tentative push of convert-hf-to-gguf support

This commit is contained in:
Christian Zhou-Zheng 2024-05-05 15:43:24 -04:00
parent c33bdf397d
commit b7c612088f
3 changed files with 74 additions and 24 deletions

View file

@ -21,7 +21,9 @@ if TYPE_CHECKING:
if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
import gguf
import importlib
gguf = importlib.import_module("gguf-py.gguf")
# import gguf
from convert import LlamaHfVocab, permute
@ -43,18 +45,18 @@ AnyModel = TypeVar("AnyModel", bound="type[Model]")
class Model(ABC):
_model_classes: dict[str, type[Model]] = {}
def __init__(self, dir_model: Path, ftype: int, fname_out: Path, is_big_endian: bool, use_temp_file: bool):
def __init__(self, dir_model: Path, ftype: int, fname_out: Path, args: argparse.Namespace):
self.dir_model = dir_model
self.ftype = ftype
self.fname_out = fname_out
self.is_big_endian = is_big_endian
self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
self.use_temp_file = use_temp_file
self.is_big_endian = args.bigendian
self.endianess = gguf.GGUFEndian.BIG if args.bigendian else gguf.GGUFEndian.LITTLE
self.use_temp_file = args.use_temp_file
self.is_safetensors = self._is_model_safetensors()
self.num_parts = Model.count_model_parts(self.dir_model, ".safetensors" if self.is_safetensors else ".bin")
self.part_names = self._get_part_names()
self.hparams = Model.load_hparams(self.dir_model)
self.gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file)
self.gguf_writer = gguf.GGUFManager(fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], args, endianess=self.endianess, use_temp_file=self.use_temp_file)
self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer"])
@property
@ -174,14 +176,11 @@ class Model(ABC):
def write(self):
self.write_tensors()
self.gguf_writer.write_header_to_file()
self.gguf_writer.write_kv_data_to_file()
self.gguf_writer.write_tensors_to_file()
self.gguf_writer.write_to_file()
self.gguf_writer.close()
def write_vocab(self):
self.gguf_writer.write_header_to_file()
self.gguf_writer.write_kv_data_to_file()
self.gguf_writer.write_to_file(meta_only=True)
self.gguf_writer.close()
@staticmethod
@ -1711,7 +1710,7 @@ class MiniCPMModel(Model):
self.gguf_writer.add_tensor(new_name, data)
# TODO what the hell is this?
@Model.register("QWenLMHeadModel")
class QwenModel(Model):
model_arch = gguf.MODEL_ARCH.QWEN
@ -2843,6 +2842,11 @@ def parse_args() -> argparse.Namespace:
help="directory containing model file",
)
parser.add_argument("--use-temp-file", action="store_true", help="use the tempfile library while processing (helpful when running out of memory, process killed)")
parser.add_argument("--split", action="store_true", help="split the converted model into multiple files")
parser.add_argument("--split-max-tensors", type=int, help="max tensors in each split")
parser.add_argument("--split-max-size", type=str, help="max size per split N(M|G)")
parser.add_argument("--dry-run", action="store_true", help="only print out a split plan and exit, without writing any new files")
parser.add_argument("--large-first-shard", action="store_true", help="include tensors in the first shard when splitting (default: metadata only)")
return parser.parse_args()
@ -2869,6 +2873,15 @@ def main() -> None:
print(f'Error: {args.model} is not a directory', file=sys.stderr)
sys.exit(1)
if args.split and not (args.split_max_tensors or args.split_max_size):
raise ValueError("Need to specify one of --split-max-tensors or --split-max-size when splitting")
if args.split_max_tensors and args.split_max_size:
raise ValueError("Can't specify both --split-max-tensors and --split-max-size")
if args.split_max_size:
args.split_max_size = gguf.SplitStrategy.split_str_to_n_bytes(args.split_max_size)
ftype_map = {
"f32": gguf.GGMLQuantizationType.F32,
"f16": gguf.GGMLQuantizationType.F16,
@ -2886,7 +2899,7 @@ def main() -> None:
with torch.inference_mode():
model_class = Model.from_model_architecture(hparams["architectures"][0])
model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian, args.use_temp_file)
model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args)
print("Set model parameters")
model_instance.set_gguf_parameters()

