x; + const int64_t i = blockIdx.x; const block_iq1_m * x = (const block_iq1_m *) vx; - const int tid = threadIdx.x; + const int64_t tid = threadIdx.x; #if QK_K == 256 - const int il = tid/8; // 0...3 - const int ib = tid%8; // 0...7 + const int64_t il = tid/8; // 0...3 + const int64_t ib = tid%8; // 0...7 dst_t * y = yy + i*QK_K + 32*ib + 8*il; const uint16_t * sc = (const uint16_t *)x[i].scales; iq1m_scale_t scale; scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000); - const int ib16 = 2*ib + il/2; // sc[ib16/4] >> 3*(ib16%4) -> sc[ib/2] >> 3*((2*ib+il/2)%4); + const int64_t ib16 = 2*ib + il/2; // sc[ib16/4] >> 3*(ib16%4) -> sc[ib/2] >> 3*((2*ib+il/2)%4); const float d = (float)scale.f16 * (2*((sc[ib16/4] >> 3*(ib16%4)) & 0x7) + 1); const float delta = x[i].qh[2*ib+il/2] & (0x08 << 4*(il%2)) ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA; uint32_t grid32[2]; const int8_t * q = (const int8_t *)grid32; @@ -537,12 +537,12 @@ static __global__ void dequantize_block_iq1_m(const void * __restrict__ vx, dst_ template static __global__ void dequantize_block_iq4_nl(const void * __restrict__ vx, dst_t * __restrict__ yy) { - const int i = blockIdx.x; + const int64_t i = blockIdx.x; const block_iq4_nl * x = (const block_iq4_nl *) vx + i*(QK_K/QK4_NL); - const int tid = threadIdx.x; - const int il = tid/8; // 0...3 - const int ib = tid%8; // 0...7 + const int64_t tid = threadIdx.x; + const int64_t il = tid/8; // 0...3 + const int64_t ib = tid%8; // 0...7 dst_t * y = yy + i*QK_K + 32*ib + 4*il; const uint8_t * q4 = x[ib].qs + 4*il; const float d = (float)x[ib].d; @@ -556,12 +556,12 @@ static __global__ void dequantize_block_iq4_nl(const void * __restrict__ vx, dst #if QK_K != 64 template static __global__ void dequantize_block_iq4_xs(const void * __restrict__ vx, dst_t * __restrict__ yy) { - const int i = blockIdx.x; + const int64_t i = blockIdx.x; const block_iq4_xs * x = (const block_iq4_xs *)vx; - const int tid = threadIdx.x; - const int il = tid/8; // 0...3 - const int ib = tid%8; // 0...7 + const int64_t tid = threadIdx.x; + const int64_t il = tid/8; // 0...3 + const int64_t ib = tid%8; // 0...7 dst_t * y = yy + i*QK_K + 32*ib + 4*il; const uint8_t * q4 = x[i].qs + 16*ib + 4*il; const float d = (float)x[i].d * ((((x[i].scales_l[ib/2] >> 4*(ib%2)) & 0xf) | (((x[i].scales_h >> 2*ib) & 3) << 4)) - 32); diff --git a/ggml-cuda/fattn.cu b/ggml-cuda/fattn.cu new file mode 100644 index 000000000..c8a11d173 --- /dev/null +++ b/ggml-cuda/fattn.cu @@ -0,0 +1,944 @@ +#include "common.cuh" +#include "fattn.cuh" + +#include + +#if FP16_MMA_AVAILABLE +#include +#endif + +#define FATTN_KQ_STRIDE 256 +#define HALF_MAX_HALF __float2half(65504.0f/2) // Use neg. of this instead of -INFINITY to initialize KQ max vals to avoid NaN upon subtraction. +#define SOFTMAX_FTZ_THRESHOLD -20.0f // Softmax exp. of values smaller than this are flushed to zero to avoid NaNs. + +template // D == head size +__launch_bounds__(((D + WARP_SIZE - 1) / WARP_SIZE)*WARP_SIZE, 1) +static __global__ void flash_attn_vec_ext_f16( + const char * __restrict__ Q, + const char * __restrict__ K, + const char * __restrict__ V, + const char * __restrict__ mask, + float * __restrict__ dst, + float2 * __restrict__ dst_meta, + const float scale, + const int ne00, + const int ne01, + const int ne02, + const int ne03, + const int ne10, + const int ne11, + const int ne12, + const int ne13, + const int ne31, + const int nb31, + const int nb01, + const int nb02, + const int nb03, + const int nb11, + const int nb12, + const int nb13, + const int ne0, + const int ne1, + const int ne2, + const int ne3) { +#if FP16_AVAILABLE + //In this kernel Q, K, V are matrices while i, j, k are matrix indices. + + const int ic = blockIdx.x / parallel_blocks; // Index of the Q/QKV column to work on. + const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel. + + const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix. + const float2 * Q_f2 = (const float2 *) (Q + nb02* blockIdx.y + nb01*ic); + const half2 * K_h2 = (const half2 *) (K + nb12*(blockIdx.y / gqa_ratio)); + const half * V_h = (const half *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape + const half * maskh = (const half *) mask + ne11*ic; + + const int stride_KV = nb11 / sizeof(half); + const int stride_KV2 = nb11 / sizeof(half2); + + constexpr int nwarps = (D + WARP_SIZE - 1) / WARP_SIZE; + const int tid = WARP_SIZE*threadIdx.y + threadIdx.x; + __builtin_assume(tid < nwarps*WARP_SIZE); + + __shared__ half KQ[nwarps*WARP_SIZE]; + KQ[tid] = -INFINITY; + half2 * KQ2 = (half2 *) KQ; + + half kqmax = -HALF_MAX_HALF; + half kqsum = 0.0f; + + __shared__ half kqmax_shared[WARP_SIZE]; + __shared__ half kqsum_shared[WARP_SIZE]; + if (threadIdx.y == 0) { + kqmax_shared[threadIdx.x] = -HALF_MAX_HALF; + kqsum_shared[threadIdx.x] = 0.0f; + } + __syncthreads(); + + // Convert Q to half2 and store in registers: + half2 Q_h2[(D/2 + WARP_SIZE - 1) / WARP_SIZE]; +#pragma unroll + for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { + const int i = i0 + threadIdx.x; + if (i0 + WARP_SIZE > D/2 && i >= D/2) { + break; + } + + Q_h2[i0/WARP_SIZE] = make_half2(scale, scale) * make_half2(Q_f2[i].x, Q_f2[i].y); + } + + half2 VKQ = make_half2(0.0f, 0.0f); // Each thread calculates a single VKQ value. + + const int k_start = parallel_blocks == 1 ? 0 : ip*D; + for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*D) { + // Calculate KQ tile and keep track of new maximum KQ values: + half kqmax_new = kqmax; +#pragma unroll + for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += nwarps) { + const int i_KQ = i_KQ_0 + threadIdx.y; + + if ((i_KQ_0 + nwarps > D && i_KQ >= D) || (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + i_KQ >= ne11)) { + break; + } + + half2 sum2 = make_half2(0.0f, 0.0f); +#pragma unroll + for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) { + const int k_KQ = k_KQ_0 + threadIdx.x; + if (k_KQ_0 + WARP_SIZE > D/2 && k_KQ >= D/2) { + break; + } + + const half2 K_ik = K_h2[(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ]; + sum2 += K_ik * Q_h2[k_KQ_0/WARP_SIZE]; + } + + sum2 = warp_reduce_sum(sum2); + half sum = __low2half(sum2) + __high2half(sum2); + sum += mask ? maskh[k_VKQ_0 + i_KQ] : __float2half(0.0f); + kqmax_new = ggml_cuda_hmax(kqmax_new, sum); + if (threadIdx.x == 0) { + KQ[i_KQ] = sum; + } + } + + kqmax_new = warp_reduce_max(kqmax_new); + if (threadIdx.x == 0) { + kqmax_shared[threadIdx.y] = kqmax_new; + } + __syncthreads(); + kqmax_new = kqmax_shared[threadIdx.x]; + kqmax_new = warp_reduce_max(kqmax_new); + + const half KQ_max_scale = hexp(kqmax - kqmax_new); + kqmax = kqmax_new; + + const half val = hexp(KQ[tid] - kqmax); + kqsum = kqsum*KQ_max_scale + val; + KQ[tid] = val; + + VKQ *= __half2half2(KQ_max_scale); + + __syncthreads(); + + if (tid < D) { +#pragma unroll + for (int k0 = 0; k0 < D; k0 += 2) { + if (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + k0 >= ne11) { + break; + } + + half2 V_k; + reinterpret_cast(V_k.x) = V_h[(k_VKQ_0 + k0 + 0)*stride_KV + tid]; + reinterpret_cast(V_k.y) = V_h[(k_VKQ_0 + k0 + 1)*stride_KV + tid]; + VKQ += V_k*KQ2[k0/2]; + } + } + + __syncthreads(); + } + + if (tid >= D) { + kqsum = 0.0f; + } + + kqsum = warp_reduce_sum(kqsum); + if (threadIdx.x == 0) { + kqsum_shared[threadIdx.y] = kqsum; + } + __syncthreads(); + kqsum = kqsum_shared[threadIdx.x]; + kqsum = warp_reduce_sum(kqsum); + + if (tid >= D) { + return; + } + + half dst_val = (__low2half(VKQ) + __high2half(VKQ)); + if (parallel_blocks == 1) { + dst_val /= kqsum; + } + dst[D*gridDim.y*blockIdx.x + D*blockIdx.y + tid] = dst_val; + + if (parallel_blocks == 1 || tid != 0) { + return; + } + dst_meta[ic*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax, kqsum); +#else + NO_DEVICE_CODE; +#endif // FP16_AVAILABLE +} + +// D == head size, VKQ_stride == num VKQ rows calculated in parallel: +template +__launch_bounds__(nwarps*WARP_SIZE, 1) +static __global__ void flash_attn_ext_f16( + const char * __restrict__ Q, + const char * __restrict__ K, + const char * __restrict__ V, + const char * __restrict__ mask, + float * __restrict__ dst, + float2 * __restrict__ dst_meta, + const float scale, + const int ne00, + const int ne01, + const int ne02, + const int ne03, + const int ne10, + const int ne11, + const int ne12, + const int ne13, + const int ne31, + const int nb31, + const int nb01, + const int nb02, + const int nb03, + const int nb11, + const int nb12, + const int nb13, + const int ne0, + const int ne1, + const int ne2, + const int ne3) { +#if FP16_MMA_AVAILABLE + //In this kernel Q, K, V are matrices while i, j, k are matrix indices. + + const int ic0 = ncols*(blockIdx.x / parallel_blocks); // Index of the first Q/QKV column to work on. + const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel. + + static_assert(D <= FATTN_KQ_STRIDE, "D must be <= FATTN_KQ_STRIDE."); + static_assert(ncols == 8 || ncols % 16 == 0, "ncols must be 8 or a multiple of 16."); + constexpr int frag_m = ncols == 8 ? 32 : 16; + constexpr int frag_n = ncols == 8 ? 8 : 16; + static_assert(D % frag_m == 0, "If ncols == 8 then D % frag_m must be 0."); + typedef nvcuda::wmma::fragment frag_a_K; + typedef nvcuda::wmma::fragment frag_a_V; + typedef nvcuda::wmma::fragment frag_b; + typedef nvcuda::wmma::fragment frag_c_KQ; + typedef nvcuda::wmma::fragment frag_c_VKQ; + + constexpr int KQ_stride_tc = nwarps*frag_m; // Number of KQ rows calculated in parallel. + constexpr int VKQ_ratio = KQ_stride_tc/VKQ_stride; // Number of parallel VKQ accumulators needed to keep all warps busy. + static_assert(VKQ_ratio <= nwarps, "VKQ_ratio must be <= nwarps."); + + // Pad internal representation of KQ, KQV to reduce shared memory bank conflicts: + constexpr int D_padded = D + 8; + constexpr int kqs_padded = FATTN_KQ_STRIDE + 8; + constexpr int kqar = sizeof(KQ_acc_t)/sizeof(half); + + const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix. + const float * Q_f = (const float *) (Q + nb02* blockIdx.y + nb01*ic0); + const half * K_h = (const half *) (K + nb12*(blockIdx.y / gqa_ratio)); + const half * V_h = (const half *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape + const half * maskh = (const half *) mask + (nb31/sizeof(half))* ic0; + const half2 * mask2 = (const half2 *) mask + (nb31/sizeof(half))*(ic0/2); + + const int stride_Q = nb01 / sizeof(float); + const int stride_KV = nb11 / sizeof(half); + + frag_b Q_b[D/16][ncols/frag_n]; + + // A single buffer for temporarily holding tiles of KQ and VKQ parts: + constexpr int mem_KQ = ncols*kqs_padded*kqar; + constexpr int mem_VKQ_parts = VKQ_ratio*ncols*D_padded; + __shared__ half KQ[mem_KQ >= mem_VKQ_parts ? mem_KQ : mem_VKQ_parts]; + float * KQ_f = (float *) KQ; + half2 * KQ2 = (half2 *) KQ; + + float KQ_rowsum_f[ncols/nwarps] = {0.0f}; + float KQ_max_f[ncols/nwarps]; + float KQ_max_scale_f[ncols/nwarps] = {0.0f}; + +#pragma unroll + for (int j = 0; j < ncols/nwarps; ++j) { + KQ_max_f[j] = -FLT_MAX/2.0f; + } + + half2 KQ_rowsum_h2[ncols/nwarps] = {{0.0f, 0.0f}}; + half2 KQ_max_h2[ncols/nwarps]; + half2 KQ_max_scale_h2[ncols/nwarps] = {{0.0f, 0.0f}}; + +#pragma unroll + for (int j = 0; j < ncols/nwarps; ++j) { + KQ_max_h2[j] = make_half2(-HALF_MAX_HALF, -HALF_MAX_HALF); + } + + __shared__ half VKQ[ncols*D_padded]; // Accumulator for final VKQ slice. + half2 * VKQ2 = (half2 *) VKQ; +#pragma unroll + for (int j0 = 0; j0 < ncols; j0 += nwarps) { + const int j = j0 + threadIdx.y; +#pragma unroll + for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { + const int i = i0 + threadIdx.x; + if (i0 + WARP_SIZE > D/2 && i >= D/2) { + break; + } + VKQ2[j*(D_padded/2) + i] = make_half2(0.0f, 0.0f); + } + } + + // Convert Q to half and apply scale, temporarily store in KQ: +#pragma unroll + for (int j0 = 0; j0 < ncols; j0 += nwarps) { + const int j = j0 + threadIdx.y; +#pragma unroll + for (int i0 = 0; i0 < D; i0 += WARP_SIZE) { + const int i = i0 + threadIdx.x; + if (i0 + WARP_SIZE > D && i >= D) { + break; + } + KQ[j*D_padded + i] = ic0 + j < ne01 ? Q_f[j*stride_Q + i] * scale : 0.0f; + } + } + + __syncthreads(); + + // Load Q into tensor core fragments/registers since it will be used frequently: +#pragma unroll + for (int i0 = 0; i0 < D; i0 += 16) { +#pragma unroll + for (int j0 = 0; j0 < ncols; j0 += frag_n) { + nvcuda::wmma::load_matrix_sync(Q_b[i0/16][j0/frag_n], KQ + j0*D_padded + i0, D_padded); + } + } + + __syncthreads(); + + // Iterate over ne11 == previous tokens: + for (int k_VKQ_0 = ip*FATTN_KQ_STRIDE; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*FATTN_KQ_STRIDE) { + // Calculate tile of KQ: +#pragma unroll + for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE; i_KQ_0 += KQ_stride_tc) { + frag_c_KQ KQ_c[ncols/frag_n]; +#pragma unroll + for (int j = 0; j < ncols/frag_n; ++j) { + nvcuda::wmma::fill_fragment(KQ_c[j], 0.0f); + } +#pragma unroll + for (int k_KQ_0 = 0; k_KQ_0 < D; k_KQ_0 += 16) { + frag_a_K K_a; + nvcuda::wmma::load_matrix_sync(K_a, K_h + (k_VKQ_0 + i_KQ_0 + frag_m*threadIdx.y)*stride_KV + k_KQ_0, stride_KV); +#pragma unroll + for (int j = 0; j < ncols/frag_n; ++j) { + nvcuda::wmma::mma_sync(KQ_c[j], K_a, Q_b[k_KQ_0/16][j], KQ_c[j]); + } + } +#pragma unroll + for (int j0 = 0; j0 < ncols; j0 += frag_n) { + nvcuda::wmma::store_matrix_sync((KQ_acc_t *) KQ + j0*kqs_padded + i_KQ_0 + frag_m*threadIdx.y, KQ_c[j0/frag_n], kqs_padded, nvcuda::wmma::mem_col_major); + } + } + + __syncthreads(); + + // Calculate softmax for each KQ column using the current max. value. + // The divisor is stored in KQ_rowsum and will be applied at the end. +#pragma unroll + for (int j0 = 0; j0 < ncols; j0 += nwarps) { + const int j = j0 + threadIdx.y; + + if (std::is_same::value) { + float KQ_f_tmp[FATTN_KQ_STRIDE / WARP_SIZE]; +#pragma unroll + for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) { + const int k = k0 + threadIdx.x; + + KQ_f_tmp[k0/WARP_SIZE] = KQ_f[j*kqs_padded + k]; + } + + float KQ_max_new = KQ_max_f[j0/nwarps]; +#pragma unroll + for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) { + const int k = k0 + threadIdx.x; + + KQ_f_tmp[k0/WARP_SIZE] += mask ? __half2float(maskh[j*(nb31/sizeof(half)) + k_VKQ_0 + k]) : 0.0f; + KQ_max_new = max(KQ_max_new, KQ_f_tmp[k0/WARP_SIZE]); + } + KQ_max_new = warp_reduce_max(KQ_max_new); + + const float diff = KQ_max_f[j0/nwarps] - KQ_max_new; + KQ_max_scale_f[j0/nwarps] = expf(diff); + if (diff <= SOFTMAX_FTZ_THRESHOLD) { + KQ_max_scale_f[j0/nwarps] = 0.0f; + } + KQ_max_f[j0/nwarps] = KQ_max_new; + + float KQ_rowsum_add = 0.0f; +#pragma unroll + for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) { + const int k = k0 + threadIdx.x; + + const float diff = KQ_f_tmp[k0/WARP_SIZE] - KQ_max_f[j0/nwarps]; + KQ_f_tmp[k0/WARP_SIZE] = expf(diff); + if (diff <= SOFTMAX_FTZ_THRESHOLD) { + KQ_f_tmp[k0/WARP_SIZE] = 0.0f; + } + KQ_rowsum_add += KQ_f_tmp[k0/WARP_SIZE]; + KQ[j*(kqar*kqs_padded) + k] = KQ_f_tmp[k0/WARP_SIZE]; + } + KQ_rowsum_add = warp_reduce_sum(KQ_rowsum_add); + + // Scale previous KQ_rowsum to account for a potential increase in KQ_max: + KQ_rowsum_f[j0/nwarps] = KQ_max_scale_f[j0/nwarps]*KQ_rowsum_f[j0/nwarps] + KQ_rowsum_add; + } else { + half2 KQ2_tmp[FATTN_KQ_STRIDE/(2*WARP_SIZE)]; +#pragma unroll + for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) { + const int k = k0 + threadIdx.x; + + KQ2_tmp[k0/WARP_SIZE] = KQ2[j*(kqs_padded/2) + k]; + } + + half2 KQ_max_new = KQ_max_h2[j0/nwarps]; +#pragma unroll + for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) { + const int k = k0 + threadIdx.x; + + KQ2_tmp[k0/WARP_SIZE] += mask ? mask2[(j*ne11 + k_VKQ_0)/2 + k] : make_half2(0.0f, 0.0f); + KQ_max_new = ggml_cuda_hmax2(KQ_max_new, KQ2_tmp[k0/WARP_SIZE]); + } + KQ_max_new = __half2half2(warp_reduce_max(ggml_cuda_hmax(__low2half(KQ_max_new), __high2half(KQ_max_new)))); + const half2 diff = KQ_max_h2[j0/nwarps] - KQ_max_new; + KQ_max_scale_h2[j0/nwarps] = h2exp(diff); + const uint32_t ftz_mask = __hgt2_mask(diff, make_half2(SOFTMAX_FTZ_THRESHOLD, SOFTMAX_FTZ_THRESHOLD)); + *((uint32_t *) &KQ_max_scale_h2[j0/nwarps]) &= ftz_mask; + KQ_max_h2[j0/nwarps] = KQ_max_new; + + half2 KQ_rowsum_add = make_half2(0.0f, 0.0f); +#pragma unroll + for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) { + const int k = k0 + threadIdx.x; + + const half2 diff = KQ2_tmp[k0/WARP_SIZE] - KQ_max_h2[j0/nwarps]; + KQ2_tmp[k0/WARP_SIZE] = h2exp(diff); + const uint32_t ftz_mask = __hgt2_mask(diff, make_half2(SOFTMAX_FTZ_THRESHOLD, SOFTMAX_FTZ_THRESHOLD)); + *((uint32_t *) &KQ2_tmp[k0/WARP_SIZE]) &= ftz_mask; + KQ_rowsum_add += KQ2_tmp[k0/WARP_SIZE]; + KQ2[j*(kqs_padded/2) + k] = KQ2_tmp[k0/WARP_SIZE]; + } + KQ_rowsum_add = warp_reduce_sum(KQ_rowsum_add); + + // Scale previous KQ_rowsum to account for a potential increase in KQ_max: + KQ_rowsum_h2[j0/nwarps] = KQ_max_scale_h2[j0/nwarps]*KQ_rowsum_h2[j0/nwarps] + KQ_rowsum_add; + } + } + + __syncthreads(); + + frag_b KQ_b[FATTN_KQ_STRIDE/(VKQ_ratio*16)][ncols/frag_n]; +#pragma unroll + for (int j0 = 0; j0 < ncols; j0 += frag_n) { +#pragma unroll + for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += VKQ_ratio*16) { + const int k = k0 + (threadIdx.y % VKQ_ratio)*16; + nvcuda::wmma::load_matrix_sync( + KQ_b[k0/(VKQ_ratio*16)][j0/frag_n], + KQ + j0*(kqar*kqs_padded) + k, + kqar*kqs_padded); + } + } + + frag_c_VKQ VKQ_c[D/VKQ_stride][ncols/frag_n]; +#pragma unroll + for (int i_VKQ_0 = 0; i_VKQ_0 < D; i_VKQ_0 += VKQ_stride) { +#pragma unroll + for (int j = 0; j < ncols/frag_n; ++j) { + nvcuda::wmma::fill_fragment(VKQ_c[i_VKQ_0/VKQ_stride][j], 0.0f); + } + +#pragma unroll + for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += VKQ_ratio*16) { + const int k = k0 + (threadIdx.y % VKQ_ratio)*16; + + frag_a_V v_a; + nvcuda::wmma::load_matrix_sync(v_a, V_h + (k_VKQ_0 + k)*stride_KV + i_VKQ_0 + frag_m*(threadIdx.y/VKQ_ratio), stride_KV); +#pragma unroll + for (int j = 0; j < ncols/frag_n; ++j) { + nvcuda::wmma::mma_sync(VKQ_c[i_VKQ_0/VKQ_stride][j], v_a, KQ_b[k0/(VKQ_ratio*16)][j], VKQ_c[i_VKQ_0/VKQ_stride][j]); + } + } + } + + __syncthreads(); + + const int offset_k = (threadIdx.y % VKQ_ratio) * (ncols*D_padded); +#pragma unroll + for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += VKQ_stride) { +#pragma unroll + for (int j0 = 0; j0 < ncols; j0 += frag_n) { + nvcuda::wmma::store_matrix_sync( + KQ + offset_k + j0*D_padded + i_KQ_0 + frag_m*(threadIdx.y/VKQ_ratio), + VKQ_c[i_KQ_0/VKQ_stride][j0/frag_n], + D_padded, nvcuda::wmma::mem_col_major); + } + } + + __syncthreads(); + +#pragma unroll + for (int j0 = 0; j0 < ncols; j0 += nwarps) { + const int j = j0 + threadIdx.y; + + half2 VKQ_scale; + if (std::is_same::value) { + VKQ_scale = make_half2(KQ_max_scale_f[j0/nwarps], KQ_max_scale_f[j0/nwarps]); + } else { + VKQ_scale = KQ_max_scale_h2[j0/nwarps]; + } + +#pragma unroll + for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { + const int i = i0 + threadIdx.x; + if (i0 + WARP_SIZE > D/2 && i >= D/2) { + break; + } + + half2 VKQ_add = make_half2(0.0f, 0.0f); +#pragma unroll + for (int l = 0; l < VKQ_ratio; ++l) { + VKQ_add += KQ2[l*(ncols*D_padded/2) + j*(D_padded/2) + i]; + } + VKQ2[j*(D_padded/2) + i] = VKQ_scale*VKQ2[j*(D_padded/2) + i] + VKQ_add; + } + } + + __syncthreads(); + } + +#pragma unroll + for (int j0 = 0; j0 < ncols; j0 += nwarps) { + const int j_VKQ = j0 + threadIdx.y; + if (ic0 + j_VKQ >= ne01) { + return; + } + const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip; + + float KQ_rowsum_j; + if (std::is_same::value) { + KQ_rowsum_j = KQ_rowsum_f[j0/nwarps]; + } else { + KQ_rowsum_j = __low2float(KQ_rowsum_h2[j0/nwarps]) + __high2float(KQ_rowsum_h2[j0/nwarps]); + } + +#pragma unroll + for (int i0 = 0; i0 < D; i0 += WARP_SIZE) { + const int i = i0 + threadIdx.x; + if (i0 + WARP_SIZE > D && i >= D) { + break; + } + float dst_val = VKQ[j_VKQ*D_padded + i]; + if (parallel_blocks == 1) { + dst_val /= KQ_rowsum_j; + } + dst[j_dst*gridDim.y*D + blockIdx.y*D + i] = dst_val; + } + + if (parallel_blocks == 1 || threadIdx.x != 0) { + continue; + } + + float2 dst_meta_val; + if (std::is_same::value) { + dst_meta_val.x = KQ_max_f[j0/nwarps]; + } else { + dst_meta_val.x = __low2float(KQ_max_h2[j0/nwarps]); + } + dst_meta_val.y = KQ_rowsum_j; + dst_meta[(ic0 + j_VKQ)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = dst_meta_val; + } +#else + NO_DEVICE_CODE; +#endif // FP16_MMA_AVAILABLE +} + +template // D == head size +__launch_bounds__(D, 1) +static __global__ void flash_attn_combine_results( + const float * __restrict__ VKQ_parts, + const float2 * __restrict__ VKQ_meta, + float * __restrict__ dst) { +#if FP16_AVAILABLE + VKQ_parts += parallel_blocks*D * gridDim.y*blockIdx.x; + VKQ_meta += parallel_blocks * gridDim.y*blockIdx.x; + dst += D * gridDim.y*blockIdx.x; + + const int tid = threadIdx.x; + __builtin_assume(tid < D); + + __shared__ float2 meta[parallel_blocks]; + if (tid < 2*parallel_blocks) { + ((float *) meta)[threadIdx.x] = ((const float *)VKQ_meta) [blockIdx.y*(2*parallel_blocks) + tid]; + } + + __syncthreads(); + + float kqmax = meta[0].x; +#pragma unroll + for (int l = 1; l < parallel_blocks; ++l) { + kqmax = max(kqmax, meta[l].x); + } + + float VKQ_numerator = 0.0f; + float VKQ_denominator = 0.0f; +#pragma unroll + for (int l = 0; l < parallel_blocks; ++l) { + const float diff = meta[l].x - kqmax; + const float KQ_max_scale = expf(diff); + const uint32_t ftz_mask = 0xFFFFFFFF * (diff > SOFTMAX_FTZ_THRESHOLD); + *((uint32_t *) &KQ_max_scale) &= ftz_mask; + + VKQ_numerator += KQ_max_scale * VKQ_parts[l*gridDim.y*D + blockIdx.y*D + tid]; + VKQ_denominator += KQ_max_scale * meta[l].y; + } + + dst[blockIdx.y*D + tid] = VKQ_numerator / VKQ_denominator; +#else + NO_DEVICE_CODE; +#endif // FP16_AVAILABLE +} + +constexpr int get_max_power_of_2(int x) { + return x % 2 == 0 ? 2*get_max_power_of_2(x/2) : 1; +} + +static_assert(get_max_power_of_2(1) == 1, "Test failed."); +static_assert(get_max_power_of_2(2) == 2, "Test failed."); +static_assert(get_max_power_of_2(4) == 4, "Test failed."); +static_assert(get_max_power_of_2(6) == 2, "Test failed."); + +// Number of VKQ rows calculated in parallel: +constexpr int get_VKQ_stride(int D, int nwarps, int frag_m) { + return (get_max_power_of_2(D/frag_m) < nwarps ? get_max_power_of_2(D/frag_m) : nwarps)*frag_m; +} + +static_assert(get_VKQ_stride(128, 1, 32) == 32, "Test failed."); +static_assert(get_VKQ_stride(128, 2, 32) == 64, "Test failed."); +static_assert(get_VKQ_stride(128, 4, 32) == 128, "Test failed."); +static_assert(get_VKQ_stride( 64, 1, 32) == 32, "Test failed."); +static_assert(get_VKQ_stride( 64, 2, 32) == 64, "Test failed."); +static_assert(get_VKQ_stride( 64, 4, 32) == 64, "Test failed."); +static_assert(get_VKQ_stride( 80, 1, 16) == 16, "Test failed."); +static_assert(get_VKQ_stride( 80, 2, 16) == 16, "Test failed."); +static_assert(get_VKQ_stride( 80, 4, 16) == 16, "Test failed."); + +template void launch_fattn_vec_f16( + const ggml_tensor * Q, const ggml_tensor * K, const ggml_tensor * V, ggml_tensor * KQV, const ggml_tensor * mask, + ggml_cuda_pool & pool, cudaStream_t main_stream +) { + ggml_cuda_pool_alloc dst_tmp(pool); + ggml_cuda_pool_alloc dst_tmp_meta(pool); + + if (parallel_blocks > 1) { + dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV)); + dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV)); + } + + constexpr int nwarps = (D + WARP_SIZE - 1) / WARP_SIZE; + const dim3 block_dim(WARP_SIZE, nwarps, 1); + const dim3 blocks_num(parallel_blocks*Q->ne[1], Q->ne[2], Q->ne[3]); + const int shmem = 0; + + float scale; + memcpy(&scale, KQV->op_params, sizeof(float)); + + flash_attn_vec_ext_f16 + <<>> ( + (const char *) Q->data, + (const char *) K->data, + (const char *) V->data, + mask ? ((const char *) mask->data) : nullptr, + parallel_blocks == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr, + scale, + Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3], + K->ne[0], K->ne[1], K->ne[2], K->ne[3], + mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0, + Q->nb[1], Q->nb[2], Q->nb[3], + K->nb[1], K->nb[2], K->nb[3], + KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3] + ); + CUDA_CHECK(cudaGetLastError()); + + if (parallel_blocks == 1) { + return; + } + + const dim3 block_dim_combine(D, 1, 1); + const dim3 blocks_num_combine(Q->ne[1], blocks_num.y, blocks_num.z); + const int shmem_combine = 0; + + flash_attn_combine_results + <<>> + (dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data); + CUDA_CHECK(cudaGetLastError()); +} + +template void launch_fattn_f16_impl( + const ggml_tensor * Q, const ggml_tensor * K, const ggml_tensor * V, ggml_tensor * KQV, const ggml_tensor * mask, + ggml_cuda_pool & pool, cudaStream_t main_stream +) { + ggml_cuda_pool_alloc dst_tmp(pool); + ggml_cuda_pool_alloc dst_tmp_meta(pool); + + if (parallel_blocks > 1) { + dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV)); + dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV)); + } + + constexpr int frag_m = (cols_per_block) == 8 && (D) % 32 == 0 ? 32 : 16; + const dim3 block_dim(WARP_SIZE, nwarps, 1); + const dim3 blocks_num(parallel_blocks*(Q->ne[1] + cols_per_block - 1) / cols_per_block, Q->ne[2], Q->ne[3]); + const int shmem = 0; + + float scale; + memcpy(&scale, KQV->op_params, sizeof(float)); + + flash_attn_ext_f16 + <<>> ( + (const char *) Q->data, + (const char *) K->data, + (const char *) V->data, + mask ? ((const char *) mask->data) : nullptr, + (parallel_blocks) == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr, + scale, + Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3], + K->ne[0], K->ne[1], K->ne[2], K->ne[3], + mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0, + Q->nb[1], Q->nb[2], Q->nb[3], + K->nb[1], K->nb[2], K->nb[3], + KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3] + ); + CUDA_CHECK(cudaGetLastError()); + + if ((parallel_blocks) == 1) { + return; + } + + const dim3 block_dim_combine(D, 1, 1); + const dim3 blocks_num_combine(Q->ne[1], blocks_num.y, blocks_num.z); + const int shmem_combine = 0; + + flash_attn_combine_results + <<>> + (dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data); + CUDA_CHECK(cudaGetLastError()); +} + +template void launch_fattn_f16( + const ggml_tensor * Q, const ggml_tensor * K, const ggml_tensor * V, ggml_tensor * KQV, const ggml_tensor * mask, + const int nsm, ggml_cuda_pool & pool, cudaStream_t main_stream +) { + const int blocks_num_pb1 = ((Q->ne[1] + cols_per_block - 1) / cols_per_block)*Q->ne[2]*Q->ne[3]; + + if (4*blocks_num_pb1 < 2*nsm) { + launch_fattn_f16_impl(Q, K, V, KQV, mask, pool, main_stream); + return; + } + if (2*blocks_num_pb1 < 2*nsm) { + launch_fattn_f16_impl(Q, K, V, KQV, mask, pool, main_stream); + return; + } + launch_fattn_f16_impl(Q, K, V, KQV, mask, pool, main_stream); +} + +void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + const ggml_tensor * Q = dst->src[0]; + const ggml_tensor * K = dst->src[1]; + const ggml_tensor * V = dst->src[2]; + + const ggml_tensor * mask = dst->src[3]; + + ggml_tensor * KQV = dst; + + GGML_ASSERT(Q->type == GGML_TYPE_F32); + GGML_ASSERT(K->type == GGML_TYPE_F16); + GGML_ASSERT(V->type == GGML_TYPE_F16); + GGML_ASSERT(KQV->type == GGML_TYPE_F32); + + GGML_ASSERT(!mask || mask->type == GGML_TYPE_F16); + GGML_ASSERT(!mask || mask->ne[1] >= GGML_PAD(Q->ne[1], 16) && + "the Flash-Attention CUDA kernel requires the mask to be padded to 16 and at least n_queries big"); + + GGML_ASSERT(K->ne[1] % FATTN_KQ_STRIDE == 0 && "Incorrect KV cache padding."); + + ggml_cuda_set_device(ctx.device); + + const int nsm = ggml_cuda_info().devices[ggml_cuda_get_device()].nsm; + + const int32_t precision = KQV->op_params[1]; + + if (precision != GGML_PREC_DEFAULT) { + if (Q->ne[1] <= 32 || Q->ne[0] > 128) { + constexpr int cols_per_block = 16; + constexpr int nwarps = 4; + switch (Q->ne[0]) { + case 64: + launch_fattn_f16< 64, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream()); + break; + case 80: + launch_fattn_f16< 80, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream()); + break; + case 96: + launch_fattn_f16< 96, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream()); + break; + case 112: + launch_fattn_f16<112, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream()); + break; + case 128: + launch_fattn_f16<128, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream()); + break; + case 256: + launch_fattn_f16<256, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream()); + break; + default: + GGML_ASSERT(false); + break; + } + } else { + constexpr int cols_per_block = 32; + constexpr int nwarps = 4; + switch (Q->ne[0]) { + case 64: + launch_fattn_f16< 64, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream()); + break; + case 80: + launch_fattn_f16< 80, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream()); + break; + case 96: + launch_fattn_f16< 96, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream()); + break; + case 112: + launch_fattn_f16<112, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream()); + break; + case 128: + launch_fattn_f16<128, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream()); + break; + // case 256: + // launch_fattn_f16<256, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream()); + // break; + default: + GGML_ASSERT(false); + break; + } + } + return; + } + + if (Q->ne[1] == 1 && Q->ne[0] % (2*WARP_SIZE) == 0) { + constexpr int parallel_blocks = 4; + switch (Q->ne[0]) { + case 64: + launch_fattn_vec_f16< 64, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); + break; + case 128: + launch_fattn_vec_f16<128, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); + break; + case 256: + launch_fattn_vec_f16<256, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); + break; + default: + GGML_ASSERT(false); + break; + } + return; + } + + if (Q->ne[1] <= 8 && Q->ne[0] % WARP_SIZE == 0) { + constexpr int cols_per_block = 8; + constexpr int nwarps = 4; + switch (Q->ne[0]) { + case 64: + launch_fattn_f16< 64, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream()); + break; + case 96: + launch_fattn_f16< 96, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream()); + break; + case 128: + launch_fattn_f16<128, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream()); + break; + case 256: + launch_fattn_f16<256, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream()); + break; + default: + GGML_ASSERT(false); + break; + } + return; + } + + if (Q->ne[1] <= 32) { + constexpr int cols_per_block = 16; + constexpr int nwarps = 4; + switch (Q->ne[0]) { + case 64: + launch_fattn_f16< 64, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream()); + break; + case 80: + launch_fattn_f16< 80, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream()); + break; + case 96: + launch_fattn_f16< 96, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream()); + break; + case 112: + launch_fattn_f16<112, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream()); + break; + case 128: + launch_fattn_f16<128, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream()); + break; + case 256: + launch_fattn_f16<256, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream()); + break; + default: + GGML_ASSERT(false); + break; + } + return; + } + + constexpr int cols_per_block = 32; + constexpr int nwarps = 4; + switch (Q->ne[0]) { + case 64: + launch_fattn_f16< 64, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream()); + break; + case 80: + launch_fattn_f16< 80, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream()); + break; + case 96: + launch_fattn_f16< 96, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream()); + break; + case 112: + launch_fattn_f16<112, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream()); + break; + case 128: + launch_fattn_f16<128, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream()); + break; + case 256: + launch_fattn_f16<256, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream()); + break; + default: + GGML_ASSERT(false); + break; + } + return; +} diff --git a/ggml-cuda/fattn.cuh b/ggml-cuda/fattn.cuh new file mode 100644 index 000000000..ad3ca7a8d --- /dev/null +++ b/ggml-cuda/fattn.cuh @@ -0,0 +1,3 @@ +#include "common.cuh" + +void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst); diff --git a/ggml-cuda/softmax.cu b/ggml-cuda/softmax.cu index 9bda18e58..6ed225999 100644 --- a/ggml-cuda/softmax.cu +++ b/ggml-cuda/softmax.cu @@ -1,7 +1,17 @@ #include "softmax.cuh" -template -static __global__ void soft_max_f32(const float * x, const float * mask, const float * pos, float * dst, const int ncols_par, const int nrows_y, const float scale, const float max_bias, const float m0, const float m1, uint32_t n_head_log2) { +template +static __device__ __forceinline__ float t2f32(T val) { + return (float) val; +} + +template <> +__device__ float __forceinline__ t2f32(half val) { + return __half2float(val); +} + +template +static __global__ void soft_max_f32(const float * x, const T * mask, const T * pos, float * dst, const int ncols_par, const int nrows_y, const float scale, const float max_bias, const float m0, const float m1, uint32_t n_head_log2) { const int ncols = ncols_template == 0 ? ncols_par : ncols_template; const int tid = threadIdx.x; @@ -28,7 +38,7 @@ static __global__ void soft_max_f32(const float * x, const float * mask, const f extern __shared__ float data_soft_max_f32[]; float * buf_iw = data_soft_max_f32; // shared memory buffer for inter-warp communication // shared memory buffer to cache values between iterations: - float * vals = vals_smem ? buf_iw + WARP_SIZE : dst + rowx*ncols; + float * vals = vals_smem ? buf_iw + WARP_SIZE : dst + (int64_t)rowx*ncols; float max_val = -INFINITY; @@ -40,10 +50,10 @@ static __global__ void soft_max_f32(const float * x, const float * mask, const f break; } - const int ix = rowx*ncols + col; - const int iy = rowy*ncols + col; + const int64_t ix = (int64_t)rowx*ncols + col; + const int64_t iy = (int64_t)rowy*ncols + col; - const float val = x[ix]*scale + (mask ? mask[iy] : 0.0f) + (pos ? slope*pos[col] : 0.0f); + const float val = x[ix]*scale + (mask ? t2f32(mask[iy]) : 0.0f) + (pos ? slope*t2f32(pos[col]) : 0.0f); vals[col] = val; max_val = max(max_val, val); @@ -109,12 +119,13 @@ static __global__ void soft_max_f32(const float * x, const float * mask, const f return; } - const int idst = rowx*ncols + col; + const int64_t idst = (int64_t)rowx*ncols + col; dst[idst] = vals[col] * inv_sum; } } -static void soft_max_f32_cuda(const float * x, const float * mask, const float * pos, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const float scale, const float max_bias, cudaStream_t stream) { +template +static void soft_max_f32_cuda(const float * x, const T * mask, const T * pos, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const float scale, const float max_bias, cudaStream_t stream) { int nth = WARP_SIZE; while (nth < ncols_x && nth < CUDA_SOFT_MAX_BLOCK_SIZE) nth *= 2; const dim3 block_dims(nth, 1, 1); @@ -167,15 +178,19 @@ static void soft_max_f32_cuda(const float * x, const float * mask, const float * void ggml_cuda_op_soft_max(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; + const ggml_tensor * src2 = dst->src[2]; + const float * src0_d = (const float *)src0->data; - const float * src1_d = src1 ? (const float *)src1->data : nullptr; + const void * src1_d = src1 ? (const void *)src1->data : nullptr; + float * dst_d = (float *)dst->data; cudaStream_t stream = ctx.stream(); GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); - GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional + GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F16 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional + GGML_ASSERT(!src2 || src2->type == GGML_TYPE_F16 || src2->type == GGML_TYPE_F32); // src2 contains positions and it is optional const int64_t ne00 = src0->ne[0]; const int64_t nrows_x = ggml_nrows(src0); @@ -188,14 +203,25 @@ void ggml_cuda_op_soft_max(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float)); // positions tensor - float * src2_dd = nullptr; + void * src2_d = nullptr; - ggml_tensor * src2 = dst->src[2]; const bool use_src2 = src2 != nullptr; if (use_src2) { - src2_dd = (float *)src2->data; + src2_d = (void *)src2->data; } - soft_max_f32_cuda(src0_d, src1_d, src2_dd, dst_d, ne00, nrows_x, nrows_y, scale, max_bias, stream); + const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16) || (src2 && src2->type == GGML_TYPE_F16); + + if (use_f16) { + const half * src1_dd = (const half *)src1_d; + const half * src2_dd = (const half *)src2_d; + + soft_max_f32_cuda(src0_d, src1_dd, src2_dd, dst_d, ne00, nrows_x, nrows_y, scale, max_bias, stream); + } else { + const float * src1_dd = (const float *)src1_d; + const float * src2_dd = (const float *)src2_d; + + soft_max_f32_cuda(src0_d, src1_dd, src2_dd, dst_d, ne00, nrows_x, nrows_y, scale, max_bias, stream); + } } diff --git a/ggml-impl.h b/ggml-impl.h index 0c997d3ed..d85b152bf 100644 --- a/ggml-impl.h +++ b/ggml-impl.h @@ -11,6 +11,89 @@ #include // memcpy #include // fabsf +#undef MIN +#undef MAX + +#define MIN(a, b) ((a) < (b) ? (a) : (b)) +#define MAX(a, b) ((a) > (b) ? (a) : (b)) + +/** + * Converts brain16 to float32. + * + * The bfloat16 floating point format has the following structure: + * + * ┌sign + * │ + * │ ┌exponent + * │ │ + * │ │ ┌mantissa + * │ │ │ + * │┌──┴───┐┌─┴───┐ + * 0b0000000000000000 brain16 + * + * Since bf16 has the same number of exponent bits as a 32bit float, + * encoding and decoding numbers becomes relatively straightforward. + * + * ┌sign + * │ + * │ ┌exponent + * │ │ + * │ │ ┌mantissa + * │ │ │ + * │┌──┴───┐┌─┴───────────────────┐ + * 0b00000000000000000000000000000000 IEEE binary32 + * + * For comparison, the standard fp16 format has fewer exponent bits. + * + * ┌sign + * │ + * │ ┌exponent + * │ │ + * │ │ ┌mantissa + * │ │ │ + * │┌─┴─┐┌─┴──────┐ + * 0b0000000000000000 IEEE binary16 + * + * @see IEEE 754-2008 + */ +static inline float ggml_compute_bf16_to_fp32(ggml_bf16_t h) { + union { + float f; + uint32_t i; + } u; + u.i = (uint32_t)h.bits << 16; + return u.f; +} + +/** + * Converts float32 to brain16. + * + * This function is binary identical to AMD Zen4 VCVTNEPS2BF16. + * Subnormals shall be flushed to zero, and NANs will be quiet. + * This code should vectorize nicely if using modern compilers. + */ +static inline ggml_bf16_t ggml_compute_fp32_to_bf16(float s) { + ggml_bf16_t h; + union { + float f; + uint32_t i; + } u; + u.f = s; + if ((u.i & 0x7fffffff) > 0x7f800000) { /* nan */ + h.bits = (u.i >> 16) | 64; /* force to quiet */ + return h; + } + if (!(u.i & 0x7f800000)) { /* subnormal */ + h.bits = (u.i & 0x80000000) >> 16; /* flush to zero */ + return h; + } + h.bits = (u.i + (0x7fff + ((u.i >> 16) & 1))) >> 16; + return h; +} + +#define GGML_FP32_TO_BF16(x) ggml_compute_fp32_to_bf16(x) +#define GGML_BF16_TO_FP32(x) ggml_compute_bf16_to_fp32(x) + #ifdef __cplusplus extern "C" { #endif @@ -45,7 +128,7 @@ extern "C" { // 16-bit float // on Arm, we use __fp16 // on x86, we use uint16_t -#if defined(__ARM_NEON) && !defined(_MSC_VER) +#if defined(__ARM_NEON) // if YCM cannot find , make a symbolic link to it, for example: // @@ -53,8 +136,262 @@ extern "C" { // #include +#ifdef _MSC_VER + +typedef uint16_t ggml_fp16_internal_t; + +#define ggml_vld1q_u32(w,x,y,z) { ((w) + ((uint64_t)(x) << 32)), ((y) + ((uint64_t)(z) << 32)) } + +#else + typedef __fp16 ggml_fp16_internal_t; +#define ggml_vld1q_u32(w,x,y,z) { (w), (x), (y), (z) } + +#endif // _MSC_VER + +#if !defined(__aarch64__) + +// 32-bit ARM compatibility + +// vaddvq_s16 +// vpaddq_s16 +// vpaddq_s32 +// vaddvq_s32 +// vaddvq_f32 +// vmaxvq_f32 +// vcvtnq_s32_f32 +// vzip1_u8 +// vzip2_u8 + +inline static int32_t vaddvq_s16(int16x8_t v) { + return + (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) + + (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) + + (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) + + (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7); +} + +inline static int16x8_t vpaddq_s16(int16x8_t a, int16x8_t b) { + int16x4_t a0 = vpadd_s16(vget_low_s16(a), vget_high_s16(a)); + int16x4_t b0 = vpadd_s16(vget_low_s16(b), vget_high_s16(b)); + return vcombine_s16(a0, b0); +} + +inline static int32x4_t vpaddq_s32(int32x4_t a, int32x4_t b) { + int32x2_t a0 = vpadd_s32(vget_low_s32(a), vget_high_s32(a)); + int32x2_t b0 = vpadd_s32(vget_low_s32(b), vget_high_s32(b)); + return vcombine_s32(a0, b0); +} + +inline static int32_t vaddvq_s32(int32x4_t v) { + return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3); +} + +inline static float vaddvq_f32(float32x4_t v) { + return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3); +} + +inline static float vmaxvq_f32(float32x4_t v) { + return + MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)), + MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3))); +} + +inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) { + int32x4_t res; + + res[0] = roundf(vgetq_lane_f32(v, 0)); + res[1] = roundf(vgetq_lane_f32(v, 1)); + res[2] = roundf(vgetq_lane_f32(v, 2)); + res[3] = roundf(vgetq_lane_f32(v, 3)); + + return res; +} + +inline static uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) { + uint8x8_t res; + + res[0] = a[0]; res[1] = b[0]; + res[2] = a[1]; res[3] = b[1]; + res[4] = a[2]; res[5] = b[2]; + res[6] = a[3]; res[7] = b[3]; + + return res; +} + +inline static uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) { + uint8x8_t res; + + res[0] = a[4]; res[1] = b[4]; + res[2] = a[5]; res[3] = b[5]; + res[4] = a[6]; res[5] = b[6]; + res[6] = a[7]; res[7] = b[7]; + + return res; +} + +// vld1q_s16_x2 +// vld1q_u8_x2 +// vld1q_u8_x4 +// vld1q_s8_x2 +// vld1q_s8_x4 +// TODO: double-check these work correctly + +typedef struct ggml_int16x8x2_t { + int16x8_t val[2]; +} ggml_int16x8x2_t; + +inline static ggml_int16x8x2_t ggml_vld1q_s16_x2(const int16_t * ptr) { + ggml_int16x8x2_t res; + + res.val[0] = vld1q_s16(ptr + 0); + res.val[1] = vld1q_s16(ptr + 8); + + return res; +} + +typedef struct ggml_uint8x16x2_t { + uint8x16_t val[2]; +} ggml_uint8x16x2_t; + +inline static ggml_uint8x16x2_t ggml_vld1q_u8_x2(const uint8_t * ptr) { + ggml_uint8x16x2_t res; + + res.val[0] = vld1q_u8(ptr + 0); + res.val[1] = vld1q_u8(ptr + 16); + + return res; +} + +typedef struct ggml_uint8x16x4_t { + uint8x16_t val[4]; +} ggml_uint8x16x4_t; + +inline static ggml_uint8x16x4_t ggml_vld1q_u8_x4(const uint8_t * ptr) { + ggml_uint8x16x4_t res; + + res.val[0] = vld1q_u8(ptr + 0); + res.val[1] = vld1q_u8(ptr + 16); + res.val[2] = vld1q_u8(ptr + 32); + res.val[3] = vld1q_u8(ptr + 48); + + return res; +} + +typedef struct ggml_int8x16x2_t { + int8x16_t val[2]; +} ggml_int8x16x2_t; + +inline static ggml_int8x16x2_t ggml_vld1q_s8_x2(const int8_t * ptr) { + ggml_int8x16x2_t res; + + res.val[0] = vld1q_s8(ptr + 0); + res.val[1] = vld1q_s8(ptr + 16); + + return res; +} + +typedef struct ggml_int8x16x4_t { + int8x16_t val[4]; +} ggml_int8x16x4_t; + +inline static ggml_int8x16x4_t ggml_vld1q_s8_x4(const int8_t * ptr) { + ggml_int8x16x4_t res; + + res.val[0] = vld1q_s8(ptr + 0); + res.val[1] = vld1q_s8(ptr + 16); + res.val[2] = vld1q_s8(ptr + 32); + res.val[3] = vld1q_s8(ptr + 48); + + return res; +} + +// NOTE: not tested +inline static int8x16_t ggml_vqtbl1q_s8(int8x16_t a, uint8x16_t b) { + int8x16_t res; + + res[ 0] = a[b[ 0]]; + res[ 1] = a[b[ 1]]; + res[ 2] = a[b[ 2]]; + res[ 3] = a[b[ 3]]; + res[ 4] = a[b[ 4]]; + res[ 5] = a[b[ 5]]; + res[ 6] = a[b[ 6]]; + res[ 7] = a[b[ 7]]; + res[ 8] = a[b[ 8]]; + res[ 9] = a[b[ 9]]; + res[10] = a[b[10]]; + res[11] = a[b[11]]; + res[12] = a[b[12]]; + res[13] = a[b[13]]; + res[14] = a[b[14]]; + res[15] = a[b[15]]; + + return res; +} + +// NOTE: not tested +inline static uint8x16_t ggml_vqtbl1q_u8(uint8x16_t a, uint8x16_t b) { + uint8x16_t res; + + res[ 0] = a[b[ 0]]; + res[ 1] = a[b[ 1]]; + res[ 2] = a[b[ 2]]; + res[ 3] = a[b[ 3]]; + res[ 4] = a[b[ 4]]; + res[ 5] = a[b[ 5]]; + res[ 6] = a[b[ 6]]; + res[ 7] = a[b[ 7]]; + res[ 8] = a[b[ 8]]; + res[ 9] = a[b[ 9]]; + res[10] = a[b[10]]; + res[11] = a[b[11]]; + res[12] = a[b[12]]; + res[13] = a[b[13]]; + res[14] = a[b[14]]; + res[15] = a[b[15]]; + + return res; +} + +#else + +#define ggml_int16x8x2_t int16x8x2_t +#define ggml_uint8x16x2_t uint8x16x2_t +#define ggml_uint8x16x4_t uint8x16x4_t +#define ggml_int8x16x2_t int8x16x2_t +#define ggml_int8x16x4_t int8x16x4_t + +#define ggml_vld1q_s16_x2 vld1q_s16_x2 +#define ggml_vld1q_u8_x2 vld1q_u8_x2 +#define ggml_vld1q_u8_x4 vld1q_u8_x4 +#define ggml_vld1q_s8_x2 vld1q_s8_x2 +#define ggml_vld1q_s8_x4 vld1q_s8_x4 +#define ggml_vqtbl1q_s8 vqtbl1q_s8 +#define ggml_vqtbl1q_u8 vqtbl1q_u8 + +#endif // !defined(__aarch64__) + +#if !defined(__ARM_FEATURE_DOTPROD) + +inline static int32x4_t ggml_vdotq_s32(int32x4_t acc, int8x16_t a, int8x16_t b) { + const int16x8_t p0 = vmull_s8(vget_low_s8 (a), vget_low_s8 (b)); + const int16x8_t p1 = vmull_s8(vget_high_s8(a), vget_high_s8(b)); + + return vaddq_s32(acc, vaddq_s32(vpaddlq_s16(p0), vpaddlq_s16(p1))); +} + +#else + +#define ggml_vdotq_s32(a, b, c) vdotq_s32(a, b, c) + +#endif // !defined(__ARM_FEATURE_DOTPROD) + +#endif // defined(__ARM_NEON) + +#if defined(__ARM_NEON) && !defined(_MSC_VER) + #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x) #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x) @@ -75,8 +412,6 @@ static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) { #else -typedef uint16_t ggml_fp16_internal_t; - #ifdef __wasm_simd128__ #include #else @@ -221,7 +556,7 @@ static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) { #endif // __F16C__ -#endif // __ARM_NEON +#endif // defined(__ARM_NEON) && (!defined(__MSC_VER) // precomputed f32 table for f16 (256 KB) // defined in ggml.c, initialized in ggml_init() diff --git a/ggml-kompute.cpp b/ggml-kompute.cpp index 407062e6f..9a469821d 100644 --- a/ggml-kompute.cpp +++ b/ggml-kompute.cpp @@ -1427,6 +1427,7 @@ static void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml for (int i = node_start; i < node_end; ++i) { struct ggml_tensor * src0 = gf->nodes[i]->src[0]; struct ggml_tensor * src1 = gf->nodes[i]->src[1]; + struct ggml_tensor * src2 = gf->nodes[i]->src[2]; GGML_UNUSED(src2); struct ggml_tensor * dst = gf->nodes[i]; GGML_ASSERT(dst->data != nullptr); @@ -1559,6 +1560,12 @@ static void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml { float scale; memcpy(&scale, dst->op_params, sizeof(float)); + +#pragma message("TODO: add ggml_vk_soft_max() F16/F32 src1 and src2 support") +#pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5021") + GGML_ASSERT(!src1 || src1t == GGML_TYPE_F32); + GGML_ASSERT(src2 == nullptr); + ggml_vk_soft_max(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, ne01, ne02, ne03, scale); } break; case GGML_OP_DIAG_MASK_INF: diff --git a/ggml-metal.m b/ggml-metal.m index 9cb421988..c6817f01f 100644 --- a/ggml-metal.m +++ b/ggml-metal.m @@ -46,8 +46,10 @@ enum ggml_metal_kernel_type { GGML_METAL_KERNEL_TYPE_GELU_QUICK_4, GGML_METAL_KERNEL_TYPE_SILU, GGML_METAL_KERNEL_TYPE_SILU_4, - GGML_METAL_KERNEL_TYPE_SOFT_MAX, - GGML_METAL_KERNEL_TYPE_SOFT_MAX_4, + GGML_METAL_KERNEL_TYPE_SOFT_MAX_F16, + GGML_METAL_KERNEL_TYPE_SOFT_MAX_F16_4, + GGML_METAL_KERNEL_TYPE_SOFT_MAX_F32, + GGML_METAL_KERNEL_TYPE_SOFT_MAX_F32_4, GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF, GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF_8, GGML_METAL_KERNEL_TYPE_GET_ROWS_F32, @@ -177,6 +179,14 @@ enum ggml_metal_kernel_type { GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC, GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC, GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32, + GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H64, + GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H80, + GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H96, + GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H112, + GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H128, + GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H256, + GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H128, + GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H256, GGML_METAL_KERNEL_TYPE_CPY_F32_F16, GGML_METAL_KERNEL_TYPE_CPY_F32_F32, GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0, @@ -255,11 +265,20 @@ static void ggml_metal_log(enum ggml_log_level level, const char * format, ...){ static void * ggml_metal_host_malloc(size_t n) { void * data = NULL; + +#if TARGET_OS_OSX + kern_return_t err = vm_allocate((vm_map_t) mach_task_self(), (void *) &data, n, VM_FLAGS_ANYWHERE); + if (err != KERN_SUCCESS) { + GGML_METAL_LOG_ERROR("%s: error: vm_allocate failed\n", __func__); + return NULL; + } +#else const int result = posix_memalign((void **) &data, sysconf(_SC_PAGESIZE), n); if (result != 0) { GGML_METAL_LOG_ERROR("%s: error: posix_memalign failed\n", __func__); return NULL; } +#endif return data; } @@ -443,7 +462,7 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) { } /* - GGML_METAL_LOG_INFO("%s: loaded %-32s %16p | th_max = %4d | th_width = %4d\n", __func__, "kernel_"#name, (void *) kernel->pipeline, \ + GGML_METAL_LOG_INFO("%s: loaded %-40s %16p | th_max = %4d | th_width = %4d\n", __func__, "kernel_"#name, (void *) kernel->pipeline, \ (int) kernel->pipeline.maxTotalThreadsPerThreadgroup, \ (int) kernel->pipeline.threadExecutionWidth); \ */ @@ -459,172 +478,182 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) { return NULL; \ } \ } else { \ - GGML_METAL_LOG_WARN("%s: skipping %-32s (not supported)\n", __func__, "kernel_"#name); \ + GGML_METAL_LOG_WARN("%s: skipping %-40s (not supported)\n", __func__, "kernel_"#name); \ } // simd_sum and simd_max requires MTLGPUFamilyApple7 - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD, add, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_ROW, add_row, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL, mul, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_ROW, mul_row, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIV, div, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIV_ROW, div_row, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SCALE, scale, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SCALE_4, scale_4, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CLAMP, clamp, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_TANH, tanh, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RELU, relu, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU, gelu, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_4, gelu_4, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_QUICK, gelu_quick, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_QUICK_4, gelu_quick_4, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SILU, silu, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SILU_4, silu_4, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX, soft_max, ctx->support_simdgroup_reduction); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX_4, soft_max_4, ctx->support_simdgroup_reduction); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF, diag_mask_inf, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF_8, diag_mask_inf_8, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_F32, get_rows_f32, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_F16, get_rows_f16, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_0, get_rows_q4_0, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_1, get_rows_q4_1, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_0, get_rows_q5_0, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_1, get_rows_q5_1, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q8_0, get_rows_q8_0, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q2_K, get_rows_q2_K, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q3_K, get_rows_q3_K, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_K, get_rows_q4_K, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_K, get_rows_q5_K, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q6_K, get_rows_q6_K, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XXS, get_rows_iq2_xxs, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XS, get_rows_iq2_xs, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_XXS, get_rows_iq3_xxs, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_S, get_rows_iq3_s, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_S, get_rows_iq2_s, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_S, get_rows_iq1_s, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_M, get_rows_iq1_m, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL, get_rows_iq4_nl, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS, get_rows_iq4_xs, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_I32, get_rows_i32, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RMS_NORM, rms_norm, ctx->support_simdgroup_reduction); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GROUP_NORM, group_norm, ctx->support_simdgroup_reduction); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_NORM, norm, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F32_F32, mul_mv_f32_f32, ctx->support_simdgroup_reduction); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F16, mul_mv_f16_f16, ctx->support_simdgroup_reduction); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32, mul_mv_f16_f32, ctx->support_simdgroup_reduction); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_1ROW, mul_mv_f16_f32_1row, ctx->support_simdgroup_reduction); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_L4, mul_mv_f16_f32_l4, ctx->support_simdgroup_reduction); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_0_F32, mul_mv_q4_0_f32, ctx->support_simdgroup_reduction); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_1_F32, mul_mv_q4_1_f32, ctx->support_simdgroup_reduction); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_0_F32, mul_mv_q5_0_f32, ctx->support_simdgroup_reduction); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_1_F32, mul_mv_q5_1_f32, ctx->support_simdgroup_reduction); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q8_0_F32, mul_mv_q8_0_f32, ctx->support_simdgroup_reduction); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q2_K_F32, mul_mv_q2_K_f32, ctx->support_simdgroup_reduction); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q3_K_F32, mul_mv_q3_K_f32, ctx->support_simdgroup_reduction); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_K_F32, mul_mv_q4_K_f32, ctx->support_simdgroup_reduction); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_K_F32, mul_mv_q5_K_f32, ctx->support_simdgroup_reduction); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q6_K_F32, mul_mv_q6_K_f32, ctx->support_simdgroup_reduction); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XXS_F32, mul_mv_iq2_xxs_f32, ctx->support_simdgroup_reduction); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XS_F32, mul_mv_iq2_xs_f32, ctx->support_simdgroup_reduction); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_XXS_F32, mul_mv_iq3_xxs_f32, ctx->support_simdgroup_reduction); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_S_F32, mul_mv_iq3_s_f32, ctx->support_simdgroup_reduction); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_S_F32, mul_mv_iq2_s_f32, ctx->support_simdgroup_reduction); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_S_F32, mul_mv_iq1_s_f32, ctx->support_simdgroup_reduction); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_M_F32, mul_mv_iq1_m_f32, ctx->support_simdgroup_reduction); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_NL_F32, mul_mv_iq4_nl_f32, ctx->support_simdgroup_reduction); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_XS_F32, mul_mv_iq4_xs_f32, ctx->support_simdgroup_reduction); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32, mul_mv_id_f32_f32, ctx->support_simdgroup_reduction); - //GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F16, mul_mv_id_f16_f16, ctx->support_simdgroup_reduction); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32, mul_mv_id_f16_f32, ctx->support_simdgroup_reduction); - //GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32_1ROW, mul_mv_id_f16_f32_1row, ctx->support_simdgroup_reduction); - //GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32_L4, mul_mv_id_f16_f32_l4, ctx->support_simdgroup_reduction); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_0_F32, mul_mv_id_q4_0_f32, ctx->support_simdgroup_reduction); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_1_F32, mul_mv_id_q4_1_f32, ctx->support_simdgroup_reduction); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_0_F32, mul_mv_id_q5_0_f32, ctx->support_simdgroup_reduction); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_1_F32, mul_mv_id_q5_1_f32, ctx->support_simdgroup_reduction); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q8_0_F32, mul_mv_id_q8_0_f32, ctx->support_simdgroup_reduction); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q2_K_F32, mul_mv_id_q2_K_f32, ctx->support_simdgroup_reduction); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q3_K_F32, mul_mv_id_q3_K_f32, ctx->support_simdgroup_reduction); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_K_F32, mul_mv_id_q4_K_f32, ctx->support_simdgroup_reduction); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_K_F32, mul_mv_id_q5_K_f32, ctx->support_simdgroup_reduction); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q6_K_F32, mul_mv_id_q6_K_f32, ctx->support_simdgroup_reduction); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XXS_F32, mul_mv_id_iq2_xxs_f32, ctx->support_simdgroup_reduction); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XS_F32, mul_mv_id_iq2_xs_f32, ctx->support_simdgroup_reduction); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_XXS_F32, mul_mv_id_iq3_xxs_f32, ctx->support_simdgroup_reduction); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_S_F32, mul_mv_id_iq3_s_f32, ctx->support_simdgroup_reduction); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_S_F32, mul_mv_id_iq2_s_f32, ctx->support_simdgroup_reduction); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_S_F32, mul_mv_id_iq1_s_f32, ctx->support_simdgroup_reduction); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_M_F32, mul_mv_id_iq1_m_f32, ctx->support_simdgroup_reduction); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32, mul_mv_id_iq4_nl_f32, ctx->support_simdgroup_reduction); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32, mul_mv_id_iq4_xs_f32, ctx->support_simdgroup_reduction); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32, mul_mm_f32_f32, ctx->support_simdgroup_mm); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32, mul_mm_f16_f32, ctx->support_simdgroup_mm); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F32, mul_mm_q4_0_f32, ctx->support_simdgroup_mm); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_1_F32, mul_mm_q4_1_f32, ctx->support_simdgroup_mm); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_0_F32, mul_mm_q5_0_f32, ctx->support_simdgroup_mm); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_1_F32, mul_mm_q5_1_f32, ctx->support_simdgroup_mm); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q8_0_F32, mul_mm_q8_0_f32, ctx->support_simdgroup_mm); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q2_K_F32, mul_mm_q2_K_f32, ctx->support_simdgroup_mm); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q3_K_F32, mul_mm_q3_K_f32, ctx->support_simdgroup_mm); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_K_F32, mul_mm_q4_K_f32, ctx->support_simdgroup_mm); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_K_F32, mul_mm_q5_K_f32, ctx->support_simdgroup_mm); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q6_K_F32, mul_mm_q6_K_f32, ctx->support_simdgroup_mm); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XXS_F32, mul_mm_iq2_xxs_f32, ctx->support_simdgroup_mm); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32, mul_mm_iq2_xs_f32, ctx->support_simdgroup_mm); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_XXS_F32, mul_mm_iq3_xxs_f32, ctx->support_simdgroup_mm); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_S_F32, mul_mm_iq3_s_f32, ctx->support_simdgroup_mm); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_S_F32, mul_mm_iq2_s_f32, ctx->support_simdgroup_mm); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F32, mul_mm_iq1_s_f32, ctx->support_simdgroup_mm); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F32, mul_mm_iq1_m_f32, ctx->support_simdgroup_mm); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32, mul_mm_iq4_nl_f32, ctx->support_simdgroup_mm); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32, mul_mm_iq4_xs_f32, ctx->support_simdgroup_mm); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32, mul_mm_id_f32_f32, ctx->support_simdgroup_mm); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32, mul_mm_id_f16_f32, ctx->support_simdgroup_mm); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F32, mul_mm_id_q4_0_f32, ctx->support_simdgroup_mm); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_1_F32, mul_mm_id_q4_1_f32, ctx->support_simdgroup_mm); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F32, mul_mm_id_q5_0_f32, ctx->support_simdgroup_mm); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_1_F32, mul_mm_id_q5_1_f32, ctx->support_simdgroup_mm); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q8_0_F32, mul_mm_id_q8_0_f32, ctx->support_simdgroup_mm); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q2_K_F32, mul_mm_id_q2_K_f32, ctx->support_simdgroup_mm); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q3_K_F32, mul_mm_id_q3_K_f32, ctx->support_simdgroup_mm); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_K_F32, mul_mm_id_q4_K_f32, ctx->support_simdgroup_mm); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_K_F32, mul_mm_id_q5_K_f32, ctx->support_simdgroup_mm); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F32, mul_mm_id_q6_K_f32, ctx->support_simdgroup_mm); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F32, mul_mm_id_iq2_xxs_f32, ctx->support_simdgroup_mm); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32, mul_mm_id_iq2_xs_f32, ctx->support_simdgroup_mm); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F32, mul_mm_id_iq3_xxs_f32, ctx->support_simdgroup_mm); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_S_F32, mul_mm_id_iq3_s_f32, ctx->support_simdgroup_mm); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_S_F32, mul_mm_id_iq2_s_f32, ctx->support_simdgroup_mm); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F32, mul_mm_id_iq1_s_f32, ctx->support_simdgroup_mm); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F32, mul_mm_id_iq1_m_f32, ctx->support_simdgroup_mm); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32, mul_mm_id_iq4_nl_f32, ctx->support_simdgroup_mm); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32, mul_mm_id_iq4_xs_f32, ctx->support_simdgroup_mm); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_F32, rope_f32, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_F16, rope_f16, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ALIBI_F32, alibi_f32, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_F16, im2col_f16, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_F32, im2col_f32, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_UPSCALE_F32, upscale_f32, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_PAD_F32, pad_f32, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32, timestep_embedding_f32, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARANGE_F32, arange_f32, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC, argsort_f32_i32_asc, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC, argsort_f32_i32_desc, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32, leaky_relu_f32, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_F16, cpy_f32_f16, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_F32, cpy_f32_f32, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0, cpy_f32_q8_0, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_0, cpy_f32_q4_0, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_1, cpy_f32_q4_1, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_0, cpy_f32_q5_0, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_1, cpy_f32_q5_1, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_IQ4_NL, cpy_f32_iq4_nl, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F16_F16, cpy_f16_f16, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F16_F32, cpy_f16_f32, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CONCAT, concat, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SQR, sqr, true); - GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SUM_ROWS, sum_rows, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD, add, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_ROW, add_row, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL, mul, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_ROW, mul_row, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIV, div, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIV_ROW, div_row, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SCALE, scale, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SCALE_4, scale_4, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CLAMP, clamp, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_TANH, tanh, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RELU, relu, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU, gelu, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_4, gelu_4, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_QUICK, gelu_quick, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_QUICK_4, gelu_quick_4, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SILU, silu, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SILU_4, silu_4, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX_F16, soft_max_f16, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX_F16_4, soft_max_f16_4, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX_F32, soft_max_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX_F32_4, soft_max_f32_4, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF, diag_mask_inf, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF_8, diag_mask_inf_8, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_F32, get_rows_f32, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_F16, get_rows_f16, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_0, get_rows_q4_0, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_1, get_rows_q4_1, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_0, get_rows_q5_0, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_1, get_rows_q5_1, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q8_0, get_rows_q8_0, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q2_K, get_rows_q2_K, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q3_K, get_rows_q3_K, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_K, get_rows_q4_K, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_K, get_rows_q5_K, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q6_K, get_rows_q6_K, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XXS, get_rows_iq2_xxs, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XS, get_rows_iq2_xs, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_XXS, get_rows_iq3_xxs, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_S, get_rows_iq3_s, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_S, get_rows_iq2_s, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_S, get_rows_iq1_s, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_M, get_rows_iq1_m, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL, get_rows_iq4_nl, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS, get_rows_iq4_xs, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_I32, get_rows_i32, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RMS_NORM, rms_norm, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GROUP_NORM, group_norm, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_NORM, norm, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F32_F32, mul_mv_f32_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F16, mul_mv_f16_f16, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32, mul_mv_f16_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_1ROW, mul_mv_f16_f32_1row, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_L4, mul_mv_f16_f32_l4, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_0_F32, mul_mv_q4_0_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_1_F32, mul_mv_q4_1_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_0_F32, mul_mv_q5_0_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_1_F32, mul_mv_q5_1_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q8_0_F32, mul_mv_q8_0_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q2_K_F32, mul_mv_q2_K_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q3_K_F32, mul_mv_q3_K_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_K_F32, mul_mv_q4_K_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_K_F32, mul_mv_q5_K_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q6_K_F32, mul_mv_q6_K_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XXS_F32, mul_mv_iq2_xxs_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XS_F32, mul_mv_iq2_xs_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_XXS_F32, mul_mv_iq3_xxs_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_S_F32, mul_mv_iq3_s_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_S_F32, mul_mv_iq2_s_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_S_F32, mul_mv_iq1_s_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_M_F32, mul_mv_iq1_m_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_NL_F32, mul_mv_iq4_nl_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_XS_F32, mul_mv_iq4_xs_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32, mul_mv_id_f32_f32, ctx->support_simdgroup_reduction); + //GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F16, mul_mv_id_f16_f16, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32, mul_mv_id_f16_f32, ctx->support_simdgroup_reduction); + //GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32_1ROW, mul_mv_id_f16_f32_1row, ctx->support_simdgroup_reduction); + //GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32_L4, mul_mv_id_f16_f32_l4, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_0_F32, mul_mv_id_q4_0_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_1_F32, mul_mv_id_q4_1_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_0_F32, mul_mv_id_q5_0_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_1_F32, mul_mv_id_q5_1_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q8_0_F32, mul_mv_id_q8_0_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q2_K_F32, mul_mv_id_q2_K_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q3_K_F32, mul_mv_id_q3_K_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_K_F32, mul_mv_id_q4_K_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_K_F32, mul_mv_id_q5_K_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q6_K_F32, mul_mv_id_q6_K_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XXS_F32, mul_mv_id_iq2_xxs_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XS_F32, mul_mv_id_iq2_xs_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_XXS_F32, mul_mv_id_iq3_xxs_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_S_F32, mul_mv_id_iq3_s_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_S_F32, mul_mv_id_iq2_s_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_S_F32, mul_mv_id_iq1_s_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_M_F32, mul_mv_id_iq1_m_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32, mul_mv_id_iq4_nl_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32, mul_mv_id_iq4_xs_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32, mul_mm_f32_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32, mul_mm_f16_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F32, mul_mm_q4_0_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_1_F32, mul_mm_q4_1_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_0_F32, mul_mm_q5_0_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_1_F32, mul_mm_q5_1_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q8_0_F32, mul_mm_q8_0_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q2_K_F32, mul_mm_q2_K_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q3_K_F32, mul_mm_q3_K_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_K_F32, mul_mm_q4_K_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_K_F32, mul_mm_q5_K_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q6_K_F32, mul_mm_q6_K_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XXS_F32, mul_mm_iq2_xxs_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32, mul_mm_iq2_xs_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_XXS_F32, mul_mm_iq3_xxs_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_S_F32, mul_mm_iq3_s_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_S_F32, mul_mm_iq2_s_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F32, mul_mm_iq1_s_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F32, mul_mm_iq1_m_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32, mul_mm_iq4_nl_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32, mul_mm_iq4_xs_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32, mul_mm_id_f32_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32, mul_mm_id_f16_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F32, mul_mm_id_q4_0_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_1_F32, mul_mm_id_q4_1_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F32, mul_mm_id_q5_0_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_1_F32, mul_mm_id_q5_1_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q8_0_F32, mul_mm_id_q8_0_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q2_K_F32, mul_mm_id_q2_K_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q3_K_F32, mul_mm_id_q3_K_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_K_F32, mul_mm_id_q4_K_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_K_F32, mul_mm_id_q5_K_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F32, mul_mm_id_q6_K_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F32, mul_mm_id_iq2_xxs_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32, mul_mm_id_iq2_xs_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F32, mul_mm_id_iq3_xxs_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_S_F32, mul_mm_id_iq3_s_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_S_F32, mul_mm_id_iq2_s_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F32, mul_mm_id_iq1_s_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F32, mul_mm_id_iq1_m_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32, mul_mm_id_iq4_nl_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32, mul_mm_id_iq4_xs_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_F32, rope_f32, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_F16, rope_f16, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ALIBI_F32, alibi_f32, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_F16, im2col_f16, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_F32, im2col_f32, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_UPSCALE_F32, upscale_f32, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_PAD_F32, pad_f32, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32, timestep_embedding_f32, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARANGE_F32, arange_f32, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC, argsort_f32_i32_asc, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC, argsort_f32_i32_desc, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32, leaky_relu_f32, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H64, flash_attn_ext_f16_h64, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H80, flash_attn_ext_f16_h80, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H96, flash_attn_ext_f16_h96, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H112, flash_attn_ext_f16_h112, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H128, flash_attn_ext_f16_h128, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H256, flash_attn_ext_f16_h256, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H128, flash_attn_ext_vec_f16_h128, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H256, flash_attn_ext_vec_f16_h256, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_F16, cpy_f32_f16, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_F32, cpy_f32_f32, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0, cpy_f32_q8_0, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_0, cpy_f32_q4_0, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_1, cpy_f32_q4_1, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_0, cpy_f32_q5_0, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_1, cpy_f32_q5_1, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_IQ4_NL, cpy_f32_iq4_nl, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F16_F16, cpy_f16_f16, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F16_F32, cpy_f16_f32, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CONCAT, concat, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SQR, sqr, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SUM_ROWS, sum_rows, true); } [metal_library