llama : optimize memory buffers (#2325)

This commit is contained in:
Georgi Gerganov 2023-07-22 21:17:57 +03:00 committed by GitHub
parent b5fe67f8c6
commit b47b8a9cfe
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
3 changed files with 66 additions and 73 deletions

View file

@ -578,18 +578,18 @@ std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const std::s
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params) {
auto lparams = llama_context_default_params();
lparams.n_ctx = params.n_ctx;
lparams.n_batch = params.n_batch;
lparams.n_gpu_layers = params.n_gpu_layers;
lparams.main_gpu = params.main_gpu;
lparams.tensor_split = params.tensor_split;
lparams.low_vram = params.low_vram;
lparams.seed = params.seed;
lparams.f16_kv = params.memory_f16;
lparams.use_mmap = params.use_mmap;
lparams.use_mlock = params.use_mlock;
lparams.logits_all = params.perplexity;
lparams.embedding = params.embedding;
lparams.n_ctx = params.n_ctx;
lparams.n_batch = params.n_batch;
lparams.n_gpu_layers = params.n_gpu_layers;
lparams.main_gpu = params.main_gpu;
lparams.tensor_split = params.tensor_split;
lparams.low_vram = params.low_vram;
lparams.seed = params.seed;
lparams.f16_kv = params.memory_f16;
lparams.use_mmap = params.use_mmap;
lparams.use_mlock = params.use_mlock;
lparams.logits_all = params.perplexity;
lparams.embedding = params.embedding;
lparams.rope_freq_base = params.rope_freq_base;
lparams.rope_freq_scale = params.rope_freq_scale;

View file

@ -139,17 +139,14 @@ int main(int argc, char ** argv) {
params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
}
// determine the maximum memory usage needed to do inference for the given n_batch and n_predict parameters
// determine the maximum memory usage needed to do inference for the given n_batch and n_ctx parameters
// uncomment the "used_mem" line in llama.cpp to see the results
if (params.mem_test) {
{
const std::vector<llama_token> tmp(params.n_batch, llama_token_bos());
llama_eval(ctx, tmp.data(), tmp.size(), 0, params.n_threads);
}
fprintf(stderr, "%s: testing memory usage for n_batch = %d, n_ctx = %d\n", __func__, params.n_batch, params.n_ctx);
{
const std::vector<llama_token> tmp = { 0, };
llama_eval(ctx, tmp.data(), tmp.size(), params.n_predict - 1, params.n_threads);
const std::vector<llama_token> tmp(params.n_batch, llama_token_bos());
llama_eval(ctx, tmp.data(), tmp.size(), params.n_ctx, params.n_threads);
}
llama_print_timings(ctx);