From 807179ec583dcb882f97d9704577c06beb2c5ec9 Mon Sep 17 00:00:00 2001 From: Kawrakow <48489457+ikawrakow@users.noreply.github.com> Date: Sun, 14 Jan 2024 09:44:30 +0200 Subject: [PATCH 1/9] Make Q3_K_S be the same as olf Q3_K_L for Mixtral-8x7B (#4906) Co-authored-by: Iwan Kawrakow --- llama.cpp | 13 ++++++++++--- 1 file changed, 10 insertions(+), 3 deletions(-) diff --git a/llama.cpp b/llama.cpp index 66494974a..8e20e72a2 100644 --- a/llama.cpp +++ b/llama.cpp @@ -8489,9 +8489,16 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty ++qs.i_feed_forward_w2; } else if (name.find("attn_output.weight") != std::string::npos) { if (arch != LLM_ARCH_FALCON) { - if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K; - else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) new_type = GGML_TYPE_Q4_K; - else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K; + if (qs.model.hparams.n_expert == 8) { + if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || + ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) { + new_type = GGML_TYPE_Q5_K; + } + } else { + if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K; + else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) new_type = GGML_TYPE_Q4_K; + else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K; + } } else { if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K; } From 147b17ac94a24d524e367cda26a9ff6245689f34 Mon Sep 17 00:00:00 2001 From: Kawrakow <48489457+ikawrakow@users.noreply.github.com> Date: Sun, 14 Jan 2024 09:45:56 +0200 Subject: [PATCH 2/9] 2-bit quantizations (#4897) * imatrix: load * imatrix: WIP * imatrix: Add Q2_K quantization * imatrix: also guard against Q2_K_S quantization without importance matrix * imatrix: guard even more against low-bit quantization misuse --------- Co-authored-by: Iwan Kawrakow --- examples/benchmark/benchmark-matmult.cpp | 4 +- examples/quantize/quantize.cpp | 133 +++- ggml-quants.c | 950 +++++++++++++++++++++-- ggml-quants.h | 12 +- ggml.c | 36 +- ggml.h | 9 +- llama.cpp | 84 +- llama.h | 1 + tests/test-backend-ops.cpp | 2 +- 9 files changed, 1149 insertions(+), 82 deletions(-) diff --git a/examples/benchmark/benchmark-matmult.cpp b/examples/benchmark/benchmark-matmult.cpp index 434e1d6bd..e89f3de2f 100644 --- a/examples/benchmark/benchmark-matmult.cpp +++ b/examples/benchmark/benchmark-matmult.cpp @@ -194,7 +194,7 @@ int main(int argc, char ** argv) { // Set up a the benchmark matrices // printf("Creating new tensor q11 & Running quantize\n"); struct ggml_tensor * q11 = ggml_new_tensor_2d(ctx, qtype, sizex, sizey); - ggml_quantize_chunk(qtype, (const float *) m11->data, q11->data, 0, nelements, hist_cur.data()); + ggml_quantize_chunk(qtype, (const float *) m11->data, q11->data, 0, nelements/m11->ne[0], m11->ne[0], hist_cur.data(), nullptr); // Set up a the compute graph // printf("Creating new tensor q31\n"); @@ -207,7 +207,7 @@ int main(int argc, char ** argv) { // Set up a second graph computation to make sure we override the CPU cache lines // printf("Creating new tensor q12 & Running quantize\n"); struct ggml_tensor * q12 = ggml_new_tensor_2d(ctx, qtype, sizex, sizey); - ggml_quantize_chunk(qtype, (const float *) m12->data, q12->data, 0, nelements, hist_cur.data()); + ggml_quantize_chunk(qtype, (const float *) m12->data, q12->data, 0, nelements/m12->ne[0], m12->ne[0], hist_cur.data(), nullptr); // printf("Creating new tensor q32\n"); struct ggml_tensor * q32 = ggml_mul_mat(ctx, q12, m2); diff --git a/examples/quantize/quantize.cpp b/examples/quantize/quantize.cpp index f878f6911..f4e2175f1 100644 --- a/examples/quantize/quantize.cpp +++ b/examples/quantize/quantize.cpp @@ -5,6 +5,10 @@ #include #include #include +#include +#include +#include +#include struct quant_option { std::string name; @@ -17,6 +21,8 @@ static const std::vector QUANT_OPTIONS = { { "Q4_1", LLAMA_FTYPE_MOSTLY_Q4_1, " 3.90G, +0.1585 ppl @ LLaMA-v1-7B", }, { "Q5_0", LLAMA_FTYPE_MOSTLY_Q5_0, " 4.33G, +0.0683 ppl @ LLaMA-v1-7B", }, { "Q5_1", LLAMA_FTYPE_MOSTLY_Q5_1, " 4.70G, +0.0349 ppl @ LLaMA-v1-7B", }, + { "IQ2_XXS",LLAMA_FTYPE_MOSTLY_IQ2_XXS," 2.06 bpw quantization", }, + { "IQ2_XS", LLAMA_FTYPE_MOSTLY_IQ2_XS, " 2.31 bpw quantization", }, { "Q2_K", LLAMA_FTYPE_MOSTLY_Q2_K, " 2.63G, +0.6717 ppl @ LLaMA-v1-7B", }, { "Q2_K_S", LLAMA_FTYPE_MOSTLY_Q2_K_S, " 2.16G, +9.0634 ppl @ LLaMA-v1-7B", }, { "Q3_K", LLAMA_FTYPE_MOSTLY_Q3_K_M, "alias for Q3_K_M" }, @@ -72,10 +78,14 @@ static bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftyp // [[noreturn]] static void usage(const char * executable) { - printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] [--pure] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable); + printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] [--pure] [--imatrix] [--include-weights] [--exclude-weights] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable); printf(" --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n"); printf(" --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n"); printf(" --pure: Disable k-quant mixtures and quantize all tensors to the same type\n"); + printf(" --imatrixfile_name: use data in file_name as importance matrix for quant optimizations\n"); + printf(" --include-weights tensor_name: use importance matrix for this/these tensor(s)\n"); + printf(" --exclude-weights tensor_name: use importance matrix for this/these tensor(s)\n"); + printf("Note: --include-weights and --exclude-weights cannot be used together\n"); printf("\nAllowed quantization types:\n"); for (auto & it : QUANT_OPTIONS) { if (it.name != "COPY") { @@ -83,11 +93,93 @@ static void usage(const char * executable) { } else { printf(" "); } - printf("%-6s : %s\n", it.name.c_str(), it.desc.c_str()); + printf("%-7s : %s\n", it.name.c_str(), it.desc.c_str()); } exit(1); } +static void load_imatrix(const std::string& imatrix_file, std::unordered_map>& imatrix_data) { + std::ifstream in(imatrix_file.c_str(), std::ios::binary); + if (!in) { + printf("%s: failed to open %s\n",__func__,imatrix_file.c_str()); + return; + } + int n_entries; + in.read((char*)&n_entries, sizeof(n_entries)); + if (in.fail() || n_entries < 1) { + printf("%s: no data in file %s\n", __func__, imatrix_file.c_str()); + return; + } + for (int i = 0; i < n_entries; ++i) { + int len; in.read((char *)&len, sizeof(len)); + std::vector name_as_vec(len+1); + in.read((char *)name_as_vec.data(), len); + if (in.fail()) { + printf("%s: failed reading name for entry %d from %s\n",__func__,i+1,imatrix_file.c_str()); + return; + } + name_as_vec[len] = 0; + std::string name{name_as_vec.data()}; + auto& e = imatrix_data[std::move(name)]; + int ncall; + in.read((char*)&ncall, sizeof(ncall)); + int nval; + in.read((char *)&nval, sizeof(nval)); + if (in.fail() || nval < 1) { + printf("%s: failed reading number of values for entry %d\n",__func__,i); + imatrix_data = {}; + return; + } + e.resize(nval); + in.read((char*)e.data(), nval*sizeof(float)); + if (in.fail()) { + printf("%s: failed reading data for entry %d\n",__func__,i); + imatrix_data = {}; + return; + } + if (ncall > 0) { + for (auto& v : e) v /= ncall; + } + } + printf("%s: loaded %d importance matrix entries from %s\n",__func__,int(imatrix_data.size()),imatrix_file.c_str()); +} + +static void prepare_imatrix(const std::string& imatrix_file, + const std::vector& included_weights, + const std::vector& excluded_weights, + std::unordered_map>& imatrix_data) { + if (!imatrix_file.empty()) { + load_imatrix(imatrix_file, imatrix_data); + } + if (imatrix_data.empty()) { + return; + } + if (!excluded_weights.empty()) { + for (auto& name : excluded_weights) { + for (auto it = imatrix_data.begin(); it != imatrix_data.end(); ) { + auto pos = it->first.find(name); + if (pos != std::string::npos) it = imatrix_data.erase(it); + else ++it; + } + } + } + if (!included_weights.empty()) { + std::unordered_map> tmp; + for (auto& name : included_weights) { + for (auto& e : imatrix_data) { + auto pos = e.first.find(name); + if (pos != std::string::npos) { + tmp.emplace(std::move(e)); + } + } + } + imatrix_data = std::move(tmp); + } + if (!imatrix_data.empty()) { + printf("%s: have %d importance matrix entries\n", __func__, int(imatrix_data.size())); + } +} + int main(int argc, char ** argv) { if (argc < 3) { usage(argv[0]); @@ -96,6 +188,8 @@ int main(int argc, char ** argv) { llama_model_quantize_params params = llama_model_quantize_default_params(); int arg_idx = 1; + std::string imatrix_file; + std::vector included_weights, excluded_weights; for (; arg_idx < argc && strncmp(argv[arg_idx], "--", 2) == 0; arg_idx++) { if (strcmp(argv[arg_idx], "--leave-output-tensor") == 0) { @@ -104,14 +198,42 @@ int main(int argc, char ** argv) { params.allow_requantize = true; } else if (strcmp(argv[arg_idx], "--pure") == 0) { params.pure = true; + } else if (strcmp(argv[arg_idx], "--imatrix") == 0) { + if (arg_idx < argc-1) { + imatrix_file = argv[++arg_idx]; + } else { + usage(argv[0]); + } + } else if (strcmp(argv[arg_idx], "--include-weights") == 0) { + if (arg_idx < argc-1) { + included_weights.push_back(argv[++arg_idx]); + } else { + usage(argv[0]); + } + } else if (strcmp(argv[arg_idx], "--exclude-weights") == 0) { + if (arg_idx < argc-1) { + excluded_weights.push_back(argv[++arg_idx]); + } else { + usage(argv[0]); + } } else { usage(argv[0]); } } if (argc - arg_idx < 2) { + printf("%s: bad arguments\n", argv[0]); usage(argv[0]); } + if (!included_weights.empty() && !excluded_weights.empty()) { + usage(argv[0]); + } + + std::unordered_map> imatrix_data; + prepare_imatrix(imatrix_file, included_weights, excluded_weights, imatrix_data); + if (!imatrix_data.empty()) { + params.imatrix = &imatrix_data; + } llama_backend_init(false); @@ -163,6 +285,13 @@ int main(int argc, char ** argv) { } } + if ((params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || params.ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) && imatrix_data.empty()) { + fprintf(stderr, "\n===============================================================================================\n"); + fprintf(stderr, "Please do not use IQ2_XXS, IQ2_XS or Q2_K_S quantization without an importance matrix\n"); + fprintf(stderr, "===============================================================================================\n\n\n"); + return 1; + } + print_build_info(); fprintf(stderr, "%s: quantizing '%s' to '%s' as %s", __func__, fname_inp.c_str(), fname_out.c_str(), ftype_str.c_str()); diff --git a/ggml-quants.c b/ggml-quants.c index 601d155d7..9290d54cf 100644 --- a/ggml-quants.c +++ b/ggml-quants.c @@ -5,6 +5,8 @@ #include #include #include +#include // for qsort +#include // for GGML_ASSERT #ifdef __ARM_NEON @@ -1639,6 +1641,241 @@ size_t ggml_quantize_q2_K(const float * restrict src, void * restrict dst, int n return (n/QK_K*sizeof(block_q2_K)); } +static float make_qkx3_quants(int n, int nmax, const float * restrict x, const float * restrict weights, + uint8_t * restrict L, float * restrict the_min, uint8_t * restrict Laux, + float rmin, float rdelta, int nstep, bool use_mad) { + float min = x[0]; + float max = x[0]; + float sum_w = weights ? weights[0] : x[0]*x[0]; + float sum_x = sum_w * x[0]; + for (int i = 1; i < n; ++i) { + if (x[i] < min) min = x[i]; + if (x[i] > max) max = x[i]; + float w = weights ? weights[i] : x[i]*x[i]; + sum_w += w; + sum_x += w * x[i]; + } + if (min > 0) { + min = 0; + } + if (max <= min) { + for (int i = 0; i < n; ++i) L[i] = 0; + *the_min = -min; + return 0.f; + } + float iscale = nmax/(max - min); + float scale = 1/iscale; + float best_mad = 0; + for (int i = 0; i < n; ++i) { + int l = nearest_int(iscale*(x[i] - min)); + L[i] = MAX(0, MIN(nmax, l)); + float diff = scale * L[i] + min - x[i]; + diff = use_mad ? fabsf(diff) : diff*diff; + float w = weights ? weights[i] : x[i]*x[i]; + best_mad += w * diff; + } + if (nstep < 1) { + *the_min = -min; + return scale; + } + for (int is = 0; is <= nstep; ++is) { + iscale = (rmin + rdelta*is + nmax)/(max - min); + float sum_l = 0, sum_l2 = 0, sum_xl = 0; + for (int i = 0; i < n; ++i) { + int l = nearest_int(iscale*(x[i] - min)); + l = MAX(0, MIN(nmax, l)); + Laux[i] = l; + float w = weights ? weights[i] : x[i]*x[i]; + sum_l += w*l; + sum_l2 += w*l*l; + sum_xl += w*l*x[i]; + } + float D = sum_w * sum_l2 - sum_l * sum_l; + if (D > 0) { + float this_scale = (sum_w * sum_xl - sum_x * sum_l)/D; + float this_min = (sum_l2 * sum_x - sum_l * sum_xl)/D; + if (this_min > 0) { + this_min = 0; + this_scale = sum_xl / sum_l2; + } + float mad = 0; + for (int i = 0; i < n; ++i) { + float diff = this_scale * Laux[i] + this_min - x[i]; + diff = use_mad ? fabsf(diff) : diff*diff; + float w = weights ? weights[i] : x[i]*x[i]; + mad += w * diff; + } + if (mad < best_mad) { + for (int i = 0; i < n; ++i) { + L[i] = Laux[i]; + } + best_mad = mad; + scale = this_scale; + min = this_min; + } + } + } + *the_min = -min; + return scale; +} + +static float make_qp_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, const float * quant_weights) { + float max = 0; + for (int i = 0; i < n; ++i) { + max = MAX(max, x[i]); + } + if (!max) { // all zero + for (int i = 0; i < n; ++i) { L[i] = 0; } + return 0.f; + } + float iscale = nmax / max; + for (int i = 0; i < n; ++i) { + L[i] = nearest_int(iscale * x[i]); + } + float scale = 1/iscale; + float best_mse = 0; + for (int i = 0; i < n; ++i) { + float diff = x[i] - scale*L[i]; + float w = quant_weights[i]; + best_mse += w*diff*diff; + } + for (int is = -4; is <= 4; ++is) { + if (is == 0) continue; + float iscale_is = (0.1f*is + nmax)/max; + float scale_is = 1/iscale_is; + float mse = 0; + for (int i = 0; i < n; ++i) { + int l = nearest_int(iscale_is*x[i]); + l = MIN(nmax, l); + float diff = x[i] - scale_is*l; + float w = quant_weights[i]; + mse += w*diff*diff; + } + if (mse < best_mse) { + best_mse = mse; + iscale = iscale_is; + } + } + float sumlx = 0; + float suml2 = 0; + for (int i = 0; i < n; ++i) { + int l = nearest_int(iscale * x[i]); + l = MIN(nmax, l); + L[i] = l; + float w = quant_weights[i]; + sumlx += w*x[i]*l; + suml2 += w*l*l; + } + for (int itry = 0; itry < 5; ++itry) { + int n_changed = 0; + for (int i = 0; i < n; ++i) { + float w = quant_weights[i]; + float slx = sumlx - w*x[i]*L[i]; + float sl2 = suml2 - w*L[i]*L[i]; + if (slx > 0 && sl2 > 0) { + int new_l = nearest_int(x[i] * sl2 / slx); + new_l = MIN(nmax, new_l); + if (new_l != L[i]) { + slx += w*x[i]*new_l; + sl2 += w*new_l*new_l; + if (slx*slx*suml2 > sumlx*sumlx*sl2) { + L[i] = new_l; sumlx = slx; suml2 = sl2; + ++n_changed; + } + } + } + } + if (!n_changed) { + break; + } + } + return sumlx / suml2; +} + +static void quantize_row_q2_K_impl(const float * restrict x, block_q2_K * restrict y, int k, const float * restrict quant_weights) { + GGML_ASSERT(quant_weights); + assert(k % QK_K == 0); + const int nb = k / QK_K; + const bool requantize = true; + + uint8_t L[QK_K]; + uint8_t Laux[16]; + float mins[QK_K/16]; + float scales[QK_K/16]; + float sw[QK_K/16]; + float weight[QK_K/16]; + uint8_t Ls[QK_K/16], Lm[QK_K/16]; + + for (int i = 0; i < nb; i++) { + memset(sw, 0, QK_K/16*sizeof(float)); + float sumx2 = 0; + for (int j = 0; j < QK_K; ++j) sumx2 += x[j]*x[j]; + float sigma2 = sumx2/QK_K; + for (int j = 0; j < QK_K/16; ++j) { + const float * restrict qw = quant_weights + QK_K * i + 16*j; + for (int l = 0; l < 16; ++l) weight[l] = qw[l] * sqrtf(sigma2 + x[16*j + l]*x[16*j + l]); + for (int l = 0; l < 16; ++l) sw[j] += weight[l]; + scales[j] = make_qkx3_quants(16, 3, x + 16*j, weight, L + 16*j, &mins[j], Laux, -0.9f, 0.05f, 36, false); + } + + float dm = make_qp_quants(QK_K/16, 15, scales, Ls, sw); + float mm = make_qp_quants(QK_K/16, 15, mins, Lm, sw); + y[i].d = GGML_FP32_TO_FP16(dm); + y[i].dmin = GGML_FP32_TO_FP16(mm); + dm = GGML_FP16_TO_FP32(y[i].d); + mm = GGML_FP16_TO_FP32(y[i].dmin); + + for (int j = 0; j < QK_K/16; ++j) { + y[i].scales[j] = Ls[j] | (Lm[j] << 4); + } + + if (requantize) { + for (int j = 0; j < QK_K/16; ++j) { + const float d = dm * (y[i].scales[j] & 0xF); + if (!d) continue; + const float m = mm * (y[i].scales[j] >> 4); + for (int ii = 0; ii < 16; ++ii) { + int l = nearest_int((x[16*j + ii] + m)/d); + l = MAX(0, MIN(3, l)); + L[16*j + ii] = l; + } + } + } + +#if QK_K == 256 + for (int j = 0; j < QK_K; j += 128) { + for (int l = 0; l < 32; ++l) { + y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6); + } + } +#else + for (int l = 0; l < 16; ++l) { + y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6); + } +#endif + + x += QK_K; + + } +} + +size_t quantize_q2_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) { + (void)hist; + int row_size = ggml_row_size(GGML_TYPE_Q2_K, n_per_row); + if (!quant_weights) { + quantize_row_q2_K_reference(src, dst, nrow*n_per_row); + } + else { + char * qrow = (char *)dst; + for (int row = 0; row < nrow; ++row) { + quantize_row_q2_K_impl(src, (block_q2_K*)qrow, n_per_row, quant_weights); + src += n_per_row; + qrow += row_size; + } + } + return nrow * row_size; +} + //========================= 3-bit (de)-quantization void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict y, int k) { @@ -2584,14 +2821,6 @@ static const uint8_t ksigns_iq2xs[128] = { static const uint8_t kmask_iq2xs[8] = {1, 2, 4, 8, 16, 32, 64, 128}; -void quantize_row_iq2_xxs_reference(const float * restrict x, block_iq2_xxs * restrict y, int k) { - (void)x; - (void)y; - (void)k; - assert(k % QK_K == 0); - //fprintf(stderr, "=========================== %s: not implemented\n", __func__); -} - void dequantize_row_iq2_xxs(const block_iq2_xxs * restrict x, float * restrict y, int k) { assert(k % QK_K == 0); const int nb = k / QK_K; @@ -2618,33 +2847,8 @@ void dequantize_row_iq2_xxs(const block_iq2_xxs * restrict x, float * restrict y } } -void quantize_row_iq2_xxs(const float * restrict x, void * restrict vy, int k) { - assert(k % QK_K == 0); - block_iq2_xxs * restrict y = vy; - quantize_row_iq2_xxs_reference(x, y, k); -} - -size_t ggml_quantize_iq2_xxs(const