Address review comments

This commit is contained in:
Radoslav Gerganov 2024-05-13 10:11:46 +03:00
parent df54adabea
commit b4bf42a9fc
5 changed files with 191 additions and 178 deletions

View file

@ -1,6 +1,6 @@
## Overview ## Overview
The `rpc-server` allows running a `ggml` backend on a remote host. The `rpc-server` allows running `ggml` backend on a remote host.
The RPC backend communicates with one or several instances of `rpc-server` and offloads computations to them. The RPC backend communicates with one or several instances of `rpc-server` and offloads computations to them.
This can be used for distributed LLM inference with `llama.cpp` in the following way: This can be used for distributed LLM inference with `llama.cpp` in the following way:
@ -25,6 +25,7 @@ flowchart TD
``` ```
Each host can run a different backend, e.g. one with CUDA and another with Metal. Each host can run a different backend, e.g. one with CUDA and another with Metal.
You can also run multiple `rpc-server` instances on the same host, each with a different backend.
## Usage ## Usage
@ -35,7 +36,7 @@ For example, to build the CUDA backend with RPC support:
mkdir build-rpc-cuda mkdir build-rpc-cuda
cd build-rpc-cuda cd build-rpc-cuda
cmake .. -DLLAMA_CUDA=ON -DLLAMA_RPC=ON cmake .. -DLLAMA_CUDA=ON -DLLAMA_RPC=ON
make -j cmake --build . --config Release
``` ```
Then, start the `rpc-server` with the backend: Then, start the `rpc-server` with the backend:
@ -50,13 +51,20 @@ ggml_cuda_init: found 1 CUDA devices:
Starting RPC server on 0.0.0.0:50052 Starting RPC server on 0.0.0.0:50052
``` ```
When using the CUDA backend, you can specify the device with the `CUDA_VISIBLE_DEVICES` environment variable, e.g.:
```bash
$ CUDA_VISIBLE_DEVICES=0 bin/rpc-server 0.0.0.0 50052
```
This way you can run multiple `rpc-server` instances on the same host, each with a different CUDA device.
On the main host build `llama.cpp` only with `-DLLAMA_RPC=ON`: On the main host build `llama.cpp` only with `-DLLAMA_RPC=ON`:
```bash ```bash
mkdir build-rpc mkdir build-rpc
cd build-rpc cd build-rpc
cmake .. -DLLAMA_RPC=ON cmake .. -DLLAMA_RPC=ON
make -j cmake --build . --config Release
``` ```
Finally, use the `--rpc` option to specify the host and port of each `rpc-server`: Finally, use the `--rpc` option to specify the host and port of each `rpc-server`:

View file

@ -7,19 +7,8 @@
#endif #endif
#include "ggml-rpc.h" #include "ggml-rpc.h"
#include <memory>
#include <string> #include <string>
#ifndef _WIN32
# include <sys/socket.h>
# include <sys/types.h>
# include <arpa/inet.h>
# include <netinet/in.h>
# include <netinet/tcp.h>
# include <netdb.h>
# include <unistd.h>
#endif
#include <stdio.h> #include <stdio.h>
#include <stdlib.h>
static ggml_backend_t create_backend() { static ggml_backend_t create_backend() {
ggml_backend_t backend = NULL; ggml_backend_t backend = NULL;
@ -55,91 +44,27 @@ static void get_backend_memory(size_t * free_mem, size_t * total_mem) {
#endif #endif
} }
static std::shared_ptr<socket_t> make_socket(sockfd_t fd) {
#ifdef _WIN32
if (fd == INVALID_SOCKET) {
return nullptr;
}
#else
if (fd < 0) {
return nullptr;
}
#endif
return std::make_shared<socket_t>(fd);
}
static std::shared_ptr<socket_t> create_server_socket(const char * host, int port) {
auto sockfd = socket(AF_INET, SOCK_STREAM, 0);
auto sock = make_socket(sockfd);
if (sock == nullptr) {
return nullptr;
}
struct sockaddr_in serv_addr;
serv_addr.sin_family = AF_INET;
serv_addr.sin_addr.s_addr = inet_addr(host);
serv_addr.sin_port = htons(port);
if (bind(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0) {
