Unicode codepoint flags for custom regexs (#7245)
* Replace CODEPOINT_TYPE_* with codepoint_flags * Update and bugfix brute force random test * Deterministic brute force random test * Unicode normalization NFD * Get rid of BOM
This commit is contained in:
parent
0fc1e820a9
commit
b43272afa2
7 changed files with 7299 additions and 2409 deletions
|
@ -1,5 +1,5 @@
|
|||
# Test libllama tokenizer == AutoTokenizer.
|
||||
# Brute force random tokens/text generation.
|
||||
# Brute force random words/text generation.
|
||||
#
|
||||
# Sample usage:
|
||||
#
|
||||
|
@ -12,10 +12,10 @@ import argparse
|
|||
import subprocess
|
||||
import random
|
||||
|
||||
from typing import Iterator
|
||||
from typing import Callable, Iterator
|
||||
|
||||
import cffi
|
||||
from transformers import AutoTokenizer, PreTrainedTokenizerBase
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
logger = logging.getLogger("test-tokenizer-random-bpe")
|
||||
|
||||
|
@ -145,28 +145,35 @@ def generator_custom_text() -> Iterator[str]:
|
|||
def generator_custom_text_edge_cases() -> Iterator[str]:
|
||||
"""Edge cases found while debugging"""
|
||||
yield from [
|
||||
'\x1f-a', # unicode_ranges_control, {0x00001C, 0x00001F}
|
||||
'¼-a', # unicode_ranges_digit, 0x00BC
|
||||
'½-a', # unicode_ranges_digit, 0x00BD
|
||||
'¾-a', # unicode_ranges_digit, 0x00BE
|
||||
'a 〇b', # unicode_ranges_digit, 0x3007
|
||||
'Ⅵ-a', # unicode_ranges_digit, {0x00002150, 0x0000218F} // Number Forms
|
||||
'\uFEFF//', # unicode_ranges_control, 0xFEFF (BOM)
|
||||
'<s>a' # TODO: Phi-3 fail
|
||||
'\x1f-a', # unicode_ranges_control, {0x00001C, 0x00001F}
|
||||
'¼-a', # unicode_ranges_digit, 0x00BC
|
||||
'½-a', # unicode_ranges_digit, 0x00BD
|
||||
'¾-a', # unicode_ranges_digit, 0x00BE
|
||||
'a 〇b', # unicode_ranges_digit, 0x3007
|
||||
'Ⅵ-a', # unicode_ranges_digit, {0x00002150, 0x0000218F} // Number Forms
|
||||
'\uFEFF//', # unicode_ranges_control, 0xFEFF (BOM)
|
||||
'Cửa Việt', # llama-3, ignore_merges = true
|
||||
'<s>a', # TODO: Phi-3 fail
|
||||
'a\na', # TODO: Bert fail
|
||||
]
|
||||
|
||||
|
||||
def generator_random_chars(iterations = 100) -> Iterator[str]:
|
||||
def generator_vocab_words(vocab: list[str]) -> Iterator[str]:
|
||||
"""Brute force check all vocab words"""
|
||||
yield from vocab
|
||||
|
||||
|
||||
def generator_random_chars(iterations=100) -> Iterator[str]:
|
||||
"""Brute force random text with simple characters"""
|
||||
|
||||
WHITESPACES = list(" " * 20 + "\n" * 5 + "\r\n" * 5 + "\t" * 5)
|
||||
CHARS = list(set("""
|
||||
CHARS = list(sorted(set("""
|
||||
ABCDEFGHIJKLMNOPQRSTUVWXYZ
|
||||
abcdefghijklmnopqrstuvwxyz
|
||||
ÁÉÍÓÚÀÈÌÒÙÂÊÎÔÛÄËÏÖÜ
|
||||
áéíóúàèìòùâêîôûäëïöü
|
||||
.-,*/-+ª!"·$%&/()=?¿[]{}<>\\|@#~½¬~;:_
|
||||
"""))
|
||||
""")))
|
||||
|
||||
rand = random.Random()
|
||||
for m in range(iterations):
|
||||
|
@ -181,13 +188,13 @@ def generator_random_chars(iterations = 100) -> Iterator[str]:
|
|||
yield "".join(text)
|
||||
|
||||
|
||||
def generator_random_vocab_chars(tokenizer: PreTrainedTokenizerBase, iterations = 100) -> Iterator[str]:
|
||||
def generator_random_vocab_chars(vocab: list[str], iterations=100) -> Iterator[str]:
|