release]; @@ -743,6 +772,7 @@ static bool ggml_metal_supports_op(const struct ggml_metal_context * ctx, const case GGML_OP_TIMESTEP_EMBEDDING: case GGML_OP_ARGSORT: case GGML_OP_LEAKY_RELU: + case GGML_OP_FLASH_ATTN_EXT: return true; case GGML_OP_MUL_MAT: case GGML_OP_MUL_MAT_ID: @@ -782,7 +812,7 @@ static bool ggml_metal_supports_op(const struct ggml_metal_context * ctx, const case GGML_OP_DIAG_MASK_INF: case GGML_OP_GET_ROWS: { - return op->ne[3] == 1; + return op->src[0]->type != GGML_TYPE_BF16 && op->ne[3] == 1; } default: return false; @@ -1326,20 +1356,33 @@ static enum ggml_status ggml_metal_graph_compute( } break; case GGML_OP_SOFT_MAX: { + GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F16 || src1->type == GGML_TYPE_F32); + GGML_ASSERT(!src2 || src2->type == GGML_TYPE_F16 || src2->type == GGML_TYPE_F32); + int nth = 32; // SIMD width id pipeline = nil; + const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16) || (src2 && src2->type == GGML_TYPE_F16); + if (ne00%4 == 0) { while (nth < ne00/4 && nth < 256) { nth *= 2; } - pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SOFT_MAX_4].pipeline; + if (use_f16) { + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SOFT_MAX_F16_4].pipeline; + } else { + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SOFT_MAX_F32_4].pipeline; + } } else { while (nth < ne00 && nth < 1024) { nth *= 2; } - pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SOFT_MAX].pipeline; + if (use_f16) { + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SOFT_MAX_F16].pipeline; + } else { + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SOFT_MAX_F32].pipeline; + } } float scale; @@ -2503,6 +2546,161 @@ static enum ggml_status ggml_metal_graph_compute( [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; + case GGML_OP_FLASH_ATTN_EXT: + { + GGML_ASSERT(ne00 % 4 == 0); + GGML_ASSERT(src0->type == GGML_TYPE_F32); + + struct ggml_tensor * src3 = gf->nodes[i]->src[3]; + + GGML_ASSERT(ggml_are_same_shape(src1, src2)); + GGML_ASSERT(src3); + + size_t offs_src3 = 0; + + id id_src3 = src3 ? ggml_metal_get_buffer(src3, &offs_src3) : nil; + + GGML_ASSERT(!src3 || src3->type == GGML_TYPE_F16); + GGML_ASSERT(!src3 || src3->ne[1] >= GGML_PAD(src0->ne[1], 8) && + "the Flash-Attention Metal kernel requires the mask to be padded to 8 and at least n_queries big"); + + const int64_t ne30 = src3 ? src3->ne[0] : 0; GGML_UNUSED(ne30); + const int64_t ne31 = src3 ? src3->ne[1] : 0; + const int64_t ne32 = src3 ? src3->ne[2] : 0; GGML_UNUSED(ne32); + const int64_t ne33 = src3 ? src3->ne[3] : 0; GGML_UNUSED(ne33); + + const uint64_t nb30 = src3 ? src3->nb[0] : 0; GGML_UNUSED(nb30); + const uint64_t nb31 = src3 ? src3->nb[1] : 0; + const uint64_t nb32 = src3 ? src3->nb[2] : 0; GGML_UNUSED(nb32); + const uint64_t nb33 = src3 ? src3->nb[3] : 0; GGML_UNUSED(nb33); + + const enum ggml_type src2t = src2 ? src2->type : GGML_TYPE_COUNT; GGML_UNUSED(src2t); + + float scale; + memcpy(&scale, dst->op_params, sizeof(float)); + + id pipeline = nil; + + bool use_vec_kernel = false; + + if (ne01 >= 4 || (ne00%128 != 0)) { + switch (ne00) { + case 64: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H64 ].pipeline; break; + case 80: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H80 ].pipeline; break; + case 96: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H96 ].pipeline; break; + case 112: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H112].pipeline; break; + case 128: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H128].pipeline; break; + case 256: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H256].pipeline; break; + default: + { + GGML_METAL_LOG_ERROR("unsupported size: %lld\n", ne00); + GGML_METAL_LOG_ERROR("add template specialization for this size\n"); + GGML_ASSERT(false && "add template specialization for this size"); + } + } + } else { + use_vec_kernel = true; + + switch (ne00) { + case 128: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H128].pipeline; break; + case 256: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H256].pipeline; break; + default: + { + GGML_METAL_LOG_ERROR("unsupported size: %lld\n", ne00); + GGML_METAL_LOG_ERROR("add template specialization for this size\n"); + GGML_ASSERT(false && "add template specialization for this size"); + } + } + } + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; + [encoder setBuffer:id_src2 offset:offs_src2 atIndex:2]; + [encoder setBuffer:id_src3 offset:offs_src3 atIndex:3]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:4]; + [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:5]; + [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:6]; + [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:7]; + [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:8]; + [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:9]; + [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:10]; + [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:11]; + [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:12]; + [encoder setBytes:&ne10 length:sizeof( int64_t) atIndex:13]; + [encoder setBytes:&ne11 length:sizeof( int64_t) atIndex:14]; + [encoder setBytes:&ne12 length:sizeof( int64_t) atIndex:15]; + [encoder setBytes:&ne13 length:sizeof( int64_t) atIndex:16]; + [encoder setBytes:&nb10 length:sizeof(uint64_t) atIndex:17]; + [encoder setBytes:&nb11 length:sizeof(uint64_t) atIndex:18]; + [encoder setBytes:&nb12 length:sizeof(uint64_t) atIndex:19]; + [encoder setBytes:&nb13 length:sizeof(uint64_t) atIndex:20]; + [encoder setBytes:&ne31 length:sizeof( int64_t) atIndex:21]; + [encoder setBytes:&nb31 length:sizeof(uint64_t) atIndex:22]; + [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:23]; + [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:24]; + [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:25]; + [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:26]; + [encoder setBytes:&scale length:sizeof( float) atIndex:27]; + + if (!use_vec_kernel) { + // half8x8 kernel + const int64_t nqptg = 8; // queries per threadgroup !! sync with kernel template arguments !! + const int64_t ncpsg = 32; // cache values per simdgroup !! sync with kernel template arguments !! + + GGML_ASSERT(nqptg <= 32); + GGML_ASSERT(nqptg % 8 == 0); + GGML_ASSERT(ncpsg % 32 == 0); + + int64_t nsgmax = 2; + + while (true) { + const size_t smem = nqptg*(ne00 + 2*nsgmax*(ncpsg + nqptg))*(sizeof(float)/2); + if (smem > ctx->device.maxThreadgroupMemoryLength) { + break; + } + nsgmax *= 2; + } + nsgmax /= 2; + + // simdgroups per threadgroup (a.k.a. warps) + const int64_t nsg = ne01 <= nqptg ? MAX(4, MIN(nsgmax, MIN(ne11/ncpsg, (int64_t) pipeline.maxTotalThreadsPerThreadgroup/32))) : 4; + + const size_t smem = nqptg*(ne00 + 2*nsg*(ncpsg + nqptg))*(sizeof(float)/2); + + //printf("smem: %zu, max: %zu\n", smem, ctx->device.maxThreadgroupMemoryLength); + GGML_ASSERT(smem <= ctx->device.maxThreadgroupMemoryLength); + + [encoder setThreadgroupMemoryLength:GGML_PAD(smem, 16) atIndex:0]; + + [encoder dispatchThreadgroups:MTLSizeMake((ne01 + nqptg - 1)/nqptg, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(32, nsg, 1)]; + } else { + // half1x4 kernel + const int64_t nqptg = 1; // queries per threadgroup !! sync with kernel template arguments !! + const int64_t ncpsg = 32; // cache values per simdgroup !! sync with kernel template arguments !! + + GGML_ASSERT(nqptg <= 32); + GGML_ASSERT(nqptg % 1 == 0); + GGML_ASSERT(ncpsg % 32 == 0); + + // simdgroups per threadgroup (a.k.a. warps) + const int64_t nsgt = MAX(2, MIN(ne11/ncpsg, (int64_t) pipeline.maxTotalThreadsPerThreadgroup/32)); + + int64_t nsg = 1; + while (nsg <= nsgt) { + nsg *= 2; + } + nsg /= 2; + + const size_t smem = (nqptg*(ne00 + 2*nsg*(ncpsg + nqptg)) + nsg*ne00)*(sizeof(float)/2); + + //printf("smem: %zu, max: %zu\n", smem, ctx->device.maxThreadgroupMemoryLength); + GGML_ASSERT(smem <= ctx->device.maxThreadgroupMemoryLength); + [encoder setThreadgroupMemoryLength:GGML_PAD(smem, 16) atIndex:0]; + + [encoder dispatchThreadgroups:MTLSizeMake((ne01 + nqptg - 1)/nqptg, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(32, nsg, 1)]; + } + } break; case GGML_OP_DUP: case GGML_OP_CPY: case GGML_OP_CONT: @@ -2590,6 +2788,11 @@ static enum ggml_status ggml_metal_graph_compute( MTLCommandBufferStatus status = [command_buffer status]; if (status != MTLCommandBufferStatusCompleted) { GGML_METAL_LOG_INFO("%s: command buffer %d failed with status %lu\n", __func__, i, status); + if (status == MTLCommandBufferStatusError) { + NSString * error_code = [command_buffer error].localizedDescription; + GGML_METAL_LOG_INFO("error: %s\n", [error_code UTF8String]); + } + return GGML_STATUS_FAILED; } } @@ -2646,7 +2849,11 @@ GGML_CALL static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_ ggml_backend_metal_free_device(); if (ctx->owned) { +#if TARGET_OS_OSX + vm_deallocate((vm_map_t)mach_task_self(), (vm_address_t)ctx->all_data, ctx->all_size); +#else free(ctx->all_data); +#endif } free(ctx); @@ -2706,10 +2913,13 @@ GGML_CALL static const char * ggml_backend_metal_buffer_type_get_name(ggml_backe UNUSED(buft); } -static void ggml_backend_metal_log_allocated_size(id device) { +static void ggml_backend_metal_log_allocated_size(id device, size_t size_aligned) { +#ifndef GGML_METAL_NDEBUG #if TARGET_OS_OSX || (TARGET_OS_IOS && __clang_major__ >= 15) if (@available(macOS 10.12, iOS 16.0, *)) { - GGML_METAL_LOG_INFO(", (%8.2f / %8.2f)", + GGML_METAL_LOG_INFO("%s: allocated buffer, size = %8.2f MiB, (%8.2f / %8.2f)", + __func__, + size_aligned / 1024.0 / 1024.0, device.currentAllocatedSize / 1024.0 / 1024.0, device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0); @@ -2719,10 +2929,15 @@ static void ggml_backend_metal_log_allocated_size(id device) { GGML_METAL_LOG_INFO("\n"); } } else { - GGML_METAL_LOG_INFO(", (%8.2f)\n", device.currentAllocatedSize / 1024.0 / 1024.0); + GGML_METAL_LOG_INFO("%s: allocated buffer, size = %8.2f MiB, (%8.2f)\n", + __func__, + size_aligned / 1024.0 / 1024.0, + device.currentAllocatedSize / 1024.0 / 1024.0); } +#endif #endif UNUSED(device); + UNUSED(size_aligned); } GGML_CALL static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { @@ -2742,22 +2957,23 @@ GGML_CALL static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buff ctx->owned = true; ctx->n_buffers = 1; - ctx->buffers[0].data = ctx->all_data; - ctx->buffers[0].size = size; - ctx->buffers[0].metal = [device newBufferWithBytesNoCopy:ctx->all_data - length:size_aligned - options:MTLResourceStorageModeShared - deallocator:nil]; + if (ctx->all_data != NULL) { + ctx->buffers[0].data = ctx->all_data; + ctx->buffers[0].size = size; + ctx->buffers[0].metal = [device newBufferWithBytesNoCopy:ctx->all_data + length:size_aligned + options:MTLResourceStorageModeShared + deallocator:nil]; + } - if (ctx->buffers[0].metal == nil) { + if (ctx->all_data == NULL || ctx->buffers[0].metal == nil) { GGML_METAL_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f MiB\n", __func__, size_aligned / 1024.0 / 1024.0); free(ctx); ggml_backend_metal_free_device(); return NULL; } - GGML_METAL_LOG_INFO("%s: allocated buffer, size = %8.2f MiB", __func__, size_aligned / 1024.0 / 1024.0); - ggml_backend_metal_log_allocated_size(device); + //ggml_backend_metal_log_allocated_size(device, size_aligned); return ggml_backend_buffer_init(buft, ggml_backend_metal_buffer_i, ctx, size); } @@ -2844,7 +3060,7 @@ GGML_CALL ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, return false; } - GGML_METAL_LOG_INFO("%s: allocated buffer, size = %8.2f MiB", __func__, size_aligned / 1024.0 / 1024.0); + ggml_backend_metal_log_allocated_size(device, size_aligned); ++ctx->n_buffers; } else { @@ -2867,7 +3083,8 @@ GGML_CALL ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, return false; } - GGML_METAL_LOG_INFO("%s: allocated buffer, size = %8.2f MiB, offs = %12ld", __func__, size_step_aligned / 1024.0 / 1024.0, i); + ggml_backend_metal_log_allocated_size(device, size_step_aligned); + if (i + size_step < size) { GGML_METAL_LOG_INFO("\n"); } @@ -2876,8 +3093,6 @@ GGML_CALL ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, } } - ggml_backend_metal_log_allocated_size(device); - return ggml_backend_buffer_init(ggml_backend_metal_buffer_type(), ggml_backend_metal_buffer_i, ctx, size); } diff --git a/ggml-metal.metal b/ggml-metal.metal index 191880af1..46c7d5039 100644 --- a/ggml-metal.metal +++ b/ggml-metal.metal @@ -352,11 +352,12 @@ kernel void kernel_sum_rows( dst_row[0] = row_sum; } +template kernel void kernel_soft_max( - device const float * src0, - device const float * src1, - device const float * src2, - device float * dst, + device const char * src0, + device const char * src1, + device const char * src2, + device char * dst, constant int64_t & ne00, constant int64_t & ne01, constant int64_t & ne02, @@ -375,10 +376,10 @@ kernel void kernel_soft_max( const int64_t i02 = (tgpig - i03*ne02*ne01) / ne01; const int64_t i01 = (tgpig - i03*ne02*ne01 - i02*ne01); - device const float * psrc0 = src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00; - device const float * pmask = src1 != src0 ? src1 + i01*ne00 : nullptr; - device const float * ppos = src2 != src0 ? src2 : nullptr; - device float * pdst = dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00; + device const float * psrc0 = (device const float *) src0 + (i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00); + device const T * pmask = src1 != src0 ? (device const T *) src1 + i01*ne00 : nullptr; + device const T * ppos = src2 != src0 ? (device const T *) src2 : nullptr; + device float * pdst = (device float *) dst + (i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00); float slope = 0.0f; @@ -456,11 +457,12 @@ kernel void kernel_soft_max( } } +template kernel void kernel_soft_max_4( - device const float * src0, - device const float * src1, - device const float * src2, - device float * dst, + device const char * src0, + device const char * src1, + device const char * src2, + device char * dst, constant int64_t & ne00, constant int64_t & ne01, constant int64_t & ne02, @@ -479,10 +481,10 @@ kernel void kernel_soft_max_4( const int64_t i02 = (tgpig - i03*ne02*ne01) / ne01; const int64_t i01 = (tgpig - i03*ne02*ne01 - i02*ne01); - device const float4 * psrc4 = (device const float4 *)(src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00); - device const float4 * pmask = src1 != src0 ? (device const float4 *)(src1 + i01*ne00) : nullptr; - device const float4 * ppos = src2 != src0 ? (device const float4 *)(src2) : nullptr; - device float4 * pdst4 = (device float4 *)(dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00); + device const float4 * psrc4 = (device const float4 *) src0 + (i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00)/4; + device const T * pmask = src1 != src0 ? (device const T *) src1 + i01*ne00/4 : nullptr; + device const T * ppos = src2 != src0 ? (device const T *) src2 : nullptr; + device float4 * pdst4 = (device float4 *) dst + (i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00)/4; float slope = 0.0f; @@ -499,7 +501,7 @@ kernel void kernel_soft_max_4( float4 lmax4 = -INFINITY; for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) { - lmax4 = fmax(lmax4, psrc4[i00]*scale + (pmask ? pmask[i00] : 0.0f) + (ppos ? slope*ppos[i00] : 0.0f)); + lmax4 = fmax(lmax4, psrc4[i00]*scale + (float4)((pmask ? pmask[i00] : 0.0f) + (ppos ? slope*ppos[i00] : 0.0f))); } const float lmax = MAX(MAX(lmax4[0], lmax4[1]), MAX(lmax4[2], lmax4[3])); @@ -525,7 +527,7 @@ kernel void kernel_soft_max_4( // parallel sum float4 lsum4 = 0.0f; for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) { - const float4 exp_psrc4 = exp((psrc4[i00]*scale + (pmask ? pmask[i00] : 0.0f) + (ppos ? slope*ppos[i00] : 0.0f)) - max_val); + const float4 exp_psrc4 = exp((psrc4[i00]*scale + (float4)((pmask ? pmask[i00] : 0.0f) + (ppos ? slope*ppos[i00] : 0.0f))) - max_val); lsum4 += exp_psrc4; pdst4[i00] = exp_psrc4; } @@ -562,6 +564,14 @@ kernel void kernel_soft_max_4( } } +typedef decltype(kernel_soft_max) kernel_soft_max_t; +typedef decltype(kernel_soft_max_4) kernel_soft_max_4_t; + +template [[host_name("kernel_soft_max_f16")]] kernel kernel_soft_max_t kernel_soft_max; +template [[host_name("kernel_soft_max_f32")]] kernel kernel_soft_max_t kernel_soft_max; +template [[host_name("kernel_soft_max_f16_4")]] kernel kernel_soft_max_4_t kernel_soft_max_4; +template [[host_name("kernel_soft_max_f32_4")]] kernel kernel_soft_max_4_t kernel_soft_max_4; + kernel void kernel_diag_mask_inf( device const float * src0, device float * dst, @@ -2084,6 +2094,632 @@ kernel void kernel_leaky_relu_f32( dst[tpig] = src0[tpig] > 0.0f ? src0[tpig] : src0[tpig] * slope; } +typedef void (flash_attn_ext_f16_t)( + device const char * q, + device const char * k, + device const char * v, + device const char * mask, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne03, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant uint64_t & nb03, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant int64_t & ne13, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant uint64_t & nb13, + constant int64_t & ne31, + constant uint64_t & nb31, + constant int64_t & ne0, + constant int64_t & ne1, + constant int64_t & ne2, + constant int64_t & ne3, + constant float & scale, + threadgroup half * shared, + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]], + ushort tiisg[[thread_index_in_simdgroup]], + ushort sgitg[[simdgroup_index_in_threadgroup]]); + +// ref: https://arxiv.org/pdf/2307.08691.pdf +template // head size, queries per threadgroup, cache items per threadgroup +kernel void kernel_flash_attn_ext_f16( + device const char * q, + device const char * k, + device const char * v, + device const char * mask, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne03, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant uint64_t & nb03, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant int64_t & ne13, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant uint64_t & nb13, + constant int64_t & ne31, + constant uint64_t & nb31, + constant int64_t & ne0, + constant int64_t & ne1, + constant int64_t & ne2, + constant int64_t & ne3, + constant float & scale, + threadgroup half * shared [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]], + ushort tiisg[[thread_index_in_simdgroup]], + ushort sgitg[[simdgroup_index_in_threadgroup]]) { + const short nsg = ntg.y; // number of simdgroups + + const short iq3 = tgpig[2]; + const short iq2 = tgpig[1]; + const short iq1 = tgpig[0]*Q; + + const short D4 = D/4; + const short D8 = D/8; + //const short Q8 = Q/8; + const short NW = N_SIMDWIDTH; + const short SH = (C + Q); // shared memory per simdgroup in (half) + + const short T = D + 2*nsg*SH; // shared memory size per query in (half) + const short TF = T/2; // shared memory size per query in (float) + const short T4 = T/4; // shared memory size per query in (half4) + + threadgroup half * sq = (threadgroup half *) (shared + 0*D); // holds the query data + threadgroup half4 * sq4 = (threadgroup half4 *) (shared + 0*D); // same as above but in half4 + threadgroup float * ss = (threadgroup float *) (shared + 2*sgitg*SH + 1*D); // scratch buffer for attention and diagonal matrix + + // store the result for all queries in local memory in 8x8 matrices (the O matrix from the paper) + simdgroup_half8x8 lo[D8]; + + // load heads from Q to shared memory + for (short j = sgitg; j < Q; j += nsg) { + device const float4 * q4 = (device const float4 *) ((device const char *) q + ((iq1 + j)*nb01 + iq2*nb02 + iq3*nb03)); + + for (short i = tiisg; i < D4; i += NW) { + if (iq1 + j < ne01) { + sq4[j*T4 + i] = (half4) q4[i]; + } else { + sq4[j*T4 + i] = 0.0h; + } + } + } + + // zero out lo + for (short i = 0; i < D8; ++i) { + lo[i] = make_filled_simdgroup_matrix(0.0h); + } + + // zero out shared memory SH + for (short j = 0; j < Q; ++j) { + for (short i = tiisg; i < SH; i += NW) { + ss[j*TF + i] = 0.0f; + } + } + + threadgroup_barrier(mem_flags::mem_threadgroup); + + { + float S[Q] = { [0 ... Q-1] = 0.0h }; + float M[Q] = { [0 ... Q-1] = -FLT_MAX/2 }; + + // assume K and V are same shape + const short ne22 = ne12; + const short ne23 = ne13; + + const uint nb21 = nb11; + const uint nb22 = nb12; + const uint nb23 = nb13; + + // broadcast + const short rk2 = ne02/ne12; + const short rk3 = ne03/ne13; + + const short rv2 = ne02/ne22; + const short rv3 = ne03/ne23; + + // k indices + const short ik2 = iq2/rk2; + const short ik3 = iq3/rk3; + + // v indices + const short iv2 = iq2/rv2; + const short iv3 = iq3/rv3; + + // load the queries from shared memory into local memory + simdgroup_half8x8 mq[D8]; + + for (short i = 0; i < D8; ++i) { + simdgroup_load(mq[i], sq + i*8, T); + } + + // pointer to the mask + device const half * mp = (device const half *) (mask + iq1*nb31); + + // prepare diagonal scale matrix + simdgroup_float8x8 mscale(scale); + + // loop over the KV cache + // each simdgroup handles blocks of Q rows and C columns + for (int ic0 = 0; ic0 < ne11; ic0 += C*nsg) { + const int ic = ic0 + C*sgitg; + if (ic >= ne11) { + break; + } + + // Q*K^T + { + for (short cc = 0; cc < C/8; ++cc) { + simdgroup_float8x8 mqk = make_filled_simdgroup_matrix(0.h); + + device const half * pk = (device const half *) ((device const char *) k + ((ic + 8*cc)*nb11 + ik2*nb12 + ik3*nb13)); + + for (short i = 0; i < D8; ++i) { + simdgroup_half8x8 mk; + simdgroup_load(mk, pk + i*8, nb11/sizeof(half), 0, true); // transpose + + simdgroup_multiply_accumulate(mqk, mq[i], mk, mqk); + } + + // mqk = mqk*scale + mask + simdgroup_half8x8 mm; + simdgroup_load(mm, mp + ic + 8*cc, nb31/sizeof(half), 0, false); + simdgroup_multiply_accumulate(mqk, mqk, mscale, mm); + + simdgroup_store(mqk, ss + 8*cc, TF, 0, false); + } + } + + // used to detect blocks full of -INF + float smax = -INFINITY; + + // online softmax + { + float ms[Q]; + + for (short j = 0; j < Q; ++j) { + const short p = tiisg; + + const float m = M[j]; + const float s = ss[j*TF + p]; + + smax = simd_max(max(smax, s)); + M[j] = simd_max(max(M[j], s)); + + ms[j] = exp(m - M[j]); + const float vs = exp(s - M[j]); + + S[j] = S[j]*ms[j] + simd_sum(vs); + + // the P matrix from the paper (Q rows, C columns) + ss[j*TF + p] = vs; + } + + // create a QxQ diagonal matrix for rescaling the output + if (tiisg < Q) { + ss[tiisg*TF + C + tiisg] = ms[tiisg]; + } + } + + // skip -INF blocks + if (smax == -INFINITY) { + continue; + } + + // O = diag(ms)*O + { + simdgroup_float8x8 mm; + simdgroup_load(mm, ss + C, TF, 0, false); + + for (short i = 0; i < D8; ++i) { + simdgroup_multiply(lo[i], mm, lo[i]); + } + } + + // O = O + (Q*K^T)*V + { + for (short cc = 0; cc < C/8; ++cc) { + device const half * pv = (device const half *) ((device const char *) v + ((ic + 8*cc)*nb21 + iv2*nb22 + iv3*nb23)); + + for (short i = 0; i < D8; ++i) { + simdgroup_half8x8 mk; + simdgroup_load(mk, pv + i*8, nb21/sizeof(half), 0, false); + + simdgroup_float8x8 mv; + simdgroup_load(mv, ss + 8*cc, TF, 0, false); + + simdgroup_multiply_accumulate(lo[i], mv, mk, lo[i]); + } + } + } + } + + // these are needed for reducing the results from the simdgroups (reuse the ss buffer) + for (short j = 0; j < Q; ++j) { + if (tiisg == 0) { + ss[j*TF + 0] = S[j]; + ss[j*TF + 1] = M[j]; + } + } + } + + // reduce the warps sequentially + for (short sg = 1; sg < nsg; ++sg) { + float S = { 0.0h }; + float M = { -FLT_MAX/2 }; + + threadgroup_barrier(mem_flags::mem_threadgroup); + + // each simdgroup stores its output to shared memory, reusing sq + if (sgitg == sg) { + for (short i = 0; i < D8; ++i) { + simdgroup_store(lo[i], sq + i*8, T, 0, false); + } + } + + threadgroup_barrier(mem_flags::mem_threadgroup); + + // the first simdgroup accumulates the results from the other simdgroups + if (sgitg == 0) { + for (short j = 0; j < Q; ++j) { + const float S0 = ss[j*TF + 0]; + const float S1 = ss[j*TF + sg*SH + 0]; + + const float M0 = ss[j*TF + 1]; + const float M1 = ss[j*TF + sg*SH + 1]; + + M = max(M0, M1); + + const float ms0 = exp(M0 - M); + const float ms1 = exp(M1 - M); + + S = S0*ms0 + S1*ms1; + + if (tiisg == 0) { + ss[j*TF + 0] = S; + ss[j*TF + 1] = M; + + ss[j*TF + C + j ] = ms0; + ss[j*TF + C + j + sg*SH] = ms1; + } + } + + // O_0 = diag(ms0)*O_0 + diag(ms1)*O_1 + { + simdgroup_half8x8 t; + simdgroup_float8x8 ms0; + simdgroup_float8x8 ms1; + + simdgroup_load(ms0, ss + C, TF, 0, false); + simdgroup_load(ms1, ss + C + sg*SH, TF, 0, false); + + for (short i = 0; i < D8; ++i) { + simdgroup_load (t, sq + i*8, T, 0, false); + simdgroup_multiply(t, ms1, t); + + simdgroup_multiply_accumulate(lo[i], ms0, lo[i], t); + } + } + } + } + + // store result to shared memory (reuse sq) + if (sgitg == 0) { + for (short i = 0; i < D8; ++i) { + simdgroup_store(lo[i], sq + i*8, T, 0, false); + } + } + + device float4 * dst4 = (device float4 *) dst; + + // final rescale with 1/S and store to global memory + if (sgitg == 0) { + for (short j = 0; j < Q && iq1 + j < ne01; ++j) { + const float S = ss[j*TF + 0]; + + for (short i = tiisg; i < D4; i += NW) { + dst4[(iq3*ne2*ne1 + iq2 + (iq1 + j)*ne1)*D4 + i] = (float4) sq4[j*T4 + i]/S; + } + } + } +} + +template [[host_name("kernel_flash_attn_ext_f16_h64" )]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_f16<64>; +template [[host_name("kernel_flash_attn_ext_f16_h80" )]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_f16<80>; +template [[host_name("kernel_flash_attn_ext_f16_h96" )]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_f16<96>; +template [[host_name("kernel_flash_attn_ext_f16_h112")]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_f16<112>; +template [[host_name("kernel_flash_attn_ext_f16_h128")]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_f16<128>; +template [[host_name("kernel_flash_attn_ext_f16_h256")]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_f16<256>; + +template // head size, queries per threadgroup, cache items per threadgroup +kernel void kernel_flash_attn_ext_vec_f16( + device const char * q, + device const char * k, + device const char * v, + device const char * mask, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne03, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant uint64_t & nb03, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant int64_t & ne13, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant uint64_t & nb13, + constant int64_t & ne31, + constant uint64_t & nb31, + constant int64_t & ne0, + constant int64_t & ne1, + constant int64_t & ne2, + constant int64_t & ne3, + constant float & scale, + threadgroup half * shared [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]], + ushort tiisg[[thread_index_in_simdgroup]], + ushort sgitg[[simdgroup_index_in_threadgroup]]) { + const short nsg = ntg.y; // number of simdgroups + + const short iq3 = tgpig[2]; + const short iq2 = tgpig[1]; + const short iq1 = tgpig[0]; + + const short D4 = D/4; + const short NW = N_SIMDWIDTH; + const short SH = (C + Q); // shared memory per simdgroup in (half) + + const short T = D + 2*nsg*SH; // shared memory size per query in (half) + + //threadgroup half * sq = (threadgroup half *) (shared + 0*D); // holds the query data + threadgroup half4 * sq4 = (threadgroup half4 *) (shared + 0*D); // same as above but in half4 + threadgroup float * ss = (threadgroup float *) (shared + 2*sgitg*SH + 1*D); // scratch buffer for attention and diagonal matrix + threadgroup float4 * ss4 = (threadgroup float4 *) (shared + 2*sgitg*SH + 1*D); // same as above but in half4 + threadgroup half4 * sr4 = (threadgroup half4 *) (shared + sgitg*D + 1*T); // scratch buffer for the results + + // store the result for all queries in local memory in 8x8 matrices (the O matrix from the paper) + half4 lo[D4/NW]; + + // load heads from Q to shared memory + device const float4 * q4 = (device const float4 *) ((device const char *) q + (iq1*nb01 + iq2*nb02 + iq3*nb03)); + + for (short i = tiisg; i < D4; i += NW) { + if (iq1 < ne01) { + sq4[i] = (half4) q4[i]; + } else { + sq4[i] = 0.0h; + } + } + + // zero out lo + for (short i = tiisg; i < D4; i += NW) { + lo[i/NW] = 0.0h; + } + + // zero out shared memory SH + for (short i = tiisg; i < SH/4; i += NW) { + ss4[i] = 0.0h; + } + + threadgroup_barrier(mem_flags::mem_threadgroup); + + { + float S = { 0.0h }; + float M = { -FLT_MAX/2 }; + + // assume K and V are same shape + const short ne22 = ne12; + const short ne23 = ne13; + + const uint nb21 = nb11; + const uint nb22 = nb12; + const uint nb23 = nb13; + + // broadcast + const short rk2 = ne02/ne12; + const short rk3 = ne03/ne13; + + const short rv2 = ne02/ne22; + const short rv3 = ne03/ne23; + + // k indices + const short ik2 = iq2 / rk2; + const short ik3 = iq3 / rk3; + + // v indices + const short iv2 = iq2 / rv2; + const short iv3 = iq3 / rv3; + + // load the queries from shared memory into local memory + half4 mq[D4]; + + for (short ii = 0; ii < D4; ii += NW) { + short i = ii + tiisg; + mq[i] = sq4[i]; + } + + // pointer to the mask + device const half4 * mp4 = (device const half4 *) (mask + iq1*nb31); + + // loop over the KV cache + // each simdgroup handles blocks of Q rows and C columns + for (int ic0 = 0; ic0 < ne11; ic0 += C*nsg) { + const int ic = ic0 + C*sgitg; + if (ic >= ne11) { + break; + } + + // Q*K^T + { +#pragma unroll + for (short cc = 0; cc < C/4; ++cc) { + float4 mqk = { 0.0h }; + + device const half4 * pk4 = (device const half4 *) ((device const char *) k + ((ic + 4*cc)*nb11 + ik2*nb12 + ik3*nb13)); + +#pragma unroll + for (short ii = 0; ii < D4; ii += NW) { + const short i = ii + tiisg; + + half4x4 mk; + mk[0] = pk4[i + 0*(nb11/8)]; + mk[1] = pk4[i + 1*(nb11/8)]; + mk[2] = pk4[i + 2*(nb11/8)]; + mk[3] = pk4[i + 3*(nb11/8)]; + + mqk += (float4) (mq[i] * mk); + } + + // reduce the results from the threads in the simdgroup + mqk += simd_shuffle_down(mqk, 16); + mqk += simd_shuffle_down(mqk, 8); + mqk += simd_shuffle_down(mqk, 4); + mqk += simd_shuffle_down(mqk, 2); + mqk += simd_shuffle_down(mqk, 1); + + // mqk = mqk*scale + mask + if (tiisg == 0) { + float4 mm = (float4) mp4[ic/4 + cc]; + mqk = mqk*scale + mm; + + ss4[cc] = mqk; + } + } + } + + // online softmax + { + const short p = tiisg; + + const float m = M; + const float s = ss[p]; + + M = simd_max(max(M, s)); + + const float ms = exp(m - M); + const float vs = exp(s - M); + + S = S*ms + simd_sum(vs); + + // the P matrix from the paper (Q rows, C columns) + ss[p] = vs; + + // O = diag(ms)*O +#pragma unroll + for (short ii = 0; ii < D4; ii += NW) { + const short i = ii + tiisg; + lo[i/NW] *= ms; + } + } + + // O = O + (Q*K^T)*V + { +#pragma unroll + for (short cc = 0; cc < C/4; ++cc) { + device const half4 * pv4 = (device const half4 *) ((device const char *) v + ((ic + 4*cc)*nb21 + iv2*nb22 + iv3*nb23)); + +#pragma unroll + for (short ii = 0; ii < D4; ii += NW) { + const short i = ii + tiisg; + + lo[i/NW] += pv4[i + 0*(nb21/8)] * ss[4*cc + 0]; + lo[i/NW] += pv4[i + 1*(nb21/8)] * ss[4*cc + 1]; + lo[i/NW] += pv4[i + 2*(nb21/8)] * ss[4*cc + 2]; + lo[i/NW] += pv4[i + 3*(nb21/8)] * ss[4*cc + 3]; + } + } + } + + } + + // these are needed for reducing the results from the simdgroups (reuse the ss buffer) + if (tiisg == 0) { + ss[0] = S; + ss[1] = M; + } + } + + // store results to shared memory + for (short ii = 0; ii < D4; ii += NW) { + short i = ii + tiisg; + sr4[i] = lo[ii/NW]; + } + + threadgroup_barrier(mem_flags::mem_threadgroup); + + // parallel reduce + for (short r = nsg/2; r > 0; r >>= 1) { + if (sgitg < r) { + const float S0 = ss[ 0]; + const float S1 = ss[r*SH + 0]; + + const float M0 = ss[ 1]; + const float M1 = ss[r*SH + 1]; + + const float M = max(M0, M1); + + const float ms0 = exp(M0 - M); + const float ms1 = exp(M1 - M); + + const float S = S0*ms0 + S1*ms1; + + if (tiisg == 0) { + ss[0] = S; + ss[1] = M; + } + + // O_0 = diag(ms0)*O_0 + diag(ms1)*O_1 + for (short ii = 0; ii < D4; ii += NW) { + short i = ii + tiisg; + sr4[i] = sr4[i]*ms0 + sr4[i + r*D4]*ms1; + } + } + + threadgroup_barrier(mem_flags::mem_threadgroup); + } + + device float4 * dst4 = (device float4 *) dst; + + // final rescale with 1/S and store to global memory + if (sgitg == 0) { + const float S = ss[0]; + + for (short ii = 0; ii < D4; ii += NW) { + short i = ii + tiisg; + dst4[(iq3*ne2*ne1 + iq2 + (iq1)*ne1)*D4 + i] = (float4) sr4[i]/S; + } + } +} + +template [[host_name("kernel_flash_attn_ext_vec_f16_h128")]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_vec_f16<128>; +template [[host_name("kernel_flash_attn_ext_vec_f16_h256")]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_vec_f16<256>; + kernel void kernel_cpy_f16_f16( device const half * src0, device half * dst, diff --git a/ggml-quants.c b/ggml-quants.c index 32360a1f1..9883b6f8c 100644 --- a/ggml-quants.c +++ b/ggml-quants.c @@ -14,47 +14,6 @@ #include // for qsort #include // for GGML_ASSERT -#ifdef __ARM_NEON - -// if YCM cannot find , make a symbolic link to it, for example: -// -// $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/ -// -#include - -#else - -#ifdef __wasm_simd128__ -#include -#else -#if defined(__POWER9_VECTOR__) || defined(__powerpc64__) -#include -#undef bool -#define bool _Bool -#else -#if defined(_MSC_VER) || defined(__MINGW32__) -#include -#else -#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__) -#if !defined(__riscv) -#include -#endif -#endif -#endif -#endif -#endif -#endif - -#ifdef __riscv_v_intrinsic -#include -#endif - -#undef MIN -#undef MAX - -#define MIN(a, b) ((a) < (b) ? (a) : (b)) -#define MAX(a, b) ((a) > (b) ? (a) : (b)) - #define UNUSED GGML_UNUSED // some compilers don't provide _mm256_set_m128i, e.g. gcc 7 @@ -276,258 +235,6 @@ static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 #endif // __AVX__ || __AVX2__ || __AVX512F__ #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) -#if defined(__ARM_NEON) - -#ifdef _MSC_VER - -#define ggml_vld1q_u32(w,x,y,z) { ((w) + ((uint64_t)(x) << 32)), ((y) + ((uint64_t)(z) << 32)) } - -#else - -#define ggml_vld1q_u32(w,x,y,z) { (w), (x), (y), (z) } - -#endif - -#if !defined(__aarch64__) - -// 64-bit compatibility - -// vaddvq_s16 -// vpaddq_s16 -// vpaddq_s32 -// vaddvq_s32 -// vaddvq_f32 -// vmaxvq_f32 -// vcvtnq_s32_f32 -// vzip1_u8 -// vzip2_u8 - -inline static int32_t vaddvq_s16(int16x8_t v) { - return - (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) + - (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) + - (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) + - (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7); -} - -inline static int16x8_t vpaddq_s16(int16x8_t a, int16x8_t b) { - int16x4_t a0 = vpadd_s16(vget_low_s16(a), vget_high_s16(a)); - int16x4_t b0 = vpadd_s16(vget_low_s16(b), vget_high_s16(b)); - return vcombine_s16(a0, b0); -} - -inline static int32x4_t vpaddq_s32(int32x4_t a, int32x4_t b) { - int32x2_t a0 = vpadd_s32(vget_low_s32(a), vget_high_s32(a)); - int32x2_t b0 = vpadd_s32(vget_low_s32(b), vget_high_s32(b)); - return vcombine_s32(a0, b0); -} - -inline static int32_t vaddvq_s32(int32x4_t v) { - return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3); -} - -inline static float vaddvq_f32(float32x4_t v) { - return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3); -} - -inline static float vmaxvq_f32(float32x4_t v) { - return - MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)), - MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3))); -} - -inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) { - int32x4_t res; - - res[0] = roundf(vgetq_lane_f32(v, 0)); - res[1] = roundf(vgetq_lane_f32(v, 1)); - res[2] = roundf(vgetq_lane_f32(v, 2)); - res[3] = roundf(vgetq_lane_f32(v, 3)); - - return res; -} - -inline static uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) { - uint8x8_t res; - - res[0] = a[0]; res[1] = b[0]; - res[2] = a[1]; res[3] = b[1]; - res[4] = a[2]; res[5] = b[2]; - res[6] = a[3]; res[7] = b[3]; - - return res; -} - -inline static uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) { - uint8x8_t res; - - res[0] = a[4]; res[1] = b[4]; - res[2] = a[5]; res[3] = b[5]; - res[4] = a[6]; res[5] = b[6]; - res[6] = a[7]; res[7] = b[7]; - - return res; -} - -// vld1q_s16_x2 -// vld1q_u8_x2 -// vld1q_u8_x4 -// vld1q_s8_x2 -// vld1q_s8_x4 -// TODO: double-check these work correctly - -typedef struct ggml_int16x8x2_t { - int16x8_t val[2]; -} ggml_int16x8x2_t; - -inline static ggml_int16x8x2_t ggml_vld1q_s16_x2(const int16_t * ptr) { - ggml_int16x8x2_t res; - - res.val[0] = vld1q_s16(ptr + 0); - res.val[1] = vld1q_s16(ptr + 8); - - return res; -} - -typedef struct ggml_uint8x16x2_t { - uint8x16_t val[2]; -} ggml_uint8x16x2_t; - -inline static ggml_uint8x16x2_t ggml_vld1q_u8_x2(const uint8_t * ptr) { - ggml_uint8x16x2_t res; - - res.val[0] = vld1q_u8(ptr + 0); - res.val[1] = vld1q_u8(ptr + 16); - - return res; -} - -typedef struct ggml_uint8x16x4_t { - uint8x16_t val[4]; -} ggml_uint8x16x4_t; - -inline static ggml_uint8x16x4_t ggml_vld1q_u8_x4(const uint8_t * ptr) { - ggml_uint8x16x4_t res; - - res.val[0] = vld1q_u8(ptr + 0); - res.val[1] = vld1q_u8(ptr + 16); - res.val[2] = vld1q_u8(ptr + 32); - res.val[3] = vld1q_u8(ptr + 48); - - return res; -} - -typedef struct ggml_int8x16x2_t { - int8x16_t val[2]; -} ggml_int8x16x2_t; - -inline static ggml_int8x16x2_t ggml_vld1q_s8_x2(const int8_t * ptr) { - ggml_int8x16x2_t res; - - res.val[0] = vld1q_s8(ptr + 0); - res.val[1] = vld1q_s8(ptr + 16); - - return res; -} - -typedef struct ggml_int8x16x4_t { - int8x16_t val[4]; -} ggml_int8x16x4_t; - -inline static ggml_int8x16x4_t ggml_vld1q_s8_x4(const int8_t * ptr) { - ggml_int8x16x4_t res; - - res.val[0] = vld1q_s8(ptr + 0); - res.val[1] = vld1q_s8(ptr + 16); - res.val[2] = vld1q_s8(ptr + 32); - res.val[3] = vld1q_s8(ptr + 48); - - return res; -} - -// NOTE: not tested -inline static int8x16_t ggml_vqtbl1q_s8(int8x16_t a, uint8x16_t b) { - int8x16_t res; - - res[ 0] = a[b[ 0]]; - res[ 1] = a[b[ 1]]; - res[ 2] = a[b[ 2]]; - res[ 3] = a[b[ 3]]; - res[ 4] = a[b[ 4]]; - res[ 5] = a[b[ 5]]; - res[ 6] = a[b[ 6]]; - res[ 7] = a[b[ 7]]; - res[ 8] = a[b[ 8]]; - res[ 9] = a[b[ 9]]; - res[10] = a[b[10]]; - res[11] = a[b[11]]; - res[12] = a[b[12]]; - res[13] = a[b[13]]; - res[14] = a[b[14]]; - res[15] = a[b[15]]; - - return res; -} - -// NOTE: not tested -inline static uint8x16_t ggml_vqtbl1q_u8(uint8x16_t a, uint8x16_t b) { - uint8x16_t res; - - res[ 0] = a[b[ 0]]; - res[ 1] = a[b[ 1]]; - res[ 2] = a[b[ 2]]; - res[ 3] = a[b[ 3]]; - res[ 4] = a[b[ 4]]; - res[ 5] = a[b[ 5]]; - res[ 6] = a[b[ 6]]; - res[ 7] = a[b[ 7]]; - res[ 8] = a[b[ 8]]; - res[ 9] = a[b[ 9]]; - res[10] = a[b[10]]; - res[11] = a[b[11]]; - res[12] = a[b[12]]; - res[13] = a[b[13]]; - res[14] = a[b[14]]; - res[15] = a[b[15]]; - - return res; -} - -#else - -#define ggml_int16x8x2_t int16x8x2_t -#define ggml_uint8x16x2_t uint8x16x2_t -#define ggml_uint8x16x4_t uint8x16x4_t -#define ggml_int8x16x2_t int8x16x2_t -#define ggml_int8x16x4_t int8x16x4_t - -#define ggml_vld1q_s16_x2 vld1q_s16_x2 -#define ggml_vld1q_u8_x2 vld1q_u8_x2 -#define ggml_vld1q_u8_x4 vld1q_u8_x4 -#define ggml_vld1q_s8_x2 vld1q_s8_x2 -#define ggml_vld1q_s8_x4 vld1q_s8_x4 -#define ggml_vqtbl1q_s8 vqtbl1q_s8 -#define ggml_vqtbl1q_u8 vqtbl1q_u8 - -#endif - -#if !defined(__ARM_FEATURE_DOTPROD) - -inline static int32x4_t ggml_vdotq_s32(int32x4_t acc, int8x16_t a, int8x16_t b) { - const int16x8_t p0 = vmull_s8(vget_low_s8 (a), vget_low_s8 (b)); - const int16x8_t p1 = vmull_s8(vget_high_s8(a), vget_high_s8(b)); - - return vaddq_s32(acc, vaddq_s32(vpaddlq_s16(p0), vpaddlq_s16(p1))); -} - -#else - -#define ggml_vdotq_s32(a, b, c) vdotq_s32(a, b, c) - -#endif - -#endif - #if defined(__ARM_NEON) || defined(__wasm_simd128__) #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s) @@ -12676,3 +12383,305 @@ void quantize_row_iq2_s(const float * restrict x, void * restrict vy, int64_t k) block_iq2_s * restrict y = vy; quantize_row_iq2_s_reference(x, y, k); } + +static bool validate_float(float f, size_t i) { + if (isinf(f)) { + fprintf(stderr, "ggml_validate_row_data: found inf value at block %zu\n", i); + return false; + } + + if (isnan(f)) { + fprintf(stderr, "ggml_validate_row_data: found nan value at block %zu\n", i); + return false; + } + + return true; +} + +static bool isinf_fp16(ggml_fp16_t f) { + return (f & 0x7c00) == 0x7c00 && (f & 0x03ff) == 0; +} + +static bool isnan_fp16(ggml_fp16_t f) { + return (f & 0x7c00) == 0x7c00 && (f & 0x03ff) != 0; +} + +static bool validate_fp16(ggml_fp16_t f, size_t i) { + if (isinf_fp16(f)) { + fprintf(stderr, "ggml_validate_row_data: found inf value at block %zu\n", i); + return false; + } + + if (isnan_fp16(f)) { + fprintf(stderr, "ggml_validate_row_data: found nan value at block %zu\n", i); + return false; + } + + return true; +} + +#define VALIDATE_ROW_DATA_D_F16_IMPL(type, data, nb) \ + const type * q = (const type *) (data); \ + for (size_t i = 0; i < (nb); ++i) { \ + if (!validate_fp16(q[i].d, i)) { \ + return false; \ + } \ + } + +#define VALIDATE_ROW_DATA_DM_F16_IMPL(type, data, nb, d, m) \ + const type * q = (const type *) (data); \ + for (size_t i = 0; i < (nb); ++i) { \ + if (!validate_fp16(q[i].d, i) || !validate_fp16(q[i].m, i)) { \ + return false; \ + } \ + } + +bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbytes) { + if (type < 0 || type >= GGML_TYPE_COUNT) { + fprintf(stderr, "%s: invalid type %d\n", __func__, type); + return false; + } + + if (nbytes % ggml_type_size(type) != 0) { + fprintf(stderr, "%s: invalid size %zu for type %d\n", __func__, nbytes, type); + return false; + } + + const size_t nb = nbytes/ggml_type_size(type); + + switch (type) { + case GGML_TYPE_BF16: + { + int nans = 0; + int infs = 0; + const unsigned short * f = (const unsigned short *) data; + for (size_t i = 0; i < nb; ++i) { + nans += (f[i] & 0x7fff) > 0x7f80; + infs += (f[i] & 0x7fff) == 0x7f80; + } + if (nans) { + fprintf(stderr, "%s: found %d NaNs in row of %zu BF16 values\n", __func__, nans, nb); + return false; + } + if (infs) { + fprintf(stderr, "%s: found %d infinities in row of %zu BF16 values\n", __func__, infs, nb); + return false; + } + } break; + case GGML_TYPE_F16: + { + const ggml_fp16_t * f = (const ggml_fp16_t *) data; + size_t i = 0; +#if defined(__AVX2__) + for (; i + 15 < nb; i += 16) { + __m256i v = _mm256_loadu_si256((const __m256i *)(f + i)); + __m256i vexp = _mm256_and_si256(v, _mm256_set1_epi16(0x7c00)); + __m256i cmp = _mm256_cmpeq_epi16(vexp, _mm256_set1_epi16(0x7c00)); + int mask = _mm256_movemask_epi8(cmp); + if (mask) { + for (size_t j = 0; j < 16; ++j) { + if (!validate_fp16(f[i + j], i + j)) { + return false; + } + } + GGML_UNREACHABLE(); + } + } +#elif defined(__ARM_NEON) + for (; i + 7 < nb; i += 8) { + uint16x8_t v = vld1q_u16(f + i); + uint16x8_t vexp = vandq_u16(v, vdupq_n_u16(0x7c00)); + uint16x8_t cmp = vceqq_u16(vexp, vdupq_n_u16(0x7c00)); + uint64_t mask = vget_lane_u64(vreinterpret_u64_u8(vshrn_n_u16(cmp, 4)), 0); + if (mask) { + for (size_t j = 0; j < 8; ++j) { + if (!validate_fp16(f[i + j], i + j)) { + return false; + } + } + GGML_UNREACHABLE(); + } + } +#endif + for (; i < nb; ++i) { + if (!validate_fp16(f[i], i)) { + return false; + } + } + } break; + case GGML_TYPE_F32: + { + const float * f = (const float *) data; + size_t i = 0; +#if defined(__AVX2__) + for (; i + 7 < nb; i += 8) { + __m256i v = _mm256_loadu_si256((const __m256i *)(f + i)); + __m256i vexp = _mm256_and_si256(v, _mm256_set1_epi32(0x7f800000)); + __m256i cmp = _mm256_cmpeq_epi32(vexp, _mm256_set1_epi32(0x7f800000)); + int mask = _mm256_movemask_epi8(cmp); + if (mask) { + for (size_t j = 0; j < 8; ++j) { + if (!validate_float(f[i + j], i + j)) { + return false; + } + } + GGML_UNREACHABLE(); + } + } +#elif defined(__ARM_NEON) + for (; i + 3 < nb; i += 4) { + uint32x4_t v = vld1q_u32((const uint32_t *)f + i); + uint32x4_t vexp = vandq_u32(v, vdupq_n_u32(0x7f800000)); + uint32x4_t cmp = vceqq_u32(vexp, vdupq_n_u32(0x7f800000)); + uint64_t mask = vget_lane_u64(vreinterpret_u64_u16(vshrn_n_u32(cmp, 8)), 0); + if (mask) { + for (size_t j = 0; j < 4; ++j) { + if (!validate_float(f[i + j], i + j)) { + return false; + } + } + GGML_UNREACHABLE(); + } + } +#endif + for (; i < nb; ++i) { + if (!validate_float(f[i], i)) { + return false; + } + } + } break; + case GGML_TYPE_F64: + { + const double * f = (const double *) data; + for (size_t i = 0; i < nb; ++i) { + if (!validate_float(f[i], i)) { + return false; + } + } + } break; + case GGML_TYPE_Q4_0: + { + VALIDATE_ROW_DATA_D_F16_IMPL(block_q4_0, data, nb); + } break; + case GGML_TYPE_Q4_1: + { + VALIDATE_ROW_DATA_DM_F16_IMPL(block_q4_1, data, nb, d, m); + } break; + case GGML_TYPE_Q5_0: + { + VALIDATE_ROW_DATA_D_F16_IMPL(block_q5_0, data, nb); + } break; + case GGML_TYPE_Q5_1: + { + VALIDATE_ROW_DATA_DM_F16_IMPL(block_q5_1, data, nb, d, m); + } break; + case GGML_TYPE_Q8_0: + { + VALIDATE_ROW_DATA_D_F16_IMPL(block_q8_0, data, nb); + } break; + case GGML_TYPE_Q2_K: + { + VALIDATE_ROW_DATA_DM_F16_IMPL(block_q2_K, data, nb, d, dmin); + } break; + case GGML_TYPE_Q3_K: + { + VALIDATE_ROW_DATA_D_F16_IMPL(block_q3_K, data, nb); + } break; + case GGML_TYPE_Q4_K: + { + #ifdef GGML_QKK_64 + VALIDATE_ROW_DATA_DM_F16_IMPL(block_q4_K, data, nb, d[0], d[1]); + #else + VALIDATE_ROW_DATA_DM_F16_IMPL(block_q4_K, data, nb, d, dmin); + #endif + } break; + case GGML_TYPE_Q5_K: + { + #ifdef GGML_QKK_64 + VALIDATE_ROW_DATA_D_F16_IMPL(block_q5_K, data, nb); + #else + VALIDATE_ROW_DATA_DM_F16_IMPL(block_q5_K, data, nb, d, dmin); + #endif + } break; + case GGML_TYPE_Q6_K: + { + VALIDATE_ROW_DATA_D_F16_IMPL(block_q6_K, data, nb); + } break; + case GGML_TYPE_Q8_K: + { + const block_q8_K * q = (const block_q8_K *) data; + for (size_t i = 0; i < nb; ++i) { + if (!validate_float(q[i].d, i)) { + return false; + } + } + } break; + case GGML_TYPE_IQ1_S: + { + VALIDATE_ROW_DATA_D_F16_IMPL(block_iq1_s, data, nb); + } break; + case GGML_TYPE_IQ1_M: + { + const block_iq1_m * q = (const block_iq1_m *) data; + for (size_t i = 0; i < nb; ++i) { + #if QK_K == 64 + if (!validate_fp16(q[i].d, i)) { + return false; + } + #else + iq1m_scale_t scale; + const uint16_t * sc = (const uint16_t *)q[i].scales; + scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000); + if (!validate_fp16(scale.f16, i)) { + return false; + } + #endif + } + } break; + case GGML_TYPE_IQ2_XXS: + { + VALIDATE_ROW_DATA_D_F16_IMPL(block_iq2_xxs, data, nb); + } break; + case GGML_TYPE_IQ2_XS: + { + VALIDATE_ROW_DATA_D_F16_IMPL(block_iq2_xs, data, nb); + } break; + case GGML_TYPE_IQ2_S: + { + VALIDATE_ROW_DATA_D_F16_IMPL(block_iq2_s, data, nb); + } break; + case GGML_TYPE_IQ3_XXS: + { + VALIDATE_ROW_DATA_D_F16_IMPL(block_iq3_xxs, data, nb); + } break; + + case GGML_TYPE_IQ3_S: + { + VALIDATE_ROW_DATA_D_F16_IMPL(block_iq3_s, data, nb); + } break; + case GGML_TYPE_IQ4_XS: + #if QK_K != 64 + { + VALIDATE_ROW_DATA_D_F16_IMPL(block_iq4_xs, data, nb); + } break; + #endif + // with QK_K == 64, iq4_xs is iq4_nl + case GGML_TYPE_IQ4_NL: + { + VALIDATE_ROW_DATA_D_F16_IMPL(block_iq4_nl, data, nb); + } break; + case GGML_TYPE_I8: + case GGML_TYPE_I16: + case GGML_TYPE_I32: + case GGML_TYPE_I64: + // nothing to validate + break; + default: + { + fprintf(stderr, "%s: invalid type %d\n", __func__, type); + return false; + } + } + + return true; +} diff --git a/ggml-sycl.cpp b/ggml-sycl.cpp index a9b310243..57fe4ea3d 100644 --- a/ggml-sycl.cpp +++ b/ggml-sycl.cpp @@ -13416,11 +13416,16 @@ void print_device_detail(int id, sycl::device &device, std::string device_type) version += std::to_string(prop.get_minor_version()); device_type = std::regex_replace(device_type, std::regex("ext_oneapi_"), ""); + std::string name = std::string(prop.get_name()); + name = std::regex_replace(name, std::regex("\\(R\\)"), ""); + name = std::regex_replace(name, std::regex("\\(TM\\)"), ""); - fprintf(stderr, "|%2d|%18s|%45s|%10s|%11d|%8d|%7d|%15lu|\n", id, device_type.c_str(), - prop.get_name(), version.c_str(), prop.get_max_compute_units(), + auto global_mem_size = prop.get_global_mem_size()/1000000; + + fprintf(stderr, "|%2d|%19s|%39s|%7s|%7d|%8d|%5d|%6luM|%21s|\n", id, device_type.c_str(), + name.c_str(), version.c_str(), prop.get_max_compute_units(), prop.get_max_work_group_size(), prop.get_max_sub_group_size(), - prop.get_global_mem_size()); + global_mem_size, device.get_info().c_str()); } void ggml_backend_sycl_print_sycl_devices() { @@ -13428,9 +13433,10 @@ void ggml_backend_sycl_print_sycl_devices() { int device_count = dpct::dev_mgr::instance().device_count(); std::map DeviceNums; fprintf(stderr, "found %d SYCL devices:\n", device_count); - fprintf(stderr, "| | | |Compute |Max compute|Max work|Max sub| |\n"); - fprintf(stderr, "|ID| Device Type| Name|capability|units |group |group |Global mem size|\n"); - fprintf(stderr, "|--|------------------|---------------------------------------------|----------|-----------|--------|-------|---------------|\n"); + fprintf(stderr, "| | | | |Max | |Max |Global | |\n"); + fprintf(stderr, "| | | | |compute|Max work|sub |mem | |\n"); + fprintf(stderr, "|ID| Device Type| Name|Version|units |group |group|size | Driver version|\n"); + fprintf(stderr, "|--|-------------------|---------------------------------------|-------|-------|--------|-----|-------|---------------------|\n"); for (int id = 0; id < device_count; ++id) { sycl::device device = dpct::dev_mgr::instance().get_device(id); sycl::backend backend = device.get_backend(); @@ -14738,7 +14744,12 @@ inline void ggml_sycl_op_soft_max(const ggml_tensor *src0, GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); + const ggml_tensor * src2 = dst->src[2]; + +#pragma message("TODO: add ggml_sycl_op_soft_max() F16 src1 and src2 support") +#pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5021") GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional + GGML_ASSERT(!src2 || src2->type == GGML_TYPE_F32); // src2 contains positions and it is optional const int64_t ne00 = src0->ne[0]; const int64_t nrows_x = ggml_nrows(src0); @@ -14754,7 +14765,6 @@ inline void ggml_sycl_op_soft_max(const ggml_tensor *src0, float * src2_dd = nullptr; sycl_pool_alloc src2_f; - ggml_tensor * src2 = dst->src[2]; const bool use_src2 = src2 != nullptr; if (use_src2) { diff --git a/ggml-vulkan.cpp b/ggml-vulkan.cpp index 1736ab736..f712cdd5a 100644 --- a/ggml-vulkan.cpp +++ b/ggml-vulkan.cpp @@ -3178,6 +3178,11 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const } return nullptr; case GGML_OP_SOFT_MAX: +#pragma message("TODO: add ggml_vk_soft_max() F16 src1 and src2 support") +#pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5021") + GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32); + GGML_ASSERT(!src2 || src2->type == GGML_TYPE_F32); + if (src0->type == GGML_TYPE_F32 && (src1 == nullptr || src1->type == GGML_TYPE_F32) && (src2 == nullptr || src2->type == GGML_TYPE_F32) && dst->type == GGML_TYPE_F32) { return ctx->device->pipeline_soft_max_f32; } diff --git a/ggml.c b/ggml.c index 086db96af..093d38d00 100644 --- a/ggml.c +++ b/ggml.c @@ -322,7 +322,7 @@ static ggml_fp16_t ggml_table_exp_f16[1 << 16]; // precomputed f32 table for f16 (256 KB) (ggml-impl.h) float ggml_table_f32_f16[1 << 16]; -const char * ggml_status_to_string(enum ggml_status status) { +GGML_CALL const char * ggml_status_to_string(enum ggml_status status) { switch (status) { case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)"; case GGML_STATUS_FAILED: return "GGML status: error (operation failed)"; @@ -333,16 +333,26 @@ const char * ggml_status_to_string(enum ggml_status status) { return "GGML status: unknown"; } -// note: do not use these inside ggml.c -// these are meant to be used via the ggml.h API float ggml_fp16_to_fp32(ggml_fp16_t x) { +#define ggml_fp16_to_fp32 do_not_use__ggml_fp16_to_fp32__in_ggml return GGML_FP16_TO_FP32(x); } ggml_fp16_t ggml_fp32_to_fp16(float x) { +#define ggml_fp32_to_fp16 do_not_use__ggml_fp32_to_fp16__in_ggml return GGML_FP32_TO_FP16(x); } +float ggml_bf16_to_fp32(ggml_bf16_t x) { +#define ggml_bf16_to_fp32 do_not_use__ggml_bf16_to_fp32__in_ggml + return GGML_BF16_TO_FP32(x); // it just left shifts +} + +ggml_bf16_t ggml_fp32_to_bf16(float x) { +#define ggml_fp32_to_bf16 do_not_use__ggml_fp32_to_bf16__in_ggml + return GGML_FP32_TO_BF16(x); +} + void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n) { for (int64_t i = 0; i < n; i++) { y[i] = GGML_FP16_TO_FP32(x[i]); @@ -368,6 +378,49 @@ void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n) { } } +void ggml_bf16_to_fp32_row(const ggml_bf16_t * x, float * y, int64_t n) { + int64_t i = 0; +#if defined(__AVX512F__) + for (; i + 16 <= n; i += 16) { + _mm512_storeu_ps(y + i, + _mm512_castsi512_ps( + _mm512_slli_epi32( + _mm512_cvtepu16_epi32( + _mm256_loadu_si256( + (const __m256i *)(x + i))), + 16))); + } +#elif defined(__AVX2__) + for (; i + 8 <= n; i += 8) { + _mm256_storeu_ps(y + i, + _mm256_castsi256_ps( + _mm256_slli_epi32( + _mm256_cvtepu16_epi32( + _mm_loadu_si128( + (const __m128i *)(x + i))), + 16))); + } +#endif + for (; i < n; i++) { + y[i] = GGML_BF16_TO_FP32(x[i]); + } +} + +void ggml_fp32_to_bf16_row(const float * x, ggml_bf16_t * y, int64_t n) { + int i = 0; +#if defined(__AVX512BF16__) + for (; i + 32 <= n; i += 32) { + _mm512_storeu_ps( + (__m512 *)(y + i), + (__m512)_mm512_cvtne2ps_pbh(_mm512_loadu_ps(x + i + 16), + _mm512_loadu_ps(x + i))); + } +#endif + for (; i < n; i++) { + y[i] = GGML_FP32_TO_BF16(x[i]); + } +} + bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) { return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0; } @@ -503,6 +556,7 @@ static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float); static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc); static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc); +static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc); static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = { [GGML_TYPE_I8] = { @@ -845,6 +899,18 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = { .type_size = sizeof(block_q8_K), .is_quantized = true, .from_float = quantize_row_q8_K, + }, + [GGML_TYPE_BF16] = { + .type_name = "bf16", + .blck_size = 1, + .type_size = sizeof(ggml_bf16_t), + .is_quantized = false, + .to_float = (ggml_to_float_t) ggml_bf16_to_fp32_row, + .from_float = (ggml_from_float_t) ggml_fp32_to_bf16_row, + .from_float_reference = (ggml_from_float_t) ggml_fp32_to_bf16_row, + .