return nullptr;
}
if (listen(sockfd, 5) < 0) {
return nullptr;
}
return sock;
}
int main(int argc, char * argv[]) int main(int argc, char * argv[])
{ {
#ifdef _WIN32
WSADATA wsaData;
int res = WSAStartup(MAKEWORD(2, 2), &wsaData);
if (res != 0) {
fprintf(stderr, "WSAStartup failed: %d\n", res);
return 1;
}
#endif
if (argc < 3) { if (argc < 3) {
fprintf(stderr, "Usage: %s <host> <port>\n", argv[0]); fprintf(stderr, "Usage: %s <host> <port>\n", argv[0]);
return 1; return 1;
} }
const char * host = argv[1]; const char * host = argv[1];
int port = std::stoi(argv[2]); int port = std::stoi(argv[2]);
if (port <= 0 || port > 65535) {
fprintf(stderr, "Invalid port number: %d\n", port);
return 1;
}
ggml_backend_t backend = create_backend(); ggml_backend_t backend = create_backend();
if (!backend) { if (!backend) {
fprintf(stderr, "Failed to create backend\n"); fprintf(stderr, "Failed to create backend\n");
return 1; return 1;
} }
printf("Starting RPC server on %s:%d\n", host, port); printf("Starting RPC server on %s:%d\n", host, port);
auto server_socket = create_server_socket(host, port);
if (server_socket == nullptr) {
fprintf(stderr, "Failed to create server socket\n");
return 1;
}
while (true) {
auto client_socket_fd = accept(server_socket->fd, NULL, NULL);
auto client_socket = make_socket(client_socket_fd);
if (client_socket == nullptr) {
fprintf(stderr, "Failed to accept client connection\n");
return 1;
}
// set TCP_NODELAY to disable Nagle's algorithm
int flag = 1;
int ret = setsockopt(client_socket->fd, IPPROTO_TCP, TCP_NODELAY, (char *) &flag, sizeof(int));
if (ret < 0) {
fprintf(stderr, "Failed to set TCP_NODELAY\n");
continue;
}
size_t free_mem, total_mem; size_t free_mem, total_mem;
get_backend_memory(&free_mem, &total_mem); get_backend_memory(&free_mem, &total_mem);
printf("Accepted client connection, free_mem=%zu, total_mem=%zu\n", free_mem, total_mem); std::string endpoint = std::string(host) + ":" + std::to_string(port);
rpc_serve_client(backend, client_socket->fd, free_mem, total_mem); start_rpc_server(backend, endpoint.c_str(), free_mem, total_mem);
printf("Client connection closed\n");
}
#ifdef _WIN32
WSACleanup();
#endif
return 0; return 0;
} }

View file

@ -4,9 +4,18 @@
#include <string> #include <string>
#include <vector> #include <vector>
#include <memory>
#include <unordered_map> #include <unordered_map>
#include <unordered_set> #include <unordered_set>
#ifndef _WIN32 #ifdef _WIN32
# define WIN32_LEAN_AND_MEAN
# ifndef NOMINMAX
# define NOMINMAX
# endif
# include <windows.h>
# include <winsock2.h>
#else
# include <arpa/inet.h>
# include <sys/socket.h> # include <sys/socket.h>
# include <sys/types.h> # include <sys/types.h>
# include <netinet/in.h> # include <netinet/in.h>
@ -26,9 +35,57 @@
#endif #endif
#ifdef _WIN32 #ifdef _WIN32
typedef SOCKET sockfd_t;
using ssize_t = __int64; using ssize_t = __int64;
#else
typedef int sockfd_t;
#endif #endif
// cross-platform socket
struct socket_t {
sockfd_t fd;
socket_t(sockfd_t fd) : fd(fd) {}
~socket_t() {
#ifdef _WIN32
closesocket(this->fd);
#else
close(this->fd);
#endif
}
};
// ggml_tensor is serialized into rpc_tensor
struct rpc_tensor {
uint64_t id;
uint32_t type;
uint64_t buffer;
uint32_t ne[GGML_MAX_DIMS];
uint32_t nb[GGML_MAX_DIMS];
uint32_t op;
int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
int32_t flags;
uint64_t src[GGML_MAX_SRC];
uint64_t view_src;
uint64_t view_offs;
uint64_t data;
char name[GGML_MAX_NAME];
};
// RPC commands
enum rpc_cmd {
ALLOC_BUFFER = 0,
GET_ALIGNMENT,
GET_MAX_SIZE,
BUFFER_GET_BASE,
FREE_BUFFER,
BUFFER_CLEAR,
SET_TENSOR,
GET_TENSOR,
COPY_TENSOR,
GRAPH_COMPUTE,
GET_DEVICE_MEMORY,
};
// RPC data structures // RPC data structures
static ggml_guid_t ggml_backend_rpc_guid() { static ggml_guid_t ggml_backend_rpc_guid() {
@ -59,14 +116,6 @@ struct ggml_backend_rpc_buffer_context {
// RPC helper functions // RPC helper functions
socket_t::~socket_t() {
#ifdef _WIN32
closesocket(this->fd);
#else
close(this->fd);
#endif
}
static std::shared_ptr<socket_t> make_socket(sockfd_t fd) { static std::shared_ptr<socket_t> make_socket(sockfd_t fd) {
#ifdef _WIN32 #ifdef _WIN32
if (fd == INVALID_SOCKET) { if (fd == INVALID_SOCKET) {
@ -80,6 +129,13 @@ static std::shared_ptr<socket_t> make_socket(sockfd_t fd) {
return std::make_shared<socket_t>(fd); return std::make_shared<socket_t>(fd);
} }
static bool set_no_delay(sockfd_t sockfd) {
int flag = 1;
// set TCP_NODELAY to disable Nagle's algorithm
int ret = setsockopt(sockfd, IPPROTO_TCP, TCP_NODELAY, (char *)&flag, sizeof(int));
return ret >= 0;
}
static std::shared_ptr<socket_t> socket_connect(const char * host, int port) { static std::shared_ptr<socket_t> socket_connect(const char * host, int port) {
struct sockaddr_in addr; struct sockaddr_in addr;
auto sockfd = socket(AF_INET, SOCK_STREAM, 0); auto sockfd = socket(AF_INET, SOCK_STREAM, 0);
@ -87,10 +143,8 @@ static std::shared_ptr<socket_t> socket_connect(const char * host, int port) {
if (sock_ptr == nullptr) { if (sock_ptr == nullptr) {
return nullptr; return nullptr;
} }
// set TCP_NODELAY to disable Nagle's algorithm if (!set_no_delay(sockfd)) {
int flag = 1; fprintf(stderr, "Failed to set TCP_NODELAY\n");
int ret = setsockopt(sock_ptr->fd, IPPROTO_TCP, TCP_NODELAY, (char *)&flag, sizeof(int));
if (ret < 0) {
return nullptr; return nullptr;
} }
addr.sin_family = AF_INET; addr.sin_family = AF_INET;
@ -107,6 +161,40 @@ static std::shared_ptr<socket_t> socket_connect(const char * host, int port) {
return sock_ptr; return sock_ptr;
} }
static std::shared_ptr<socket_t> socket_accept(sockfd_t srv_sockfd) {
auto client_socket_fd = accept(srv_sockfd, NULL, NULL);
auto client_socket = make_socket(client_socket_fd);
if (client_socket == nullptr) {
return nullptr;
}
if (!set_no_delay(client_socket_fd)) {
fprintf(stderr, "Failed to set TCP_NODELAY\n");
return nullptr;
}
return client_socket;
}
static std::shared_ptr<socket_t> create_server_socket(const char * host, int port) {
auto sockfd = socket(AF_INET, SOCK_STREAM, 0);
auto sock = make_socket(sockfd);
if (sock == nullptr) {
return nullptr;
}
struct sockaddr_in serv_addr;
serv_addr.sin_family = AF_INET;
serv_addr.sin_addr.s_addr = inet_addr(host);
serv_addr.sin_port = htons(port);
if (bind(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0) {
return nullptr;
}
if (listen(sockfd, 1) < 0) {
return nullptr;
}
return sock;
}
static bool send_data(sockfd_t sockfd, const void * data, size_t size) { static bool send_data(sockfd_t sockfd, const void * data, size_t size) {
size_t bytes_sent = 0; size_t bytes_sent = 0;
while (bytes_sent < size) { while (bytes_sent < size) {
@ -131,6 +219,17 @@ static bool recv_data(sockfd_t sockfd, void * data, size_t size) {
return true; return true;
} }
static bool parse_endpoint(const char * endpoint, std::string & host, int & port) {
std::string str(endpoint);
size_t pos = str.find(':');
if (pos == std::string::npos) {
return false;
}
host = str.substr(0, pos);
port = std::stoi(str.substr(pos + 1));
return true;
}
// RPC request : | rpc_cmd (1 byte) | request_size (8 bytes) | request_data (request_size bytes) | // RPC request : | rpc_cmd (1 byte) | request_size (8 bytes) | request_data (request_size bytes) |
// RPC response: | response_size (8 bytes) | response_data (response_size bytes) | // RPC response: | response_size (8 bytes) | response_data (response_size bytes) |
static bool send_rpc_cmd(const std::shared_ptr<socket_t> & sock, enum rpc_cmd cmd, const std::vector<uint8_t> & input, std::vector<uint8_t> & output) { static bool send_rpc_cmd(const std::shared_ptr<socket_t> & sock, enum rpc_cmd cmd, const std::vector<uint8_t> & input, std::vector<uint8_t> & output) {
@ -244,7 +343,7 @@ static ggml_tensor * deserialize_tensor(struct ggml_context * ctx, const rpc_ten
} }
result->flags = tensor->flags; result->flags = tensor->flags;
result->data = reinterpret_cast<void *>(tensor->data); result->data = reinterpret_cast<void *>(tensor->data);
snprintf(result->name, GGML_MAX_NAME, "%s", tensor->name); ggml_set_name(result, tensor->name);
return result; return result;
} }
@ -259,7 +358,7 @@ GGML_CALL static void ggml_backend_rpc_buffer_init_tensor(ggml_backend_buffer_t
GGML_CALL static void ggml_backend_rpc_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { GGML_CALL static void ggml_backend_rpc_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context; ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
// input serialization format: | rpc_tensor | offset (8 bytes) | data (size bytes) | // input serialization format: | rpc_tensor | offset (8 bytes) | data (size bytes) |
int input_size = sizeof(rpc_tensor) + sizeof(uint64_t) + size; size_t input_size = sizeof(rpc_tensor) + sizeof(uint64_t) + size;
std::vector<uint8_t> input(input_size, 0); std::vector<uint8_t> input(input_size, 0);
rpc_tensor rpc_tensor = serialize_tensor(tensor); rpc_tensor rpc_tensor = serialize_tensor(tensor);
memcpy(input.data(), &rpc_tensor, sizeof(rpc_tensor)); memcpy(input.data(), &rpc_tensor, sizeof(rpc_tensor));
@ -530,14 +629,15 @@ static ggml_backend_i ggml_backend_rpc_interface = {
static std::unordered_map<std::string, ggml_backend_t> instances; static std::unordered_map<std::string, ggml_backend_t> instances;
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const std::string & endpoint) { GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint) {
ggml_backend_t backend = ggml_backend_rpc_init(endpoint); ggml_backend_t backend = ggml_backend_rpc_init(endpoint);
return backend != nullptr ? ggml_backend_rpc_get_default_buffer_type(backend) : nullptr; return backend != nullptr ? ggml_backend_rpc_get_default_buffer_type(backend) : nullptr;
} }
GGML_CALL ggml_backend_t ggml_backend_rpc_init(const std::string & endpoint) { GGML_CALL ggml_backend_t ggml_backend_rpc_init(const char * endpoint) {
if (instances.find(endpoint) != instances.end()) { std::string endpoint_str(endpoint);
return instances[endpoint]; if (instances.find(endpoint_str) != instances.end()) {
return instances[endpoint_str];
} }
#ifdef _WIN32 #ifdef _WIN32
{ {
@ -548,11 +648,12 @@ GGML_CALL ggml_backend_t ggml_backend_rpc_init(const std::string & endpoint) {
} }
} }
#endif #endif
GGML_PRINT_DEBUG("Connecting to %s\n", endpoint.c_str()); GGML_PRINT_DEBUG("Connecting to %s\n", endpoint);
// split the endpoint into host and port std::string host;
size_t pos = endpoint.find(":"); int port;
std::string host = endpoint.substr(0, pos); if (!parse_endpoint(endpoint, host, port)) {
int port = std::stoi(endpoint.substr(pos + 1)); return nullptr;
}
auto sock = socket_connect(host.c_str(), port); auto sock = socket_connect(host.c_str(), port);
if (sock == nullptr) { if (sock == nullptr) {