View file

@ -1465,7 +1465,7 @@ def main(args_in: list[str] | None = None) -> None:
parser.add_argument("--skip-unknown", action="store_true", help="skip unknown tensor names instead of failing")
parser.add_argument("--split", action="store_true", help="split the converted model into multiple files")
parser.add_argument("--split-max-tensors", type=int, help="max tensors in each split")
parser.add_argument("--split-max-size", type=str, help="max size per split N(M|G)+")
parser.add_argument("--split-max-size", type=str, help="max size per split N(M|G)")
parser.add_argument("--dry-run", action="store_true", help="only print out a split plan and exit, without writing any new files")
parser.add_argument("--large-first-shard", action="store_true", help="include tensors in the first shard when splitting (default: metadata only)")

View file

@ -4,6 +4,7 @@ import os
import shutil
import struct
import tempfile
import time
from enum import IntEnum
from typing import TYPE_CHECKING, Any, Sequence, Mapping
from string import ascii_letters, digits
@ -174,7 +175,9 @@ class GGUFManager:
# have to consolidate because we need to know kv data count and tensor count before we can write the header
# and we need to write tensor info before we can write metadata
# these all kinda show up around the same places anyway so it's not a huge deal?
def write_to_file(self, meta_only: bool = False, ftype: int = 0, concurrency: int = 8, write_tensor_data: function = None) -> None:
def write_to_file(self, meta_only: bool = False, ftype: int = 0, concurrency: int = 8,
write_tensor_data: function = None
) -> None:
# here is the first place you can assume you have all tensors written and you can establish the size of the file - so logic goes here
self.total_tensors = len(self.tensors)
@ -218,19 +221,37 @@ class GGUFManager:
if self.args.dry_run:
print("\nDry run, not writing files")
# instantiating GGUFWriters creates files
for name, _, _ in self.split_strategy:
os.remove(name)
return
# run add_tensor_info, write data, then write_tensor_data - taken from convert.py
running_total = self.total_tensors
start = time.time()
for i, (_, tensors, writer) in enumerate(self.split_strategy):
if tensors:
for name, tensor in tensors:
for j, (name, tensor) in enumerate(tensors):
n_elements = int(np.prod(tensor.shape))
# logic from convert.py
if getattr(tensor, 'data_type', None):
raw_dtype = getattr(tensor.data_type, 'ggml_type', None)
data_type = getattr(tensor.data_type, 'quantized_type', None) or tensor.data_type.dtype
data_nbytes = tensor.data_type.elements_to_bytes(n_elements)
writer.add_tensor_info(name, tensor.shape, data_type, data_nbytes, raw_dtype=raw_dtype)
# logic from convert-hf-to-gguf.py
else:
# stolen from write_tensor_data because that doesn't get called with this logic
elapsed = time.time() - start
size = ' x '.join(f"{dim:6d}" for dim in tensor.shape)
padi = len(str(self.total_tensors))
dtype = str(tensor.dtype)
print(
f"[{j + 1:{padi}d}/{len(tensors)}] Writing tensor {name:38s} | size {size:16} | type {dtype:8} | T+{int(elapsed):4}"
)
writer.add_tensor(name, tensor)
writer.write_header_to_file()
writer.write_kv_data_to_file()
@ -240,6 +261,7 @@ class GGUFManager:
print(f"\nWriting to shard {i + 1}/{self.total_shards} with {len(tensors)}/{running_total} remaining tensors (of {self.total_tensors} total)")
running_total -= len(tensors)
if write_tensor_data:
# convert.py's write_tensor_data is dependent on so many objects in convert.py itself that it's easier to pass the function as a parameter and call it here
write_tensor_data(ftype, dict(tensors), concurrency, writer)
@ -295,8 +317,23 @@ class GGUFManager:
self, name: str, tensor: np.ndarray[Any, Any], raw_shape: Sequence[int] | None = None,
raw_dtype: GGMLQuantizationType | None = None,
) -> None:
# TODO WRITE
pass
if self.endianess == GGUFEndian.BIG:
tensor.byteswap(inplace=True)
# TODO reimplement temp file
#if self.use_temp_file and self.temp_file is None:
# fp = tempfile.SpooledTemporaryFile(mode="w+b", max_size=256 * 1024 * 1024)
# fp.seek(0)
# self.temp_file = fp
self.add_tensor_info(name, tensor)
#if self.temp_file is None:
# self.tensors.append(tensor)
# return
#tensor.tofile(self.temp_file)
#self.write_padding(self.temp_file, tensor.nbytes)
def write_tensors_to_file(self) -> None:
# TODO WRITE