||||
"""Brute force random text with vocab characters"""
|
||||
|
||||
vocab_ids = list(tokenizer.vocab.values())
|
||||
vocab_text = tokenizer.decode(vocab_ids, skip_special_tokens=True)
|
||||
vocab_chars = list(set(vocab_text))
|
||||
del vocab_ids, vocab_text
|
||||
vocab_chars = set()
|
||||
for word in vocab:
|
||||
vocab_chars.update(word)
|
||||
vocab_chars = list(sorted(vocab_chars))
|
||||
|
||||
rand = random.Random()
|
||||
for m in range(iterations):
|
||||
|
@ -196,19 +203,11 @@ def generator_random_vocab_chars(tokenizer: PreTrainedTokenizerBase, iterations
|
|||
yield "".join(text)
|
||||
|
||||
|
||||
def generator_random_vocab_tokens(tokenizer: PreTrainedTokenizerBase, iterations = 100) -> Iterator[str]:
|
||||
"""Brute force random text from vocab tokens"""
|
||||
def generator_random_vocab_words(vocab: list[str], iterations=100) -> Iterator[str]:
|
||||
"""Brute force random text from vocab words"""
|
||||
|
||||
space_id = tokenizer.encode(" ", add_special_tokens=False)[0]
|
||||
vocab_ids = list(tokenizer.vocab.values())
|
||||
vocab_ids = list(sorted(vocab_ids + vocab_ids))
|
||||
for i in range(1, len(vocab_ids), 2):
|
||||
vocab_ids[i] = space_id
|
||||
vocab_tokens = tokenizer.decode(vocab_ids, skip_special_tokens=True)
|
||||
vocab_tokens = vocab_tokens.split(" ")
|
||||
del vocab_ids
|
||||
|
||||
yield from vocab_tokens
|
||||
vocab = [w.strip() for w in vocab]
|
||||
yield from vocab
|
||||
|
||||
rand = random.Random()
|
||||
for m in range(iterations):
|
||||
|
@ -217,14 +216,13 @@ def generator_random_vocab_tokens(tokenizer: PreTrainedTokenizerBase, iterations
|
|||
num_words = rand.randint(300, 400)
|
||||
for i in range(num_words):
|
||||
k = rand.randint(1, 3)
|
||||
tokens = rand.choices(vocab_tokens, k=k)
|
||||
tokens = [t.strip(" \n\r\t") for t in tokens]
|
||||
words = rand.choices(vocab, k=k)
|
||||
sep = rand.choice(" \n\r\t")
|
||||
text.append("".join(tokens) + sep)
|
||||
text.append("".join(words) + sep)
|
||||
yield "".join(text)
|
||||
|
||||
|
||||
def generator_random_bytes(iterations = 100) -> Iterator[str]:
|
||||
def generator_random_bytes(iterations=100) -> Iterator[str]:
|
||||
"""Brute force random bytes"""
|
||||
|
||||
WHITESPACES = list(" " * 20 + "\n" * 5 + "\r\n" * 5 + "\t" * 5)
|
||||
|
@ -242,10 +240,10 @@ def generator_random_bytes(iterations = 100) -> Iterator[str]:
|
|||
yield "".join(text)
|
||||
|
||||
|
||||
def test_compare_tokenizer(model: LibLlamaModel, tokenizer: PreTrainedTokenizerBase, generator: Iterator[str]):
|
||||
def test_compare_tokenizer(func_tokenize1: Callable, func_tokenize2: Callable, generator: Iterator[str]):
|
||||
|
||||
def find_first_mismatch(ids1: list[int], ids2: list[int]):
|
||||
for i, (a,b) in enumerate(zip(ids1, ids2)):
|
||||
for i, (a, b) in enumerate(zip(ids1, ids2)):
|
||||
if a != b:
|
||||
return i
|
||||
if len(ids1) == len(ids2):
|
||||
|
@ -255,15 +253,12 @@ def test_compare_tokenizer(model: LibLlamaModel, tokenizer: PreTrainedTokenizerB
|
|||
t0 = time.perf_counter()
|
||||
logger.info("%s: %s" % (generator.__name__, "ini"))
|
||||
for text in generator:
|
||||
ids1 = model.tokenize(text, add_special=False, parse_special=False)
|