return nullptr; return nullptr;
@ -607,7 +708,7 @@ static void get_device_memory(const std::shared_ptr<socket_t> & sock, size_t * f
*total = total_mem; *total = total_mem;
} }
GGML_API GGML_CALL void ggml_backend_rpc_get_device_memory(const std::string & endpoint, size_t * free, size_t * total) { GGML_API GGML_CALL void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total) {
ggml_backend_t backend = ggml_backend_rpc_init(endpoint); ggml_backend_t backend = ggml_backend_rpc_init(endpoint);
if (backend == nullptr) { if (backend == nullptr) {
*free = 0; *free = 0;
@ -781,7 +882,7 @@ static void rpc_graph_compute(ggml_backend_t backend, const std::vector<uint8_t>
const rpc_tensor * tensors = (const rpc_tensor *)(input.data() + sizeof(n_nodes) + n_nodes*sizeof(uint64_t) + sizeof(n_tensors)); const rpc_tensor * tensors = (const rpc_tensor *)(input.data() + sizeof(n_nodes) + n_nodes*sizeof(uint64_t) + sizeof(n_tensors));
GGML_PRINT_DEBUG("[%s] n_nodes: %u, n_tensors: %u\n", __func__, n_nodes, n_tensors); GGML_PRINT_DEBUG("[%s] n_nodes: %u, n_tensors: %u\n", __func__, n_nodes, n_tensors);
static size_t buf_size = ggml_tensor_overhead()*(n_nodes + n_tensors) + ggml_graph_overhead(); static size_t buf_size = ggml_tensor_overhead()*(n_nodes + n_tensors) + ggml_graph_overhead_custom(n_nodes, false);
struct ggml_init_params params = { struct ggml_init_params params = {
/*.mem_size =*/ buf_size, /*.mem_size =*/ buf_size,
/*.mem_buffer =*/ NULL, /*.mem_buffer =*/ NULL,
@ -805,7 +906,7 @@ static void rpc_graph_compute(ggml_backend_t backend, const std::vector<uint8_t>
ggml_free(ctx); ggml_free(ctx);
} }
void rpc_serve_client(ggml_backend_t backend, sockfd_t sockfd, size_t free_mem, size_t total_mem) { static void rpc_serve_client(ggml_backend_t backend, sockfd_t sockfd, size_t free_mem, size_t total_mem) {
while (true) { while (true) {
uint8_t cmd; uint8_t cmd;
if (!recv_data(sockfd, &cmd, 1)) { if (!recv_data(sockfd, &cmd, 1)) {
@ -871,7 +972,7 @@ void rpc_serve_client(ggml_backend_t backend, sockfd_t sockfd, size_t free_mem,
} }
default: { default: {
fprintf(stderr, "Unknown command: %d\n", cmd); fprintf(stderr, "Unknown command: %d\n", cmd);
break; return;
} }
} }
uint64_t output_size = output.size(); uint64_t output_size = output.size();
@ -883,3 +984,39 @@ void rpc_serve_client(ggml_backend_t backend, sockfd_t sockfd, size_t free_mem,
} }
} }
} }
void start_rpc_server(ggml_backend_t backend, const char * endpoint, size_t free_mem, size_t total_mem) {
std::string host;
int port;
if (!parse_endpoint(endpoint, host, port)) {
return;
}
#ifdef _WIN32
{
WSADATA wsaData;
int res = WSAStartup(MAKEWORD(2, 2), &wsaData);
if (res != 0) {
fprintf(stderr, "WSAStartup failed: %d\n", res);
return 1;
}
}
#endif
auto server_socket = create_server_socket(host.c_str(), port);
if (server_socket == nullptr) {
fprintf(stderr, "Failed to create server socket\n");
return;
}
while (true) {
auto client_socket = socket_accept(server_socket->fd);
if (client_socket == nullptr) {
fprintf(stderr, "Failed to accept client connection\n");
return;
}
printf("Accepted client connection, free_mem=%zu, total_mem=%zu\n", free_mem, total_mem);
rpc_serve_client(backend, client_socket->fd, free_mem, total_mem);
printf("Client connection closed\n");
}
#ifdef _WIN32
WSACleanup();
#endif
}

View file

@ -2,79 +2,22 @@
#include "ggml.h" #include "ggml.h"
#include "ggml-backend.h" #include "ggml-backend.h"
#include <string>
#include <memory>
#ifdef _WIN32
# define WIN32_LEAN_AND_MEAN
# ifndef NOMINMAX
# define NOMINMAX
# endif
# include <windows.h>
# include <winsock2.h>
#endif