float * src, void * dst, int n, int k, int64_t * hist) { - assert(k % QK_K == 0); - (void)hist; // TODO: collect histograms - - for (int j = 0; j < n; j += k) { - block_iq2_xxs * restrict y = (block_iq2_xxs *)dst + j/QK_K; - quantize_row_iq2_xxs_reference(src + j, y, k); - } - return (n/QK_K*sizeof(block_iq2_xxs)); -} - // ====================== 2.3125 bpw (de)-quantization -void quantize_row_iq2_xs_reference(const float * restrict x, block_iq2_xs * restrict y, int k) { - (void)x; - (void)y; - (void)k; - assert(k % QK_K == 0); - //fprintf(stderr, "=========================== %s: not implemented\n", __func__); -} - void dequantize_row_iq2_xs(const block_iq2_xs * restrict x, float * restrict y, int k) { assert(k % QK_K == 0); const int nb = k / QK_K; @@ -2670,23 +2874,6 @@ void dequantize_row_iq2_xs(const block_iq2_xs * restrict x, float * restrict y, } } -void quantize_row_iq2_xs(const float * restrict x, void * restrict vy, int k) { - assert(k % QK_K == 0); - block_iq2_xs * restrict y = vy; - quantize_row_iq2_xs_reference(x, y, k); -} - -size_t ggml_quantize_iq2_xs(const float * src, void * dst, int n, int k, int64_t * hist) { - assert(k % QK_K == 0); - (void)hist; // TODO: collect histograms - - for (int j = 0; j < n; j += k) { - block_iq2_xs * restrict y = (block_iq2_xs *)dst + j/QK_K; - quantize_row_iq2_xs_reference(src + j, y, k); - } - return (n/QK_K*sizeof(block_iq2_xs)); -} - //===================================== Q8_K ============================================== void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int k) { @@ -7730,3 +7917,666 @@ void ggml_vec_dot_iq2_xs_q8_K(const int n, float * restrict s, const void * rest *s = 0.125f * sumf; #endif } + +// ================================ IQ2 quantization ============================================= + +typedef struct { + uint64_t * grid; + int * map; + uint16_t * neighbours; +} iq2_entry_t; + +static iq2_entry_t iq2_data[2] = { + {NULL, NULL, NULL}, + {NULL, NULL, NULL}, +}; + +static inline int iq2_data_index(int grid_size) { + GGML_ASSERT(grid_size == 256 || grid_size == 512); + return grid_size == 256 ? 0 : 1; +} + +static int iq2_compare_func(const void * left, const void * right) { + const int * l = (const int *)left; + const int * r = (const int *)right; + return l[0] < r[0] ? -1 : l[0] > r[0] ? 1 : l[1] < r[1] ? -1 : l[1] > r[1] ? 1 : 0; +} + +static void q2xs_init_impl(int grid_size) { + const int gindex = iq2_data_index(grid_size); + if (iq2_data[gindex].grid) { + return; + } + static const uint16_t kgrid_256[256] = { + 0, 2, 5, 8, 10, 17, 20, 32, 34, 40, 42, 65, 68, 80, 88, 97, + 100, 128, 130, 138, 162, 257, 260, 272, 277, 320, 388, 408, 512, 514, 546, 642, + 1025, 1028, 1040, 1057, 1060, 1088, 1090, 1096, 1120, 1153, 1156, 1168, 1188, 1280, 1282, 1288, + 1312, 1350, 1385, 1408, 1425, 1545, 1552, 1600, 1668, 1700, 2048, 2053, 2056, 2068, 2088, 2113, + 2116, 2128, 2130, 2184, 2308, 2368, 2562, 2580, 4097, 4100, 4112, 4129, 4160, 4192, 4228, 4240, + 4245, 4352, 4360, 4384, 4432, 4442, 4480, 4644, 4677, 5120, 5128, 5152, 5157, 5193, 5248, 5400, + 5474, 5632, 5654, 6145, 6148, 6160, 6208, 6273, 6400, 6405, 6560, 6737, 8192, 8194, 8202, 8260, + 8289, 8320, 8322, 8489, 8520, 8704, 8706, 9217, 9220, 9232, 9280, 9302, 9472, 9537, 9572, 9872, + 10248, 10272, 10388, 10820, 16385, 16388, 16400, 16408, 16417, 16420, 16448, 16456, 16470, 16480, 16513, 16516, + 16528, 16640, 16672, 16737, 16768, 16773, 16897, 16912, 16968, 16982, 17000, 17408, 17416, 17440, 17536, 17561, + 17682, 17700, 17920, 18433, 18436, 18448, 18496, 18501, 18688, 18776, 18785, 18818, 19013, 19088, 20480, 20488, + 20497, 20505, 20512, 20608, 20616, 20740, 20802, 20900, 21137, 21648, 21650, 21770, 22017, 22100, 22528, 22545, + 22553, 22628, 22848, 23048, 24580, 24592, 24640, 24680, 24832, 24917, 25112, 25184, 25600, 25605, 25872, 25874, + 25988, 26690, 32768, 32770, 32778, 32833, 32898, 33028, 33048, 33088, 33297, 33793, 33796, 33808, 33813, 33856, + 33888, 34048, 34118, 34196, 34313, 34368, 34400, 34818, 35076, 35345, 36868, 36880, 36900, 36928, 37025, 37142, + 37248, 37445, 37888, 37922, 37956, 38225, 39041, 39200, 40962, 41040, 41093, 41225, 41472, 42008, 43088, 43268, + }; + static const uint16_t kgrid_512[512] = { + 0, 2, 5, 8, 10, 17, 20, 22, 25, 32, 34, 37, 40, 65, 68, 70, + 73, 80, 82, 85, 88, 97, 100, 128, 130, 133, 136, 145, 148, 153, 160, 257, + 260, 262, 265, 272, 274, 277, 280, 282, 289, 292, 320, 322, 325, 328, 337, 340, + 352, 360, 385, 388, 400, 512, 514, 517, 