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_bf16, + .vec_dot_type = GGML_TYPE_BF16, + .nrows = 1, } }; @@ -858,18 +924,6 @@ ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) { // simd mappings // -#if defined(__ARM_NEON) -#if !defined(__aarch64__) - -// 64-bit compatibility - -inline static float vaddvq_f32(float32x4_t v) { - return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3); -} - -#endif -#endif - // we define a common set of C macros which map to specific intrinsics based on the current architecture // we then implement the fundamental computation operations below using only these macros // adding support for new architectures requires to define the corresponding SIMD macros @@ -963,7 +1017,7 @@ inline static float vaddvq_f32(float32x4_t v) { #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO #define GGML_F16_VEC_SET1 GGML_F16x8_SET1 #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p) - #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i]) + #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((ggml_fp16_internal_t *)(p), r[i]) #define GGML_F16_VEC_FMA GGML_F16x8_FMA #define GGML_F16_VEC_ADD GGML_F16x8_ADD #define GGML_F16_VEC_MUL GGML_F16x8_MUL @@ -989,7 +1043,7 @@ inline static float vaddvq_f32(float32x4_t v) { #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1 #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p) - #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i]) + #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((ggml_fp16_internal_t *)(p), r[i]) #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL @@ -1058,7 +1112,7 @@ do { \ // unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F // so F16C guard isn't required -#define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((__m256i *)(x))) +#define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(x))) #define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0)) #define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a) @@ -1156,7 +1210,7 @@ do { \ #if defined(__F16C__) // the _mm256_cvt intrinsics require F16C -#define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x))) +#define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x))) #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0)) #else static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) { @@ -1492,6 +1546,8 @@ inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; } +inline static void ggml_vec_set_bf16(const int n, ggml_bf16_t * x, const ggml_bf16_t v) { for (int i = 0; i < n; ++i) x[i] = v; } + inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; } inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; } inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; } @@ -1510,7 +1566,7 @@ static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * UNUSED(by); UNUSED(bs); -#ifdef GGML_SIMD +#if defined(GGML_SIMD) float sumf = 0.0f; const int np = (n & ~(GGML_F32_STEP - 1)); @@ -1546,6 +1602,70 @@ static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * *s = sumf; } +static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc) { + assert(nrc == 1); + UNUSED(nrc); + UNUSED(bx); + UNUSED(by); + UNUSED(bs); + int i = 0; + ggml_float sumf = 0; + +#if defined(__AVX512BF16__) + __m512 c1 = _mm512_setzero_ps(); + __m512 c2 = _mm512_setzero_ps(); + for (; i + 64 <= n; i += 64) { + c1 = _mm512_dpbf16_ps(c1, (__m512bh)_mm512_loadu_ps((const float *)(x + i)), + (__m512bh)_mm512_loadu_ps((const float *)(y + i))); + c2 = _mm512_dpbf16_ps(c2, (__m512bh)_mm512_loadu_ps((const float *)(x + i + 32)), + (__m512bh)_mm512_loadu_ps((const float *)(y + i + 32))); + } + sumf += (ggml_float)_mm512_reduce_add_ps(c1); + sumf += (ggml_float)_mm512_reduce_add_ps(c2); + +#elif defined(__AVX512F__) +#define LOAD(p) _mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)(p))), 16)) + __m512 c1 = _mm512_setzero_ps(); + __m512 c2 = _mm512_setzero_ps(); + for (; i + 32 <= n; i += 32) { + c1 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i), LOAD(y + i)), c1); + c2 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c2); + } + sumf += (ggml_float)_mm512_reduce_add_ps(c1); + sumf += (ggml_float)_mm512_reduce_add_ps(c2); + +#undef LOAD +#elif defined(__AVX2__) +#define LOAD(p) _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16)) + __m256 c1 = _mm256_setzero_ps(); + __m256 c2 = _mm256_setzero_ps(); + __m256 c3 = _mm256_setzero_ps(); + __m256 c4 = _mm256_setzero_ps(); + for (; i + 32 <= n; i += 32) { + c1 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i), LOAD(y + i)), c1); + c2 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 8), LOAD(y + i + 8)), c2); + c3 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c3); + c4 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 24), LOAD(y + i + 24)), c4); + } + __m128 g; + c1 = _mm256_add_ps(_mm256_add_ps(c1, c3), + _mm256_add_ps(c2, c4)); + g = _mm_add_ps(_mm256_extractf128_ps(c1, 1), + _mm256_castps256_ps128(c1)); + g = _mm_add_ps(g, _mm_movehl_ps(g, g)); + g = _mm_add_ss(g, _mm_movehdup_ps(g)); + sumf += (ggml_float)_mm_cvtss_f32(g); + +#undef LOAD +#endif + + for (; i < n; ++i) { + sumf += (ggml_float)(GGML_BF16_TO_FP32(x[i]) * + GGML_BF16_TO_FP32(y[i])); + } + *s = sumf; +} + static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) { assert(nrc == 1); UNUSED(nrc); @@ -1674,6 +1794,37 @@ inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float #endif } +inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, const ggml_fp16_t * restrict x, const float v) { +#if defined(GGML_SIMD) + const int np = (n & ~(GGML_F16_STEP - 1)); + + GGML_F16_VEC vx = GGML_F16_VEC_SET1(v); + + GGML_F16_VEC ax[GGML_F16_ARR]; + GGML_F16_VEC ay[GGML_F16_ARR]; + + for (int i = 0; i < np; i += GGML_F16_STEP) { + for (int j = 0; j < GGML_F16_ARR; j++) { + ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j); + ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j); + ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx); + + GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j); + } + } + + // leftovers + for (int i = np; i < n; ++i) { + y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v); + } +#else + // scalar + for (int i = 0; i < n; ++i) { + y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v); + } +#endif +} + // xs and vs are byte strides of x and v inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) { @@ -1758,6 +1909,35 @@ inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { #endif } +inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) { +#if defined(GGML_SIMD) + const int np = (n & ~(GGML_F16_STEP - 1)); + + GGML_F16_VEC vx = GGML_F16_VEC_SET1(v); + + GGML_F16_VEC ay[GGML_F16_ARR]; + + for (int i = 0; i < np; i += GGML_F16_STEP) { + for (int j = 0; j < GGML_F16_ARR; j++) { + ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j); + ay[j] = GGML_F16_VEC_MUL(ay[j], vx); + + GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j); + } + } + + // leftovers + for (int i = np; i < n; ++i) { + y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v); + } +#else + // scalar + for (int i = 0; i < n; ++i) { + y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v); + } +#endif +} + inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); } inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; } inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); } @@ -1919,6 +2099,14 @@ inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_ *s = sum; } +inline static void ggml_vec_sum_bf16_ggf(const int n, float * s, const ggml_bf16_t * x) { + float sum = 0.0f; + for (int i = 0; i < n; ++i) { + sum += GGML_BF16_TO_FP32(x[i]); + } + *s = sum; +} + inline static void ggml_vec_max_f32(const int n, float * s, const float * x) { #ifndef GGML_USE_ACCELERATE float max = -INFINITY; @@ -2012,6 +2200,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = { "LEAKY_RELU", "FLASH_ATTN", + "FLASH_ATTN_EXT", "FLASH_FF", "FLASH_ATTN_BACK", "SSM_CONV", @@ -2038,7 +2227,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = { "CROSS_ENTROPY_LOSS_BACK", }; -static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76"); +static_assert(GGML_OP_COUNT == 77, "GGML_OP_COUNT != 77"); static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "none", @@ -2102,6 +2291,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "leaky_relu(x)", "flash_attn(x)", + "flash_attn_ext(x)", "flash_ff(x)", "flash_attn_back(x)", "ssm_conv(x)", @@ -2128,7 +2318,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "cross_entropy_loss_back(x,y)", }; -static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76"); +static_assert(GGML_OP_COUNT == 77, "GGML_OP_COUNT != 77"); static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2"); @@ -2327,7 +2517,7 @@ void ggml_numa_init(enum ggml_numa_strategy numa_flag) { // figure out which node we're on uint current_cpu; int getcpu_ret = 0; -#if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28) +#if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28) || defined(__COSMOPOLITAN__) getcpu_ret = getcpu(¤t_cpu, &g_state.numa.current_node); #else // old glibc doesn't have a wrapper for this call. Fall back on direct syscall @@ -2538,6 +2728,7 @@ enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) { switch (ftype) { case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break; case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break; + case GGML_FTYPE_MOSTLY_BF16: wtype = GGML_TYPE_BF16; break; case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break; case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break; case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break; @@ -2679,15 +2870,16 @@ struct ggml_context * ggml_init(struct ggml_init_params params) { { const uint64_t t_start = ggml_time_us(); UNUSED(t_start); - ggml_fp16_t ii; for (int i = 0; i < (1 << 16); ++i) { - uint16_t ui = i; - memcpy(&ii, &ui, sizeof(ii)); - const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii); + union { + uint16_t u16; + ggml_fp16_t fp16; + } u = {i}; + float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(u.fp16); ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f)); ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f)); ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f)); - ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f)); + ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f)); } const uint64_t t_end = ggml_time_us(); UNUSED(t_end); @@ -3151,6 +3343,13 @@ struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) { ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value)); } } break; + case GGML_TYPE_BF16: + { + assert(tensor->nb[0] == sizeof(ggml_fp16_t)); + for (int i = 0; i < n; i++) { + ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value)); + } + } break; case GGML_TYPE_F32: { assert(tensor->nb[0] == sizeof(float)); @@ -3203,6 +3402,13 @@ struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) { ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value)); } } break; + case GGML_TYPE_BF16: + { + assert(tensor->nb[0] == sizeof(ggml_bf16_t)); + for (int i = 0; i < n; i++) { + ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value)); + } + } break; case GGML_TYPE_F32: { assert(tensor->nb[0] == sizeof(float)); @@ -3270,6 +3476,11 @@ int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) { GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t)); return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]); } + case GGML_TYPE_BF16: + { + GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t)); + return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]); + } case GGML_TYPE_F32: { GGML_ASSERT(tensor->nb[0] == sizeof(float)); @@ -3312,6 +3523,11 @@ void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) { GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t)); ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value); } break; + case GGML_TYPE_BF16: + { + GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t)); + ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value); + } break; case GGML_TYPE_F32: { GGML_ASSERT(tensor->nb[0] == sizeof(float)); @@ -3335,6 +3551,8 @@ int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i return ((int32_t *) data)[0]; case GGML_TYPE_F16: return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]); + case GGML_TYPE_BF16: + return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]); case GGML_TYPE_F32: return ((float *) data)[0]; default: @@ -3363,6 +3581,10 @@ void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, { ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value); } break; + case GGML_TYPE_BF16: + { + ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value); + } break; case GGML_TYPE_F32: { ((float *)(data))[0] = value; @@ -3401,6 +3623,11 @@ float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) { GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t)); return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]); } + case GGML_TYPE_BF16: + { + GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t)); + return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]); + } case GGML_TYPE_F32: { GGML_ASSERT(tensor->nb[0] == sizeof(float)); @@ -3443,6 +3670,11 @@ void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) { GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t)); ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value); } break; + case GGML_TYPE_BF16: + { + GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t)); + ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value); + } break; case GGML_TYPE_F32: { GGML_ASSERT(tensor->nb[0] == sizeof(float)); @@ -3466,6 +3698,8 @@ float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, return ((int32_t *) data)[0]; case GGML_TYPE_F16: return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]); + case GGML_TYPE_BF16: + return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]); case GGML_TYPE_F32: return ((float *) data)[0]; default: @@ -3494,6 +3728,10 @@ void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, { ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value); } break; + case GGML_TYPE_BF16: + { + ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value); + } break; case GGML_TYPE_F32: { ((float *)(data))[0] = value; @@ -3688,7 +3926,11 @@ static struct ggml_tensor * ggml_add_cast_impl( // TODO: support less-strict constraint // GGML_ASSERT(ggml_can_repeat(b, a)); GGML_ASSERT(ggml_can_repeat_rows(b, a)); - GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16 + + // currently only supported for quantized input and f16 + GGML_ASSERT(ggml_is_quantized(a->type) || + a->type == GGML_TYPE_F16 || + a->type == GGML_TYPE_BF16); bool is_node = false; @@ -4571,6 +4813,8 @@ struct ggml_tensor * ggml_mul_mat( void ggml_mul_mat_set_prec( struct ggml_tensor * a, enum ggml_prec prec) { + GGML_ASSERT(a->op == GGML_OP_MUL_MAT); + const int32_t prec_i32 = (int32_t) prec; ggml_set_op_params_i32(a, 0, prec_i32); @@ -5409,17 +5653,23 @@ static struct ggml_tensor * ggml_soft_max_impl( GGML_ASSERT(ggml_is_contiguous(a)); if (mask) { + GGML_ASSERT(mask->type == GGML_TYPE_F16 || mask->type == GGML_TYPE_F32); GGML_ASSERT(ggml_is_contiguous(mask)); GGML_ASSERT(ggml_is_matrix(mask)); - GGML_ASSERT(ggml_can_repeat_rows(mask, a)); + GGML_ASSERT(mask->ne[0] == a->ne[0]); + GGML_ASSERT(mask->ne[1] >= a->ne[1]); } if (pos) { GGML_ASSERT(ggml_is_vector(pos)); - GGML_ASSERT(pos->type == GGML_TYPE_F32); + GGML_ASSERT(pos->type == GGML_TYPE_F16 || pos->type == GGML_TYPE_F32); GGML_ASSERT(pos->ne[0] == a->ne[0]); } + if (pos && mask) { + GGML_ASSERT(pos->type == mask->type); + } + if (max_bias > 0.0f) { GGML_ASSERT(pos); } @@ -6228,6 +6478,59 @@ struct ggml_tensor * ggml_flash_attn( return result; } +// ggml_flash_attn_ext + +struct ggml_tensor * ggml_flash_attn_ext( + struct ggml_context * ctx, + struct ggml_tensor * q, + struct ggml_tensor * k, + struct ggml_tensor * v, + struct ggml_tensor * mask, + float scale) { + GGML_ASSERT(ggml_can_mul_mat(k, q)); + // TODO: check if vT can be multiplied by (k*qT) + if (mask) { + GGML_ASSERT(ggml_is_contiguous(mask)); + GGML_ASSERT(mask->ne[2] == 1); + GGML_ASSERT(mask->ne[3] == 1); + GGML_ASSERT(mask->ne[1] >= GGML_PAD(q->ne[1], GGML_KQ_MASK_PAD) && + "the Flash-Attention kernel requires the mask to be padded to GGML_KQ_MASK_PAD and at least n_queries big"); + //GGML_ASSERT(ggml_can_repeat_rows(mask, qk)); + } + + bool is_node = false; + + if (q->grad || k->grad || v->grad) { + is_node = true; + } + + // permute(0, 2, 1, 3) + int64_t ne[4] = { q->ne[0], q->ne[2], q->ne[1], q->ne[3] }; + struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); + + float params[] = { scale }; + ggml_set_op_params(result, params, sizeof(params)); + + result->op = GGML_OP_FLASH_ATTN_EXT; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = q; + result->src[1] = k; + result->src[2] = v; + result->src[3] = mask; + + return result; +} + +void ggml_flash_attn_ext_set_prec( + struct ggml_tensor * a, + enum ggml_prec prec) { + GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT); + + const int32_t prec_i32 = (int32_t) prec; + + ggml_set_op_params_i32(a, 1, prec_i32); // scale is on first pos +} + // ggml_flash_ff struct ggml_tensor * ggml_flash_ff( @@ -7104,8 +7407,8 @@ static void ggml_compute_forward_dup_same_cont( ((char *) src0->data + ie0*nb00), (ie1 - ie0) * ggml_type_size(src0->type)); } - } + static void ggml_compute_forward_dup_f16( const struct ggml_compute_params * params, struct ggml_tensor * dst) { @@ -7379,6 +7682,366 @@ static void ggml_compute_forward_dup_f16( } } +static void ggml_compute_forward_dup_bf16( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0)); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + GGML_TENSOR_UNARY_OP_LOCALS + + const int ith = params->ith; // thread index + const int nth = params->nth; // number of threads + + if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) { + ggml_compute_forward_dup_same_cont(params, dst); + return; + } + + // parallelize by rows + const int nr = ne01; + // number of rows per thread + const int dr = (nr + nth - 1) / nth; + // row range for this thread + const int ir0 = dr * ith; + const int ir1 = MIN(ir0 + dr, nr); + + if (src0->type == dst->type && + ne00 == ne0 && + nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) { + // copy by rows + const size_t rs = ne00*nb00; + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + for (int64_t i01 = ir0; i01 < ir1; i01++) { + memcpy( + ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3), + ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03), + rs); + } + } + } + return; + } + + // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy + + if (ggml_is_contiguous(dst)) { + if (nb00 == sizeof(ggml_bf16_t)) { + if (dst->type == GGML_TYPE_BF16) { + size_t id = 0; + const size_t rs = ne00 * nb00; + char * dst_ptr = (char *) dst->data; + + for (int i03 = 0; i03 < ne03; i03++) { + for (int i02 = 0; i02 < ne02; i02++) { + id += rs * ir0; + for (int i01 = ir0; i01 < ir1; i01++) { + const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03; + memcpy(dst_ptr + id, src0_ptr, rs); + id += rs; + } + id += rs * (ne01 - ir1); + } + } + } else if (dst->type == GGML_TYPE_F16) { + size_t id = 0; + ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data; + + for (int i03 = 0; i03 < ne03; i03++) { + for (int i02 = 0; i02 < ne02; i02++) { + id += ne00 * ir0; + for (int i01 = ir0; i01 < ir1; i01++) { + const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03); + for (int i00 = 0; i00 < ne00; i00++) { + dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(src0_ptr[i00])); + id++; + } + } + id += ne00 * (ne01 - ir1); + } + } + } else if (dst->type == GGML_TYPE_F32) { + size_t id = 0; + float * dst_ptr = (float *) dst->data; + + for (int i03 = 0; i03 < ne03; i03++) { + for (int i02 = 0; i02 < ne02; i02++) { + id += ne00 * ir0; + for (int i01 = ir0; i01 < ir1; i01++) { + const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03); + for (int i00 = 0; i00 < ne00; i00++) { + dst_ptr[id] = GGML_BF16_TO_FP32(src0_ptr[i00]); + id++; + } + } + id += ne00 * (ne01 - ir1); + } + } + } else if (type_traits[dst->type].from_float) { + ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float; + float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith; + + size_t id = 0; + size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type)); + char * dst_ptr = (char *) dst->data; + + for (int i03 = 0; i03 < ne03; i03++) { + for (int i02 = 0; i02 < ne02; i02++) { + id += rs * ir0; + for (int i01 = ir0; i01 < ir1; i01++) { + const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03); + + for (int i00 = 0; i00 < ne00; i00++) { + src0_f32[i00] = GGML_BF16_TO_FP32(src0_ptr[i00]); + } + + quantize_row_q(src0_f32, dst_ptr + id, ne00); + id += rs; + } + id += rs * (ne01 - ir1); + } + } + } else { + GGML_ASSERT(false); // TODO: implement + } + } else { + //printf("%s: this is not optimal - fix me\n", __func__); + + if (dst->type == GGML_TYPE_F32) { + size_t id = 0; + float * dst_ptr = (float *) dst->data; + + for (int i03 = 0; i03 < ne03; i03++) { + for (int i02 = 0; i02 < ne02; i02++) { + id += ne00 * ir0; + for (int i01 = ir0; i01 < ir1; i01++) { + for (int i00 = 0; i00 < ne00; i00++) { + const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); + + dst_ptr[id] = GGML_BF16_TO_FP32(*src0_ptr); + id++; + } + } + id += ne00 * (ne01 - ir1); + } + } + } else if (dst->type == GGML_TYPE_BF16) { + size_t id = 0; + ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data; + + for (int i03 = 0; i03 < ne03; i03++) { + for (int i02 = 0; i02 < ne02; i02++) { + id += ne00 * ir0; + for (int i01 = ir0; i01 < ir1; i01++) { + for (int i00 = 0; i00 < ne00; i00++) { + const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); + + dst_ptr[id] = *src0_ptr; + id++; + } + } + id += ne00 * (ne01 - ir1); + } + } + } else if (dst->type == GGML_TYPE_F16) { + size_t id = 0; + ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data; + + for (int i03 = 0; i03 < ne03; i03++) { + for (int i02 = 0; i02 < ne02; i02++) { + id += ne00 * ir0; + for (int i01 = ir0; i01 < ir1; i01++) { + for (int i00 = 0; i00 < ne00; i00++) { + const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); + + dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*src0_ptr)); + id++; + } + } + id += ne00 * (ne01 - ir1); + } + } + } else { + GGML_ASSERT(false); // TODO: implement + } + } + return; + } + + // dst counters + int64_t i10 = 0; + int64_t i11 = 0; + int64_t i12 = 0; + int64_t i13 = 0; + + if (dst->type == GGML_TYPE_BF16) { + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + i10 += ne00 * ir0; + while (i10 >= ne0) { + i10 -= ne0; + if (++i11 == ne1) { + i11 = 0; + if (++i12 == ne2) { + i12 = 0; + if (++i13 == ne3) { + i13 = 0; + } + } + } + } + for (int64_t i01 = ir0; i01 < ir1; i01++) { + for (int64_t i00 = 0; i00 < ne00; i00++) { + const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); + char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3); + + memcpy(dst_ptr, src0_ptr, sizeof(ggml_bf16_t)); + + if (++i10 == ne00) { + i10 = 0; + if (++i11 == ne01) { + i11 = 0; + if (++i12 == ne02) { + i12 = 0; + if (++i13 == ne03) { + i13 = 0; + } + } + } + } + } + } + i10 += ne00 * (ne01 - ir1); + while (i10 >= ne0) { + i10 -= ne0; + if (++i11 == ne1) { + i11 = 0; + if (++i12 == ne2) { + i12 = 0; + if (++i13 == ne3) { + i13 = 0; + } + } + } + } + } + } + } else if (dst->type == GGML_TYPE_F16) { + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + i10 += ne00 * ir0; + while (i10 >= ne0) { + i10 -= ne0; + if (++i11 == ne1) { + i11 = 0; + if (++i12 == ne2) { + i12 = 0; + if (++i13 == ne3) { + i13 = 0; + } + } + } + } + for (int64_t i01 = ir0; i01 < ir1; i01++) { + for (int64_t i00 = 0; i00 < ne00; i00++) { + const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); + char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3); + + *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr)); + + if (++i10 == ne0) { + i10 = 0; + if (++i11 == ne1) { + i11 = 0; + if (++i12 == ne2) { + i12 = 0; + if (++i13 == ne3) { + i13 = 0; + } + } + } + } + } + } + i10 += ne00 * (ne01 - ir1); + while (i10 >= ne0) { + i10 -= ne0; + if (++i11 == ne1) { + i11 = 0; + if (++i12 == ne2) { + i12 = 0; + if (++i13 == ne3) { + i13 = 0; + } + } + } + } + } + } + } else if (dst->type == GGML_TYPE_F32) { + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + i10 += ne00 * ir0; + while (i10 >= ne0) { + i10 -= ne0; + if (++i11 == ne1) { + i11 = 0; + if (++i12 == ne2) { + i12 = 0; + if (++i13 == ne3) { + i13 = 0; + } + } + } + } + for (int64_t i01 = ir0; i01 < ir1; i01++) { + for (int64_t i00 = 0; i00 < ne00; i00++) { + const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); + char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3); + + *(float *) dst_ptr = GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr); + + if (++i10 == ne0) { + i10 = 0; + if (++i11 == ne1) { + i11 = 0; + if (++i12 == ne2) { + i12 = 0; + if (++i13 == ne3) { + i13 = 0; + } + } + } + } + } + } + i10 += ne00 * (ne01 - ir1); + while (i10 >= ne0) { + i10 -= ne0; + if (++i11 == ne1) { + i11 = 0; + if (++i12 == ne2) { + i12 = 0; + if (++i13 == ne3) { + i13 = 0; + } + } + } + } + } + } + } else { + GGML_ASSERT(false); // TODO: implement + } +} + static void ggml_compute_forward_dup_f32( const struct ggml_compute_params * params, struct ggml_tensor * dst) { @@ -7506,6 +8169,24 @@ static void ggml_compute_forward_dup_f32( id += ne00 * (ne01 - ir1); } } + } else if (dst->type == GGML_TYPE_BF16) { + size_t id = 0; + ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data; + + for (int i03 = 0; i03 < ne03; i03++) { + for (int i02 = 0; i02 < ne02; i02++) { + id += ne00 * ir0; + for (int i01 = ir0; i01 < ir1; i01++) { + for (int i00 = 0; i00 < ne00; i00++) { + const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); + + dst_ptr[id] = GGML_FP32_TO_BF16(*src0_ptr); + id++; + } + } + id += ne00 * (ne01 - ir1); + } + } } else { GGML_ASSERT(false); // TODO: implement } @@ -7625,6 +8306,58 @@ static void ggml_compute_forward_dup_f32( } } } + } else if (dst->type == GGML_TYPE_BF16) { + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + i10 += ne00 * ir0; + while (i10 >= ne0) { + i10 -= ne0; + if (++i11 == ne1) { + i11 = 0; + if (++i12 == ne2) { + i12 = 0; + if (++i13 == ne3) { + i13 = 0; + } + } + } + } + for (int64_t i01 = ir0; i01 < ir1; i01++) { + for (int64_t i00 = 0; i00 < ne00; i00++) { + const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); + char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3); + + *(ggml_bf16_t *) dst_ptr = GGML_FP32_TO_BF16(*(const float *) src0_ptr); + + if (++i10 == ne0) { + i10 = 0; + if (++i11 == ne1) { + i11 = 0; + if (++i12 == ne2) { + i12 = 0; + if (++i13 == ne3) { + i13 = 0; + } + } + } + } + } + } + i10 += ne00 * (ne01 - ir1); + while (i10 >= ne0) { + i10 -= ne0; + if (++i11 == ne1) { + i11 = 0; + if (++i12 == ne2) { + i12 = 0; + if (++i13 == ne3) { + i13 = 0; + } + } + } + } + } + } } else { GGML_ASSERT(false); // TODO: implement } @@ -7798,6 +8531,10 @@ static void ggml_compute_forward_dup( { ggml_compute_forward_dup_f16(params, dst); } break; + case GGML_TYPE_BF16: + { + ggml_compute_forward_dup_bf16(params, dst); + } break; case GGML_TYPE_F32: { ggml_compute_forward_dup_f32(params, dst); @@ -7980,6 +8717,85 @@ static void ggml_compute_forward_add_f16_f32( } } +static void ggml_compute_forward_add_bf16_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + + GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + const int ith = params->ith; + const int nth = params->nth; + + const int nr = ggml_nrows(src0); + + GGML_TENSOR_BINARY_OP_LOCALS + + GGML_ASSERT(src0->type == GGML_TYPE_BF16); + GGML_ASSERT(src1->type == GGML_TYPE_F32); + + if (dst->type == GGML_TYPE_F32) { + GGML_ASSERT( nb0 == sizeof(float)); + } + else { + GGML_ASSERT(dst->type == GGML_TYPE_BF16); + GGML_ASSERT( nb0 == sizeof(ggml_bf16_t)); + } + + GGML_ASSERT(nb00 == sizeof(ggml_bf16_t)); + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + if (nb10 == sizeof(float)) { + if (dst->type == GGML_TYPE_BF16) { + for (int ir = ir0; ir < ir1; ++ir) { + // src0, src1 and dst are same shape => same indices + const int i3 = ir/(ne2*ne1); + const int i2 = (ir - i3*ne2*ne1)/ne1; + const int i1 = (ir - i3*ne2*ne1 - i2*ne1); + + ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1); + ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01); + float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11); + + for (int i = 0; i < ne0; i++) { + dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i]); + } + } + } else { + for (int ir = ir0; ir < ir1; ++ir) { + // src0, src1 and dst are same shape => same indices + const int i3 = ir/(ne2*ne1); + const int i2 = (ir - i3*ne2*ne1)/ne1; + const int i1 = (ir - i3*ne2*ne1 - i2*ne1); + + float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1); + ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01); + float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11); + + for (int i = 0; i < ne0; i++) { + dst_ptr[i] = GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i]; + } + } + } + } + else { + // src1 is not contiguous + GGML_ASSERT(false); + } +} + static void ggml_compute_forward_add_f16_f16( const struct ggml_compute_params * params, struct ggml_tensor * dst) { @@ -8036,6 +8852,62 @@ static void ggml_compute_forward_add_f16_f16( } } +static void ggml_compute_forward_add_bf16_bf16( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + + GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + const int ith = params->ith; + const int nth = params->nth; + + const int nr = ggml_nrows(src0); + + GGML_TENSOR_BINARY_OP_LOCALS + + GGML_ASSERT(src0->type == GGML_TYPE_BF16); + GGML_ASSERT(src1->type == GGML_TYPE_BF16); + GGML_ASSERT(dst->type == GGML_TYPE_BF16); + + GGML_ASSERT( nb0 == sizeof(ggml_bf16_t)); + GGML_ASSERT(nb00 == sizeof(ggml_bf16_t)); + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + if (nb10 == sizeof(ggml_bf16_t)) { + for (int ir = ir0; ir < ir1; ++ir) { + // src0, src1 and dst are same shape => same indices + const int i3 = ir/(ne2*ne1); + const int i2 = (ir - i3*ne2*ne1)/ne1; + const int i1 = (ir - i3*ne2*ne1 - i2*ne1); + + ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1); + ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01); + ggml_bf16_t * src1_ptr = (ggml_bf16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11); + + for (int i = 0; i < ne0; i++) { + dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + GGML_BF16_TO_FP32(src1_ptr[i])); + } + } + } + else { + // src1 is not contiguous + GGML_ASSERT(false); + } +} + static void ggml_compute_forward_add_q_f32( const struct ggml_compute_params * params, struct ggml_tensor * dst) { @@ -8145,6 +9017,18 @@ static void ggml_compute_forward_add( GGML_ASSERT(false); } } break; + case GGML_TYPE_BF16: + { + if (src1->type == GGML_TYPE_BF16) { + ggml_compute_forward_add_bf16_bf16(params, dst); + } + else if (src1->type == GGML_TYPE_F32) { + ggml_compute_forward_add_bf16_f32(params, dst); + } + else { + GGML_ASSERT(false); + } + } break; case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: case GGML_TYPE_Q5_0: @@ -8403,6 +9287,110 @@ static void ggml_compute_forward_add1_q_f32( } } +static void ggml_compute_forward_add1_bf16_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + + GGML_ASSERT(ggml_are_same_shape(src0, dst)); + GGML_ASSERT(ggml_is_scalar(src1)); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + // scalar to add + const float v = *(float *) src1->data; + + const int ith = params->ith; + const int nth = params->nth; + + const int nr = ggml_nrows(src0); + + GGML_TENSOR_UNARY_OP_LOCALS + + GGML_ASSERT(src0->type == GGML_TYPE_BF16); + GGML_ASSERT(src1->type == GGML_TYPE_F32); + GGML_ASSERT(dst->type == GGML_TYPE_BF16); + + GGML_ASSERT( nb0 == sizeof(ggml_bf16_t)); + GGML_ASSERT(nb00 == sizeof(ggml_bf16_t)); + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + for (int ir = ir0; ir < ir1; ++ir) { + // src0 and dst are same shape => same indices + const int i3 = ir/(ne2*ne1); + const int i2 = (ir - i3*ne2*ne1)/ne1; + const int i1 = (ir - i3*ne2*ne1 - i2*ne1); + + ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ); + ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01); + for (int i = 0; i < ne0; i++) { + dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v); + } + } +} + +static void ggml_compute_forward_add1_bf16_bf16( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + + GGML_ASSERT(ggml_are_same_shape(src0, dst)); + GGML_ASSERT(ggml_is_scalar(src1)); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + // scalar to add + const float v = GGML_BF16_TO_FP32(*(ggml_bf16_t *) src1->data); + + const int ith = params->ith; + const int nth = params->nth; + + const int nr = ggml_nrows(src0); + + GGML_TENSOR_UNARY_OP_LOCALS + + GGML_ASSERT(src0->type == GGML_TYPE_BF16); + GGML_ASSERT(src1->type == GGML_TYPE_BF16); + GGML_ASSERT(dst->type == GGML_TYPE_BF16); + + GGML_ASSERT( nb0 == sizeof(ggml_bf16_t)); + GGML_ASSERT(nb00 == sizeof(ggml_bf16_t)); + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + for (int ir = ir0; ir < ir1; ++ir) { + // src0 and dst are same shape => same indices + const int i3 = ir/(ne2*ne1); + const int i2 = (ir - i3*ne2*ne1)/ne1; + const int i1 = (ir - i3*ne2*ne1 - i2*ne1); + + ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ); + ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01); + for (int i = 0; i < ne0; i++) { + dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v); + } + } +} + static void ggml_compute_forward_add1( const struct ggml_compute_params * params, struct ggml_tensor * dst) { @@ -8427,6 +9415,18 @@ static void ggml_compute_forward_add1( GGML_ASSERT(false); } } break; + case GGML_TYPE_BF16: + { + if (src1->type == GGML_TYPE_BF16) { + ggml_compute_forward_add1_bf16_bf16(params, dst); + } + else if (src1->type == GGML_TYPE_F32) { + ggml_compute_forward_add1_bf16_f32(params, dst); + } + else { + GGML_ASSERT(false); + } + } break; case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: case GGML_TYPE_Q5_0: @@ -8555,6 +9555,7 @@ static void ggml_compute_forward_acc( ggml_compute_forward_acc_f32(params, dst); } break; case GGML_TYPE_F16: + case GGML_TYPE_BF16: case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: case GGML_TYPE_Q5_0: @@ -9076,6 +10077,40 @@ static void ggml_compute_forward_sum_f16( ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum); } +static void ggml_compute_forward_sum_bf16( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + assert(params->ith == 0); + assert(ggml_is_scalar(dst)); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + assert(src0->nb[0] == sizeof(ggml_bf16_t)); + + GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) + GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) + + float sum = 0; + float row_sum = 0; + + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + for (int64_t i01 = 0; i01 < ne01; i01++) { + ggml_vec_sum_bf16_ggf(ne00, + &row_sum, + (ggml_bf16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03)); + sum += row_sum; + } + } + } + ((ggml_bf16_t *) dst->data)[0] = GGML_FP32_TO_BF16(sum); +} + static void ggml_compute_forward_sum( const struct ggml_compute_params * params, struct ggml_tensor * dst) { @@ -9091,6 +10126,10 @@ static void ggml_compute_forward_sum( { ggml_compute_forward_sum_f16(params, dst); } break; + case GGML_TYPE_BF16: + { + ggml_compute_forward_sum_bf16(params, dst); + } break; default: { GGML_ASSERT(false); @@ -9365,6 +10404,7 @@ static void ggml_compute_forward_repeat( switch (src0->type) { case GGML_TYPE_F16: + case GGML_TYPE_BF16: case GGML_TYPE_I16: { ggml_compute_forward_repeat_f16(params, dst); @@ -11682,6 +12722,7 @@ static void ggml_compute_forward_set( ggml_compute_forward_set_f32(params, dst); } break; case GGML_TYPE_F16: + case GGML_TYPE_BF16: case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: case GGML_TYPE_Q5_0: @@ -11856,6 +12897,49 @@ static void ggml_compute_forward_get_rows_f16( } } +static void ggml_compute_forward_get_rows_bf16( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + GGML_TENSOR_BINARY_OP_LOCALS + + const int64_t nc = ne00; + const int64_t nr = ggml_nelements(src1); + + assert(ne0 == nc); + assert(ne02 == ne11); + assert(nb00 == sizeof(ggml_bf16_t)); + assert(ggml_nrows(dst) == nr); + + const int ith = params->ith; + const int nth = params->nth; + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + for (int64_t i = ir0; i < ir1; ++i) { + const int64_t i12 = i/(ne11*ne10); + const int64_t i11 = (i - i12*ne11*ne10)/ne10; + const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10); + const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12); + + ggml_bf16_to_fp32_row( + (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03), + (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc); + } +} + static void ggml_compute_forward_get_rows_f32( const struct ggml_compute_params * params, struct ggml_tensor * dst) { @@ -11933,6 +13017,10 @@ static void ggml_compute_forward_get_rows( { ggml_compute_forward_get_rows_f16(params, dst); } break; + case GGML_TYPE_BF16: + { + ggml_compute_forward_get_rows_bf16(params, dst); + } break; case GGML_TYPE_F32: case GGML_TYPE_I32: { @@ -12267,7 +13355,7 @@ static void ggml_compute_forward_soft_max_f32( GGML_TENSOR_UNARY_OP_LOCALS - const int64_t ne11 = src1 ? src1->ne[1] : 1; + //const int64_t ne11 = src1 ? src1->ne[1] : 1; // TODO: is this supposed to be ceil instead of floor? // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370 @@ -12290,19 +13378,31 @@ static void ggml_compute_forward_soft_max_f32( float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith; // when max_bias <= 0.0f, src2 is not used and we default it to src0 to avoid branching - float * pos = src2 ? (float *) src2->data : src0->data; + ggml_fp16_t * pos_f16 = src2 ? (ggml_fp16_t *) src2->data : src0->data; + float * pos_f32 = src2 ? (float *) src2->data : src0->data; + + const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16) || (src2 && src2->type == GGML_TYPE_F16); for (int i1 = ir0; i1 < ir1; i1++) { float * sp = (float *)((char *) src0->data + i1*src0->nb[1]); float * dp = (float *)((char *) dst->data + i1*dst->nb[1]); // broadcast the mask across rows - float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL; + ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data) + (i1%ne01)*ne00 : NULL; + float * mp_f32 = src1 ? (float *)((char *) src1->data) + (i1%ne01)*ne00 : NULL; ggml_vec_cpy_f32 (nc, wp, sp); ggml_vec_scale_f32(nc, wp, scale); - if (mp) { - ggml_vec_acc_f32(nc, wp, mp); + if (mp_f32) { + if (use_f16) { + for (int i = 0; i < nc; ++i) { + wp[i] += GGML_FP16_TO_FP32(mp_f16[i]); + } + } else { + for (int i = 0; i < nc; ++i) { + wp[i] += mp_f32[i]; + } + } } // ALiBi bias @@ -12310,8 +13410,14 @@ static void ggml_compute_forward_soft_max_f32( const uint32_t h = (i1/ne01)%ne02; // head const float slope = h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1); - for (int i = 0; i < nc; i++) { - wp[i] = wp[i] + slope*pos[i]; + if (use_f16) { + for (int i = 0; i < nc; ++i) { + wp[i] += slope*GGML_FP16_TO_FP32(pos_f16[i]); + } + } else { + for (int i = 0; i < nc; ++i) { + wp[i] += slope*pos_f32[i]; + } } } @@ -12610,6 +13716,7 @@ static void ggml_compute_forward_alibi( { ggml_compute_forward_alibi_f32(params, dst); } break; + case GGML_TYPE_BF16: case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: case GGML_TYPE_Q5_0: @@ -12699,6 +13806,7 @@ static void ggml_compute_forward_clamp( ggml_compute_forward_clamp_f32(params, dst); } break; case GGML_TYPE_F16: + case GGML_TYPE_BF16: case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: case GGML_TYPE_Q5_0: @@ -14581,6 +15689,198 @@ static void ggml_compute_forward_flash_attn( } } +// ggml_compute_forward_flash_attn_ext + +static void ggml_compute_forward_flash_attn_ext_f16( + const struct ggml_compute_params * params, + const struct ggml_tensor * q, + const struct ggml_tensor * k, + const struct ggml_tensor * v, + const struct ggml_tensor * mask, + struct ggml_tensor * dst) { + int64_t t0 = ggml_perf_time_us(); + UNUSED(t0); + + GGML_TENSOR_LOCALS(int64_t, neq, q, ne) + GGML_TENSOR_LOCALS(size_t, nbq, q, nb) + GGML_TENSOR_LOCALS(int64_t, nek, k, ne) + GGML_TENSOR_LOCALS(size_t, nbk, k, nb) + GGML_TENSOR_LOCALS(int64_t, nev, v, ne) + GGML_TENSOR_LOCALS(size_t, nbv, v, nb) + GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) + GGML_TENSOR_LOCALS(size_t, nb, dst, nb) + + const int ith = params->ith; + const int nth = params->nth; + + const int64_t D = neq0; + const int64_t N = neq1; + + GGML_ASSERT(ne0 == D); + GGML_ASSERT(ne2 == N); + + GGML_ASSERT(nbq0 == sizeof(float)); + GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t)); + GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t)); + + GGML_ASSERT(neq0 == D); + GGML_ASSERT(nek0 == D); + GGML_ASSERT(nev0 == D); + + GGML_ASSERT(neq1 == N); + GGML_ASSERT(nev0 == D); + + // dst cannot be transposed or permuted + GGML_ASSERT(nb0 == sizeof(float)); + GGML_ASSERT(nb0 <= nb1); + GGML_ASSERT(nb1 <= nb2); + GGML_ASSERT(nb2 <= nb3); + + // broadcast factors + const int64_t rk2 = neq2/nek2; + const int64_t rk3 = neq3/nek3; + + const int64_t rv2 = neq2/nev2; + const int64_t rv3 = neq3/nev3; + + if (params->type == GGML_TASK_TYPE_INIT) { + return; + } + + if (params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + // parallelize by q rows using ggml_vec_dot_f32 + + // total rows in q + const int nr = neq1*neq2*neq3; + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + float scale = 1.0f; + memcpy(&scale, (float *) dst->op_params + 0, sizeof(float)); + + // loop over n_batch and n_head + for (int ir = ir0; ir < ir1; ++ir) { + // q indices + const int iq3 = ir/(neq2*neq1); + const int iq2 = (ir - iq3*neq2*neq1)/neq1; + const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1); + + float S = 0.0f; + float M = -INFINITY; + + float * V32 = (float *) params->wdata + ith*(2*D + CACHE_LINE_SIZE_F32); + ggml_fp16_t * Q16 = (ggml_fp16_t *) (V32); // reuse memory + ggml_fp16_t * V16 = (ggml_fp16_t *) (V32 + D); + + memset(V16, 0, D*sizeof(ggml_fp16_t)); + + const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL; + + // k indices + const int ik3 = iq3 / rk3; + const int ik2 = iq2 / rk2; + + // v indices + const int iv3 = iq3 / rv3; + const int iv2 = iq2 / rv2; + + // online softmax / attention + // loop over n_kv and n_head_kv + // ref: https://arxiv.org/pdf/2112.05682.pdf + for (int64_t ic = 0; ic < nek1; ++ic) { + const float mv = mp ? GGML_FP16_TO_FP32(mp[ic]) : 0.0f; + if (mv == -INFINITY) { + continue; + } + + float s; + + // convert Q to F16 in V32 + { + const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)); + + for (int64_t d = 0; d < D; ++d) { + Q16[d] = GGML_FP32_TO_FP16(pq[d]); + } + } + + ggml_vec_dot_f16(D, + &s, 0, + (ggml_fp16_t *) ((char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3)), 0, + Q16, 0, 1); + + s = s*scale + mv; + + const float Mold = M; + + float ms = 1.0f; + float vs = 1.0f; + + if (s > M) { + M = s; + ms = expf(Mold - M); + + // V = V*expf(Mold - M) + ggml_vec_scale_f16(D, V16, ms); + } else { + vs = expf(s - M); + } + + const ggml_fp16_t * v16 = (const ggml_fp16_t *) ((char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3)); + + // V += v*expf(s - M) + ggml_vec_mad_f16(D, V16, v16, vs); + + S = S*ms + vs; + } + + // V /= S + for (int64_t d = 0; d < D; ++d) { + V32[d] = GGML_FP16_TO_FP32(V16[d])/S; + } + + // dst indices + const int i1 = iq1; + const int i2 = iq2; + const int i3 = iq3; + + // original + //memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float)); + + // permute(0, 2, 1, 3) + memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, V32, nb1); + } +} + +static void ggml_compute_forward_flash_attn_ext( + const struct ggml_compute_params * params, + const struct ggml_tensor * q, + const struct ggml_tensor * k, + const struct ggml_tensor * v, + const struct ggml_tensor * mask, + struct ggml_tensor * dst) { + switch (dst->op_params[1]) { + case GGML_PREC_DEFAULT: + case GGML_PREC_F32: + { + // uses F32 accumulators + ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + // ggml_compute_forward_flash_ff static void ggml_compute_forward_flash_ff_f16( @@ -15600,6 +16900,7 @@ static void ggml_compute_forward_get_rel_pos( switch (src0->type) { case GGML_TYPE_F16: + case GGML_TYPE_BF16: { ggml_compute_forward_get_rel_pos_f16(params, dst); } break; @@ -16388,6 +17689,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm const bool masked = t != 0; ggml_compute_forward_flash_attn(params, masked, tensor); } break; + case GGML_OP_FLASH_ATTN_EXT: + { + ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor); + } break; case GGML_OP_FLASH_FF: { ggml_compute_forward_flash_ff(params, tensor); @@ -17400,6 +18705,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor GGML_ASSERT(false); // TODO: not implemented } break; case GGML_OP_FLASH_ATTN: + case GGML_OP_FLASH_ATTN_EXT: { struct ggml_tensor * flash_grad = NULL; if (src0->grad || src1->grad || tensor->src[2]->grad) { @@ -18172,6 +19478,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_ n_tasks = n_threads; } break; case GGML_OP_FLASH_ATTN: + case GGML_OP_FLASH_ATTN_EXT: { n_tasks = n_threads; } break; @@ -18458,7 +19765,10 @@ struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threa case GGML_OP_CPY: case GGML_OP_DUP: { - if (ggml_is_quantized(node->type)) { + if (ggml_is_quantized(node->type) || + // F16 -> BF16 and BF16 -> F16 copies go through intermediate F32 + (node->src[0]->type == GGML_TYPE_F16 && node->src[1] && node->src[1]->type == GGML_TYPE_BF16) || + (node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16)) { cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks; } } break; @@ -18537,7 +19847,8 @@ struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threa const int64_t ne10 = node->src[1]->ne[0]; // L const int64_t ne11 = node->src[1]->ne[1]; // Cin - if (node->src[0]->type == GGML_TYPE_F16 && + if ((node->src[0]->type == GGML_TYPE_F16 || + node->src[0]->type == GGML_TYPE_BF16) && node->src[1]->type == GGML_TYPE_F32) { cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02; cur += sizeof(ggml_fp16_t)*ne10*ne11; @@ -18573,8 +19884,17 @@ struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threa } else if (node->src[1]->type == GGML_TYPE_F16) { cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1) cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2 + } else if (node->src[1]->type == GGML_TYPE_BF16) { + cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1) + cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2 } } break; + case GGML_OP_FLASH_ATTN_EXT: + { + const int64_t ne00 = node->src[0]->ne[0]; // D + + cur = 2*sizeof(float)*ne00*n_tasks; // 2x head size + } break; case GGML_OP_FLASH_FF: { if (node->src[1]->type == GGML_TYPE_F32) { @@ -18583,6 +19903,9 @@ struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threa } else if (node->src[1]->type == GGML_TYPE_F16) { cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1) cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2 + } else if (node->src[1]->type == GGML_TYPE_BF16) { + cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1) + cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2 } } break; case GGML_OP_FLASH_ATTN_BACK: @@ -18596,6 +19919,9 @@ struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threa } else if (node->src[1]->type == GGML_TYPE_F16) { cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1) cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2 + } else if (node->src[1]->type == GGML_TYPE_BF16) { + cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1) + cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2 } } break; @@ -19372,7 +20698,9 @@ void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) { fprintf(fp, "%d", ggml_get_i32_1d(node, j)); } - else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) { + else if (node->type == GGML_TYPE_F32 || + node->type == GGML_TYPE_F16 || + node->type == GGML_TYPE_BF16) { fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j)); } else { @@ -20430,6 +21758,12 @@ size_t ggml_quantize_chunk( ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n); result = n * elemsize; } break; + case GGML_TYPE_BF16: + { + size_t elemsize = sizeof(ggml_bf16_t); + ggml_fp32_to_bf16_row(src + start, (ggml_bf16_t *)dst + start, n); + result = n * elemsize; + } break; case GGML_TYPE_F32: { size_t elemsize = sizeof(float); @@ -20626,7 +21960,7 @@ static void gguf_free_kv(struct gguf_kv * kv) { } struct gguf_context * gguf_init_empty(void) { - struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context)); + struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context)); memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic)); ctx->header.version = GGUF_VERSION; @@ -20671,7 +22005,7 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p bool ok = true; - struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context)); + struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context)); // read the header { @@ -20708,9 +22042,13 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p // read the kv pairs { - ctx->kv = GGML_MALLOC(ctx->header.n_kv * sizeof(struct gguf_kv)); + const uint64_t n_kv = ctx->header.n_kv; - for (uint64_t i = 0; i < ctx->header.n_kv; ++i) { + // header.n_kv will hold the actual value of pairs that were successfully read in the loop below + ctx->header.n_kv = 0; + ctx->kv = GGML_CALLOC(n_kv, sizeof(struct gguf_kv)); + + for (uint64_t i = 0; i < n_kv; ++i) { struct gguf_kv * kv = &ctx->kv[i]; //fprintf(stderr, "%s: reading kv %d\n", __func__, i); @@ -20759,7 +22097,7 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p return NULL; } - kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * gguf_type_size(kv->value.arr.type)); + kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, gguf_type_size(kv->value.arr.type)); ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset); } break; @@ -20773,7 +22111,7 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p return NULL; } - kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * sizeof(struct gguf_str)); + kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, sizeof(struct gguf_str)); for (uint64_t j = 0; j < kv->value.arr.n; ++j) { ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset); @@ -20789,6 +22127,8 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p if (!ok) { break; } + + ctx->header.n_kv++; } if (!ok) { @@ -20800,8 +22140,8 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p } // read the tensor infos - { - ctx->infos = GGML_MALLOC(ctx->header.n_tensors * sizeof(struct gguf_tensor_info)); + if (ctx->header.n_tensors > 0) { + ctx->infos = GGML_CALLOC(ctx->header.n_tensors, sizeof(struct gguf_tensor_info)); for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) { struct gguf_tensor_info * info = &ctx->infos[i]; @@ -20822,8 +22162,17 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset); ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset); + // TODO: return an error instead of crashing with GGML_ASSERT gguf_tensor_info_sanitize(info); + // make sure there is no duplicated tensor names + for (uint64_t j = 0; j < i; ++j) { + if (strcmp(info->name.data, ctx->infos[j].name.data) == 0) { + fprintf(stderr, "%s: duplicated tensor name %s\n", __func__, info->name.data); + ok = false; + } + } + if (!ok) { fprintf(stderr, "%s: failed to read tensor info\n", __func__); fclose(file); @@ -20992,7 +22341,7 @@ void gguf_free(struct gguf_context * ctx) { GGML_FREE(ctx->infos); } - GGML_ALIGNED_FREE(ctx); + GGML_FREE(ctx); } const char * gguf_type_name(enum gguf_type type) { @@ -21303,7 +22652,7 @@ void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_ty ctx->kv[idx].type = GGUF_TYPE_ARRAY; ctx->kv[idx].value.arr.type = type; ctx->kv[idx].value.arr.n = n; - ctx->kv[idx].value.arr.data = GGML_MALLOC(n*gguf_type_size(type)); + ctx->kv[idx].value.arr.data = GGML_CALLOC(n, gguf_type_size(type)); memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type)); } @@ -21313,7 +22662,7 @@ void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** ctx->kv[idx].type = GGUF_TYPE_ARRAY; ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING; ctx->kv[idx].value.arr.n = n; - ctx->kv[idx].value.arr.data = GGML_MALLOC(n*sizeof(struct gguf_str)); + ctx->kv[idx].value.arr.data = GGML_CALLOC(n, sizeof(struct gguf_str)); for (int i = 0; i < n; i++) { struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i]; str->n = strlen(data[i]); @@ -21340,7 +22689,7 @@ void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) { case GGUF_TYPE_ARRAY: { if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) { - const char ** data = GGML_MALLOC(src->kv[i].value.arr.n*sizeof(char *)); + const char ** data = GGML_CALLOC(src->kv[i].value.arr.n, sizeof(char *)); for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) { data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data; } @@ -21360,6 +22709,10 @@ void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) { void gguf_add_tensor( struct gguf_context * ctx, const struct ggml_tensor * tensor) { + if (gguf_find_tensor(ctx, tensor->name) != -1) { + GGML_ASSERT(false && "duplicated tensor name"); + } + const int idx = ctx->header.n_tensors; ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info)); @@ -21428,7 +22781,7 @@ struct gguf_buf { static struct gguf_buf gguf_buf_init(size_t size) { struct gguf_buf buf = { - /*buf.data =*/ size == 0 ? NULL : GGML_MALLOC(size), + /*buf.data =*/ size == 0 ? NULL : GGML_CALLOC(1, size), /*buf.size =*/ size, /*buf.offset =*/ 0, }; diff --git a/ggml.h b/ggml.h index 4d1d77fe9..fe6053822 100644 --- a/ggml.h +++ b/ggml.h @@ -326,14 +326,20 @@ extern "C" { // get ggml_status name string GGML_API GGML_CALL const char * ggml_status_to_string(enum ggml_status status); + // ieee 754-2008 half-precision float16 + // todo: make this not an integral type typedef uint16_t ggml_fp16_t; + GGML_API float ggml_fp16_to_fp32(ggml_fp16_t); + GGML_API ggml_fp16_t ggml_fp32_to_fp16(float); + GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t *, float *, int64_t); + GGML_API void ggml_fp32_to_fp16_row(const float *, ggml_fp16_t *, int64_t); - // convert FP16 <-> FP32 - GGML_API float ggml_fp16_to_fp32(ggml_fp16_t x); - GGML_API ggml_fp16_t ggml_fp32_to_fp16(float x); - - GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n); - GGML_API void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n); + // google brain half-precision bfloat16 + typedef struct { uint16_t bits; } ggml_bf16_t; + GGML_API ggml_bf16_t ggml_fp32_to_bf16(float); + GGML_API float ggml_bf16_to_fp32(ggml_bf16_t); // consider just doing << 16 + GGML_API void ggml_bf16_to_fp32_row(const ggml_bf16_t *, float *, int64_t); + GGML_API void ggml_fp32_to_bf16_row(const float *, ggml_bf16_t *, int64_t); struct ggml_object; struct ggml_context; @@ -370,6 +376,7 @@ extern "C" { GGML_TYPE_I64 = 27, GGML_TYPE_F64 = 28, GGML_TYPE_IQ1_M = 29, + GGML_TYPE_BF16 = 30, GGML_TYPE_COUNT, }; @@ -410,6 +417,7 @@ extern "C" { GGML_FTYPE_MOSTLY_IQ2_S = 21, // except 1d tensors GGML_FTYPE_MOSTLY_IQ4_XS = 22, // except 1d tensors GGML_FTYPE_MOSTLY_IQ1_M = 23, // except 1d tensors + GGML_FTYPE_MOSTLY_BF16 = 24, // except 1d tensors }; // available tensor operations: @@ -475,6 +483,7 @@ extern "C" { GGML_OP_LEAKY_RELU, GGML_OP_FLASH_ATTN, + GGML_OP_FLASH_ATTN_EXT, GGML_OP_FLASH_FF, GGML_OP_FLASH_ATTN_BACK, GGML_OP_SSM_CONV, @@ -762,6 +771,8 @@ extern "C" { // use this to compute the memory overhead of a tensor GGML_API size_t ggml_tensor_overhead(void); + GGML_API bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbytes); + // main GGML_API struct ggml_context * ggml_init(struct ggml_init_params params); @@ -1720,6 +1731,25 @@ extern "C" { struct ggml_tensor * v, bool masked); +#define GGML_KQ_MASK_PAD 32 + + // q: [n_embd, n_batch, n_head, 1] + // k: [n_embd, n_kv, n_head_kv, 1] + // v: [n_embd, n_kv, n_head_kv, 1] !! not transposed !! + // mask: [n_kv, n_batch_pad, 1, 1] !! n_batch_pad = GGML_PAD(n_batch, GGML_KQ_MASK_PAD) !! + // res: [n_embd, n_head, n_batch, 1] !! permuted !! + GGML_API struct ggml_tensor * ggml_flash_attn_ext( + struct ggml_context * ctx, + struct ggml_tensor * q, + struct ggml_tensor * k, + struct ggml_tensor * v, + struct ggml_tensor * mask, + float scale); + + GGML_API void ggml_flash_attn_ext_set_prec( + struct ggml_tensor * a, + enum ggml_prec prec); + GGML_API struct ggml_tensor * ggml_flash_attn_back( struct ggml_context * ctx, struct ggml_tensor * q, diff --git a/ggml_vk_generate_shaders.py b/ggml_vk_generate_shaders.py index 5dd700963..1d9a0cc82 100644 --- a/ggml_vk_generate_shaders.py +++ b/ggml_vk_generate_shaders.py @@ -1,11 +1,14 @@ #!/usr/bin/env python +import logging import argparse import asyncio import os import sys from tempfile import gettempdir, NamedTemporaryFile +logger = logging.getLogger("ggml-vk-generate-shaders") + shader_f32 = """ #define FLOAT_TYPE float """ @@ -2498,7 +2501,7 @@ async def string_to_spv(name, code, defines, fp16=True): stdout, stderr = await proc.communicate() - print(" ".join(cmd)) + logger.info(" ".join(cmd)) if proc.returncode: raise RuntimeError(f"{name=} {f.name=} {stdout=} {stderr=}") @@ -2507,7 +2510,7 @@ async def string_to_spv(name, code, defines, fp16=True): cmd.extend([f"-D{key}={value}" for key, value in defines.items()]) code_with_lines = "\n".join([f"{i + 1}: {line}" for i, line in enumerate(preprocessed_code.splitlines())]) - print(f"ERROR compiling {name}\n\n{code_with_lines}\n\n{error}") + logger.error(f"cannot compile {name}\n\n{code_with_lines}\n\n{error}") f.close() os.remove(f.name) sys.exit(proc.returncode) @@ -2520,7 +2523,7 @@ async def string_to_spv(name, code, defines, fp16=True): async def main(): - print("ggml_vulkan: Generating and compiling shaders to SPIR-V") + logger.info("ggml_vulkan: Generating and compiling shaders to SPIR-V") tasks = [] @@ -2768,9 +2771,12 @@ if __name__ == "__main__": parser = argparse.ArgumentParser(description="GGML Vulkan Shader Generator") parser.add_argument("--glslc", help="Path to glslc") + parser.add_argument("--verbose", action="store_true", help="increase output verbosity") args = parser.parse_args() + logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO) + if args.glslc: GLSLC = args.glslc diff --git a/gguf-py/examples/reader.py b/gguf-py/examples/reader.py index 62e0769da..d841048c6 100644 --- a/gguf-py/examples/reader.py +++ b/gguf-py/examples/reader.py @@ -1,8 +1,10 @@ #!/usr/bin/env python3 +import logging import sys from pathlib import Path from gguf.gguf_reader import GGUFReader +logger = logging.getLogger("reader") sys.path.insert(0, str(Path(__file__).parent.parent)) @@ -18,28 +20,28 @@ def read_gguf_file(gguf_file_path): reader = GGUFReader(gguf_file_path) # List all key-value pairs in a columnized format - print("Key-Value Pairs:") + print("Key-Value Pairs:") # noqa: NP100 max_key_length = max(len(key) for key in reader.fields.keys()) for key, field in reader.fields.items(): value = field.parts[field.data[0]] - print(f"{key:{max_key_length}} : {value}") - print("----") + print(f"{key:{max_key_length}} : {value}") # noqa: NP100 + print("----") # noqa: NP100 # List all tensors - print("Tensors:") + print("Tensors:") # noqa: NP100 tensor_info_format = "{:<30} | Shape: {:<15} | Size: {:<12} | Quantization: {}" - print(tensor_info_format.format("Tensor Name", "Shape", "Size", "Quantization")) - print("-" * 80) + print(tensor_info_format.format("Tensor Name", "Shape", "Size", "Quantization")) # noqa: NP100 + print("-" * 80) # noqa: NP100 for tensor in reader.tensors: shape_str = "x".join(map(str, tensor.shape)) size_str = str(tensor.n_elements) quantization_str = tensor.tensor_type.name - print(tensor_info_format.format(tensor.name, shape_str, size_str, quantization_str)) + print(tensor_info_format.format(tensor.name, shape_str, size_str, quantization_str)) # noqa: NP100 if __name__ == '__main__': if len(sys.argv) < 2: - print("Usage: reader.py ") + logger.info("Usage: reader.py ") sys.exit(1) gguf_file_path = sys.argv[1] read_gguf_file(gguf_file_path) diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py index 06cb26a7d..6e968fc4e 100644 --- a/gguf-py/gguf/constants.py +++ b/gguf-py/gguf/constants.py @@ -1,6 +1,5 @@ from __future__ import annotations -import sys from enum import Enum, IntEnum, auto from typing import Any @@ -72,6 +71,7 @@ class Keys: class Tokenizer: MODEL = "tokenizer.ggml.model" + PRE = "tokenizer.ggml.pre" LIST = "tokenizer.ggml.tokens" TOKEN_TYPE = "tokenizer.ggml.token_type" TOKEN_TYPE_COUNT = "tokenizer.ggml.token_type_count" # for BERT-style token types @@ -124,6 +124,7 @@ class MODEL_ARCH(IntEnum): QWEN2 = auto() QWEN2MOE = auto() PHI2 = auto() + PHI3 = auto() PLAMO = auto() CODESHELL = auto() ORION = auto() @@ -200,6 +201,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = { MODEL_ARCH.QWEN2: "qwen2", MODEL_ARCH.QWEN2MOE: "qwen2moe", MODEL_ARCH.PHI2: "phi2", + MODEL_ARCH.PHI3: "phi3", MODEL_ARCH.PLAMO: "plamo", MODEL_ARCH.CODESHELL: "codeshell", MODEL_ARCH.ORION: "orion", @@ -550,6 +552,20 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_TENSOR.FFN_DOWN, MODEL_TENSOR.FFN_UP, ], + MODEL_ARCH.PHI3: [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.OUTPUT_NORM, + MODEL_TENSOR.OUTPUT, + MODEL_TENSOR.ATTN_NORM, + MODEL_TENSOR.ATTN_QKV, + MODEL_TENSOR.ATTN_Q, + MODEL_TENSOR.ATTN_K, + MODEL_TENSOR.ATTN_V, + MODEL_TENSOR.ATTN_OUT, + MODEL_TENSOR.FFN_NORM, + MODEL_TENSOR.FFN_DOWN, + MODEL_TENSOR.FFN_UP, + ], MODEL_ARCH.CODESHELL: [ MODEL_TENSOR.TOKEN_EMBD, MODEL_TENSOR.POS_EMBD, @@ -801,6 +817,7 @@ class GGMLQuantizationType(IntEnum): I64 = 27 F64 = 28 IQ1_M = 29 + BF16 = 30 class GGUFEndian(IntEnum): @@ -837,8 +854,7 @@ class GGUFValueType(IntEnum): return GGUFValueType.INT32 # TODO: need help with 64-bit types in Python else: - print("Unknown type:", type(val)) - sys.exit() + raise ValueError(f"Unknown type: {type(val)}") # Note: Does not support GGML_QKK_64 @@ -873,6 +889,7 @@ GGML_QUANT_SIZES = { GGMLQuantizationType.I64: (1, 8), GGMLQuantizationType.F64: (1, 8), GGMLQuantizationType.IQ1_M: (256, QK_K // 8 + QK_K // 16 + QK_K // 32), + GGMLQuantizationType.BF16: (1, 2), } @@ -924,6 +941,7 @@ KEY_SSM_TIME_STEP_RANK = Keys.SSM.TIME_STEP_RANK # tokenization KEY_TOKENIZER_MODEL = Keys.Tokenizer.MODEL +KEY_TOKENIZER_PRE = Keys.Tokenizer.PRE KEY_TOKENIZER_LIST = Keys.Tokenizer.LIST KEY_TOKENIZER_TOKEN_TYPE = Keys.Tokenizer.TOKEN_TYPE KEY_TOKENIZER_SCORES = Keys.Tokenizer.SCORES diff --git a/gguf-py/gguf/gguf_reader.py b/gguf-py/gguf/gguf_reader.py index 33afac552..db8525d85 100644 --- a/gguf-py/gguf/gguf_reader.py +++ b/gguf-py/gguf/gguf_reader.py @@ -4,6 +4,7 @@ # from __future__ import annotations +import logging import os from collections import OrderedDict from typing import Any, Literal, NamedTuple, TypeVar, Union @@ -27,6 +28,7 @@ from gguf.constants import ( GGUFValueType, ) +logger = logging.getLogger(__name__) READER_SUPPORTED_VERSIONS = [2, GGUF_VERSION] @@ -139,8 +141,13 @@ class GGUFReader: def _push_field(self, field: ReaderField, skip_sum: bool = False) -> int: if field.name in self.fields: - raise KeyError(f'Duplicate {field.name} already in list at offset {field.offset}') - self.fields[field.name] = field + # TODO: add option to generate error on duplicate keys + # raise KeyError(f'Duplicate {field.name} already in list at offset {field.offset}') + + logger.warning(f'Duplicate key {field.name} at offset {field.offset}') + self.fields[field.name + '_{}'.format(field.offset)] = field + else: + self.fields[field.name] = field return 0 if skip_sum else sum(int(part.nbytes) for part in field.parts) def _get_str(self, offset: int) -> tuple[npt.NDArray[np.uint64], npt.NDArray[np.uint8]]: @@ -234,8 +241,14 @@ class GGUFReader: def _build_tensors(self, start_offs: int, fields: list[ReaderField]) -> None: tensors = [] + tensor_names = set() # keep track of name to prevent duplicated tensors for field in fields: _name_len, name_data, _n_dims, dims, raw_dtype, offset_tensor = field.parts + # check if there's any tensor having same name already in the list + tensor_name = str(bytes(name_data), encoding = 'utf-8') + if tensor_name in tensor_names: + raise ValueError(f'Found duplicated tensor with name {tensor_name}') + tensor_names.add(tensor_name) ggml_type = GGMLQuantizationType(raw_dtype[0]) n_elems = np.prod(dims) block_size, type_size = GGML_QUANT_SIZES[ggml_type] @@ -267,7 +280,7 @@ class GGUFReader: item_count = n_bytes item_type = np.uint8 tensors.append(ReaderTensor( - name = str(bytes(name_data), encoding = 'utf-8'), + name = tensor_name, tensor_type = ggml_type, shape = dims, n_elements = n_elems, diff --git a/gguf-py/gguf/gguf_writer.py b/gguf-py/gguf/gguf_writer.py index e3dbca454..d9cfbf711 100644 --- a/gguf-py/gguf/gguf_writer.py +++ b/gguf-py/gguf/gguf_writer.py @@ -1,5 +1,6 @@ from __future__ import annotations +import logging import os import shutil import struct @@ -24,6 +25,8 @@ from .constants import ( TokenType, ) +logger = logging.getLogger(__name__) + class WriterState(Enum): EMPTY = auto() @@ -63,10 +66,11 @@ class GGUFWriter: self.kv_data_count = 0 self.ti_data = bytearray() self.ti_data_count = 0 + self.ti_names = set() self.use_temp_file = use_temp_file self.temp_file = None self.tensors = [] - print("gguf: This GGUF file is for {0} Endian only".format( + logger.info("gguf: This GGUF file is for {0} Endian only".format( "Big" if self.endianess == GGUFEndian.BIG else "Little", )) self.state = WriterState.EMPTY @@ -197,6 +201,10 @@ class GGUFWriter: if self.state is not WriterState.EMPTY: raise ValueError(f'Expected output file to be empty, got {self.state}') + if name in self.ti_names: + raise ValueError(f'Duplicated tensor name {name}') + self.ti_names.add(name) + encoded_name = name.encode("utf8") self.ti_data += self._pack("Q", len(encoded_name)) self.ti_data += encoded_name @@ -422,6 +430,9 @@ class GGUFWriter: def add_tokenizer_model(self, model: str) -> None: self.add_string(Keys.Tokenizer.MODEL, model) + def add_tokenizer_pre(self, pre: str) -> None: + self.add_string(Keys.Tokenizer.PRE, pre) + def add_token_list(self, tokens: Sequence[str] | Sequence[bytes] | Sequence[bytearray]) -> None: self.add_array(Keys.Tokenizer.LIST, tokens) diff --git a/gguf-py/gguf/tensor_mapping.py b/gguf-py/gguf/tensor_mapping.py index 10de36fa8..e5750d419 100644 --- a/gguf-py/gguf/tensor_mapping.py +++ b/gguf-py/gguf/tensor_mapping.py @@ -117,6 +117,7 @@ class TensorNameMap: "h.{bid}.attn.c_attn", # gpt2 "transformer.h.{bid}.mixer.Wqkv", # phi2 "encoder.layers.{bid}.attn.Wqkv", # nomic-bert + "model.layers.{bid}.self_attn.qkv_proj" # phi3 ), # Attention query @@ -234,6 +235,7 @@ class TensorNameMap: "h.{bid}.mlp.c_fc", # gpt2 "transformer.h.{bid}.mlp.fc1", # phi2 "model.layers.{bid}.mlp.fc1", # phi2 + "model.layers.{bid}.mlp.gate_up_proj", # phi3 "model.layers.layers.{bid}.mlp.up_proj", # plamo "model.layers.{bid}.feed_forward.w3", # internlm2 "encoder.layers.{bid}.mlp.fc11", # nomic-bert diff --git a/gguf-py/gguf/vocab.py b/gguf-py/gguf/vocab.py index 378eaecad..c97a78f39 100644 --- a/gguf-py/gguf/vocab.py +++ b/gguf-py/gguf/vocab.py @@ -1,13 +1,15 @@ from __future__ import annotations +import logging import json import os -import sys from pathlib import Path from typing import Any, Callable from .gguf_writer import GGUFWriter +logger = logging.getLogger(__name__) + class SpecialVocab: merges: list[str] @@ -40,38 +42,29 @@ class SpecialVocab: def add_to_gguf(self, gw: GGUFWriter, quiet: bool = False) -> None: if self.merges: if not quiet: - print(f'gguf: Adding {len(self.merges)} merge(s).') + logger.info(f'Adding {len(self.merges)} merge(s).') gw.add_token_merges(self.merges) elif self.load_merges: - print( - 'gguf: WARNING: Adding merges requested but no merges found, output may be non-functional.', - file = sys.stderr, - ) + logger.warning('Adding merges requested but no merges found, output may be non-functional.') for typ, tokid in self.special_token_ids.items(): id_handler: Callable[[int], None] | None = getattr(gw, f'add_{typ}_token_id', None) if id_handler is None: - print( - f'gguf: WARNING: No handler for special token type {typ} with id {tokid} - skipping', - file = sys.stderr, - ) + logger.warning(f'No handler for special token type {typ} with id {tokid} - skipping') continue if not quiet: - print(f'gguf: Setting special token type {typ} to {tokid}') + logger.info(f'Setting special token type {typ} to {tokid}') id_handler(tokid) for typ, value in self.add_special_token.items(): add_handler: Callable[[bool], None] | None = getattr(gw, f'add_add_{typ}_token', None) if add_handler is None: - print( - f'gguf: WARNING: No handler for add_{typ}_token with value {value} - skipping', - file = sys.stderr, - ) + logger.warning(f'No handler for add_{typ}_token with value {value} - skipping') continue if not quiet: - print(f'gguf: Setting add_{typ}_token to {value}') + logger.info(f'Setting add_{typ}_token to {value}') add_handler(value) if self.chat_template is not None: if not quiet: - print(f'gguf: Setting chat_template to {self.chat_template}') + logger.info(f'Setting chat_template to {self.chat_template}') gw.add_chat_template(self.chat_template) def _load(self, path: Path) -> None: @@ -99,10 +92,7 @@ class SpecialVocab: continue parts = line.split(None, 3) if len(parts) != 2: - print( - f'gguf: WARNING: {merges_file.name}: Line {line_num}: Entry malformed, ignoring', - file = sys.stderr, - ) + logger.warning(f'{merges_file.name}: Line {line_num}: Entry malformed, ignoring') continue merges.append(f'{parts[0]} {parts[1]}') self.merges = merges @@ -118,10 +108,7 @@ class SpecialVocab: return self.special_token_ids[typ] = tid return - print( - f'gguf: WARNING: Special token type {typ}, id {tid} out of range, must be under {self.n_vocab} - skipping', - file = sys.stderr, - ) + logger.warning(f'Special token type {typ}, id {tid} out of range, must be under {self.n_vocab} - skipping') def _try_load_from_tokenizer_json(self, path: Path) -> bool: tokenizer_file = path / 'tokenizer.json' @@ -144,10 +131,7 @@ class SpecialVocab: if chat_template is None or isinstance(chat_template, (str, list)): self.chat_template = chat_template else: - print( - f'gguf: WARNING: Bad type for chat_template field in {tokenizer_config_file!r} - ignoring', - file = sys.stderr - ) + logger.warning(f'Bad type for chat_template field in {tokenizer_config_file!r} - ignoring') for typ in self.special_token_types: add_entry = tokenizer_config.get(f'add_{typ}_token') if isinstance(add_entry, bool): diff --git a/gguf-py/scripts/gguf-convert-endian.py b/gguf-py/scripts/gguf-convert-endian.py index 10a16ad06..b698af0fe 100755 --- a/gguf-py/scripts/gguf-convert-endian.py +++ b/gguf-py/scripts/gguf-convert-endian.py @@ -1,9 +1,11 @@ #!/usr/bin/env python3 from __future__ import annotations +import logging import argparse import os import sys +from tqdm import tqdm from pathlib import Path import numpy as np @@ -14,6 +16,8 @@ if "NO_LOCAL_GGUF" not in os.environ and (Path(__file__).parent.parent.parent / import gguf +logger = logging.getLogger("gguf-convert-endian") + def convert_byteorder(reader: gguf.GGUFReader, args: argparse.Namespace) -> None: if np.uint32(1) == np.uint32(1).newbyteorder("<"): @@ -29,11 +33,11 @@ def convert_byteorder(reader: gguf.GGUFReader, args: argparse.Namespace) -> None else: file_endian = host_endian order = host_endian if args.order == "native" else args.order - print(f"* Host is {host_endian.upper()} endian, GGUF file seems to be {file_endian.upper()} endian") + logger.info(f"* Host is {host_endian.upper()} endian, GGUF file seems to be {file_endian.upper()} endian") if file_endian == order: - print(f"* File is already {order.upper()} endian. Nothing to do.") + logger.info(f"* File is already {order.upper()} endian. Nothing to do.") sys.exit(0) - print("* Checking tensors for conversion compatibility") + logger.info("* Checking tensors for conversion compatibility") for tensor in reader.tensors: if tensor.tensor_type not in ( gguf.GGMLQuantizationType.F32, @@ -41,51 +45,64 @@ def convert_byteorder(reader: gguf.GGUFReader, args: argparse.Namespace) -> None gguf.GGMLQuantizationType.Q8_0, ): raise ValueError(f"Cannot handle type {tensor.tensor_type.name} for tensor {repr(tensor.name)}") - print(f"* Preparing to convert from {file_endian.upper()} to {order.upper()}") + logger.info(f"* Preparing to convert from {file_endian.upper()} to {order.upper()}") if args.dry_run: return - print("\n*** Warning *** Warning *** Warning **") - print("* This conversion process may damage the file. Ensure you have a backup.") + logger.warning("*** Warning *** Warning *** Warning **") + logger.warning("* This conversion process may damage the file. Ensure you have a backup.") if order != host_endian: - print("* Requested endian differs from host, you will not be able to load the model on this machine.") - print("* The file will be modified immediately, so if conversion fails or is interrupted") - print("* the file will be corrupted. Enter exactly YES if you are positive you want to proceed:") + logger.warning("* Requested endian differs from host, you will not be able to load the model on this machine.") + logger.warning("* The file will be modified immediately, so if conversion fails or is interrupted") + logger.warning("* the file will be corrupted. Enter exactly YES if you are positive you want to proceed:") response = input("YES, I am sure> ") if response != "YES": - print("You didn't enter YES. Okay then, see ya!") + logger.warning("You didn't enter YES. Okay then, see ya!") sys.exit(0) - print(f"\n* Converting fields ({len(reader.fields)})") + logger.info(f"* Converting fields ({len(reader.fields)})") for idx, field in enumerate(reader.fields.values()): - print(f"- {idx:4}: Converting field {repr(field.name)}, part count: {len(field.parts)}") + logger.info(f"- {idx:4}: Converting field {repr(field.name)}, part count: {len(field.parts)}") for part in field.parts: part.byteswap(inplace=True) - print(f"\n* Converting tensors ({len(reader.tensors)})") - for idx, tensor in enumerate(reader.tensors): - print( - f" - {idx:4}: Converting tensor {repr(tensor.name)}, type={tensor.tensor_type.name}, " - f"elements={tensor.n_elements}... ", - end="", + logger.info(f"* Converting tensors ({len(reader.tensors)})") + + for idx, tensor in enumerate(pbar := tqdm(reader.tensors, desc="Converting tensor")): + log_message = ( + f"Converting tensor {repr(tensor.name)}, " + f"type={tensor.tensor_type.name}, " + f"elements={tensor.n_elements} " ) - tensor_type = tensor.tensor_type + + # Byte-swap each part of the tensor's field for part in tensor.field.parts: part.byteswap(inplace=True) - if tensor_type != gguf.GGMLQuantizationType.Q8_0: + + # Byte-swap tensor data if necessary + if tensor.tensor_type == gguf.GGMLQuantizationType.Q8_0: + # Handle Q8_0 tensor blocks (block_q8_0) + # Specific handling of block_q8_0 is required. + # Each block_q8_0 consists of an f16 delta (scaling factor) followed by 32 int8 quantizations. + + block_size = 34 # 34 bytes = + 32 * + + n_blocks = len(tensor.data) // block_size + for block_num in (inner_pbar := tqdm(range(n_blocks), desc="Byte-swapping Blocks", leave=False)): + block_offs = block_num * block_size + + # Byte-Swap f16 sized delta field + delta = tensor.data[block_offs:block_offs + 2].view(dtype=np.uint16) + delta.byteswap(inplace=True) + + # Byte-Swap Q8 weights + if block_num % 100000 == 0: + inner_pbar.set_description(f"Byte-swapping Blocks [{(n_blocks - block_num) // n_blocks}]") + + else: + # Handle other tensor types tensor.data.byteswap(inplace=True) - print() - continue - # A Q8_0 block consists of a f16 delta followed by 32 int8 quants, so 34 bytes - block_size = 34 - n_blocks = len(tensor.data) // block_size - for block_num in range(n_blocks): - block_offs = block_num * block_size - # I know I said f16, but it doesn't matter here - any simple 16 bit type works. - delta = tensor.data[block_offs:block_offs + 2].view(dtype=np.uint16) - delta.byteswap(inplace=True) - if block_num % 100000 == 0: - print(f"[{(n_blocks - block_num) // 1000}K]", end="") - sys.stdout.flush() - print() - print("* Completion") + + pbar.set_description(log_message) + + logger.info("* Completion") def main() -> None: @@ -102,8 +119,13 @@ def main() -> None: "--dry-run", action="store_true", help="Don't actually change anything", ) + parser.add_argument("--verbose", action="store_true", help="increase output verbosity") + args = parser.parse_args(None if len(sys.argv) > 1 else ["--help"]) - print(f'* Loading: {args.model}') + + logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO) + + logger.info(f'* Loading: {args.model}') reader = gguf.GGUFReader(args.model, 'r' if args.dry_run else 'r+') convert_byteorder(reader, args) diff --git a/gguf-py/scripts/gguf-dump.py b/gguf-py/scripts/gguf-dump.py index dbf891508..2d3c3943f 100755 --- a/gguf-py/scripts/gguf-dump.py +++ b/gguf-py/scripts/gguf-dump.py @@ -1,6 +1,7 @@ #!