Unicode codepoint flags for custom regexs (#7245)

* Replace CODEPOINT_TYPE_* with codepoint_flags
* Update and bugfix brute force random test
* Deterministic brute force random test
* Unicode normalization NFD
* Get rid of BOM
This commit is contained in:
jaime-m-p 2024-05-18 01:09:13 +02:00 committed by GitHub
parent 0fc1e820a9
commit b43272afa2
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
7 changed files with 7299 additions and 2409 deletions

View file

@ -1,5 +1,5 @@
# Test libllama tokenizer == AutoTokenizer.
# Brute force random tokens/text generation.
# Brute force random words/text generation.
#
# Sample usage:
#
@ -12,10 +12,10 @@ import argparse
import subprocess
import random
from typing import Iterator
from typing import Callable, Iterator
import cffi
from transformers import AutoTokenizer, PreTrainedTokenizerBase
from transformers import AutoTokenizer
logger = logging.getLogger("test-tokenizer-random-bpe")
@ -145,28 +145,35 @@ def generator_custom_text() -> Iterator[str]:
def generator_custom_text_edge_cases() -> Iterator[str]:
"""Edge cases found while debugging"""
yield from [
'\x1f-a', # unicode_ranges_control, {0x00001C, 0x00001F}
'¼-a', # unicode_ranges_digit, 0x00BC
'½-a', # unicode_ranges_digit, 0x00BD
'¾-a', # unicode_ranges_digit, 0x00BE
'a b', # unicode_ranges_digit, 0x3007
'Ⅵ-a', # unicode_ranges_digit, {0x00002150, 0x0000218F} // Number Forms
'\uFEFF//', # unicode_ranges_control, 0xFEFF (BOM)
'<s>a' # TODO: Phi-3 fail
'\x1f-a', # unicode_ranges_control, {0x00001C, 0x00001F}
'¼-a', # unicode_ranges_digit, 0x00BC
'½-a', # unicode_ranges_digit, 0x00BD
'¾-a', # unicode_ranges_digit, 0x00BE
'a b', # unicode_ranges_digit, 0x3007
'Ⅵ-a', # unicode_ranges_digit, {0x00002150, 0x0000218F} // Number Forms
'\uFEFF//', # unicode_ranges_control, 0xFEFF (BOM)
'Cửa Việt', # llama-3, ignore_merges = true
'<s>a', # TODO: Phi-3 fail
'a\na', # TODO: Bert fail
]
def generator_random_chars(iterations = 100) -> Iterator[str]:
def generator_vocab_words(vocab: list[str]) -> Iterator[str]:
"""Brute force check all vocab words"""
yield from vocab
def generator_random_chars(iterations=100) -> Iterator[str]:
"""Brute force random text with simple characters"""
WHITESPACES = list(" " * 20 + "\n" * 5 + "\r\n" * 5 + "\t" * 5)
CHARS = list(set("""
CHARS = list(sorted(set("""
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
ÁÉÍÓÚÀÈÌÒÙÂÊÎÔÛÄËÏÖÜ
áéíóúàèìòùâêîôûäëïöü
.-,*/-+ª!"·$%&/()=?¿[]{}<>\\|@#~½¬~;:_
"""))
""")))
rand = random.Random()
for m in range(iterations):
@ -181,13 +188,13 @@ def generator_random_chars(iterations = 100) -> Iterator[str]:
yield "".join(text)
def generator_random_vocab_chars(tokenizer: PreTrainedTokenizerBase, iterations = 100) -> Iterator[str]:
def generator_random_vocab_chars(vocab: list[str], iterations=100) -> Iterator[str]:
"""Brute force random text with vocab characters"""
vocab_ids = list(tokenizer.vocab.values())
vocab_text = tokenizer.decode(vocab_ids, skip_special_tokens=True)
vocab_chars = list(set(vocab_text))
del vocab_ids, vocab_text
vocab_chars = set()
for word in vocab:
vocab_chars.update(word)
vocab_chars = list(sorted(vocab_chars))
rand = random.Random()
for m in range(iterations):
@ -196,19 +203,11 @@ def generator_random_vocab_chars(tokenizer: PreTrainedTokenizerBase, iterations
yield "".join(text)
def generator_random_vocab_tokens(tokenizer: PreTrainedTokenizerBase, iterations = 100) -> Iterator[str]:
"""Brute force random text from vocab tokens"""
def generator_random_vocab_words(vocab: list[str], iterations=100) -> Iterator[str]:
"""Brute force random text from vocab words"""
space_id = tokenizer.encode(" ", add_special_tokens=False)[0]
vocab_ids = list(tokenizer.vocab.values())
vocab_ids = list(sorted(vocab_ids + vocab_ids))
for i in range(1, len(vocab_ids), 2):
vocab_ids[i] = space_id
vocab_tokens = tokenizer.decode(vocab_ids, skip_special_tokens=True)
vocab_tokens = vocab_tokens.split(" ")
del vocab_ids
yield from vocab_tokens
vocab = [w.strip() for w in vocab]
yield from vocab
rand = random.Random()
for m in range(iterations):
@ -217,14 +216,13 @@ def generator_random_vocab_tokens(tokenizer: PreTrainedTokenizerBase, iterations
num_words = rand.randint(300, 400)
for i in range(num_words):
k = rand.randint(1, 3)
tokens = rand.choices(vocab_tokens, k=k)
tokens = [t.strip(" \n\r\t") for t in tokens]
words = rand.choices(vocab, k=k)
sep = rand.choice(" \n\r\t")
text.append("".join(tokens) + sep)
text.append("".join(words) + sep)
yield "".join(text)
def generator_random_bytes(iterations = 100) -> Iterator[str]:
def generator_random_bytes(iterations=100) -> Iterator[str]:
"""Brute force random bytes"""
WHITESPACES = list(" " * 20 + "\n" * 5 + "\r\n" * 5 + "\t" * 5)
@ -242,10 +240,10 @@ def generator_random_bytes(iterations = 100) -> Iterator[str]:
yield "".join(text)
def test_compare_tokenizer(model: LibLlamaModel, tokenizer: PreTrainedTokenizerBase, generator: Iterator[str]):
def test_compare_tokenizer(func_tokenize1: Callable, func_tokenize2: Callable, generator: Iterator[str]):
def find_first_mismatch(ids1: list[int], ids2: list[int]):
for i, (a,b) in enumerate(zip(ids1, ids2)):
for i, (a, b) in enumerate(zip(ids1, ids2)):
if a != b:
return i
if len(ids1) == len(ids2):
@ -255,15 +253,12 @@ def test_compare_tokenizer(model: LibLlamaModel, tokenizer: PreTrainedTokenizerB
t0 = time.perf_counter()
logger.info("%s: %s" % (generator.__name__, "ini"))
for text in generator:
ids1 = model.tokenize(text, add_special=False, parse_special=False)
ids2 = tokenizer.encode(text, add_special_tokens=False)
ids1 = func_tokenize1(text)
ids2 = func_tokenize2(text)
if ids1 != ids2:
i = find_first_mismatch(ids1, ids2)
ids1 = list(ids1)[max(0, i - 2) : i + 2 + 1]
ids2 = list(ids2)[max(0, i - 2) : i + 2 + 1]
text2 = tokenizer.decode(ids2, skip_special_tokens=True)
assert (text2 in text)
logger.info(" Text: " + repr(text2))
logger.info(" TokenIDs: " + str(ids1))
logger.info(" Expected: " + str(ids2))
raise Exception()
@ -271,25 +266,37 @@ def test_compare_tokenizer(model: LibLlamaModel, tokenizer: PreTrainedTokenizerB
logger.info("%s: end, time: %.3f secs" % (generator.__name__, t1 - t0))
if __name__ == "__main__":
def main(argv: list[str] = None):
parser = argparse.ArgumentParser()
parser.add_argument("vocab_file", help="path to vocab 'gguf' file")
parser.add_argument("dir_tokenizer", help="directory containing 'tokenizer.model' file")
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
args = parser.parse_args()
args = parser.parse_args(argv)
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
model = LibLlamaModel(LibLlama(), args.vocab_file, mparams=dict(vocab_only=True), cparams=dict(n_ctx=2048))
model = LibLlamaModel(LibLlama(), args.vocab_file, mparams=dict(vocab_only=True), cparams=dict(n_ctx=4096))
tokenizer = AutoTokenizer.from_pretrained(args.dir_tokenizer)
test_compare_tokenizer(model, tokenizer, generator_custom_text())
test_compare_tokenizer(model, tokenizer, generator_custom_text_edge_cases())
test_compare_tokenizer(model, tokenizer, generator_random_chars(10_000))
test_compare_tokenizer(model, tokenizer, generator_random_vocab_chars(tokenizer, 10_000))
test_compare_tokenizer(model, tokenizer, generator_random_vocab_tokens(tokenizer, 10_000))
# test_compare_tokenizer(model, tokenizer, generator_random_bytes(10_000)) # FAIL
def func_tokenize2(text: str):
return tokenizer.encode(text, add_special_tokens=False)
parse_special = all(len(func_tokenize2(t)) == 1 for t in tokenizer.all_special_tokens)
def func_tokenize1(text: str):
return model.tokenize(text, add_special=False, parse_special=parse_special)
vocab = list(sorted(tokenizer.batch_decode(list(tokenizer.get_vocab().values()), skip_special_tokens=True)))
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_custom_text())
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_custom_text_edge_cases())
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_vocab_words(vocab))
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_chars(10_000))
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_vocab_chars(vocab, 10_000))
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_vocab_words(vocab, 10_000))
# test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_bytes(10_000)) # FAIL
model.free()
if __name__ == "__main__":
main()