||||
ids2 = tokenizer.encode(text, add_special_tokens=False)
|
||||
ids1 = func_tokenize1(text)
|
||||
ids2 = func_tokenize2(text)
|
||||
if ids1 != ids2:
|
||||
i = find_first_mismatch(ids1, ids2)
|
||||
ids1 = list(ids1)[max(0, i - 2) : i + 2 + 1]
|
||||
ids2 = list(ids2)[max(0, i - 2) : i + 2 + 1]
|
||||
text2 = tokenizer.decode(ids2, skip_special_tokens=True)
|
||||
assert (text2 in text)
|
||||
logger.info(" Text: " + repr(text2))
|
||||
logger.info(" TokenIDs: " + str(ids1))
|
||||
logger.info(" Expected: " + str(ids2))
|
||||
raise Exception()
|
||||
|
@ -271,25 +266,37 @@ def test_compare_tokenizer(model: LibLlamaModel, tokenizer: PreTrainedTokenizerB
|
|||
logger.info("%s: end, time: %.3f secs" % (generator.__name__, t1 - t0))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
def main(argv: list[str] = None):
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("vocab_file", help="path to vocab 'gguf' file")
|
||||
parser.add_argument("dir_tokenizer", help="directory containing 'tokenizer.model' file")
|
||||
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
|
||||
args = parser.parse_args()
|
||||
args = parser.parse_args(argv)
|
||||
|
||||
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
|
||||
|
||||
model = LibLlamaModel(LibLlama(), args.vocab_file, mparams=dict(vocab_only=True), cparams=dict(n_ctx=2048))
|
||||
|
||||
model = LibLlamaModel(LibLlama(), args.vocab_file, mparams=dict(vocab_only=True), cparams=dict(n_ctx=4096))
|
||||
tokenizer = AutoTokenizer.from_pretrained(args.dir_tokenizer)
|
||||
|
||||
test_compare_tokenizer(model, tokenizer, generator_custom_text())
|
||||
test_compare_tokenizer(model, tokenizer, generator_custom_text_edge_cases())
|
||||
test_compare_tokenizer(model, tokenizer, generator_random_chars(10_000))
|
||||
test_compare_tokenizer(model, tokenizer, generator_random_vocab_chars(tokenizer, 10_000))
|
||||
test_compare_tokenizer(model, tokenizer, generator_random_vocab_tokens(tokenizer, 10_000))
|
||||
# test_compare_tokenizer(model, tokenizer, generator_random_bytes(10_000)) # FAIL
|
||||
def func_tokenize2(text: str):
|
||||
return tokenizer.encode(text, add_special_tokens=False)
|
||||
|
||||
parse_special = all(len(func_tokenize2(t)) == 1 for t in tokenizer.all_special_tokens)
|
||||
|
||||
def func_tokenize1(text: str):
|
||||
return model.tokenize(text, add_special=False, parse_special=parse_special)
|
||||
|
||||
vocab = list(sorted(tokenizer.batch_decode(list(tokenizer.get_vocab().values()), skip_special_tokens=True)))
|
||||
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_custom_text())
|
||||
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_custom_text_edge_cases())
|
||||
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_vocab_words(vocab))
|
||||
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_chars(10_000))
|
||||
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_vocab_chars(vocab, 10_000))
|
||||
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_vocab_words(vocab, 10_000))
|
||||
# test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_bytes(10_000)) # FAIL
|
||||
|
||||
model.free()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue