diff --git a/src/llama.cpp b/src/llama.cpp index c35ba3978..c631cc768 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -238,8 +238,8 @@ static const std::map LLM_ARCH_NAMES = { { LLM_ARCH_OLMOE, "olmoe" }, { LLM_ARCH_OPENELM, "openelm" }, { LLM_ARCH_ARCTIC, "arctic" }, - { LLM_ARCH_DEEPSEEK2, "deepseek2" }, { LLM_ARCH_DEEPSEEK, "deepseek" }, + { LLM_ARCH_DEEPSEEK2, "deepseek2" }, { LLM_ARCH_CHATGLM, "chatglm" }, { LLM_ARCH_BITNET, "bitnet" }, { LLM_ARCH_T5, "t5" }, @@ -1290,6 +1290,33 @@ static const std::map> LLM_TENSOR_N { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, }, }, + { + LLM_ARCH_DEEPSEEK, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, + { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" }, + { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" }, + { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, + { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" }, + { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" }, + { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" }, + { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" }, + }, + }, { LLM_ARCH_DEEPSEEK2, { @@ -1319,33 +1346,6 @@ static const std::map> LLM_TENSOR_N { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" }, }, }, - { - LLM_ARCH_DEEPSEEK, - { - { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, - { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, - { LLM_TENSOR_OUTPUT, "output" }, - { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, - { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, - { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, - { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, - { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, - { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, - { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, - { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" }, - { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, - { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, - { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, - { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, - { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" }, - { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" }, - { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, - { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" }, - { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" }, - { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" }, - { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" }, - }, - }, { LLM_ARCH_CHATGLM, { @@ -6088,6 +6088,19 @@ static void llm_load_hparams( model.type = e_model::MODEL_UNKNOWN; } } break; + case LLM_ARCH_DEEPSEEK: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead); + ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp); + ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared); + ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale); + + switch (hparams.n_layer) { + case 28: model.type = e_model::MODEL_20B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; case LLM_ARCH_DEEPSEEK2: { bool is_lite = (hparams.n_layer == 27); @@ -6108,19 +6121,6 @@ static void llm_load_hparams( default: model.type = e_model::MODEL_UNKNOWN; } } break; - case LLM_ARCH_DEEPSEEK: - { - ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); - ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead); - ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp); - ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared); - ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale); - - switch (hparams.n_layer) { - case 28: model.type = e_model::MODEL_20B; break; - default: model.type = e_model::MODEL_UNKNOWN; - } - } break; case LLM_ARCH_CHATGLM: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); @@ -7099,6 +7099,13 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) { LLAMA_LOG_INFO("%s: max token length = %d\n", __func__, vocab.max_token_len); + if (model.arch == LLM_ARCH_DEEPSEEK) { + LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead); + LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp); + LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared); + LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale); + } + if (model.arch == LLM_ARCH_DEEPSEEK2) { LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead); LLAMA_LOG_INFO("%s: n_lora_q = %d\n", __func__, hparams.n_lora_q); @@ -7109,13 +7116,6 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) { LLAMA_LOG_INFO("%s: rope_yarn_log_mul = %.4f\n", __func__, hparams.rope_yarn_log_mul); } - if (model.arch == LLM_ARCH_DEEPSEEK) { - LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead); - LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp); - LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared); - LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale); - } - if (model.arch == LLM_ARCH_QWEN2MOE) { LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp); LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp); @@ -22121,32 +22121,6 @@ static int32_t llama_chat_apply_template_internal( if (add_ass) { ss << "<|im_start|>assistant\n"; } - } else if (tmpl == LLM_CHAT_TEMPLATE_GIGACHAT) { - // GigaChat template - bool has_system = !chat.empty() && std::string(chat[0]->role) == "system"; - - // Handle system message if present - if (has_system) { - ss << "" << chat[0]->content << "<|message_sep|>"; - } else { - ss << ""; - } - - // Process remaining messages - for (size_t i = has_system ? 1 : 0; i < chat.size(); i++) { - std::string role(chat[i]->role); - if (role == "user") { - ss << "user<|role_sep|>" << chat[i]->content << "<|message_sep|>" - << "available functions<|role_sep|>[]<|message_sep|>"; - } else if (role == "assistant") { - ss << "assistant<|role_sep|>" << chat[i]->content << "<|message_sep|>"; - } - } - - // Add generation prompt if needed - if (add_ass) { - ss << "assistant<|role_sep|>"; - } } else if (tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V7) { // Official mistral 'v7' template // See: https://huggingface.co/mistralai/Mistral-Large-Instruct-2411#basic-instruct-template-v7 @@ -22450,6 +22424,32 @@ static int32_t llama_chat_apply_template_internal( if (add_ass) { ss << "<|start_of_role|>assistant<|end_of_role|>\n"; } + } else if (tmpl == LLM_CHAT_TEMPLATE_GIGACHAT) { + // GigaChat template + bool has_system = !chat.empty() && std::string(chat[0]->role) == "system"; + + // Handle system message if present + if (has_system) { + ss << "" << chat[0]->content << "<|message_sep|>"; + } else { + ss << ""; + } + + // Process remaining messages + for (size_t i = has_system ? 1 : 0; i < chat.size(); i++) { + std::string role(chat[i]->role); + if (role == "user") { + ss << "user<|role_sep|>" << chat[i]->content << "<|message_sep|>" + << "available functions<|role_sep|>[]<|message_sep|>"; + } else if (role == "assistant") { + ss << "assistant<|role_sep|>" << chat[i]->content << "<|message_sep|>"; + } + } + + // Add generation prompt if needed + if (add_ass) { + ss << "assistant<|role_sep|>"; + } } else { // template not supported return -1;