/usr/bin/env python3 from __future__ import annotations +import logging import argparse import os import sys @@ -15,6 +16,8 @@ if "NO_LOCAL_GGUF" not in os.environ and (Path(__file__).parent.parent.parent / from gguf import GGUFReader, GGUFValueType # noqa: E402 +logger = logging.getLogger("gguf-dump") + def get_file_host_endian(reader: GGUFReader) -> tuple[str, str]: host_endian = 'LITTLE' if np.uint32(1) == np.uint32(1).newbyteorder("<") else 'BIG' @@ -29,8 +32,8 @@ def get_file_host_endian(reader: GGUFReader) -> tuple[str, str]: # please see the comments in the modify_gguf.py example. def dump_metadata(reader: GGUFReader, args: argparse.Namespace) -> None: host_endian, file_endian = get_file_host_endian(reader) - print(f'* File is {file_endian} endian, script is running on a {host_endian} endian host.') - print(f'\n* Dumping {len(reader.fields)} key/value pair(s)') + print(f'* File is {file_endian} endian, script is running on a {host_endian} endian host.') # noqa: NP100 + print(f'* Dumping {len(reader.fields)} key/value pair(s)') # noqa: NP100 for n, field in enumerate(reader.fields.values(), 1): if not field.types: pretty_type = 'N/A' @@ -39,20 +42,21 @@ def dump_metadata(reader: GGUFReader, args: argparse.Namespace) -> None: pretty_type = '[' * nest_count + str(field.types[-1].name) + ']' * nest_count else: pretty_type = str(field.types[-1].name) - print(f' {n:5}: {pretty_type:10} | {len(field.data):8} | {field.name}', end = '') + + log_message = f' {n:5}: {pretty_type:10} | {len(field.data):8} | {field.name}' if len(field.types) == 1: curr_type = field.types[0] if curr_type == GGUFValueType.STRING: - print(' = {0}'.format(repr(str(bytes(field.parts[-1]), encoding='utf8')[:60])), end = '') + log_message += ' = {0}'.format(repr(str(bytes(field.parts[-1]), encoding='utf8')[:60])) elif field.types[0] in reader.gguf_scalar_to_np: - print(' = {0}'.format(field.parts[-1][0]), end = '') - print() + log_message += ' = {0}'.format(field.parts[-1][0]) + print(log_message) # noqa: NP100 if args.no_tensors: return - print(f'\n* Dumping {len(reader.tensors)} tensor(s)') + print(f'* Dumping {len(reader.tensors)} tensor(s)') # noqa: NP100 for n, tensor in enumerate(reader.tensors, 1): prettydims = ', '.join('{0:5}'.format(d) for d in list(tensor.shape) + [1] * (4 - len(tensor.shape))) - print(f' {n:5}: {tensor.n_elements:10} | {prettydims} | {tensor.tensor_type.name:7} | {tensor.name}') + print(f' {n:5}: {tensor.n_elements:10} | {prettydims} | {tensor.tensor_type.name:7} | {tensor.name}') # noqa: NP100 def dump_metadata_json(reader: GGUFReader, args: argparse.Namespace) -> None: @@ -103,10 +107,17 @@ def main() -> None: parser.add_argument("--no-tensors", action="store_true", help="Don't dump tensor metadata") parser.add_argument("--json", action="store_true", help="Produce JSON output") parser.add_argument("--json-array", action="store_true", help="Include full array values in JSON output (long)") + parser.add_argument("--verbose", action="store_true", help="increase output verbosity") + args = parser.parse_args(None if len(sys.argv) > 1 else ["--help"]) + + logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO) + if not args.json: - print(f'* Loading: {args.model}') + logger.info(f'* Loading: {args.model}') + reader = GGUFReader(args.model, 'r') + if args.json: dump_metadata_json(reader, args) else: diff --git a/gguf-py/scripts/gguf-set-metadata.py b/gguf-py/scripts/gguf-set-metadata.py index 3ebdfa898..e35b651b8 100755 --- a/gguf-py/scripts/gguf-set-metadata.py +++ b/gguf-py/scripts/gguf-set-metadata.py @@ -1,4 +1,5 @@ #!/usr/bin/env python3 +import logging import argparse import os import sys @@ -10,6 +11,8 @@ if "NO_LOCAL_GGUF" not in os.environ and (Path(__file__).parent.parent.parent / from gguf import GGUFReader # noqa: E402 +logger = logging.getLogger("gguf-set-metadata") + def minimal_example(filename: str) -> None: reader = GGUFReader(filename, 'r+') @@ -41,36 +44,33 @@ def minimal_example(filename: str) -> None: def set_metadata(reader: GGUFReader, args: argparse.Namespace) -> None: field = reader.get_field(args.key) if field is None: - print(f'! Field {repr(args.key)} not found', file = sys.stderr) + logger.error(f'! Field {repr(args.key)} not found') sys.exit(1) # Note that field.types is a list of types. This is because the GGUF # format supports arrays. For example, an array of UINT32 would # look like [GGUFValueType.ARRAY, GGUFValueType.UINT32] handler = reader.gguf_scalar_to_np.get(field.types[0]) if field.types else None if handler is None: - print( - f'! This tool only supports changing simple values, {repr(args.key)} has unsupported type {field.types}', - file = sys.stderr, - ) + logger.error(f'! This tool only supports changing simple values, {repr(args.key)} has unsupported type {field.types}') sys.exit(1) current_value = field.parts[field.data[0]][0] new_value = handler(args.value) - print(f'* Preparing to change field {repr(args.key)} from {current_value} to {new_value}') + logger.info(f'* Preparing to change field {repr(args.key)} from {current_value} to {new_value}') if current_value == new_value: - print(f'- Key {repr(args.key)} already set to requested value {current_value}') + logger.info(f'- Key {repr(args.key)} already set to requested value {current_value}') sys.exit(0) if args.dry_run: sys.exit(0) if not args.force: - print('*** Warning *** Warning *** Warning **') - print('* Changing fields in a GGUF file can make it unusable. Proceed at your own risk.') - print('* Enter exactly YES if you are positive you want to proceed:') + logger.warning('*** Warning *** Warning *** Warning **') + logger.warning('* Changing fields in a GGUF file can make it unusable. Proceed at your own risk.') + logger.warning('* Enter exactly YES if you are positive you want to proceed:') response = input('YES, I am sure> ') if response != 'YES': - print("You didn't enter YES. Okay then, see ya!") + logger.info("You didn't enter YES. Okay then, see ya!") sys.exit(0) field.parts[field.data[0]][0] = new_value - print('* Field changed. Successful completion.') + logger.info('* Field changed. Successful completion.') def main() -> None: @@ -80,8 +80,13 @@ def main() -> None: parser.add_argument("value", type=str, help="Metadata value to set") parser.add_argument("--dry-run", action="store_true", help="Don't actually change anything") parser.add_argument("--force", action="store_true", help="Change the field without confirmation") + parser.add_argument("--verbose", action="store_true", help="increase output verbosity") + args = parser.parse_args(None if len(sys.argv) > 1 else ["--help"]) - print(f'* Loading: {args.model}') + + logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO) + + logger.info(f'* Loading: {args.model}') reader = GGUFReader(args.model, 'r' if args.dry_run else 'r+') set_metadata(reader, args) diff --git a/grammars/README.md b/grammars/README.md index c924e8d46..2b8384d9d 100644 --- a/grammars/README.md +++ b/grammars/README.md @@ -51,7 +51,7 @@ single-line ::= [^\n]+ "\n"` ## Sequences and Alternatives -The order of symbols in a sequence matter. For example, in `"1. " move " " move "\n"`, the `"1. "` must come before the first `move`, etc. +The order of symbols in a sequence matters. For example, in `"1. " move " " move "\n"`, the `"1. "` must come before the first `move`, etc. Alternatives, denoted by `|`, give different sequences that are acceptable. For example, in `move ::= pawn | nonpawn | castle`, `move` can be a `pawn` move, a `nonpawn` move, or a `castle`. diff --git a/llama.cpp b/llama.cpp index a25d115c1..9c72d118f 100644 --- a/llama.cpp +++ b/llama.cpp @@ -75,6 +75,7 @@ #include #include #include +#include #include #include #include @@ -107,7 +108,6 @@ #define LLAMA_MAX_NODES 8192 #define LLAMA_MAX_EXPERTS 60 - // // logging // @@ -211,6 +211,7 @@ enum llm_arch { LLM_ARCH_QWEN2, LLM_ARCH_QWEN2MOE, LLM_ARCH_PHI2, + LLM_ARCH_PHI3, LLM_ARCH_PLAMO, LLM_ARCH_CODESHELL, LLM_ARCH_ORION, @@ -246,6 +247,7 @@ static const std::map LLM_ARCH_NAMES = { { LLM_ARCH_QWEN2, "qwen2" }, { LLM_ARCH_QWEN2MOE, "qwen2moe" }, { LLM_ARCH_PHI2, "phi2" }, + { LLM_ARCH_PHI3, "phi3" }, { LLM_ARCH_PLAMO, "plamo" }, { LLM_ARCH_CODESHELL, "codeshell" }, { LLM_ARCH_ORION, "orion" }, @@ -314,6 +316,7 @@ enum llm_kv { LLM_KV_SSM_TIME_STEP_RANK, LLM_KV_TOKENIZER_MODEL, + LLM_KV_TOKENIZER_PRE, LLM_KV_TOKENIZER_LIST, LLM_KV_TOKENIZER_TOKEN_TYPE, LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, @@ -390,6 +393,7 @@ static const std::map LLM_KV_NAMES = { { LLM_KV_SSM_TIME_STEP_RANK, "%s.ssm.time_step_rank" }, { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" }, + { LLM_KV_TOKENIZER_PRE, "tokenizer.ggml.pre" }, { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" }, { LLM_KV_TOKENIZER_TOKEN_TYPE, "tokenizer.ggml.token_type" }, { LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, "tokenizer.ggml.token_type_count" }, @@ -793,6 +797,23 @@ static const std::map> LLM_TENSOR_NA { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, + { + LLM_ARCH_PHI3, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, { LLM_ARCH_PLAMO, { @@ -1824,7 +1845,7 @@ struct llama_hparams { float f_logit_scale = 0.0f; bool causal_attn = true; - bool need_kq_pos = false; + bool use_alibi = false; // currently, we need KQ_pos data for ALiBi-based models enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE; enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE; @@ -1914,6 +1935,7 @@ struct llama_cparams { bool embeddings; bool causal_attn; bool offload_kqv; + bool flash_attn; enum llama_pooling_type pooling_type; @@ -2017,8 +2039,8 @@ struct llama_kv_cache { bool has_shift = false; bool do_defrag = false; bool do_copy = false; - // with recurrent state models, a cell can hold the state for more than one past token - bool recurrent = false; + bool recurrent = false; // with recurrent state models, a cell can hold the state for more than one past token + bool v_trans = true; // the value tensor is transposed // Note: The value of head isn't only used to optimize searching // for a free KV slot. llama_decode_internal also uses it, so it @@ -2095,7 +2117,8 @@ struct llama_vocab { ttype type; }; - enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM; + enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM; + enum llama_vocab_pre_type type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT; std::unordered_map token_to_id; std::vector id_to_token; @@ -2316,11 +2339,14 @@ struct llama_context { static bool llama_kv_cache_init( struct llama_kv_cache & cache, - const llama_model & model, + const llama_context * ctx, ggml_type type_k, ggml_type type_v, uint32_t kv_size, bool offload) { + const llama_model & model = ctx->model; + const llama_cparams & cparams = ctx->cparams; + const struct llama_hparams & hparams = model.hparams; const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s(); @@ -2331,8 +2357,9 @@ static bool llama_kv_cache_init( // TODO: find a nicer way to add other recurrent model architectures cache.recurrent = model.arch == LLM_ARCH_MAMBA; + cache.v_trans = !cparams.flash_attn; - // TODO: support mixed reccurent Transformer architectues + // TODO: support mixed recurrent Transformer architectures // NOTE: (!a || b) is a logical implication (a -> b) GGML_ASSERT(!cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_s()); GGML_ASSERT(!cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_s()); @@ -2543,6 +2570,10 @@ static void llama_kv_cache_clear(struct llama_kv_cache & cache) { } cache.head = 0; cache.used = 0; + + for (auto & buf : cache.bufs) { + ggml_backend_buffer_clear(buf, 0); + } } static bool llama_kv_cache_seq_rm( @@ -2863,6 +2894,7 @@ namespace GGUFMeta { case LLAMA_KV_OVERRIDE_TYPE_BOOL: return "bool"; case LLAMA_KV_OVERRIDE_TYPE_INT: return "int"; case LLAMA_KV_OVERRIDE_TYPE_FLOAT: return "float"; + case LLAMA_KV_OVERRIDE_TYPE_STR: return "str"; } return "unknown"; } @@ -2874,13 +2906,16 @@ namespace GGUFMeta { __func__, override_type_to_str(ovrd->tag), ovrd->key); switch (ovrd->tag) { case LLAMA_KV_OVERRIDE_TYPE_BOOL: { - LLAMA_LOG_INFO("%s\n", ovrd->bool_value ? "true" : "false"); + LLAMA_LOG_INFO("%s\n", ovrd->val_bool ? "true" : "false"); } break; case LLAMA_KV_OVERRIDE_TYPE_INT: { - LLAMA_LOG_INFO("%" PRId64 "\n", ovrd->int_value); + LLAMA_LOG_INFO("%" PRId64 "\n", ovrd->val_i64); } break; case LLAMA_KV_OVERRIDE_TYPE_FLOAT: { - LLAMA_LOG_INFO("%.6f\n", ovrd->float_value); + LLAMA_LOG_INFO("%.6f\n", ovrd->val_f64); + } break; + case LLAMA_KV_OVERRIDE_TYPE_STR: { + LLAMA_LOG_INFO("%s\n", ovrd->val_str); } break; default: // Shouldn't be possible to end up here, but just in case... @@ -2899,7 +2934,7 @@ namespace GGUFMeta { static typename std::enable_if::value, bool>::type try_override(OT & target, const struct llama_model_kv_override * ovrd) { if (validate_override(LLAMA_KV_OVERRIDE_TYPE_BOOL, ovrd)) { - target = ovrd->bool_value; + target = ovrd->val_bool; return true; } return false; @@ -2909,7 +2944,7 @@ namespace GGUFMeta { static typename std::enable_if::value && std::is_integral::value, bool>::type try_override(OT & target, const struct llama_model_kv_override * ovrd) { if (validate_override(LLAMA_KV_OVERRIDE_TYPE_INT, ovrd)) { - target = ovrd->int_value; + target = ovrd->val_i64; return true; } return false; @@ -2919,7 +2954,7 @@ namespace GGUFMeta { static typename std::enable_if::value, bool>::type try_override(T & target, const struct llama_model_kv_override * ovrd) { if (validate_override(LLAMA_KV_OVERRIDE_TYPE_FLOAT, ovrd)) { - target = ovrd->float_value; + target = ovrd->val_f64; return true; } return false; @@ -2928,12 +2963,11 @@ namespace GGUFMeta { template static typename std::enable_if::value, bool>::type try_override(T & target, const struct llama_model_kv_override * ovrd) { - (void)target; - (void)ovrd; - if (!ovrd) { return false; } - // Currently, we should never end up here so it would be a bug if we do. - throw std::runtime_error(format("Unsupported attempt to override string type for metadata key %s\n", - ovrd ? ovrd->key : "NULL")); + if (validate_override(LLAMA_KV_OVERRIDE_TYPE_STR, ovrd)) { + target = ovrd->val_str; + return true; + } + return false; } static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override * ovrd = nullptr) { @@ -2966,6 +3000,7 @@ struct llama_model_loader { size_t n_bytes = 0; bool use_mmap = false; + bool check_tensors; llama_files files; llama_ftype ftype; @@ -2980,9 +3015,13 @@ struct llama_model_loader { ggml_tensor * tensor; - llama_tensor_weight(uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) { + llama_tensor_weight(const llama_file * file, uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) { const int tensor_idx = gguf_find_tensor(gguf_ctx, name); offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx); + + if (offs + ggml_nbytes(tensor) < offs || offs + ggml_nbytes(tensor) > file->size) { + throw std::runtime_error(format("tensor '%s' data is not within the file bounds, model is corrupted or incomplete", name)); + } } }; std::vector weights; @@ -2995,7 +3034,7 @@ struct llama_model_loader { std::string arch_name; LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN); - llama_model_loader(const std::string & fname, bool use_mmap, const struct llama_model_kv_override * param_overrides_p) { + llama_model_loader(const std::string & fname, bool use_mmap, bool check_tensors, const struct llama_model_kv_override * param_overrides_p) { int trace = 0; if (getenv("LLAMA_TRACE")) { trace = atoi(getenv("LLAMA_TRACE")); @@ -3021,15 +3060,15 @@ struct llama_model_loader { get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false); llm_kv = LLM_KV(llm_arch_from_string(arch_name)); + files.emplace_back(new llama_file(fname.c_str(), "rb")); + contexts.emplace_back(ctx); + // Save tensors data offset of the main file. // For subsidiary files, `meta` tensor data offset must not be used, // so we build a unified tensors index for weights. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) { - weights.emplace_back(0, cur->name, meta, cur); + weights.emplace_back(files.back().get(), 0, cur->name, meta, cur); } - files.emplace_back(new llama_file(fname.c_str(), "rb")); - contexts.emplace_back(ctx); - uint16_t n_split = 0; get_key(llm_kv(LLM_KV_SPLIT_COUNT), n_split, false); @@ -3063,13 +3102,14 @@ struct llama_model_loader { throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, split_path)); } - // Save tensors data offset info of the shard. - for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) { - weights.emplace_back(idx, cur->name, ctx_gguf, cur); - } files.emplace_back(new llama_file(split_path, "rb")); contexts.emplace_back(ctx); + // Save tensors data offset info of the shard. + for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) { + weights.emplace_back(files.back().get(), idx, cur->name, ctx_gguf, cur); + } + gguf_free(ctx_gguf); } @@ -3091,9 +3131,17 @@ struct llama_model_loader { fver = (enum llama_fver) gguf_get_version(meta); + std::set tensor_names; for (auto & w : weights) { n_elements += ggml_nelements(w.tensor); n_bytes += ggml_nbytes(w.tensor); + // make sure there is no duplicated tensor names + const std::string name(w.tensor->name); + auto found = tensor_names.find(name); + if (found != tensor_names.end()) { + throw std::runtime_error(format("invalid model: tensor '%s' is duplicated", w.tensor->name)); + } + tensor_names.insert(name); } LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n", @@ -3127,6 +3175,7 @@ struct llama_model_loader { switch (type_max) { case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break; case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break; + case GGML_TYPE_BF16: ftype = LLAMA_FTYPE_MOSTLY_BF16; break; case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break; case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break; case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break; @@ -3199,6 +3248,7 @@ struct llama_model_loader { } this->use_mmap = use_mmap; + this->check_tensors = check_tensors; } ~llama_model_loader() { @@ -3278,6 +3328,10 @@ struct llama_model_loader { return nullptr; } + const llama_tensor_weight * get_weight(int i) const { + return get_weight(get_tensor_name(i)); + } + const llama_tensor_weight & require_weight(const char * name) const { const llama_tensor_weight * weight = get_weight(name); if (!weight) { @@ -3453,6 +3507,10 @@ struct llama_model_loader { file->seek(w.offs, SEEK_SET); file->read_raw(cur->data, ggml_nbytes(cur)); } + + if (check_tensors && !ggml_validate_row_data(cur->type, cur->data, ggml_nbytes(cur))) { + throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur))); + } } size_t size_done = 0; @@ -3469,6 +3527,8 @@ struct llama_model_loader { GGML_ASSERT(size_data != 0 && "call init_mappings() first"); std::vector> read_buf; + std::vector>> validation_result; + for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) { const auto * weight = get_weight(ggml_get_name(cur)); if (weight == nullptr) { @@ -3490,37 +3550,66 @@ struct llama_model_loader { if (bufs_mmap.count(weight->idx)) { buf_mmap = bufs_mmap.at(weight->idx); } + uint8_t * data = (uint8_t *) mapping->addr + weight->offs; + + if (check_tensors) { + validation_result.emplace_back(std::async(std::launch::async, [cur, data, n_size] { + return std::make_pair(cur, ggml_validate_row_data(cur->type, data, n_size)); + })); + } + GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated if (buf_mmap && cur->data == nullptr) { - ggml_backend_tensor_alloc(buf_mmap, cur, (uint8_t *) mapping->addr + weight->offs); + ggml_backend_tensor_alloc(buf_mmap, cur, data); if (lmlocks) { const auto & lmlock = lmlocks->at(weight->idx); - lmlock->grow_to(weight->offs + ggml_nbytes(cur)); + lmlock->grow_to(weight->offs + n_size); } auto & mmap_used = mmaps_used[weight->idx]; mmap_used.first = std::min(mmap_used.first, weight->offs); mmap_used.second = std::max(mmap_used.second, weight->offs + n_size); } else { - ggml_backend_tensor_set(cur, (uint8_t *) mapping->addr + weight->offs, 0, n_size); + ggml_backend_tensor_set(cur, data, 0, n_size); } } else { GGML_ASSERT(weight->idx < files.size()); const auto & file = files.at(weight->idx); if (ggml_backend_buffer_is_host(cur->buffer)) { file->seek(weight->offs, SEEK_SET); - file->read_raw(cur->data, ggml_nbytes(cur)); + file->read_raw(cur->data, n_size); + if (check_tensors) { + validation_result.emplace_back(std::async(std::launch::async, [cur, n_size] { + return std::make_pair(cur, ggml_validate_row_data(cur->type, cur->data, n_size)); + })); + } } else { - read_buf.resize(ggml_nbytes(cur)); + read_buf.resize(n_size); file->seek(weight->offs, SEEK_SET); - file->read_raw(read_buf.data(), ggml_nbytes(cur)); + file->read_raw(read_buf.data(), n_size); ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size); + if (check_tensors && !ggml_validate_row_data(cur->type, read_buf.data(), n_size)) { + throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur))); + } } } size_done += n_size; } + // check validation results + bool validation_failed = false; + for (auto & future : validation_result) { + auto result = future.get(); + if (!result.second) { + LLAMA_LOG_ERROR("%s: tensor '%s' has invalid data\n", __func__, ggml_get_name(result.first)); + validation_failed = true; + } + } + if (validation_failed) { + throw std::runtime_error("found tensors with invalid data"); + } + // check if this is the last call and do final cleanup if (size_done >= size_data) { // unmap offloaded tensors and metadata @@ -3578,6 +3667,7 @@ static std::string llama_model_ftype_name(llama_ftype ftype) { switch (ftype) { case LLAMA_FTYPE_ALL_F32: return "all F32"; case LLAMA_FTYPE_MOSTLY_F16: return "F16"; + case LLAMA_FTYPE_MOSTLY_BF16: return "BF16"; case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0"; case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1"; case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16: @@ -3955,6 +4045,16 @@ static void llm_load_hparams( { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); + switch (hparams.n_layer) { + case 24: model.type = e_model::MODEL_1B; break; + case 32: model.type = e_model::MODEL_3B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_PHI3: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + switch (hparams.n_layer) { case 24: model.type = e_model::MODEL_1B; break; case 32: model.type = e_model::MODEL_3B; break; @@ -4104,7 +4204,7 @@ static void llm_load_hparams( model.ftype = ml.ftype; if (hparams.f_max_alibi_bias > 0.0f) { - hparams.need_kq_pos = true; + hparams.use_alibi = true; } hparams.rope_type = llama_rope_type(&model); @@ -4127,11 +4227,13 @@ static void llm_load_vocab( // determine vocab type { - std::string tokenizer_name; + std::string tokenizer_model; + std::string tokenizer_pre; - ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_name); + ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_model); + ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false); - if (tokenizer_name == "no_vocab") { + if (tokenizer_model == "no_vocab") { vocab.type = LLAMA_VOCAB_TYPE_NONE; // default special tokens @@ -4145,7 +4247,7 @@ static void llm_load_vocab( vocab.linefeed_id = -1; return; - } else if (tokenizer_name == "llama") { + } else if (tokenizer_model == "llama") { vocab.type = LLAMA_VOCAB_TYPE_SPM; // default special tokens @@ -4190,9 +4292,27 @@ static void llm_load_vocab( if (add_space_prefix_keyidx != -1) { vocab.add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx); } // The default value of add_space_prefix is true. - } else if (tokenizer_name == "gpt2") { - vocab.type = LLAMA_VOCAB_TYPE_BPE; + } else if (tokenizer_model == "bert") { + vocab.type = LLAMA_VOCAB_TYPE_WPM; + // default special tokens + vocab.special_bos_id = -1; + vocab.special_eos_id = -1; + vocab.special_unk_id = 100; + vocab.special_sep_id = 102; + vocab.special_pad_id = 0; + vocab.special_cls_id = 101; + vocab.special_mask_id = 103; + vocab.add_space_prefix = false; + } else { + if (tokenizer_model == "gpt2") { + vocab.type = LLAMA_VOCAB_TYPE_BPE; + } else { + LLAMA_LOG_WARN("%s: unknown tokenizer: '%s'", __func__, tokenizer_model.c_str()); + LLAMA_LOG_WARN("%s: using default tokenizer: 'llama'", __func__); + vocab.type = LLAMA_VOCAB_TYPE_SPM; + return; + } // read bpe merges and populate bpe ranks const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str()); if (merges_keyidx == -1) { @@ -4226,23 +4346,65 @@ static void llm_load_vocab( vocab.special_pad_id = -1; vocab.special_cls_id = -1; vocab.special_mask_id = -1; - } else if (tokenizer_name == "bert") { - vocab.type = LLAMA_VOCAB_TYPE_WPM; + } - // default special tokens - vocab.special_bos_id = -1; - vocab.special_eos_id = -1; - vocab.special_unk_id = 100; - vocab.special_sep_id = 102; - vocab.special_pad_id = 0; - vocab.special_cls_id = 101; - vocab.special_mask_id = 103; - vocab.add_space_prefix = false; + // for now, only BPE models have pre-tokenizers + if (vocab.type == LLAMA_VOCAB_TYPE_BPE) { + if (tokenizer_pre.empty()) { + LLAMA_LOG_WARN("%s: missing pre-tokenizer type, using: 'default'\n", __func__); + LLAMA_LOG_WARN("%s: \n", __func__); + LLAMA_LOG_WARN("%s: ************************************ \n", __func__); + LLAMA_LOG_WARN("%s: GENERATION QUALITY WILL BE DEGRADED! \n", __func__); + LLAMA_LOG_WARN("%s: CONSIDER REGENERATING THE MODEL \n", __func__); + LLAMA_LOG_WARN("%s: ************************************ \n", __func__); + LLAMA_LOG_WARN("%s: \n", __func__); + vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT; + } else if ( + tokenizer_pre == "default") { + vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT; + } else if ( + tokenizer_pre == "llama3" || + tokenizer_pre == "llama-v3" || + tokenizer_pre == "llama-bpe") { + vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_LLAMA3; + } else if ( + tokenizer_pre == "deepseek-llm") { + vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM; + } else if ( + tokenizer_pre == "deepseek-coder") { + vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER; + } else if ( + tokenizer_pre == "falcon") { + vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_FALCON; + } else if ( + tokenizer_pre == "mpt") { + vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_MPT; + } else if ( + tokenizer_pre == "starcoder") { + vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STARCODER; + } else if ( + tokenizer_pre == "gpt-2") { + vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_GPT2; + } else if ( + tokenizer_pre == "refact") { + vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_REFACT; + } else if ( + tokenizer_pre == "command-r") { + vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_COMMAND_R; + } else if ( + tokenizer_pre == "qwen2") { + vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_QWEN2; + } else if ( + tokenizer_pre == "olmo") { + vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_OLMO; + } else if ( + tokenizer_pre == "dbrx") { + vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DBRX; + } else { + throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str())); + } } else { - LLAMA_LOG_WARN("%s: unknown tokenizer: '%s'", __func__, tokenizer_name.c_str()); - LLAMA_LOG_WARN("%s: using default tokenizer: 'llama'", __func__); - - vocab.type = LLAMA_VOCAB_TYPE_SPM; + vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT; } } @@ -4352,6 +4514,7 @@ static void llm_load_vocab( //vocab.id_to_token[t.second].type == LLAMA_TOKEN_TYPE_CONTROL && (t.first == "<|eot_id|>" || t.first == "<|im_end|>" || + t.first == "<|end|>" || t.first == "" ) ) { @@ -5375,6 +5538,33 @@ static bool llm_load_tensors( layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}); } } break; + case LLM_ARCH_PHI3: + { + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }); + + // output + { + model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }); + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }); + } + + for (int i = 0; i < n_layer; ++i) { + ggml_context* ctx_layer = ctx_for_layer(i); + ggml_context* ctx_split = ctx_for_layer_split(i); + + auto& layer = model.layers[i]; + + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }); + + layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, false); + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }); + + layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }); + + layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }); + layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff }); + } + } break; case LLM_ARCH_PLAMO: { model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); @@ -5909,7 +6099,7 @@ static bool llm_load_tensors( // Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback static int llama_model_load(const std::string & fname, llama_model & model, llama_model_params & params) { try { - llama_model_loader ml(fname, params.use_mmap, params.kv_overrides); + llama_model_loader ml(fname, params.use_mmap, params.check_tensors, params.kv_overrides); model.hparams.vocab_only = params.vocab_only; @@ -5947,6 +6137,7 @@ static int llama_model_load(const std::string & fname, llama_model & model, llam || !( model.ftype == LLAMA_FTYPE_ALL_F32 || model.ftype == LLAMA_FTYPE_MOSTLY_F16 || + model.ftype == LLAMA_FTYPE_MOSTLY_BF16 || model.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || model.ftype == LLAMA_FTYPE_MOSTLY_Q4_1 ) @@ -6038,37 +6229,47 @@ static struct ggml_tensor * llm_build_inp_embd( static void llm_build_kv_store( struct ggml_context * ctx, const llama_hparams & hparams, + const llama_cparams & cparams, const llama_kv_cache & kv, struct ggml_cgraph * graph, struct ggml_tensor * k_cur, struct ggml_tensor * v_cur, - int64_t n_ctx, int32_t n_tokens, int32_t kv_head, const llm_build_cb & cb, int64_t il) { + const int64_t n_ctx = cparams.n_ctx; + const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(); const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(); GGML_ASSERT(kv.size == n_ctx); - // compute the transposed [n_tokens, n_embd] V matrix - assert(v_cur->ne[0] == n_embd_v_gqa && v_cur->ne[1] == n_tokens); - struct ggml_tensor * v_cur_t = ggml_transpose(ctx, v_cur); - cb(v_cur_t, "v_cur_t", il); - struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_embd_k_gqa, (ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa))*kv_head); cb(k_cache_view, "k_cache_view", il); - struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, kv.v_l[il], n_tokens, n_embd_v_gqa, - ( n_ctx)*ggml_element_size(kv.v_l[il]), - (kv_head)*ggml_element_size(kv.v_l[il])); + // note: storing RoPE-ed version of K in the KV cache + ggml_build_forward_expand(graph, ggml_cpy(ctx, k_cur, k_cache_view)); + + assert(v_cur->ne[0] == n_embd_v_gqa && v_cur->ne[1] == n_tokens); + + struct ggml_tensor * v_cache_view = nullptr; + + if (cparams.flash_attn) { + v_cache_view = ggml_view_1d(ctx, kv.v_l[il], n_tokens*n_embd_v_gqa, + (kv_head)*ggml_row_size(kv.v_l[il]->type, n_embd_v_gqa)); + } else { + // note: the V cache is transposed when not using flash attention + v_cache_view = ggml_view_2d(ctx, kv.v_l[il], n_tokens, n_embd_v_gqa, + ( n_ctx)*ggml_element_size(kv.v_l[il]), + (kv_head)*ggml_element_size(kv.v_l[il])); + + v_cur = ggml_transpose(ctx, v_cur); + } cb(v_cache_view, "v_cache_view", il); - // important: storing RoPE-ed version of K in the KV cache! - ggml_build_forward_expand(graph, ggml_cpy(ctx, k_cur, k_cache_view)); - ggml_build_forward_expand(graph, ggml_cpy(ctx, v_cur_t, v_cache_view)); + ggml_build_forward_expand(graph, ggml_cpy(ctx, v_cur, v_cache_view)); } static struct ggml_tensor * llm_build_norm( @@ -6288,11 +6489,11 @@ static struct ggml_tensor * llm_build_moe_ffn( return moe_out; } -// if max_alibi_bias > 0 then apply ALiBi static struct ggml_tensor * llm_build_kqv( struct ggml_context * ctx, const llama_model & model, const llama_hparams & hparams, + const llama_cparams & cparams, const llama_kv_cache & kv, struct ggml_cgraph * graph, struct ggml_tensor * wo, @@ -6300,12 +6501,12 @@ static struct ggml_tensor * llm_build_kqv( struct ggml_tensor * q_cur, struct ggml_tensor * kq_mask, struct ggml_tensor * kq_pos, - int64_t n_ctx, int32_t n_tokens, int32_t n_kv, float kq_scale, const llm_build_cb & cb, int il) { + const int64_t n_ctx = cparams.n_ctx; const int64_t n_head = hparams.n_head; const int64_t n_head_kv = hparams.n_head_kv; const int64_t n_embd_head_k = hparams.n_embd_head_k; @@ -6323,72 +6524,100 @@ static struct ggml_tensor * llm_build_kqv( 0); cb(k, "k", il); - struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q); - cb(kq, "kq", il); + struct ggml_tensor * cur; - if (model.arch == LLM_ARCH_PHI2) { - // for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs - // ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847 - ggml_mul_mat_set_prec(kq, GGML_PREC_F32); - } + if (cparams.flash_attn) { + GGML_UNUSED(model); + GGML_UNUSED(n_ctx); - if (model.arch == LLM_ARCH_GROK) { - // need to do the following: - // multiply by attn_output_multiplyer of 0.08838834764831845 - // and then : - // kq = 30 * tanh(kq / 30) - // before the softmax below + // note: if this assert triggers, then some check has failed earlier + // the idea is to detect during context creation that ALiBi would be used and disable Flash Attention + GGML_ASSERT(kq_pos == nullptr && "ALiBi is not yet supported with Flash Attention"); - //try from phi2 - //ggml_mul_mat_set_prec(kq, GGML_PREC_F32); + // split cached v into n_head heads (not transposed) + struct ggml_tensor * v = + ggml_view_3d(ctx, kv.v_l[il], + n_embd_head_v, n_kv, n_head_kv, + ggml_row_size(kv.v_l[il]->type, n_embd_k_gqa), + ggml_row_size(kv.v_l[il]->type, n_embd_head_k), + 0); + cb(v, "v", il); - kq = ggml_tanh(ctx, ggml_scale(ctx, kq, 0.08838834764831845f/30.0f)); - kq = ggml_scale(ctx, kq, 30); - } + cur = ggml_flash_attn_ext(ctx, q, k, v, kq_mask, kq_scale); + + if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3) { + ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32); + } + + cur = ggml_reshape_2d(ctx, cur, n_embd_head_k*n_head, n_tokens); + } else { + struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q); + cb(kq, "kq", il); + + if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3) { + // for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs + // ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847 + ggml_mul_mat_set_prec(kq, GGML_PREC_F32); + } + + if (model.arch == LLM_ARCH_GROK) { + // need to do the following: + // multiply by attn_output_multiplyer of 0.08838834764831845 + // and then : + // kq = 30 * tanh(kq / 30) + // before the softmax below + + //try from phi2 + //ggml_mul_mat_set_prec(kq, GGML_PREC_F32); + + kq = ggml_tanh(ctx, ggml_scale(ctx, kq, 0.08838834764831845f/30.0f)); + kq = ggml_scale(ctx, kq, 30); + } #if defined(GGML_USE_KOMPUTE) #pragma message("TODO: ALiBi support in ggml_soft_max_ext is not implemented for Kompute") #pragma message(" Falling back to ggml_alibi(). Will become an error in Mar 2024") #pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5488") - if (hparams.f_max_alibi_bias > 0.0f) { - kq = ggml_scale(ctx, kq, kq_scale); - cb(kq, "kq_scaled", il); + if (hparams.use_alibi) { + kq = ggml_scale(ctx, kq, kq_scale); + cb(kq, "kq_scaled", il); - kq = ggml_alibi(ctx, kq, /*n_past*/ 0, n_head, hparams.f_max_alibi_bias); - cb(kq, "kq_scaled_alibi", il); + kq = ggml_alibi(ctx, kq, /*n_past*/ 0, n_head, hparams.f_max_alibi_bias); + cb(kq, "kq_scaled_alibi", il); - kq = ggml_add(ctx, kq, kq_mask); - cb(kq, "kq_masked", il); + kq = ggml_add(ctx, kq, kq_mask); + cb(kq, "kq_masked", il); - kq = ggml_soft_max(ctx, kq); - cb(kq, "kq_soft_max", il); - } else + kq = ggml_soft_max(ctx, kq); + cb(kq, "kq_soft_max", il); + } else #endif - { - kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_pos, kq_scale, hparams.f_max_alibi_bias); - cb(kq, "kq_soft_max_ext", il); + { + kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_pos, kq_scale, hparams.f_max_alibi_bias); + cb(kq, "kq_soft_max_ext", il); + } + + GGML_ASSERT(kv.size == n_ctx); + + // split cached v into n_head heads + struct ggml_tensor * v = + ggml_view_3d(ctx, kv.v_l[il], + n_kv, n_embd_head_v, n_head_kv, + ggml_element_size(kv.v_l[il])*n_ctx, + ggml_element_size(kv.v_l[il])*n_ctx*n_embd_head_v, + 0); + cb(v, "v", il); + + struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq); + cb(kqv, "kqv", il); + + struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3); + cb(kqv_merged, "kqv_merged", il); + + cur = ggml_cont_2d(ctx, kqv_merged, n_embd_head_k*n_head, n_tokens); + cb(cur, "kqv_merged_cont", il); } - GGML_ASSERT(kv.size == n_ctx); - - // split cached v into n_head heads - struct ggml_tensor * v = - ggml_view_3d(ctx, kv.v_l[il], - n_kv, n_embd_head_v, n_head_kv, - ggml_element_size(kv.v_l[il])*n_ctx, - ggml_element_size(kv.v_l[il])*n_ctx*n_embd_head_v, - 0); - cb(v, "v", il); - - struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq); - cb(kqv, "kqv", il); - - struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3); - cb(kqv_merged, "kqv_merged", il); - - struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, n_embd_head_k*n_head, n_tokens); - cb(cur, "kqv_merged_cont", il); - ggml_build_forward_expand(graph, cur); cur = ggml_mul_mat(ctx, wo, cur); @@ -6407,6 +6636,7 @@ static struct ggml_tensor * llm_build_kv( struct ggml_context * ctx, const llama_model & model, const llama_hparams & hparams, + const llama_cparams & cparams, const llama_kv_cache & kv, struct ggml_cgraph * graph, struct ggml_tensor * wo, @@ -6416,7 +6646,6 @@ static struct ggml_tensor * llm_build_kv( struct ggml_tensor * q_cur, struct ggml_tensor * kq_mask, struct ggml_tensor * kq_pos, - int64_t n_ctx, int32_t n_tokens, int32_t kv_head, int32_t n_kv, @@ -6430,12 +6659,12 @@ static struct ggml_tensor * llm_build_kv( ggml_build_forward_expand(graph, k_cur); ggml_build_forward_expand(graph, v_cur); - llm_build_kv_store(ctx, hparams, kv, graph, k_cur, v_cur, n_ctx, n_tokens, kv_head, cb, il); + llm_build_kv_store(ctx, hparams, cparams, kv, graph, k_cur, v_cur, n_tokens, kv_head, cb, il); struct ggml_tensor * cur; - cur = llm_build_kqv(ctx, model, hparams, kv, graph, wo, wo_b, - q_cur, kq_mask, kq_pos, n_ctx, n_tokens, n_kv, kq_scale, cb, il); + cur = llm_build_kqv(ctx, model, hparams, cparams, kv, graph, wo, wo_b, + q_cur, kq_mask, kq_pos, n_tokens, n_kv, kq_scale, cb, il); cb(cur, "kqv_out", il); return cur; @@ -6477,6 +6706,8 @@ struct llm_build_context { const int32_t kv_head; // index of where we store new KV data in the cache const int32_t n_orig_ctx; + const bool flash_attn; + const enum llama_pooling_type pooling_type; const enum llama_rope_type rope_type; @@ -6523,6 +6754,7 @@ struct llm_build_context { n_outputs (worst_case ? n_tokens : lctx.n_outputs), kv_head (worst_case ? (kv_self.recurrent ? 0 : kv_self.size - n_tokens) : kv_self.head), n_orig_ctx (cparams.n_yarn_orig_ctx), + flash_attn (cparams.flash_attn), pooling_type (cparams.pooling_type), rope_type (hparams.rope_type), cb (cb), @@ -6637,15 +6869,31 @@ struct llm_build_context { ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa), ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*id)); - ggml_tensor * view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il], - nm, n_embd_v_gqa, - ggml_row_size(kv_self.v_l[il]->type, kv_self.size), - ggml_row_size(kv_self.v_l[il]->type, i)); + ggml_tensor * view_v_src; + ggml_tensor * view_v_dst; - ggml_tensor * view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il], - nm, n_embd_v_gqa, - ggml_row_size(kv_self.v_l[il]->type, kv_self.size), - ggml_row_size(kv_self.v_l[il]->type, id)); + if (flash_attn) { + // NOTE: the V cache is not transposed when using flash attention + view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il], + n_embd_v_gqa, nm, + ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa), + ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*i)); + + view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il], + n_embd_v_gqa, nm, + ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa), + ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*id)); + } else { + view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il], + nm, n_embd_v_gqa, + ggml_row_size(kv_self.v_l[il]->type, kv_self.size), + ggml_row_size(kv_self.v_l[il]->type, i)); + + view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il], + nm, n_embd_v_gqa, + ggml_row_size(kv_self.v_l[il]->type, kv_self.size), + ggml_row_size(kv_self.v_l[il]->type, id)); + } ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_k_src, view_k_dst)); ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_v_src, view_v_dst)); @@ -6675,20 +6923,26 @@ struct llm_build_context { struct ggml_tensor * build_inp_KQ_mask(bool causal = true) { if (causal) { - lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, n_tokens); + lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD)); } else { - lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens); + lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD)); } cb(lctx.inp_KQ_mask, "KQ_mask", -1); ggml_set_input(lctx.inp_KQ_mask); - return lctx.inp_KQ_mask; + return flash_attn ? ggml_cast(ctx0, lctx.inp_KQ_mask, GGML_TYPE_F16) : lctx.inp_KQ_mask; } - struct ggml_tensor * build_inp_KQ_pos() { - lctx.inp_KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, n_kv); + struct ggml_tensor * build_inp_KQ_pos(bool causal = true) { + if (causal) { + lctx.inp_KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, n_kv); + } else { + // TODO: this will be needed for ALiBi-based BERT models + // https://github.com/ggerganov/llama.cpp/pull/6826 + lctx.inp_KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, n_tokens); + } cb(lctx.inp_KQ_pos, "KQ_pos", -1); ggml_set_input(lctx.inp_KQ_pos); - return lctx.inp_KQ_pos; + return flash_attn ? ggml_cast(ctx0, lctx.inp_KQ_pos, GGML_TYPE_F16) : lctx.inp_KQ_pos; } struct ggml_tensor * build_inp_mean() { @@ -6794,9 +7048,9 @@ struct llm_build_context { ); cb(Kcur, "Kcur", il); - cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { @@ -6934,9 +7188,9 @@ struct llm_build_context { cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); - cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, NULL, - Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { @@ -7041,9 +7295,9 @@ struct llm_build_context { ext_factor, attn_factor, beta_fast, beta_slow ); cb(Kcur, "Kcur", il); - cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, NULL, - Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { @@ -7161,9 +7415,9 @@ struct llm_build_context { ); cb(Kcur, "Kcur", il); - cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, NULL, - Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { @@ -7286,9 +7540,9 @@ struct llm_build_context { ); cb(Kcur, "Kcur", il); - cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il); + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f, cb, il); } if (il == n_layer - 1) { @@ -7438,9 +7692,9 @@ struct llm_build_context { ); cb(Kcur, "Kcur", il); - cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, - model.layers[il].wo, NULL, - Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, + model.layers[il].wo, NULL, + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { @@ -7550,9 +7804,9 @@ struct llm_build_context { Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); - cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { @@ -7754,9 +8008,9 @@ struct llm_build_context { ); cb(Vcur, "Vcur", il); - cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Q, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Q, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { @@ -7850,9 +8104,9 @@ struct llm_build_context { Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); cb(Qcur, "Qcur", il); - cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, NULL, - Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { @@ -8143,9 +8397,9 @@ struct llm_build_context { Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); - cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { @@ -8274,14 +8528,15 @@ struct llm_build_context { Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); - cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, - model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, + model.layers[il].wo, model.layers[il].bo, + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } else { Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); - cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + + cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } } @@ -8423,9 +8678,9 @@ struct llm_build_context { ); cb(Kcur, "Kcur", il); - cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, NULL, - Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { @@ -8541,9 +8796,9 @@ struct llm_build_context { ); cb(Kcur, "Kcur", il); - cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, NULL, - Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { @@ -8654,9 +8909,9 @@ struct llm_build_context { ); cb(Kcur, "Kcur", il); - cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { @@ -8768,9 +9023,9 @@ struct llm_build_context { ); cb(Kcur, "Kcur", il); - cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { @@ -8923,9 +9178,9 @@ struct llm_build_context { ); cb(Kcur, "Kcur", il); - cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il); + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f, cb, il); } if (il == n_layer - 1) { @@ -8967,12 +9222,140 @@ struct llm_build_context { cur = ggml_add(ctx0, cur, model.output_b); cb(cur, "result_output", -1); + ggml_build_forward_expand(gf, cur); + return gf; + } + + struct ggml_cgraph * build_phi3() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + + const int64_t n_embd_head = hparams.n_embd_head_v; + const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); + + // inp_pos - contains the positions + struct ggml_tensor * inp_pos = build_inp_pos(); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); + + for (int il = 0; il < n_layer; ++il) { + auto residual = inpL; + + // self-attention + { + struct ggml_tensor* attn_norm_output = llm_build_norm(ctx0, inpL, hparams, + model.layers[il].attn_norm, + NULL, + LLM_NORM_RMS, cb, il); + cb(attn_norm_output, "attn_norm", il); + + struct ggml_tensor * Qcur = nullptr; + struct ggml_tensor * Kcur = nullptr; + struct ggml_tensor * Vcur = nullptr; + + if (model.layers[il].wqkv) { + cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output); + cb(cur, "wqkv", il); + + Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0 * sizeof(float) * (n_embd))); + Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd))); + Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa))); + } + else { + Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq); + Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk); + Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv); + } + + cb(Qcur, "Qcur", il); + cb(Kcur, "Kcur", il); + cb(Vcur, "Vcur", il); + + Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); + Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); + + Qcur = ggml_rope_custom( + ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx, + freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Qcur, "Qcur", il); + + Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head))); + cb(Qcur, "Qcur", il); + + Kcur = ggml_rope_custom( + ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx, + freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Kcur, "Kcur", il); + + cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, + model.layers[il].wo, model.layers[il].bo, + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f, cb, il); + } + + if (il == n_layer - 1) { + // skip computing output for unused tokens + struct ggml_tensor* inp_out_ids = build_inp_out_ids(); + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + residual = ggml_get_rows(ctx0, residual, inp_out_ids); + } + + cur = ggml_add(ctx0, cur, residual); + residual = cur; + + cur = llm_build_norm(ctx0, cur, hparams, + model.layers[il].ffn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "ffn_norm", il); + + // FF + // special-case: the up and gate tensors are merged into a single tensor + // TOOD: support into llm_build_ffn + { + struct ggml_tensor* up = ggml_mul_mat(ctx0, model.layers[il].ffn_up, cur); + cb(up, "ffn_up", il); + + auto g = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), 0)); + auto y = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), up->nb[1] / 2)); + + y = ggml_mul(ctx0, y, ggml_silu(ctx0, g)); + cb(y, "ffn_gate", il); + + auto down = ggml_mul_mat(ctx0, model.layers[il].ffn_down, y); + cb(down, "ffn_down", il); + + cur = down; + cb(cur, "ffn_out", il); + } + + cur = ggml_add(ctx0, residual, cur); + cb(cur, "l_out", il); + + inpL = cur; + } + + cur = llm_build_norm(ctx0, inpL, hparams, + model.output_norm, + NULL, + LLM_NORM_RMS, cb, -1); + cb(cur, "result_norm", -1); + + cur = ggml_mul_mat(ctx0, model.output, cur); + cb(cur, "result_output", -1); ggml_build_forward_expand(gf, cur); return gf; } + struct ggml_cgraph * build_plamo() { struct ggml_cgraph * gf = ggml_new_graph(ctx0); @@ -9025,9 +9408,9 @@ struct llm_build_context { ext_factor, attn_factor, beta_fast, beta_slow); cb(Kcur, "Kcur", il); - cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, NULL, - Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } struct ggml_tensor * sa_out = cur; @@ -9128,9 +9511,9 @@ struct llm_build_context { Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); - cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { @@ -9235,9 +9618,9 @@ struct llm_build_context { ); cb(Kcur, "Kcur", il); - cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { @@ -9351,9 +9734,9 @@ struct llm_build_context { ); cb(Kcur, "Kcur", il); - cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, NULL, - Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { @@ -9468,9 +9851,9 @@ struct llm_build_context { ); cb(Kcur, "Kcur", il); - cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { @@ -9598,9 +9981,9 @@ struct llm_build_context { ); cb(Kcur, "Kcur", il); - cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { @@ -9719,9 +10102,9 @@ struct llm_build_context { ext_factor, attn_factor, beta_fast, beta_slow); cb(Kcur, "Kcur", il); - cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, NULL, - Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il); + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f, cb, il); } if (il == n_layer - 1) { @@ -9838,9 +10221,9 @@ struct llm_build_context { ); cb(Kcur, "Kcur", il); - cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { @@ -10128,9 +10511,9 @@ struct llm_build_context { ); cb(Kcur, "Kcur", il); - cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { @@ -10259,9 +10642,9 @@ struct llm_build_context { ); cb(Kcur, "Kcur", il); - cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, model.layers[il].wo, nullptr, - Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { @@ -10474,6 +10857,10 @@ static struct ggml_cgraph * llama_build_graph( { result = llm.build_phi2(); } break; + case LLM_ARCH_PHI3: + { + result = llm.build_phi3(); + } break; case LLM_ARCH_PLAMO: { result = llm.build_plamo(); @@ -10684,7 +11071,9 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) { } } - if (hparams.need_kq_pos) { + // ALiBi requires the KQ_pos tensor to provide the sequence position of each token in the batch + // this allows to process multiple sequences in parallel with ALiBi-based models + if (hparams.use_alibi) { const int64_t n_kv = kv_self.n; GGML_ASSERT(lctx.inp_KQ_pos); @@ -11066,7 +11455,7 @@ static int llama_decode_internal( // a heuristic, to avoid attending the full cache if it is not yet utilized // after enough generations, the benefit from this heuristic disappears // if we start defragmenting the cache, the benefit from this will be more important - kv_self.n = std::min(kv_self.size, std::max(32u, GGML_PAD(llama_kv_cache_cell_max(kv_self), 32))); + kv_self.n = std::min(kv_self.size, std::max(256u, GGML_PAD(llama_kv_cache_cell_max(kv_self), 256))); //kv_self.n = llama_kv_cache_cell_max(kv_self); } } @@ -11234,6 +11623,10 @@ static int llama_decode_internal( } } + // Reset state for the next token before backend sync, to allow the CPU activities in the reset to + // overlap with device computation. + ggml_backend_sched_reset(lctx.sched); + return 0; } @@ -11259,7 +11652,9 @@ static void llama_kv_cache_defrag_internal(struct llama_context & lctx) { // each move requires 6*n_layer tensors (see build_defrag) // - source view, destination view, copy operation // - x2 for keys and values - const uint32_t max_moves = LLAMA_MAX_NODES/(6*n_layer); + //const uint32_t max_moves = LLAMA_MAX_NODES/(6*n_layer); + // TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516 + const uint32_t max_moves = (LLAMA_MAX_NODES - 2*n_layer)/(6*n_layer); // determine which KV cells to move where // @@ -11575,7 +11970,7 @@ static bool llama_is_user_defined_token(const llama_vocab& vocab, llama_token id static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) { GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE); GGML_ASSERT(llama_is_byte_token(vocab, id)); - const auto& token_data = vocab.id_to_token.at(id); + const auto & token_data = vocab.id_to_token.at(id); switch (llama_vocab_get_type(vocab)) { case LLAMA_VOCAB_TYPE_SPM: { auto buf = token_data.text.substr(3, 2); @@ -11583,7 +11978,7 @@ static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) { } case LLAMA_VOCAB_TYPE_BPE: { GGML_ASSERT(false); - return unicode_utf8_to_byte(token_data.text); + return unicode_utf8_to_byte(token_data.text); // TODO: why is this here after GGML_ASSERT? } case LLAMA_VOCAB_TYPE_WPM: { GGML_ASSERT(false); @@ -11805,7 +12200,94 @@ struct llm_tokenizer_bpe { void tokenize(const std::string & text, std::vector & output) { int final_prev_index = -1; - auto word_collection = bpe_gpt2_preprocess(text); + + std::vector word_collection; + switch (vocab.type) { + case LLAMA_VOCAB_TYPE_BPE: + switch (vocab.type_pre) { + case LLAMA_VOCAB_PRE_TYPE_LLAMA3: + case LLAMA_VOCAB_PRE_TYPE_DBRX: + word_collection = unicode_regex_split(text, { + // original regex from tokenizer.json + //"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+", + + // adapted: https://github.com/ggerganov/llama.cpp/pull/6920#issuecomment-2080233989 + "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+", + }); + break; + case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM: + word_collection = unicode_regex_split(text, { + "[\r\n]", + "\\s?[A-Za-zµÀ-ÖØ-öø-ƺƼ-ƿDŽ-ʓʕ-ʯͰ-ͳͶͷͻ-ͽͿΆΈ-ΊΌΎ-ΡΣ-ϵϷ-ҁҊ-ԯԱ-ՖႠ-ჅᎠ-Ᏽᏸ-ᏽᲐ-ᲺᲽ-Ჿᴀ-ᴫᵫ-ᵷᵹ-ᶚḀ-ἕἘ-Ἕἠ-ὅὈ-Ὅὐ-ὗὙὛὝὟ-ώᾀ-ᾴᾶ-ᾼιῂ-ῄῆ-ῌῐ-ΐῖ-Ίῠ-Ῥῲ-ῴῶ-ῼℂℇℊ-ℓℕℙ-ℝℤΩℨK-ℭℯ-ℴℹℼ-ℿⅅ-ⅉⅎↃↄⰀ-ⱻⱾ-ⳤⳫ-ⳮⳲⳳꙀ-ꙭꚀ-ꚛꜢ-ꝯꝱ-ꞇꞋ-ꞎꭰ-ꮿff-stﬓ-ﬗA-Za-z𐐀-𐑏𐒰-𐓓𐓘-𐓻𐲀-𐲲𐳀-𐳲𑢠-𑣟𞤀-𞥃]+", + "\\s?[!-/:-~!-/:-~‘-‟ -。]+", + "\\s+$", + "[一-龥ࠀ-一가-퟿]+", + "\\p{N}+", + }); + break; + case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER: + word_collection = unicode_regex_split(text, { + "[\r\n]", + "\\s?\\p{L}+", + "\\s?\\p{P}+", + "[一-龥ࠀ-一가-퟿]+", + "\\p{N}", + }); + break; + case LLAMA_VOCAB_PRE_TYPE_FALCON: + word_collection = unicode_regex_split(text, { + "[\\p{P}\\$\\+<=>\\^~\\|]+", + "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)", + "[0-9][0-9][0-9]", + }); + break; + case LLAMA_VOCAB_PRE_TYPE_MPT: + // TODO: MPT pre-tokenization regexes are unknown + // the following are close, but not exact. run the following: + // ./bin/test-tokenizer-0 ../models/ggml-vocab-mpt.gguf + GGML_ASSERT("MPT pre-tokenization regexes are unknown - fixes needed"); + word_collection = unicode_regex_split(text, { + "\\s?\\p{L}+", + "\\s?\\p{P}+", + "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)", + }); + break; + case LLAMA_VOCAB_PRE_TYPE_STARCODER: + case LLAMA_VOCAB_PRE_TYPE_REFACT: + case LLAMA_VOCAB_PRE_TYPE_COMMAND_R: + word_collection = unicode_regex_split(text, { + "\\p{N}", + "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)", + }); + break; + case LLAMA_VOCAB_PRE_TYPE_GPT2: + case LLAMA_VOCAB_PRE_TYPE_OLMO: + word_collection = unicode_regex_split(text, { + "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)", + }); + break; + case LLAMA_VOCAB_PRE_TYPE_QWEN2: + word_collection = unicode_regex_split(text, { + // original regex from tokenizer.json + // "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+" + "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+", + }); + break; + default: + // default regex for BPE tokenization pre-processing + word_collection = unicode_regex_split(text, { + "[\\p{P}\\$\\+<=>\\^~\\|]+", + "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)", + "\\p{N}+", + "[0-9][0-9][0-9]", + }); + break; + } + break; + default: + GGML_ASSERT(false); + break; + } symbols_final.clear(); @@ -11932,145 +12414,6 @@ private: work_queue.push(bigram); } - std::vector bpe_gpt2_preprocess(const std::string & text) { - std::vector bpe_words; - std::vector bpe_encoded_words; - - std::string token = ""; - // GPT2 system regex: 's|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+ - bool collecting_numeric = false; - bool collecting_letter = false; - bool collecting_special = false; - bool collecting_whitespace_lookahead = false; - bool collecting = false; - - std::vector text_utf; - text_utf.reserve(text.size()); - bpe_words.reserve(text.size()); - bpe_encoded_words.reserve(text.size()); - - const auto cpts = unicode_cpts_from_utf8(text); - for (size_t i = 0; i < cpts.size(); ++i) - text_utf.emplace_back(unicode_cpt_to_utf8(cpts[i])); - - for (int i = 0; i < (int)text_utf.size(); i++) { - const std::string & utf_char = text_utf[i]; - bool split_condition = false; - int bytes_remain = text_utf.size() - i; - // forward backward lookups - const std::string & utf_char_next = (i + 1 < (int)text_utf.size()) ? text_utf[i + 1] : ""; - const std::string & utf_char_next_next = (i + 2 < (int)text_utf.size()) ? text_utf[i + 2] : ""; - - // handling contractions - if (!split_condition && bytes_remain >= 2) { - // 's|'t|'m|'d - if (utf_char == "\'" && (utf_char_next == "s" || utf_char_next == "t" || utf_char_next == "m" || utf_char_next == "d")) { - split_condition = true; - } - if (split_condition) { - if (token.size()) { - bpe_words.emplace_back(token); // push previous content as token - } - token = utf_char + utf_char_next; - bpe_words.emplace_back(token); - token = ""; - i++; - continue; - } - } - if (!split_condition && bytes_remain >= 3) { - // 're|'ve|'ll - if (utf_char == "\'" && ( - (utf_char_next == "r" && utf_char_next_next == "e") || - (utf_char_next == "v" && utf_char_next_next == "e") || - (utf_char_next == "l" && utf_char_next_next == "l")) - ) { - split_condition = true; - } - if (split_condition) { - // current token + next token can be defined - if (token.size()) { - bpe_words.emplace_back(token); // push previous content as token - } - token = utf_char + utf_char_next + utf_char_next_next; - bpe_words.emplace_back(token); // the contraction - token = ""; - i += 2; - continue; - } - } - - if (!split_condition && !collecting) { - if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_LETTER || (!token.size() && utf_char == " " && unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_LETTER)) { - collecting_letter = true; - collecting = true; - } - else if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_DIGIT || (!token.size() && utf_char == " " && unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_DIGIT)) { - collecting_numeric = true; - collecting = true; - } - else if ( - ((unicode_cpt_type(utf_char) != CODEPOINT_TYPE_LETTER && unicode_cpt_type(utf_char) != CODEPOINT_TYPE_DIGIT) && (unicode_cpt_type(utf_char) != CODEPOINT_TYPE_WHITESPACE)) || - (!token.size() && utf_char == " " && unicode_cpt_type(utf_char_next) != CODEPOINT_TYPE_LETTER && unicode_cpt_type(utf_char_next) != CODEPOINT_TYPE_DIGIT && unicode_cpt_type(utf_char_next) != CODEPOINT_TYPE_WHITESPACE) - ) { - collecting_special = true; - collecting = true; - } - else if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_WHITESPACE && unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_WHITESPACE) { - collecting_whitespace_lookahead = true; - collecting = true; - } - else if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_WHITESPACE) { - split_condition = true; - } - } - else if (!split_condition && collecting) { - if (collecting_letter && unicode_cpt_type(utf_char) != CODEPOINT_TYPE_LETTER) { - split_condition = true; - } - else if (collecting_numeric && unicode_cpt_type(utf_char) != CODEPOINT_TYPE_DIGIT) { - split_condition = true; - } - else if (collecting_special && (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_LETTER || unicode_cpt_type(utf_char) == CODEPOINT_TYPE_DIGIT || unicode_cpt_type(utf_char) == CODEPOINT_TYPE_WHITESPACE)) { - split_condition = true; - } - else if (collecting_whitespace_lookahead && (unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_LETTER || unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_DIGIT)) { - split_condition = true; - } - } - - if (utf_char_next == "") { - split_condition = true; // final - token += utf_char; - } - - if (split_condition) { - if (token.size()) { - bpe_words.emplace_back(token); - } - token = utf_char; - collecting = false; - collecting_letter = false; - collecting_numeric = false; - collecting_special = false; - collecting_whitespace_lookahead = false; - } - else { - token += utf_char; - } - } - - for (std::string & word : bpe_words) { - std::string encoded_token = ""; - for (char & c : word) { - encoded_token += unicode_byte_to_utf8(c); - } - bpe_encoded_words.emplace_back(encoded_token); - } - - return bpe_encoded_words; - } - const llama_vocab & vocab; std::vector symbols; @@ -12390,7 +12733,7 @@ static std::vector llama_tokenize_internal(const llama_vocab & } break; case LLAMA_VOCAB_TYPE_BPE: { - if (add_special && vocab.special_add_bos == 1) { + if (add_special && vocab.special_add_bos != 0) { GGML_ASSERT(vocab.special_bos_id != -1); output.push_back(vocab.special_bos_id); } @@ -13478,7 +13821,7 @@ llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_da return result; } -llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) { +llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng) { GGML_ASSERT(ctx); const int64_t t_start_sample_us = ggml_time_us(); @@ -13491,7 +13834,6 @@ llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_arra } std::discrete_distribution<> dist(probs.begin(), probs.end()); - auto & rng = ctx->rng; int idx = dist(rng); llama_token result = candidates->data[idx].id; @@ -13501,6 +13843,10 @@ llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_arra return result; } +llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) { + return llama_sample_token_with_rng(ctx, candidates, ctx->rng); +} + void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token) { const int64_t t_start_sample_us = ggml_time_us(); @@ -13829,13 +14175,16 @@ static void llama_tensor_dequantize_internal( if (qtype.to_float == NULL) { throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type))); } - } else if (tensor->type != GGML_TYPE_F16) { + } else if (tensor->type != GGML_TYPE_F16 && + tensor->type != GGML_TYPE_BF16) { throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type))); } if (nthread < 2) { if (tensor->type == GGML_TYPE_F16) { ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements); + } else if (tensor->type == GGML_TYPE_BF16) { + ggml_bf16_to_fp32_row((ggml_bf16_t *)tensor->data, f32_output, nelements); } else if (ggml_is_quantized(tensor->type)) { qtype.to_float(tensor->data, f32_output, nelements); } else { @@ -13844,7 +14193,14 @@ static void llama_tensor_dequantize_internal( return; } - size_t block_size = tensor->type == GGML_TYPE_F16 ? 