520, 529, 532, 544, 577, 580, 592, 597, + 640, 650, 1025, 1028, 1030, 1033, 1040, 1042, 1045, 1048, 1057, 1060, 1088, 1090, 1093, 1096, + 1105, 1108, 1110, 1120, 1153, 1156, 1168, 1280, 1282, 1285, 1288, 1297, 1300, 1312, 1345, 1348, + 1360, 1377, 1408, 1537, 1540, 1552, 1574, 1600, 1602, 1668, 2048, 2050, 2053, 2056, 2058, 2065, + 2068, 2080, 2085, 2113, 2116, 2128, 2136, 2176, 2208, 2218, 2305, 2308, 2320, 2368, 2433, 2441, + 2560, 2592, 2600, 2710, 2720, 4097, 4100, 4102, 4105, 4112, 4114, 4117, 4120, 4129, 4132, 4160, + 4162, 4165, 4168, 4177, 4180, 4192, 4202, 4225, 4228, 4240, 4352, 4354, 4357, 4360, 4369, 4372, + 4384, 4417, 4420, 4432, 4480, 4500, 4502, 4609, 4612, 4614, 4624, 4672, 4704, 5120, 5122, 5125, + 5128, 5137, 5140, 5152, 5185, 5188, 5193, 5200, 5220, 5248, 5377, 5380, 5392, 5440, 5632, 5652, + 5705, 6145, 6148, 6160, 6162, 6208, 6228, 6278, 6400, 6405, 6502, 6737, 6825, 8192, 8194, 8197, + 8200, 8202, 8209, 8212, 8224, 8257, 8260, 8272, 8320, 8352, 8449, 8452, 8464, 8512, 8520, 8549, + 8704, 8738, 8832, 8872, 9217, 9220, 9232, 9257, 9280, 9472, 9537, 9554, 9625, 9729, 9754, 9894, + 10240, 10248, 10250, 10272, 10325, 10376, 10402, 10600, 10640, 10760, 10784, 10882, 10888, 10890, 16385, 16388, + 16390, 16393, 16400, 16402, 16405, 16408, 16417, 16420, 16448, 16450, 16453, 16456, 16458, 16465, 16468, 16480, + 16485, 16513, 16516, 16528, 16640, 16642, 16645, 16648, 16657, 16660, 16672, 16705, 16708, 16720, 16768, 16773, + 16802, 16897, 16900, 16912, 16914, 16937, 16960, 17408, 17410, 17413, 17416, 17425, 17428, 17433, 17440, 17473, + 17476, 17488, 17536, 17556, 17665, 17668, 17680, 17700, 17728, 17818, 17920, 17930, 17988, 18000, 18433, 18436, + 18448, 18496, 18501, 18516, 18530, 18688, 18705, 18756, 18768, 18793, 18948, 20480, 20482, 20485, 20488, 20497, + 20500, 20512, 20520, 20545, 20548, 20560, 20608, 20737, 20740, 20752, 20757, 20800, 20802, 20992, 21060, 21162, + 21505, 21508, 21520, 21537, 21568, 21600, 21633, 21665, 21760, 21768, 21888, 21896, 22049, 22120, 22177, 22528, + 22548, 22593, 22608, 22681, 22810, 22848, 22850, 23173, 24577, 24580, 24592, 24640, 24660, 24674, 24710, 24745, + 24832, 25124, 25162, 25234, 25600, 25622, 25872, 25920, 25925, 26020, 26625, 26730, 26917, 27142, 27220, 27234, + 32768, 32770, 32773, 32776, 32785, 32788, 32800, 32810, 32833, 32836, 32848, 32896, 32898, 32936, 32938, 33025, + 33028, 33030, 33040, 33088, 33105, 33113, 33280, 33312, 33408, 33410, 33440, 33448, 33793, 33796, 33808, 33810, + 33813, 33856, 33888, 33929, 34048, 34116, 34213, 34328, 34410, 34816, 34824, 34853, 34906, 34944, 34946, 34984, + 35078, 35362, 35456, 35464, 35478, 35496, 36865, 36868, 36880, 36928, 36950, 36996, 37120, 37154, 37220, 37462, + 37513, 37888, 37893, 37956, 37968, 37976, 38185, 38288, 38290, 38465, 38993, 39078, 39241, 39445, 39520, 40960, + 40962, 40968, 40970, 40992, 41002, 41120, 41297, 41305, 41382, 41472, 41474, 41480, 41514, 41600, 41632, 42048, + 42133, 42597, 42648, 43018, 43040, 43042, 43048, 43168, 43176, 43268, 43396, 43398, 43560, 43562, 43665, 43690, + }; + const int kmap_size = 43692; + const int nwant = 2; + const uint16_t * kgrid = grid_size == 256 ? kgrid_256 : kgrid_512; + uint64_t * kgrid_q2xs; + int * kmap_q2xs; + uint16_t * kneighbors_q2xs; + + printf("================================================================= %s(grid_size = %d)\n", __func__, grid_size); + uint64_t * the_grid = (uint64_t *)malloc(grid_size*sizeof(uint64_t)); + for (int k = 0; k < grid_size; ++k) { + int8_t * pos = (int8_t *)(the_grid + k); + for (int i = 0; i < 8; ++i) { + int l = (kgrid[k] >> 2*i) & 0x3; + pos[i] = 2*l + 1; + } + } + kgrid_q2xs = the_grid; + iq2_data[gindex].grid = the_grid; + kmap_q2xs = (int *)malloc(kmap_size*sizeof(int)); + iq2_data[gindex].map = kmap_q2xs; + for (int i = 0; i < kmap_size; ++i) kmap_q2xs[i] = -1; + uint64_t aux64; + uint8_t * aux8 = (uint8_t *)&aux64; + for (int i = 0; i < grid_size; ++i) { + aux64 = kgrid_q2xs[i]; + uint16_t index = 0; + for (int k=0; k<8; ++k) { + uint16_t q = (aux8[k] - 1)/2; + index |= (q << 2*k); + } + kmap_q2xs[index] = i; + } + int8_t pos[8]; + int * dist2 = (int *)malloc(2*grid_size*sizeof(int)); + int num_neighbors = 0, num_not_in_map = 0; + for (int i = 0; i < kmap_size; ++i) { + if (kmap_q2xs[i] >= 0) continue; + ++num_not_in_map; + for (int k = 0; k < 8; ++k) { + int l = (i >> 2*k) & 0x3; + pos[k] = 2*l + 1; + } + for (int j = 0; j < grid_size; ++j) { + const int8_t * pg = (const int8_t *)(kgrid_q2xs + j); + int