#ifdef __cplusplus #ifdef __cplusplus
extern "C" { extern "C" {
#endif #endif
// cross-platform socket fd
#ifdef _WIN32
typedef SOCKET sockfd_t;
#else
typedef int sockfd_t;
#endif
// cross-platform socket
struct socket_t {
sockfd_t fd;
socket_t(sockfd_t fd) : fd(fd) {}
~socket_t();
};
// ggml_tensor is serialized into rpc_tensor
struct rpc_tensor {
uint64_t id;
uint32_t type;
uint64_t buffer;
uint32_t ne[GGML_MAX_DIMS];
uint32_t nb[GGML_MAX_DIMS];
uint32_t op;
int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
int32_t flags;
uint64_t src[GGML_MAX_SRC];
uint64_t view_src;
uint64_t view_offs;
uint64_t data;
char name[GGML_MAX_NAME];
};
// RPC commands
enum rpc_cmd {
ALLOC_BUFFER = 0,
GET_ALIGNMENT,
GET_MAX_SIZE,
BUFFER_GET_BASE,
FREE_BUFFER,
BUFFER_CLEAR,
SET_TENSOR,
GET_TENSOR,
COPY_TENSOR,
GRAPH_COMPUTE,
GET_DEVICE_MEMORY,
};
#define GGML_RPC_MAX_SERVERS 16 #define GGML_RPC_MAX_SERVERS 16
// backend API // backend API
GGML_API GGML_CALL ggml_backend_t ggml_backend_rpc_init(const std::string & endpoint); GGML_API GGML_CALL ggml_backend_t ggml_backend_rpc_init(const char * endpoint);
GGML_API GGML_CALL bool ggml_backend_is_rpc(ggml_backend_t backend); GGML_API GGML_CALL bool ggml_backend_is_rpc(ggml_backend_t backend);
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const std::string & endpoint); GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint);
GGML_API GGML_CALL void ggml_backend_rpc_get_device_memory(const std::string & endpoint, size_t * free, size_t * total); GGML_API GGML_CALL void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total);
GGML_API GGML_CALL void rpc_serve_client(ggml_backend_t backend, sockfd_t sockfd, size_t free_mem, size_t total_mem); GGML_API GGML_CALL void start_rpc_server(ggml_backend_t backend, const char * endpoint, size_t free_mem, size_t total_mem);
#ifdef __cplusplus #ifdef __cplusplus
} }

View file

@ -2279,7 +2279,7 @@ static ggml_backend_buffer_type_t llama_default_buffer_type_offload(const llama_
#ifdef GGML_USE_RPC #ifdef GGML_USE_RPC
std::string endpoint = model.rpc_servers[gpu]; std::string endpoint = model.rpc_servers[gpu];
buft = ggml_backend_rpc_buffer_type(endpoint); buft = ggml_backend_rpc_buffer_type(endpoint.c_str());
#elif defined(GGML_USE_METAL) #elif defined(GGML_USE_METAL)
buft = ggml_backend_metal_buffer_type(); buft = ggml_backend_metal_buffer_type();
#elif defined(GGML_USE_CUDA) #elif defined(GGML_USE_CUDA)
@ -2348,7 +2348,7 @@ static size_t llama_get_device_memory(const llama_model & model, int device) {
size_t total; size_t total;
size_t free; size_t free;
std::string endpoint = model.rpc_servers[device]; std::string endpoint = model.rpc_servers[device];
ggml_backend_rpc_get_device_memory(endpoint, &free, &total); ggml_backend_rpc_get_device_memory(endpoint.c_str(), &free, &total);
return free; return free;
#elif defined(GGML_USE_CUDA) #elif defined(GGML_USE_CUDA)
size_t total; size_t total;
@ -15727,7 +15727,7 @@ struct llama_context * llama_new_context_with_model(
// initialize backends // initialize backends
#if defined(GGML_USE_RPC) #if defined(GGML_USE_RPC)
for (auto & server : model->rpc_servers) { for (auto & server : model->rpc_servers) {
ggml_backend_t backend = ggml_backend_rpc_init(server); ggml_backend_t backend = ggml_backend_rpc_init(server.c_str());
if (backend == nullptr) { if (backend == nullptr) {
LLAMA_LOG_ERROR("%s: failed to connect RPC backend to %s\n", __func__, server.c_str()); LLAMA_LOG_ERROR("%s: failed to connect RPC backend to %s\n", __func__, server.c_str());
llama_free(ctx); llama_free(ctx);