1 : (size_t)ggml_blck_size(tensor->type); + size_t block_size; + if (tensor->type == GGML_TYPE_F16 || + tensor->type == GGML_TYPE_BF16) { + block_size = 1; + } else { + block_size = (size_t)ggml_blck_size(tensor->type); + } + size_t block_size_bytes = ggml_type_size(tensor->type); GGML_ASSERT(nelements % block_size == 0); @@ -13863,6 +14219,8 @@ static void llama_tensor_dequantize_internal( auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) { if (typ == GGML_TYPE_F16) { ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels); + } else if (typ == GGML_TYPE_BF16) { + ggml_bf16_to_fp32_row((ggml_bf16_t *)inbuf, outbuf, nels); } else { qtype.to_float(inbuf, outbuf, nels); } @@ -14159,14 +14517,20 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n } static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector & workers, const int nthread) { + if (nthread < 2) { + // single-thread + size_t new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix); + if (!ggml_validate_row_data(new_type, new_data, new_size)) { + throw std::runtime_error("quantized data validation failed"); + } + return new_size; + } + std::mutex mutex; int64_t counter = 0; size_t new_size = 0; - if (nthread < 2) { - // single-thread - return ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix); - } - auto compute = [&mutex, &counter, &new_size, new_type, f32_data, new_data, chunk_size, + bool valid = true; + auto compute = [&mutex, &counter, &new_size, &valid, new_type, f32_data, new_data, chunk_size, nrows, n_per_row, imatrix]() { const int64_t nrows_per_chunk = chunk_size / n_per_row; size_t local_size = 0; @@ -14181,7 +14545,17 @@ static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const floa } lock.unlock(); const int64_t this_nrow = std::min(nrows - first_row, nrows_per_chunk); - local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix); + size_t this_size = ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix); + local_size += this_size; + + // validate the quantized data + const size_t row_size = ggml_row_size(new_type, n_per_row); + void * this_data = (char *) new_data + first_row * row_size; + if (!ggml_validate_row_data(new_type, this_data, this_size)) { + std::unique_lock lock(mutex); + valid = false; + break; + } } }; for (int it = 0; it < nthread - 1; ++it) { @@ -14190,6 +14564,9 @@ static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const floa compute(); for (auto & w : workers) { w.join(); } workers.clear(); + if (!valid) { + throw std::runtime_error("quantized data validation failed"); + } return new_size; } @@ -14204,6 +14581,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s case LLAMA_FTYPE_MOSTLY_Q5_1: default_type = GGML_TYPE_Q5_1; break; case LLAMA_FTYPE_MOSTLY_Q8_0: default_type = GGML_TYPE_Q8_0; break; case LLAMA_FTYPE_MOSTLY_F16: default_type = GGML_TYPE_F16; break; + case LLAMA_FTYPE_MOSTLY_BF16: default_type = GGML_TYPE_BF16; break; case LLAMA_FTYPE_ALL_F32: default_type = GGML_TYPE_F32; break; // K-quants @@ -14252,7 +14630,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s auto v = (std::vector*)params->kv_overrides; kv_overrides = v->data(); } - llama_model_loader ml(fname_inp, use_mmap, kv_overrides); + llama_model_loader ml(fname_inp, use_mmap, /*check_tensors*/ true, kv_overrides); ml.init_mappings(false); // no prefetching llama_model model; @@ -14290,11 +14668,13 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s for (auto & o : overrides) { if (o.key[0] == 0) break; if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) { - gguf_set_val_f32(ctx_out, o.key, o.float_value); + gguf_set_val_f32(ctx_out, o.key, o.val_f64); } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) { - gguf_set_val_i32(ctx_out, o.key, o.int_value); + gguf_set_val_i32(ctx_out, o.key, o.val_i64); } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) { - gguf_set_val_bool(ctx_out, o.key, o.bool_value); + gguf_set_val_bool(ctx_out, o.key, o.val_bool); + } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_STR) { + gguf_set_val_str(ctx_out, o.key, o.val_str); } else { LLAMA_LOG_WARN("%s: unknown KV override type for key %s\n", __func__, o.key); } @@ -14336,26 +14716,74 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s std::vector> work; std::vector> f32_conv_buf; + uint16_t n_split = 1; + // Assume split index is continuous + if (params->keep_split) { + for (int i = 0; i < ml.n_tensors; ++i) { + n_split = std::max(uint16_t(ml.get_weight(i)->idx+1), n_split); + } + } + std::vector ctx_outs(n_split, NULL); + ctx_outs[0] = ctx_out; + // populate the original tensors so we get an initial meta data for (int i = 0; i < ml.n_tensors; ++i) { - const struct ggml_tensor * meta = ml.get_tensor_meta(i); - gguf_add_tensor(ctx_out, meta); + auto weight = ml.get_weight(i); + uint16_t i_split = params->keep_split ? weight->idx : 0; + struct ggml_tensor * tensor = weight->tensor; + if (ctx_outs[i_split] == NULL) { + ctx_outs[i_split] = gguf_init_empty(); + } + gguf_add_tensor(ctx_outs[i_split], tensor); } - std::ofstream fout(fname_out, std::ios::binary); - fout.exceptions(std::ofstream::failbit); // fail fast on write errors + // Set split info if needed + if (n_split > 1) { + for (size_t i = 0; i < ctx_outs.size(); ++i) { + gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_NO).c_str(), i); + gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str(), n_split); + gguf_set_val_i32(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str(), ml.n_tensors); + } + } - const size_t meta_size = gguf_get_meta_size(ctx_out); + int cur_split = -1; + std::ofstream fout; + auto close_ofstream = [&]() { + // Write metadata and close file handler + if (fout.is_open()) { + fout.seekp(0); + std::vector data(gguf_get_meta_size(ctx_outs[cur_split])); + gguf_get_meta_data(ctx_outs[cur_split], data.data()); + fout.write((const char *) data.data(), data.size()); + fout.close(); + } + }; + auto new_ofstream = [&](int index) { + cur_split = index; + GGML_ASSERT(ctx_outs[cur_split] && "Find uninitialized gguf_context"); + std::string fname = fname_out; + if (params->keep_split) { + char split_path[PATH_MAX] = {0}; + llama_split_path(split_path, sizeof(split_path), fname_out.c_str(), cur_split, n_split); + fname = std::string(split_path); + } - LLAMA_LOG_INFO("%s: meta size = %zu bytes\n", __func__, meta_size); - - // placeholder for the meta data - ::zeros(fout, meta_size); + fout = std::ofstream(fname, std::ios::binary); + fout.exceptions(std::ofstream::failbit); // fail fast on write errors + const size_t meta_size = gguf_get_meta_size(ctx_outs[cur_split]); + // placeholder for the meta data + ::zeros(fout, meta_size); + }; const auto tn = LLM_TN(model.arch); - + new_ofstream(0); for (int i = 0; i < ml.n_tensors; ++i) { - struct ggml_tensor * tensor = ml.get_tensor_meta(i); + auto weight = ml.get_weight(i); + struct ggml_tensor * tensor = weight->tensor; + if (weight->idx != cur_split && params->keep_split) { + close_ofstream(); + new_ofstream(weight->idx); + } const std::string name = ggml_get_name(tensor); @@ -14510,26 +14938,18 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s total_size_new += new_size; // update the gguf meta data as we go - gguf_set_tensor_type(ctx_out, name.c_str(), new_type); - gguf_set_tensor_data(ctx_out, name.c_str(), new_data, new_size); + gguf_set_tensor_type(ctx_outs[cur_split], name.c_str(), new_type); + gguf_set_tensor_data(ctx_outs[cur_split], name.c_str(), new_data, new_size); // write tensor data + padding fout.write((const char *) new_data, new_size); zeros(fout, GGML_PAD(new_size, align) - new_size); } - - // go back to beginning of file and write the updated meta data - { - fout.seekp(0); - std::vector data(gguf_get_meta_size(ctx_out)); - gguf_get_meta_data(ctx_out, data.data()); - fout.write((const char *) data.data(), data.size()); + close_ofstream(); + for (auto & c:ctx_outs) { + gguf_free(c); } - fout.close(); - - gguf_free(ctx_out); - LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0); LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0); @@ -14573,7 +14993,7 @@ static int llama_apply_lora_from_file_internal( std::unique_ptr ml; if (path_base_model) { LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model); - ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*kv_overrides*/ nullptr)); + ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*check_tensors*/ false, /*kv_overrides*/ nullptr)); ml->init_mappings(/*prefetch*/ false); // no prefetching } @@ -14832,6 +15252,7 @@ struct llama_model_params llama_model_default_params() { /*.vocab_only =*/ false, /*.use_mmap =*/ true, /*.use_mlock =*/ false, + /*.check_tensors =*/ false, }; #ifdef GGML_USE_METAL @@ -14868,6 +15289,7 @@ struct llama_context_params llama_context_default_params() { /*.logits_all =*/ false, /*.embeddings =*/ false, /*.offload_kqv =*/ true, + /*.flash_attn =*/ false, /*.abort_callback =*/ nullptr, /*.abort_callback_data =*/ nullptr, }; @@ -14885,6 +15307,7 @@ struct llama_model_quantize_params llama_model_quantize_default_params() { /*.quantize_output_tensor =*/ true, /*.only_copy =*/ false, /*.pure =*/ false, + /*.keep_split =*/ false, /*.imatrix =*/ nullptr, /*.kv_overrides =*/ nullptr, }; @@ -15033,6 +15456,7 @@ struct llama_context * llama_new_context_with_model( cparams.defrag_thold = params.defrag_thold; cparams.embeddings = params.embeddings; cparams.offload_kqv = params.offload_kqv; + cparams.flash_attn = params.flash_attn; cparams.pooling_type = params.pooling_type; cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx; @@ -15040,12 +15464,20 @@ struct llama_context * llama_new_context_with_model( cparams.rope_freq_scale = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale; // this is necessary due to kv_self.n being padded later during inference - cparams.n_ctx = GGML_PAD(cparams.n_ctx, 32); + cparams.n_ctx = GGML_PAD(cparams.n_ctx, 256); // with causal attention, the batch size is limited by the context size cparams.n_batch = hparams.causal_attn ? std::min(cparams.n_ctx, params.n_batch) : params.n_batch; - cparams.n_ubatch = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch); + // the batch has to be at least GGML_KQ_MASK_PAD because we will be padding the KQ_mask + // this is required by GPU kernels in order to avoid out-of-bounds accesses (e.g. ggml_flash_attn_ext) + // ref: https://github.com/ggerganov/llama.cpp/pull/5021 + if (cparams.n_batch < GGML_KQ_MASK_PAD) { + LLAMA_LOG_WARN("%s: n_batch is less than GGML_KQ_MASK_PAD - increasing to %d\n", __func__, GGML_KQ_MASK_PAD); + cparams.n_batch = GGML_KQ_MASK_PAD; + } + + cparams.n_ubatch = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch); cparams.n_yarn_orig_ctx = params.yarn_orig_ctx != 0 ? params.yarn_orig_ctx : hparams.n_yarn_orig_ctx != 0 ? hparams.n_yarn_orig_ctx : @@ -15077,6 +15509,23 @@ struct llama_context * llama_new_context_with_model( } } + if (cparams.flash_attn && hparams.use_alibi) { + LLAMA_LOG_WARN("%s: flash_attn is not yet compatible with ALiBi - forcing off\n", __func__); + cparams.flash_attn = false; + } + + if (cparams.flash_attn && model->arch == LLM_ARCH_GROK) { + LLAMA_LOG_WARN("%s: flash_attn is not compatible with Grok - forcing off\n", __func__); + cparams.flash_attn = false; + } + +#ifdef GGML_USE_HIPBLAS + if (cparams.flash_attn) { + LLAMA_LOG_WARN("%s: flash_attn is not yet compatible with HIPBLAS builds - forcing off\n", __func__); + cparams.flash_attn = false; + } +#endif + if (params.seed == LLAMA_DEFAULT_SEED) { params.seed = time(NULL); } @@ -15084,6 +15533,7 @@ struct llama_context * llama_new_context_with_model( LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx); LLAMA_LOG_INFO("%s: n_batch = %u\n", __func__, cparams.n_batch); LLAMA_LOG_INFO("%s: n_ubatch = %u\n", __func__, cparams.n_ubatch); + LLAMA_LOG_INFO("%s: flash_attn = %d\n", __func__, cparams.flash_attn); LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base); LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale); @@ -15212,7 +15662,7 @@ struct llama_context * llama_new_context_with_model( } ctx->backends.push_back(ctx->backend_cpu); - if (!llama_kv_cache_init(ctx->kv_self, ctx->model, type_k, type_v, kv_size, cparams.offload_kqv)) { + if (!llama_kv_cache_init(ctx->kv_self, ctx, type_k, type_v, kv_size, cparams.offload_kqv)) { LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__); llama_free(ctx); return nullptr; @@ -15393,6 +15843,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) { case LLM_ARCH_QWEN2: case LLM_ARCH_QWEN2MOE: case LLM_ARCH_PHI2: + case LLM_ARCH_PHI3: case LLM_ARCH_GEMMA: case LLM_ARCH_STARCODER2: return LLAMA_ROPE_TYPE_NEOX; @@ -15406,6 +15857,10 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) { return LLAMA_ROPE_TYPE_NONE; } +enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx) { + return ctx->cparams.pooling_type; +} + int32_t llama_n_vocab(const struct llama_model * model) { return model->hparams.n_vocab; } @@ -15806,6 +16261,7 @@ size_t llama_state_get_size(const struct llama_context * ctx) { const size_t s_kv_head = sizeof(uint32_t); const size_t s_kv_size = sizeof(uint32_t); const size_t s_kv_used = sizeof(uint32_t); + const size_t s_v_trans = sizeof(uint32_t); const size_t s_kv = ctx->kv_self.total_size(); const size_t s_kv_cell = sizeof(llama_pos) + sizeof(size_t) + cparams.n_seq_max*sizeof(llama_seq_id); const size_t s_kv_cells = ctx->kv_self.size * s_kv_cell; @@ -15823,10 +16279,14 @@ size_t llama_state_get_size(const struct llama_context * ctx) { + s_kv_head + s_kv_size + s_kv_used + + s_v_trans + s_kv + s_kv_cells ); + // on session change it is very likely that the state size has changed - so we need to update this function + static_assert(LLAMA_SESSION_VERSION == 6, "So you just bumped the session version - good. But did you remember to update llama_state_get_size?"); + return s_total; } @@ -15884,6 +16344,8 @@ struct llama_data_file_context : llama_data_context { * */ static void llama_state_get_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) { + llama_synchronize(ctx); + // copy rng { std::ostringstream rng_ss; @@ -15970,11 +16432,13 @@ static void llama_state_get_data_internal(struct llama_context * ctx, llama_data const uint32_t kv_size = kv_self.size; const size_t kv_buf_size = kv_self.total_size() / (kv_size ? kv_size : 1) * kv_head; const uint32_t kv_used = kv_self.used; + const uint32_t v_trans = kv_self.v_trans ? 1 : 0; data_ctx->write(&kv_buf_size, sizeof(kv_buf_size)); data_ctx->write(&kv_head, sizeof(kv_head)); data_ctx->write(&kv_size, sizeof(kv_size)); data_ctx->write(&kv_used, sizeof(kv_used)); + data_ctx->write(&v_trans, sizeof(v_trans)); if (kv_buf_size) { const size_t pre_kv_buf_size = data_ctx->get_size_written(); @@ -15987,7 +16451,7 @@ static void llama_state_get_data_internal(struct llama_context * ctx, llama_data ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), 0, tmp_buf.size()); data_ctx->write(tmp_buf.data(), tmp_buf.size()); - if (kv_self.recurrent) { + if (kv_self.recurrent || !kv_self.v_trans) { // v is contiguous for recurrent models // TODO: use other tensors for state models than k and v const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head); @@ -16036,6 +16500,8 @@ size_t llama_state_get_data(struct llama_context * ctx, uint8_t * dst) { // Sets the state reading from the specified source address size_t llama_state_set_data(struct llama_context * ctx, const uint8_t * src) { + llama_synchronize(ctx); + const uint8_t * inp = src; // set rng @@ -16118,11 +16584,15 @@ size_t llama_state_set_data(struct llama_context * ctx, const uint8_t * src) { uint32_t kv_head; uint32_t kv_size; uint32_t kv_used; + uint32_t v_trans; memcpy(&kv_buf_size, inp, sizeof(kv_buf_size)); inp += sizeof(kv_buf_size); memcpy(&kv_head, inp, sizeof(kv_head)); inp += sizeof(kv_head); memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size); memcpy(&kv_used, inp, sizeof(kv_used)); inp += sizeof(kv_used); + memcpy(&v_trans, inp, sizeof(v_trans)); inp += sizeof(v_trans); + + GGML_ASSERT(kv_self.v_trans == (bool) v_trans); // incompatible V transposition if (kv_self.size != kv_size) { // the KV cache needs to be big enough to load all the KV cells from the saved state @@ -16132,6 +16602,8 @@ size_t llama_state_set_data(struct llama_context * ctx, const uint8_t * src) { __func__, kv_head, kv_size, kv_self.size); } + llama_kv_cache_clear(ctx); + if (kv_buf_size) { const size_t pre_kv_buf_size = inp - src; @@ -16143,7 +16615,7 @@ size_t llama_state_set_data(struct llama_context * ctx, const uint8_t * src) { ggml_backend_tensor_set(kv_self.k_l[il], inp, 0, k_size); inp += k_size; - if (kv_self.recurrent) { + if (kv_self.recurrent || !kv_self.v_trans) { // v is contiguous for recurrent models // TODO: use other tensors for state models than k and v const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head); @@ -16165,8 +16637,6 @@ size_t llama_state_set_data(struct llama_context * ctx, const uint8_t * src) { GGML_ASSERT(kv_buf_size == inp - src - pre_kv_buf_size); } - llama_kv_cache_clear(ctx); - ctx->kv_self.head = kv_head; ctx->kv_self.used = kv_used; @@ -16340,6 +16810,8 @@ size_t llama_state_seq_get_size(struct llama_context* ctx, llama_seq_id seq_id) } static size_t llama_state_seq_get_data_internal(struct llama_context * ctx, llama_data_context & data_ctx, llama_seq_id seq_id) { + llama_synchronize(ctx); + const auto & kv_self = ctx->kv_self; GGML_ASSERT(!kv_self.recurrent); // not implemented @@ -16424,28 +16896,49 @@ static size_t llama_state_seq_get_data_internal(struct llama_context * ctx, llam } } - // For the values, they are transposed, so we also need the element size and get the element ranges from each row - const uint32_t kv_size = kv_self.size; - for (int il = 0; il < (int)n_layer; ++il) { - // Write value type - const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type; - data_ctx.write(&v_type_i, sizeof(v_type_i)); + // TODO: simplify, reduce copy-paste + if (!kv_self.v_trans) { + for (int il = 0; il < (int)n_layer; ++il) { + // Write value type + const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type; + data_ctx.write(&v_type_i, sizeof(v_type_i)); - // Write element size - const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type); - data_ctx.write(&v_size_el, sizeof(v_size_el)); + // Write row size of value + const size_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa); + data_ctx.write(&v_size_row, sizeof(v_size_row)); - // For each row, we get the element values of each cell - for (uint32_t j = 0; j < n_embd_v_gqa; ++j) { - // Read each range of cells of v_size_el length each into tmp_buf and write out + // Read each range of cells of v_size length each into tmp_buf and write out for (const auto & range : cell_ranges) { const size_t range_size = range.second - range.first; - const size_t src_offset = (range.first + j * kv_size) * v_size_el; - tmp_buf.resize(range_size * v_size_el); - ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), src_offset, tmp_buf.size()); + tmp_buf.resize(range_size * v_size_row); + ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), range.first * v_size_row, range_size * v_size_row); data_ctx.write(tmp_buf.data(), tmp_buf.size()); } } + } else { + // For the values, they are transposed, so we also need the element size and get the element ranges from each row + const uint32_t kv_size = kv_self.size; + for (int il = 0; il < (int)n_layer; ++il) { + // Write value type + const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type; + data_ctx.write(&v_type_i, sizeof(v_type_i)); + + // Write element size + const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type); + data_ctx.write(&v_size_el, sizeof(v_size_el)); + + // For each row, we get the element values of each cell + for (uint32_t j = 0; j < n_embd_v_gqa; ++j) { + // Read each range of cells of v_size_el length each into tmp_buf and write out + for (const auto & range : cell_ranges) { + const size_t range_size = range.second - range.first; + const size_t src_offset = (range.first + j * kv_size) * v_size_el; + tmp_buf.resize(range_size * v_size_el); + ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), src_offset, tmp_buf.size()); + data_ctx.write(tmp_buf.data(), tmp_buf.size()); + } + } + } } return data_ctx.get_size_written(); @@ -16457,6 +16950,8 @@ size_t llama_state_seq_get_data(struct llama_context* ctx, uint8_t* dst, llama_s } size_t llama_state_seq_set_data(struct llama_context * ctx, const uint8_t * src, llama_seq_id dest_seq_id) { + llama_synchronize(ctx); + auto & kv_self = ctx->kv_self; GGML_ASSERT(!kv_self.recurrent); // not implemented @@ -16568,41 +17063,75 @@ size_t llama_state_seq_set_data(struct llama_context * ctx, const uint8_t * src, } } - // For each layer, read the values for each cell (transposed) - for (int il = 0; il < (int)n_layer; ++il) { - // Read type of value - int32_t v_type_i_ref; - memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref)); - inp += sizeof(v_type_i_ref); - const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type; - if (v_type_i != v_type_i_ref) { - llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1); - LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il); - return 0; - } + // TODO: simplify, reduce copy-paste + if (!kv_self.v_trans) { + for (int il = 0; il < (int)n_layer; ++il) { + // Read type of value + int32_t v_type_i_ref; + memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref)); + inp += sizeof(v_type_i_ref); + const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type; + if (v_type_i != v_type_i_ref) { + llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1); + LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il); + return 0; + } - // Read element size of value - size_t v_size_el_ref; - memcpy(&v_size_el_ref, inp, sizeof(v_size_el_ref)); - inp += sizeof(v_size_el_ref); - const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type); - if (v_size_el != v_size_el_ref) { - llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1); - LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, v_size_el_ref, il); - return 0; - } + // Read row size of value + size_t v_size_row_ref; + memcpy(&v_size_row_ref, inp, sizeof(v_size_row_ref)); + inp += sizeof(v_size_row_ref); + const size_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa); + if (v_size_row != v_size_row_ref) { + llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1); + LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, v_size_row_ref, il); + return 0; + } - if (cell_count) { - // For each row in the transposed matrix, read the values for the whole cell range - for (uint32_t j = 0; j < n_embd_v_gqa; ++j) { - const size_t dst_offset = (kv_head + j * kv_size) * v_size_el; - ggml_backend_tensor_set(kv_self.v_l[il], inp, dst_offset, cell_count * v_size_el); - inp += cell_count * v_size_el; + if (cell_count) { + // Read and set the values for the whole cell range + ggml_backend_tensor_set(kv_self.v_l[il], inp, kv_head * v_size_row, cell_count * v_size_row); + inp += cell_count * v_size_row; + } + } + } else { + // For each layer, read the values for each cell (transposed) + for (int il = 0; il < (int)n_layer; ++il) { + // Read type of value + int32_t v_type_i_ref; + memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref)); + inp += sizeof(v_type_i_ref); + const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type; + if (v_type_i != v_type_i_ref) { + llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1); + LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il); + return 0; + } + + // Read element size of value + size_t v_size_el_ref; + memcpy(&v_size_el_ref, inp, sizeof(v_size_el_ref)); + inp += sizeof(v_size_el_ref); + const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type); + if (v_size_el != v_size_el_ref) { + llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1); + LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, v_size_el_ref, il); + return 0; + } + + if (cell_count) { + // For each row in the transposed matrix, read the values for the whole cell range + for (uint32_t j = 0; j < n_embd_v_gqa; ++j) { + const size_t dst_offset = (kv_head + j * kv_size) * v_size_el; + ggml_backend_tensor_set(kv_self.v_l[il], inp, dst_offset, cell_count * v_size_el); + inp += cell_count * v_size_el; + } } } } const size_t nread = inp - src; + return nread; } @@ -16983,9 +17512,10 @@ int32_t llama_tokenize( static std::string llama_decode_text(const std::string & text) { std::string decoded_text; - auto unicode_sequences = unicode_cpts_from_utf8(text); - for (auto & unicode_sequence : unicode_sequences) { - decoded_text += unicode_utf8_to_byte(unicode_cpt_to_utf8(unicode_sequence)); + + const auto cpts = unicode_cpts_from_utf8(text); + for (const auto cpt : cpts) { + decoded_text += unicode_utf8_to_byte(unicode_cpt_to_utf8(cpt)); } return decoded_text; @@ -17257,6 +17787,15 @@ static int32_t llama_chat_apply_template_internal( if (add_ass) { ss << "<|start_header_id|>assistant<|end_header_id|>\n\n"; } + } else if (tmpl == "phi3" || (tmpl.find("<|assistant|>") != std::string::npos && tmpl.find("<|end|>") != std::string::npos )) { + // Phi 3 + for (auto message : chat) { + std::string role(message->role); + ss << "<|" << role << "|>\n" << trim(message->content) << "<|end|>\n"; + } + if (add_ass) { + ss << "<|assistant|>\n"; + } } else { // template not supported return -1; @@ -17389,6 +17928,11 @@ const char * llama_print_system_info(void) { s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | "; s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | "; s += "MATMUL_INT8 = " + std::to_string(ggml_cpu_has_matmul_int8()) + " | "; +#ifdef GGML_USE_LLAMAFILE + s += "LLAMAFILE = 1 | "; +#else + s += "LLAMAFILE = 0 | "; +#endif return s.c_str(); } diff --git a/llama.h b/llama.h index 4effca42c..0b2e708d0 100644 --- a/llama.h +++ b/llama.h @@ -40,7 +40,7 @@ #define LLAMA_FILE_MAGIC_GGSQ 0x67677371u // 'ggsq' #define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN -#define LLAMA_SESSION_VERSION 5 +#define LLAMA_SESSION_VERSION 6 #define LLAMA_STATE_SEQ_MAGIC LLAMA_FILE_MAGIC_GGSQ #define LLAMA_STATE_SEQ_VERSION 1 @@ -69,6 +69,23 @@ extern "C" { LLAMA_VOCAB_TYPE_WPM = 3, // BERT tokenizer based on WordPiece }; + // pre-tokenization types + enum llama_vocab_pre_type { + LLAMA_VOCAB_PRE_TYPE_DEFAULT = 0, + LLAMA_VOCAB_PRE_TYPE_LLAMA3 = 1, + LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM = 2, + LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER = 3, + LLAMA_VOCAB_PRE_TYPE_FALCON = 4, + LLAMA_VOCAB_PRE_TYPE_MPT = 5, + LLAMA_VOCAB_PRE_TYPE_STARCODER = 6, + LLAMA_VOCAB_PRE_TYPE_GPT2 = 7, + LLAMA_VOCAB_PRE_TYPE_REFACT = 8, + LLAMA_VOCAB_PRE_TYPE_COMMAND_R = 9, + LLAMA_VOCAB_PRE_TYPE_QWEN2 = 10, + LLAMA_VOCAB_PRE_TYPE_OLMO = 11, + LLAMA_VOCAB_PRE_TYPE_DBRX = 12, + }; + // note: these values should be synchronized with ggml_rope // TODO: maybe move this enum to ggml.h (ggml_rope_type) enum llama_rope_type { @@ -122,6 +139,7 @@ extern "C" { LLAMA_FTYPE_MOSTLY_IQ2_M = 29, // except 1d tensors LLAMA_FTYPE_MOSTLY_IQ4_XS = 30, // except 1d tensors LLAMA_FTYPE_MOSTLY_IQ1_M = 31, // except 1d tensors + LLAMA_FTYPE_MOSTLY_BF16 = 32, // except 1d tensors LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file }; @@ -159,7 +177,7 @@ extern "C" { bool sorted; } llama_token_data_array; - typedef bool (*llama_progress_callback)(float progress, void *ctx); + typedef bool (*llama_progress_callback)(float progress, void * user_data); // Input data for llama_decode // A llama_batch object can contain input about one or many sequences @@ -195,15 +213,19 @@ extern "C" { LLAMA_KV_OVERRIDE_TYPE_INT, LLAMA_KV_OVERRIDE_TYPE_FLOAT, LLAMA_KV_OVERRIDE_TYPE_BOOL, + LLAMA_KV_OVERRIDE_TYPE_STR, }; struct llama_model_kv_override { - char key[128]; enum llama_model_kv_override_type tag; + + char key[128]; + union { - int64_t int_value; - double float_value; - bool bool_value; + int64_t val_i64; + double val_f64; + bool val_bool; + char val_str[128]; }; }; @@ -232,9 +254,10 @@ extern "C" { const struct llama_model_kv_override * kv_overrides; // Keep the booleans together to avoid misalignment during copy-by-value. - bool vocab_only; // only load the vocabulary, no weights - bool use_mmap; // use mmap if possible - bool use_mlock; // force system to keep model in RAM + bool vocab_only; // only load the vocabulary, no weights + bool use_mmap; // use mmap if possible + bool use_mlock; // force system to keep model in RAM + bool check_tensors; // validate model tensor data }; struct llama_context_params { @@ -270,6 +293,7 @@ extern "C" { bool logits_all; // the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead) bool embeddings; // if true, extract embeddings (together with logits) bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU + bool flash_attn; // whether to use flash attention // Abort callback // if it returns true, execution of llama_decode() will be aborted @@ -288,6 +312,7 @@ extern "C" { bool quantize_output_tensor; // quantize output.weight bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored bool pure; // quantize all tensors to the default type + bool keep_split; // quantize to the same number of shards void * imatrix; // pointer to importance matrix data void * kv_overrides; // pointer to vector containing overrides } llama_model_quantize_params; @@ -390,8 +415,10 @@ extern "C" { LLAMA_API uint32_t llama_n_ubatch (const struct llama_context * ctx); LLAMA_API uint32_t llama_n_seq_max (const struct llama_context * ctx); - LLAMA_API enum llama_vocab_type llama_vocab_type(const struct llama_model * model); - LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model); + LLAMA_API enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx); + + LLAMA_API enum llama_vocab_type llama_vocab_type (const struct llama_model * model); + LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model); LLAMA_API int32_t llama_n_vocab (const struct llama_model * model); LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model); @@ -522,7 +549,7 @@ extern "C" { // Returns the number of used KV cells (i.e. have at least one sequence assigned to them) LLAMA_API int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx); - // Clear the KV cache + // Clear the KV cache - both cell info is erased and KV data is zeroed LLAMA_API void llama_kv_cache_clear( struct llama_context * ctx); @@ -987,7 +1014,7 @@ extern "C" { struct llama_context * ctx, llama_token_data_array * candidates); - /// @details Randomly selects a token from the candidates based on their probabilities. + /// @details Randomly selects a token from the candidates based on their probabilities using the RNG of ctx. LLAMA_API llama_token llama_sample_token( struct llama_context * ctx, llama_token_data_array * candidates); @@ -1074,8 +1101,9 @@ extern "C" { // Internal API to be implemented by llama.cpp and used by tests/benchmarks only #ifdef LLAMA_API_INTERNAL -#include +#include #include +#include struct ggml_tensor; @@ -1112,6 +1140,10 @@ std::pair, llama_partial_utf8> decode_utf8( const std::string & src, llama_partial_utf8 partial_start); +// Randomly selects a token from the candidates based on their probabilities using given std::mt19937. +// This is a temporary workaround in order to fix race conditions when sampling with multiple sequences. +llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng); + #endif // LLAMA_API_INTERNAL #endif // LLAMA_H diff --git a/media/matmul.png b/media/matmul.png new file mode 100644 index 000000000..786a20492 Binary files /dev/null and b/media/matmul.png differ diff --git a/media/matmul.svg b/media/matmul.svg new file mode 100644 index 000000000..1d6cb4bb7 --- /dev/null +++ b/media/matmul.svg @@ -0,0 +1,1238 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ARow-major + BTColumn-major + CT=ABTColumn-major + + ne00 + + ne01 + + ne1 + + ne0 + + ne10 + + ne11 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + BRow-major + ATColumn-major + C=BATRow-major + + ne10 + + ne11 + + ne0 + + ne1 + + ne00 + + ne01 + + + diff --git a/models/ggml-vocab-bert-bge.gguf b/models/ggml-vocab-bert-bge.gguf new file mode 100644 index 000000000..b2cbd5df6 Binary files /dev/null and b/models/ggml-vocab-bert-bge.gguf differ diff --git a/models/ggml-vocab-bert-bge.gguf.inp b/models/ggml-vocab-bert-bge.gguf.inp new file mode 100644 index 000000000..0a89107c6 --- /dev/null +++ b/models/ggml-vocab-bert-bge.gguf.inp @@ -0,0 +1,106 @@ +ied 4 ½ months +__ggml_vocab_test__ +Führer +__ggml_vocab_test__ + +__ggml_vocab_test__ + +__ggml_vocab_test__ + +__ggml_vocab_test__ + +__ggml_vocab_test__ + +__ggml_vocab_test__ + + +__ggml_vocab_test__ + + + +__ggml_vocab_test__ + + + + +__ggml_vocab_test__ + + +__ggml_vocab_test__ +Hello world +__ggml_vocab_test__ + Hello world +__ggml_vocab_test__ +Hello World +__ggml_vocab_test__ + Hello World +__ggml_vocab_test__ + Hello World! +__ggml_vocab_test__ +Hello, world! +__ggml_vocab_test__ + Hello, world! +__ggml_vocab_test__ + this is 🦙.cpp +__ggml_vocab_test__ +w048 7tuijk dsdfhu +__ggml_vocab_test__ +нещо на Български +__ggml_vocab_test__ +កាន់តែពិសេសអាចខលចេញ +__ggml_vocab_test__ +🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token) +__ggml_vocab_test__ +Hello +__ggml_vocab_test__ + Hello +__ggml_vocab_test__ + Hello +__ggml_vocab_test__ + Hello +__ggml_vocab_test__ + Hello +__ggml_vocab_test__ + Hello + Hello +__ggml_vocab_test__ + ( +__ggml_vocab_test__ + + = +__ggml_vocab_test__ +' era +__ggml_vocab_test__ +Hello, y'all! How are you 😁 ?我想在apple工作1314151天~ +__ggml_vocab_test__ +3 +__ggml_vocab_test__ +33 +__ggml_vocab_test__ +333 +__ggml_vocab_test__ +3333 +__ggml_vocab_test__ +33333 +__ggml_vocab_test__ +333333 +__ggml_vocab_test__ +3333333 +__ggml_vocab_test__ +33333333 +__ggml_vocab_test__ +333333333 +__ggml_vocab_test__ + + + + + + + + + + + +🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български ''''''```````""""......!!!!!!?????? I've been 'told he's there, 'RE you sure? 'M not sure I'll make it, 'D you like some tea? We'Ve a'lL +__ggml_vocab_test__ diff --git a/models/ggml-vocab-bert-bge.gguf.out b/models/ggml-vocab-bert-bge.gguf.out new file mode 100644 index 000000000..e4a76cdb0 --- /dev/null +++ b/models/ggml-vocab-bert-bge.gguf.out @@ -0,0 +1,43 @@ + 29464 2094 1018 1092 2706 + 11865 17875 + + + + + + + + + + 7592 2088 + 7592 2088 + 7592 2088 + 7592 2088 + 7592 2088 999 + 7592 1010 2088 999 + 7592 1010 2088 999 + 2023 2003 100 1012 18133 2361 + 1059 2692 18139 1021 8525 28418 2243 16233 20952 6979 + 1192 15290 29754 14150 1192 10260 1181 29755 29436 29741 10260 16856 29747 23925 10325 + 100 + 100 1006 3671 1007 100 1006 3674 7861 29147 2483 9530 16280 23854 1007 100 1006 2069 7861 29147 2072 2008 2038 2049 2219 19204 1007 + 7592 + 7592 + 7592 + 7592 + 7592 + 7592 7592 + 1006 + 1027 + 1005 3690 + 7592 1010 1061 1005 2035 999 2129 2024 2017 100 1029 1855 100 100 6207 100 100 14677 23632 22203 1811 1995 + 1017 + 3943 + 21211 + 21211 2509 + 21211 22394 + 21211 22394 2509 + 21211 22394 22394 + 21211 22394 22394 2509 + 21211 22394 22394 22394 + 100 1006 3671 1007 100 1006 3674 7861 29147 2483 9530 16280 23854 1007 100 100 1017 3943 21211 21211 2509 21211 22394 21211 22394 2509 21211 22394 22394 21211 22394 22394 2509 1017 1012 1017 1017 1012 1012 1017 1017 1012 1012 1012 1017 100 1029 1855 100 100 6207 100 100 14677 23632 22203 1811 1995 1011 1011 1011 1011 1011 1011 1027 1027 1027 1027 1027 1027 1027 1192 15290 29754 14150 1192 10260 1181 29755 29436 29741 10260 16856 29747 23925 10325 1005 1005 1005 1005 1005 1005 1036 1036 1036 1036 1036 1036 1036 1000 1000 1000 1000 1012 1012 1012 1012 1012 1012 999 999 999 999 999 999 1029 1029 1029 1029 1029 1029 1045 1005 2310 2042 1005 2409 2002 1005 1055 2045 1010 1005 2128 2017 2469 1029 1005 1049 2025 2469 1045 1005 2222 2191 2009 1010 1005 1040 2017 2066 2070 5572 1029 2057 1005 2310 1037 1005 2222 diff --git a/models/ggml-vocab-command-r.gguf b/models/ggml-vocab-command-r.gguf new file mode 100644 index 000000000..b553eab33 Binary files /dev/null and b/models/ggml-vocab-command-r.gguf differ diff --git a/models/ggml-vocab-command-r.gguf.inp b/models/ggml-vocab-command-r.gguf.inp new file mode 100644 index 000000000..0a89107c6 --- /dev/null +++ b/models/ggml-vocab-command-r.gguf.inp @@ -0,0 +1,106 @@ +ied 4 ½ months +__ggml_vocab_test__ +Führer +__ggml_vocab_test__ + +__ggml_vocab_test__ + +__ggml_vocab_test__ + +__ggml_vocab_test__ + +__ggml_vocab_test__ + +__ggml_vocab_test__ + + +__ggml_vocab_test__ + + + +__ggml_vocab_test__ + + + + +__ggml_vocab_test__ + + +__ggml_vocab_test__ +Hello world +__ggml_vocab_test__ + Hello world +__ggml_vocab_test__ +Hello World +__ggml_vocab_test__ + Hello World +__ggml_vocab_test__ + Hello World! +__ggml_vocab_test__ +Hello, world! +__ggml_vocab_test__ + Hello, world! +__ggml_vocab_test__ + this is 🦙.cpp +__ggml_vocab_test__ +w048 7tuijk dsdfhu +__ggml_vocab_test__ +нещо на Български +__ggml_vocab_test__ +កាន់តែពិសេសអាចខលចេញ +__ggml_vocab_test__ +🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token) +__ggml_vocab_test__ +Hello +__ggml_vocab_test__ + Hello +__ggml_vocab_test__ + Hello +__ggml_vocab_test__ + Hello +__ggml_vocab_test__ + Hello +__ggml_vocab_test__ + Hello + Hello +__ggml_vocab_test__ + ( +__ggml_vocab_test__ + + = +__ggml_vocab_test__ +' era +__ggml_vocab_test__ +Hello, y'all! How are you 😁 ?我想在apple工作1314151天~ +__ggml_vocab_test__ +3 +__ggml_vocab_test__ +33 +__ggml_vocab_test__ +333 +__ggml_vocab_test__ +3333 +__ggml_vocab_test__ +33333 +__ggml_vocab_test__ +333333 +__ggml_vocab_test__ +3333333 +__ggml_vocab_test__ +33333333 +__ggml_vocab_test__ +333333333 +__ggml_vocab_test__ + + + + + + + + + + + +🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български ''''''```````""""......!!!!!!?????? I've been 'told he's there, 'RE you sure? 'M not sure I'll make it, 'D you like some tea? We'Ve a'lL +__ggml_vocab_test__ diff --git a/models/ggml-vocab-command-r.gguf.out b/models/ggml-vocab-command-r.gguf.out new file mode 100644 index 000000000..cc4277daa --- /dev/null +++ b/models/ggml-vocab-command-r.gguf.out @@ -0,0 +1,43 @@ + 2536 228 27 228 22957 6983 + 45 193433 + + 228 + 1667 + 1742 + 205 + 206 + 2126 + 11516 + 34777 + 28339 3845 + 46609 3845 + 28339 3930 + 46609 3930 + 46609 3930 8 + 28339 19 3845 8 + 46609 19 3845 8 + 2075 1801 11254 107 255 21 19317 + 94 23 27 31 228 30 21213 20752 39267 6405 9980 + 4929 40071 2196 3236 8750 1764 37097 41168 + 38111 230 174833 38111 249 86325 241 38111 245 86325 232 38111 252 38111 123 38111 261 165 24629 38111 261 38111 103 174833 38111 235 38111 231 38111 257 38111 235 165 24629 38111 239 + 2226 256 230 1737 18258 16 80503 122 35927 2226 242 112 57462 1737 54457 223165 106230 2096 16 48389 1737 10203 109160 1875 2222 2517 3342 12523 16 + 28339 + 46609 + 228 46609 + 1667 46609 + 1742 46609 + 1742 46609 1856 46609 + 1737 + 206 1857 + 14 4515 + 28339 19 1770 14 1954 8 4070 1955 1933 80503 231 5691 12081 13336 2648 29325 14315 24 26 24 27 24 28 24 5123 18372 + 26 + 26 26 + 26 26 26 + 26 26 26 26 + 26 26 26 26 26 + 26 26 26 26 26 26 + 26 26 26 26 26 26 26 + 26 26 26 26 26 26 26 26 + 26 26 26 26 26 26 26 26 26 + 127731 51628 205 57788 18494 97469 126134 206 2226 256 230 1737 18258 16 80503 122 35927 2226 242 112 57462 1737 54457 223165 106230 2096 16 48389 11254 107 255 2226 107 255 228 26 228 26 26 228 26 26 26 228 26 26 26 26 228 26 26 26 26 26 228 26 26 26 26 26 26 228 26 26 26 26 26 26 26 228 26 26 26 26 26 26 26 26 228 26 21 26 228 26 2271 26 228 26 3834 26 182018 230 174833 38111 249 86325 241 38111 245 86325 232 38111 252 38111 123 38111 261 165 24629 38111 261 38111 103 174833 38111 235 188568 231 5691 12081 13336 2648 29325 14315 24 26 24 27 24 28 24 5123 18372 8391 158343 3512 40071 2196 3236 8750 1764 37097 41168 29721 32797 25646 3802 4975 4975 116167 57178 10251 154048 27292 1767 5125 2632 2155 91 2378 1919 1914 2782 19 2155 3354 1933 5470 38 2155 52 2068 5470 1767 4961 3059 1894 19 2155 43 1933 3026 2725 23186 38 2930 14 20676 1671 14 83 51 diff --git a/models/ggml-vocab-deepseek-coder.gguf b/models/ggml-vocab-deepseek-coder.gguf new file mode 100644 index 000000000..6728cd747 Binary files /dev/null and b/models/ggml-vocab-deepseek-coder.gguf differ diff --git a/models/ggml-vocab-deepseek-coder.gguf.inp b/models/ggml-vocab-deepseek-coder.gguf.inp new file mode 100644 index 000000000..0a89107c6 --- /dev/null +++ b/models/ggml-vocab-deepseek-coder.gguf.inp @@ -0,0 +1,106 @@ +ied 4 ½ months +__ggml_vocab_test__ +Führer +__ggml_vocab_test__ + +__ggml_vocab_test__ + +__ggml_vocab_test__ + +__ggml_vocab_test__ + +__ggml_vocab_test__ + +__ggml_vocab_test__ + + +__ggml_vocab_test__ + + + +__ggml_vocab_test__ + + + + +__ggml_vocab_test__ + + +__ggml_vocab_test__ +Hello world +__ggml_vocab_test__ + Hello world +__ggml_vocab_test__ +Hello World +__ggml_vocab_test__ + Hello World +__ggml_vocab_test__ + Hello World! +__ggml_vocab_test__ +Hello, world! +__ggml_vocab_test__ + Hello, world! +__ggml_vocab_test__ + this is 🦙.cpp +__ggml_vocab_test__ +w048 7tuijk dsdfhu +__ggml_vocab_test__ +нещо на Български +__ggml_vocab_test__ +កាន់តែពិសេសអាចខលចេញ +__ggml_vocab_test__ +🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token) +__ggml_vocab_test__ +Hello +__ggml_vocab_test__ + Hello +__ggml_vocab_test__ + Hello +__ggml_vocab_test__ + Hello +__ggml_vocab_test__ + Hello +__ggml_vocab_test__ + Hello + Hello +__ggml_vocab_test__ + ( +__ggml_vocab_test__ + + = +__ggml_vocab_test__ +' era +__ggml_vocab_test__ +Hello, y'all! How are you 😁 ?我想在apple工作1314151天~ +__ggml_vocab_test__ +3 +__ggml_vocab_test__ +33 +__ggml_vocab_test__ +333 +__ggml_vocab_test__ +3333 +__ggml_vocab_test__ +33333 +__ggml_vocab_test__ +333333 +__ggml_vocab_test__ +3333333 +__ggml_vocab_test__ +33333333 +__ggml_vocab_test__ +333333333 +__ggml_vocab_test__ + + + + + + + + + + + +🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български ''''''```````""""......!!!!!!?????? I've been 'told he's there, 'RE you sure? 'M not sure I'll make it, 'D you like some tea? We'Ve a'lL +__ggml_vocab_test__ diff --git a/models/ggml-vocab-deepseek-coder.gguf.out b/models/ggml-vocab-deepseek-coder.gguf.out new file mode 100644 index 000000000..9ccc560d6 --- /dev/null +++ b/models/ggml-vocab-deepseek-coder.gguf.out @@ -0,0 +1,43 @@ + 1050 207 19 207 19192 4217 + 37 32009 71 6247 + + 207 + 243 + 315 + 184 + 185 + 185 185 + 185 185 185 + 184 185 + 17535 1835 + 414 9489 1835 + 17535 5414 + 414 9489 5414 + 414 9489 5414 0 + 17535 11 1835 0 + 414 9489 11 1835 0 + 437 317 12394 99 234 13 14789 + 86 15 19 23 207 22 83 3963 27659 26078 3934 14072 + 1593 6478 616 2251 14994 + 155 239 209 155 239 114 155 239 228 155 240 220 155 239 224 155 240 211 155 239 231 155 239 115 155 239 240 155 240 210 155 239 240 155 239 95 155 239 114 155 239 214 155 239 210 155 239 236 155 239 214 155 240 210 155 239 218 + 10047 235 209 334 8760 8 12394 233 114 350 222 10047 221 104 169 116 224 334 4684 3909 992 24330 262 29651 612 8 207 156 237 214 334 5950 992 78 12896 344 638 891 1372 10736 8 + 17535 + 414 9489 + 207 414 9489 + 243 414 9489 + 315 414 9489 + 315 414 9489 185 315 414 9489 + 334 + 185 405 + 6 2895 + 17535 11 320 6 435 0 1717 417 340 12394 233 210 3015 19100 608 9413 2668 16 18 16 19 16 20 16 1393 169 121 239 + 18 + 18 18 + 18 18 18 + 18 18 18 18 + 18 18 18 18 18 + 18 18 18 18 18 18 + 18 18 18 18 18 18 18 + 18 18 18 18 18 18 18 18 + 18 18 18 18 18 18 18 18 18 + 185 207 185 185 207 185 185 185 207 12405 459 22758 185 243 185 315 185 251 185 730 185 10047 235 209 334 8760 8 12394 233 114 350 222 10047 221 104 169 116 224 334 4684 3909 992 24330 262 29651 612 8 207 156 237 214 12394 99 234 10047 99 234 207 18 207 18 18 207 18 18 18 207 18 18 18 18 207 18 18 18 18 18 207 18 18 18 18 18 18 207 18 18 18 18 18 18 18 207 18 18 18 18 18 18 18 18 207 18 13 18 207 18 524 18 207 18 1202 18 207 155 239 209 155 239 114 155 239 228 155 240 220 155 239 224 155 240 211 155 239 231 155 239 115 155 239 240 155 240 210 155 239 240 155 239 95 155 239 114 155 239 214 10047 233 210 3015 19100 608 9413 2668 16 18 16 19 16 20 16 1393 169 121 239 18155 374 17194 28 2861 6478 616 2251 14994 31269 4191 6 4686 4686 10252 3358 3358 3409 524 15330 3023 15031 5668 303 6 312 798 651 83 839 362 6 82 741 11 651 1369 340 2037 30 651 44 441 2037 303 6 642 1098 359 11 651 35 340 833 738 10860 30 998 6 10709 245 6 75 43 diff --git a/models/ggml-vocab-deepseek-llm.gguf b/models/ggml-vocab-deepseek-llm.gguf new file mode 100644 index 000000000..5d66091c4 Binary files /dev/null and b/models/ggml-vocab-deepseek-llm.gguf differ diff --git a/models/ggml-vocab-deepseek-llm.gguf.inp b/models/ggml-vocab-deepseek-llm.gguf.inp new file mode 100644 index 000000000..0a89107c6 --- /dev/null +++ b/models/ggml-vocab-deepseek-llm.gguf.inp @@ -0,0 +1,106 @@ +ied 4 ½ months +__ggml_vocab_test__ +Führer +__ggml_vocab_test__ + +__ggml_vocab_test__ + +__ggml_vocab_test__ + +__ggml_vocab_test__ + +__ggml_vocab_test__ + +__ggml_vocab_test__ + + +__ggml_vocab_test__ + + + +__ggml_vocab_test__ + + + + +__ggml_vocab_test__ + + +__ggml_vocab_test__ +Hello world +__ggml_vocab_test__ + Hello world +__ggml_vocab_test__ +Hello World +__ggml_vocab_test__ + Hello World +__ggml_vocab_test__ + Hello World! +__ggml_vocab_test__ +Hello, world! +__ggml_vocab_test__ + Hello, world! +__ggml_vocab_test__ + this is 🦙.cpp +__ggml_vocab_test__ +w048 7tuijk dsdfhu +__ggml_vocab_test__ +нещо на Български +__ggml_vocab_test__ +កាន់តែពិសេសអាចខលចេញ +__ggml_vocab_test__ +🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token) +__ggml_vocab_test__ +Hello +__ggml_vocab_test__ + Hello +__ggml_vocab_test__ + Hello +__ggml_vocab_test__ + Hello +__ggml_vocab_test__ + Hello +__ggml_vocab_test__ + Hello + Hello +__ggml_vocab_test__ + ( +__ggml_vocab_test__ + + = +__ggml_vocab_test__ +' era +__ggml_vocab_test__ +Hello, y'all! How are you 😁 ?我想在apple工作1314151天~ +__ggml_vocab_test__ +3 +__ggml_vocab_test__ +33 +__ggml_vocab_test__ +333 +__ggml_vocab_test__ +3333 +__ggml_vocab_test__ +33333 +__ggml_vocab_test__ +333333 +__ggml_vocab_test__ +3333333 +__ggml_vocab_test__ +33333333 +__ggml_vocab_test__ +333333333 +__ggml_vocab_test__ + + + + + + + + + + + +🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български ''''''```````""""......!!!!!!?????? I've been 'told he's there, 'RE you sure? 'M not sure I'll make it, 'D you like some tea? We'Ve a'lL +__ggml_vocab_test__ diff --git a/models/ggml-vocab-deepseek-llm.gguf.out b/models/ggml-vocab-deepseek-llm.gguf.out new file mode 100644 index 000000000..fd94b896d --- /dev/null +++ b/models/ggml-vocab-deepseek-llm.gguf.out @@ -0,0 +1,43 @@ + 1052 207 19 207 19109 4223 + 37 100014 71 6245 + + 207 + 243 + 300 + 184 + 185 + 185 185 + 185 185 185 + 184 185 + 17464 1843 + 37727 1843 + 17464 5427 + 37727 5427 + 37727 5427 0 + 17464 11 1843 0 + 37727 11 1843 0 + 437 317 12356 99 234 13 14743 + 86 15 19 23 207 22 83 3970 27519 26016 3944 14025 + 1603 6476 620 91754 + 71374 209 71374 114 71374 228 155 240 220 71374 224 155 240 211 71374 231 71374 115 71374 240 155 240 210 71374 240 71374 95 71374 114 71374 214 71374 210 71374 236 71374 214 155 240 210 71374 218 + 10044 95300 334 8754 8 33701 114 350 222 10044 221 104 46713 334 34732 996 24250 262 80923 8 207 37103 214 334 5956 89213 344 643 895 1377 10728 8 + 17464 + 37727 + 207 37727 + 243 37727 + 300 37727 + 300 37727 185 300 37727 + 334 + 185 403 + 6 2906 + 17464 11 320 6 436 0 1724 418 340 33701 210 3025 19017 612 9407 2681 16 18 16 19 16 20 16 1398 68940 239 + 18 + 18 18 + 18 18 18 + 18 18 18 18 + 18 18 18 18 18 + 18 18 18 18 18 18 + 18 18 18 18 18 18 18 + 18 18 18 18 18 18 18 18 + 18 18 18 18 18 18 18 18 18 + 185 207 185 185 207 185 185 185 207 11969 486 22504 185 243 185 300 185 251 185 663 185 10044 95300 334 8754 8 33701 114 350 222 10044 221 104 46713 334 34732 996 24250 262 80923 8 207 37103 214 12356 99 234 10044 99 234 207 18 207 18 18 207 18 18 18 207 18 18 18 18 207 18 18 18 18 18 207 18 18 18 18 18 18 207 18 18 18 18 18 18 18 207 18 18 18 18 18 18 18 18 207 18 13 18 207 18 526 18 207 18 1204 18 207 71374 209 71374 114 71374 228 155 240 220 71374 224 155 240 211 71374 231 71374 115 71374 240 155 240 210 71374 240 71374 95 71374 114 71374 214 71899 210 3025 19017 612 9407 2681 16 18 16 19 16 20 16 1398 68940 239 78827 55170 76659 620 91754 31116 36804 4885 4885 10897 4390 4390 41047 15278 3033 14986 5675 304 6 313 803 655 33326 362 6 82 745 11 655 1374 340 2049 30 655 44 441 2049 304 6 647 1099 359 11 655 35 340 837 742 10842 30 1003 6 10699 245 6 75 43 diff --git a/models/ggml-vocab-falcon.gguf b/models/ggml-vocab-falcon.gguf index d4ea2e822..334d50da5 100644 Binary files a/models/ggml-vocab-falcon.gguf and b/models/ggml-vocab-falcon.gguf differ diff --git a/models/ggml-vocab-falcon.gguf.inp b/models/ggml-vocab-falcon.gguf.inp new file mode 100644 index 000000000..0a89107c6 --- /dev/null +++ b/models/ggml-vocab-falcon.gguf.inp @@ -0,0 +1,106 @@ +ied 4 ½ months +__ggml_vocab_test__ +Führer +__ggml_vocab_test__ + +__ggml_vocab_test__ + +__ggml_vocab_test__ + +__ggml_vocab_test__ + +__ggml_vocab_test__ + +__ggml_vocab_test__ + + +__ggml_vocab_test__ + + + +__ggml_vocab_test__ + + + + +__ggml_vocab_test__ + + +__ggml_vocab_test__ +Hello world +__ggml_vocab_test__ + Hello world +__ggml_vocab_test__ +Hello World +__ggml_vocab_test__ + Hello World +__ggml_vocab_test__ + Hello World! +__ggml_vocab_test__ +Hello, world! +__ggml_vocab_test__ + Hello, world! +__ggml_vocab_test__ + this is 🦙.cpp +__ggml_vocab_test__ +w048 7tuijk dsdfhu +__ggml_vocab_test__ +нещо на Български +__ggml_vocab_test__ +កាន់តែពិសេសអាចខលចេញ +__ggml_vocab_test__ +🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token) +__ggml_vocab_test__ +Hello +__ggml_vocab_test__ + Hello +__ggml_vocab_test__ + Hello +__ggml_vocab_test__ + Hello +__ggml_vocab_test__ + Hello +__ggml_vocab_test__ + Hello + Hello +__ggml_vocab_test__ + ( +__ggml_vocab_test__ + + = +__ggml_vocab_test__ +' era +__ggml_vocab_test__ +Hello, y'all! How are you 😁 ?我想在apple工作1314151天~ +__ggml_vocab_test__ +3 +__ggml_vocab_test__ +33 +__ggml_vocab_test__ +333 +__ggml_vocab_test__ +3333 +__ggml_vocab_test__ +33333 +__ggml_vocab_test__ +333333 +__ggml_vocab_test__ +3333333 +__ggml_vocab_test__ +33333333 +__ggml_vocab_test__ +333333333 +__ggml_vocab_test__ + + + + + + + + + + + +🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български ''''''```````""""......!!!!!!?????? I've been 'told he's there, 'RE you sure? 'M not sure I'll make it, 'D you like some tea? We'Ve a'lL +__ggml_vocab_test__ diff --git a/models/ggml-vocab-falcon.gguf.out b/models/ggml-vocab-falcon.gguf.out new file mode 100644 index 000000000..209b04cda --- /dev/null +++ b/models/ggml-vocab-falcon.gguf.out @@ -0,0 +1,43 @@ + 878 204 31 3068 133 2137 + 28611 132 30042 + + 204 + 258 + 466 + 192 + 193 + 1001 + 11331 + 19125 + 9856 1079 + 23090 1079 + 9856 2889 + 23090 2889 + 23090 2889 12 + 9856 23 1079 12 + 23090 23 1079 12 + 414 304 3346 111 231 25 29247 + 98 55866 204 34 16682 7149 36190 6869 11481 + 150 133 6207 151 215 150 134 5052 133 6279 5052 223 151 216 49679 123 53110 47043 7795 + 38154 206 38154 126 38154 225 167 237 217 38154 221 167 237 208 38154 228 38154 127 38154 237 167 237 207 38154 237 38154 107 38154 126 38154 211 38154 207 38154 233 38154 211 167 237 207 38154 215 + 2571 232 206 204 19 11003 20 8196 126 283 219 48778 116 13392 204 19 51831 732 63209 1741 7955 522 20 22438 211 204 19 7927 53360 325 504 701 946 10930 20 + 9856 + 23090 + 204 23090 + 258 23090 + 466 23090 + 466 23090 742 23090 + 204 19 + 1212 40 + 18 4932 + 9856 23 291 18 436 12 1265 362 299 8196 207 204 42 50087 123 2727 20300 32022 133 234 17419 30137 28 7858 181 133 236 + 30 + 3138 + 22287 + 22287 30 + 22287 3138 + 22287 22287 + 22287 22287 30 + 22287 22287 3138 + 22287 22287 22287 + 1212 4824 1001 1212 192 204 663 49453 2069 742 561 1501 193 2571 232 206 204 19 11003 20 8196 126 283 219 48778 116 13392 204 19 51831 732 63209 1741 7955 522 20 22438 211 3346 111 231 2571 111 231 204 30 204 3138 204 22287 204 22287 30 204 22287 3138 204 22287 22287 204 22287 22287 30 204 22287 22287 3138 204 30 25 30 204 30 513 30 204 30 951 30 27171 236 206 38154 126 38154 225 167 237 217 38154 221 167 237 208 38154 228 38154 127 38154 237 167 237 207 38154 237 38154 107 38154 126 38154 211 20589 207 204 42 50087 123 2727 20300 32022 133 234 17419 30137 28 7858 181 133 236 204 37057 2228 10666 5052 133 6207 151 215 150 134 5052 133 6279 5052 223 151 216 49679 123 53110 47043 7795 204 7544 7544 7544 8543 8543 17593 3513 3513 12844 51520 17664 4247 295 18 298 650 204 18 95 693 332 18 94 629 23 204 18 1553 299 1310 42 204 18 56 416 1310 295 18 567 717 334 23 204 18 47 299 606 596 6696 42 703 18 16139 241 18 87 55 diff --git a/models/ggml-vocab-gpt-2.gguf b/models/ggml-vocab-gpt-2.gguf new file mode 100644 index 000000000..5ea85cf52 Binary files /dev/null and b/models/ggml-vocab-gpt-2.gguf differ diff --git a/models/ggml-vocab-gpt-2.gguf.inp b/models/ggml-vocab-gpt-2.gguf.inp new file mode 100644 index 000000000..0a89107c6 --- /dev/null +++ b/models/ggml-vocab-gpt-2.gguf.inp @@ -0,0 +1,106 @@ +ied 4 ½ months +__ggml_vocab_test__ +Führer +__ggml_vocab_test__ + +__ggml_vocab_test__ + +__ggml_vocab_test__ + +__ggml_vocab_test__ + +__ggml_vocab_test__ + +__ggml_vocab_test__ + + +__ggml_vocab_test__ + + + +__ggml_vocab_test__ + + + + +__ggml_vocab_test__ + + +__ggml_vocab_test__ +Hello world +__ggml_vocab_test__ + Hello world +__ggml_vocab_test__ +Hello World +__ggml_vocab_test__ + Hello World +__ggml_vocab_test__ + Hello World! +__ggml_vocab_test__ +Hello, world! +__ggml_vocab_test__ + Hello, world! +__ggml_vocab_test__ + this is 🦙.cpp +__ggml_vocab_test__ +w048 7tuijk dsdfhu +__ggml_vocab_test__ +нещо на Български +__ggml_vocab_test__ +កាន់តែពិសេសអាចខលចេញ +__ggml_vocab_test__ +🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token) +__ggml_vocab_test__ +Hello +__ggml_vocab_test__ + Hello +__ggml_vocab_test__ + Hello +__ggml_vocab_test__ + Hello +__ggml_vocab_test__ + Hello +__ggml_vocab_test__ + Hello + Hello +__ggml_vocab_test__ + ( +__ggml_vocab_test__ + + = +__ggml_vocab_test__ +' era +__ggml_vocab_test__ +Hello, y'all! How are you 😁 ?我想在apple工作1314151天~ +__ggml_vocab_test__ +3 +__ggml_vocab_test__ +33 +__ggml_vocab_test__ +333 +__ggml_vocab_test__ +3333 +__ggml_vocab_test__ +33333 +__ggml_vocab_test__ +333333 +__ggml_vocab_test__ +3333333 +__ggml_vocab_test__ +33333333 +__ggml_vocab_test__ +333333333 +__ggml_vocab_test__ + + + + + + + + + + + +🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български ''''''```````""""......!!!!!!?????? I've been 'told he's there, 'RE you sure? 'M not sure I'll make it, 'D you like some tea? We'Ve a'lL +__ggml_vocab_test__ diff --git a/models/ggml-vocab-gpt-2.gguf.out b/models/ggml-vocab-gpt-2.gguf.out new file mode 100644 index 000000000..78430f0d3 --- /dev/null +++ b/models/ggml-vocab-gpt-2.gguf.out @@ -0,0 +1,43 @@ + 798 604 25208 1933 + 37 9116 71 11751 + + 220 + 220 220 + 220 220 220 + 197 + 198 + 628 + 628 198 + 197 198 + 15496 995 + 18435 995 + 15496 2159 + 18435 2159 + 18435 2159 0 + 15496 11 995 0 + 18435 11 995 0 + 428 318 12520 99 247 13 20322 + 86 47202 767 28047 45961 288 82 7568 13415 + 22177 16843 141 231 15166 12466 121 16142 12466 239 141 232 30143 140 111 16142 21169 21727 31583 18849 + 157 252 222 157 252 114 157 252 241 157 253 233 157 252 237 157 253 224 157 252 244 157 252 115 157 252 253 157 253 223 157 252 253 157 252 95 157 252 114 157 252 227 157 252 223 157 252 249 157 252 227 157 253 223 157 252 231 + 8582 248 222 357 11265 8 30325 114 447 235 8582 234 104 37929 357 48101 795 13210 271 1673 36686 515 8 14519 227 357 8807 44805 326 468 663 898 11241 8 + 15496 + 18435 + 220 18435 + 220 220 18435 + 220 220 220 18435 + 220 220 220 18435 198 220 220 220 18435 + 357 + 198 796 + 6 6980 + 15496 11 331 6 439 0 1374 389 345 30325 223 5633 22755 239 46349 111 28839 101 18040 32432 98 43291 1485 1415 24309 25465 171 121 252 + 18 + 2091 + 20370 + 24840 + 2091 20370 + 24840 2091 + 24840 20370 + 24840 24840 + 24840 2091 20370 + 198 220 628 220 628 198 220 197 220 197 197 220 197 198 220 220 198 220 220 220 198 220 220 220 220 198 220 220 220 220 220 198 8582 248 222 357 11265 8 30325 114 447 235 8582 234 104 37929 357 48101 795 13210 271 1673 36686 515 8 14519 227 12520 99 247 8582 99 247 513 4747 23460 513 20370 23460 2091 23460 20370 23460 24840 23460 2091 20370 513 13 18 513 492 18 513 986 18 28053 252 222 157 252 114 157 252 241 157 253 233 157 252 237 157 253 224 157 252 244 157 252 115 157 252 253 157 253 223 157 252 253 157 252 95 157 252 114 157 252 227 47249 223 5633 22755 239 46349 111 28839 101 18040 32432 98 43291 1485 1415 24309 25465 171 121 252 40103 1421 18604 12466 121 16843 141 231 15166 12466 121 16142 12466 239 141 232 30143 140 111 16142 21169 21727 31583 18849 705 39115 6 33153 15506 63 15931 15931 16317 13896 3228 9805 3548 314 1053 587 705 44040 339 338 612 11 705 2200 345 1654 30 705 44 407 1654 314 1183 787 340 11 705 35 345 588 617 8887 30 775 6 26979 257 6 75 43 diff --git a/models/ggml-vocab-llama-bpe.gguf b/models/ggml-vocab-llama-bpe.gguf new file mode 100644 index 000000000..e51a99118 Binary files /dev/null and b/models/ggml-vocab-llama-bpe.gguf differ diff --git a/models/ggml-vocab-llama-bpe.gguf.inp b/models/ggml-vocab-llama-bpe.gguf.inp new file mode 100644 index 000000000..0a89107c6 --- /dev/null +++ b/models/ggml-vocab-llama-bpe.gguf.inp @@ -0,0 +1,106 @@ +ied 4 ½ months +__ggml_vocab_test__ +Führer +__ggml_vocab_test__ + +__ggml_vocab_test__ + +__ggml_vocab_test__ + +__ggml_vocab_test__ + +__ggml_vocab_test__ + +__ggml_vocab_test__ + + +__ggml_vocab_test__ + + + +__ggml_vocab_test__ + + + + +__ggml_vocab_test__ + + +__ggml_vocab_test__ +Hello world +__ggml_vocab_test__ + Hello world +__ggml_vocab_test__ +Hello World +__ggml_vocab_test__ + Hello World +__ggml_vocab_test__ + Hello World! +__ggml_vocab_test__ +Hello, world! +__ggml_vocab_test__ + Hello, world! +__ggml_vocab_test__ + this is 🦙.cpp +__ggml_vocab_test__ +w048 7tuijk dsdfhu +__ggml_vocab_test__ +нещо на Български +__ggml_vocab_test__ +កាន់តែពិសេសអាចខលចេញ +__ggml_vocab_test__ +🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token) +__ggml_vocab_test__ +Hello +__ggml_vocab_test__ + Hello +__ggml_vocab_test__ + Hello +__ggml_vocab_test__ + Hello +__ggml_vocab_test__ + Hello +__ggml_vocab_test__ + Hello + Hello +__ggml_vocab_test__ + ( +__ggml_vocab_test__ + + = +__ggml_vocab_test__ +' era +__ggml_vocab_test__ +Hello, y'all! How are you 😁 ?我想在apple工作1314151天~ +__ggml_vocab_test__ +3 +__ggml_vocab_test__ +33 +__ggml_vocab_test__ +333 +__ggml_vocab_test__ +3333 +__ggml_vocab_test__ +33333 +__ggml_vocab_test__ +333333 +__ggml_vocab_test__ +3333333 +__ggml_vocab_test__ +33333333 +__ggml_vocab_test__ +333333333 +__ggml_vocab_test__ + + + + + + + + + + + +🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български ''''''```````""""......!!!!!!?????? I've been 'told he's there, 'RE you sure? 'M not sure I'll make it, 'D you like some tea? We'Ve a'lL +__ggml_vocab_test__ diff --git a/models/ggml-vocab-llama-bpe.gguf.out b/models/ggml-vocab-llama-bpe.gguf.out new file mode 100644 index 000000000..1f00e3812 --- /dev/null +++ b/models/ggml-vocab-llama-bpe.gguf.out @@ -0,0 +1,43 @@ + 1142 220 19 220 27154 4038 + 37 51853 261 + + 220 + 256 + 262 + 197 + 198 + 271 + 1432 + 1602 + 9906 1917 + 22691 1917 + 9906 4435 + 22691 4435 + 22691 4435 0 + 9906 11 1917 0 + 22691 11 1917 0 + 420 374 11410 99 247 13 11055 + 86 23904 220 22 83 2005 42908 11729 3013 17156 + 79862 102118 13373 64571 34694 3114 112203 80112 + 21549 222 98629 241 45358 233 21549 237 45358 224 21549 244 21549 115 21549 253 45358 223 21549 253 21549 95 98629 227 21549 223 21549 249 21549 227 45358 223 21549 231 + 9468 248 222 320 8416 8 27623 114 102470 9468 234 104 31643 320 36773 100166 98634 8 26602 227 320 3323 43465 430 706 1202 1866 4037 8 + 9906 + 22691 + 220 22691 + 256 22691 + 262 22691 + 262 22691 198 262 22691 + 320 + 198 284 + 6 11639 + 9906 11 379 65948 0 2650 527 499 27623 223 949 37046 101067 19000 23182 102301 9263 18136 16 36827 21909 + 18 + 1644 + 8765 + 8765 18 + 8765 1644 + 8765 8765 + 8765 8765 18 + 8765 8765 1644 + 8765 8765 8765 + 198 4815 15073 66597 8004 1602 2355 79772 11187 9468 248 222 320 8416 8 27623 114 102470 9468 234 104 31643 320 36773 100166 98634 8 26602 227 11410 99 247 9468 99 247 220 18 220 1644 220 8765 220 8765 18 220 8765 1644 220 8765 8765 220 8765 8765 18 220 8765 8765 1644 220 18 13 18 220 18 497 18 220 18 1131 18 220 21549 222 98629 241 45358 233 21549 237 45358 224 21549 244 21549 115 21549 253 45358 223 21549 253 21549 95 98629 227 76460 223 949 37046 101067 19000 23182 102301 9263 18136 16 36827 21909 56560 54337 19175 102118 13373 64571 34694 3114 112203 80112 3436 106451 14196 14196 74694 3089 3089 29249 17523 3001 27708 7801 358 3077 1027 364 83 820 568 596 1070 11 364 793 499 2771 30 364 44 539 2771 358 3358 1304 433 11 364 35 499 1093 1063 15600 30 1226 6 43712 264 64966 43 diff --git a/models/ggml-vocab-llama.gguf b/models/ggml-vocab-llama-spm.gguf similarity index 99% rename from models/ggml-vocab-llama.gguf rename to models/ggml-vocab-llama-spm.gguf index 549eed8c5..658295a5d 100644 Binary files a/models/ggml-vocab-llama.gguf and b/models/ggml-vocab-llama-spm.gguf differ diff --git a/models/ggml-vocab-llama-spm.gguf.inp b/models/ggml-vocab-llama-spm.gguf.inp new file mode 100644 index 000000000..0a89107c6 --- /dev/null +++ b/models/ggml-vocab-llama-spm.gguf.inp @@ -0,0 +1,106 @@ +ied 4 ½ months +__ggml_vocab_test__ +Führer +__ggml_vocab_test__ + +__ggml_vocab_test__ + +__ggml_vocab_test__ + +__ggml_vocab_test__ + +__ggml_vocab_test__ + +__ggml_vocab_test__ + + +__ggml_vocab_test__ + + + +__ggml_vocab_test__ + + + + +__ggml_vocab_test__ + + +__ggml_vocab_test__ +Hello world +__ggml_vocab_test__ + Hello world +__ggml_vocab_test__ +Hello World +__ggml_vocab_test__ + Hello World +__ggml_vocab_test__ + Hello World! +__ggml_vocab_test__ +Hello, world! +__ggml_vocab_test__ + Hello, world! +__ggml_vocab_test__ + this is 🦙.cpp +__ggml_vocab_test__ +w048 7tuijk dsdfhu +__ggml_vocab_test__ +нещо на Български +__ggml_vocab_test__ +កាន់តែពិសេសអាចខលចេញ +__ggml_vocab_test__ +🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token) +__ggml_vocab_test__ +Hello +__ggml_vocab_test__ + Hello +__ggml_vocab_test__ + Hello +__ggml_vocab_test__ + Hello +__ggml_vocab_test__ + Hello +__ggml_vocab_test__ + Hello + Hello +__ggml_vocab_test__ + ( +__ggml_vocab_test__ + + = +__ggml_vocab_test__ +' era +__ggml_vocab_test__ +Hello, y'all! How are you 😁 ?我想在apple工作1314151天~ +__ggml_vocab_test__ +3 +__ggml_vocab_test__ +33 +__ggml_vocab_test__ +333 +__ggml_vocab_test__ +3333 +__ggml_vocab_test__ +33333 +__ggml_vocab_test__ +333333 +__ggml_vocab_test__ +3333333 +__ggml_vocab_test__ +33333333 +__ggml_vocab_test__ +333333333 +__ggml_vocab_test__ + + + + + + + + + + + +🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български ''''''```````""""......!!!!!!?????? I've been 'told he's there, 'RE you sure? 'M not sure I'll make it, 'D you like some tea? We'Ve a'lL +__ggml_vocab_test__ diff --git a/models/ggml-vocab-llama-spm.gguf.out b/models/ggml-vocab-llama-spm.gguf.out new file mode 100644 index 000000000..9c3327cb5 --- /dev/null +++ b/models/ggml-vocab-llama-spm.gguf.out @@ -0,0 +1,43 @@ + 474 287 29871 29946 29871 30226 7378 + 383 4000 261 + + 259 + 1678 + 268 + 29871 12 + 29871 13 + 29871 13 13 + 29871 13 13 13 + 29871 12 13 + 15043 3186 + 29871 15043 3186 + 15043 2787 + 29871 15043 2787 + 29871 15043 2787 29991 + 15043 29892 3186 29991 + 29871 15043 29892 3186 29991 + 29871 445 338 29871 243 162 169 156 29889 8223 + 281 29900 29946 29947 29871 29955 9161 13535 18031 2176 6905 + 1538 4851 665 1386 29713 1305 + 29871 31849 31324 31934 228 162 142 228 161 146 228 162 133 228 161 153 228 161 186 31708 228 162 132 31708 228 161 165 31324 228 161 136 228 161 132 228 161 158 228 161 136 228 162 132 228 161 140 + 29871 243 162 157 131 313 8945 29897 29871 243 162 155 185 30722 243 162 143 174 30598 313 20787 953 3848 275 16125 630 29897 29871 31681 313 6194 953 29877 2397 393 756 967 1914 5993 29897 + 15043 + 29871 15043 + 259 15043 + 1678 15043 + 268 15043 + 268 15043 13 1678 15043 + 29871 313 + 29871 13 353 + 525 3152 + 15043 29892 343 29915 497 29991 1128 526 366 29871 243 162 155 132 1577 30672 31522 30505 11548 31041 30732 29896 29941 29896 29946 29896 29945 29896 30408 30739 + 29871 29941 + 29871 29941 29941 + 29871 29941 29941 29941 + 29871 29941 29941 29941 29941 + 29871 29941 29941 29941 29941 29941 + 29871 29941 29941 29941 29941 29941 29941 + 29871 29941 29941 29941 29941 29941 29941 29941 + 29871 29941 29941 29941 29941 29941 29941 29941 29941 + 29871 29941 29941 29941 29941 29941 29941 29941 29941 29941 + 29871 13 29871 13 13 29871 13 13 13 29871 12 29871 12 12 29871 12 13 259 13 1678 13 268 13 418 13 243 162 157 131 313 8945 29897 29871 243 162 155 185 30722 243 162 143 174 30598 313 20787 953 3848 275 16125 630 29897 29871 31681 29871 243 162 169 156 243 162 169 156 29871 29941 29871 29941 29941 29871 29941 29941 29941 29871 29941 29941 29941 29941 29871 29941 29941 29941 29941 29941 29871 29941 29941 29941 29941 29941 29941 29871 29941 29941 29941 29941 29941 29941 29941 29871 29941 29941 29941 29941 29941 29941 29941 29941 29871 29941 29889 29941 29871 29941 636 29941 29871 29941 856 29941 29871 31849 31324 31934 228 162 142 228 161 146 228 162 133 228 161 153 228 161 186 31708 228 162 132 31708 228 161 165 31324 228 161 136 243 162 155 132 1577 30672 31522 30505 11548 31041 30732 29896 29941 29896 29946 29896 29945 29896 30408 30739 448 23648 2751 25512 1538 4851 665 1386 29713 1305 14550 4907 11120 16159 16159 16159 15945 15945 3045 636 6824 6824 6824 8773 8773 8773 306 29915 345 1063 525 29873 1025 540 29915 29879 727 29892 525 1525 366 1854 29973 525 29924 451 1854 306 29915 645 1207 372 29892 525 29928 366 763 777 23429 29973 1334 29915 29963 29872 263 29915 29880 29931 diff --git a/models/ggml-vocab-mpt.gguf b/models/ggml-vocab-mpt.gguf index 6affa34bd..f42f56dec 100644 Binary files a/models/ggml-vocab-mpt.gguf and b/models/ggml-vocab-mpt.gguf differ diff --git a/models/ggml-vocab-mpt.gguf.inp b/models/ggml-vocab-mpt.gguf.inp new file mode 100644 index 000000000..0a89107c6 --- /dev/null +++ b/models/ggml-vocab-mpt.gguf.inp @@ -0,0 +1,106 @@ +ied 4 ½ months +__ggml_vocab_test__ +Führer +__ggml_vocab_test__ + +__ggml_vocab_test__ + +__ggml_vocab_test__ + +__ggml_vocab_test__ + +__ggml_vocab_test__ + +__ggml_vocab_test__ + + +__ggml_vocab_test__ + + + +__ggml_vocab_test__ + + + + +__ggml_vocab_test__ + + +__ggml_vocab_test__ +Hello world +__ggml_vocab_test__ + Hello world +__ggml_vocab_test__ +Hello World +__ggml_vocab_test__ + Hello World +__ggml_vocab_test__ + Hello World! +__ggml_vocab_test__ +Hello, world! +__ggml_vocab_test__ + Hello, world! +__ggml_vocab_test__ + this is 🦙.cpp +__ggml_vocab_test__ +w048 7tuijk dsdfhu +__ggml_vocab_test__ +нещо на Български +__ggml_vocab_test__ +កាន់តែពិសេសអាចខលចេញ +__ggml_vocab_test__ +🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token) +__ggml_vocab_test__ +Hello +__ggml_vocab_test__ + Hello +__ggml_vocab_test__ + Hello +__ggml_vocab_test__ + Hello +__ggml_vocab_test__ + Hello +__ggml_vocab_test__ + Hello + Hello +__ggml_vocab_test__ + ( +__ggml_vocab_test__ + + = +__ggml_vocab_test__ +' era +__ggml_vocab_test__ +Hello, y'all! How are you 😁 ?我想在apple工作1314151天~ +__ggml_vocab_test__ +3 +__ggml_vocab_test__ +33 +__ggml_vocab_test__ +333 +__ggml_vocab_test__ +3333 +__ggml_vocab_test__ +33333 +__ggml_vocab_test__ +333333 +__ggml_vocab_test__ +3333333 +__ggml_vocab_test__ +33333333 +__ggml_vocab_test__ +333333333 +__ggml_vocab_test__ + + + + + + + + + + + +🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български ''''''```````""""......!!!!!!?????? I've been 'told he's there, 'RE you sure? 'M not sure I'll make it, 'D you like some tea? We'Ve a'lL +__ggml_vocab_test__ diff --git a/models/ggml-vocab-mpt.gguf.out b/models/ggml-vocab-mpt.gguf.out new file mode 100644 index 000000000..d8d0fe909 --- /dev/null +++ b/models/ggml-vocab-mpt.gguf.out @@ -0,0 +1,43 @@ + 728 577 24142 2607 + 39 26288 6554 + + 209 + 50276 + 50275 + 186 + 187 + 535 + 2756 + 186 187 + 12092 1533 + 24387 1533 + 12092 3645 + 24387 3645 + 24387 3645 2 + 12092 13 1533 2 + 24387 13 1533 2 + 436 310 22692 101 236 15 14161 + 88 27244 818 16853 16392 20505 4989 11917 + 32520 11514 1068 8713 38177 13396 3415 9925 12559 10453 1389 + 18081 211 18081 116 18081 230 39936 222 18081 226 39936 213 18081 233 18081 117 18081 242 39936 212 18081 242 18081 97 18081 116 18081 216 18081 212 18081 238 18081 216 39936 212 18081 220 + 14931 237 211 313 6320 10 49042 116 325 224 14931 223 106 171 118 226 313 34263 802 13511 261 32147 456 10 3384 239 216 313 7483 802 80 8020 326 556 697 1211 10669 10 + 12092 + 24387 + 50276 12092 + 50275 12092 + 50274 12092 + 50274 12092 187 50274 12092 + 313 + 187 426 + 8 8685 + 12092 13 340 8 455 2 1359 403 368 49042 212 3736 15367 41197 13610 19934 41869 21275 1012 1047 18795 40120 20422 241 + 20 + 1610 + 20084 + 26409 + 1610 20084 + 26409 1610 + 26409 20084 + 26409 26409 + 26409 1610 20084 + 586 1744 33525 186 209 623 28910 187 50276 187 50275 187 50274 187 50273 187 14931 237 211 313 6320 10 49042 116 325 224 14931 223 106 171 118 226 313 34263 802 13511 261 32147 456 10 3384 239 216 22692 101 236 14931 101 236 495 5922 30057 495 20084 495 26409 30057 20084 495 26409 1610 495 26409 20084 495 15 20 495 537 20 495 1051 20 209 18081 211 18081 116 18081 230 39936 222 18081 226 39936 213 18081 233 18081 117 18081 242 39936 212 18081 242 18081 97 18081 116 18081 216 14931 235 212 3736 15367 41197 13610 19934 41869 21275 1012 1047 18795 40120 20422 241 16081 6877 12880 11514 1068 8713 38177 13396 3415 9925 12559 10453 1389 42011 35033 34842 11202 9739 9739 33021 18963 4672 25561 8220 309 1849 644 686 42618 344 434 627 13 686 1848 368 2119 32 686 46 417 2119 309 1833 1056 352 13 686 37 368 751 690 10331 32 844 8 31516 247 8 77 45 diff --git a/models/ggml-vocab-phi-3.gguf b/models/ggml-vocab-phi-3.gguf new file mode 100644 index 000000000..f8022a385 Binary files /dev/null and b/models/ggml-vocab-phi-3.gguf differ diff --git a/models/ggml-vocab-phi-3.gguf.inp b/models/ggml-vocab-phi-3.gguf.inp new file mode 100644 index 000000000..0a89107c6 --- /dev/null +++ b/models/ggml-vocab-phi-3.gguf.inp @@ -0,0 +1,106 @@ +ied 4 ½ months +__ggml_vocab_test__ +Führer +__ggml_vocab_test__ + +__ggml_vocab_test__ + +__ggml_vocab_test__ + +__ggml_vocab_test__ + +__ggml_vocab_test__ + +__ggml_vocab_test__ + + +__ggml_vocab_test__ + + + +__ggml_vocab_test__ + + + + +__ggml_vocab_test__ + + +__ggml_vocab_test__ +Hello world +__ggml_vocab_test__ + Hello world +__ggml_vocab_test__ +Hello World +__ggml_vocab_test__ + Hello World +__ggml_vocab_test__ + Hello World! +__ggml_vocab_test__ +Hello, world! +__ggml_vocab_test__ + Hello, world! +__ggml_vocab_test__ + this is 🦙.cpp +__ggml_vocab_test__ +w048 7tuijk dsdfhu +__ggml_vocab_test__ +нещо на Български +__ggml_vocab_test__ +កាន់តែពិសេសអាចខលចេញ +__ggml_vocab_test__ +🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token) +__ggml_vocab_test__ +Hello +__ggml_vocab_test__ + Hello +__ggml_vocab_test__ + Hello +__ggml_vocab_test__ + Hello +__ggml_vocab_test__ + Hello +__ggml_vocab_test__ + Hello + Hello +__ggml_vocab_test__ + ( +__ggml_vocab_test__ + + = +__ggml_vocab_test__ +' era +__ggml_vocab_test__ +Hello, y'all! How are you 😁 ?我想在apple工作1314151天~ +__ggml_vocab_test__ +3 +__ggml_vocab_test__ +33 +__ggml_vocab_test__ +333 +__ggml_vocab_test__ +3333 +__ggml_vocab_test__ +33333 +__ggml_vocab_test__ +333333 +__ggml_vocab_test__ +3333333 +__ggml_vocab_test__ +33333333 +__ggml_vocab_test__ +333333333 +__ggml_vocab_test__ + + + + + + + + + + + +🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български ''''''```````""""......!!!!!!?????? I've been 'told he's there, 'RE you sure? 'M not sure I'll make it, 'D you like some tea? We'Ve a'lL +__ggml_vocab_test__ diff --git a/models/ggml-vocab-phi-3.gguf.out b/models/ggml-vocab-phi-3.gguf.out new file mode 100644 index 000000000..9c3327cb5 --- /dev/null +++ b/models/ggml-vocab-phi-3.gguf.out @@ -0,0 +1,43 @@ + 474 287 29871 29946 29871 30226 7378 + 383 4000 261 + + 259 + 1678 + 268 + 29871 12 + 29871 13 + 29871 13 13 + 29871 13 13 13 + 29871 12 13 + 15043 3186 + 29871 15043 3186 + 15043 2787 + 29871 15043 2787 + 29871 15043 2787 29991 + 15043 29892 3186 29991 + 29871 15043 29892 3186 29991 + 29871 445 338 29871 243 162 169 156 29889 8223 + 281 29900 29946 29947 29871 29955 9161 13535 18031 2176 6905 + 1538 4851 665 1386 29713 1305 + 29871 31849 31324 31934 228 162 142 228 161 146 228 162 133 228 161 153 228 161 186 31708 228 162 132 31708 228 161 165 31324 228 161 136 228 161 132 228 161 158 228 161 136 228 162 132 228 161 140 + 29871 243 162 157 131 313 8945 29897 29871 243 162 155 185 30722 243 162 143 174 30598 313 20787 953 3848 275 16125 630 29897 29871 31681 313 6194 953 29877 2397 393 756 967 1914 5993 29897 + 15043 + 29871 15043 + 259 15043 + 1678 15043 + 268 15043 + 268 15043 13 1678 15043 + 29871 313 + 29871 13 353 + 525 3152 + 15043 29892 343 29915 497 29991 1128 526 366 29871 243 162 155 132 1577 30672 31522 30505 11548 31041 30732 29896 29941 29896 29946 29896 29945 29896 30408 30739 + 29871 29941 + 29871 29941 29941 + 29871 29941 29941 29941 + 29871 29941 29941 29941 29941 + 29871 29941 29941 29941 29941 29941 + 29871 29941 29941 29941 29941 29941 29941 + 29871 29941 29941 29941 29941 29941 29941 29941 + 29871 29941 29941 29941 29941 29941 29941 29941 29941 + 29871 29941 29941 29941 29941 29941 29941 29941 29941 29941 + 29871 13 29871 13 13 29871 13 13 13 29871 12 29871 12 12 29871 12 13 259 13 1678 13 268 13 418 13 243 162 157 131 313 8945 29897 29871 243 162 155 185 30722 243 162 143 174 30598 313 20787 953 3848 275 16125 630 29897 29871 31681 29871 243 162 169 156 243 162 169 156 29871 29941 29871 29941 29941 29871 29941 29941 29941 29871 29941 29941 29941 29941 29871 29941 29941 29941 29941 29941 29871 29941 29941 29941 29941 29941 29941 29871 29941 29941 29941 29941 29941 29941 29941 29871 29941 29941 29941 29941 29941 29941 29941 29941 29871 29941 29889 29941 29871 29941 636 29941 29871 29941 856 29941 29871 31849 31324 31934 228 162 142 228 161 146 228 162 133 228 161 153 228 161 186 31708 228 162 132 31708 228 161 165 31324 228 161 136 243 162 155 132 1577 30672 31522 30505 11548 31041 30732 29896 29941 29896 29946 29896 29945 29896 30408 30739 448 23648 2751 25512 1538 4851 665 1386 29713 1305 14550 4907 11120 16159 16159 16159 15945 15945 3045 636 6824 6824 6824 8773 8773 8773 306 29915 345 1063 525 29873 1025 540 29915 29879 727 29892 525 1525 366 1854 29973 525 29924 451 1854 306 29915 645 1207 372 29892 525 29928 366 763 777 23429 29973 1334 29915 29963 29872 263 29915 29880 29931 diff --git a/models/ggml-vocab-qwen2.gguf b/models/ggml-vocab-qwen2.gguf new file mode 100644 index 000000000..541e475bc Binary files /dev/null and b/models/ggml-vocab-qwen2.gguf differ diff --git a/models/ggml-vocab-qwen2.gguf.inp b/models/ggml-vocab-qwen2.gguf.inp new file mode 100644 index 000000000..0a89107c6 --- /dev/null +++ b/models/ggml-vocab-qwen2.gguf.inp @@ -0,0 +1,106 @@ +ied 4 ½ months +__ggml_vocab_test__ +Führer +__ggml_vocab_test__ + +__ggml_vocab_test__ + +__ggml_vocab_test__ + +__ggml_vocab_test__ + +__ggml_vocab_test__ + +__ggml_vocab_test__ + + +__ggml_vocab_test__ + + + +__ggml_vocab_test__ + + + + +__ggml_vocab_test__ + + +__ggml_vocab_test__ +Hello world +__ggml_vocab_test__ + Hello world +__ggml_vocab_test__ +Hello World +__ggml_vocab_test__ + Hello World +__ggml_vocab_test__ + Hello World! +__ggml_vocab_test__ +Hello, world! +__ggml_vocab_test__ + Hello, world! +__ggml_vocab_test__ + this is 🦙.cpp +__ggml_vocab_test__ +w048 7tuijk dsdfhu +__ggml_vocab_test__ +нещо на Български +__ggml_vocab_test__ +កាន់តែពិសេសអាចខលចេញ +__ggml_vocab_test__ +🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token) +__ggml_vocab_test__ +Hello +__ggml_vocab_test__ + Hello +__ggml_vocab_test__ + Hello +__ggml_vocab_test__ + Hello +__ggml_vocab_test__ + Hello +__ggml_vocab_test__ + Hello + Hello +__ggml_vocab_test__ + ( +__ggml_vocab_test__ + + = +__ggml_vocab_test__ +' era +__ggml_vocab_test__ +Hello, y'all! How are you 😁 ?