d2 = 0; + for (int k = 0; k < 8; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]); + dist2[2*j+0] = d2; + dist2[2*j+1] = j; + } + qsort(dist2, grid_size, 2*sizeof(int), iq2_compare_func); + int n = 0; int d2 = dist2[0]; + int nhave = 1; + for (int j = 0; j < grid_size; ++j) { + if (dist2[2*j] > d2) { + if (nhave == nwant) break; + d2 = dist2[2*j]; + ++nhave; + } + ++n; + } + num_neighbors += n; + } + printf("%s: %d neighbours in total\n", __func__, num_neighbors); + kneighbors_q2xs = (uint16_t *)malloc((num_neighbors + num_not_in_map)*sizeof(uint16_t)); + iq2_data[gindex].neighbours = kneighbors_q2xs; + int counter = 0; + for (int i = 0; i < kmap_size; ++i) { + if (kmap_q2xs[i] >= 0) continue; + for (int k = 0; k < 8; ++k) { + int l = (i >> 2*k) & 0x3; + pos[k] = 2*l + 1; + } + for (int j = 0; j < grid_size; ++j) { + const int8_t * pg = (const int8_t *)(kgrid_q2xs + j); + int d2 = 0; + for (int k = 0; k < 8; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]); + dist2[2*j+0] = d2; + dist2[2*j+1] = j; + } + qsort(dist2, grid_size, 2*sizeof(int), iq2_compare_func); + kmap_q2xs[i] = -(counter + 1); + int d2 = dist2[0]; + uint16_t * start = &kneighbors_q2xs[counter++]; + int n = 0, nhave = 1; + for (int j = 0; j < grid_size; ++j) { + if (dist2[2*j] > d2) { + if (nhave == nwant) break; + d2 = dist2[2*j]; + ++nhave; + } + kneighbors_q2xs[counter++] = dist2[2*j+1]; + ++n; + } + *start = n; + } + free(dist2); +} + +void ggml_init_iq2_quantization(enum ggml_type type) { + if (type == GGML_TYPE_IQ2_XXS) { + q2xs_init_impl(256); + } + else if (type == GGML_TYPE_IQ2_XS) { + q2xs_init_impl(512); + } + else { + fprintf(stderr, "======================== Why are you calling %s with type %d?\n", __func__, (int)type); + } +} + +static void q2xs_deinit_impl(int grid_size) { + GGML_ASSERT(grid_size == 256 || grid_size == 512 || grid_size == 1024); + const int gindex = iq2_data_index(grid_size); + if (iq2_data[gindex].grid) { + free(iq2_data[gindex].grid); iq2_data[gindex].grid = NULL; + free(iq2_data[gindex].map); iq2_data[gindex].map = NULL; + free(iq2_data[gindex].neighbours); iq2_data[gindex].neighbours = NULL; + } +} + +void ggml_deinit_iq2_quantization(enum ggml_type type) { + if (type == GGML_TYPE_IQ2_XXS) { + q2xs_deinit_impl(256); + } + else if (type == GGML_TYPE_IQ2_XS) { + q2xs_deinit_impl(512); + } + else { + fprintf(stderr, "======================== Why are you calling %s with type %d?\n", __func__, (int)type); + } +} + +static int iq2_find_best_neighbour(const uint16_t * restrict neighbours, const uint64_t * restrict grid, + const float * restrict xval, const float * restrict weight, float scale, int8_t * restrict L) { + int num_neighbors = neighbours[0]; + GGML_ASSERT(num_neighbors > 0); + float best_d2 = FLT_MAX; + int grid_index = -1; + for (int j = 1; j <= num_neighbors; ++j) { + const int8_t * pg = (const int8_t *)(grid + neighbours[j]); + float d2 = 0; + for (int i = 0; i < 8; ++i) { + float q = pg[i]; + float diff = scale*q - xval[i]; + d2 += weight[i]*diff*diff; + } + if (d2 < best_d2) { + best_d2 = d2; grid_index = neighbours[j]; + } + } + GGML_ASSERT(grid_index >= 0); + const int8_t * pg = (const int8_t *)(grid + grid_index); + for (int i = 0; i < 8; ++i) L[i] = (pg[i] - 1)/2; + return grid_index; +} + +static void quantize_row_iq2_xxs_impl(const float * restrict x, void * restrict vy, int n, const float * restrict quant_weights) { + + const int gindex = iq2_data_index(256); + + const uint64_t * kgrid_q2xs = iq2_data[gindex].grid; + const int * kmap_q2xs = iq2_data[gindex].map; + const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours; + + GGML_ASSERT(quant_weights); + GGML_ASSERT(kgrid_q2xs); + GGML_ASSERT(kmap_q2xs); + GGML_ASSERT(kneighbors_q2xs); + GGML_ASSERT(n%QK_K == 0); + + const int kMaxQ = 3; + + const int nbl = n/256; + + block_iq2_xxs * y = vy; + + float scales[QK_K/32]; + float weight[32]; + float xval[32]; + int8_t L[32]; + int8_t Laux[32]; + float waux[32]; + bool is_on_grid[4]; + bool is_on_grid_aux[4]; + uint8_t block_signs[4]; + uint32_t q2[2*(QK_K/32)]; + + for (int ibl = 0; ibl < nbl; ++ibl) { + + y[ibl].d = GGML_FP32_TO_FP16(0.f); + memset(q2, 0, QK_K/4); + + float max_scale = 0; + + const float * xbl = x + QK_K*ibl; + float sumx2 = 0; + for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i]; + float sigma2 = sumx2/QK_K; + + for (int ib = 0; ib < QK_K/32; ++ib) { + const float * xb = xbl + 32*ib; + const float * qw = quant_weights + QK_K*ibl + 32*ib; + for (int i = 