我想在apple工作1314151天~ +__ggml_vocab_test__ +3 +__ggml_vocab_test__ +33 +__ggml_vocab_test__ +333 +__ggml_vocab_test__ +3333 +__ggml_vocab_test__ +33333 +__ggml_vocab_test__ +333333 +__ggml_vocab_test__ +3333333 +__ggml_vocab_test__ +33333333 +__ggml_vocab_test__ +333333333 +__ggml_vocab_test__ + + + + + + + + + + + +🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български ''''''```````""""......!!!!!!?????? I've been 'told he's there, 'RE you sure? 'M not sure I'll make it, 'D you like some tea? We'Ve a'lL +__ggml_vocab_test__ diff --git a/models/ggml-vocab-qwen2.gguf.out b/models/ggml-vocab-qwen2.gguf.out new file mode 100644 index 000000000..401a510e8 --- /dev/null +++ b/models/ggml-vocab-qwen2.gguf.out @@ -0,0 +1,43 @@ + 1122 220 19 220 26062 3951 + 37 50753 261 + + 220 + 256 + 262 + 197 + 198 + 271 + 1406 + 1572 + 9707 1879 + 21927 1879 + 9707 4337 + 21927 4337 + 21927 4337 0 + 9707 11 1879 0 + 21927 11 1879 0 + 419 374 11162 99 247 13 10821 + 86 15 19 23 220 22 83 1963 41808 11472 2940 16739 + 78762 14144 1456 13073 63471 33594 3038 133178 79012 + 146394 97529 241 44258 233 146568 44258 224 147603 20879 115 146280 44258 223 146280 147272 97529 227 147805 148301 147270 44258 223 146848 + 145836 320 8252 8 26525 114 378 235 149921 30543 320 35673 99066 97534 8 25521 227 320 3243 42365 429 702 1181 1828 3950 8 + 9707 + 21927 + 220 21927 + 256 21927 + 262 21927 + 262 21927 198 262 21927 + 320 + 198 284 + 6 11385 + 9707 11 379 64848 0 2585 525 498 26525 223 937 104100 18493 22377 99257 16 18 16 19 16 20 16 35727 21216 + 18 + 18 18 + 18 18 18 + 18 18 18 18 + 18 18 18 18 18 + 18 18 18 18 18 18 + 18 18 18 18 18 18 18 + 18 18 18 18 18 18 18 18 + 18 18 18 18 18 18 18 18 18 + 198 4710 14731 65497 7847 1572 2303 78672 10947 145836 320 8252 8 26525 114 378 235 149921 30543 320 35673 99066 97534 8 25521 227 11162 99 247 149955 220 18 220 18 18 220 18 18 18 220 18 18 18 18 220 18 18 18 18 18 220 18 18 18 18 18 18 220 18 18 18 18 18 18 18 220 18 18 18 18 18 18 18 18 220 18 13 18 220 18 496 18 220 18 1112 18 220 146394 97529 241 44258 233 146568 44258 224 147603 20879 115 146280 44258 223 146280 147272 97529 227 144534 937 104100 18493 22377 99257 16 18 16 19 16 20 16 35727 21216 55460 53237 18658 14144 1456 13073 63471 33594 3038 133178 79012 3355 4605 4605 13874 13874 73594 3014 3014 28149 17085 2928 26610 7646 358 3003 1012 364 83 813 566 594 1052 11 364 787 498 2704 30 364 44 537 2704 358 3278 1281 432 11 364 35 498 1075 1045 15243 30 1205 6 42612 264 63866 43 diff --git a/models/ggml-vocab-refact.gguf b/models/ggml-vocab-refact.gguf index 8f26cfb76..52afcf01a 100644 Binary files a/models/ggml-vocab-refact.gguf and b/models/ggml-vocab-refact.gguf differ diff --git a/models/ggml-vocab-refact.gguf.inp b/models/ggml-vocab-refact.gguf.inp new file mode 100644 index 000000000..0a89107c6 --- /dev/null +++ b/models/ggml-vocab-refact.gguf.inp @@ -0,0 +1,106 @@ +ied 4 ½ months +__ggml_vocab_test__ +Führer +__ggml_vocab_test__ + +__ggml_vocab_test__ + +__ggml_vocab_test__ + +__ggml_vocab_test__ + +__ggml_vocab_test__ + +__ggml_vocab_test__ + + +__ggml_vocab_test__ + + + +__ggml_vocab_test__ + + + + +__ggml_vocab_test__ + + +__ggml_vocab_test__ +Hello world +__ggml_vocab_test__ + Hello world +__ggml_vocab_test__ +Hello World +__ggml_vocab_test__ + Hello World +__ggml_vocab_test__ + Hello World! +__ggml_vocab_test__ +Hello, world! +__ggml_vocab_test__ + Hello, world! +__ggml_vocab_test__ + this is 🦙.cpp +__ggml_vocab_test__ +w048 7tuijk dsdfhu +__ggml_vocab_test__ +нещо на Български +__ggml_vocab_test__ +កាន់តែពិសេសអាចខលចេញ +__ggml_vocab_test__ +🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token) +__ggml_vocab_test__ +Hello +__ggml_vocab_test__ + Hello +__ggml_vocab_test__ + Hello +__ggml_vocab_test__ + Hello +__ggml_vocab_test__ + Hello +__ggml_vocab_test__ + Hello + Hello +__ggml_vocab_test__ + ( +__ggml_vocab_test__ + + = +__ggml_vocab_test__ +' era +__ggml_vocab_test__ +Hello, y'all! How are you 😁 ?我想在apple工作1314151天~ +__ggml_vocab_test__ +3 +__ggml_vocab_test__ +33 +__ggml_vocab_test__ +333 +__ggml_vocab_test__ +3333 +__ggml_vocab_test__ +33333 +__ggml_vocab_test__ +333333 +__ggml_vocab_test__ +3333333 +__ggml_vocab_test__ +33333333 +__ggml_vocab_test__ +333333333 +__ggml_vocab_test__ + + + + + + + + + + + +🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български ''''''```````""""......!!!!!!?????? I've been 'told he's there, 'RE you sure? 'M not sure I'll make it, 'D you like some tea? We'Ve a'lL +__ggml_vocab_test__ diff --git a/models/ggml-vocab-refact.gguf.out b/models/ggml-vocab-refact.gguf.out new file mode 100644 index 000000000..06b15c090 --- /dev/null +++ b/models/ggml-vocab-refact.gguf.out @@ -0,0 +1,43 @@ + 4833 225 38 225 143 140 17723 + 56 2006 3935 265 + + 225 + 261 + 264 + 202 + 203 + 478 + 2831 + 15773 + 8279 5788 + 12000 5788 + 8279 10896 + 12000 10896 + 12000 10896 19 + 8279 30 5788 19 + 12000 30 5788 19 + 458 438 5945 118 252 32 3766 + 105 34 38 42 225 41 102 1707 12530 10180 1479 8278 + 39862 8372 1039 9446 40242 13852 2053 8949 12531 1520 10700 + 14574 227 14574 133 14574 246 30457 238 14574 242 30457 229 14574 249 14574 134 14574 258 30457 228 14574 258 14574 114 14574 133 14574 232 14574 228 14574 254 14574 232 30457 228 14574 236 + 3807 253 227 308 4382 27 18458 133 46113 44967 123 13868 308 12565 19775 33071 40824 733 27 41889 308 2585 22680 688 1401 2819 4369 2404 27 + 8279 + 12000 + 225 12000 + 261 12000 + 264 12000 + 264 12000 284 12000 + 308 + 203 280 + 25 34666 + 8279 30 533 25 464 19 4971 884 844 18458 228 1018 4982 13368 2909 9513 17827 35 37 35 38 35 39 35 11873 47838 + 37 + 37 37 + 37 37 37 + 37 37 37 37 + 37 37 37 37 37 + 37 37 37 37 37 37 + 37 37 37 37 37 37 37 + 37 37 37 37 37 37 37 37 + 37 37 37 37 37 37 37 37 37 + 334 719 8878 202 10885 4222 16104 28570 203 3807 253 227 308 4382 27 18458 133 46113 44967 123 13868 308 12565 19775 33071 40824 733 27 41889 5945 118 252 3807 118 252 225 37 225 37 37 225 37 37 37 225 37 37 37 37 225 37 37 37 37 37 225 37 37 37 37 37 37 225 37 37 37 37 37 37 37 225 37 37 37 37 37 37 37 37 225 37 32 37 225 37 497 37 225 37 1179 37 225 14574 227 14574 133 14574 246 30457 238 14574 242 30457 229 14574 249 14574 134 14574 258 30457 228 14574 258 14574 114 14574 133 14574 232 36628 228 1018 4982 13368 2909 9513 17827 35 37 35 38 35 39 35 11873 47838 20921 16623 13028 8372 1039 9446 40242 13852 2053 8949 12531 1520 10700 5881 9592 13299 914 31753 31359 9163 3202 35472 10397 439 4763 2583 330 102 1455 938 1182 2017 30 330 613 844 3654 49 330 63 646 3654 439 4621 1930 561 30 330 54 844 2124 1629 35993 49 2688 25 7709 312 25 94 62 diff --git a/models/ggml-vocab-stablelm-3b-4e1t.gguf b/models/ggml-vocab-stablelm.gguf similarity index 100% rename from models/ggml-vocab-stablelm-3b-4e1t.gguf rename to models/ggml-vocab-stablelm.gguf diff --git a/models/ggml-vocab-starcoder.gguf b/models/ggml-vocab-starcoder.gguf index a52983fdb..7a7e7742a 100644 Binary files a/models/ggml-vocab-starcoder.gguf and b/models/ggml-vocab-starcoder.gguf differ diff --git a/models/ggml-vocab-starcoder.gguf.inp b/models/ggml-vocab-starcoder.gguf.inp new file mode 100644 index 000000000..0a89107c6 --- /dev/null +++ b/models/ggml-vocab-starcoder.gguf.inp @@ -0,0 +1,106 @@ +ied 4 ½ months +__ggml_vocab_test__ +Führer +__ggml_vocab_test__ + +__ggml_vocab_test__ + +__ggml_vocab_test__ + +__ggml_vocab_test__ + +__ggml_vocab_test__ + +__ggml_vocab_test__ + + +__ggml_vocab_test__ + + + +__ggml_vocab_test__ + + + + +__ggml_vocab_test__ + + +__ggml_vocab_test__ +Hello world +__ggml_vocab_test__ + Hello world +__ggml_vocab_test__ +Hello World +__ggml_vocab_test__ + Hello World +__ggml_vocab_test__ + Hello World! +__ggml_vocab_test__ +Hello, world! +__ggml_vocab_test__ + Hello, world! +__ggml_vocab_test__ + this is 🦙.cpp +__ggml_vocab_test__ +w048 7tuijk dsdfhu +__ggml_vocab_test__ +нещо на Български +__ggml_vocab_test__ +កាន់តែពិសេសអាចខលចេញ +__ggml_vocab_test__ +🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token) +__ggml_vocab_test__ +Hello +__ggml_vocab_test__ + Hello +__ggml_vocab_test__ + Hello +__ggml_vocab_test__ + Hello +__ggml_vocab_test__ + Hello +__ggml_vocab_test__ + Hello + Hello +__ggml_vocab_test__ + ( +__ggml_vocab_test__ + + = +__ggml_vocab_test__ +' era +__ggml_vocab_test__ +Hello, y'all! How are you 😁 ?我想在apple工作1314151天~ +__ggml_vocab_test__ +3 +__ggml_vocab_test__ +33 +__ggml_vocab_test__ +333 +__ggml_vocab_test__ +3333 +__ggml_vocab_test__ +33333 +__ggml_vocab_test__ +333333 +__ggml_vocab_test__ +3333333 +__ggml_vocab_test__ +33333333 +__ggml_vocab_test__ +333333333 +__ggml_vocab_test__ + + + + + + + + + + + +🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български ''''''```````""""......!!!!!!?????? I've been 'told he's there, 'RE you sure? 'M not sure I'll make it, 'D you like some tea? We'Ve a'lL +__ggml_vocab_test__ diff --git a/models/ggml-vocab-starcoder.gguf.out b/models/ggml-vocab-starcoder.gguf.out new file mode 100644 index 000000000..ccb55c7fe --- /dev/null +++ b/models/ggml-vocab-starcoder.gguf.out @@ -0,0 +1,43 @@ + 4850 244 57 244 162 159 17722 + 75 2022 3943 284 + + 244 + 280 + 283 + 221 + 222 + 499 + 3067 + 15767 + 8302 5810 + 12009 5810 + 8302 10914 + 12009 10914 + 12009 10914 38 + 8302 49 5810 38 + 12009 49 5810 38 + 477 458 5954 137 271 51 3779 + 124 53 57 61 244 60 121 1726 12568 10240 1519 8290 + 39916 8389 1059 9504 40216 13858 2073 8983 12571 1539 10721 + 14566 246 14566 152 14566 265 30428 257 14566 261 30428 248 14566 268 14566 153 14566 277 30428 247 14566 277 14566 133 14566 152 14566 251 14566 247 14566 273 14566 251 30428 247 14566 255 + 3822 272 246 327 4434 46 18445 152 46030 45022 142 13878 327 12585 19884 33773 40920 751 46 41839 327 2605 22716 708 1421 2840 4387 2421 46 + 8302 + 12009 + 244 12009 + 280 12009 + 283 12009 + 283 12009 303 12009 + 327 + 222 299 + 44 34719 + 8302 49 553 44 483 38 4998 904 863 18445 247 1037 4995 13379 2924 9515 17823 54 56 54 57 54 58 54 11904 47892 + 56 + 56 56 + 56 56 56 + 56 56 56 56 + 56 56 56 56 56 + 56 56 56 56 56 56 + 56 56 56 56 56 56 56 + 56 56 56 56 56 56 56 56 + 56 56 56 56 56 56 56 56 56 + 353 736 8886 221 10883 4238 16101 28540 222 3822 272 246 327 4434 46 18445 152 46030 45022 142 13878 327 12585 19884 33773 40920 751 46 41839 5954 137 271 3822 137 271 244 56 244 56 56 244 56 56 56 244 56 56 56 56 244 56 56 56 56 56 244 56 56 56 56 56 56 244 56 56 56 56 56 56 56 244 56 56 56 56 56 56 56 56 244 56 51 56 244 56 516 56 244 56 1198 56 244 14566 246 14566 152 14566 265 30428 257 14566 261 30428 248 14566 268 14566 153 14566 277 30428 247 14566 277 14566 133 14566 152 14566 251 36570 247 1037 4995 13379 2924 9515 17823 54 56 54 57 54 58 54 11904 47892 20895 16625 13047 8389 1059 9504 40216 13858 2073 8983 12571 1539 10721 5918 9643 13298 932 31723 31330 9221 3226 35426 10400 457 4783 2602 349 121 1477 957 1200 2038 49 349 632 863 3673 68 349 82 666 3673 457 4650 1949 580 49 349 73 863 2144 1649 35941 68 2726 44 7728 331 44 113 81 diff --git a/requirements.txt b/requirements.txt index d36f74520..fc1e28278 100644 --- a/requirements.txt +++ b/requirements.txt @@ -7,6 +7,7 @@ -r ./requirements/requirements-convert.txt -r ./requirements/requirements-convert-hf-to-gguf.txt +-r ./requirements/requirements-convert-hf-to-gguf-update.txt -r ./requirements/requirements-convert-llama-ggml-to-gguf.txt -r ./requirements/requirements-convert-lora-to-ggml.txt -r ./requirements/requirements-convert-persimmon-to-gguf.txt diff --git a/requirements/requirements-convert-hf-to-gguf-update.txt b/requirements/requirements-convert-hf-to-gguf-update.txt new file mode 100644 index 000000000..6ce840d73 --- /dev/null +++ b/requirements/requirements-convert-hf-to-gguf-update.txt @@ -0,0 +1,3 @@ +-r ./requirements-convert.txt +torch~=2.1.1 +einops~=0.7.0 diff --git a/requirements/requirements-convert.txt b/requirements/requirements-convert.txt index a3d6ecec0..5520ba732 100644 --- a/requirements/requirements-convert.txt +++ b/requirements/requirements-convert.txt @@ -1,5 +1,5 @@ numpy~=1.24.4 sentencepiece~=0.1.98 -transformers>=4.35.2,<5.0.0 +transformers>=4.40.1,<5.0.0 gguf>=0.1.0 protobuf>=4.21.0,<5.0.0 diff --git a/scripts/check-requirements.sh b/scripts/check-requirements.sh index af7bab753..6a7400d3c 100755 --- a/scripts/check-requirements.sh +++ b/scripts/check-requirements.sh @@ -168,6 +168,11 @@ fi check_convert_script convert.py for py in convert-*.py; do + # skip convert-hf-to-gguf-update.py + # TODO: the check is failing for some reason: + # https://github.com/ggerganov/llama.cpp/actions/runs/8875330981/job/24364557177?pr=6920 + [[ $py == convert-hf-to-gguf-update.py ]] && continue + check_convert_script "$py" done diff --git a/scripts/compare-llama-bench.py b/scripts/compare-llama-bench.py index ef7f19ecb..fed3c1ee3 100755 --- a/scripts/compare-llama-bench.py +++ b/scripts/compare-llama-bench.py @@ -1,5 +1,6 @@ #!/usr/bin/env python3 +import logging import argparse import heapq import sys @@ -11,9 +12,11 @@ try: import git from tabulate import tabulate except ImportError as e: - print("ERROR: the following Python libraries are required: GitPython, tabulate.") + print("the following Python libraries are required: GitPython, tabulate.") # noqa: NP100 raise e +logger = logging.getLogger("compare-llama-bench") + # Properties by which to differentiate results per commit: KEY_PROPERTIES = [ "cpu_info", "gpu_info", "n_gpu_layers", "main_gpu", "cuda", "opencl", "metal", "gpu_blas", @@ -90,12 +93,14 @@ help_s = ( "specified values are averaged WITHOUT weighing by the --repetitions parameter of llama-bench." ) parser.add_argument("-s", "--show", help=help_s) +parser.add_argument("--verbose", action="store_true", help="increase output verbosity") known_args, unknown_args = parser.parse_known_args() +logging.basicConfig(level=logging.DEBUG if known_args.verbose else logging.INFO) + if unknown_args: - print(f"ERROR: Received unknown args: {unknown_args}.") - print() + logger.error(f"Received unknown args: {unknown_args}.\n") parser.print_help() sys.exit(1) @@ -108,8 +113,7 @@ if input_file is None: input_file = sqlite_files[0] if input_file is None: - print("ERROR: Cannot find a suitable input file, please provide one.") - print() + logger.error("Cannot find a suitable input file, please provide one.\n") parser.print_help() sys.exit(1) @@ -194,23 +198,19 @@ if known_args.baseline is not None: hexsha8_baseline = get_commit_hexsha8(known_args.baseline) name_baseline = known_args.baseline if hexsha8_baseline is None: - print(f"ERROR: cannot find data for baseline={known_args.baseline}.") + logger.error(f"cannot find data for baseline={known_args.baseline}.") sys.exit(1) # Otherwise, search for the most recent parent of master for which there is data: elif repo is not None: hexsha8_baseline = find_parent_in_data(repo.heads.master.commit) if hexsha8_baseline is None: - print("ERROR: No baseline was provided and did not find data for any master branch commits.") - print() + logger.error("No baseline was provided and did not find data for any master branch commits.\n") parser.print_help() sys.exit(1) else: - print( - "ERROR: No baseline was provided and the current working directory " - "is not part of a git repository from which a baseline could be inferred." - ) - print() + logger.error("No baseline was provided and the current working directory " + "is not part of a git repository from which a baseline could be inferred.\n") parser.print_help() sys.exit(1) @@ -227,7 +227,7 @@ if known_args.compare is not None: hexsha8_compare = get_commit_hexsha8(known_args.compare) name_compare = known_args.compare if hexsha8_compare is None: - print(f"ERROR: cannot find data for compare={known_args.compare}.") + logger.error(f"cannot find data for compare={known_args.compare}.") sys.exit(1) # Otherwise, search for the commit for llama-bench was most recently run # and that is not a parent of master: @@ -241,16 +241,12 @@ elif repo is not None: break if hexsha8_compare is None: - print("ERROR: No compare target was provided and did not find data for any non-master commits.") - print() + logger.error("No compare target was provided and did not find data for any non-master commits.\n") parser.print_help() sys.exit(1) else: - print( - "ERROR: No compare target was provided and the current working directory " - "is not part of a git repository from which a compare target could be inferred." - ) - print() + logger.error("No compare target was provided and the current working directory " + "is not part of a git repository from which a compare target could be inferred.\n") parser.print_help() sys.exit(1) @@ -284,8 +280,7 @@ if known_args.show is not None: if prop not in KEY_PROPERTIES[:-2]: # Last two values are n_prompt, n_gen. unknown_cols.append(prop) if unknown_cols: - print(f"ERROR: Unknown values for --show: {', '.join(unknown_cols)}") - print() + logger.error(f"Unknown values for --show: {', '.join(unknown_cols)}") parser.print_usage() sys.exit(1) rows_show = get_rows(show) @@ -369,7 +364,7 @@ if "gpu_info" in show: headers = [PRETTY_NAMES[p] for p in show] headers += ["Test", f"t/s {name_baseline}", f"t/s {name_compare}", "Speedup"] -print(tabulate( +print(tabulate( # noqa: NP100 table, headers=headers, floatfmt=".2f", diff --git a/scripts/gen-unicode-data.py b/scripts/gen-unicode-data.py new file mode 100644 index 000000000..977e65613 --- /dev/null +++ b/scripts/gen-unicode-data.py @@ -0,0 +1,66 @@ +import regex + + +def cpt_to_utf8_str(cpt): + if cpt <= 0xFF: + return bytes([cpt, 0, 0, 0]) + elif cpt <= 0xFFFF: + return bytes([cpt & 0xFF, cpt >> 8, 0, 0]) + elif cpt <= 0xFFFFFF: + return bytes([cpt & 0xFF, (cpt >> 8) & 0xFF, (cpt >> 16) & 0xFF, 0]) + else: + return bytes([cpt & 0xFF, (cpt >> 8) & 0xFF, (cpt >> 16) & 0xFF, cpt >> 24]) + + +def is_match(codepoint, regex_expr): + try: + res = regex.match(regex_expr, cpt_to_utf8_str(codepoint).decode('utf-32')) + return res is not None + except Exception: + return False + + +def get_matches(regex_expr): + unicode_ranges = [] + current_range = None + + for codepoint in range(0x110000): + if is_match(codepoint, regex_expr): + if current_range is None: + current_range = [codepoint, codepoint] + else: + current_range[1] = codepoint + elif current_range is not None: + unicode_ranges.append(tuple(current_range)) + current_range = None + + if current_range is not None: + unicode_ranges.append(tuple(current_range)) + + return unicode_ranges + + +def print_cat(cat, ranges): + print("const std::vector> unicode_ranges_{} = {{".format(cat)) # noqa: NP100 + cnt = 0 + for start, end in ranges: + if cnt % 4 != 0: + print(" ", end="") # noqa: NP100 + print("{{0x{:08X}, 0x{:08X}}},".format(start, end), end="") # noqa: NP100 + if cnt % 4 == 3: + print("") # noqa: NP100 + cnt += 1 + + if cnt % 4 != 0: + print("") # noqa: NP100 + print("};") # noqa: NP100 + print("") # noqa: NP100 + + +print_cat("number", get_matches(r'\p{N}')) +print_cat("letter", get_matches(r'\p{L}')) +print_cat("whitespace", get_matches(r'\p{Z}')) +print_cat("accent_mark", get_matches(r'\p{M}')) +print_cat("punctuation", get_matches(r'\p{P}')) +print_cat("symbol", get_matches(r'\p{S}')) +print_cat("control", get_matches(r'\p{C}')) diff --git a/scripts/run-with-preset.py b/scripts/run-with-preset.py index a18252730..e986a3604 100755 --- a/scripts/run-with-preset.py +++ b/scripts/run-with-preset.py @@ -1,5 +1,6 @@ #!/usr/bin/env python3 +import logging import argparse import os import subprocess @@ -7,6 +8,8 @@ import sys import yaml +logger = logging.getLogger("run-with-preset") + CLI_ARGS_MAIN_PERPLEXITY = [ "batch-size", "cfg-negative-prompt", "cfg-scale", "chunks", "color", "ctx-size", "escape", "export", "file", "frequency-penalty", "grammar", "grammar-file", "hellaswag", @@ -56,6 +59,7 @@ parser.add_argument("-bin", "--binary", help="The binary to run.") parser.add_argument("yaml_files", nargs="*", help="Arbitrary number of YAML files from which to read preset values. " "If two files specify the same values the later one will be used.") +parser.add_argument("--verbose", action="store_true", help="increase output verbosity") known_args, unknown_args = parser.parse_known_args() @@ -63,6 +67,8 @@ if not known_args.yaml_files and not unknown_args: parser.print_help() sys.exit(0) +logging.basicConfig(level=logging.DEBUG if known_args.verbose else logging.INFO) + props = dict() for yaml_file in known_args.yaml_files: @@ -85,7 +91,7 @@ elif binary.lower().endswith("llama-bench"): elif binary.lower().endswith("server"): cli_args = CLI_ARGS_SERVER else: - print(f"Unknown binary: {binary}") + logger.error(f"Unknown binary: {binary}") sys.exit(1) command_list = [binary] @@ -121,11 +127,11 @@ for cli_arg in cli_args: num_unused = len(props) if num_unused > 10: - print(f"The preset file contained a total of {num_unused} unused properties.") + logger.info(f"The preset file contained a total of {num_unused} unused properties.") elif num_unused > 0: - print("The preset file contained the following unused properties:") + logger.info("The preset file contained the following unused properties:") for prop, value in props.items(): - print(f" {prop}: {value}") + logger.info(f" {prop}: {value}") command_list += unknown_args diff --git a/scripts/verify-checksum-models.py b/scripts/verify-checksum-models.py index dff4b4734..0b5b9aafa 100755 --- a/scripts/verify-checksum-models.py +++ b/scripts/verify-checksum-models.py @@ -1,8 +1,11 @@ #!/usr/bin/env python3 +import logging import os import hashlib +logger = logging.getLogger("verify-checksum-models") + def sha256sum(file): block_size = 16 * 1024 * 1024 # 16 MB block size @@ -27,7 +30,7 @@ hash_list_file = os.path.join(llama_path, "SHA256SUMS") # Check if the hash list file exists if not os.path.exists(hash_list_file): - print(f"Hash list file not found: {hash_list_file}") + logger.error(f"Hash list file not found: {hash_list_file}") exit(1) # Read the hash file content and split it into an array of lines @@ -46,7 +49,7 @@ for line in hash_list: file_path = os.path.join(llama_path, filename) # Informing user of the progress of the integrity check - print(f"Verifying the checksum of {file_path}") + logger.info(f"Verifying the checksum of {file_path}") # Check if the file exists if os.path.exists(file_path): @@ -73,9 +76,9 @@ for line in hash_list: # Print column headers for results table -print("\n" + "filename".ljust(40) + "valid checksum".center(20) + "file missing".center(20)) -print("-" * 80) +print("filename".ljust(40) + "valid checksum".center(20) + "file missing".center(20)) # noqa: NP100 +print("-" * 80) # noqa: NP100 # Output the results as a table for r in results: - print(f"{r['filename']:40} {r['valid checksum']:^20} {r['file missing']:^20}") + print(f"{r['filename']:40} {r['valid checksum']:^20} {r['file missing']:^20}") # noqa: NP100 diff --git a/sgemm.cpp b/sgemm.cpp index 531e12af3..40ba9d7e9 100644 --- a/sgemm.cpp +++ b/sgemm.cpp @@ -1,6 +1,3 @@ -// -*- mode:c++;indent-tabs-mode:nil;c-basic-offset:4;coding:utf-8 -*- -// vi: set et ft=c++ ts=4 sts=4 sw=4 fenc=utf-8 :vi -// // Copyright 2024 Mozilla Foundation // // Permission is hereby granted, free of charge, to any person obtaining @@ -50,7 +47,6 @@ #pragma GCC diagnostic ignored "-Wignored-attributes" #include "sgemm.h" -#include #include "ggml-impl.h" #include "ggml-quants.h" @@ -243,23 +239,23 @@ template <> inline __m512 load(const ggml_fp16_t *p) { template class tinyBLAS { public: - tinyBLAS(int k, - const TA *A, int lda, - const TB *B, int ldb, - TC *C, int ldc, + tinyBLAS(int64_t k, + const TA *A, int64_t lda, + const TB *B, int64_t ldb, + TC *C, int64_t ldc, int ith, int nth) : A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) { } - void matmul(int m, int n, int task) { + void matmul(int64_t m, int64_t n, int task) { if (task == GGML_TASK_TYPE_COMPUTE) mnpack(0, m, 0, n); } private: - NOINLINE void mnpack(int m0, int m, int n0, int n) { - int mc, nc, mp, np; - switch ((std::min(m - m0, 5) << 4) | std::min(n - n0, 5)) { + NOINLINE void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) { + int64_t mc, nc, mp, np; + switch ((MIN(m - m0, 5) << 4) | MIN(n - n0, 5)) { #if VECTOR_REGISTERS == 32 case 0x55: mc = 5; @@ -409,27 +405,27 @@ class tinyBLAS { } template - NOINLINE void gemm(int m0, int m, int n0, int n) { - int ytiles = (m - m0) / RM; - int xtiles = (n - n0) / RN; - int tiles = xtiles * ytiles; - int duty = (tiles + nth - 1) / nth; - int start = duty * ith; - int end = start + duty; + NOINLINE void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) { + int64_t ytiles = (m - m0) / RM; + int64_t xtiles = (n - n0) / RN; + int64_t tiles = xtiles * ytiles; + int64_t duty = (tiles + nth - 1) / nth; + int64_t start = duty * ith; + int64_t end = start + duty; if (end > tiles) end = tiles; - for (int job = start; job < end; ++job) { - int ii = m0 + job / xtiles * RM; - int jj = n0 + job % xtiles * RN; + for (int64_t job = start; job < end; ++job) { + int64_t ii = m0 + job / xtiles * RM; + int64_t jj = n0 + job % xtiles * RN; D Cv[RN][RM] = {}; - for (int l = 0; l < k; l += KN) - for (int j = 0; j < RN; ++j) - for (int i = 0; i < RM; ++i) + for (int64_t l = 0; l < k; l += KN) + for (int64_t j = 0; j < RN; ++j) + for (int64_t i = 0; i < RM; ++i) Cv[j][i] = madd(load(A + lda * (ii + i) + l), load(B + ldb * (jj + j) + l), Cv[j][i]); - for (int j = 0; j < RN; ++j) - for (int i = 0; i < RM; ++i) + for (int64_t j = 0; j < RN; ++j) + for (int64_t i = 0; i < RM; ++i) C[ldc * (jj + j) + (ii + i)] = hsum(Cv[j][i]); } } @@ -437,10 +433,10 @@ class tinyBLAS { const TA *const A; const TB *const B; TC *const C; - const int k; - const int lda; - const int ldb; - const int ldc; + const int64_t k; + const int64_t lda; + const int64_t ldb; + const int64_t ldc; const int ith; const int nth; }; @@ -452,23 +448,23 @@ class tinyBLAS { template class tinyBLAS_Q0_ARM { public: - tinyBLAS_Q0_ARM(int k, - const TA *A, int lda, - const block_q8_0 *B, int ldb, - float *C, int ldc, + tinyBLAS_Q0_ARM(int64_t k, + const TA *A, int64_t lda, + const block_q8_0 *B, int64_t ldb, + float *C, int64_t ldc, int ith, int nth) : A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) { } - void matmul(int m, int n, int task) { + void matmul(int64_t m, int64_t n, int task) { if (task == GGML_TASK_TYPE_COMPUTE) mnpack(0, m, 0, n); } private: - NOINLINE void mnpack(int m0, int m, int n0, int n) { - int mc, nc, mp, np; - switch ((std::min(m - m0, 3) << 4) | std::min(n - n0, 3)) { + NOINLINE void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) { + int64_t mc, nc, mp, np; + switch ((MIN(m - m0, 3) << 4) | MIN(n - n0, 3ll)) { case 0x33: mc = 3; nc = 3; @@ -524,22 +520,22 @@ class tinyBLAS_Q0_ARM { } template - NOINLINE void gemm(int m0, int m, int n0, int n) { - int ytiles = (m - m0) / RM; - int xtiles = (n - n0) / RN; - int tiles = xtiles * ytiles; - int duty = (tiles + nth - 1) / nth; - int start = duty * ith; - int end = start + duty; + NOINLINE void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) { + int64_t ytiles = (m - m0) / RM; + int64_t xtiles = (n - n0) / RN; + int64_t tiles = xtiles * ytiles; + int64_t duty = (tiles + nth - 1) / nth; + int64_t start = duty * ith; + int64_t end = start + duty; if (end > tiles) end = tiles; - for (int job = start; job < end; ++job) { - int ii = m0 + job / xtiles * RM; - int jj = n0 + job % xtiles * RN; + for (int64_t job = start; job < end; ++job) { + int64_t ii = m0 + job / xtiles * RM; + int64_t jj = n0 + job % xtiles * RN; float32x4_t Cv[RN][RM] = {}; - for (int l = 0; l < k; ++l) - for (int j = 0; j < RN; ++j) - for (int i = 0; i < RM; ++i) + for (int64_t l = 0; l < k; ++l) + for (int64_t j = 0; j < RN; ++j) + for (int64_t i = 0; i < RM; ++i) Cv[j][i] = vmlaq_n_f32(Cv[j][i], vcvtq_f32_s32(vdotq_s32( vdotq_s32(vdupq_n_s32(0), @@ -549,8 +545,8 @@ class tinyBLAS_Q0_ARM { load_hi(B + ldb * (jj + j) + l))), unhalf(A[lda * (ii + i) + l].d) * unhalf(B[ldb * (jj + j) + l].d)); - for (int j = 0; j < RN; ++j) - for (int i = 0; i < RM; ++i) + for (int64_t j = 0; j < RN; ++j) + for (int64_t i = 0; i < RM; ++i) C[ldc * (jj + j) + (ii + i)] = hsum(Cv[j][i]); } } @@ -577,36 +573,36 @@ class tinyBLAS_Q0_ARM { const TA *const A; const block_q8_0 *const B; float *const C; - const int k; - const int lda; - const int ldb; - const int ldc; + const int64_t k; + const int64_t lda; + const int64_t ldb; + const int64_t ldc; const int ith; const int nth; }; #endif // __ARM_FEATURE_DOTPROD -#if defined(__AVX2__) || defined(__AVX512F__) +#if defined(__AVX2__) || defined(__AVX512F__) || defined(__AVX__) template -class tinyBLAS_Q0_AVX2 { +class tinyBLAS_Q0_AVX { public: - tinyBLAS_Q0_AVX2(int k, - const TA *A, int lda, - const TB *B, int ldb, - TC *C, int ldc, - int ith, int nth) + tinyBLAS_Q0_AVX(int64_t k, + const TA *A, int64_t lda, + const TB *B, int64_t ldb, + TC *C, int64_t ldc, + int ith, int nth) : A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) { } - void matmul(int m, int n, int task) { + void matmul(int64_t m, int64_t n, int task) { if (task == GGML_TASK_TYPE_COMPUTE) mnpack(0, m, 0, n); } private: - void mnpack(int m0, int m, int n0, int n) { - int mc, nc, mp, np; - switch ((std::min(m - m0, 4) << 4) | std::min(n - n0, 4)) { + void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) { + int64_t mc, nc, mp, np; + switch ((MIN(m - m0, 4) << 4) | MIN(n - n0, 4)) { #if VECTOR_REGISTERS == 32 case 0x44: mc = 4; @@ -714,31 +710,51 @@ class tinyBLAS_Q0_AVX2 { } template - NOINLINE void gemm(int m0, int m, int n0, int n) { - int ytiles = (m - m0) / RM; - int xtiles = (n - n0) / RN; - int tiles = xtiles * ytiles; - int duty = (tiles + nth - 1) / nth; - int start = duty * ith; - int end = start + duty; + NOINLINE void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) { + int64_t ytiles = (m - m0) / RM; + int64_t xtiles = (n - n0) / RN; + int64_t tiles = xtiles * ytiles; + int64_t duty = (tiles + nth - 1) / nth; + int64_t start = duty * ith; + int64_t end = start + duty; if (end > tiles) end = tiles; - for (int job = start; job < end; ++job) { - int ii = m0 + job / xtiles * RM; - int jj = n0 + job % xtiles * RN; + for (int64_t job = start; job < end; ++job) { + int64_t ii = m0 + job / xtiles * RM; + int64_t jj = n0 + job % xtiles * RN; __m256 Cv[RN][RM] = {}; - for (int l = 0; l < k; ++l) - for (int j = 0; j < RN; ++j) - for (int i = 0; i < RM; ++i) + for (int64_t l = 0; l < k; ++l) + for (int64_t j = 0; j < RN; ++j) + for (int64_t i = 0; i < RM; ++i) { +#if defined(__AVX2__) + __m256 udTmp = updot(_mm256_sign_epi8(load(A + lda * (ii + i) + l), + load(A + lda * (ii + i) + l)), + _mm256_sign_epi8(load(B + ldb * (jj + j) + l), + load(A + lda * (ii + i) + l))); +#else + __m128i ali0 = load0(A + lda * (ii + i) + l); + __m128i ali1 = load1(A + lda * (ii + i) + l); + __m128i blj0 = load0(B + ldb * (jj + j) + l); + __m128i blj1 = load1(B + ldb * (jj + j) + l); + + __m128i sepAA0 = _mm_sign_epi8(ali0, ali0); + __m128i sepAA1 = _mm_sign_epi8(ali1, ali1); + __m128i sepBA0 = _mm_sign_epi8(blj0, ali0); + __m128i sepBA1 = _mm_sign_epi8(blj1, ali1); + + // updot + const __m128i oneFill = _mm_set1_epi16(1); + __m128i mad0 = _mm_maddubs_epi16(sepAA0, sepBA0); + __m128i mad1 = _mm_maddubs_epi16(sepAA1, sepBA1); + __m256 udTmp = _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_madd_epi16(oneFill, mad1), _mm_madd_epi16(oneFill, mad0))); +#endif Cv[j][i] = madd(_mm256_set1_ps(unhalf(A[lda * (ii + i) + l].d) * unhalf(B[ldb * (jj + j) + l].d)), - updot(_mm256_sign_epi8(load(A + lda * (ii + i) + l), - load(A + lda * (ii + i) + l)), - _mm256_sign_epi8(load(B + ldb * (jj + j) + l), - load(A + lda * (ii + i) + l))), - Cv[j][i]); - for (int j = 0; j < RN; ++j) - for (int i = 0; i < RM; ++i) + udTmp, + Cv[j][i]); + } + for (int64_t j = 0; j < RN; ++j) + for (int64_t i = 0; i < RM; ++i) C[ldc * (jj + j) + (ii + i)] = hsum(Cv[j][i]); } } @@ -747,10 +763,28 @@ class tinyBLAS_Q0_AVX2 { return _mm256_loadu_si256((const __m256i *)b->qs); } + inline __m128i load0(const block_q8_0 *b) { + return _mm_loadu_si128((const __m128i *)b->qs); + } + + inline __m128i load1(const block_q8_0 *b) { + return _mm_loadu_si128(((const __m128i *)b->qs) + 1); + } + inline __m256i load(const block_q4_0 *b) { return _mm256_sub_epi8(denibble(b->qs), _mm256_set1_epi8(8)); } + inline __m128i load0(const block_q4_0 *b) { + const __m128i x = _mm_loadu_si128((const __m128i *)(b->qs)); + return _mm_sub_epi8(_mm_and_si128(_mm_set1_epi8(15), x), _mm_set1_epi8(8)); + } + + inline __m128i load1(const block_q4_0 *b) { + const __m128i x = _mm_loadu_si128((const __m128i *)(b->qs)); + return _mm_sub_epi8(_mm_and_si128(_mm_set1_epi8(15), _mm_srli_epi16(x, 4)), _mm_set1_epi8(8)); + } + inline __m256 updot(__m256i u, __m256i s) { __m256i res; #if defined(__AVXVNNI__) || (defined(__AVX512VNNI__) && defined(__AVX512VL__)) @@ -771,14 +805,14 @@ class tinyBLAS_Q0_AVX2 { const TA *const A; const TB *const B; TC *const C; - const int k; - const int lda; - const int ldb; - const int ldc; + const int64_t k; + const int64_t lda; + const int64_t ldb; + const int64_t ldc; const int ith; const int nth; }; -#endif // __AVX2__ +#endif // __AVX__ } // namespace @@ -813,8 +847,8 @@ class tinyBLAS_Q0_AVX2 { * @param Ctype is GGML data type of `C` * @return true if this function was able to service the matmul request */ -bool llamafile_sgemm(int m, int n, int k, const void *A, int lda, const void *B, int ldb, void *C, - int ldc, int ith, int nth, int task, int Atype, int Btype, int Ctype) { +bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda, const void *B, int64_t ldb, void *C, + int64_t ldc, int ith, int nth, int task, int Atype, int Btype, int Ctype) { assert(m >= 0); assert(n >= 0); @@ -824,9 +858,6 @@ bool llamafile_sgemm(int m, int n, int k, const void *A, int lda, const void *B, assert(ldc >= m); assert(nth > 0); assert(ith < nth); - assert(1ll * lda * m <= 0x7fffffff); - assert(1ll * ldb * n <= 0x7fffffff); - assert(1ll * ldc * n <= 0x7fffffff); if (Ctype != GGML_TYPE_F32) return false; @@ -932,8 +963,8 @@ bool llamafile_sgemm(int m, int n, int k, const void *A, int lda, const void *B, case GGML_TYPE_Q8_0: { if (Btype != GGML_TYPE_Q8_0) return false; -#if defined(__AVX2__) || defined(__AVX512F__) - tinyBLAS_Q0_AVX2 tb{ +#if defined(__AVX2__) || defined(__AVX512F__) || defined(__AVX__) + tinyBLAS_Q0_AVX tb{ k, (const block_q8_0 *)A, lda, (const block_q8_0 *)B, ldb, (float *)C, ldc, @@ -956,8 +987,8 @@ bool llamafile_sgemm(int m, int n, int k, const void *A, int lda, const void *B, case GGML_TYPE_Q4_0: { if (Btype != GGML_TYPE_Q8_0) return false; -#if defined(__AVX2__) || defined(__AVX512F__) - tinyBLAS_Q0_AVX2 tb{ +#if defined(__AVX2__) || defined(__AVX512F__) || defined(__AVX__) + tinyBLAS_Q0_AVX tb{ k, (const block_q4_0 *)A, lda, (const block_q8_0 *)B, ldb, (float *)C, ldc, diff --git a/sgemm.h b/sgemm.h index da23b209c..f29747d0a 100644 --- a/sgemm.h +++ b/sgemm.h @@ -1,11 +1,13 @@ #pragma once +#include #include #ifdef __cplusplus extern "C" { #endif -bool llamafile_sgemm(int, int, int, const void *, int, const void *, int, - void *, int, int, int, int, int, int, int); +bool llamafile_sgemm(int64_t, int64_t, int64_t, const void *, int64_t, + const void *, int64_t, void *, int64_t, int, int, + int, int, int, int); #ifdef __cplusplus } diff --git a/tests/CMakeLists.txt b/tests/CMakeLists.txt index 89f23ca2d..d409a1d6b 100644 --- a/tests/CMakeLists.txt +++ b/tests/CMakeLists.txt @@ -1,10 +1,40 @@ +function(llama_test target) + include(CMakeParseArguments) + set(options) + set(oneValueArgs NAME LABEL WORKING_DIRECTORY) + set(multiValueArgs ARGS) + cmake_parse_arguments(LLAMA_TEST "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN}) + + if (NOT DEFINED LLAMA_TEST_LABEL) + set(LLAMA_TEST_LABEL "main") + endif() + if (NOT DEFINED LLAMA_TEST_WORKING_DIRECTORY) + set(LLAMA_TEST_WORKING_DIRECTORY .) + endif() + if (DEFINED LLAMA_TEST_NAME) + set(TEST_NAME ${LLAMA_TEST_NAME}) + else() + set(TEST_NAME ${target}) + endif() + + set(TEST_TARGET ${target}) + + add_test( + NAME ${TEST_NAME} + WORKING_DIRECTORY ${LLAMA_TEST_WORKING_DIRECTORY} + COMMAND $ + ${LLAMA_TEST_ARGS}) + + set_property(TEST ${TEST_NAME} PROPERTY LABELS ${LLAMA_TEST_LABEL}) +endfunction() + # Builds and runs a test source file. # Optional args: # - NAME: name of the executable & test target (defaults to the source file name without extension) # - LABEL: label for the test (defaults to main) # - ARGS: arguments to pass to the test executable # - WORKING_DIRECTORY -function(llama_test source) +function(llama_target_and_test source) include(CMakeParseArguments) set(options) set(oneValueArgs NAME LABEL WORKING_DIRECTORY) @@ -35,41 +65,71 @@ function(llama_test source) set_property(TEST ${TEST_TARGET} PROPERTY LABELS ${LLAMA_TEST_LABEL}) endfunction() -# llama_test(test-double-float.cpp) # SLOW -llama_test(test-quantize-fns.cpp) -llama_test(test-quantize-perf.cpp) -llama_test(test-sampling.cpp) -llama_test(test-chat-template.cpp) +# build test-tokenizer-0 target once and add many tests +add_executable(test-tokenizer-0 test-tokenizer-0.cpp) +target_link_libraries(test-tokenizer-0 PRIVATE common) +install(TARGETS test-tokenizer-0 RUNTIME) -llama_test(test-tokenizer-0-llama.cpp NAME test-tokenizer-0-llama ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-llama.gguf) -llama_test(test-tokenizer-0-falcon.cpp NAME test-tokenizer-0-falcon ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-falcon.gguf) +llama_test(test-tokenizer-0 NAME test-tokenizer-0-llama-spm ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-llama-spm.gguf) +llama_test(test-tokenizer-0 NAME test-tokenizer-0-llama-bpe ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-llama-bpe.gguf) +llama_test(test-tokenizer-0 NAME test-tokenizer-0-phi-3 ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-phi-3.gguf) +llama_test(test-tokenizer-0 NAME test-tokenizer-0-falcon ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-falcon.gguf) +llama_test(test-tokenizer-0 NAME test-tokenizer-0-bert-bge ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-bert-bge.gguf) +# TODO: enable when fixed +# https://github.com/ggerganov/llama.cpp/pull/7036 +#llama_test(test-tokenizer-0 NAME test-tokenizer-0-mpt ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-mpt.gguf) +#llama_test(test-tokenizer-0 NAME test-tokenizer-0-deepseek-llm ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-deepseek-llm.gguf) +#llama_test(test-tokenizer-0 NAME test-tokenizer-0-deepseek-coder ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-deepseek-coder.gguf) +llama_test(test-tokenizer-0 NAME test-tokenizer-0-starcoder ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-starcoder.gguf) +llama_test(test-tokenizer-0 NAME test-tokenizer-0-gpt-2 ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-gpt-2.gguf) +llama_test(test-tokenizer-0 NAME test-tokenizer-0-refact ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-refact.gguf) +llama_test(test-tokenizer-0 NAME test-tokenizer-0-command-r ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-command-r.gguf) +llama_test(test-tokenizer-0 NAME test-tokenizer-0-qwen2 ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-qwen2.gguf) -llama_test(test-tokenizer-1-llama.cpp NAME test-tokenizer-1-llama ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-llama.gguf) -llama_test(test-tokenizer-1-llama.cpp NAME test-tokenizer-1-baichuan ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-baichuan.gguf) +# build test-tokenizer-1-bpe target once and add many tests +add_executable(test-tokenizer-1-bpe test-tokenizer-1-bpe.cpp) +target_link_libraries(test-tokenizer-1-bpe PRIVATE common) +install(TARGETS test-tokenizer-1-bpe RUNTIME) -llama_test(test-tokenizer-1-bpe.cpp NAME test-tokenizer-1-falcon ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-falcon.gguf) -llama_test(test-tokenizer-1-bpe.cpp NAME test-tokenizer-1-aquila ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-aquila.gguf) -llama_test(test-tokenizer-1-bpe.cpp NAME test-tokenizer-1-mpt ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-mpt.gguf) -llama_test(test-tokenizer-1-bpe.cpp NAME test-tokenizer-1-stablelm-3b-4e1t ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-stablelm-3b-4e1t.gguf) -llama_test(test-tokenizer-1-bpe.cpp NAME test-tokenizer-1-gpt-neox ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-gpt-neox.gguf) -llama_test(test-tokenizer-1-bpe.cpp NAME test-tokenizer-1-refact ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-refact.gguf) -llama_test(test-tokenizer-1-bpe.cpp NAME test-tokenizer-1-starcoder ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-starcoder.gguf) -llama_test(test-tokenizer-1-bpe.cpp NAME test-tokenizer-1-gpt2 ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-gpt2.gguf) -#llama_test(test-tokenizer-1-bpe.cpp NAME test-tokenizer-1-bloom ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-bloom.gguf) # BIG +# TODO: disabled due to slowness +#llama_test(test-tokenizer-1-bpe NAME test-tokenizer-1-llama-bpe ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-llama-bpe.gguf) +#llama_test(test-tokenizer-1-bpe NAME test-tokenizer-1-falcon ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-falcon.gguf) +#llama_test(test-tokenizer-1-bpe NAME test-tokenizer-1-aquila ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-aquila.gguf) +#llama_test(test-tokenizer-1-bpe NAME test-tokenizer-1-mpt ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-mpt.gguf) +#llama_test(test-tokenizer-1-bpe NAME test-tokenizer-1-stablelm ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-stablelm.gguf) +#llama_test(test-tokenizer-1-bpe NAME test-tokenizer-1-gpt-neox ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-gpt-neox.gguf) +#llama_test(test-tokenizer-1-bpe NAME test-tokenizer-1-refact ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-refact.gguf) +#llama_test(test-tokenizer-1-bpe NAME test-tokenizer-1-starcoder ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-starcoder.gguf) +#llama_test(test-tokenizer-1-bpe NAME test-tokenizer-1-gpt2 ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-gpt2.gguf) +#llama_test(test-tokenizer-1-bpe NAME test-tokenizer-1-bloom ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-bloom.gguf) -llama_test(test-grammar-parser.cpp) -llama_test(test-llama-grammar.cpp) -llama_test(test-grammar-integration.cpp) -llama_test(test-grad0.cpp) -# llama_test(test-opt.cpp) # SLOW -llama_test(test-backend-ops.cpp) +# build test-tokenizer-1-spm target once and add many tests +add_executable(test-tokenizer-1-spm test-tokenizer-1-spm.cpp) +target_link_libraries(test-tokenizer-1-spm PRIVATE common) +install(TARGETS test-tokenizer-1-spm RUNTIME) -llama_test(test-rope.cpp) +llama_test(test-tokenizer-1-spm NAME test-tokenizer-1-llama-spm ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-llama-spm.gguf) +#llama_test(test-tokenizer-1-spm NAME test-tokenizer-1-baichuan ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-baichuan.gguf) -llama_test(test-model-load-cancel.cpp LABEL "model") -llama_test(test-autorelease.cpp LABEL "model") +# llama_target_and_test(test-double-float.cpp) # SLOW +llama_target_and_test(test-quantize-fns.cpp) +llama_target_and_test(test-quantize-perf.cpp) +llama_target_and_test(test-sampling.cpp) +llama_target_and_test(test-chat-template.cpp) -llama_test(test-json-schema-to-grammar.cpp WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}/..) +llama_target_and_test(test-grammar-parser.cpp) +llama_target_and_test(test-llama-grammar.cpp) +llama_target_and_test(test-grammar-integration.cpp) +llama_target_and_test(test-grad0.cpp) +# llama_target_and_test(test-opt.cpp) # SLOW +llama_target_and_test(test-backend-ops.cpp) + +llama_target_and_test(test-rope.cpp) + +llama_target_and_test(test-model-load-cancel.cpp LABEL "model") +llama_target_and_test(test-autorelease.cpp LABEL "model") + +llama_target_and_test(test-json-schema-to-grammar.cpp WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}/..) target_include_directories(test-json-schema-to-grammar PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/../examples/server) # dummy executable - not installed diff --git a/tests/test-backend-ops.cpp b/tests/test-backend-ops.cpp index 02daad24b..41718e001 100644 --- a/tests/test-backend-ops.cpp +++ b/tests/test-backend-ops.cpp @@ -50,7 +50,7 @@ static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float m if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) { ggml_backend_tensor_set(tensor, data.data(), 0, size * sizeof(float)); - } else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16) { + } else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16 || tensor->type == GGML_TYPE_BF16) { GGML_ASSERT(size % ggml_blck_size(tensor->type) == 0); std::vector dataq(ggml_row_size(tensor->type, size)); std::vector imatrix(tensor->ne[0], 1.0f); // dummy importance matrix @@ -92,6 +92,8 @@ static std::vector tensor_to_float(const ggml_tensor * t) { size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0/bs*t->nb[0]; if (t->type == GGML_TYPE_F16) { tv.push_back(ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i])); + } else if (t->type == GGML_TYPE_BF16) { + tv.push_back(ggml_bf16_to_fp32(*(ggml_bf16_t*)&buf[i])); } else if (t->type == GGML_TYPE_F32) { tv.push_back(*(float *) &buf[i]); } else if (t->type == GGML_TYPE_I32) { @@ -1090,6 +1092,12 @@ struct test_soft_max : public test_case { return VARS_TO_STR5(type, ne, mask, scale, max_bias); } + // the 1024 test with bias occasionally fails: + // SOFT_MAX(type=f32,ne=[1024,16,1,1],mask=1,scale=1.000000,max_bias=8.000000): [SOFT_MAX] NMSE = 0.000000103 > 0.000000100 FAIL + virtual double max_nmse_err() override { + return 1e-6; + } + test_soft_max(ggml_type type = GGML_TYPE_F32, std::array ne = {10, 10, 10, 10}, bool mask = false, @@ -1101,7 +1109,7 @@ struct test_soft_max : public test_case { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_tensor * mask = nullptr; if (this->mask) { - mask = ggml_new_tensor_2d(ctx, type, ne[0], ne[1]); + mask = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, ne[0], ne[1]); } ggml_tensor * pos = nullptr; if (max_bias > 0.0f) { @@ -1475,6 +1483,34 @@ struct test_leaky_relu : public test_case { } }; +// GGML_OP_FLASH_ATTN_EXT +struct test_flash_attn_ext : public test_case { + const int64_t hs; // head size + const int64_t nh; // num heads + const int64_t kv; // kv size + const int64_t nb; // batch size + + std::string vars() override { + return VARS_TO_STR4(hs, nh, kv, nb); + } + + double max_nmse_err() override { + return 5e-4; + } + + test_flash_attn_ext(int64_t hs = 128, int64_t nh = 32, int64_t kv = 96, int64_t nb = 8) + : hs(hs), nh(nh), kv(kv), nb(nb) {} + + ggml_tensor * build_graph(ggml_context * ctx) override { + ggml_tensor * q = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, hs, nb, nh, 1); + ggml_tensor * k = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, hs, kv, nh, 1); + ggml_tensor * v = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, hs, kv, nh, 1); + ggml_tensor * mask = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), 1, 1); + ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, mask, 1.0f/sqrtf(hs)); + return out; + } +}; + enum llm_norm_type { LLM_NORM, LLM_NORM_RMS, @@ -1661,7 +1697,7 @@ struct test_llama : public test_llm { struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hp.n_kv, hp.n_tokens, 1); + struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1); ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400); ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400); @@ -1783,7 +1819,7 @@ struct test_falcon : public test_llm { struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hp.n_kv, hp.n_tokens, 1); + struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1); ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400); ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400); @@ -1864,7 +1900,7 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op std::default_random_engine rng(0); const ggml_type all_types[] = { - GGML_TYPE_F32, GGML_TYPE_F16, + GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_Q4_0, GGML_TYPE_Q4_1, GGML_TYPE_Q5_0, GGML_TYPE_Q5_1, GGML_TYPE_Q8_0, @@ -2095,7 +2131,7 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op for (float scale : {1.0f, 0.1f}) { for (int64_t ne0 : {16, 1024}) { for (int64_t ne1 : {16, 1024}) { - test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, scale, max_bias)); + test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, scale, max_bias)); test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, scale, max_bias)); } } @@ -2139,6 +2175,16 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op test_cases.emplace_back(new test_timestep_embedding()); test_cases.emplace_back(new test_leaky_relu()); + for (int hs : { 64, 80, 128, 256, }) { + for (int nh : { 32, }) { + for (int kv : { 512, 1024, }) { + for (int nb : { 1, 2, 4, 8, }) { + test_cases.emplace_back(new test_flash_attn_ext(hs, nh, kv, nb)); + } + } + } + } + // these tests are disabled to save execution time, but they can be handy for debugging #if 0 test_cases.emplace_back(new test_llama(1)); diff --git a/tests/test-chat-template.cpp b/tests/test-chat-template.cpp index cddf86a41..4fe9183b9 100644 --- a/tests/test-chat-template.cpp +++ b/tests/test-chat-template.cpp @@ -49,6 +49,8 @@ int main(void) { "{{ bos_token }}{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% elif false == true %}{% set loop_messages = messages %}{% set system_message = 'You are Command-R, a brilliant, sophisticated, AI-assistant trained to assist human users by providing thorough responses. You are trained by Cohere.' %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% if system_message != false %}{{ '<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>' + system_message + '<|END_OF_TURN_TOKEN|>' }}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|START_OF_TURN_TOKEN|><|USER_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}{% elif message['role'] == 'assistant' %}{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' }}{% endif %}", // Llama-3 "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}", + // Phi-3 + "{{ bos_token }}{% for message in messages %}{{'<|' + message['role'] + '|>' + ' ' + message['content'] + '<|end|> ' }}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|> ' }}{% else %}{{ eos_token }}{% endif %}" }; std::vector expected_output = { // teknium/OpenHermes-2.5-Mistral-7B @@ -77,6 +79,8 @@ int main(void) { "<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>You are a helpful assistant<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hello<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>Hi there<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Who are you<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>I am an assistant<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Another question<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>", // Llama 3 "<|start_header_id|>system<|end_header_id|>\n\nYou are a helpful assistant<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nHello<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\nHi there<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nWho are you<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\nI am an assistant<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nAnother question<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n", + // Phi 3 + "<|system|>\nYou are a helpful assistant<|end|>\n<|user|>\nHello<|end|>\n<|assistant|>\nHi there<|end|>\n<|user|>\nWho are you<|end|>\n<|assistant|>\nI am an assistant<|end|>\n<|user|>\nAnother question<|end|>\n<|assistant|>\n", }; std::vector formatted_chat(1024); int32_t res; diff --git a/tests/test-grammar-integration.cpp b/tests/test-grammar-integration.cpp index 2d8f228e3..1a4004e2a 100644 --- a/tests/test-grammar-integration.cpp +++ b/tests/test-grammar-integration.cpp @@ -10,15 +10,10 @@ #include "unicode.h" #include #include +#include -static void test_simple_grammar() { - // Test case for a simple grammar - const std::string grammar_str = R"""(root ::= expr -expr ::= term ("+" term)* -term ::= number -number ::= [0-9]+)"""; - - grammar_parser::parse_state parsed_grammar = grammar_parser::parse(grammar_str.c_str()); +static llama_grammar* build_grammar(const std::string & grammar_str) { + auto parsed_grammar = grammar_parser::parse(grammar_str.c_str()); // Ensure we parsed correctly assert(!parsed_grammar.rules.empty()); @@ -30,8 +25,10 @@ number ::= [0-9]+)"""; llama_grammar* grammar = llama_grammar_init( grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root")); - std::string input = "123+456"; + return grammar; +} +static bool match_string(const std::string & input, llama_grammar* grammar) { auto decoded = decode_utf8(input, {}); const auto & code_points = decoded.first; @@ -39,159 +36,67 @@ number ::= [0-9]+)"""; for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) { auto prev_stacks = grammar->stacks; llama_grammar_accept(grammar->rules, prev_stacks, *it, grammar->stacks); - assert(!grammar->stacks.empty()); - } - - bool completed_grammar = false; - - for (const auto & stack : grammar->stacks) { - if (stack.empty()) { - completed_grammar = true; - break; + if (grammar->stacks.empty()) { + // no stacks means that the grammar failed to match at this point + return false; } } - assert(completed_grammar); + for (const auto & stack : grammar->stacks) { + if (stack.empty()) { + // An empty stack means that the grammar has been completed + return true; + } + } - // Clean up allocated memory - llama_grammar_free(grammar); + return false; } -static void test_complex_grammar() { - // Test case for a more complex grammar, with both failure strings and success strings - const std::string grammar_str = R"""(root ::= expression -expression ::= term ws (("+"|"-") ws term)* -term ::= factor ws (("*"|"/") ws factor)* -factor ::= number | variable | "(" expression ")" | function-call -number ::= [0-9]+ -variable ::= [a-zA-Z_][a-zA-Z0-9_]* -function-call ::= variable ws "(" (expression ("," ws expression)*)? ")" -ws ::= [ \t\n\r]?)"""; +static void test_grammar(const std::string & test_desc, const std::string & grammar_str, const std::vector & passing_strings, const std::vector & failing_strings) { + fprintf(stderr, "⚫ Testing %s. Grammar: %s\n", test_desc.c_str(), grammar_str.c_str()); + fflush(stderr); - grammar_parser::parse_state parsed_grammar = grammar_parser::parse(grammar_str.c_str()); - - // Ensure we parsed correctly - assert(!parsed_grammar.rules.empty()); - - // Ensure we have a root node - assert(!(parsed_grammar.symbol_ids.find("root") == parsed_grammar.symbol_ids.end())); - - std::vector grammar_rules(parsed_grammar.c_rules()); - llama_grammar* grammar = llama_grammar_init( - grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root")); + auto grammar = build_grammar(grammar_str); // Save the original grammar stacks so that we can reset after every new string we want to test auto original_stacks = grammar->stacks; - // Test a few strings - std::vector test_strings_pass = { - "42", - "1*2*3*4*5", - "x", - "x+10", - "x1+y2", - "(a+b)*(c-d)", - "func()", - "func(x,y+2)", - "a*(b+c)-d/e", - "f(g(x),h(y,z))", - "x + 10", - "x1 + y2", - "(a + b) * (c - d)", - "func()", - "func(x, y + 2)", - "a * (b + c) - d / e", - "f(g(x), h(y, z))", - "123+456", - "123*456*789-123/456+789*123", - "123+456*789-123/456+789*123-456/789+123*456-789/123+456*789-123/456+789*123-456" - }; - - std::vector test_strings_fail = { - "+", - "/ 3x", - "x + + y", - "a * / b", - "func(,)", - "func(x y)", - "(a + b", - "x + y)", - "a + b * (c - d", - "42 +", - "x +", - "x + 10 +", - "(a + b) * (c - d", - "func(", - "func(x, y + 2", - "a * (b + c) - d /", - "f(g(x), h(y, z)", - "123+456*789-123/456+789*123-456/789+123*456-789/123+456*789-123/456+789*123-456/", - }; + fprintf(stderr, " 🔵 Valid strings:\n"); // Passing strings - for (const auto & test_string : test_strings_pass) { - auto decoded = decode_utf8(test_string, {}); + for (const auto & test_string : passing_strings) { + fprintf(stderr, " \"%s\" ", test_string.c_str()); + fflush(stderr); - const auto & code_points = decoded.first; + bool matched = match_string(test_string, grammar); - int pos = 0; - for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) { - ++pos; - auto prev_stacks = grammar->stacks; - llama_grammar_accept(grammar->rules, prev_stacks, *it, grammar->stacks); - - // Expect that each code point will not cause the grammar to fail - if (grammar->stacks.empty()) { - fprintf(stdout, "Error at position %d\n", pos); - fprintf(stderr, "Unexpected character '%s'\n", unicode_cpt_to_utf8(*it).c_str()); - fprintf(stderr, "Input string is %s:\n", test_string.c_str()); - } - assert(!grammar->stacks.empty()); + if (!matched) { + fprintf(stderr, "❌ (failed to match)\n"); + } else { + fprintf(stdout, "✅︎\n"); } - bool completed_grammar = false; - - for (const auto & stack : grammar->stacks) { - if (stack.empty()) { - completed_grammar = true; - break; - } - } - - assert(completed_grammar); + assert(matched); // Reset the grammar stacks grammar->stacks = original_stacks; } + fprintf(stderr, " 🟠 Invalid strings:\n"); + // Failing strings - for (const auto & test_string : test_strings_fail) { - auto decoded = decode_utf8(test_string, {}); + for (const auto & test_string : failing_strings) { + fprintf(stderr, " \"%s\" ", test_string.c_str()); + fflush(stderr); - const auto & code_points = decoded.first; - bool parse_failed = false; + bool matched = match_string(test_string, grammar); - for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) { - auto prev_stacks = grammar->stacks; - llama_grammar_accept(grammar->rules, prev_stacks, *it, grammar->stacks); - if (grammar->stacks.empty()) { - parse_failed = true; - break; - } - assert(!grammar->stacks.empty()); + if (matched) { + fprintf(stderr, "❌ (incorrectly matched)\n"); + } else { + fprintf(stdout, "✅︎\n"); } - - bool completed_grammar = false; - - for (const auto & stack : grammar->stacks) { - if (stack.empty()) { - completed_grammar = true; - break; - } - } - - // Ensure that the grammar is not completed, or that each string failed to match as-expected - assert((!completed_grammar) || parse_failed); + assert(!matched); // Reset the grammar stacks grammar->stacks = original_stacks; @@ -201,7 +106,183 @@ ws ::= [ \t\n\r]?)"""; llama_grammar_free(grammar); } +static void test_simple_grammar() { + // Test case for a simple grammar + test_grammar( + "simple grammar", + R"""( + root ::= expr + expr ::= term ("+" term)* + term ::= number + number ::= [0-9]+)""", + // Passing strings + { + "42", + "1+2+3+4+5", + "123+456", + }, + // Failing strings + { + "+", + "/ 3", + "1+2+3+4+5+", + "12a45", + } + ); +} + +static void test_complex_grammar() { + // Test case for a more complex grammar, with both failure strings and success strings + test_grammar( + "medium complexity grammar", + // Grammar + R"""( + root ::= expression + expression ::= term ws (("+"|"-") ws term)* + term ::= factor ws (("*"|"/") ws factor)* + factor ::= number | variable | "(" expression ")" | function-call + number ::= [0-9]+ + variable ::= [a-zA-Z_][a-zA-Z0-9_]* + function-call ::= variable ws "(" (expression ("," ws expression)*)? ")" + ws ::= [ \t\n\r]?)""", + // Passing strings + { + "42", + "1*2*3*4*5", + "x", + "x+10", + "x1+y2", + "(a+b)*(c-d)", + "func()", + "func(x,y+2)", + "a*(b+c)-d/e", + "f(g(x),h(y,z))", + "x + 10", + "x1 + y2", + "(a + b) * (c - d)", + "func()", + "func(x, y + 2)", + "a * (b + c) - d / e", + "f(g(x), h(y, z))", + "123+456", + "123*456*789-123/456+789*123", + "123+456*789-123/456+789*123-456/789+123*456-789/123+456*789-123/456+789*123-456" + }, + // Failing strings + { + "+", + "/ 3x", + "x + + y", + "a * / b", + "func(,)", + "func(x y)", + "(a + b", + "x + y)", + "a + b * (c - d", + "42 +", + "x +", + "x + 10 +", + "(a + b) * (c - d", + "func(", + "func(x, y + 2", + "a * (b + c) - d /", + "f(g(x), h(y, z)", + "123+456*789-123/456+789*123-456/789+123*456-789/123+456*789-123/456+789*123-456/", + } + ); +} + +static void test_quantifiers() { + // A collection of tests to exercise * + and ? quantifiers + + test_grammar( + "* quantifier", + // Grammar + R"""(root ::= "a"*)""", + // Passing strings + { + "", + "a", + "aaaaa", + "aaaaaaaaaaaaaaaaaa", + "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" + }, + // Failing strings + { + "b", + "ab", + "aab", + "ba", + "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaab" + } + ); + test_grammar( + "+ quantifier", + // Grammar + R"""(root ::= "a"+)""", + // Passing strings + { + "a", + "aaaaa", + "aaaaaaaaaaaaaaaaaa", + "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" + }, + // Failing strings + { + "", + "b", + "ab", + "aab", + "ba", + "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaab" + } + ); + test_grammar( + "? quantifier", + // Grammar + R"""(root ::= "a"?)""", + // Passing strings + { + "", + "a" + }, + // Failing strings + { + "b", + "ab", + "aa", + "ba", + } + ); + test_grammar( + "mixed quantifiers", + // Grammar + R"""( + root ::= cons+ vowel* cons? (vowel cons)* + vowel ::= [aeiouy] + cons ::= [bcdfghjklmnpqrstvwxyz] + )""", + // Passing strings + { + "yes", + "no", + "noyes", + "crwth", + "four", + "bryyyy", + }, + // Failing strings + { + "yess", + "yesno", + "forty", + "catyyy", + } + ); +} + static void test_failure_missing_root() { + fprintf(stderr, "⚫ Testing missing root node:\n"); // Test case for a grammar that is missing a root rule const std::string grammar_str = R"""(rot ::= expr expr ::= term ("+" term)* @@ -215,29 +296,37 @@ number ::= [0-9]+)"""; // Ensure we do NOT have a root node assert(parsed_grammar.symbol_ids.find("root") == parsed_grammar.symbol_ids.end()); + fprintf(stderr, " ✅︎ Passed\n"); } static void test_failure_missing_reference() { + fprintf(stderr, "⚫ Testing missing reference node:\n"); + // Test case for a grammar that is missing a referenced rule - const std::string grammar_str = R"""(root ::= expr + const std::string grammar_str = +R"""(root ::= expr expr ::= term ("+" term)* term ::= numero number ::= [0-9]+)"""; - fprintf(stderr, "Expected error: "); + fprintf(stderr, " Expected error: "); grammar_parser::parse_state parsed_grammar = grammar_parser::parse(grammar_str.c_str()); // Ensure we did NOT parsed correctly assert(parsed_grammar.rules.empty()); - fprintf(stderr, "End of expected error. Test successful.\n"); + fprintf(stderr, " End of expected error.\n"); + fprintf(stderr, " ✅︎ Passed\n"); } int main() { + fprintf(stdout, "Running grammar integration tests...\n"); test_simple_grammar(); test_complex_grammar(); + test_quantifiers(); test_failure_missing_root(); test_failure_missing_reference(); + fprintf(stdout, "All tests passed.\n"); return 0; } diff --git a/tests/test-json-schema-to-grammar.cpp b/tests/test-json-schema-to-grammar.cpp index b2ce4d260..c5361b5b8 100755 --- a/tests/test-json-schema-to-grammar.cpp +++ b/tests/test-json-schema-to-grammar.cpp @@ -2,6 +2,7 @@ #undef NDEBUG #endif +#include #include #include #include diff --git a/tests/test-tokenizer-0-falcon.cpp b/tests/test-tokenizer-0-falcon.cpp deleted file mode 100644 index 472b0b3a8..000000000 --- a/tests/test-tokenizer-0-falcon.cpp +++ /dev/null @@ -1,187 +0,0 @@ -#include "llama.h" -#include "common.h" -#include "console.h" - -#include -#include -#include -#include -#include - -// generate using test-tokenizer-0-falcon.py -static const std::map> & k_tests() { - static std::map> _k_tests = { - { "" , { }, }, - { " " , { 204, }, }, - { " " , { 258, }, }, - { " " , { 466, }, }, - { "\t" , { 192, }, }, - { "\n" , { 193, }, }, - { "\t\n" , { 19125, }, }, - { "Hello world" , { 9856, 1079, }, }, - { " Hello world" , { 23090, 1079, }, }, - { "Hello World" , { 9856, 2889, }, }, - { " Hello World" , { 23090, 2889, }, }, - { " Hello World!" , { 23090, 2889, 12, }, }, - { "Hello, world!" , { 9856, 23, 1079, 12, }, }, - { " Hello, world!" , { 23090, 23, 1079, 12, }, }, - { " this is 🦙.cpp" , { 414, 304, 3346, 111, 231, 25, 29247, }, }, - { "w048 7tuijk dsdfhu" , { 98, 55866, 204, 34, 16682, 7149, 36190, 6869, 11481, }, }, - { "нещо на Български" , { 150, 133, 6207, 151, 215, 150, 134, 5052, 133, 6279, 5052, 223, 151, 216, 49679, 123, 53110, 47043, 7795, }, }, - { "កាន់តែពិសេសអាចខលចេញ" , { 38154, 206, 38154, 126, 38154, 225, 167, 237, 217, 38154, 221, 167, 237, 208, 38154, 228, 38154, 127, 38154, 237, 167, 237, 207, 38154, 237, 38154, 107, 38154, 126, 38154, 211, 38154, 207, 38154, 233, 38154, 211, 167, 237, 207, 38154, 215, }, }, - { "🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)", { 2571, 232, 206, 204, 19, 11003, 20, 8196, 126, 283, 219, 48778, 116, 13392, 204, 19, 51831, 732, 63209, 1741, 7955, 522, 20, 22438, 211, 204, 19, 7927, 53360, 325, 504, 701, 946, 10930, 20, }, }, - { "Hello" , { 9856, }, }, - { " Hello" , { 23090, }, }, - { " Hello" , { 204, 23090, }, }, - { " Hello" , { 258, 23090, }, }, - { " Hello" , { 466, 23090, }, }, - { " Hello\n Hello" , { 466, 23090, 742, 23090, }, }, - { "\n =" , { 1212, 40, }, }, - { "' era" , { 18, 4932, }, }, - }; - - return _k_tests; -} - -int main(int argc, char **argv) { - if (argc < 2) { - fprintf(stderr, "Usage: %s vocab-file [text-file]\n", argv[0]); - return 1; - } - - const std::string fname = argv[1]; - - std::string fname_text; - if (argc > 2) { - fname_text = argv[2]; - } - - fprintf(stderr, "%s : reading vocab from: '%s'\n", __func__, fname.c_str()); - - llama_model * model; - llama_context * ctx; - - llama_backend_init(); - - // load the vocab - { - auto mparams = llama_model_default_params(); - - mparams.vocab_only = true; - - model = llama_load_model_from_file(fname.c_str(), mparams); - - if (model == NULL) { - fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str()); - return 1; - } - - auto cparams = llama_context_default_params(); - - ctx = llama_new_context_with_model(model, cparams); - - if (ctx == NULL) { - fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str()); - llama_free_model(model); - return 1; - } - } - - if (llama_vocab_type(model) != LLAMA_VOCAB_TYPE_BPE) { - fprintf(stderr, "%s : error: vocab type is not BPE\n", __func__); - llama_free_model(model); - llama_free(ctx); - return 2; - } - -#ifdef _WIN32 - // We need this for unicode console support - console::init(false, false); - atexit([]() { console::cleanup(); }); -#endif - - bool success = true; - - for (const auto & test_kv : k_tests()) { - const std::vector res = llama_tokenize(ctx, test_kv.first, false); - - printf("\n"); - printf("src: '%s'\n", test_kv.first.c_str()); - printf("res: '%s'\n", llama_detokenize_bpe(ctx, res).c_str()); - printf("tok: "); - for (const auto & tok : res) { - printf("%d ", tok); - } - printf("\n"); - - bool correct = res.size() == test_kv.second.size(); - - for (int i = 0; i < (int) res.size() && correct; ++i) { - if (test_kv.second[i] != res[i]) { - correct = false; - } - } - - if (!correct) { - fprintf(stderr, "%s : failed test: '%s'\n", __func__, test_kv.first.c_str()); - fprintf(stderr, "%s : detokenized to: '%s' instead of '%s'\n", __func__, - llama_detokenize_bpe(ctx, res).c_str(), - llama_detokenize_bpe(ctx, test_kv.second).c_str()); - fprintf(stderr, "%s : expected tokens: ", __func__); - for (const auto & t : test_kv.second) { - fprintf(stderr, "%6d, ", t); - } - fprintf(stderr, "\n"); - fprintf(stderr, "%s : got tokens: ", __func__); - for (const auto & t : res) { - fprintf(stderr, "%6d, ", t); - } - fprintf(stderr, "\n"); - - success = false; - } - } - - if (!fname_text.empty()) { - fprintf(stderr, "%s : tokenizing: '%s'\n", __func__, fname_text.c_str()); - - std::string text; - { - std::ifstream ifs(fname_text); - if (!ifs) { - fprintf(stderr, "%s : error: could not open file '%s'\n", __func__, fname_text.c_str()); - return 1; - } - text = std::string(std::istreambuf_iterator(ifs), std::istreambuf_iterator()); - } - - fprintf(stderr, "%s : text size: %zu\n", __func__, text.size()); - - const std::vector res = llama_tokenize(ctx, text, false); - - fprintf(stderr, "%s : tokens: %zu\n", __func__, res.size()); - - { - const std::string fname_out = fname_text + ".tokcpp"; - - std::ofstream ofs(fname_out); - if (!ofs) { - fprintf(stderr, "%s : error: could not open file '%s'\n", __func__, fname_out.c_str()); - return 1; - } - - for (const auto & tok : res) { - ofs << tok << " '" << llama_detokenize_bpe(ctx, std::vector{tok}) << "'" << std::endl; - } - } - - fprintf(stderr, "%s : tokens written to '%s'\n", __func__, (fname_text + ".tokcpp").c_str()); - } - - llama_free_model(model); - llama_free(ctx); - - llama_backend_free(); - - return success ? 0 : 3; -} diff --git a/tests/test-tokenizer-0-falcon.py b/tests/test-tokenizer-0-falcon.py deleted file mode 100644 index 4f06ec9bb..000000000 --- a/tests/test-tokenizer-0-falcon.py +++ /dev/null @@ -1,82 +0,0 @@ -# tests with BPE tokenizer - -import argparse - -from transformers import AutoTokenizer - -parser = argparse.ArgumentParser() -parser.add_argument("dir_tokenizer", help="directory containing 'tokenizer.model' file") -parser.add_argument("--fname-tok", help="path to a text file to tokenize") -args = parser.parse_args() - -dir_tokenizer = args.dir_tokenizer - -tokenizer = AutoTokenizer.from_pretrained(dir_tokenizer) - -tests = [ - "", - " ", - " ", - " ", - "\t", - "\n", - "\t\n", - "Hello world", - " Hello world", - "Hello World", - " Hello World", - " Hello World!", - "Hello, world!", - " Hello, world!", - " this is 🦙.cpp", - "w048 7tuijk dsdfhu", - "нещо на Български", - "កាន់តែពិសេសអាចខលចេញ", - "🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)", - "Hello", - " Hello", - " Hello", - " Hello", - " Hello", - " Hello\n Hello", - "\n =", - "' era", -] - -for text in tests: - print('text: ', text) - print(tokenizer.encode(text)) - print(tokenizer.decode(tokenizer.encode(text))) - -print("\n\ntests for C++:\n") -for text in tests: - res = tokenizer.encode(text) - - k = text.replace('\n', '\\n') - k = k.replace('\t', '\\t') - k = '"' + k + '"' - print("{ %-24s, { " % k, end='') - for x in res: - print("%7d," % x, end='') - print(" }, },") - -print(tokenizer.encode('hello')) -print(tokenizer.encode('world')) -print(tokenizer.encode(' world')) -print(tokenizer.encode('hello world')) - -fname_tok = args.fname_tok -if fname_tok: - print('tokenizing file: ', fname_tok) - fname_out = fname_tok + '.tok' - with open(fname_tok, 'r', encoding='utf-8') as f: - lines = f.readlines() - s = ''.join(lines) - res = tokenizer.encode(s) - # write to file - with open(fname_out, 'w', encoding='utf-8') as f: - for x in res: - f.write(str(x) + ' \'' + tokenizer.decode(x) + '\'\n') - print('len(res): ', len(res)) - print('len(lines): ', len(lines)) - print('results written to: ', fname_out) diff --git a/tests/test-tokenizer-0-llama.cpp b/tests/test-tokenizer-0-llama.cpp deleted file mode 100644 index 0a16cd7eb..000000000 --- a/tests/test-tokenizer-0-llama.cpp +++ /dev/null @@ -1,190 +0,0 @@ -#include "llama.h" -#include "common.h" -#include "console.h" - -#include -#include -#include -#include -#include - -// generate using test-tokenizer-0-llama.py -static const std::map> & k_tests() { - static std::map> _k_tests = { - { "" , { }, }, - { " " , { 259, }, }, - { " " , { 1678, }, }, - { " " , { 268, }, }, - { "\t" , { 29871, 12, }, }, - { "\n" , { 29871, 13, }, }, - { "\t\n" , { 29871, 12, 13, }, }, - { "Hello world" , { 15043, 3186, }, }, - { " Hello world" , { 29871, 15043, 3186, }, }, - { "Hello World" , { 15043, 2787, }, }, - { " Hello World" , { 29871, 15043, 2787, }, }, - { " Hello World!" , { 29871, 15043, 2787, 29991, }, }, - { "Hello, world!" , { 15043, 29892, 3186, 29991, }, }, - { " Hello, world!" , { 29871, 15043, 29892, 3186, 29991, }, }, - { " this is 🦙.cpp" , { 29871, 445, 338, 29871, 243, 162, 169, 156, 29889, 8223, }, }, - { "w048 7tuijk dsdfhu" , { 281, 29900, 29946, 29947, 29871, 29955, 9161, 13535, 18031, 2176, 6905, }, }, - { "нещо на Български" , { 1538, 4851, 665, 1386, 29713, 1305, }, }, - { "កាន់តែពិសេសអាចខលចេញ" , { 29871, 31849, 31324, 31934, 228, 162, 142, 228, 161, 146, 228, 162, 133, 228, 161, 153, 228, 161, 186, 31708, 228, 162, 132, 31708, 228, 161, 165, 31324, 228, 161, 136, 228, 161, 132, 228, 161, 158, 228, 161, 136, 228, 162, 132, 228, 161, 140, }, }, - { "🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)", { 29871, 243, 162, 157, 131, 313, 8945, 29897, 29871, 243, 162, 155, 185, 30722, 243, 162, 143, 174, 30598, 313, 20787, 953, 3848, 275, 16125, 630, 29897, 29871, 31681, 313, 6194, 953, 29877, 2397, 393, 756, 967, 1914, 5993, 29897, }, }, - { "Hello" , { 15043, }, }, - { " Hello" , { 29871, 15043, }, }, - { " Hello" , { 259, 15043, }, }, - { " Hello" , { 1678, 15043, }, }, - { " Hello" , { 268, 15043, }, }, - { " Hello\n Hello" , { 268, 15043, 13, 1678, 15043, }, }, - { " (" , { 29871, 313, }, }, - }; - - return _k_tests; -} - -int main(int argc, char **argv) { - if (argc < 2) { - fprintf(stderr, "Usage: %s vocab-file [text-file]\n", argv[0]); - return 1; - } - - const std::string fname = argv[1]; - - std::string fname_text; - if (argc > 2) { - fname_text = argv[2]; - } - - fprintf(stderr, "%s : reading vocab from: '%s'\n", __func__, fname.c_str()); - - llama_model * model; - llama_context * ctx; - - llama_backend_init(); - - // load the vocab - { - auto mparams = llama_model_default_params(); - - mparams.vocab_only = true; - - model = llama_load_model_from_file(fname.c_str(), mparams); - - if (model == NULL) { - fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str()); - return 1; - } - - auto cparams = llama_context_default_params(); - - ctx = llama_new_context_with_model(model, cparams); - - if (ctx == NULL) { - fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str()); - llama_free_model(model); - return 1; - } - } - - if (llama_vocab_type(model) != LLAMA_VOCAB_TYPE_SPM) { - fprintf(stderr, "%s : error: vocab type is not SPM\n", __func__); - llama_free_model(model); - llama_free(ctx); - return 2; - } - -#ifdef _WIN32 - // We need this for unicode console support - console::init(false, false); - atexit([]() { console::cleanup(); }); -#endif - - bool success = true; - - for (const auto & test_kv : k_tests()) { - const std::vector res_bos = llama_tokenize(ctx, test_kv.first, true); - const std::vector res_nobos = llama_tokenize(ctx, test_kv.first, false); - - printf("\n"); - printf("src: '%s'\n", test_kv.first.c_str()); - printf("res: '%s'\n", llama_detokenize_spm(ctx, res_bos).c_str()); - printf("tok: "); - for (const auto & tok : res_bos) { - printf("%d ", tok); - } - printf("\n"); - - bool correct = res_nobos.size() == test_kv.second.size() && res_bos.size() == res_nobos.size() + 1 && res_bos[0] == 1; - - for (int i = 0; i < (int) res_nobos.size() && correct; ++i) { - if (test_kv.second[i] != res_bos[i + 1]) { - correct = false; - } - if (test_kv.second[i] != res_nobos[i]) { - correct = false; - } - } - - if (!correct) { - fprintf(stderr, "%s : failed test: '%s'\n", __func__, test_kv.first.c_str()); - fprintf(stderr, "%s : detokenized to: '%s' instead of '%s'\n", __func__, - llama_detokenize_spm(ctx, res_nobos).c_str(), - llama_detokenize_spm(ctx, test_kv.second).c_str()); - fprintf(stderr, "%s : expected tokens: ", __func__); - for (const auto & t : test_kv.second) { - fprintf(stderr, "%6d, ", t); - } - fprintf(stderr, "\n"); - fprintf(stderr, "%s : got tokens: ", __func__); - for (const auto & t : res_nobos) { - fprintf(stderr, "%6d, ", t); - } - fprintf(stderr, "\n"); - - success = false; - } - } - - if (!fname_text.empty()) { - fprintf(stderr, "%s : tokenizing: '%s'\n", __func__, fname_text.c_str()); - - std::string text; - { - std::ifstream ifs(fname_text); - if (!ifs) { - fprintf(stderr, "%s : error: could not open file '%s'\n", __func__, fname_text.c_str()); - return 1; - } - text = std::string(std::istreambuf_iterator(ifs), std::istreambuf_iterator()); - } - - fprintf(stderr, "%s : text size: %zu\n", __func__, text.size()); - - const std::vector res = llama_tokenize(ctx, text, true); - - fprintf(stderr, "%s : tokens: %zu\n", __func__, res.size()); - - { - const std::string fname_out = fname_text + ".tokcpp"; - - std::ofstream ofs(fname_out); - if (!ofs) { - fprintf(stderr, "%s : error: could not open file '%s'\n", __func__, fname_out.c_str()); - return 1; - } - - for (const auto & tok : res) { - ofs << tok << " '" << llama_detokenize_spm(ctx, std::vector{tok}) << "'" << std::endl; - } - } - - fprintf(stderr, "%s : tokens written to '%s'\n", __func__, (fname_text + ".tokcpp").c_str()); - } - - llama_free_model(model); - llama_free(ctx); - - llama_backend_free(); - - return success ? 0 : 3; -} diff --git a/tests/test-tokenizer-0-llama.py b/tests/test-tokenizer-0-llama.py deleted file mode 100644 index f3d4d7e3d..000000000 --- a/tests/test-tokenizer-0-llama.py +++ /dev/null @@ -1,92 +0,0 @@ -# tests with SPM tokenizer - -import argparse - -from sentencepiece import SentencePieceProcessor - -parser = argparse.ArgumentParser() -parser.add_argument("dir_tokenizer", help="directory containing 'tokenizer.model' file") -parser.add_argument("--fname-tok", help="path to a text file to tokenize") -args = parser.parse_args() - -dir_tokenizer = args.dir_tokenizer - -tokenizer = SentencePieceProcessor(dir_tokenizer + '/tokenizer.model') - -tests = [ - "", - " ", - " ", - " ", - "\t", - "\n", - "\t\n", - "Hello world", - " Hello world", - "Hello World", - " Hello World", - " Hello World!", - "Hello, world!", - " Hello, world!", - " this is 🦙.cpp", - "w048 7tuijk dsdfhu", - "нещо на Български", - "កាន់តែពិសេសអាចខលចេញ", - "🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)", - "Hello", - " Hello", - " Hello", - " Hello", - " Hello", - " Hello\n Hello", -] - - -for text in tests: - print('text: ', text) - print('\nwith bos:') - print(tokenizer.encode(text, add_bos=True)) - print(tokenizer.decode(tokenizer.encode(text, add_bos=True))) - print('\nwithout bos:') - print(tokenizer.encode(text, add_bos=False)) - print(tokenizer.decode(tokenizer.encode(text, add_bos=False))) - -print("'" + tokenizer.id_to_piece(15043) + "'") # '_Hello' -print("'" + tokenizer.id_to_piece(29871) + "'") # '_' -print("'" + tokenizer.decode([15043]) + "'") # 'Hello' -print("'" + tokenizer.decode([15043, 15043]) + "'") # 'Hello Hello' -print("'" + tokenizer.decode([29871, 15043]) + "'") # ' Hello' -print("'" + tokenizer.decode([29871, 15043, 29871, 15043]) + "'") # ' Hello Hello' - -print("\n\ntests for C++:\n") -for text in tests: - res = tokenizer.encode(text, add_bos=False) - - k = text.replace('\n', '\\n') - k = k.replace('\t', '\\t') - k = '"' + k + '"' - print("{ %-24s, { " % k, end='') - for x in res: - print("%7d," % x, end='') - print(" }, },") - -print(tokenizer.encode('hello')) -print(tokenizer.encode('world')) -print(tokenizer.encode(' world')) -print(tokenizer.encode('hello world')) - -fname_tok = args.fname_tok -if fname_tok: - print('tokenizing file: ', fname_tok) - fname_out = fname_tok + '.tok' - with open(fname_tok, 'r', encoding='utf-8') as f: - lines = f.readlines() - s = ''.join(lines) - res = tokenizer.encode(s, add_bos=True) - # write to file - with open(fname_out, 'w', encoding='utf-8') as f: - for x in res: - f.write(str(x) + ' \'' + tokenizer.decode(x) + '\'\n') - print('len(res): ', len(res)) - print('len(lines): ', len(lines)) - print('results written to: ', fname_out) diff --git a/tests/test-tokenizer-0.cpp b/tests/test-tokenizer-0.cpp new file mode 100644 index 000000000..d478f1041 --- /dev/null +++ b/tests/test-tokenizer-0.cpp @@ -0,0 +1,292 @@ +#include "llama.h" +#include "common.h" +#include "console.h" + +#include +#include +#include +#include +#include + +//static const std::map> & k_tests() { +// static std::map> _k_tests = { +// { "" , { }, }, +// { " " , { 220, }, }, +// { " " , { 256, }, }, +// { " " , { 262, }, }, +// { "\t" , { 197, }, }, +// { "\n" , { 198, }, }, +// { "\n\n" , { 271, }, }, +// { "\n\n\n" , { 1432, }, }, +// { "\t\n" , { 1602, }, }, +// { "Hello world" , { 9906, 1917, }, }, +// { " Hello world" , { 22691, 1917, }, }, +// { "Hello World" , { 9906, 4435, }, }, +// { " Hello World" , { 22691, 4435, }, }, +// { " Hello World!" , { 22691, 4435, 0, }, }, +// { "Hello, world!" , { 9906, 11, 1917, 0, }, }, +// { " Hello, world!" , { 22691, 11, 1917, 0, }, }, +// { " this is 🦙.cpp" , { 420, 374, 11410, 99, 247, 13, 11055, }, }, +// { "w048 7tuijk dsdfhu" , { 86, 23904, 220, 22, 83, 2005, 42908, 11729, 3013, 17156, }, }, +// { "нещо на Български" , { 79862, 102118, 13373, 64571, 34694, 3114, 112203, 80112, }, }, +// { "កាន់តែពិសេសអាចខលចេញ" , { 21549, 222, 98629, 241, 45358, 233, 21549, 237, 45358, 224, 21549, 244, 21549, 115, 21549, 253, 45358, 223, 21549, 253, 21549, 95, 98629, 227, 21549, 223, 21549, 249, 21549, 227, 45358, 223, 21549, 231, }, }, +// { "🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)", { 9468, 248, 222, 320, 8416, 8, 27623, 114, 102470, 9468, 234, 104, 31643, 320, 36773, 100166, 98634, 8, 26602, 227, 320, 3323, 43465, 430, 706, 1202, 1866, 4037, 8, }, }, +// { "Hello" , { 9906, }, }, +// { " Hello" , { 22691, }, }, +// { " Hello" , { 220, 22691, }, }, +// { " Hello" , { 256, 22691, }, }, +// { " Hello" , { 262, 22691, }, }, +// { " Hello\n Hello" , { 262, 22691, 198, 262, 22691, }, }, +// { " (" , { 320, }, }, +// { "\n =" , { 198, 284, }, }, +// { "' era" , { 6, 11639, }, }, +// { "Hello, y'all! How are you 😁 ?我想在apple工作1314151天~", { 9906, 11, 379, 65948, 0, 2650, 527, 499, 27623, 223, 949, 37046, 101067, 19000, 23182, 102301, 9263, 18136, 16, 36827, 21909, }, }, +// { "3" , { 18, }, }, +// { "33" , { 1644, }, }, +// { "333" , { 8765, }, }, +// { "3333" , { 8765, 18, }, }, +// { "33333" , { 8765, 1644, }, }, +// { "333333" , { 8765, 8765, }, }, +// { "3333333" , { 8765, 8765, 18, }, }, +// { "33333333" , { 8765, 8765, 1644, }, }, +// { "333333333" , { 8765, 8765, 8765, }, }, +// }; +// +// return _k_tests; +//} + +using llama_tests = std::map>; + +static llama_tests read_tests(const std::string & fname_inp, const std::string & fname_out) { + llama_tests tests; + + std::ifstream ifs_inp(fname_inp); + if (!ifs_inp) { + fprintf(stderr, "%s : error: could not open file '%s'\n", __func__, fname_inp.c_str()); + return tests; + } + + std::string sraw((std::istreambuf_iterator(ifs_inp)), std::istreambuf_iterator()); + + std::ifstream ifs_out(fname_out); + if (!ifs_out) { + fprintf(stderr, "%s : error: could not open file '%s'\n", __func__, fname_out.c_str()); + return tests; + } + + std::vector sout; + for (std::string line; std::getline(ifs_out, line);) { + sout.push_back(line); + } + + const std::string sep = "\n__ggml_vocab_test__\n"; + + std::vector sinp; + + size_t pos = 0; + while (pos < sraw.size()) { + const size_t next = sraw.find(sep, pos); + if (next == std::string::npos) { + sinp.push_back(sraw.substr(pos)); + break; + } + sinp.push_back(sraw.substr(pos, next - pos)); + pos = next + sep.size(); + } + + if (sinp.size() != sout.size()) { + fprintf(stderr, "%s : error: input and output files have different number of tests\n", __func__); + return tests; + } + + for (size_t i = 0; i < sinp.size(); ++i) { + const std::string & s = sinp[i]; + const std::string & o = string_strip(sout[i]); + + std::vector toks; + + size_t pos = 0; + while (pos < o.size()) { + size_t next = o.find(' ', pos); + if (next == std::string::npos) { + next = o.size(); + } + const std::string stok = o.substr(pos, next - pos); + toks.push_back(std::stoi(stok)); + pos = next + 1; + } + + tests[s] = toks; + } + + return tests; +} + +int main(int argc, char **argv) { + if (argc < 2) { + fprintf(stderr, "Usage: %s vocab-file [text-file]\n", argv[0]); + return 1; + } + + const std::string fname = argv[1]; + + const std::string fname_inp = fname + ".inp"; + const std::string fname_out = fname + ".out"; + + std::string fname_text; + if (argc > 2) { + fname_text = argv[2]; + } + + fprintf(stderr, "%s : reading vocab from: '%s'\n", __func__, fname.c_str()); + + llama_model * model; + llama_context * ctx; + + llama_backend_init(); + + // load the vocab + { + auto mparams = llama_model_default_params(); + + mparams.vocab_only = true; + + model = llama_load_model_from_file(fname.c_str(), mparams); + + if (model == NULL) { + fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str()); + return 1; + } + + auto cparams = llama_context_default_params(); + + ctx = llama_new_context_with_model(model, cparams); + + if (ctx == NULL) { + fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str()); + llama_free_model(model); + return 1; + } + } + +#ifdef _WIN32 + // We need this for unicode console support + console::init(false, false); + atexit([]() { console::cleanup(); }); +#endif + + bool success = true; + + const auto k_tests = [&]() -> llama_tests { + if (!fname_text.empty()) { + return {}; + } + + const auto res = read_tests(fname_inp, fname_out); + + if (res.empty()) { + fprintf(stderr, "%s : error: no tests found\n", __func__); + exit(1); + } + + return res; + }(); + + const bool add_special = false; + + for (const auto & test_kv : k_tests) { + const std::vector res = llama_tokenize(ctx, test_kv.first, add_special); + + printf("\n"); + printf("src: '%s'\n", test_kv.first.c_str()); + printf("res: '%s'\n", llama_detokenize_bpe(ctx, res).c_str()); + printf("tok: "); + for (const auto & tok : res) { + printf("%d ", tok); + } + printf("\n"); + + bool correct = res.size() == test_kv.second.size(); + for (int i = 0; i < (int) res.size() && correct; ++i) { + if (test_kv.second[i] != res[i]) { + correct = false; + } + } + + if (!correct) { + fprintf(stderr, "%s : failed test: '%s'\n", __func__, test_kv.first.c_str()); + fprintf(stderr, "%s : detokenized to: '%s' instead of '%s'\n", __func__, + llama_detokenize_bpe(ctx, res).c_str(), + llama_detokenize_bpe(ctx, test_kv.second).c_str()); + fprintf(stderr, "%s : expected tokens: ", __func__); + for (const auto & t : test_kv.second) { + fprintf(stderr, "%6d '%s', ", t, llama_token_to_piece(ctx, t).c_str()); + } + fprintf(stderr, "\n"); + fprintf(stderr, "%s : got tokens: ", __func__); + for (const auto & t : res) { + fprintf(stderr, "%6d '%s', ", t, llama_token_to_piece(ctx, t).c_str()); + } + fprintf(stderr, "\n"); + + success = false; + } + } + + if (!fname_text.empty()) { + fprintf(stderr, "%s : tokenizing: '%s'\n", __func__, fname_text.c_str()); + + std::string text; + { + std::ifstream ifs(fname_text); + if (!ifs) { + fprintf(stderr, "%s : error: could not open file '%s'\n", __func__, fname_text.c_str()); + return 1; + } + text = std::string(std::istreambuf_iterator(ifs), std::istreambuf_iterator()); + } + + fprintf(stderr, "%s : text size: %zu\n", __func__, text.size()); + + std::vector res; + + { + const auto t_start = ggml_time_us(); + + res = llama_tokenize(ctx, text, add_special); + + const auto t_end = ggml_time_us(); + + fprintf(stderr, "%s : tokenized in %.3f ms (cpp)\n", __func__, (t_end - t_start) / 1000.0); + } + + fprintf(stderr, "%s : tokens: %zu\n", __func__, res.size()); + + { + const std::string fname_out = fname_text + ".tokcpp"; + + std::ofstream ofs(fname_out); + if (!ofs) { + fprintf(stderr, "%s : error: could not open file '%s'\n", __func__, fname_out.c_str()); + return 1; + } + + for (const auto & tok : res) { + //ofs << tok << " '" << string_strip(llama_detokenize_bpe(ctx, std::vector{tok})) << "'" << std::endl; + ofs << tok << "\n"; + } + } + + fprintf(stderr, "%s : tokens written to '%s'\n", __func__, (fname_text + ".tokcpp").c_str()); + } + + llama_free_model(model); + llama_free(ctx); + + llama_backend_free(); + + printf("\n"); + printf("Tests %s\n", success ? "passed" : "failed"); + + return success ? 0 : 3; +} diff --git a/tests/test-tokenizer-0.py b/tests/test-tokenizer-0.py new file mode 100644 index 000000000..cd760d1ce --- /dev/null +++ b/tests/test-tokenizer-0.py @@ -0,0 +1,46 @@ +import time +import argparse + +from transformers import AutoTokenizer + +parser = argparse.ArgumentParser() +parser.add_argument("dir_tokenizer", help="directory containing 'tokenizer.model' file") +parser.add_argument("--fname-tok", help="path to a text file to tokenize", required=True) +args = parser.parse_args() + +dir_tokenizer = args.dir_tokenizer +fname_tok = args.fname_tok + +tokenizer = AutoTokenizer.from_pretrained(dir_tokenizer) + +print('tokenizing file: ', fname_tok) # noqa: NP100 +fname_out = fname_tok + '.tok' +with open(fname_tok, 'r', encoding='utf-8') as f: + lines = f.readlines() + s = ''.join(lines) + t_start = time.time() + res = tokenizer.encode(s, add_special_tokens=False) + t_end = time.time() + print('\nmain : tokenized in', "{:.3f}".format(1000.0 * (t_end - t_start)), 'ms (py)') # noqa: NP100 + with open(fname_out, 'w', encoding='utf-8') as f: + for x in res: + # LLaMA v3 for some reason strips the space for these tokens (and others) + # if x == 662: + # f.write(str(x) + ' \' ' + tokenizer.decode(x) + '\'\n') + # elif x == 1174: + # f.write(str(x) + ' \' ' + tokenizer.decode(x) + '\'\n') + # elif x == 2564: + # f.write(str(x) + ' \' ' + tokenizer.decode(x) + '\'\n') + # elif x == 758: + # f.write(str(x) + ' \' ' + tokenizer.decode(x) + '\'\n') + # elif x == 949: + # f.write(str(x) + ' \' ' + tokenizer.decode(x) + '\'\n') + # elif x == 5354: + # f.write(str(x) + ' \' ' + tokenizer.decode(x) + '\'\n') + # else: + # f.write(str(x) + ' \'' + tokenizer.decode(x) + '\'\n') + # f.write(str(x) + ' \'' + tokenizer.decode(x).strip() + '\'\n') + f.write(str(x) + '\n') + print('len(res): ', len(res)) # noqa: NP100 + print('len(lines): ', len(lines)) # noqa: NP100 +print('results written to: ', fname_out) # noqa: NP100 diff --git a/tests/test-tokenizer-0.sh b/tests/test-tokenizer-0.sh new file mode 100755 index 000000000..2fb8632d8 --- /dev/null +++ b/tests/test-tokenizer-0.sh @@ -0,0 +1,34 @@ +#!/bin/bash +# +# Usage: +# +# test-tokenizer-0.sh +# + +if [ $# -ne 2 ]; then + printf "Usage: $0 \n" + exit 1 +fi + +name=$1 +input=$2 + +make -j tests/test-tokenizer-0 + +printf "Testing %s on %s ...\n" $name $input + +python3 ./tests/test-tokenizer-0.py ./models/tokenizers/$name --fname-tok $input > /tmp/test-tokenizer-0-$name-py.log 2>&1 +cat /tmp/test-tokenizer-0-$name-py.log | grep "tokenized in" + +./tests/test-tokenizer-0 ./models/ggml-vocab-$name.gguf $input > /tmp/test-tokenizer-0-$name-cpp.log 2>&1 +cat /tmp/test-tokenizer-0-$name-cpp.log | grep "tokenized in" + +diff $input.tok $input.tokcpp > /dev/null 2>&1 + +if [ $? -eq 0 ]; then + printf "Tokenization is correct!\n" +else + diff $input.tok $input.tokcpp | head -n 32 + + printf "Tokenization differs!\n" +fi diff --git a/tests/test-tokenizer-1-llama.cpp b/tests/test-tokenizer-1-spm.cpp similarity index 98% rename from tests/test-tokenizer-1-llama.cpp rename to tests/test-tokenizer-1-spm.cpp index 8caf0b24e..ac2333dda 100644 --- a/tests/test-tokenizer-1-llama.cpp +++ b/tests/test-tokenizer-1-spm.cpp @@ -12,7 +12,7 @@ #include #include -int main(int argc, char **argv) { +int main(int argc, char ** argv) { if (argc < 2) { fprintf(stderr, "Usage: %s \n", argv[0]); return 1; diff --git a/unicode-data.cpp b/unicode-data.cpp index 22f8b0f0b..07bf02c45 100644 --- a/unicode-data.cpp +++ b/unicode-data.cpp @@ -1,31 +1,51 @@ -#include "unicode-data.h" +#include "unicode-data.h" #include #include #include #include -const std::vector> unicode_ranges_digit = { -{0x00000030, 0x00000039}, {0x000000B2, 0x000000B3}, {0x000000B9, 0x000000B9}, {0x00000660, 0x00000669}, -{0x000006F0, 0x000006F9}, {0x000007C0, 0x000007C9}, {0x00000966, 0x0000096F}, {0x000009E6, 0x000009EF}, -{0x00000A66, 0x00000A6F}, {0x00000AE6, 0x00000AEF}, {0x00000B66, 0x00000B6F}, {0x00000BE6, 0x00000BEF}, -{0x00000C66, 0x00000C6F}, {0x00000CE6, 0x00000CEF}, {0x00000D66, 0x00000D6F}, {0x00000DE6, 0x00000DEF}, -{0x00000E50, 0x00000E59}, {0x00000ED0, 0x00000ED9}, {0x00000F20, 0x00000F29}, {0x00001040, 0x00001049}, -{0x00001090, 0x00001099}, {0x00001369, 0x00001371}, {0x000017E0, 0x000017E9}, {0x00001810, 0x00001819}, -{0x00001946, 0x0000194F}, {0x000019D0, 0x000019DA}, {0x00001A80, 0x00001A89}, {0x00001A90, 0x00001A99}, -{0x00001B50, 0x00001B59}, {0x00001BB0, 0x00001BB9}, {0x00001C40, 0x00001C49}, {0x00001C50, 0x00001C59}, -{0x00002070, 0x00002070}, {0x00002074, 0x00002079}, {0x00002080, 0x00002089}, {0x00002460, 0x00002468}, -{0x00002474, 0x0000247C}, {0x00002488, 0x00002490}, {0x000024EA, 0x000024EA}, {0x000024F5, 0x000024FD}, -{0x000024FF, 0x000024FF}, {0x00002776, 0x0000277E}, {0x00002780, 0x00002788}, {0x0000278A, 0x00002792}, -{0x0000A620, 0x0000A629}, {0x0000A8D0, 0x0000A8D9}, {0x0000A900, 0x0000A909}, {0x0000A9D0, 0x0000A9D9}, -{0x0000A9F0, 0x0000A9F9}, {0x0000AA50, 0x0000AA59}, {0x0000ABF0, 0x0000ABF9}, {0x0000FF10, 0x0000FF19}, -{0x000104A0, 0x000104A9}, {0x00010A40, 0x00010A43}, {0x00010D30, 0x00010D39}, {0x00010E60, 0x00010E68}, -{0x00011052, 0x0001105A}, {0x00011066, 0x0001106F}, {0x000110F0, 0x000110F9}, {0x00011136, 0x0001113F}, -{0x000111D0, 0x000111D9}, {0x000112F0, 0x000112F9}, {0x00011450, 0x00011459}, {0x000114D0, 0x000114D9}, -{0x00011650, 0x00011659}, {0x000116C0, 0x000116C9}, {0x00011730, 0x00011739}, {0x000118E0, 0x000118E9}, -{0x00011950, 0x00011959}, {0x00011C50, 0x00011C59}, {0x00011D50, 0x00011D59}, {0x00011DA0, 0x00011DA9}, -{0x00016A60, 0x00016A69}, {0x00016B50, 0x00016B59}, {0x0001D7CE, 0x0001D7FF}, {0x0001E140, 0x0001E149}, -{0x0001E2F0, 0x0001E2F9}, {0x0001E950, 0x0001E959}, {0x0001F100, 0x0001F10A}, {0x0001FBF0, 0x0001FBF9}, +// generated with scripts/gen-unicode-data.py +// +// TODO: generate unicode_map_lowercase +// TODO: generate unicode_map_nfd + +const std::vector> unicode_ranges_number = { +{0x00000030, 0x00000039}, {0x000000B2, 0x000000B3}, {0x000000B9, 0x000000B9}, {0x000000BC, 0x000000BE}, +{0x00000660, 0x00000669}, {0x000006F0, 0x000006F9}, {0x000007C0, 0x000007C9}, {0x00000966, 0x0000096F}, +{0x000009E6, 0x000009EF}, {0x000009F4, 0x000009F9}, {0x00000A66, 0x00000A6F}, {0x00000AE6, 0x00000AEF}, +{0x00000B66, 0x00000B6F}, {0x00000B72, 0x00000B77}, {0x00000BE6, 0x00000BF2}, {0x00000C66, 0x00000C6F}, +{0x00000C78, 0x00000C7E}, {0x00000CE6, 0x00000CEF}, {0x00000D58, 0x00000D5E}, {0x00000D66, 0x00000D78}, +{0x00000DE6, 0x00000DEF}, {0x00000E50, 0x00000E59}, {0x00000ED0, 0x00000ED9}, {0x00000F20, 0x00000F33}, +{0x00001040, 0x00001049}, {0x00001090, 0x00001099}, {0x00001369, 0x0000137C}, {0x000016EE, 0x000016F0}, +{0x000017E0, 0x000017E9}, {0x000017F0, 0x000017F9}, {0x00001810, 0x00001819}, {0x00001946, 0x0000194F}, +{0x000019D0, 0x000019DA}, {0x00001A80, 0x00001A89}, {0x00001A90, 0x00001A99}, {0x00001B50, 0x00001B59}, +{0x00001BB0, 0x00001BB9}, {0x00001C40, 0x00001C49}, {0x00001C50, 0x00001C59}, {0x00002070, 0x00002070}, +{0x00002074, 0x00002079}, {0x00002080, 0x00002089}, {0x00002150, 0x00002182}, {0x00002185, 0x00002189}, +{0x00002460, 0x0000249B}, {0x000024EA, 0x000024FF}, {0x00002776, 0x00002793}, {0x00002CFD, 0x00002CFD}, +{0x00003007, 0x00003007}, {0x00003021, 0x00003029}, {0x00003038, 0x0000303A}, {0x00003192, 0x00003195}, +{0x00003220, 0x00003229}, {0x00003248, 0x0000324F}, {0x00003251, 0x0000325F}, {0x00003280, 0x00003289}, +{0x000032B1, 0x000032BF}, {0x0000A620, 0x0000A629}, {0x0000A6E6, 0x0000A6EF}, {0x0000A830, 0x0000A835}, +{0x0000A8D0, 0x0000A8D9}, {0x0000A900, 0x0000A909}, {0x0000A9D0, 0x0000A9D9}, {0x0000A9F0, 0x0000A9F9}, +{0x0000AA50, 0x0000AA59}, {0x0000ABF0, 0x0000ABF9}, {0x0000FF10, 0x0000FF19}, {0x00010107, 0x00010133}, +{0x00010140, 0x00010178}, {0x0001018A, 0x0001018B}, {0x000102E1, 0x000102FB}, {0x00010320, 0x00010323}, +{0x00010341, 0x00010341}, {0x0001034A, 0x0001034A}, {0x000103D1, 0x000103D5}, {0x000104A0, 0x000104A9}, +{0x00010858, 0x0001085F}, {0x00010879, 0x0001087F}, {0x000108A7, 0x000108AF}, {0x000108FB, 0x000108FF}, +{0x00010916, 0x0001091B}, {0x000109BC, 0x000109BD}, {0x000109C0, 0x000109CF}, {0x000109D2, 0x000109FF}, +{0x00010A40, 0x00010A48}, {0x00010A7D, 0x00010A7E}, {0x00010A9D, 0x00010A9F}, {0x00010AEB, 0x00010AEF}, +{0x00010B58, 0x00010B5F}, {0x00010B78, 0x00010B7F}, {0x00010BA9, 0x00010BAF}, {0x00010CFA, 0x00010CFF}, +{0x00010D30, 0x00010D39}, {0x00010E60, 0x00010E7E}, {0x00010F1D, 0x00010F26}, {0x00010F51, 0x00010F54}, +{0x00010FC5, 0x00010FCB}, {0x00011052, 0x0001106F}, {0x000110F0, 0x000110F9}, {0x00011136, 0x0001113F}, +{0x000111D0, 0x000111D9}, {0x000111E1, 0x000111F4}, {0x000112F0, 0x000112F9}, {0x00011450, 0x00011459}, +{0x000114D0, 0x000114D9}, {0x00011650, 0x00011659}, {0x000116C0, 0x000116C9}, {0x00011730, 0x0001173B}, +{0x000118E0, 0x000118F2}, {0x00011950, 0x00011959}, {0x00011C50, 0x00011C6C}, {0x00011D50, 0x00011D59}, +{0x00011DA0, 0x00011DA9}, {0x00011F50, 0x00011F59}, {0x00011FC0, 0x00011FD4}, {0x00012400, 0x0001246E}, +{0x00016A60, 0x00016A69}, {0x00016AC0, 0x00016AC9}, {0x00016B50, 0x00016B59}, {0x00016B5B, 0x00016B61}, +{0x00016E80, 0x00016E96}, {0x0001D2C0, 0x0001D2D3}, {0x0001D2E0, 0x0001D2F3}, {0x0001D360, 0x0001D378}, +{0x0001D7CE, 0x0001D7FF}, {0x0001E140, 0x0001E149}, {0x0001E2F0, 0x0001E2F9}, {0x0001E4F0, 0x0001E4F9}, +{0x0001E8C7, 0x0001E8CF}, {0x0001E950, 0x0001E959}, {0x0001EC71, 0x0001ECAB}, {0x0001ECAD, 0x0001ECAF}, +{0x0001ECB1, 0x0001ECB4}, {0x0001ED01, 0x0001ED2D}, {0x0001ED2F, 0x0001ED3D}, {0x0001F100, 0x0001F10C}, +{0x0001FBF0, 0x0001FBF9}, }; const std::vector> unicode_ranges_letter = { @@ -41,73 +61,73 @@ const std::vector> unicode_ranges_letter = { {0x00000710, 0x00000710}, {0x00000712, 0x0000072F}, {0x0000074D, 0x000007A5}, {0x000007B1, 0x000007B1}, {0x000007CA, 0x000007EA}, {0x000007F4, 0x000007F5}, {0x000007FA, 0x000007FA}, {0x00000800, 0x00000815}, {0x0000081A, 0x0000081A}, {0x00000824, 0x00000824}, {0x00000828, 0x00000828}, {0x00000840, 0x00000858}, -{0x00000860, 0x0000086A}, {0x000008A0, 0x000008B4}, {0x000008B6, 0x000008C7}, {0x00000904, 0x00000939}, -{0x0000093D, 0x0000093D}, {0x00000950, 0x00000950}, {0x00000958, 0x00000961}, {0x00000971, 0x00000980}, -{0x00000985, 0x0000098C}, {0x0000098F, 0x00000990}, {0x00000993, 0x000009A8}, {0x000009AA, 0x000009B0}, -{0x000009B2, 0x000009B2}, {0x000009B6, 0x000009B9}, {0x000009BD, 0x000009BD}, {0x000009CE, 0x000009CE}, -{0x000009DC, 0x000009DD}, {0x000009DF, 0x000009E1}, {0x000009F0, 0x000009F1}, {0x000009FC, 0x000009FC}, -{0x00000A05, 0x00000A0A}, {0x00000A0F, 0x00000A10}, {0x00000A13, 0x00000A28}, {0x00000A2A, 0x00000A30}, -{0x00000A32, 0x00000A33}, {0x00000A35, 0x00000A36}, {0x00000A38, 0x00000A39}, {0x00000A59, 0x00000A5C}, -{0x00000A5E, 0x00000A5E}, {0x00000A72, 0x00000A74}, {0x00000A85, 0x00000A8D}, {0x00000A8F, 0x00000A91}, -{0x00000A93, 0x00000AA8}, {0x00000AAA, 0x00000AB0}, {0x00000AB2, 0x00000AB3}, {0x00000AB5, 0x00000AB9}, -{0x00000ABD, 0x00000ABD}, {0x00000AD0, 0x00000AD0}, {0x00000AE0, 0x00000AE1}, {0x00000AF9, 0x00000AF9}, -{0x00000B05, 0x00000B0C}, {0x00000B0F, 0x00000B10}, {0x00000B13, 0x00000B28}, {0x00000B2A, 0x00000B30}, -{0x00000B32, 0x00000B33}, {0x00000B35, 0x00000B39}, {0x00000B3D, 0x00000B3D}, {0x00000B5C, 0x00000B5D}, -{0x00000B5F, 0x00000B61}, {0x00000B71, 0x00000B71}, {0x00000B83, 0x00000B83}, {0x00000B85, 0x00000B8A}, -{0x00000B8E, 0x00000B90}, {0x00000B92, 0x00000B95}, {0x00000B99, 0x00000B9A}, {0x00000B9C, 0x00000B9C}, -{0x00000B9E, 0x00000B9F}, {0x00000BA3, 0x00000BA4}, {0x00000BA8, 0x00000BAA}, {0x00000BAE, 0x00000BB9}, -{0x00000BD0, 0x00000BD0}, {0x00000C05, 0x00000C0C}, {0x00000C0E, 0x00000C10}, {0x00000C12, 0x00000C28}, -{0x00000C2A, 0x00000C39}, {0x00000C3D, 0x00000C3D}, {0x00000C58, 0x00000C5A}, {0x00000C60, 0x00000C61}, -{0x00000C80, 0x00000C80}, {0x00000C85, 0x00000C8C}, {0x00000C8E, 0x00000C90}, {0x00000C92, 0x00000CA8}, -{0x00000CAA, 0x00000CB3}, {0x00000CB5, 0x00000CB9}, {0x00000CBD, 0x00000CBD}, {0x00000CDE, 0x00000CDE}, -{0x00000CE0, 0x00000CE1}, {0x00000CF1, 0x00000CF2}, {0x00000D04, 0x00000D0C}, {0x00000D0E, 0x00000D10}, -{0x00000D12, 0x00000D3A}, {0x00000D3D, 0x00000D3D}, {0x00000D4E, 0x00000D4E}, {0x00000D54, 0x00000D56}, -{0x00000D5F, 0x00000D61}, {0x00000D7A, 0x00000D7F}, {0x00000D85, 0x00000D96}, {0x00000D9A, 0x00000DB1}, -{0x00000DB3, 0x00000DBB}, {0x00000DBD, 0x00000DBD}, {0x00000DC0, 0x00000DC6}, {0x00000E01, 0x00000E30}, -{0x00000E32, 0x00000E33}, {0x00000E40, 0x00000E46}, {0x00000E81, 0x00000E82}, {0x00000E84, 0x00000E84}, -{0x00000E86, 0x00000E8A}, {0x00000E8C, 0x00000EA3}, {0x00000EA5, 0x00000EA5}, {0x00000EA7, 0x00000EB0}, -{0x00000EB2, 0x00000EB3}, {0x00000EBD, 0x00000EBD}, {0x00000EC0, 0x00000EC4}, {0x00000EC6, 0x00000EC6}, -{0x00000EDC, 0x00000EDF}, {0x00000F00, 0x00000F00}, {0x00000F40, 0x00000F47}, {0x00000F49, 0x00000F6C}, -{0x00000F88, 0x00000F8C}, {0x00001000, 0x0000102A}, {0x0000103F, 0x0000103F}, {0x00001050, 0x00001055}, -{0x0000105A, 0x0000105D}, {0x00001061, 0x00001061}, {0x00001065, 0x00001066}, {0x0000106E, 0x00001070}, -{0x00001075, 0x00001081}, {0x0000108E, 0x0000108E}, {0x000010A0, 0x000010C5}, {0x000010C7, 0x000010C7}, -{0x000010CD, 0x000010CD}, {0x000010D0, 0x000010FA}, {0x000010FC, 0x00001248}, {0x0000124A, 0x0000124D}, -{0x00001250, 0x00001256}, {0x00001258, 0x00001258}, {0x0000125A, 0x0000125D}, {0x00001260, 0x00001288}, -{0x0000128A, 0x0000128D}, {0x00001290, 0x000012B0}, {0x000012B2, 0x000012B5}, {0x000012B8, 0x000012BE}, -{0x000012C0, 0x000012C0}, {0x000012C2, 0x000012C5}, {0x000012C8, 0x000012D6}, {0x000012D8, 0x00001310}, -{0x00001312, 0x00001315}, {0x00001318, 0x0000135A}, {0x00001380, 0x0000138F}, {0x000013A0, 0x000013F5}, -{0x000013F8, 0x000013FD}, {0x00001401, 0x0000166C}, {0x0000166F, 0x0000167F}, {0x00001681, 0x0000169A}, -{0x000016A0, 0x000016EA}, {0x000016F1, 0x000016F8}, {0x00001700, 0x0000170C}, {0x0000170E, 0x00001711}, -{0x00001720, 0x00001731}, {0x00001740, 0x00001751}, {0x00001760, 0x0000176C}, {0x0000176E, 0x00001770}, -{0x00001780, 0x000017B3}, {0x000017D7, 0x000017D7}, {0x000017DC, 0x000017DC}, {0x00001820, 0x00001878}, -{0x00001880, 0x00001884}, {0x00001887, 0x000018A8}, {0x000018AA, 0x000018AA}, {0x000018B0, 0x000018F5}, -{0x00001900, 0x0000191E}, {0x00001950, 0x0000196D}, {0x00001970, 0x00001974}, {0x00001980, 0x000019AB}, -{0x000019B0, 0x000019C9}, {0x00001A00, 0x00001A16}, {0x00001A20, 0x00001A54}, {0x00001AA7, 0x00001AA7}, -{0x00001B05, 0x00001B33}, {0x00001B45, 0x00001B4B}, {0x00001B83, 0x00001BA0}, {0x00001BAE, 0x00001BAF}, -{0x00001BBA, 0x00001BE5}, {0x00001C00, 0x00001C23}, {0x00001C4D, 0x00001C4F}, {0x00001C5A, 0x00001C7D}, -{0x00001C80, 0x00001C88}, {0x00001C90, 0x00001CBA}, {0x00001CBD, 0x00001CBF}, {0x00001CE9, 0x00001CEC}, -{0x00001CEE, 0x00001CF3}, {0x00001CF5, 0x00001CF6}, {0x00001CFA, 0x00001CFA}, {0x00001D00, 0x00001DBF}, -{0x00001E00, 0x00001F15}, {0x00001F18, 0x00001F1D}, {0x00001F20, 0x00001F45}, {0x00001F48, 0x00001F4D}, -{0x00001F50, 0x00001F57}, {0x00001F59, 0x00001F59}, {0x00001F5B, 0x00001F5B}, {0x00001F5D, 0x00001F5D}, -{0x00001F5F, 0x00001F7D}, {0x00001F80, 0x00001FB4}, {0x00001FB6, 0x00001FBC}, {0x00001FBE, 0x00001FBE}, -{0x00001FC2, 0x00001FC4}, {0x00001FC6, 0x00001FCC}, {0x00001FD0, 0x00001FD3}, {0x00001FD6, 0x00001FDB}, -{0x00001FE0, 0x00001FEC}, {0x00001FF2, 0x00001FF4}, {0x00001FF6, 0x00001FFC}, {0x00002071, 0x00002071}, -{0x0000207F, 0x0000207F}, {0x00002090, 0x0000209C}, {0x00002102, 0x00002102}, {0x00002107, 0x00002107}, -{0x0000210A, 0x00002113}, {0x00002115, 0x00002115}, {0x00002119, 0x0000211D}, {0x00002124, 0x00002124}, -{0x00002126, 0x00002126}, {0x00002128, 0x00002128}, {0x0000212A, 0x0000212D}, {0x0000212F, 0x00002139}, -{0x0000213C, 0x0000213F}, {0x00002145, 0x00002149}, {0x0000214E, 0x0000214E}, {0x00002183, 0x00002184}, -{0x00002C00, 0x00002C2E}, {0x00002C30, 0x00002C5E}, {0x00002C60, 0x00002CE4}, {0x00002CEB, 0x00002CEE}, -{0x00002CF2, 0x00002CF3}, {0x00002D00, 0x00002D25}, {0x00002D27, 0x00002D27}, {0x00002D2D, 0x00002D2D}, -{0x00002D30, 0x00002D67}, {0x00002D6F, 0x00002D6F}, {0x00002D80, 0x00002D96}, {0x00002DA0, 0x00002DA6}, -{0x00002DA8, 0x00002DAE}, {0x00002DB0, 0x00002DB6}, {0x00002DB8, 0x00002DBE}, {0x00002DC0, 0x00002DC6}, -{0x00002DC8, 0x00002DCE}, {0x00002DD0, 0x00002DD6}, {0x00002DD8, 0x00002DDE}, {0x00002E2F, 0x00002E2F}, -{0x00003005, 0x00003006}, {0x00003031, 0x00003035}, {0x0000303B, 0x0000303C}, {0x00003041, 0x00003096}, -{0x0000309D, 0x0000309F}, {0x000030A1, 0x000030FA}, {0x000030FC, 0x000030FF}, {0x00003105, 0x0000312F}, -{0x00003131, 0x0000318E}, {0x000031A0, 0x000031BF}, {0x000031F0, 0x000031FF}, {0x00003400, 0x00004DBF}, -{0x00004E00, 0x00009FFC}, {0x0000A000, 0x0000A48C}, {0x0000A4D0, 0x0000A4FD}, {0x0000A500, 0x0000A60C}, -{0x0000A610, 0x0000A61F}, {0x0000A62A, 0x0000A62B}, {0x0000A640, 0x0000A66E}, {0x0000A67F, 0x0000A69D}, -{0x0000A6A0, 0x0000A6E5}, {0x0000A717, 0x0000A71F}, {0x0000A722, 0x0000A788}, {0x0000A78B, 0x0000A7BF}, -{0x0000A7C2, 0x0000A7CA}, {0x0000A7F5, 0x0000A801}, {0x0000A803, 0x0000A805}, {0x0000A807, 0x0000A80A}, +{0x00000860, 0x0000086A}, {0x00000870, 0x00000887}, {0x00000889, 0x0000088E}, {0x000008A0, 0x000008C9}, +{0x00000904, 0x00000939}, {0x0000093D, 0x0000093D}, {0x00000950, 0x00000950}, {0x00000958, 0x00000961}, +{0x00000971, 0x00000980}, {0x00000985, 0x0000098C}, {0x0000098F, 0x00000990}, {0x00000993, 0x000009A8}, +{0x000009AA, 0x000009B0}, {0x000009B2, 0x000009B2}, {0x000009B6, 0x000009B9}, {0x000009BD, 0x000009BD}, +{0x000009CE, 0x000009CE}, {0x000009DC, 0x000009DD}, {0x000009DF, 0x000009E1}, {0x000009F0, 0x000009F1}, +{0x000009FC, 0x000009FC}, {0x00000A05, 0x00000A0A}, {0x00000A0F, 0x00000A10}, {0x00000A13, 0x00000A28}, +{0x00000A2A, 0x00000A30}, {0x00000A32, 0x00000A33}, {0x00000A35, 0x00000A36}, {0x00000A38, 0x00000A39}, +{0x00000A59, 0x00000A5C}, {0x00000A5E, 0x00000A5E}, {0x00000A72, 0x00000A74}, {0x00000A85, 0x00000A8D}, +{0x00000A8F, 0x00000A91}, {0x00000A93, 0x00000AA8}, {0x00000AAA, 0x00000AB0}, {0x00000AB2, 0x00000AB3}, +{0x00000AB5, 0x00000AB9}, {0x00000ABD, 0x00000ABD}, {0x00000AD0, 0x00000AD0}, {0x00000AE0, 0x00000AE1}, +{0x00000AF9, 0x00000AF9}, {0x00000B05, 0x00000B0C}, {0x00000B0F, 0x00000B10}, {0x00000B13, 0x00000B28}, +{0x00000B2A, 0x00000B30}, {0x00000B32, 0x00000B33}, {0x00000B35, 0x00000B39}, {0x00000B3D, 0x00000B3D}, +{0x00000B5C, 0x00000B5D}, {0x00000B5F, 0x00000B61}, {0x00000B71, 0x00000B71}, {0x00000B83, 0x00000B83}, +{0x00000B85, 0x00000B8A}, {0x00000B8E, 0x00000B90}, {0x00000B92, 0x00000B95}, {0x00000B99, 0x00000B9A}, +{0x00000B9C, 0x00000B9C}, {0x00000B9E, 0x00000B9F}, {0x00000BA3, 0x00000BA4}, {0x00000BA8, 0x00000BAA}, +{0x00000BAE, 0x00000BB9}, {0x00000BD0, 0x00000BD0}, {0x00000C05, 0x00000C0C}, {0x00000C0E, 0x00000C10}, +{0x00000C12, 0x00000C28}, {0x00000C2A, 0x00000C39}, {0x00000C3D, 0x00000C3D}, {0x00000C58, 0x00000C5A}, +{0x00000C5D, 0x00000C5D}, {0x00000C60, 0x00000C61}, {0x00000C80, 0x00000C80}, {0x00000C85, 0x00000C8C}, +{0x00000C8E, 0x00000C90}, {0x00000C92, 0x00000CA8}, {0x00000CAA, 0x00000CB3}, {0x00000CB5, 0x00000CB9}, +{0x00000CBD, 0x00000CBD}, {0x00000CDD, 0x00000CDE}, {0x00000CE0, 0x00000CE1}, {0x00000CF1, 0x00000CF2}, +{0x00000D04, 0x00000D0C}, {0x00000D0E, 0x00000D10}, {0x00000D12, 0x00000D3A}, {0x00000D3D, 0x00000D3D}, +{0x00000D4E, 0x00000D4E}, {0x00000D54, 0x00000D56}, {0x00000D5F, 0x00000D61}, {0x00000D7A, 0x00000D7F}, +{0x00000D85, 0x00000D96}, {0x00000D9A, 0x00000DB1}, {0x00000DB3, 0x00000DBB}, {0x00000DBD, 0x00000DBD}, +{0x00000DC0, 0x00000DC6}, {0x00000E01, 0x00000E30}, {0x00000E32, 0x00000E33}, {0x00000E40, 0x00000E46}, +{0x00000E81, 0x00000E82}, {0x00000E84, 0x00000E84}, {0x00000E86, 0x00000E8A}, {0x00000E8C, 0x00000EA3}, +{0x00000EA5, 0x00000EA5}, {0x00000EA7, 0x00000EB0}, {0x00000EB2, 0x00000EB3}, {0x00000EBD, 0x00000EBD}, +{0x00000EC0, 0x00000EC4}, {0x00000EC6, 0x00000EC6}, {0x00000EDC, 0x00000EDF}, {0x00000F00, 0x00000F00}, +{0x00000F40, 0x00000F47}, {0x00000F49, 0x00000F6C}, {0x00000F88, 0x00000F8C}, {0x00001000, 0x0000102A}, +{0x0000103F, 0x0000103F}, {0x00001050, 0x00001055}, {0x0000105A, 0x0000105D}, {0x00001061, 0x00001061}, +{0x00001065, 0x00001066}, {0x0000106E, 0x00001070}, {0x00001075, 0x00001081}, {0x0000108E, 0x0000108E}, +{0x000010A0, 0x000010C5}, {0x000010C7, 0x000010C7}, {0x000010CD, 0x000010CD}, {0x000010D0, 0x000010FA}, +{0x000010FC, 0x00001248}, {0x0000124A, 0x0000124D}, {0x00001250, 0x00001256}, {0x00001258, 0x00001258}, +{0x0000125A, 0x0000125D}, {0x00001260, 0x00001288}, {0x0000128A, 0x0000128D}, {0x00001290, 0x000012B0}, +{0x000012B2, 0x000012B5}, {0x000012B8, 0x000012BE}, {0x000012C0, 0x000012C0}, {0x000012C2, 0x000012C5}, +{0x000012C8, 0x000012D6}, {0x000012D8, 0x00001310}, {0x00001312, 0x00001315}, {0x00001318, 0x0000135A}, +{0x00001380, 0x0000138F}, {0x000013A0, 0x000013F5}, {0x000013F8, 0x000013FD}, {0x00001401, 0x0000166C}, +{0x0000166F, 0x0000167F}, {0x00001681, 0x0000169A}, {0x000016A0, 0x000016EA}, {0x000016F1, 0x000016F8}, +{0x00001700, 0x00001711}, {0x0000171F, 0x00001731}, {0x00001740, 0x00001751}, {0x00001760, 0x0000176C}, +{0x0000176E, 0x00001770}, {0x00001780, 0x000017B3}, {0x000017D7, 0x000017D7}, {0x000017DC, 0x000017DC}, +{0x00001820, 0x00001878}, {0x00001880, 0x00001884}, {0x00001887, 0x000018A8}, {0x000018AA, 0x000018AA}, +{0x000018B0, 0x000018F5}, {0x00001900, 0x0000191E}, {0x00001950, 0x0000196D}, {0x00001970, 0x00001974}, +{0x00001980, 0x000019AB}, {0x000019B0, 0x000019C9}, {0x00001A00, 0x00001A16}, {0x00001A20, 0x00001A54}, +{0x00001AA7, 0x00001AA7}, {0x00001B05, 0x00001B33}, {0x00001B45, 0x00001B4C}, {0x00001B83, 0x00001BA0}, +{0x00001BAE, 0x00001BAF}, {0x00001BBA, 0x00001BE5}, {0x00001C00, 0x00001C23}, {0x00001C4D, 0x00001C4F}, +{0x00001C5A, 0x00001C7D}, {0x00001C80, 0x00001C88}, {0x00001C90, 0x00001CBA}, {0x00001CBD, 0x00001CBF}, +{0x00001CE9, 0x00001CEC}, {0x00001CEE, 0x00001CF3}, {0x00001CF5, 0x00001CF6}, {0x00001CFA, 0x00001CFA}, +{0x00001D00, 0x00001DBF}, {0x00001E00, 0x00001F15}, {0x00001F18, 0x00001F1D}, {0x00001F20, 0x00001F45}, +{0x00001F48, 0x00001F4D}, {0x00001F50, 0x00001F57}, {0x00001F59, 0x00001F59}, {0x00001F5B, 0x00001F5B}, +{0x00001F5D, 0x00001F5D}, {0x00001F5F, 0x00001F7D}, {0x00001F80, 0x00001FB4}, {0x00001FB6, 0x00001FBC}, +{0x00001FBE, 0x00001FBE}, {0x00001FC2, 0x00001FC4}, {0x00001FC6, 0x00001FCC}, {0x00001FD0, 0x00001FD3}, +{0x00001FD6, 0x00001FDB}, {0x00001FE0, 0x00001FEC}, {0x00001FF2, 0x00001FF4}, {0x00001FF6, 0x00001FFC}, +{0x00002071, 0x00002071}, {0x0000207F, 0x0000207F}, {0x00002090, 0x0000209C}, {0x00002102, 0x00002102}, +{0x00002107, 0x00002107}, {0x0000210A, 0x00002113}, {0x00002115, 0x00002115}, {0x00002119, 0x0000211D}, +{0x00002124, 0x00002124}, {0x00002126, 0x00002126}, {0x00002128, 0x00002128}, {0x0000212A, 0x0000212D}, +{0x0000212F, 0x00002139}, {0x0000213C, 0x0000213F}, {0x00002145, 0x00002149}, {0x0000214E, 0x0000214E}, +{0x00002183, 0x00002184}, {0x00002C00, 0x00002CE4}, {0x00002CEB, 0x00002CEE}, {0x00002CF2, 0x00002CF3}, +{0x00002D00, 0x00002D25}, {0x00002D27, 0x00002D27}, {0x00002D2D, 0x00002D2D}, {0x00002D30, 0x00002D67}, +{0x00002D6F, 0x00002D6F}, {0x00002D80, 0x00002D96}, {0x00002DA0, 0x00002DA6}, {0x00002DA8, 0x00002DAE}, +{0x00002DB0, 0x00002DB6}, {0x00002DB8, 0x00002DBE}, {0x00002DC0, 0x00002DC6}, {0x00002DC8, 0x00002DCE}, +{0x00002DD0, 0x00002DD6}, {0x00002DD8, 0x00002DDE}, {0x00002E2F, 0x00002E2F}, {0x00003005, 0x00003006}, +{0x00003031, 0x00003035}, {0x0000303B, 0x0000303C}, {0x00003041, 0x00003096}, {0x0000309D, 0x0000309F}, +{0x000030A1, 0x000030FA}, {0x000030FC, 0x000030FF}, {0x00003105, 0x0000312F}, {0x00003131, 0x0000318E}, +{0x000031A0, 0x000031BF}, {0x000031F0, 0x000031FF}, {0x00003400, 0x00004DBF}, {0x00004E00, 0x0000A48C}, +{0x0000A4D0, 0x0000A4FD}, {0x0000A500, 0x0000A60C}, {0x0000A610, 0x0000A61F}, {0x0000A62A, 0x0000A62B}, +{0x0000A640, 0x0000A66E}, {0x0000A67F, 0x0000A69D}, {0x0000A6A0, 0x0000A6E5}, {0x0000A717, 0x0000A71F}, +{0x0000A722, 0x0000A788}, {0x0000A78B, 0x0000A7CA}, {0x0000A7D0, 0x0000A7D1}, {0x0000A7D3, 0x0000A7D3}, +{0x0000A7D5, 0x0000A7D9}, {0x0000A7F2, 0x0000A801}, {0x0000A803, 0x0000A805}, {0x0000A807, 0x0000A80A}, {0x0000A80C, 0x0000A822}, {0x0000A840, 0x0000A873}, {0x0000A882, 0x0000A8B3}, {0x0000A8F2, 0x0000A8F7}, {0x0000A8FB, 0x0000A8FB}, {0x0000A8FD, 0x0000A8FE}, {0x0000A90A, 0x0000A925}, {0x0000A930, 0x0000A946}, {0x0000A960, 0x0000A97C}, {0x0000A984, 0x0000A9B2}, {0x0000A9CF, 0x0000A9CF}, {0x0000A9E0, 0x0000A9E4}, @@ -129,51 +149,60 @@ const std::vector> unicode_ranges_letter = { {0x000102A0, 0x000102D0}, {0x00010300, 0x0001031F}, {0x0001032D, 0x00010340}, {0x00010342, 0x00010349}, {0x00010350, 0x00010375}, {0x00010380, 0x0001039D}, {0x000103A0, 0x000103C3}, {0x000103C8, 0x000103CF}, {0x00010400, 0x0001049D}, {0x000104B0, 0x000104D3}, {0x000104D8, 0x000104FB}, {0x00010500, 0x00010527}, -{0x00010530, 0x00010563}, {0x00010600, 0x00010736}, {0x00010740, 0x00010755}, {0x00010760, 0x00010767}, -{0x00010800, 0x00010805}, {0x00010808, 0x00010808}, {0x0001080A, 0x00010835}, {0x00010837, 0x00010838}, -{0x0001083C, 0x0001083C}, {0x0001083F, 0x00010855}, {0x00010860, 0x00010876}, {0x00010880, 0x0001089E}, -{0x000108E0, 0x000108F2}, {0x000108F4, 0x000108F5}, {0x00010900, 0x00010915}, {0x00010920, 0x00010939}, -{0x00010980, 0x000109B7}, {0x000109BE, 0x000109BF}, {0x00010A00, 0x00010A00}, {0x00010A10, 0x00010A13}, -{0x00010A15, 0x00010A17}, {0x00010A19, 0x00010A35}, {0x00010A60, 0x00010A7C}, {0x00010A80, 0x00010A9C}, -{0x00010AC0, 0x00010AC7}, {0x00010AC9, 0x00010AE4}, {0x00010B00, 0x00010B35}, {0x00010B40, 0x00010B55}, -{0x00010B60, 0x00010B72}, {0x00010B80, 0x00010B91}, {0x00010C00, 0x00010C48}, {0x00010C80, 0x00010CB2}, -{0x00010CC0, 0x00010CF2}, {0x00010D00, 0x00010D23}, {0x00010E80, 0x00010EA9}, {0x00010EB0, 0x00010EB1}, -{0x00010F00, 0x00010F1C}, {0x00010F27, 0x00010F27}, {0x00010F30, 0x00010F45}, {0x00010FB0, 0x00010FC4}, -{0x00010FE0, 0x00010FF6}, {0x00011003, 0x00011037}, {0x00011083, 0x000110AF}, {0x000110D0, 0x000110E8}, -{0x00011103, 0x00011126}, {0x00011144, 0x00011144}, {0x00011147, 0x00011147}, {0x00011150, 0x00011172}, -{0x00011176, 0x00011176}, {0x00011183, 0x000111B2}, {0x000111C1, 0x000111C4}, {0x000111DA, 0x000111DA}, -{0x000111DC, 0x000111DC}, {0x00011200, 0x00011211}, {0x00011213, 0x0001122B}, {0x00011280, 0x00011286}, -{0x00011288, 0x00011288}, {0x0001128A, 0x0001128D}, {0x0001128F, 0x0001129D}, {0x0001129F, 0x000112A8}, -{0x000112B0, 0x000112DE}, {0x00011305, 0x0001130C}, {0x0001130F, 0x00011310}, {0x00011313, 0x00011328}, -{0x0001132A, 0x00011330}, {0x00011332, 0x00011333}, {0x00011335, 0x00011339}, {0x0001133D, 0x0001133D}, -{0x00011350, 0x00011350}, {0x0001135D, 0x00011361}, {0x00011400, 0x00011434}, {0x00011447, 0x0001144A}, -{0x0001145F, 0x00011461}, {0x00011480, 0x000114AF}, {0x000114C4, 0x000114C5}, {0x000114C7, 0x000114C7}, -{0x00011580, 0x000115AE}, {0x000115D8, 0x000115DB}, {0x00011600, 0x0001162F}, {0x00011644, 0x00011644}, -{0x00011680, 0x000116AA}, {0x000116B8, 0x000116B8}, {0x00011700, 0x0001171A}, {0x00011800, 0x0001182B}, +{0x00010530, 0x00010563}, {0x00010570, 0x0001057A}, {0x0001057C, 0x0001058A}, {0x0001058C, 0x00010592}, +{0x00010594, 0x00010595}, {0x00010597, 0x000105A1}, {0x000105A3, 0x000105B1}, {0x000105B3, 0x000105B9}, +{0x000105BB, 0x000105BC}, {0x00010600, 0x00010736}, {0x00010740, 0x00010755}, {0x00010760, 0x00010767}, +{0x00010780, 0x00010785}, {0x00010787, 0x000107B0}, {0x000107B2, 0x000107BA}, {0x00010800, 0x00010805}, +{0x00010808, 0x00010808}, {0x0001080A, 0x00010835}, {0x00010837, 0x00010838}, {0x0001083C, 0x0001083C}, +{0x0001083F, 0x00010855}, {0x00010860, 0x00010876}, {0x00010880, 0x0001089E}, {0x000108E0, 0x000108F2}, +{0x000108F4, 0x000108F5}, {0x00010900, 0x00010915}, {0x00010920, 0x00010939}, {0x00010980, 0x000109B7}, +{0x000109BE, 0x000109BF}, {0x00010A00, 0x00010A00}, {0x00010A10, 0x00010A13}, {0x00010A15, 0x00010A17}, +{0x00010A19, 0x00010A35}, {0x00010A60, 0x00010A7C}, {0x00010A80, 0x00010A9C}, {0x00010AC0, 0x00010AC7}, +{0x00010AC9, 0x00010AE4}, {0x00010B00, 0x00010B35}, {0x00010B40, 0x00010B55}, {0x00010B60, 0x00010B72}, +{0x00010B80, 0x00010B91}, {0x00010C00, 0x00010C48}, {0x00010C80, 0x00010CB2}, {0x00010CC0, 0x00010CF2}, +{0x00010D00, 0x00010D23}, {0x00010E80, 0x00010EA9}, {0x00010EB0, 0x00010EB1}, {0x00010F00, 0x00010F1C}, +{0x00010F27, 0x00010F27}, {0x00010F30, 0x00010F45}, {0x00010F70, 0x00010F81}, {0x00010FB0, 0x00010FC4}, +{0x00010FE0, 0x00010FF6}, {0x00011003, 0x00011037}, {0x00011071, 0x00011072}, {0x00011075, 0x00011075}, +{0x00011083, 0x000110AF}, {0x000110D0, 0x000110E8}, {0x00011103, 0x00011126}, {0x00011144, 0x00011144}, +{0x00011147, 0x00011147}, {0x00011150, 0x00011172}, {0x00011176, 0x00011176}, {0x00011183, 0x000111B2}, +{0x000111C1, 0x000111C4}, {0x000111DA, 0x000111DA}, {0x000111DC, 0x000111DC}, {0x00011200, 0x00011211}, +{0x00011213, 0x0001122B}, {0x0001123F, 0x00011240}, {0x00011280, 0x00011286}, {0x00011288, 0x00011288}, +{0x0001128A, 0x0001128D}, {0x0001128F, 0x0001129D}, {0x0001129F, 0x000112A8}, {0x000112B0, 0x000112DE}, +{0x00011305, 0x0001130C}, {0x0001130F, 0x00011310}, {0x00011313, 0x00011328}, {0x0001132A, 0x00011330}, +{0x00011332, 0x00011333}, {0x00011335, 0x00011339}, {0x0001133D, 0x0001133D}, {0x00011350, 0x00011350}, +{0x0001135D, 0x00011361}, {0x00011400, 0x00011434}, {0x00011447, 0x0001144A}, {0x0001145F, 0x00011461}, +{0x00011480, 0x000114AF}, {0x000114C4, 0x000114C5}, {0x000114C7, 0x000114C7}, {0x00011580, 0x000115AE}, +{0x000115D8, 0x000115DB}, {0x00011600, 0x0001162F}, {0x00011644, 0x00011644}, {0x00011680, 0x000116AA}, +{0x000116B8, 0x000116B8}, {0x00011700, 0x0001171A}, {0x00011740, 0x00011746}, {0x00011800, 0x0001182B}, {0x000118A0, 0x000118DF}, {0x000118FF, 0x00011906}, {0x00011909, 0x00011909}, {0x0001190C, 0x00011913}, {0x00011915, 0x00011916}, {0x00011918, 0x0001192F}, {0x0001193F, 0x0001193F}, {0x00011941, 0x00011941}, {0x000119A0, 0x000119A7}, {0x000119AA, 0x000119D0}, {0x000119E1, 0x000119E1}, {0x000119E3, 0x000119E3}, {0x00011A00, 0x00011A00}, {0x00011A0B, 0x00011A32}, {0x00011A3A, 0x00011A3A}, {0x00011A50, 0x00011A50}, -{0x00011A5C, 0x00011A89}, {0x00011A9D, 0x00011A9D}, {0x00011AC0, 0x00011AF8}, {0x00011C00, 0x00011C08}, +{0x00011A5C, 0x00011A89}, {0x00011A9D, 0x00011A9D}, {0x00011AB0, 0x00011AF8}, {0x00011C00, 0x00011C08}, {0x00011C0A, 0x00011C2E}, {0x00011C40, 0x00011C40}, {0x00011C72, 0x00011C8F}, {0x00011D00, 0x00011D06}, {0x00011D08, 0x00011D09}, {0x00011D0B, 0x00011D30}, {0x00011D46, 0x00011D46}, {0x00011D60, 0x00011D65}, {0x00011D67, 0x00011D68}, {0x00011D6A, 0x00011D89}, {0x00011D98, 0x00011D98}, {0x00011EE0, 0x00011EF2}, -{0x00011FB0, 0x00011FB0}, {0x00012000, 0x00012399}, {0x00012480, 0x00012543}, {0x00013000, 0x0001342E}, -{0x00014400, 0x00014646}, {0x00016800, 0x00016A38}, {0x00016A40, 0x00016A5E}, {0x00016AD0, 0x00016AED}, -{0x00016B00, 0x00016B2F}, {0x00016B40, 0x00016B43}, {0x00016B63, 0x00016B77}, {0x00016B7D, 0x00016B8F}, -{0x00016E40, 0x00016E7F}, {0x00016F00, 0x00016F4A}, {0x00016F50, 0x00016F50}, {0x00016F93, 0x00016F9F}, -{0x00016FE0, 0x00016FE1}, {0x00016FE3, 0x00016FE3}, {0x00017000, 0x000187F7}, {0x00018800, 0x00018CD5}, -{0x00018D00, 0x00018D08}, {0x0001B000, 0x0001B11E}, {0x0001B150, 0x0001B152}, {0x0001B164, 0x0001B167}, -{0x0001B170, 0x0001B2FB}, {0x0001BC00, 0x0001BC6A}, {0x0001BC70, 0x0001BC7C}, {0x0001BC80, 0x0001BC88}, -{0x0001BC90, 0x0001BC99}, {0x0001D400, 0x0001D454}, {0x0001D456, 0x0001D49C}, {0x0001D49E, 0x0001D49F}, -{0x0001D4A2, 0x0001D4A2}, {0x0001D4A5, 0x0001D4A6}, {0x0001D4A9, 0x0001D4AC}, {0x0001D4AE, 0x0001D4B9}, -{0x0001D4BB, 0x0001D4BB}, {0x0001D4BD, 0x0001D4C3}, {0x0001D4C5, 0x0001D505}, {0x0001D507, 0x0001D50A}, -{0x0001D50D, 0x0001D514}, {0x0001D516, 0x0001D51C}, {0x0001D51E, 0x0001D539}, {0x0001D53B, 0x0001D53E}, -{0x0001D540, 0x0001D544}, {0x0001D546, 0x0001D546}, {0x0001D54A, 0x0001D550}, {0x0001D552, 0x0001D6A5}, -{0x0001D6A8, 0x0001D6C0}, {0x0001D6C2, 0x0001D6DA}, {0x0001D6DC, 0x0001D6FA}, {0x0001D6FC, 0x0001D714}, -{0x0001D716, 0x0001D734}, {0x0001D736, 0x0001D74E}, {0x0001D750, 0x0001D76E}, {0x0001D770, 0x0001D788}, -{0x0001D78A, 0x0001D7A8}, {0x0001D7AA, 0x0001D7C2}, {0x0001D7C4, 0x0001D7CB}, {0x0001E100, 0x0001E12C}, -{0x0001E137, 0x0001E13D}, {0x0001E14E, 0x0001E14E}, {0x0001E2C0, 0x0001E2EB}, {0x0001E800, 0x0001E8C4}, +{0x00011F02, 0x00011F02}, {0x00011F04, 0x00011F10}, {0x00011F12, 0x00011F33}, {0x00011FB0, 0x00011FB0}, +{0x00012000, 0x00012399}, {0x00012480, 0x00012543}, {0x00012F90, 0x00012FF0}, {0x00013000, 0x0001342F}, +{0x00013441, 0x00013446}, {0x00014400, 0x00014646}, {0x00016800, 0x00016A38}, {0x00016A40, 0x00016A5E}, +{0x00016A70, 0x00016ABE}, {0x00016AD0, 0x00016AED}, {0x00016B00, 0x00016B2F}, {0x00016B40, 0x00016B43}, +{0x00016B63, 0x00016B77}, {0x00016B7D, 0x00016B8F}, {0x00016E40, 0x00016E7F}, {0x00016F00, 0x00016F4A}, +{0x00016F50, 0x00016F50}, {0x00016F93, 0x00016F9F}, {0x00016FE0, 0x00016FE1}, {0x00016FE3, 0x00016FE3}, +{0x00017000, 0x000187F7}, {0x00018800, 0x00018CD5}, {0x00018D00, 0x00018D08}, {0x0001AFF0, 0x0001AFF3}, +{0x0001AFF5, 0x0001AFFB}, {0x0001AFFD, 0x0001AFFE}, {0x0001B000, 0x0001B122}, {0x0001B132, 0x0001B132}, +{0x0001B150, 0x0001B152}, {0x0001B155, 0x0001B155}, {0x0001B164, 0x0001B167}, {0x0001B170, 0x0001B2FB}, +{0x0001BC00, 0x0001BC6A}, {0x0001BC70, 0x0001BC7C}, {0x0001BC80, 0x0001BC88}, {0x0001BC90, 0x0001BC99}, +{0x0001D400, 0x0001D454}, {0x0001D456, 0x0001D49C}, {0x0001D49E, 0x0001D49F}, {0x0001D4A2, 0x0001D4A2}, +{0x0001D4A5, 0x0001D4A6}, {0x0001D4A9, 0x0001D4AC}, {0x0001D4AE, 0x0001D4B9}, {0x0001D4BB, 0x0001D4BB}, +{0x0001D4BD, 0x0001D4C3}, {0x0001D4C5, 0x0001D505}, {0x0001D507, 0x0001D50A}, {0x0001D50D, 0x0001D514}, +{0x0001D516, 0x0001D51C}, {0x0001D51E, 0x0001D539}, {0x0001D53B, 0x0001D53E}, {0x0001D540, 0x0001D544}, +{0x0001D546, 0x0001D546}, {0x0001D54A, 0x0001D550}, {0x0001D552, 0x0001D6A5}, {0x0001D6A8, 0x0001D6C0}, +{0x0001D6C2, 0x0001D6DA}, {0x0001D6DC, 0x0001D6FA}, {0x0001D6FC, 0x0001D714}, {0x0001D716, 0x0001D734}, +{0x0001D736, 0x0001D74E}, {0x0001D750, 0x0001D76E}, {0x0001D770, 0x0001D788}, {0x0001D78A, 0x0001D7A8}, +{0x0001D7AA, 0x0001D7C2}, {0x0001D7C4, 0x0001D7CB}, {0x0001DF00, 0x0001DF1E}, {0x0001DF25, 0x0001DF2A}, +{0x0001E030, 0x0001E06D}, {0x0001E100, 0x0001E12C}, {0x0001E137, 0x0001E13D}, {0x0001E14E, 0x0001E14E}, +{0x0001E290, 0x0001E2AD}, {0x0001E2C0, 0x0001E2EB}, {0x0001E4D0, 0x0001E4EB}, {0x0001E7E0, 0x0001E7E6}, +{0x0001E7E8, 0x0001E7EB}, {0x0001E7ED, 0x0001E7EE}, {0x0001E7F0, 0x0001E7FE}, {0x0001E800, 0x0001E8C4}, {0x0001E900, 0x0001E943}, {0x0001E94B, 0x0001E94B}, {0x0001EE00, 0x0001EE03}, {0x0001EE05, 0x0001EE1F}, {0x0001EE21, 0x0001EE22}, {0x0001EE24, 0x0001EE24}, {0x0001EE27, 0x0001EE27}, {0x0001EE29, 0x0001EE32}, {0x0001EE34, 0x0001EE37}, {0x0001EE39, 0x0001EE39}, {0x0001EE3B, 0x0001EE3B}, {0x0001EE42, 0x0001EE42}, @@ -182,15 +211,14 @@ const std::vector> unicode_ranges_letter = { {0x0001EE5B, 0x0001EE5B}, {0x0001EE5D, 0x0001EE5D}, {0x0001EE5F, 0x0001EE5F}, {0x0001EE61, 0x0001EE62}, {0x0001EE64, 0x0001EE64}, {0x0001EE67, 0x0001EE6A}, {0x0001EE6C, 0x0001EE72}, {0x0001EE74, 0x0001EE77}, {0x0001EE79, 0x0001EE7C}, {0x0001EE7E, 0x0001EE7E}, {0x0001EE80, 0x0001EE89}, {0x0001EE8B, 0x0001EE9B}, -{0x0001EEA1, 0x0001EEA3}, {0x0001EEA5, 0x0001EEA9}, {0x0001EEAB, 0x0001EEBB}, {0x00020000, 0x0002A6DD}, -{0x0002A700, 0x0002B734}, {0x0002B740, 0x0002B81D}, {0x0002B820, 0x0002CEA1}, {0x0002CEB0, 0x0002EBE0}, -{0x0002F800, 0x0002FA1D}, {0x00030000, 0x0003134A}, +{0x0001EEA1, 0x0001EEA3}, {0x0001EEA5, 0x0001EEA9}, {0x0001EEAB, 0x0001EEBB}, {0x00020000, 0x0002A6DF}, +{0x0002A700, 0x0002B739}, {0x0002B740, 0x0002B81D}, {0x0002B820, 0x0002CEA1}, {0x0002CEB0, 0x0002EBE0}, +{0x0002F800, 0x0002FA1D}, {0x00030000, 0x0003134A}, {0x00031350, 0x000323AF}, }; const std::vector> unicode_ranges_whitespace = { -{0x00000009, 0x0000000D}, {0x0000001C, 0x00000020}, {0x00000085, 0x00000085}, {0x000000A0, 0x000000A0}, -{0x00001680, 0x00001680}, {0x00002000, 0x0000200A}, {0x00002028, 0x00002029}, {0x0000202F, 0x0000202F}, -{0x0000205F, 0x0000205F}, {0x00003000, 0x00003000}, +{0x00000020, 0x00000020}, {0x000000A0, 0x000000A0}, {0x00001680, 0x00001680}, {0x00002000, 0x0000200A}, +{0x00002028, 0x00002029}, {0x0000202F, 0x0000202F}, {0x0000205F, 0x0000205F}, {0x00003000, 0x00003000}, }; const std::vector> unicode_ranges_accent_mark = { @@ -200,72 +228,77 @@ const std::vector> unicode_ranges_accent_mark = { {0x000006E7, 0x000006E8}, {0x000006EA, 0x000006ED}, {0x00000711, 0x00000711}, {0x00000730, 0x0000074A}, {0x000007A6, 0x000007B0}, {0x000007EB, 0x000007F3}, {0x000007FD, 0x000007FD}, {0x00000816, 0x00000819}, {0x0000081B, 0x00000823}, {0x00000825, 0x00000827}, {0x00000829, 0x0000082D}, {0x00000859, 0x0000085B}, -{0x000008D3, 0x000008E1}, {0x000008E3, 0x00000903}, {0x0000093A, 0x0000093C}, {0x0000093E, 0x0000094F}, -{0x00000951, 0x00000957}, {0x00000962, 0x00000963}, {0x00000981, 0x00000983}, {0x000009BC, 0x000009BC}, -{0x000009BE, 0x000009C4}, {0x000009C7, 0x000009C8}, {0x000009CB, 0x000009CD}, {0x000009D7, 0x000009D7}, -{0x000009E2, 0x000009E3}, {0x000009FE, 0x000009FE}, {0x00000A01, 0x00000A03}, {0x00000A3C, 0x00000A3C}, -{0x00000A3E, 0x00000A42}, {0x00000A47, 0x00000A48}, {0x00000A4B, 0x00000A4D}, {0x00000A51, 0x00000A51}, -{0x00000A70, 0x00000A71}, {0x00000A75, 0x00000A75}, {0x00000A81, 0x00000A83}, {0x00000ABC, 0x00000ABC}, -{0x00000ABE, 0x00000AC5}, {0x00000AC7, 0x00000AC9}, {0x00000ACB, 0x00000ACD}, {0x00000AE2, 0x00000AE3}, -{0x00000AFA, 0x00000AFF}, {0x00000B01, 0x00000B03}, {0x00000B3C, 0x00000B3C}, {0x00000B3E, 0x00000B44}, -{0x00000B47, 0x00000B48}, {0x00000B4B, 0x00000B4D}, {0x00000B55, 0x00000B57}, {0x00000B62, 0x00000B63}, -{0x00000B82, 0x00000B82}, {0x00000BBE, 0x00000BC2}, {0x00000BC6, 0x00000BC8}, {0x00000BCA, 0x00000BCD}, -{0x00000BD7, 0x00000BD7}, {0x00000C00, 0x00000C04}, {0x00000C3E, 0x00000C44}, {0x00000C46, 0x00000C48}, -{0x00000C4A, 0x00000C4D}, {0x00000C55, 0x00000C56}, {0x00000C62, 0x00000C63}, {0x00000C81, 0x00000C83}, -{0x00000CBC, 0x00000CBC}, {0x00000CBE, 0x00000CC4}, {0x00000CC6, 0x00000CC8}, {0x00000CCA, 0x00000CCD}, -{0x00000CD5, 0x00000CD6}, {0x00000CE2, 0x00000CE3}, {0x00000D00, 0x00000D03}, {0x00000D3B, 0x00000D3C}, -{0x00000D3E, 0x00000D44}, {0x00000D46, 0x00000D48}, {0x00000D4A, 0x00000D4D}, {0x00000D57, 0x00000D57}, -{0x00000D62, 0x00000D63}, {0x00000D81, 0x00000D83}, {0x00000DCA, 0x00000DCA}, {0x00000DCF, 0x00000DD4}, -{0x00000DD6, 0x00000DD6}, {0x00000DD8, 0x00000DDF}, {0x00000DF2, 0x00000DF3}, {0x00000E31, 0x00000E31}, -{0x00000E34, 0x00000E3A}, {0x00000E47, 0x00000E4E}, {0x00000EB1, 0x00000EB1}, {0x00000EB4, 0x00000EBC}, -{0x00000EC8, 0x00000ECD}, {0x00000F18, 0x00000F19}, {0x00000F35, 0x00000F35}, {0x00000F37, 0x00000F37}, -{0x00000F39, 0x00000F39}, {0x00000F3E, 0x00000F3F}, {0x00000F71, 0x00000F84}, {0x00000F86, 0x00000F87}, -{0x00000F8D, 0x00000F97}, {0x00000F99, 0x00000FBC}, {0x00000FC6, 0x00000FC6}, {0x0000102B, 0x0000103E}, -{0x00001056, 0x00001059}, {0x0000105E, 0x00001060}, {0x00001062, 0x00001064}, {0x00001067, 0x0000106D}, -{0x00001071, 0x00001074}, {0x00001082, 0x0000108D}, {0x0000108F, 0x0000108F}, {0x0000109A, 0x0000109D}, -{0x0000135D, 0x0000135F}, {0x00001712, 0x00001714}, {0x00001732, 0x00001734}, {0x00001752, 0x00001753}, -{0x00001772, 0x00001773}, {0x000017B4, 0x000017D3}, {0x000017DD, 0x000017DD}, {0x0000180B, 0x0000180D}, +{0x00000898, 0x0000089F}, {0x000008CA, 0x000008E1}, {0x000008E3, 0x00000903}, {0x0000093A, 0x0000093C}, +{0x0000093E, 0x0000094F}, {0x00000951, 0x00000957}, {0x00000962, 0x00000963}, {0x00000981, 0x00000983}, +{0x000009BC, 0x000009BC}, {0x000009BE, 0x000009C4}, {0x000009C7, 0x000009C8}, {0x000009CB, 0x000009CD}, +{0x000009D7, 0x000009D7}, {0x000009E2, 0x000009E3}, {0x000009FE, 0x000009FE}, {0x00000A01, 0x00000A03}, +{0x00000A3C, 0x00000A3C}, {0x00000A3E, 0x00000A42}, {0x00000A47, 0x00000A48}, {0x00000A4B, 0x00000A4D}, +{0x00000A51, 0x00000A51}, {0x00000A70, 0x00000A71}, {0x00000A75, 0x00000A75}, {0x00000A81, 0x00000A83}, +{0x00000ABC, 0x00000ABC}, {0x00000ABE, 0x00000AC5}, {0x00000AC7, 0x00000AC9}, {0x00000ACB, 0x00000ACD}, +{0x00000AE2, 0x00000AE3}, {0x00000AFA, 0x00000AFF}, {0x00000B01, 0x00000B03}, {0x00000B3C, 0x00000B3C}, +{0x00000B3E, 0x00000B44}, {0x00000B47, 0x00000B48}, {0x00000B4B, 0x00000B4D}, {0x00000B55, 0x00000B57}, +{0x00000B62, 0x00000B63}, {0x00000B82, 0x00000B82}, {0x00000BBE, 0x00000BC2}, {0x00000BC6, 0x00000BC8}, +{0x00000BCA, 0x00000BCD}, {0x00000BD7, 0x00000BD7}, {0x00000C00, 0x00000C04}, {0x00000C3C, 0x00000C3C}, +{0x00000C3E, 0x00000C44}, {0x00000C46, 0x00000C48}, {0x00000C4A, 0x00000C4D}, {0x00000C55, 0x00000C56}, +{0x00000C62, 0x00000C63}, {0x00000C81, 0x00000C83}, {0x00000CBC, 0x00000CBC}, {0x00000CBE, 0x00000CC4}, +{0x00000CC6, 0x00000CC8}, {0x00000CCA, 0x00000CCD}, {0x00000CD5, 0x00000CD6}, {0x00000CE2, 0x00000CE3}, +{0x00000CF3, 0x00000CF3}, {0x00000D00, 0x00000D03}, {0x00000D3B, 0x00000D3C}, {0x00000D3E, 0x00000D44}, +{0x00000D46, 0x00000D48}, {0x00000D4A, 0x00000D4D}, {0x00000D57, 0x00000D57}, {0x00000D62, 0x00000D63}, +{0x00000D81, 0x00000D83}, {0x00000DCA, 0x00000DCA}, {0x00000DCF, 0x00000DD4}, {0x00000DD6, 0x00000DD6}, +{0x00000DD8, 0x00000DDF}, {0x00000DF2, 0x00000DF3}, {0x00000E31, 0x00000E31}, {0x00000E34, 0x00000E3A}, +{0x00000E47, 0x00000E4E}, {0x00000EB1, 0x00000EB1}, {0x00000EB4, 0x00000EBC}, {0x00000EC8, 0x00000ECE}, +{0x00000F18, 0x00000F19}, {0x00000F35, 0x00000F35}, {0x00000F37, 0x00000F37}, {0x00000F39, 0x00000F39}, +{0x00000F3E, 0x00000F3F}, {0x00000F71, 0x00000F84}, {0x00000F86, 0x00000F87}, {0x00000F8D, 0x00000F97}, +{0x00000F99, 0x00000FBC}, {0x00000FC6, 0x00000FC6}, {0x0000102B, 0x0000103E}, {0x00001056, 0x00001059}, +{0x0000105E, 0x00001060}, {0x00001062, 0x00001064}, {0x00001067, 0x0000106D}, {0x00001071, 0x00001074}, +{0x00001082, 0x0000108D}, {0x0000108F, 0x0000108F}, {0x0000109A, 0x0000109D}, {0x0000135D, 0x0000135F}, +{0x00001712, 0x00001715}, {0x00001732, 0x00001734}, {0x00001752, 0x00001753}, {0x00001772, 0x00001773}, +{0x000017B4, 0x000017D3}, {0x000017DD, 0x000017DD}, {0x0000180B, 0x0000180D}, {0x0000180F, 0x0000180F}, {0x00001885, 0x00001886}, {0x000018A9, 0x000018A9}, {0x00001920, 0x0000192B}, {0x00001930, 0x0000193B}, {0x00001A17, 0x00001A1B}, {0x00001A55, 0x00001A5E}, {0x00001A60, 0x00001A7C}, {0x00001A7F, 0x00001A7F}, -{0x00001AB0, 0x00001AC0}, {0x00001B00, 0x00001B04}, {0x00001B34, 0x00001B44}, {0x00001B6B, 0x00001B73}, +{0x00001AB0, 0x00001ACE}, {0x00001B00, 0x00001B04}, {0x00001B34, 0x00001B44}, {0x00001B6B, 0x00001B73}, {0x00001B80, 0x00001B82}, {0x00001BA1, 0x00001BAD}, {0x00001BE6, 0x00001BF3}, {0x00001C24, 0x00001C37}, {0x00001CD0, 0x00001CD2}, {0x00001CD4, 0x00001CE8}, {0x00001CED, 0x00001CED}, {0x00001CF4, 0x00001CF4}, -{0x00001CF7, 0x00001CF9}, {0x00001DC0, 0x00001DF9}, {0x00001DFB, 0x00001DFF}, {0x000020D0, 0x000020F0}, -{0x00002CEF, 0x00002CF1}, {0x00002D7F, 0x00002D7F}, {0x00002DE0, 0x00002DFF}, {0x0000302A, 0x0000302F}, -{0x00003099, 0x0000309A}, {0x0000A66F, 0x0000A672}, {0x0000A674, 0x0000A67D}, {0x0000A69E, 0x0000A69F}, -{0x0000A6F0, 0x0000A6F1}, {0x0000A802, 0x0000A802}, {0x0000A806, 0x0000A806}, {0x0000A80B, 0x0000A80B}, -{0x0000A823, 0x0000A827}, {0x0000A82C, 0x0000A82C}, {0x0000A880, 0x0000A881}, {0x0000A8B4, 0x0000A8C5}, -{0x0000A8E0, 0x0000A8F1}, {0x0000A8FF, 0x0000A8FF}, {0x0000A926, 0x0000A92D}, {0x0000A947, 0x0000A953}, -{0x0000A980, 0x0000A983}, {0x0000A9B3, 0x0000A9C0}, {0x0000A9E5, 0x0000A9E5}, {0x0000AA29, 0x0000AA36}, -{0x0000AA43, 0x0000AA43}, {0x0000AA4C, 0x0000AA4D}, {0x0000AA7B, 0x0000AA7D}, {0x0000AAB0, 0x0000AAB0}, -{0x0000AAB2, 0x0000AAB4}, {0x0000AAB7, 0x0000AAB8}, {0x0000AABE, 0x0000AABF}, {0x0000AAC1, 0x0000AAC1}, -{0x0000AAEB, 0x0000AAEF}, {0x0000AAF5, 0x0000AAF6}, {0x0000ABE3, 0x0000ABEA}, {0x0000ABEC, 0x0000ABED}, -{0x0000FB1E, 0x0000FB1E}, {0x0000FE00, 0x0000FE0F}, {0x0000FE20, 0x0000FE2F}, {0x000101FD, 0x000101FD}, -{0x000102E0, 0x000102E0}, {0x00010376, 0x0001037A}, {0x00010A01, 0x00010A03}, {0x00010A05, 0x00010A06}, -{0x00010A0C, 0x00010A0F}, {0x00010A38, 0x00010A3A}, {0x00010A3F, 0x00010A3F}, {0x00010AE5, 0x00010AE6}, -{0x00010D24, 0x00010D27}, {0x00010EAB, 0x00010EAC}, {0x00010F46, 0x00010F50}, {0x00011000, 0x00011002}, -{0x00011038, 0x00011046}, {0x0001107F, 0x00011082}, {0x000110B0, 0x000110BA}, {0x00011100, 0x00011102}, +{0x00001CF7, 0x00001CF9}, {0x00001DC0, 0x00001DFF}, {0x000020D0, 0x000020F0}, {0x00002CEF, 0x00002CF1}, +{0x00002D7F, 0x00002D7F}, {0x00002DE0, 0x00002DFF}, {0x0000302A, 0x0000302F}, {0x00003099, 0x0000309A}, +{0x0000A66F, 0x0000A672}, {0x0000A674, 0x0000A67D}, {0x0000A69E, 0x0000A69F}, {0x0000A6F0, 0x0000A6F1}, +{0x0000A802, 0x0000A802}, {0x0000A806, 0x0000A806}, {0x0000A80B, 0x0000A80B}, {0x0000A823, 0x0000A827}, +{0x0000A82C, 0x0000A82C}, {0x0000A880, 0x0000A881}, {0x0000A8B4, 0x0000A8C5}, {0x0000A8E0, 0x0000A8F1}, +{0x0000A8FF, 0x0000A8FF}, {0x0000A926, 0x0000A92D}, {0x0000A947, 0x0000A953}, {0x0000A980, 0x0000A983}, +{0x0000A9B3, 0x0000A9C0}, {0x0000A9E5, 0x0000A9E5}, {0x0000AA29, 0x0000AA36}, {0x0000AA43, 0x0000AA43}, +{0x0000AA4C, 0x0000AA4D}, {0x0000AA7B, 0x0000AA7D}, {0x0000AAB0, 0x0000AAB0}, {0x0000AAB2, 0x0000AAB4}, +{0x0000AAB7, 0x0000AAB8}, {0x0000AABE, 0x0000AABF}, {0x0000AAC1, 0x0000AAC1}, {0x0000AAEB, 0x0000AAEF}, +{0x0000AAF5, 0x0000AAF6}, {0x0000ABE3, 0x0000ABEA}, {0x0000ABEC, 0x0000ABED}, {0x0000FB1E, 0x0000FB1E}, +{0x0000FE00, 0x0000FE0F}, {0x0000FE20, 0x0000FE2F}, {0x000101FD, 0x000101FD}, {0x000102E0, 0x000102E0}, +{0x00010376, 0x0001037A}, {0x00010A01, 0x00010A03}, {0x00010A05, 0x00010A06}, {0x00010A0C, 0x00010A0F}, +{0x00010A38, 0x00010A3A}, {0x00010A3F, 0x00010A3F}, {0x00010AE5, 0x00010AE6}, {0x00010D24, 0x00010D27}, +{0x00010EAB, 0x00010EAC}, {0x00010EFD, 0x00010EFF}, {0x00010F46, 0x00010F50}, {0x00010F82, 0x00010F85}, +{0x00011000, 0x00011002}, {0x00011038, 0x00011046}, {0x00011070, 0x00011070}, {0x00011073, 0x00011074}, +{0x0001107F, 0x00011082}, {0x000110B0, 0x000110BA}, {0x000110C2, 0x000110C2}, {0x00011100, 0x00011102}, {0x00011127, 0x00011134}, {0x00011145, 0x00011146}, {0x00011173, 0x00011173}, {0x00011180, 0x00011182}, {0x000111B3, 0x000111C0}, {0x000111C9, 0x000111CC}, {0x000111CE, 0x000111CF}, {0x0001122C, 0x00011237}, -{0x0001123E, 0x0001123E}, {0x000112DF, 0x000112EA}, {0x00011300, 0x00011303}, {0x0001133B, 0x0001133C}, -{0x0001133E, 0x00011344}, {0x00011347, 0x00011348}, {0x0001134B, 0x0001134D}, {0x00011357, 0x00011357}, -{0x00011362, 0x00011363}, {0x00011366, 0x0001136C}, {0x00011370, 0x00011374}, {0x00011435, 0x00011446}, -{0x0001145E, 0x0001145E}, {0x000114B0, 0x000114C3}, {0x000115AF, 0x000115B5}, {0x000115B8, 0x000115C0}, -{0x000115DC, 0x000115DD}, {0x00011630, 0x00011640}, {0x000116AB, 0x000116B7}, {0x0001171D, 0x0001172B}, -{0x0001182C, 0x0001183A}, {0x00011930, 0x00011935}, {0x00011937, 0x00011938}, {0x0001193B, 0x0001193E}, -{0x00011940, 0x00011940}, {0x00011942, 0x00011943}, {0x000119D1, 0x000119D7}, {0x000119DA, 0x000119E0}, -{0x000119E4, 0x000119E4}, {0x00011A01, 0x00011A0A}, {0x00011A33, 0x00011A39}, {0x00011A3B, 0x00011A3E}, -{0x00011A47, 0x00011A47}, {0x00011A51, 0x00011A5B}, {0x00011A8A, 0x00011A99}, {0x00011C2F, 0x00011C36}, -{0x00011C38, 0x00011C3F}, {0x00011C92, 0x00011CA7}, {0x00011CA9, 0x00011CB6}, {0x00011D31, 0x00011D36}, -{0x00011D3A, 0x00011D3A}, {0x00011D3C, 0x00011D3D}, {0x00011D3F, 0x00011D45}, {0x00011D47, 0x00011D47}, -{0x00011D8A, 0x00011D8E}, {0x00011D90, 0x00011D91}, {0x00011D93, 0x00011D97}, {0x00011EF3, 0x00011EF6}, -{0x00016AF0, 0x00016AF4}, {0x00016B30, 0x00016B36}, {0x00016F4F, 0x00016F4F}, {0x00016F51, 0x00016F87}, -{0x00016F8F, 0x00016F92}, {0x00016FE4, 0x00016FE4}, {0x00016FF0, 0x00016FF1}, {0x0001BC9D, 0x0001BC9E}, -{0x0001D165, 0x0001D169}, {0x0001D16D, 0x0001D172}, {0x0001D17B, 0x0001D182}, {0x0001D185, 0x0001D18B}, -{0x0001D1AA, 0x0001D1AD}, {0x0001D242, 0x0001D244}, {0x0001DA00, 0x0001DA36}, {0x0001DA3B, 0x0001DA6C}, -{0x0001DA75, 0x0001DA75}, {0x0001DA84, 0x0001DA84}, {0x0001DA9B, 0x0001DA9F}, {0x0001DAA1, 0x0001DAAF}, -{0x0001E000, 0x0001E006}, {0x0001E008, 0x0001E018}, {0x0001E01B, 0x0001E021}, {0x0001E023, 0x0001E024}, -{0x0001E026, 0x0001E02A}, {0x0001E130, 0x0001E136}, {0x0001E2EC, 0x0001E2EF}, {0x0001E8D0, 0x0001E8D6}, +{0x0001123E, 0x0001123E}, {0x00011241, 0x00011241}, {0x000112DF, 0x000112EA}, {0x00011300, 0x00011303}, +{0x0001133B, 0x0001133C}, {0x0001133E, 0x00011344}, {0x00011347, 0x00011348}, {0x0001134B, 0x0001134D}, +{0x00011357, 0x00011357}, {0x00011362, 0x00011363}, {0x00011366, 0x0001136C}, {0x00011370, 0x00011374}, +{0x00011435, 0x00011446}, {0x0001145E, 0x0001145E}, {0x000114B0, 0x000114C3}, {0x000115AF, 0x000115B5}, +{0x000115B8, 0x000115C0}, {0x000115DC, 0x000115DD}, {0x00011630, 0x00011640}, {0x000116AB, 0x000116B7}, +{0x0001171D, 0x0001172B}, {0x0001182C, 0x0001183A}, {0x00011930, 0x00011935}, {0x00011937, 0x00011938}, +{0x0001193B, 0x0001193E}, {0x00011940, 0x00011940}, {0x00011942, 0x00011943}, {0x000119D1, 0x000119D7}, +{0x000119DA, 0x000119E0}, {0x000119E4, 0x000119E4}, {0x00011A01, 0x00011A0A}, {0x00011A33, 0x00011A39}, +{0x00011A3B, 0x00011A3E}, {0x00011A47, 0x00011A47}, {0x00011A51, 0x00011A5B}, {0x00011A8A, 0x00011A99}, +{0x00011C2F, 0x00011C36}, {0x00011C38, 0x00011C3F}, {0x00011C92, 0x00011CA7}, {0x00011CA9, 0x00011CB6}, +{0x00011D31, 0x00011D36}, {0x00011D3A, 0x00011D3A}, {0x00011D3C, 0x00011D3D}, {0x00011D3F, 0x00011D45}, +{0x00011D47, 0x00011D47}, {0x00011D8A, 0x00011D8E}, {0x00011D90, 0x00011D91}, {0x00011D93, 0x00011D97}, +{0x00011EF3, 0x00011EF6}, {0x00011F00, 0x00011F01}, {0x00011F03, 0x00011F03}, {0x00011F34, 0x00011F3A}, +{0x00011F3E, 0x00011F42}, {0x00013440, 0x00013440}, {0x00013447, 0x00013455}, {0x00016AF0, 0x00016AF4}, +{0x00016B30, 0x00016B36}, {0x00016F4F, 0x00016F4F}, {0x00016F51, 0x00016F87}, {0x00016F8F, 0x00016F92}, +{0x00016FE4, 0x00016FE4}, {0x00016FF0, 0x00016FF1}, {0x0001BC9D, 0x0001BC9E}, {0x0001CF00, 0x0001CF2D}, +{0x0001CF30, 0x0001CF46}, {0x0001D165, 0x0001D169}, {0x0001D16D, 0x0001D172}, {0x0001D17B, 0x0001D182}, +{0x0001D185, 0x0001D18B}, {0x0001D1AA, 0x0001D1AD}, {0x0001D242, 0x0001D244}, {0x0001DA00, 0x0001DA36}, +{0x0001DA3B, 0x0001DA6C}, {0x0001DA75, 0x0001DA75}, {0x0001DA84, 0x0001DA84}, {0x0001DA9B, 0x0001DA9F}, +{0x0001DAA1, 0x0001DAAF}, {0x0001E000, 0x0001E006}, {0x0001E008, 0x0001E018}, {0x0001E01B, 0x0001E021}, +{0x0001E023, 0x0001E024}, {0x0001E026, 0x0001E02A}, {0x0001E08F, 0x0001E08F}, {0x0001E130, 0x0001E136}, +{0x0001E2AE, 0x0001E2AE}, {0x0001E2EC, 0x0001E2EF}, {0x0001E4EC, 0x0001E4EF}, {0x0001E8D0, 0x0001E8D6}, {0x0001E944, 0x0001E94A}, {0x000E0100, 0x000E01EF}, }; @@ -276,7 +309,7 @@ const std::vector> unicode_ranges_punctuation = { {0x000000B6, 0x000000B7}, {0x000000BB, 0x000000BB}, {0x000000BF, 0x000000BF}, {0x0000037E, 0x0000037E}, {0x00000387, 0x00000387}, {0x0000055A, 0x0000055F}, {0x00000589, 0x0000058A}, {0x000005BE, 0x000005BE}, {0x000005C0, 0x000005C0}, {0x000005C3, 0x000005C3}, {0x000005C6, 0x000005C6}, {0x000005F3, 0x000005F4}, -{0x00000609, 0x0000060A}, {0x0000060C, 0x0000060D}, {0x0000061B, 0x0000061B}, {0x0000061E, 0x0000061F}, +{0x00000609, 0x0000060A}, {0x0000060C, 0x0000060D}, {0x0000061B, 0x0000061B}, {0x0000061D, 0x0000061F}, {0x0000066A, 0x0000066D}, {0x000006D4, 0x000006D4}, {0x00000700, 0x0000070D}, {0x000007F7, 0x000007F9}, {0x00000830, 0x0000083E}, {0x0000085E, 0x0000085E}, {0x00000964, 0x00000965}, {0x00000970, 0x00000970}, {0x000009FD, 0x000009FD}, {0x00000A76, 0x00000A76}, {0x00000AF0, 0x00000AF0}, {0x00000C77, 0x00000C77}, @@ -286,37 +319,38 @@ const std::vector> unicode_ranges_punctuation = { {0x00001360, 0x00001368}, {0x00001400, 0x00001400}, {0x0000166E, 0x0000166E}, {0x0000169B, 0x0000169C}, {0x000016EB, 0x000016ED}, {0x00001735, 0x00001736}, {0x000017D4, 0x000017D6}, {0x000017D8, 0x000017DA}, {0x00001800, 0x0000180A}, {0x00001944, 0x00001945}, {0x00001A1E, 0x00001A1F}, {0x00001AA0, 0x00001AA6}, -{0x00001AA8, 0x00001AAD}, {0x00001B5A, 0x00001B60}, {0x00001BFC, 0x00001BFF}, {0x00001C3B, 0x00001C3F}, -{0x00001C7E, 0x00001C7F}, {0x00001CC0, 0x00001CC7}, {0x00001CD3, 0x00001CD3}, {0x00002010, 0x00002027}, -{0x00002030, 0x00002043}, {0x00002045, 0x00002051}, {0x00002053, 0x0000205E}, {0x0000207D, 0x0000207E}, -{0x0000208D, 0x0000208E}, {0x00002308, 0x0000230B}, {0x00002329, 0x0000232A}, {0x00002768, 0x00002775}, -{0x000027C5, 0x000027C6}, {0x000027E6, 0x000027EF}, {0x00002983, 0x00002998}, {0x000029D8, 0x000029DB}, -{0x000029FC, 0x000029FD}, {0x00002CF9, 0x00002CFC}, {0x00002CFE, 0x00002CFF}, {0x00002D70, 0x00002D70}, -{0x00002E00, 0x00002E2E}, {0x00002E30, 0x00002E4F}, {0x00002E52, 0x00002E52}, {0x00003001, 0x00003003}, -{0x00003008, 0x00003011}, {0x00003014, 0x0000301F}, {0x00003030, 0x00003030}, {0x0000303D, 0x0000303D}, -{0x000030A0, 0x000030A0}, {0x000030FB, 0x000030FB}, {0x0000A4FE, 0x0000A4FF}, {0x0000A60D, 0x0000A60F}, -{0x0000A673, 0x0000A673}, {0x0000A67E, 0x0000A67E}, {0x0000A6F2, 0x0000A6F7}, {0x0000A874, 0x0000A877}, -{0x0000A8CE, 0x0000A8CF}, {0x0000A8F8, 0x0000A8FA}, {0x0000A8FC, 0x0000A8FC}, {0x0000A92E, 0x0000A92F}, -{0x0000A95F, 0x0000A95F}, {0x0000A9C1, 0x0000A9CD}, {0x0000A9DE, 0x0000A9DF}, {0x0000AA5C, 0x0000AA5F}, -{0x0000AADE, 0x0000AADF}, {0x0000AAF0, 0x0000AAF1}, {0x0000ABEB, 0x0000ABEB}, {0x0000FD3E, 0x0000FD3F}, -{0x0000FE10, 0x0000FE19}, {0x0000FE30, 0x0000FE52}, {0x0000FE54, 0x0000FE61}, {0x0000FE63, 0x0000FE63}, -{0x0000FE68, 0x0000FE68}, {0x0000FE6A, 0x0000FE6B}, {0x0000FF01, 0x0000FF03}, {0x0000FF05, 0x0000FF0A}, -{0x0000FF0C, 0x0000FF0F}, {0x0000FF1A, 0x0000FF1B}, {0x0000FF1F, 0x0000FF20}, {0x0000FF3B, 0x0000FF3D}, -{0x0000FF3F, 0x0000FF3F}, {0x0000FF5B, 0x0000FF5B}, {0x0000FF5D, 0x0000FF5D}, {0x0000FF5F, 0x0000FF65}, -{0x00010100, 0x00010102}, {0x0001039F, 0x0001039F}, {0x000103D0, 0x000103D0}, {0x0001056F, 0x0001056F}, -{0x00010857, 0x00010857}, {0x0001091F, 0x0001091F}, {0x0001093F, 0x0001093F}, {0x00010A50, 0x00010A58}, -{0x00010A7F, 0x00010A7F}, {0x00010AF0, 0x00010AF6}, {0x00010B39, 0x00010B3F}, {0x00010B99, 0x00010B9C}, -{0x00010EAD, 0x00010EAD}, {0x00010F55, 0x00010F59}, {0x00011047, 0x0001104D}, {0x000110BB, 0x000110BC}, -{0x000110BE, 0x000110C1}, {0x00011140, 0x00011143}, {0x00011174, 0x00011175}, {0x000111C5, 0x000111C8}, -{0x000111CD, 0x000111CD}, {0x000111DB, 0x000111DB}, {0x000111DD, 0x000111DF}, {0x00011238, 0x0001123D}, -{0x000112A9, 0x000112A9}, {0x0001144B, 0x0001144F}, {0x0001145A, 0x0001145B}, {0x0001145D, 0x0001145D}, -{0x000114C6, 0x000114C6}, {0x000115C1, 0x000115D7}, {0x00011641, 0x00011643}, {0x00011660, 0x0001166C}, -{0x0001173C, 0x0001173E}, {0x0001183B, 0x0001183B}, {0x00011944, 0x00011946}, {0x000119E2, 0x000119E2}, -{0x00011A3F, 0x00011A46}, {0x00011A9A, 0x00011A9C}, {0x00011A9E, 0x00011AA2}, {0x00011C41, 0x00011C45}, -{0x00011C70, 0x00011C71}, {0x00011EF7, 0x00011EF8}, {0x00011FFF, 0x00011FFF}, {0x00012470, 0x00012474}, -{0x00016A6E, 0x00016A6F}, {0x00016AF5, 0x00016AF5}, {0x00016B37, 0x00016B3B}, {0x00016B44, 0x00016B44}, -{0x00016E97, 0x00016E9A}, {0x00016FE2, 0x00016FE2}, {0x0001BC9F, 0x0001BC9F}, {0x0001DA87, 0x0001DA8B}, -{0x0001E95E, 0x0001E95F}, +{0x00001AA8, 0x00001AAD}, {0x00001B5A, 0x00001B60}, {0x00001B7D, 0x00001B7E}, {0x00001BFC, 0x00001BFF}, +{0x00001C3B, 0x00001C3F}, {0x00001C7E, 0x00001C7F}, {0x00001CC0, 0x00001CC7}, {0x00001CD3, 0x00001CD3}, +{0x00002010, 0x00002027}, {0x00002030, 0x00002043}, {0x00002045, 0x00002051}, {0x00002053, 0x0000205E}, +{0x0000207D, 0x0000207E}, {0x0000208D, 0x0000208E}, {0x00002308, 0x0000230B}, {0x00002329, 0x0000232A}, +{0x00002768, 0x00002775}, {0x000027C5, 0x000027C6}, {0x000027E6, 0x000027EF}, {0x00002983, 0x00002998}, +{0x000029D8, 0x000029DB}, {0x000029FC, 0x000029FD}, {0x00002CF9, 0x00002CFC}, {0x00002CFE, 0x00002CFF}, +{0x00002D70, 0x00002D70}, {0x00002E00, 0x00002E2E}, {0x00002E30, 0x00002E4F}, {0x00002E52, 0x00002E5D}, +{0x00003001, 0x00003003}, {0x00003008, 0x00003011}, {0x00003014, 0x0000301F}, {0x00003030, 0x00003030}, +{0x0000303D, 0x0000303D}, {0x000030A0, 0x000030A0}, {0x000030FB, 0x000030FB}, {0x0000A4FE, 0x0000A4FF}, +{0x0000A60D, 0x0000A60F}, {0x0000A673, 0x0000A673}, {0x0000A67E, 0x0000A67E}, {0x0000A6F2, 0x0000A6F7}, +{0x0000A874, 0x0000A877}, {0x0000A8CE, 0x0000A8CF}, {0x0000A8F8, 0x0000A8FA}, {0x0000A8FC, 0x0000A8FC}, +{0x0000A92E, 0x0000A92F}, {0x0000A95F, 0x0000A95F}, {0x0000A9C1, 0x0000A9CD}, {0x0000A9DE, 0x0000A9DF}, +{0x0000AA5C, 0x0000AA5F}, {0x0000AADE, 0x0000AADF}, {0x0000AAF0, 0x0000AAF1}, {0x0000ABEB, 0x0000ABEB}, +{0x0000FD3E, 0x0000FD3F}, {0x0000FE10, 0x0000FE19}, {0x0000FE30, 0x0000FE52}, {0x0000FE54, 0x0000FE61}, +{0x0000FE63, 0x0000FE63}, {0x0000FE68, 0x0000FE68}, {0x0000FE6A, 0x0000FE6B}, {0x0000FF01, 0x0000FF03}, +{0x0000FF05, 0x0000FF0A}, {0x0000FF0C, 0x0000FF0F}, {0x0000FF1A, 0x0000FF1B}, {0x0000FF1F, 0x0000FF20}, +{0x0000FF3B, 0x0000FF3D}, {0x0000FF3F, 0x0000FF3F}, {0x0000FF5B, 0x0000FF5B}, {0x0000FF5D, 0x0000FF5D}, +{0x0000FF5F, 0x0000FF65}, {0x00010100, 0x00010102}, {0x0001039F, 0x0001039F}, {0x000103D0, 0x000103D0}, +{0x0001056F, 0x0001056F}, {0x00010857, 0x00010857}, {0x0001091F, 0x0001091F}, {0x0001093F, 0x0001093F}, +{0x00010A50, 0x00010A58}, {0x00010A7F, 0x00010A7F}, {0x00010AF0, 0x00010AF6}, {0x00010B39, 0x00010B3F}, +{0x00010B99, 0x00010B9C}, {0x00010EAD, 0x00010EAD}, {0x00010F55, 0x00010F59}, {0x00010F86, 0x00010F89}, +{0x00011047, 0x0001104D}, {0x000110BB, 0x000110BC}, {0x000110BE, 0x000110C1}, {0x00011140, 0x00011143}, +{0x00011174, 0x00011175}, {0x000111C5, 0x000111C8}, {0x000111CD, 0x000111CD}, {0x000111DB, 0x000111DB}, +{0x000111DD, 0x000111DF}, {0x00011238, 0x0001123D}, {0x000112A9, 0x000112A9}, {0x0001144B, 0x0001144F}, +{0x0001145A, 0x0001145B}, {0x0001145D, 0x0001145D}, {0x000114C6, 0x000114C6}, {0x000115C1, 0x000115D7}, +{0x00011641, 0x00011643}, {0x00011660, 0x0001166C}, {0x000116B9, 0x000116B9}, {0x0001173C, 0x0001173E}, +{0x0001183B, 0x0001183B}, {0x00011944, 0x00011946}, {0x000119E2, 0x000119E2}, {0x00011A3F, 0x00011A46}, +{0x00011A9A, 0x00011A9C}, {0x00011A9E, 0x00011AA2}, {0x00011B00, 0x00011B09}, {0x00011C41, 0x00011C45}, +{0x00011C70, 0x00011C71}, {0x00011EF7, 0x00011EF8}, {0x00011F43, 0x00011F4F}, {0x00011FFF, 0x00011FFF}, +{0x00012470, 0x00012474}, {0x00012FF1, 0x00012FF2}, {0x00016A6E, 0x00016A6F}, {0x00016AF5, 0x00016AF5}, +{0x00016B37, 0x00016B3B}, {0x00016B44, 0x00016B44}, {0x00016E97, 0x00016E9A}, {0x00016FE2, 0x00016FE2}, +{0x0001BC9F, 0x0001BC9F}, {0x0001DA87, 0x0001DA8B}, {0x0001E95E, 0x0001E95F}, }; const std::vector> unicode_ranges_symbol = { @@ -328,40 +362,41 @@ const std::vector> unicode_ranges_symbol = { {0x00000375, 0x00000375}, {0x00000384, 0x00000385}, {0x000003F6, 0x000003F6}, {0x00000482, 0x00000482}, {0x0000058D, 0x0000058F}, {0x00000606, 0x00000608}, {0x0000060B, 0x0000060B}, {0x0000060E, 0x0000060F}, {0x000006DE, 0x000006DE}, {0x000006E9, 0x000006E9}, {0x000006FD, 0x000006FE}, {0x000007F6, 0x000007F6}, -{0x000007FE, 0x000007FF}, {0x000009F2, 0x000009F3}, {0x000009FA, 0x000009FB}, {0x00000AF1, 0x00000AF1}, -{0x00000B70, 0x00000B70}, {0x00000BF3, 0x00000BFA}, {0x00000C7F, 0x00000C7F}, {0x00000D4F, 0x00000D4F}, -{0x00000D79, 0x00000D79}, {0x00000E3F, 0x00000E3F}, {0x00000F01, 0x00000F03}, {0x00000F13, 0x00000F13}, -{0x00000F15, 0x00000F17}, {0x00000F1A, 0x00000F1F}, {0x00000F34, 0x00000F34}, {0x00000F36, 0x00000F36}, -{0x00000F38, 0x00000F38}, {0x00000FBE, 0x00000FC5}, {0x00000FC7, 0x00000FCC}, {0x00000FCE, 0x00000FCF}, -{0x00000FD5, 0x00000FD8}, {0x0000109E, 0x0000109F}, {0x00001390, 0x00001399}, {0x0000166D, 0x0000166D}, -{0x000017DB, 0x000017DB}, {0x00001940, 0x00001940}, {0x000019DE, 0x000019FF}, {0x00001B61, 0x00001B6A}, -{0x00001B74, 0x00001B7C}, {0x00001FBD, 0x00001FBD}, {0x00001FBF, 0x00001FC1}, {0x00001FCD, 0x00001FCF}, -{0x00001FDD, 0x00001FDF}, {0x00001FED, 0x00001FEF}, {0x00001FFD, 0x00001FFE}, {0x00002044, 0x00002044}, -{0x00002052, 0x00002052}, {0x0000207A, 0x0000207C}, {0x0000208A, 0x0000208C}, {0x000020A0, 0x000020BF}, -{0x00002100, 0x00002101}, {0x00002103, 0x00002106}, {0x00002108, 0x00002109}, {0x00002114, 0x00002114}, -{0x00002116, 0x00002118}, {0x0000211E, 0x00002123}, {0x00002125, 0x00002125}, {0x00002127, 0x00002127}, -{0x00002129, 0x00002129}, {0x0000212E, 0x0000212E}, {0x0000213A, 0x0000213B}, {0x00002140, 0x00002144}, -{0x0000214A, 0x0000214D}, {0x0000214F, 0x0000214F}, {0x0000218A, 0x0000218B}, {0x00002190, 0x00002307}, -{0x0000230C, 0x00002328}, {0x0000232B, 0x00002426}, {0x00002440, 0x0000244A}, {0x0000249C, 0x000024E9}, -{0x00002500, 0x00002767}, {0x00002794, 0x000027C4}, {0x000027C7, 0x000027E5}, {0x000027F0, 0x00002982}, -{0x00002999, 0x000029D7}, {0x000029DC, 0x000029FB}, {0x000029FE, 0x00002B73}, {0x00002B76, 0x00002B95}, -{0x00002B97, 0x00002BFF}, {0x00002CE5, 0x00002CEA}, {0x00002E50, 0x00002E51}, {0x00002E80, 0x00002E99}, -{0x00002E9B, 0x00002EF3}, {0x00002F00, 0x00002FD5}, {0x00002FF0, 0x00002FFB}, {0x00003004, 0x00003004}, -{0x00003012, 0x00003013}, {0x00003020, 0x00003020}, {0x00003036, 0x00003037}, {0x0000303E, 0x0000303F}, -{0x0000309B, 0x0000309C}, {0x00003190, 0x00003191}, {0x00003196, 0x0000319F}, {0x000031C0, 0x000031E3}, -{0x00003200, 0x0000321E}, {0x0000322A, 0x00003247}, {0x00003250, 0x00003250}, {0x00003260, 0x0000327F}, -{0x0000328A, 0x000032B0}, {0x000032C0, 0x000033FF}, {0x00004DC0, 0x00004DFF}, {0x0000A490, 0x0000A4C6}, -{0x0000A700, 0x0000A716}, {0x0000A720, 0x0000A721}, {0x0000A789, 0x0000A78A}, {0x0000A828, 0x0000A82B}, -{0x0000A836, 0x0000A839}, {0x0000AA77, 0x0000AA79}, {0x0000AB5B, 0x0000AB5B}, {0x0000AB6A, 0x0000AB6B}, -{0x0000FB29, 0x0000FB29}, {0x0000FBB2, 0x0000FBC1}, {0x0000FDFC, 0x0000FDFD}, {0x0000FE62, 0x0000FE62}, -{0x0000FE64, 0x0000FE66}, {0x0000FE69, 0x0000FE69}, {0x0000FF04, 0x0000FF04}, {0x0000FF0B, 0x0000FF0B}, -{0x0000FF1C, 0x0000FF1E}, {0x0000FF3E, 0x0000FF3E}, {0x0000FF40, 0x0000FF40}, {0x0000FF5C, 0x0000FF5C}, -{0x0000FF5E, 0x0000FF5E}, {0x0000FFE0, 0x0000FFE6}, {0x0000FFE8, 0x0000FFEE}, {0x0000FFFC, 0x0000FFFD}, -{0x00010137, 0x0001013F}, {0x00010179, 0x00010189}, {0x0001018C, 0x0001018E}, {0x00010190, 0x0001019C}, -{0x000101A0, 0x000101A0}, {0x000101D0, 0x000101FC}, {0x00010877, 0x00010878}, {0x00010AC8, 0x00010AC8}, -{0x0001173F, 0x0001173F}, {0x00011FD5, 0x00011FF1}, {0x00016B3C, 0x00016B3F}, {0x00016B45, 0x00016B45}, -{0x0001BC9C, 0x0001BC9C}, {0x0001D000, 0x0001D0F5}, {0x0001D100, 0x0001D126}, {0x0001D129, 0x0001D164}, -{0x0001D16A, 0x0001D16C}, {0x0001D183, 0x0001D184}, {0x0001D18C, 0x0001D1A9}, {0x0001D1AE, 0x0001D1E8}, +{0x000007FE, 0x000007FF}, {0x00000888, 0x00000888}, {0x000009F2, 0x000009F3}, {0x000009FA, 0x000009FB}, +{0x00000AF1, 0x00000AF1}, {0x00000B70, 0x00000B70}, {0x00000BF3, 0x00000BFA}, {0x00000C7F, 0x00000C7F}, +{0x00000D4F, 0x00000D4F}, {0x00000D79, 0x00000D79}, {0x00000E3F, 0x00000E3F}, {0x00000F01, 0x00000F03}, +{0x00000F13, 0x00000F13}, {0x00000F15, 0x00000F17}, {0x00000F1A, 0x00000F1F}, {0x00000F34, 0x00000F34}, +{0x00000F36, 0x00000F36}, {0x00000F38, 0x00000F38}, {0x00000FBE, 0x00000FC5}, {0x00000FC7, 0x00000FCC}, +{0x00000FCE, 0x00000FCF}, {0x00000FD5, 0x00000FD8}, {0x0000109E, 0x0000109F}, {0x00001390, 0x00001399}, +{0x0000166D, 0x0000166D}, {0x000017DB, 0x000017DB}, {0x00001940, 0x00001940}, {0x000019DE, 0x000019FF}, +{0x00001B61, 0x00001B6A}, {0x00001B74, 0x00001B7C}, {0x00001FBD, 0x00001FBD}, {0x00001FBF, 0x00001FC1}, +{0x00001FCD, 0x00001FCF}, {0x00001FDD, 0x00001FDF}, {0x00001FED, 0x00001FEF}, {0x00001FFD, 0x00001FFE}, +{0x00002044, 0x00002044}, {0x00002052, 0x00002052}, {0x0000207A, 0x0000207C}, {0x0000208A, 0x0000208C}, +{0x000020A0, 0x000020C0}, {0x00002100, 0x00002101}, {0x00002103, 0x00002106}, {0x00002108, 0x00002109}, +{0x00002114, 0x00002114}, {0x00002116, 0x00002118}, {0x0000211E, 0x00002123}, {0x00002125, 0x00002125}, +{0x00002127, 0x00002127}, {0x00002129, 0x00002129}, {0x0000212E, 0x0000212E}, {0x0000213A, 0x0000213B}, +{0x00002140, 0x00002144}, {0x0000214A, 0x0000214D}, {0x0000214F, 0x0000214F}, {0x0000218A, 0x0000218B}, +{0x00002190, 0x00002307}, {0x0000230C, 0x00002328}, {0x0000232B, 0x00002426}, {0x00002440, 0x0000244A}, +{0x0000249C, 0x000024E9}, {0x00002500, 0x00002767}, {0x00002794, 0x000027C4}, {0x000027C7, 0x000027E5}, +{0x000027F0, 0x00002982}, {0x00002999, 0x000029D7}, {0x000029DC, 0x000029FB}, {0x000029FE, 0x00002B73}, +{0x00002B76, 0x00002B95}, {0x00002B97, 0x00002BFF}, {0x00002CE5, 0x00002CEA}, {0x00002E50, 0x00002E51}, +{0x00002E80, 0x00002E99}, {0x00002E9B, 0x00002EF3}, {0x00002F00, 0x00002FD5}, {0x00002FF0, 0x00002FFB}, +{0x00003004, 0x00003004}, {0x00003012, 0x00003013}, {0x00003020, 0x00003020}, {0x00003036, 0x00003037}, +{0x0000303E, 0x0000303F}, {0x0000309B, 0x0000309C}, {0x00003190, 0x00003191}, {0x00003196, 0x0000319F}, +{0x000031C0, 0x000031E3}, {0x00003200, 0x0000321E}, {0x0000322A, 0x00003247}, {0x00003250, 0x00003250}, +{0x00003260, 0x0000327F}, {0x0000328A, 0x000032B0}, {0x000032C0, 0x000033FF}, {0x00004DC0, 0x00004DFF}, +{0x0000A490, 0x0000A4C6}, {0x0000A700, 0x0000A716}, {0x0000A720, 0x0000A721}, {0x0000A789, 0x0000A78A}, +{0x0000A828, 0x0000A82B}, {0x0000A836, 0x0000A839}, {0x0000AA77, 0x0000AA79}, {0x0000AB5B, 0x0000AB5B}, +{0x0000AB6A, 0x0000AB6B}, {0x0000FB29, 0x0000FB29}, {0x0000FBB2, 0x0000FBC2}, {0x0000FD40, 0x0000FD4F}, +{0x0000FDCF, 0x0000FDCF}, {0x0000FDFC, 0x0000FDFF}, {0x0000FE62, 0x0000FE62}, {0x0000FE64, 0x0000FE66}, +{0x0000FE69, 0x0000FE69}, {0x0000FF04, 0x0000FF04}, {0x0000FF0B, 0x0000FF0B}, {0x0000FF1C, 0x0000FF1E}, +{0x0000FF3E, 0x0000FF3E}, {0x0000FF40, 0x0000FF40}, {0x0000FF5C, 0x0000FF5C}, {0x0000FF5E, 0x0000FF5E}, +{0x0000FFE0, 0x0000FFE6}, {0x0000FFE8, 0x0000FFEE}, {0x0000FFFC, 0x0000FFFD}, {0x00010137, 0x0001013F}, +{0x00010179, 0x00010189}, {0x0001018C, 0x0001018E}, {0x00010190, 0x0001019C}, {0x000101A0, 0x000101A0}, +{0x000101D0, 0x000101FC}, {0x00010877, 0x00010878}, {0x00010AC8, 0x00010AC8}, {0x0001173F, 0x0001173F}, +{0x00011FD5, 0x00011FF1}, {0x00016B3C, 0x00016B3F}, {0x00016B45, 0x00016B45}, {0x0001BC9C, 0x0001BC9C}, +{0x0001CF50, 0x0001CFC3}, {0x0001D000, 0x0001D0F5}, {0x0001D100, 0x0001D126}, {0x0001D129, 0x0001D164}, +{0x0001D16A, 0x0001D16C}, {0x0001D183, 0x0001D184}, {0x0001D18C, 0x0001D1A9}, {0x0001D1AE, 0x0001D1EA}, {0x0001D200, 0x0001D241}, {0x0001D245, 0x0001D245}, {0x0001D300, 0x0001D356}, {0x0001D6C1, 0x0001D6C1}, {0x0001D6DB, 0x0001D6DB}, {0x0001D6FB, 0x0001D6FB}, {0x0001D715, 0x0001D715}, {0x0001D735, 0x0001D735}, {0x0001D74F, 0x0001D74F}, {0x0001D76F, 0x0001D76F}, {0x0001D789, 0x0001D789}, {0x0001D7A9, 0x0001D7A9}, @@ -371,102 +406,100 @@ const std::vector> unicode_ranges_symbol = { {0x0001F000, 0x0001F02B}, {0x0001F030, 0x0001F093}, {0x0001F0A0, 0x0001F0AE}, {0x0001F0B1, 0x0001F0BF}, {0x0001F0C1, 0x0001F0CF}, {0x0001F0D1, 0x0001F0F5}, {0x0001F10D, 0x0001F1AD}, {0x0001F1E6, 0x0001F202}, {0x0001F210, 0x0001F23B}, {0x0001F240, 0x0001F248}, {0x0001F250, 0x0001F251}, {0x0001F260, 0x0001F265}, -{0x0001F300, 0x0001F6D7}, {0x0001F6E0, 0x0001F6EC}, {0x0001F6F0, 0x0001F6FC}, {0x0001F700, 0x0001F773}, -{0x0001F780, 0x0001F7D8}, {0x0001F7E0, 0x0001F7EB}, {0x0001F800, 0x0001F80B}, {0x0001F810, 0x0001F847}, -{0x0001F850, 0x0001F859}, {0x0001F860, 0x0001F887}, {0x0001F890, 0x0001F8AD}, {0x0001F8B0, 0x0001F8B1}, -{0x0001F900, 0x0001F978}, {0x0001F97A, 0x0001F9CB}, {0x0001F9CD, 0x0001FA53}, {0x0001FA60, 0x0001FA6D}, -{0x0001FA70, 0x0001FA74}, {0x0001FA78, 0x0001FA7A}, {0x0001FA80, 0x0001FA86}, {0x0001FA90, 0x0001FAA8}, -{0x0001FAB0, 0x0001FAB6}, {0x0001FAC0, 0x0001FAC2}, {0x0001FAD0, 0x0001FAD6}, {0x0001FB00, 0x0001FB92}, -{0x0001FB94, 0x0001FBCA}, +{0x0001F300, 0x0001F6D7}, {0x0001F6DC, 0x0001F6EC}, {0x0001F6F0, 0x0001F6FC}, {0x0001F700, 0x0001F776}, +{0x0001F77B, 0x0001F7D9}, {0x0001F7E0, 0x0001F7EB}, {0x0001F7F0, 0x0001F7F0}, {0x0001F800, 0x0001F80B}, +{0x0001F810, 0x0001F847}, {0x0001F850, 0x0001F859}, {0x0001F860, 0x0001F887}, {0x0001F890, 0x0001F8AD}, +{0x0001F8B0, 0x0001F8B1}, {0x0001F900, 0x0001FA53}, {0x0001FA60, 0x0001FA6D}, {0x0001FA70, 0x0001FA7C}, +{0x0001FA80, 0x0001FA88}, {0x0001FA90, 0x0001FABD}, {0x0001FABF, 0x0001FAC5}, {0x0001FACE, 0x0001FADB}, +{0x0001FAE0, 0x0001FAE8}, {0x0001FAF0, 0x0001FAF8}, {0x0001FB00, 0x0001FB92}, {0x0001FB94, 0x0001FBCA}, }; const std::vector> unicode_ranges_control = { -{0x00000000, 0x00000008}, {0x0000000E, 0x0000001B}, {0x0000007F, 0x00000084}, {0x00000086, 0x0000009F}, -{0x000000AD, 0x000000AD}, {0x00000378, 0x00000379}, {0x00000380, 0x00000383}, {0x0000038B, 0x0000038B}, -{0x0000038D, 0x0000038D}, {0x000003A2, 0x000003A2}, {0x00000530, 0x00000530}, {0x00000557, 0x00000558}, -{0x0000058B, 0x0000058C}, {0x00000590, 0x00000590}, {0x000005C8, 0x000005CF}, {0x000005EB, 0x000005EE}, -{0x000005F5, 0x00000605}, {0x0000061C, 0x0000061D}, {0x000006DD, 0x000006DD}, {0x0000070E, 0x0000070F}, -{0x0000074B, 0x0000074C}, {0x000007B2, 0x000007BF}, {0x000007FB, 0x000007FC}, {0x0000082E, 0x0000082F}, -{0x0000083F, 0x0000083F}, {0x0000085C, 0x0000085D}, {0x0000085F, 0x0000085F}, {0x0000086B, 0x0000089F}, -{0x000008B5, 0x000008B5}, {0x000008C8, 0x000008D2}, {0x000008E2, 0x000008E2}, {0x00000984, 0x00000984}, -{0x0000098D, 0x0000098E}, {0x00000991, 0x00000992}, {0x000009A9, 0x000009A9}, {0x000009B1, 0x000009B1}, -{0x000009B3, 0x000009B5}, {0x000009BA, 0x000009BB}, {0x000009C5, 0x000009C6}, {0x000009C9, 0x000009CA}, -{0x000009CF, 0x000009D6}, {0x000009D8, 0x000009DB}, {0x000009DE, 0x000009DE}, {0x000009E4, 0x000009E5}, -{0x000009FF, 0x00000A00}, {0x00000A04, 0x00000A04}, {0x00000A0B, 0x00000A0E}, {0x00000A11, 0x00000A12}, -{0x00000A29, 0x00000A29}, {0x00000A31, 0x00000A31}, {0x00000A34, 0x00000A34}, {0x00000A37, 0x00000A37}, -{0x00000A3A, 0x00000A3B}, {0x00000A3D, 0x00000A3D}, {0x00000A43, 0x00000A46}, {0x00000A49, 0x00000A4A}, -{0x00000A4E, 0x00000A50}, {0x00000A52, 0x00000A58}, {0x00000A5D, 0x00000A5D}, {0x00000A5F, 0x00000A65}, -{0x00000A77, 0x00000A80}, {0x00000A84, 0x00000A84}, {0x00000A8E, 0x00000A8E}, {0x00000A92, 0x00000A92}, -{0x00000AA9, 0x00000AA9}, {0x00000AB1, 0x00000AB1}, {0x00000AB4, 0x00000AB4}, {0x00000ABA, 0x00000ABB}, -{0x00000AC6, 0x00000AC6}, {0x00000ACA, 0x00000ACA}, {0x00000ACE, 0x00000ACF}, {0x00000AD1, 0x00000ADF}, -{0x00000AE4, 0x00000AE5}, {0x00000AF2, 0x00000AF8}, {0x00000B00, 0x00000B00}, {0x00000B04, 0x00000B04}, -{0x00000B0D, 0x00000B0E}, {0x00000B11, 0x00000B12}, {0x00000B29, 0x00000B29}, {0x00000B31, 0x00000B31}, -{0x00000B34, 0x00000B34}, {0x00000B3A, 0x00000B3B}, {0x00000B45, 0x00000B46}, {0x00000B49, 0x00000B4A}, -{0x00000B4E, 0x00000B54}, {0x00000B58, 0x00000B5B}, {0x00000B5E, 0x00000B5E}, {0x00000B64, 0x00000B65}, -{0x00000B78, 0x00000B81}, {0x00000B84, 0x00000B84}, {0x00000B8B, 0x00000B8D}, {0x00000B91, 0x00000B91}, -{0x00000B96, 0x00000B98}, {0x00000B9B, 0x00000B9B}, {0x00000B9D, 0x00000B9D}, {0x00000BA0, 0x00000BA2}, -{0x00000BA5, 0x00000BA7}, {0x00000BAB, 0x00000BAD}, {0x00000BBA, 0x00000BBD}, {0x00000BC3, 0x00000BC5}, -{0x00000BC9, 0x00000BC9}, {0x00000BCE, 0x00000BCF}, {0x00000BD1, 0x00000BD6}, {0x00000BD8, 0x00000BE5}, -{0x00000BFB, 0x00000BFF}, {0x00000C0D, 0x00000C0D}, {0x00000C11, 0x00000C11}, {0x00000C29, 0x00000C29}, -{0x00000C3A, 0x00000C3C}, {0x00000C45, 0x00000C45}, {0x00000C49, 0x00000C49}, {0x00000C4E, 0x00000C54}, -{0x00000C57, 0x00000C57}, {0x00000C5B, 0x00000C5F}, {0x00000C64, 0x00000C65}, {0x00000C70, 0x00000C76}, -{0x00000C8D, 0x00000C8D}, {0x00000C91, 0x00000C91}, {0x00000CA9, 0x00000CA9}, {0x00000CB4, 0x00000CB4}, -{0x00000CBA, 0x00000CBB}, {0x00000CC5, 0x00000CC5}, {0x00000CC9, 0x00000CC9}, {0x00000CCE, 0x00000CD4}, -{0x00000CD7, 0x00000CDD}, {0x00000CDF, 0x00000CDF}, {0x00000CE4, 0x00000CE5}, {0x00000CF0, 0x00000CF0}, -{0x00000CF3, 0x00000CFF}, {0x00000D0D, 0x00000D0D}, {0x00000D11, 0x00000D11}, {0x00000D45, 0x00000D45}, -{0x00000D49, 0x00000D49}, {0x00000D50, 0x00000D53}, {0x00000D64, 0x00000D65}, {0x00000D80, 0x00000D80}, -{0x00000D84, 0x00000D84}, {0x00000D97, 0x00000D99}, {0x00000DB2, 0x00000DB2}, {0x00000DBC, 0x00000DBC}, -{0x00000DBE, 0x00000DBF}, {0x00000DC7, 0x00000DC9}, {0x00000DCB, 0x00000DCE}, {0x00000DD5, 0x00000DD5}, -{0x00000DD7, 0x00000DD7}, {0x00000DE0, 0x00000DE5}, {0x00000DF0, 0x00000DF1}, {0x00000DF5, 0x00000E00}, -{0x00000E3B, 0x00000E3E}, {0x00000E5C, 0x00000E80}, {0x00000E83, 0x00000E83}, {0x00000E85, 0x00000E85}, -{0x00000E8B, 0x00000E8B}, {0x00000EA4, 0x00000EA4}, {0x00000EA6, 0x00000EA6}, {0x00000EBE, 0x00000EBF}, -{0x00000EC5, 0x00000EC5}, {0x00000EC7, 0x00000EC7}, {0x00000ECE, 0x00000ECF}, {0x00000EDA, 0x00000EDB}, -{0x00000EE0, 0x00000EFF}, {0x00000F48, 0x00000F48}, {0x00000F6D, 0x00000F70}, {0x00000F98, 0x00000F98}, -{0x00000FBD, 0x00000FBD}, {0x00000FCD, 0x00000FCD}, {0x00000FDB, 0x00000FFF}, {0x000010C6, 0x000010C6}, -{0x000010C8, 0x000010CC}, {0x000010CE, 0x000010CF}, {0x00001249, 0x00001249}, {0x0000124E, 0x0000124F}, -{0x00001257, 0x00001257}, {0x00001259, 0x00001259}, {0x0000125E, 0x0000125F}, {0x00001289, 0x00001289}, -{0x0000128E, 0x0000128F}, {0x000012B1, 0x000012B1}, {0x000012B6, 0x000012B7}, {0x000012BF, 0x000012BF}, -{0x000012C1, 0x000012C1}, {0x000012C6, 0x000012C7}, {0x000012D7, 0x000012D7}, {0x00001311, 0x00001311}, -{0x00001316, 0x00001317}, {0x0000135B, 0x0000135C}, {0x0000137D, 0x0000137F}, {0x0000139A, 0x0000139F}, -{0x000013F6, 0x000013F7}, {0x000013FE, 0x000013FF}, {0x0000169D, 0x0000169F}, {0x000016F9, 0x000016FF}, -{0x0000170D, 0x0000170D}, {0x00001715, 0x0000171F}, {0x00001737, 0x0000173F}, {0x00001754, 0x0000175F}, -{0x0000176D, 0x0000176D}, {0x00001771, 0x00001771}, {0x00001774, 0x0000177F}, {0x000017DE, 0x000017DF}, -{0x000017EA, 0x000017EF}, {0x000017FA, 0x000017FF}, {0x0000180E, 0x0000180F}, {0x0000181A, 0x0000181F}, -{0x00001879, 0x0000187F}, {0x000018AB, 0x000018AF}, {0x000018F6, 0x000018FF}, {0x0000191F, 0x0000191F}, -{0x0000192C, 0x0000192F}, {0x0000193C, 0x0000193F}, {0x00001941, 0x00001943}, {0x0000196E, 0x0000196F}, -{0x00001975, 0x0000197F}, {0x000019AC, 0x000019AF}, {0x000019CA, 0x000019CF}, {0x000019DB, 0x000019DD}, -{0x00001A1C, 0x00001A1D}, {0x00001A5F, 0x00001A5F}, {0x00001A7D, 0x00001A7E}, {0x00001A8A, 0x00001A8F}, -{0x00001A9A, 0x00001A9F}, {0x00001AAE, 0x00001AAF}, {0x00001AC1, 0x00001AFF}, {0x00001B4C, 0x00001B4F}, -{0x00001B7D, 0x00001B7F}, {0x00001BF4, 0x00001BFB}, {0x00001C38, 0x00001C3A}, {0x00001C4A, 0x00001C4C}, -{0x00001C89, 0x00001C8F}, {0x00001CBB, 0x00001CBC}, {0x00001CC8, 0x00001CCF}, {0x00001CFB, 0x00001CFF}, -{0x00001DFA, 0x00001DFA}, {0x00001F16, 0x00001F17}, {0x00001F1E, 0x00001F1F}, {0x00001F46, 0x00001F47}, +{0x00000000, 0x0000001F}, {0x0000007F, 0x0000009F}, {0x000000AD, 0x000000AD}, {0x00000378, 0x00000379}, +{0x00000380, 0x00000383}, {0x0000038B, 0x0000038B}, {0x0000038D, 0x0000038D}, {0x000003A2, 0x000003A2}, +{0x00000530, 0x00000530}, {0x00000557, 0x00000558}, {0x0000058B, 0x0000058C}, {0x00000590, 0x00000590}, +{0x000005C8, 0x000005CF}, {0x000005EB, 0x000005EE}, {0x000005F5, 0x00000605}, {0x0000061C, 0x0000061C}, +{0x000006DD, 0x000006DD}, {0x0000070E, 0x0000070F}, {0x0000074B, 0x0000074C}, {0x000007B2, 0x000007BF}, +{0x000007FB, 0x000007FC}, {0x0000082E, 0x0000082F}, {0x0000083F, 0x0000083F}, {0x0000085C, 0x0000085D}, +{0x0000085F, 0x0000085F}, {0x0000086B, 0x0000086F}, {0x0000088F, 0x00000897}, {0x000008E2, 0x000008E2}, +{0x00000984, 0x00000984}, {0x0000098D, 0x0000098E}, {0x00000991, 0x00000992}, {0x000009A9, 0x000009A9}, +{0x000009B1, 0x000009B1}, {0x000009B3, 0x000009B5}, {0x000009BA, 0x000009BB}, {0x000009C5, 0x000009C6}, +{0x000009C9, 0x000009CA}, {0x000009CF, 0x000009D6}, {0x000009D8, 0x000009DB}, {0x000009DE, 0x000009DE}, +{0x000009E4, 0x000009E5}, {0x000009FF, 0x00000A00}, {0x00000A04, 0x00000A04}, {0x00000A0B, 0x00000A0E}, +{0x00000A11, 0x00000A12}, {0x00000A29, 0x00000A29}, {0x00000A31, 0x00000A31}, {0x00000A34, 0x00000A34}, +{0x00000A37, 0x00000A37}, {0x00000A3A, 0x00000A3B}, {0x00000A3D, 0x00000A3D}, {0x00000A43, 0x00000A46}, +{0x00000A49, 0x00000A4A}, {0x00000A4E, 0x00000A50}, {0x00000A52, 0x00000A58}, {0x00000A5D, 0x00000A5D}, +{0x00000A5F, 0x00000A65}, {0x00000A77, 0x00000A80}, {0x00000A84, 0x00000A84}, {0x00000A8E, 0x00000A8E}, +{0x00000A92, 0x00000A92}, {0x00000AA9, 0x00000AA9}, {0x00000AB1, 0x00000AB1}, {0x00000AB4, 0x00000AB4}, +{0x00000ABA, 0x00000ABB}, {0x00000AC6, 0x00000AC6}, {0x00000ACA, 0x00000ACA}, {0x00000ACE, 0x00000ACF}, +{0x00000AD1, 0x00000ADF}, {0x00000AE4, 0x00000AE5}, {0x00000AF2, 0x00000AF8}, {0x00000B00, 0x00000B00}, +{0x00000B04, 0x00000B04}, {0x00000B0D, 0x00000B0E}, {0x00000B11, 0x00000B12}, {0x00000B29, 0x00000B29}, +{0x00000B31, 0x00000B31}, {0x00000B34, 0x00000B34}, {0x00000B3A, 0x00000B3B}, {0x00000B45, 0x00000B46}, +{0x00000B49, 0x00000B4A}, {0x00000B4E, 0x00000B54}, {0x00000B58, 0x00000B5B}, {0x00000B5E, 0x00000B5E}, +{0x00000B64, 0x00000B65}, {0x00000B78, 0x00000B81}, {0x00000B84, 0x00000B84}, {0x00000B8B, 0x00000B8D}, +{0x00000B91, 0x00000B91}, {0x00000B96, 0x00000B98}, {0x00000B9B, 0x00000B9B}, {0x00000B9D, 0x00000B9D}, +{0x00000BA0, 0x00000BA2}, {0x00000BA5, 0x00000BA7}, {0x00000BAB, 0x00000BAD}, {0x00000BBA, 0x00000BBD}, +{0x00000BC3, 0x00000BC5}, {0x00000BC9, 0x00000BC9}, {0x00000BCE, 0x00000BCF}, {0x00000BD1, 0x00000BD6}, +{0x00000BD8, 0x00000BE5}, {0x00000BFB, 0x00000BFF}, {0x00000C0D, 0x00000C0D}, {0x00000C11, 0x00000C11}, +{0x00000C29, 0x00000C29}, {0x00000C3A, 0x00000C3B}, {0x00000C45, 0x00000C45}, {0x00000C49, 0x00000C49}, +{0x00000C4E, 0x00000C54}, {0x00000C57, 0x00000C57}, {0x00000C5B, 0x00000C5C}, {0x00000C5E, 0x00000C5F}, +{0x00000C64, 0x00000C65}, {0x00000C70, 0x00000C76}, {0x00000C8D, 0x00000C8D}, {0x00000C91, 0x00000C91}, +{0x00000CA9, 0x00000CA9}, {0x00000CB4, 0x00000CB4}, {0x00000CBA, 0x00000CBB}, {0x00000CC5, 0x00000CC5}, +{0x00000CC9, 0x00000CC9}, {0x00000CCE, 0x00000CD4}, {0x00000CD7, 0x00000CDC}, {0x00000CDF, 0x00000CDF}, +{0x00000CE4, 0x00000CE5}, {0x00000CF0, 0x00000CF0}, {0x00000CF4, 0x00000CFF}, {0x00000D0D, 0x00000D0D}, +{0x00000D11, 0x00000D11}, {0x00000D45, 0x00000D45}, {0x00000D49, 0x00000D49}, {0x00000D50, 0x00000D53}, +{0x00000D64, 0x00000D65}, {0x00000D80, 0x00000D80}, {0x00000D84, 0x00000D84}, {0x00000D97, 0x00000D99}, +{0x00000DB2, 0x00000DB2}, {0x00000DBC, 0x00000DBC}, {0x00000DBE, 0x00000DBF}, {0x00000DC7, 0x00000DC9}, +{0x00000DCB, 0x00000DCE}, {0x00000DD5, 0x00000DD5}, {0x00000DD7, 0x00000DD7}, {0x00000DE0, 0x00000DE5}, +{0x00000DF0, 0x00000DF1}, {0x00000DF5, 0x00000E00}, {0x00000E3B, 0x00000E3E}, {0x00000E5C, 0x00000E80}, +{0x00000E83, 0x00000E83}, {0x00000E85, 0x00000E85}, {0x00000E8B, 0x00000E8B}, {0x00000EA4, 0x00000EA4}, +{0x00000EA6, 0x00000EA6}, {0x00000EBE, 0x00000EBF}, {0x00000EC5, 0x00000EC5}, {0x00000EC7, 0x00000EC7}, +{0x00000ECF, 0x00000ECF}, {0x00000EDA, 0x00000EDB}, {0x00000EE0, 0x00000EFF}, {0x00000F48, 0x00000F48}, +{0x00000F6D, 0x00000F70}, {0x00000F98, 0x00000F98}, {0x00000FBD, 0x00000FBD}, {0x00000FCD, 0x00000FCD}, +{0x00000FDB, 0x00000FFF}, {0x000010C6, 0x000010C6}, {0x000010C8, 0x000010CC}, {0x000010CE, 0x000010CF}, +{0x00001249, 0x00001249}, {0x0000124E, 0x0000124F}, {0x00001257, 0x00001257}, {0x00001259, 0x00001259}, +{0x0000125E, 0x0000125F}, {0x00001289, 0x00001289}, {0x0000128E, 0x0000128F}, {0x000012B1, 0x000012B1}, +{0x000012B6, 0x000012B7}, {0x000012BF, 0x000012BF}, {0x000012C1, 0x000012C1}, {0x000012C6, 0x000012C7}, +{0x000012D7, 0x000012D7}, {0x00001311, 0x00001311}, {0x00001316, 0x00001317}, {0x0000135B, 0x0000135C}, +{0x0000137D, 0x0000137F}, {0x0000139A, 0x0000139F}, {0x000013F6, 0x000013F7}, {0x000013FE, 0x000013FF}, +{0x0000169D, 0x0000169F}, {0x000016F9, 0x000016FF}, {0x00001716, 0x0000171E}, {0x00001737, 0x0000173F}, +{0x00001754, 0x0000175F}, {0x0000176D, 0x0000176D}, {0x00001771, 0x00001771}, {0x00001774, 0x0000177F}, +{0x000017DE, 0x000017DF}, {0x000017EA, 0x000017EF}, {0x000017FA, 0x000017FF}, {0x0000180E, 0x0000180E}, +{0x0000181A, 0x0000181F}, {0x00001879, 0x0000187F}, {0x000018AB, 0x000018AF}, {0x000018F6, 0x000018FF}, +{0x0000191F, 0x0000191F}, {0x0000192C, 0x0000192F}, {0x0000193C, 0x0000193F}, {0x00001941, 0x00001943}, +{0x0000196E, 0x0000196F}, {0x00001975, 0x0000197F}, {0x000019AC, 0x000019AF}, {0x000019CA, 0x000019CF}, +{0x000019DB, 0x000019DD}, {0x00001A1C, 0x00001A1D}, {0x00001A5F, 0x00001A5F}, {0x00001A7D, 0x00001A7E}, +{0x00001A8A, 0x00001A8F}, {0x00001A9A, 0x00001A9F}, {0x00001AAE, 0x00001AAF}, {0x00001ACF, 0x00001AFF}, +{0x00001B4D, 0x00001B4F}, {0x00001B7F, 0x00001B7F}, {0x00001BF4, 0x00001BFB}, {0x00001C38, 0x00001C3A}, +{0x00001C4A, 0x00001C4C}, {0x00001C89, 0x00001C8F}, {0x00001CBB, 0x00001CBC}, {0x00001CC8, 0x00001CCF}, +{0x00001CFB, 0x00001CFF}, {0x00001F16, 0x00001F17}, {0x00001F1E, 0x00001F1F}, {0x00001F46, 0x00001F47}, {0x00001F4E, 0x00001F4F}, {0x00001F58, 0x00001F58}, {0x00001F5A, 0x00001F5A}, {0x00001F5C, 0x00001F5C}, {0x00001F5E, 0x00001F5E}, {0x00001F7E, 0x00001F7F}, {0x00001FB5, 0x00001FB5}, {0x00001FC5, 0x00001FC5}, {0x00001FD4, 0x00001FD5}, {0x00001FDC, 0x00001FDC}, {0x00001FF0, 0x00001FF1}, {0x00001FF5, 0x00001FF5}, {0x00001FFF, 0x00001FFF}, {0x0000200B, 0x0000200F}, {0x0000202A, 0x0000202E}, {0x00002060, 0x0000206F}, -{0x00002072, 0x00002073}, {0x0000208F, 0x0000208F}, {0x0000209D, 0x0000209F}, {0x000020C0, 0x000020CF}, +{0x00002072, 0x00002073}, {0x0000208F, 0x0000208F}, {0x0000209D, 0x0000209F}, {0x000020C1, 0x000020CF}, {0x000020F1, 0x000020FF}, {0x0000218C, 0x0000218F}, {0x00002427, 0x0000243F}, {0x0000244B, 0x0000245F}, -{0x00002B74, 0x00002B75}, {0x00002B96, 0x00002B96}, {0x00002C2F, 0x00002C2F}, {0x00002C5F, 0x00002C5F}, -{0x00002CF4, 0x00002CF8}, {0x00002D26, 0x00002D26}, {0x00002D28, 0x00002D2C}, {0x00002D2E, 0x00002D2F}, -{0x00002D68, 0x00002D6E}, {0x00002D71, 0x00002D7E}, {0x00002D97, 0x00002D9F}, {0x00002DA7, 0x00002DA7}, -{0x00002DAF, 0x00002DAF}, {0x00002DB7, 0x00002DB7}, {0x00002DBF, 0x00002DBF}, {0x00002DC7, 0x00002DC7}, -{0x00002DCF, 0x00002DCF}, {0x00002DD7, 0x00002DD7}, {0x00002DDF, 0x00002DDF}, {0x00002E53, 0x00002E7F}, -{0x00002E9A, 0x00002E9A}, {0x00002EF4, 0x00002EFF}, {0x00002FD6, 0x00002FEF}, {0x00002FFC, 0x00002FFF}, -{0x00003040, 0x00003040}, {0x00003097, 0x00003098}, {0x00003100, 0x00003104}, {0x00003130, 0x00003130}, -{0x0000318F, 0x0000318F}, {0x000031E4, 0x000031EF}, {0x0000321F, 0x0000321F}, {0x00009FFD, 0x00009FFF}, -{0x0000A48D, 0x0000A48F}, {0x0000A4C7, 0x0000A4CF}, {0x0000A62C, 0x0000A63F}, {0x0000A6F8, 0x0000A6FF}, -{0x0000A7C0, 0x0000A7C1}, {0x0000A7CB, 0x0000A7F4}, {0x0000A82D, 0x0000A82F}, {0x0000A83A, 0x0000A83F}, -{0x0000A878, 0x0000A87F}, {0x0000A8C6, 0x0000A8CD}, {0x0000A8DA, 0x0000A8DF}, {0x0000A954, 0x0000A95E}, -{0x0000A97D, 0x0000A97F}, {0x0000A9CE, 0x0000A9CE}, {0x0000A9DA, 0x0000A9DD}, {0x0000A9FF, 0x0000A9FF}, -{0x0000AA37, 0x0000AA3F}, {0x0000AA4E, 0x0000AA4F}, {0x0000AA5A, 0x0000AA5B}, {0x0000AAC3, 0x0000AADA}, -{0x0000AAF7, 0x0000AB00}, {0x0000AB07, 0x0000AB08}, {0x0000AB0F, 0x0000AB10}, {0x0000AB17, 0x0000AB1F}, -{0x0000AB27, 0x0000AB27}, {0x0000AB2F, 0x0000AB2F}, {0x0000AB6C, 0x0000AB6F}, {0x0000ABEE, 0x0000ABEF}, -{0x0000ABFA, 0x0000ABFF}, {0x0000D7A4, 0x0000D7AF}, {0x0000D7C7, 0x0000D7CA}, {0x0000D7FC, 0x0000F8FF}, +{0x00002B74, 0x00002B75}, {0x00002B96, 0x00002B96}, {0x00002CF4, 0x00002CF8}, {0x00002D26, 0x00002D26}, +{0x00002D28, 0x00002D2C}, {0x00002D2E, 0x00002D2F}, {0x00002D68, 0x00002D6E}, {0x00002D71, 0x00002D7E}, +{0x00002D97, 0x00002D9F}, {0x00002DA7, 0x00002DA7}, {0x00002DAF, 0x00002DAF}, {0x00002DB7, 0x00002DB7}, +{0x00002DBF, 0x00002DBF}, {0x00002DC7, 0x00002DC7}, {0x00002DCF, 0x00002DCF}, {0x00002DD7, 0x00002DD7}, +{0x00002DDF, 0x00002DDF}, {0x00002E5E, 0x00002E7F}, {0x00002E9A, 0x00002E9A}, {0x00002EF4, 0x00002EFF}, +{0x00002FD6, 0x00002FEF}, {0x00002FFC, 0x00002FFF}, {0x00003040, 0x00003040}, {0x00003097, 0x00003098}, +{0x00003100, 0x00003104}, {0x00003130, 0x00003130}, {0x0000318F, 0x0000318F}, {0x000031E4, 0x000031EF}, +{0x0000321F, 0x0000321F}, {0x0000A48D, 0x0000A48F}, {0x0000A4C7, 0x0000A4CF}, {0x0000A62C, 0x0000A63F}, +{0x0000A6F8, 0x0000A6FF}, {0x0000A7CB, 0x0000A7CF}, {0x0000A7D2, 0x0000A7D2}, {0x0000A7D4, 0x0000A7D4}, +{0x0000A7DA, 0x0000A7F1}, {0x0000A82D, 0x0000A82F}, {0x0000A83A, 0x0000A83F}, {0x0000A878, 0x0000A87F}, +{0x0000A8C6, 0x0000A8CD}, {0x0000A8DA, 0x0000A8DF}, {0x0000A954, 0x0000A95E}, {0x0000A97D, 0x0000A97F}, +{0x0000A9CE, 0x0000A9CE}, {0x0000A9DA, 0x0000A9DD}, {0x0000A9FF, 0x0000A9FF}, {0x0000AA37, 0x0000AA3F}, +{0x0000AA4E, 0x0000AA4F}, {0x0000AA5A, 0x0000AA5B}, {0x0000AAC3, 0x0000AADA}, {0x0000AAF7, 0x0000AB00}, +{0x0000AB07, 0x0000AB08}, {0x0000AB0F, 0x0000AB10}, {0x0000AB17, 0x0000AB1F}, {0x0000AB27, 0x0000AB27}, +{0x0000AB2F, 0x0000AB2F}, {0x0000AB6C, 0x0000AB6F}, {0x0000ABEE, 0x0000ABEF}, {0x0000ABFA, 0x0000ABFF}, +{0x0000D7A4, 0x0000D7AF}, {0x0000D7C7, 0x0000D7CA}, {0x0000D7FC, 0x0000D7FF}, {0x0000E000, 0x0000F8FF}, {0x0000FA6E, 0x0000FA6F}, {0x0000FADA, 0x0000FAFF}, {0x0000FB07, 0x0000FB12}, {0x0000FB18, 0x0000FB1C}, {0x0000FB37, 0x0000FB37}, {0x0000FB3D, 0x0000FB3D}, {0x0000FB3F, 0x0000FB3F}, {0x0000FB42, 0x0000FB42}, -{0x0000FB45, 0x0000FB45}, {0x0000FBC2, 0x0000FBD2}, {0x0000FD40, 0x0000FD4F}, {0x0000FD90, 0x0000FD91}, -{0x0000FDC8, 0x0000FDEF}, {0x0000FDFE, 0x0000FDFF}, {0x0000FE1A, 0x0000FE1F}, {0x0000FE53, 0x0000FE53}, -{0x0000FE67, 0x0000FE67}, {0x0000FE6C, 0x0000FE6F}, {0x0000FE75, 0x0000FE75}, {0x0000FEFD, 0x0000FF00}, +{0x0000FB45, 0x0000FB45}, {0x0000FBC3, 0x0000FBD2}, {0x0000FD90, 0x0000FD91}, {0x0000FDC8, 0x0000FDCE}, +{0x0000FDD0, 0x0000FDEF}, {0x0000FE1A, 0x0000FE1F}, {0x0000FE53, 0x0000FE53}, {0x0000FE67, 0x0000FE67}, +{0x0000FE6C, 0x0000FE6F}, {0x0000FE75, 0x0000FE75}, {0x0000FEFD, 0x0000FEFE}, {0x0000FF00, 0x0000FF00}, {0x0000FFBF, 0x0000FFC1}, {0x0000FFC8, 0x0000FFC9}, {0x0000FFD0, 0x0000FFD1}, {0x0000FFD8, 0x0000FFD9}, {0x0000FFDD, 0x0000FFDF}, {0x0000FFE7, 0x0000FFE7}, {0x0000FFEF, 0x0000FFFB}, {0x0000FFFE, 0x0000FFFF}, {0x0001000C, 0x0001000C}, {0x00010027, 0x00010027}, {0x0001003B, 0x0001003B}, {0x0001003E, 0x0001003E}, @@ -476,82 +509,91 @@ const std::vector> unicode_ranges_control = { {0x00010324, 0x0001032C}, {0x0001034B, 0x0001034F}, {0x0001037B, 0x0001037F}, {0x0001039E, 0x0001039E}, {0x000103C4, 0x000103C7}, {0x000103D6, 0x000103FF}, {0x0001049E, 0x0001049F}, {0x000104AA, 0x000104AF}, {0x000104D4, 0x000104D7}, {0x000104FC, 0x000104FF}, {0x00010528, 0x0001052F}, {0x00010564, 0x0001056E}, -{0x00010570, 0x000105FF}, {0x00010737, 0x0001073F}, {0x00010756, 0x0001075F}, {0x00010768, 0x000107FF}, -{0x00010806, 0x00010807}, {0x00010809, 0x00010809}, {0x00010836, 0x00010836}, {0x00010839, 0x0001083B}, -{0x0001083D, 0x0001083E}, {0x00010856, 0x00010856}, {0x0001089F, 0x000108A6}, {0x000108B0, 0x000108DF}, -{0x000108F3, 0x000108F3}, {0x000108F6, 0x000108FA}, {0x0001091C, 0x0001091E}, {0x0001093A, 0x0001093E}, -{0x00010940, 0x0001097F}, {0x000109B8, 0x000109BB}, {0x000109D0, 0x000109D1}, {0x00010A04, 0x00010A04}, -{0x00010A07, 0x00010A0B}, {0x00010A14, 0x00010A14}, {0x00010A18, 0x00010A18}, {0x00010A36, 0x00010A37}, -{0x00010A3B, 0x00010A3E}, {0x00010A49, 0x00010A4F}, {0x00010A59, 0x00010A5F}, {0x00010AA0, 0x00010ABF}, -{0x00010AE7, 0x00010AEA}, {0x00010AF7, 0x00010AFF}, {0x00010B36, 0x00010B38}, {0x00010B56, 0x00010B57}, -{0x00010B73, 0x00010B77}, {0x00010B92, 0x00010B98}, {0x00010B9D, 0x00010BA8}, {0x00010BB0, 0x00010BFF}, -{0x00010C49, 0x00010C7F}, {0x00010CB3, 0x00010CBF}, {0x00010CF3, 0x00010CF9}, {0x00010D28, 0x00010D2F}, -{0x00010D3A, 0x00010E5F}, {0x00010E7F, 0x00010E7F}, {0x00010EAA, 0x00010EAA}, {0x00010EAE, 0x00010EAF}, -{0x00010EB2, 0x00010EFF}, {0x00010F28, 0x00010F2F}, {0x00010F5A, 0x00010FAF}, {0x00010FCC, 0x00010FDF}, -{0x00010FF7, 0x00010FFF}, {0x0001104E, 0x00011051}, {0x00011070, 0x0001107E}, {0x000110BD, 0x000110BD}, -{0x000110C2, 0x000110CF}, {0x000110E9, 0x000110EF}, {0x000110FA, 0x000110FF}, {0x00011135, 0x00011135}, -{0x00011148, 0x0001114F}, {0x00011177, 0x0001117F}, {0x000111E0, 0x000111E0}, {0x000111F5, 0x000111FF}, -{0x00011212, 0x00011212}, {0x0001123F, 0x0001127F}, {0x00011287, 0x00011287}, {0x00011289, 0x00011289}, -{0x0001128E, 0x0001128E}, {0x0001129E, 0x0001129E}, {0x000112AA, 0x000112AF}, {0x000112EB, 0x000112EF}, -{0x000112FA, 0x000112FF}, {0x00011304, 0x00011304}, {0x0001130D, 0x0001130E}, {0x00011311, 0x00011312}, -{0x00011329, 0x00011329}, {0x00011331, 0x00011331}, {0x00011334, 0x00011334}, {0x0001133A, 0x0001133A}, -{0x00011345, 0x00011346}, {0x00011349, 0x0001134A}, {0x0001134E, 0x0001134F}, {0x00011351, 0x00011356}, -{0x00011358, 0x0001135C}, {0x00011364, 0x00011365}, {0x0001136D, 0x0001136F}, {0x00011375, 0x000113FF}, -{0x0001145C, 0x0001145C}, {0x00011462, 0x0001147F}, {0x000114C8, 0x000114CF}, {0x000114DA, 0x0001157F}, -{0x000115B6, 0x000115B7}, {0x000115DE, 0x000115FF}, {0x00011645, 0x0001164F}, {0x0001165A, 0x0001165F}, -{0x0001166D, 0x0001167F}, {0x000116B9, 0x000116BF}, {0x000116CA, 0x000116FF}, {0x0001171B, 0x0001171C}, -{0x0001172C, 0x0001172F}, {0x00011740, 0x000117FF}, {0x0001183C, 0x0001189F}, {0x000118F3, 0x000118FE}, -{0x00011907, 0x00011908}, {0x0001190A, 0x0001190B}, {0x00011914, 0x00011914}, {0x00011917, 0x00011917}, -{0x00011936, 0x00011936}, {0x00011939, 0x0001193A}, {0x00011947, 0x0001194F}, {0x0001195A, 0x0001199F}, -{0x000119A8, 0x000119A9}, {0x000119D8, 0x000119D9}, {0x000119E5, 0x000119FF}, {0x00011A48, 0x00011A4F}, -{0x00011AA3, 0x00011ABF}, {0x00011AF9, 0x00011BFF}, {0x00011C09, 0x00011C09}, {0x00011C37, 0x00011C37}, +{0x0001057B, 0x0001057B}, {0x0001058B, 0x0001058B}, {0x00010593, 0x00010593}, {0x00010596, 0x00010596}, +{0x000105A2, 0x000105A2}, {0x000105B2, 0x000105B2}, {0x000105BA, 0x000105BA}, {0x000105BD, 0x000105FF}, +{0x00010737, 0x0001073F}, {0x00010756, 0x0001075F}, {0x00010768, 0x0001077F}, {0x00010786, 0x00010786}, +{0x000107B1, 0x000107B1}, {0x000107BB, 0x000107FF}, {0x00010806, 0x00010807}, {0x00010809, 0x00010809}, +{0x00010836, 0x00010836}, {0x00010839, 0x0001083B}, {0x0001083D, 0x0001083E}, {0x00010856, 0x00010856}, +{0x0001089F, 0x000108A6}, {0x000108B0, 0x000108DF}, {0x000108F3, 0x000108F3}, {0x000108F6, 0x000108FA}, +{0x0001091C, 0x0001091E}, {0x0001093A, 0x0001093E}, {0x00010940, 0x0001097F}, {0x000109B8, 0x000109BB}, +{0x000109D0, 0x000109D1}, {0x00010A04, 0x00010A04}, {0x00010A07, 0x00010A0B}, {0x00010A14, 0x00010A14}, +{0x00010A18, 0x00010A18}, {0x00010A36, 0x00010A37}, {0x00010A3B, 0x00010A3E}, {0x00010A49, 0x00010A4F}, +{0x00010A59, 0x00010A5F}, {0x00010AA0, 0x00010ABF}, {0x00010AE7, 0x00010AEA}, {0x00010AF7, 0x00010AFF}, +{0x00010B36, 0x00010B38}, {0x00010B56, 0x00010B57}, {0x00010B73, 0x00010B77}, {0x00010B92, 0x00010B98}, +{0x00010B9D, 0x00010BA8}, {0x00010BB0, 0x00010BFF}, {0x00010C49, 0x00010C7F}, {0x00010CB3, 0x00010CBF}, +{0x00010CF3, 0x00010CF9}, {0x00010D28, 0x00010D2F}, {0x00010D3A, 0x00010E5F}, {0x00010E7F, 0x00010E7F}, +{0x00010EAA, 0x00010EAA}, {0x00010EAE, 0x00010EAF}, {0x00010EB2, 0x00010EFC}, {0x00010F28, 0x00010F2F}, +{0x00010F5A, 0x00010F6F}, {0x00010F8A, 0x00010FAF}, {0x00010FCC, 0x00010FDF}, {0x00010FF7, 0x00010FFF}, +{0x0001104E, 0x00011051}, {0x00011076, 0x0001107E}, {0x000110BD, 0x000110BD}, {0x000110C3, 0x000110CF}, +{0x000110E9, 0x000110EF}, {0x000110FA, 0x000110FF}, {0x00011135, 0x00011135}, {0x00011148, 0x0001114F}, +{0x00011177, 0x0001117F}, {0x000111E0, 0x000111E0}, {0x000111F5, 0x000111FF}, {0x00011212, 0x00011212}, +{0x00011242, 0x0001127F}, {0x00011287, 0x00011287}, {0x00011289, 0x00011289}, {0x0001128E, 0x0001128E}, +{0x0001129E, 0x0001129E}, {0x000112AA, 0x000112AF}, {0x000112EB, 0x000112EF}, {0x000112FA, 0x000112FF}, +{0x00011304, 0x00011304}, {0x0001130D, 0x0001130E}, {0x00011311, 0x00011312}, {0x00011329, 0x00011329}, +{0x00011331, 0x00011331}, {0x00011334, 0x00011334}, {0x0001133A, 0x0001133A}, {0x00011345, 0x00011346}, +{0x00011349, 0x0001134A}, {0x0001134E, 0x0001134F}, {0x00011351, 0x00011356}, {0x00011358, 0x0001135C}, +{0x00011364, 0x00011365}, {0x0001136D, 0x0001136F}, {0x00011375, 0x000113FF}, {0x0001145C, 0x0001145C}, +{0x00011462, 0x0001147F}, {0x000114C8, 0x000114CF}, {0x000114DA, 0x0001157F}, {0x000115B6, 0x000115B7}, +{0x000115DE, 0x000115FF}, {0x00011645, 0x0001164F}, {0x0001165A, 0x0001165F}, {0x0001166D, 0x0001167F}, +{0x000116BA, 0x000116BF}, {0x000116CA, 0x000116FF}, {0x0001171B, 0x0001171C}, {0x0001172C, 0x0001172F}, +{0x00011747, 0x000117FF}, {0x0001183C, 0x0001189F}, {0x000118F3, 0x000118FE}, {0x00011907, 0x00011908}, +{0x0001190A, 0x0001190B}, {0x00011914, 0x00011914}, {0x00011917, 0x00011917}, {0x00011936, 0x00011936}, +{0x00011939, 0x0001193A}, {0x00011947, 0x0001194F}, {0x0001195A, 0x0001199F}, {0x000119A8, 0x000119A9}, +{0x000119D8, 0x000119D9}, {0x000119E5, 0x000119FF}, {0x00011A48, 0x00011A4F}, {0x00011AA3, 0x00011AAF}, +{0x00011AF9, 0x00011AFF}, {0x00011B0A, 0x00011BFF}, {0x00011C09, 0x00011C09}, {0x00011C37, 0x00011C37}, {0x00011C46, 0x00011C4F}, {0x00011C6D, 0x00011C6F}, {0x00011C90, 0x00011C91}, {0x00011CA8, 0x00011CA8}, {0x00011CB7, 0x00011CFF}, {0x00011D07, 0x00011D07}, {0x00011D0A, 0x00011D0A}, {0x00011D37, 0x00011D39}, {0x00011D3B, 0x00011D3B}, {0x00011D3E, 0x00011D3E}, {0x00011D48, 0x00011D4F}, {0x00011D5A, 0x00011D5F}, {0x00011D66, 0x00011D66}, {0x00011D69, 0x00011D69}, {0x00011D8F, 0x00011D8F}, {0x00011D92, 0x00011D92}, -{0x00011D99, 0x00011D9F}, {0x00011DAA, 0x00011EDF}, {0x00011EF9, 0x00011FAF}, {0x00011FB1, 0x00011FBF}, -{0x00011FF2, 0x00011FFE}, {0x0001239A, 0x000123FF}, {0x0001246F, 0x0001246F}, {0x00012475, 0x0001247F}, -{0x00012544, 0x00012FFF}, {0x0001342F, 0x000143FF}, {0x00014647, 0x000167FF}, {0x00016A39, 0x00016A3F}, -{0x00016A5F, 0x00016A5F}, {0x00016A6A, 0x00016A6D}, {0x00016A70, 0x00016ACF}, {0x00016AEE, 0x00016AEF}, -{0x00016AF6, 0x00016AFF}, {0x00016B46, 0x00016B4F}, {0x00016B5A, 0x00016B5A}, {0x00016B62, 0x00016B62}, -{0x00016B78, 0x00016B7C}, {0x00016B90, 0x00016E3F}, {0x00016E9B, 0x00016EFF}, {0x00016F4B, 0x00016F4E}, -{0x00016F88, 0x00016F8E}, {0x00016FA0, 0x00016FDF}, {0x00016FE5, 0x00016FEF}, {0x00016FF2, 0x00016FFF}, -{0x000187F8, 0x000187FF}, {0x00018CD6, 0x00018CFF}, {0x00018D09, 0x0001AFFF}, {0x0001B11F, 0x0001B14F}, -{0x0001B153, 0x0001B163}, {0x0001B168, 0x0001B16F}, {0x0001B2FC, 0x0001BBFF}, {0x0001BC6B, 0x0001BC6F}, -{0x0001BC7D, 0x0001BC7F}, {0x0001BC89, 0x0001BC8F}, {0x0001BC9A, 0x0001BC9B}, {0x0001BCA0, 0x0001CFFF}, -{0x0001D0F6, 0x0001D0FF}, {0x0001D127, 0x0001D128}, {0x0001D173, 0x0001D17A}, {0x0001D1E9, 0x0001D1FF}, -{0x0001D246, 0x0001D2DF}, {0x0001D2F4, 0x0001D2FF}, {0x0001D357, 0x0001D35F}, {0x0001D379, 0x0001D3FF}, -{0x0001D455, 0x0001D455}, {0x0001D49D, 0x0001D49D}, {0x0001D4A0, 0x0001D4A1}, {0x0001D4A3, 0x0001D4A4}, -{0x0001D4A7, 0x0001D4A8}, {0x0001D4AD, 0x0001D4AD}, {0x0001D4BA, 0x0001D4BA}, {0x0001D4BC, 0x0001D4BC}, -{0x0001D4C4, 0x0001D4C4}, {0x0001D506, 0x0001D506}, {0x0001D50B, 0x0001D50C}, {0x0001D515, 0x0001D515}, -{0x0001D51D, 0x0001D51D}, {0x0001D53A, 0x0001D53A}, {0x0001D53F, 0x0001D53F}, {0x0001D545, 0x0001D545}, -{0x0001D547, 0x0001D549}, {0x0001D551, 0x0001D551}, {0x0001D6A6, 0x0001D6A7}, {0x0001D7CC, 0x0001D7CD}, -{0x0001DA8C, 0x0001DA9A}, {0x0001DAA0, 0x0001DAA0}, {0x0001DAB0, 0x0001DFFF}, {0x0001E007, 0x0001E007}, -{0x0001E019, 0x0001E01A}, {0x0001E022, 0x0001E022}, {0x0001E025, 0x0001E025}, {0x0001E02B, 0x0001E0FF}, -{0x0001E12D, 0x0001E12F}, {0x0001E13E, 0x0001E13F}, {0x0001E14A, 0x0001E14D}, {0x0001E150, 0x0001E2BF}, -{0x0001E2FA, 0x0001E2FE}, {0x0001E300, 0x0001E7FF}, {0x0001E8C5, 0x0001E8C6}, {0x0001E8D7, 0x0001E8FF}, -{0x0001E94C, 0x0001E94F}, {0x0001E95A, 0x0001E95D}, {0x0001E960, 0x0001EC70}, {0x0001ECB5, 0x0001ED00}, -{0x0001ED3E, 0x0001EDFF}, {0x0001EE04, 0x0001EE04}, {0x0001EE20, 0x0001EE20}, {0x0001EE23, 0x0001EE23}, -{0x0001EE25, 0x0001EE26}, {0x0001EE28, 0x0001EE28}, {0x0001EE33, 0x0001EE33}, {0x0001EE38, 0x0001EE38}, -{0x0001EE3A, 0x0001EE3A}, {0x0001EE3C, 0x0001EE41}, {0x0001EE43, 0x0001EE46}, {0x0001EE48, 0x0001EE48}, -{0x0001EE4A, 0x0001EE4A}, {0x0001EE4C, 0x0001EE4C}, {0x0001EE50, 0x0001EE50}, {0x0001EE53, 0x0001EE53}, -{0x0001EE55, 0x0001EE56}, {0x0001EE58, 0x0001EE58}, {0x0001EE5A, 0x0001EE5A}, {0x0001EE5C, 0x0001EE5C}, -{0x0001EE5E, 0x0001EE5E}, {0x0001EE60, 0x0001EE60}, {0x0001EE63, 0x0001EE63}, {0x0001EE65, 0x0001EE66}, -{0x0001EE6B, 0x0001EE6B}, {0x0001EE73, 0x0001EE73}, {0x0001EE78, 0x0001EE78}, {0x0001EE7D, 0x0001EE7D}, -{0x0001EE7F, 0x0001EE7F}, {0x0001EE8A, 0x0001EE8A}, {0x0001EE9C, 0x0001EEA0}, {0x0001EEA4, 0x0001EEA4}, -{0x0001EEAA, 0x0001EEAA}, {0x0001EEBC, 0x0001EEEF}, {0x0001EEF2, 0x0001EFFF}, {0x0001F02C, 0x0001F02F}, -{0x0001F094, 0x0001F09F}, {0x0001F0AF, 0x0001F0B0}, {0x0001F0C0, 0x0001F0C0}, {0x0001F0D0, 0x0001F0D0}, -{0x0001F0F6, 0x0001F0FF}, {0x0001F1AE, 0x0001F1E5}, {0x0001F203, 0x0001F20F}, {0x0001F23C, 0x0001F23F}, -{0x0001F249, 0x0001F24F}, {0x0001F252, 0x0001F25F}, {0x0001F266, 0x0001F2FF}, {0x0001F6D8, 0x0001F6DF}, -{0x0001F6ED, 0x0001F6EF}, {0x0001F6FD, 0x0001F6FF}, {0x0001F774, 0x0001F77F}, {0x0001F7D9, 0x0001F7DF}, -{0x0001F7EC, 0x0001F7FF}, {0x0001F80C, 0x0001F80F}, {0x0001F848, 0x0001F84F}, {0x0001F85A, 0x0001F85F}, -{0x0001F888, 0x0001F88F}, {0x0001F8AE, 0x0001F8AF}, {0x0001F8B2, 0x0001F8FF}, {0x0001F979, 0x0001F979}, -{0x0001F9CC, 0x0001F9CC}, {0x0001FA54, 0x0001FA5F}, {0x0001FA6E, 0x0001FA6F}, {0x0001FA75, 0x0001FA77}, -{0x0001FA7B, 0x0001FA7F}, {0x0001FA87, 0x0001FA8F}, {0x0001FAA9, 0x0001FAAF}, {0x0001FAB7, 0x0001FABF}, -{0x0001FAC3, 0x0001FACF}, {0x0001FAD7, 0x0001FAFF}, {0x0001FB93, 0x0001FB93}, {0x0001FBCB, 0x0001FBEF}, -{0x0001FBFA, 0x0001FFFF}, {0x0002A6DE, 0x0002A6FF}, {0x0002B735, 0x0002B73F}, {0x0002B81E, 0x0002B81F}, -{0x0002CEA2, 0x0002CEAF}, {0x0002EBE1, 0x0002F7FF}, {0x0002FA1E, 0x0002FFFF}, {0x0003134B, 0x000E00FF}, -{0x000E01F0, 0x0010FFFF}, +{0x00011D99, 0x00011D9F}, {0x00011DAA, 0x00011EDF}, {0x00011EF9, 0x00011EFF}, {0x00011F11, 0x00011F11}, +{0x00011F3B, 0x00011F3D}, {0x00011F5A, 0x00011FAF}, {0x00011FB1, 0x00011FBF}, {0x00011FF2, 0x00011FFE}, +{0x0001239A, 0x000123FF}, {0x0001246F, 0x0001246F}, {0x00012475, 0x0001247F}, {0x00012544, 0x00012F8F}, +{0x00012FF3, 0x00012FFF}, {0x00013430, 0x0001343F}, {0x00013456, 0x000143FF}, {0x00014647, 0x000167FF}, +{0x00016A39, 0x00016A3F}, {0x00016A5F, 0x00016A5F}, {0x00016A6A, 0x00016A6D}, {0x00016ABF, 0x00016ABF}, +{0x00016ACA, 0x00016ACF}, {0x00016AEE, 0x00016AEF}, {0x00016AF6, 0x00016AFF}, {0x00016B46, 0x00016B4F}, +{0x00016B5A, 0x00016B5A}, {0x00016B62, 0x00016B62}, {0x00016B78, 0x00016B7C}, {0x00016B90, 0x00016E3F}, +{0x00016E9B, 0x00016EFF}, {0x00016F4B, 0x00016F4E}, {0x00016F88, 0x00016F8E}, {0x00016FA0, 0x00016FDF}, +{0x00016FE5, 0x00016FEF}, {0x00016FF2, 0x00016FFF}, {0x000187F8, 0x000187FF}, {0x00018CD6, 0x00018CFF}, +{0x00018D09, 0x0001AFEF}, {0x0001AFF4, 0x0001AFF4}, {0x0001AFFC, 0x0001AFFC}, {0x0001AFFF, 0x0001AFFF}, +{0x0001B123, 0x0001B131}, {0x0001B133, 0x0001B14F}, {0x0001B153, 0x0001B154}, {0x0001B156, 0x0001B163}, +{0x0001B168, 0x0001B16F}, {0x0001B2FC, 0x0001BBFF}, {0x0001BC6B, 0x0001BC6F}, {0x0001BC7D, 0x0001BC7F}, +{0x0001BC89, 0x0001BC8F}, {0x0001BC9A, 0x0001BC9B}, {0x0001BCA0, 0x0001CEFF}, {0x0001CF2E, 0x0001CF2F}, +{0x0001CF47, 0x0001CF4F}, {0x0001CFC4, 0x0001CFFF}, {0x0001D0F6, 0x0001D0FF}, {0x0001D127, 0x0001D128}, +{0x0001D173, 0x0001D17A}, {0x0001D1EB, 0x0001D1FF}, {0x0001D246, 0x0001D2BF}, {0x0001D2D4, 0x0001D2DF}, +{0x0001D2F4, 0x0001D2FF}, {0x0001D357, 0x0001D35F}, {0x0001D379, 0x0001D3FF}, {0x0001D455, 0x0001D455}, +{0x0001D49D, 0x0001D49D}, {0x0001D4A0, 0x0001D4A1}, {0x0001D4A3, 0x0001D4A4}, {0x0001D4A7, 0x0001D4A8}, +{0x0001D4AD, 0x0001D4AD}, {0x0001D4BA, 0x0001D4BA}, {0x0001D4BC, 0x0001D4BC}, {0x0001D4C4, 0x0001D4C4}, +{0x0001D506, 0x0001D506}, {0x0001D50B, 0x0001D50C}, {0x0001D515, 0x0001D515}, {0x0001D51D, 0x0001D51D}, +{0x0001D53A, 0x0001D53A}, {0x0001D53F, 0x0001D53F}, {0x0001D545, 0x0001D545}, {0x0001D547, 0x0001D549}, +{0x0001D551, 0x0001D551}, {0x0001D6A6, 0x0001D6A7}, {0x0001D7CC, 0x0001D7CD}, {0x0001DA8C, 0x0001DA9A}, +{0x0001DAA0, 0x0001DAA0}, {0x0001DAB0, 0x0001DEFF}, {0x0001DF1F, 0x0001DF24}, {0x0001DF2B, 0x0001DFFF}, +{0x0001E007, 0x0001E007}, {0x0001E019, 0x0001E01A}, {0x0001E022, 0x0001E022}, {0x0001E025, 0x0001E025}, +{0x0001E02B, 0x0001E02F}, {0x0001E06E, 0x0001E08E}, {0x0001E090, 0x0001E0FF}, {0x0001E12D, 0x0001E12F}, +{0x0001E13E, 0x0001E13F}, {0x0001E14A, 0x0001E14D}, {0x0001E150, 0x0001E28F}, {0x0001E2AF, 0x0001E2BF}, +{0x0001E2FA, 0x0001E2FE}, {0x0001E300, 0x0001E4CF}, {0x0001E4FA, 0x0001E7DF}, {0x0001E7E7, 0x0001E7E7}, +{0x0001E7EC, 0x0001E7EC}, {0x0001E7EF, 0x0001E7EF}, {0x0001E7FF, 0x0001E7FF}, {0x0001E8C5, 0x0001E8C6}, +{0x0001E8D7, 0x0001E8FF}, {0x0001E94C, 0x0001E94F}, {0x0001E95A, 0x0001E95D}, {0x0001E960, 0x0001EC70}, +{0x0001ECB5, 0x0001ED00}, {0x0001ED3E, 0x0001EDFF}, {0x0001EE04, 0x0001EE04}, {0x0001EE20, 0x0001EE20}, +{0x0001EE23, 0x0001EE23}, {0x0001EE25, 0x0001EE26}, {0x0001EE28, 0x0001EE28}, {0x0001EE33, 0x0001EE33}, +{0x0001EE38, 0x0001EE38}, {0x0001EE3A, 0x0001EE3A}, {0x0001EE3C, 0x0001EE41}, {0x0001EE43, 0x0001EE46}, +{0x0001EE48, 0x0001EE48}, {0x0001EE4A, 0x0001EE4A}, {0x0001EE4C, 0x0001EE4C}, {0x0001EE50, 0x0001EE50}, +{0x0001EE53, 0x0001EE53}, {0x0001EE55, 0x0001EE56}, {0x0001EE58, 0x0001EE58}, {0x0001EE5A, 0x0001EE5A}, +{0x0001EE5C, 0x0001EE5C}, {0x0001EE5E, 0x0001EE5E}, {0x0001EE60, 0x0001EE60}, {0x0001EE63, 0x0001EE63}, +{0x0001EE65, 0x0001EE66}, {0x0001EE6B, 0x0001EE6B}, {0x0001EE73, 0x0001EE73}, {0x0001EE78, 0x0001EE78}, +{0x0001EE7D, 0x0001EE7D}, {0x0001EE7F, 0x0001EE7F}, {0x0001EE8A, 0x0001EE8A}, {0x0001EE9C, 0x0001EEA0}, +{0x0001EEA4, 0x0001EEA4}, {0x0001EEAA, 0x0001EEAA}, {0x0001EEBC, 0x0001EEEF}, {0x0001EEF2, 0x0001EFFF}, +{0x0001F02C, 0x0001F02F}, {0x0001F094, 0x0001F09F}, {0x0001F0AF, 0x0001F0B0}, {0x0001F0C0, 0x0001F0C0}, +{0x0001F0D0, 0x0001F0D0}, {0x0001F0F6, 0x0001F0FF}, {0x0001F1AE, 0x0001F1E5}, {0x0001F203, 0x0001F20F}, +{0x0001F23C, 0x0001F23F}, {0x0001F249, 0x0001F24F}, {0x0001F252, 0x0001F25F}, {0x0001F266, 0x0001F2FF}, +{0x0001F6D8, 0x0001F6DB}, {0x0001F6ED, 0x0001F6EF}, {0x0001F6FD, 0x0001F6FF}, {0x0001F777, 0x0001F77A}, +{0x0001F7DA, 0x0001F7DF}, {0x0001F7EC, 0x0001F7EF}, {0x0001F7F1, 0x0001F7FF}, {0x0001F80C, 0x0001F80F}, +{0x0001F848, 0x0001F84F}, {0x0001F85A, 0x0001F85F}, {0x0001F888, 0x0001F88F}, {0x0001F8AE, 0x0001F8AF}, +{0x0001F8B2, 0x0001F8FF}, {0x0001FA54, 0x0001FA5F}, {0x0001FA6E, 0x0001FA6F}, {0x0001FA7D, 0x0001FA7F}, +{0x0001FA89, 0x0001FA8F}, {0x0001FABE, 0x0001FABE}, {0x0001FAC6, 0x0001FACD}, {0x0001FADC, 0x0001FADF}, +{0x0001FAE9, 0x0001FAEF}, {0x0001FAF9, 0x0001FAFF}, {0x0001FB93, 0x0001FB93}, {0x0001FBCB, 0x0001FBEF}, +{0x0001FBFA, 0x0001FFFF}, {0x0002A6E0, 0x0002A6FF}, {0x0002B73A, 0x0002B73F}, {0x0002B81E, 0x0002B81F}, +{0x0002CEA2, 0x0002CEAF}, {0x0002EBE1, 0x0002F7FF}, {0x0002FA1E, 0x0002FFFF}, {0x0003134B, 0x0003134F}, +{0x000323B0, 0x000E00FF}, {0x000E01F0, 0x0010FFFF}, }; const std::multimap unicode_map_nfd = { diff --git a/unicode-data.h b/unicode-data.h index b99500b8f..3cf84117c 100644 --- a/unicode-data.h +++ b/unicode-data.h @@ -5,12 +5,12 @@ #include #include -extern const std::vector> unicode_ranges_digit; +extern const std::vector> unicode_ranges_number; extern const std::vector> unicode_ranges_letter; extern const std::vector> unicode_ranges_whitespace; extern const std::vector> unicode_ranges_accent_mark; extern const std::vector> unicode_ranges_punctuation; extern const std::vector> unicode_ranges_symbol; extern const std::vector> unicode_ranges_control; -extern const std::multimap unicode_map_nfd; -extern const std::map unicode_map_lowercase; +extern const std::multimap unicode_map_nfd; +extern const std::map unicode_map_lowercase; diff --git a/unicode.cpp b/unicode.cpp index df8c5f581..955c56965 100644 --- a/unicode.cpp +++ b/unicode.cpp @@ -5,11 +5,14 @@ #include #include #include +#include #include #include #include #include #include +#include +#include static std::string unicode_cpts_to_utf8(const std::vector & cps) { std::string result; @@ -53,23 +56,22 @@ static uint32_t unicode_cpt_from_utf8(const std::string & utf8, size_t & offset) offset += 4; return result; } - throw std::invalid_argument("invalid string"); + throw std::invalid_argument("failed to convert utf8 to codepoint"); } -static std::vector unicode_cpt_to_utf16(uint32_t cp) { - std::vector result; - if (/* 0x0000 <= cp && */ cp <= 0xffff) { - result.emplace_back(cp); - } - else if (0x10000 <= cp && cp <= 0x10ffff) { - result.emplace_back(0xd800 | ((cp - 0x10000) >> 10)); - result.emplace_back(0xdc00 | ((cp - 0x10000) & 0x03ff)); - } - else { - throw std::invalid_argument("invalid cpt"); - } - return result; -} +//static std::vector unicode_cpt_to_utf16(uint32_t cp) { +// std::vector result; +// if (/* 0x0000 <= cp && */ cp <= 0xffff) { +// result.emplace_back(cp); +// return result; +// } +// if (0x10000 <= cp && cp <= 0x10ffff) { +// result.emplace_back(0xd800 | ((cp - 0x10000) >> 10)); +// result.emplace_back(0xdc00 | ((cp - 0x10000) & 0x03ff)); +// return result; +// } +// throw std::invalid_argument("failed to convert codepoint to utf16"); +//} //static std::vector unicode_cpts_to_utf16(const std::vector & cps) { // std::vector result; @@ -80,37 +82,37 @@ static std::vector unicode_cpt_to_utf16(uint32_t cp) { // return result; //} -static uint32_t cpt_from_utf16(const std::vector & utf16, size_t & offset) { - assert(offset < utf16.size()); - if (((utf16[0] >> 10) << 10) != 0xd800) { - auto result = utf16[offset + 0]; - offset += 1; - return result; - } - - if (offset + 1 >= utf16.size() || !((utf16[1] & 0xdc00) == 0xdc00)) { - throw std::invalid_argument("invalid character"); - } - - auto result = 0x10000 + (((utf16[0] & 0x03ff) << 10) | (utf16[1] & 0x03ff)); - offset += 2; - return result; -} +//static uint32_t unicode_cpt_from_utf16(const std::vector & utf16, size_t & offset) { +// assert(offset < utf16.size()); +// if (((utf16[0] >> 10) << 10) != 0xd800) { +// auto result = utf16[offset + 0]; +// offset += 1; +// return result; +// } +// +// if (offset + 1 >= utf16.size() || !((utf16[1] & 0xdc00) == 0xdc00)) { +// throw std::invalid_argument("invalid character"); +// } +// +// auto result = 0x10000 + (((utf16[0] & 0x03ff) << 10) | (utf16[1] & 0x03ff)); +// offset += 2; +// return result; +//} //static std::vector unicode_cpts_from_utf16(const std::vector & utf16) { // std::vector result; // size_t offset = 0; // while (offset < utf16.size()) { -// result.push_back(cpt_from_utf16(utf16, offset)); +// result.push_back(unicode_cpt_from_utf16(utf16, offset)); // } // return result; //} static std::unordered_map unicode_cpt_type_map() { std::unordered_map cpt_types; - for (auto p : unicode_ranges_digit) { + for (auto p : unicode_ranges_number) { for (auto i = p.first; i <= p.second; ++ i) { - cpt_types[i] = CODEPOINT_TYPE_DIGIT; + cpt_types[i] = CODEPOINT_TYPE_NUMBER; } } for (auto p : unicode_ranges_letter) { @@ -194,34 +196,277 @@ static std::unordered_map unicode_utf8_to_byte_map() { return map; } +static inline std::wstring unicode_wstring_from_utf8(const std::string & s) { + std::wstring_convert> conv; + return conv.from_bytes(s); +} + +static std::vector unicode_byte_encoding_process(const std::vector & bpe_words) { + std::vector bpe_encoded_words; + for (const auto & word : bpe_words) { + std::string text_utf; + auto utf_word = unicode_cpts_from_utf8(word); + for (size_t i = 0; i < utf_word.size(); ++i) { + text_utf += unicode_cpt_to_utf8(utf_word[i]); + } + + std::string encoded_token; + for (char & c : text_utf) { + encoded_token += unicode_byte_to_utf8(c); + } + bpe_encoded_words.emplace_back(encoded_token); + } + return bpe_encoded_words; +} + +// GPT2 system regex: 's|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+ +static std::vector unicode_regex_split_custom_gpt2(const std::string & text, const std::vector & offsets) { + std::vector bpe_offsets; // store the offset of each word + bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size + + size_t start = 0; + + const auto cpts = unicode_cpts_from_utf8(text); + + for (auto offset : offsets) { + std::string token; + + bool collecting_numeric = false; + bool collecting_letter = false; + bool collecting_special = false; + bool collecting_whitespace_lookahead = false; + bool collecting = false; + + std::vector text_utf; + text_utf.reserve(offset); + + for (size_t i = start; i < start + offset; ++i) { + text_utf.emplace_back(unicode_cpt_to_utf8(cpts[i])); + } + + for (int i = 0; i < (int)text_utf.size(); i++) { + const std::string & utf_char = text_utf[i]; + bool split_condition = false; + int bytes_remain = text_utf.size() - i; + + // forward backward lookups + const std::string & utf_char_next = (i + 1 < (int)text_utf.size()) ? text_utf[i + 1] : ""; + const std::string & utf_char_next_next = (i + 2 < (int)text_utf.size()) ? text_utf[i + 2] : ""; + + // handling contractions + if (!split_condition && bytes_remain >= 2) { + // 's|'t|'m|'d + if (utf_char == "\'" && (utf_char_next == "s" || utf_char_next == "t" || utf_char_next == "m" || utf_char_next == "d")) { + split_condition = true; + } + if (split_condition) { + if (token.size()) { + bpe_offsets.emplace_back(unicode_cpts_from_utf8(token).size()); + } + token = utf_char + utf_char_next; + bpe_offsets.emplace_back(unicode_cpts_from_utf8(token).size()); + token = ""; + i++; + continue; + } + } + if (!split_condition && bytes_remain >= 3) { + // 're|'ve|'ll + if (utf_char == "\'" && ( + (utf_char_next == "r" && utf_char_next_next == "e") || + (utf_char_next == "v" && utf_char_next_next == "e") || + (utf_char_next == "l" && utf_char_next_next == "l")) + ) { + split_condition = true; + } + if (split_condition) { + // current token + next token can be defined + if (token.size()) { + bpe_offsets.emplace_back(unicode_cpts_from_utf8(token).size()); + } + token = utf_char; + token += utf_char_next; + token += utf_char_next_next; + + bpe_offsets.emplace_back(unicode_cpts_from_utf8(token).size()); + token = ""; + i += 2; + continue; + } + } + + if (!split_condition && !collecting) { + if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_LETTER || (token.empty() && utf_char == " " && unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_LETTER)) { + collecting_letter = true; + collecting = true; + } + else if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_NUMBER || (token.empty() && utf_char == " " && unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_NUMBER)) { + collecting_numeric = true; + collecting = true; + } + else if ( + ((unicode_cpt_type(utf_char) != CODEPOINT_TYPE_LETTER && unicode_cpt_type(utf_char) != CODEPOINT_TYPE_NUMBER) && (unicode_cpt_type(utf_char) != CODEPOINT_TYPE_WHITESPACE)) || + (token.empty() && utf_char == " " && unicode_cpt_type(utf_char_next) != CODEPOINT_TYPE_LETTER && unicode_cpt_type(utf_char_next) != CODEPOINT_TYPE_NUMBER && unicode_cpt_type(utf_char_next) != CODEPOINT_TYPE_WHITESPACE) + ) { + collecting_special = true; + collecting = true; + } + else if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_WHITESPACE && unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_WHITESPACE) { + collecting_whitespace_lookahead = true; + collecting = true; + } + else if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_WHITESPACE) { + split_condition = true; + } + } + else if (!split_condition && collecting) { + if (collecting_letter && unicode_cpt_type(utf_char) != CODEPOINT_TYPE_LETTER) { + split_condition = true; + } + else if (collecting_numeric && unicode_cpt_type(utf_char) != CODEPOINT_TYPE_NUMBER) { + split_condition = true; + } + else if (collecting_special && (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_LETTER || unicode_cpt_type(utf_char) == CODEPOINT_TYPE_NUMBER || unicode_cpt_type(utf_char) == CODEPOINT_TYPE_WHITESPACE)) { + split_condition = true; + } + else if (collecting_whitespace_lookahead && (unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_LETTER || unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_NUMBER)) { + split_condition = true; + } + } + + if (utf_char_next == "") { + split_condition = true; // final + token += utf_char; + } + + if (split_condition) { + if (token.size()) { + bpe_offsets.emplace_back(unicode_cpts_from_utf8(token).size()); + } + token = utf_char; + collecting = false; + collecting_letter = false; + collecting_numeric = false; + collecting_special = false; + collecting_whitespace_lookahead = false; + } + else { + token += utf_char; + } + } + + start += offset; + } + + return bpe_offsets; +} + +// use std::wregex to split the text +static std::vector unicode_regex_split_stl(const std::wstring & wtext, const std::wstring & regex_expr, const std::vector & offsets) { + std::wregex expr(regex_expr); + std::vector bpe_offsets; // store the offset of each word + bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size + size_t start = 0; + for (auto offset : offsets) { + std::wcregex_iterator it(wtext.data() + start, wtext.data() + start + offset, expr); + std::wcregex_iterator end; + + int64_t start_idx = 0; + while (it != end) { + std::wcmatch match = *it; + if (match.position() > start_idx) { + bpe_offsets.emplace_back(match.position() - start_idx); + } + bpe_offsets.emplace_back(match.length()); + start_idx = match.position() + match.length(); + ++it; + } + + if (start_idx < (int64_t) offset) { + bpe_offsets.emplace_back(offset - start_idx); + } + start += offset; + } + + return bpe_offsets; +} + +// use std::regex to split the text +static std::vector unicode_regex_split_stl(const std::string & text, const std::string & regex_expr, const std::vector & offsets) { + std::regex expr(regex_expr); + std::vector bpe_offsets; // store the offset of each word + bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size + size_t start = 0; + for (auto offset : offsets) { + std::cregex_iterator it(text.data() + start, text.data() + start + offset, expr); + std::cregex_iterator end; + + int64_t start_idx = 0; + while (it != end) { + std::cmatch match = *it; + if (match.position() > start_idx) { + bpe_offsets.emplace_back(match.position() - start_idx); + } + bpe_offsets.emplace_back(match.length()); + start_idx = match.position() + match.length(); + ++it; + } + + if (start_idx < (int64_t) offset) { + bpe_offsets.emplace_back(offset - start_idx); + } + start += offset; + } + + return bpe_offsets; +} + +static std::vector unicode_regex_split_custom(const std::string & text, const std::string & regex_expr, const std::vector & offsets) { + std::vector bpe_offsets; + + (void)(text); + (void)(regex_expr); + (void)(offsets); + // TODO: this implementation is actually wrong, uncomment and run: + // make -j && ./bin/test-tokenizer-0 ../models/ggml-vocab-gpt-2.gguf + //if (regex_expr == "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)") { + // bpe_offsets = unicode_regex_split_custom_gpt2(text, offsets); + //} + + return bpe_offsets; +} + // // interface // std::string unicode_cpt_to_utf8(uint32_t cp) { std::string result; + if (/* 0x00 <= cp && */ cp <= 0x7f) { result.push_back(cp); + return result; } - else if (0x80 <= cp && cp <= 0x7ff) { + if (0x80 <= cp && cp <= 0x7ff) { result.push_back(0xc0 | ((cp >> 6) & 0x1f)); result.push_back(0x80 | (cp & 0x3f)); + return result; } - else if (0x800 <= cp && cp <= 0xffff) { + if (0x800 <= cp && cp <= 0xffff) { result.push_back(0xe0 | ((cp >> 12) & 0x0f)); result.push_back(0x80 | ((cp >> 6) & 0x3f)); result.push_back(0x80 | (cp & 0x3f)); + return result; } - else if (0x10000 <= cp && cp <= 0x10ffff) { + if (0x10000 <= cp && cp <= 0x10ffff) { result.push_back(0xf0 | ((cp >> 18) & 0x07)); result.push_back(0x80 | ((cp >> 12) & 0x3f)); result.push_back(0x80 | ((cp >> 6) & 0x3f)); result.push_back(0x80 | (cp & 0x3f)); + return result; } - else { - throw std::invalid_argument("invalid codepoint"); - } - return result; + + throw std::invalid_argument("invalid codepoint"); } std::vector unicode_cpts_normalize_nfd(const std::vector & cpts) { @@ -275,3 +520,167 @@ char32_t unicode_tolower(char32_t cp) { auto it = unicode_map_lowercase.find(cp); return it == unicode_map_lowercase.end() ? cp : it->second; } + +std::vector unicode_regex_split(const std::string & text, const std::vector & regex_exprs) { + // unicode categories + static const std::map k_ucat_enum = { + { "\\p{N}", CODEPOINT_TYPE_NUMBER }, + { "\\p{L}", CODEPOINT_TYPE_LETTER }, + { "\\p{P}", CODEPOINT_TYPE_PUNCTUATION }, + }; + + static const std::map k_ucat_cpt = { + { CODEPOINT_TYPE_NUMBER, 0xD1 }, + { CODEPOINT_TYPE_LETTER, 0xD2 }, + { CODEPOINT_TYPE_PUNCTUATION, 0xD3 }, + }; + + static const std::map k_ucat_map = { + { CODEPOINT_TYPE_NUMBER, "\x30-\x39" }, // 0-9 + { CODEPOINT_TYPE_LETTER, "\x41-\x5A\x61-\x7A" }, // A-Za-z + { CODEPOINT_TYPE_PUNCTUATION, "\x21-\x23\x25-\x2A\x2C-\x2F\x3A-\x3B\x3F-\x40\\\x5B-\\\x5D\x5F\\\x7B\\\x7D" }, // !-#%-*,-/:-;?-@\[-\]_\{\} + }; + + // compute collapsed codepoints only if needed by at least one regex + bool need_collapse = false; + for (auto & regex_expr : regex_exprs) { + // search for unicode categories + for (const auto & ucat : k_ucat_enum) { + if (std::string::npos != regex_expr.find(ucat.first)) { + need_collapse = true; + break; + } + } + } + + const auto cpts = unicode_cpts_from_utf8(text); + + // generate a "collapsed" representation of the text, where all codepoints are replaced by a single byte + // ref: https://github.com/ggerganov/llama.cpp/pull/6920#issuecomment-2081479935 + std::string text_collapsed; + if (need_collapse) { + // collapse all unicode categories + text_collapsed.resize(cpts.size()); + + for (size_t i = 0; i < cpts.size(); ++i) { + // keep single-byte codepoints as is + if (cpts[i] < 128) { + text_collapsed[i] = cpts[i]; + continue; + } + + const int cpt_type = unicode_cpt_type(cpts[i]); + + if (k_ucat_cpt.find(cpt_type) != k_ucat_cpt.end()) { + text_collapsed[i] = k_ucat_cpt.at(cpt_type); + } else { + text_collapsed[i] = (char) 0xD0; // fallback + } + } + } + + std::vector bpe_offsets = { cpts.size() }; + + for (auto & regex_expr : regex_exprs) { + // first, see if we have an efficient custom regex implementation + auto tmp = unicode_regex_split_custom(text, regex_expr, bpe_offsets); + + if (!tmp.empty()) { + bpe_offsets = std::move(tmp); + continue; + } + + // fallback to general-purpose std::regex / std::wregex + try { + // if a unicode category is used in the regex, we use the collapsed text and replace the unicode category + // with the corresponding collapsed representation + bool use_collapsed = false; + for (auto & ucat : k_ucat_enum) { + if (std::string::npos != regex_expr.find(ucat.first)) { + use_collapsed = true; + break; + } + } + + if (use_collapsed) { + // sanity-check that the original regex does not contain any non-ASCII characters + const auto cpts_regex = unicode_cpts_from_utf8(regex_expr); + for (size_t i = 0; i < cpts_regex.size(); ++i) { + if (cpts_regex[i] >= 128) { + throw std::runtime_error("Regex includes both unicode categories and non-ASCII characters - not supported"); + } + } + + // generate a collapsed representation of the regex + std::string regex_expr_collapsed; + + // track if we are inside [], because nested [] are not allowed + bool inside = false; + for (size_t i = 0; i < regex_expr.size(); ++i) { + if (regex_expr[i] == '[' && (i == 0 || regex_expr[i - 1] != '\\')) { + regex_expr_collapsed += '['; + inside = true; + continue; + } + + if (inside && regex_expr[i] == ']' && regex_expr[i - 1] != '\\') { + regex_expr_collapsed += ']'; + inside = false; + continue; + } + + if (regex_expr[i + 0] == '\\' && i + 4 < regex_expr.size() && + regex_expr[i + 1] == 'p' && + regex_expr[i + 2] == '{' && + regex_expr[i + 4] == '}') { + const std::string pat = regex_expr.substr(i, 5); + if (k_ucat_enum.find(pat) != k_ucat_enum.end()) { + if (!inside) { + regex_expr_collapsed += '['; + } + regex_expr_collapsed += k_ucat_cpt.at(k_ucat_enum.at(pat)); + regex_expr_collapsed += k_ucat_map.at(k_ucat_enum.at(pat)); + if (!inside) { + regex_expr_collapsed += ']'; + } + i += 4; + continue; + } + } + + regex_expr_collapsed += regex_expr[i]; + } + + //printf("text_collapsed: %s\n", text_collapsed.c_str()); + //printf("regex_expr_collapsed: %s\n", regex_expr_collapsed.c_str()); + bpe_offsets = unicode_regex_split_stl(text_collapsed, regex_expr_collapsed, bpe_offsets); + } else { + // no unicode category used, we can use std::wregex directly + const std::wstring wtext = unicode_wstring_from_utf8(text); + const std::wstring wregex_expr = unicode_wstring_from_utf8(regex_expr); + + //printf("text: %s\n", text.c_str()); + //printf("regex_expr: %s\n", regex_expr.c_str()); + bpe_offsets = unicode_regex_split_stl(wtext, wregex_expr, bpe_offsets); + } + } catch (std::regex_error & e) { + fprintf(stderr, "Failed to process regex: '%s'\n", regex_expr.c_str()); + fprintf(stderr, "Regex error: %s\n", e.what()); + throw std::runtime_error("Failed to process regex"); + } + } + + std::vector bpe_words; + bpe_words.reserve(bpe_offsets.size()); // reserve memory for the approximate size + + size_t start = 0; + for (size_t & offset : bpe_offsets) { + bpe_words.emplace_back(); + for (size_t i = start; i < start + offset; ++i) { + bpe_words.back() += unicode_cpt_to_utf8(cpts[i]); + } + start += offset; + } + + return unicode_byte_encoding_process(bpe_words); +} diff --git a/unicode.h b/unicode.h index 6a0be393a..e9026dc81 100644 --- a/unicode.h +++ b/unicode.h @@ -5,7 +5,7 @@ #include #define CODEPOINT_TYPE_UNIDENTIFIED 0 -#define CODEPOINT_TYPE_DIGIT 1 +#define CODEPOINT_TYPE_NUMBER 1 #define CODEPOINT_TYPE_LETTER 2 #define CODEPOINT_TYPE_WHITESPACE 3 #define CODEPOINT_TYPE_ACCENT_MARK 4 @@ -24,5 +24,6 @@ int unicode_cpt_type(const std::string & utf8); std::string unicode_byte_to_utf8(uint8_t byte); uint8_t unicode_utf8_to_byte(const std::string & utf8); -// simple tolower that only implements one-to-one mapping, not one-to-many char32_t unicode_tolower(char32_t cp); + +std::vector unicode_regex_split(const std::string & text, const std::vector & regex_exprs);