0; i < 32; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]); + for (int i = 0; i < 32; ++i) waux[i] = sqrtf(weight[i]); + for (int k = 0; k < 4; ++k) { + int nflip = 0; + uint8_t s = 0; + for (int i = 0; i < 8; ++i) { + if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i]; + else { + xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i); + } + } + if (nflip%2) { + int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin]; + for (int i = 1; i < 8; ++i) { + float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i]; + if (ax < min) { + min = ax; imin = i; + } + } + xval[8*k+imin] = -xval[8*k+imin]; + s ^= (1 << imin); + } + block_signs[k] = s & 127; + } + float max = xval[0]; + for (int i = 1; i < 32; ++i) max = MAX(max, xval[i]); + if (!max) { + scales[ib] = 0; + memset(L, 0, 32); + continue; + } + float best = 0; + float scale = max/(2*kMaxQ-1); + for (int is = -9; is <= 9; ++is) { + float id = (2*kMaxQ-1+is*0.1f)/max; + float this_scale = 1/id; + for (int k = 0; k < 4; ++k) { + for (int i = 0; i < 8; ++i) { + int l = nearest_int(0.5f*(id*xval[8*k+i]-1)); + Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l)); + } + uint16_t u = 0; + for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i); + int grid_index = kmap_q2xs[u]; + is_on_grid_aux[k] = true; + if (grid_index < 0) { + is_on_grid_aux[k] = false; + const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1; + grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k); + } + } + float sumqx = 0, sumq2 = 0; + for (int i = 0; i < 32; ++i) { + float w = weight[i]; + float q = 2*Laux[i] + 1; + sumqx += w*xval[i]*q; + sumq2 += w*q*q; + } + if (sumq2 > 0 && sumqx*sumqx > best*sumq2) { + scale = sumqx/sumq2; best = scale*sumqx; + for (int i = 0; i < 32; ++i) L[i] = Laux[i]; + for (int k = 0; k < 4; ++k) is_on_grid[k] = is_on_grid_aux[k]; + } + } + int n_not_ongrid = 0; + for (int k = 0; k < 4; ++k) if (!is_on_grid[k]) ++n_not_ongrid; + if (n_not_ongrid > 0 && scale > 0) { + float id = 1/scale; + for (int k = 0; k < 4; ++k) { + if (is_on_grid[k]) continue; + uint16_t u = 0; + for (int i = 0; i < 8; ++i) { + int l = nearest_int(0.5f*(id*xval[8*k+i]-1)); + l = MAX(0, MIN(kMaxQ-1, l)); + u |= (l << 2*i); + } + int grid_index = kmap_q2xs[u]; + if (grid_index < 0) { + const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1; + grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k); + } + const int8_t * pg = (const int8_t *)(kgrid_q2xs + grid_index); + for (int i = 0; i < 8; ++i) L[8*k+i] = (pg[i] - 1)/2; + } + float sumqx = 0, sumq2 = 0; + for (int i = 0; i < 32; ++i) { + float w = weight[i]; + float q = 2*L[i] + 1; + sumqx += w*xval[i]*q; + sumq2 += w*q*q; + } + if (sumq2 > 0) scale = sumqx/sumq2; + } + if (scale < 0) { + // This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale) + // and correspondingly flip quant signs. + scale = -scale; + for (int k = 0; k < 4; ++k) block_signs[k] = (~block_signs[k]) & 127; + } + for (int k = 0; k < 4; ++k) { + uint16_t u = 0; + for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i); + int grid_index = kmap_q2xs[u]; + if (grid_index < 0) { + printf("Oops: found point %u not on grid:", u); + for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]); + printf("\n"); + GGML_ASSERT(false); + } + q2[2*ib+0] |= (grid_index << 8*k); + q2[2*ib+1] |= (block_signs[k] << 7*k); + } + GGML_ASSERT(scale >= 0); + scales[ib] = scale; + max_scale = MAX(max_scale, scale); + } + + if (!max_scale) { + memset(y[ibl].qs, 0, QK_K/4); + continue; + } + + float d = max_scale/31; + y[ibl].d = GGML_FP32_TO_FP16(d); + float id = 1/d; + float sumqx = 0, sumq2 = 0; + for (int ib = 0; ib < QK_K/32; ++ib) { + int l = nearest_int(0.5f*(id*scales[ib]-1)); + l = MAX(0, MIN(15, l)); + q2[2*ib+1] |= ((uint32_t)l << 28); + const float * xb = xbl + 32*ib; + const float * qw = quant_weights + QK_K*ibl + 32*ib; + for (int i = 0; i < 32; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]); + const uint8_t * aux8 = (const uint8_t *)(q2 + 2*ib); + const float db = d * (1 + 2*l); + uint32_t u = 0; + for (int k = 0; k < 4; ++k) { + const int8_t * signs = keven_signs_q2xs + 8*((q2[2*ib+1] >> 7*k) & 127); + const float * xk = xb + 8*k; + const float * wk = weight + 8*k; + const uint8_t * grid = (const uint8_t *)(kgrid_q2xs + aux8[k]); + float best_mse = 0; int best_index = aux8[k]; + for (int j = 0; j < 8; ++j) { + float diff = db * grid[j] * signs[j] - xk[j]; + best_mse += wk[j] * diff * diff; + } + for (int idx = 0; idx < 256; ++idx) { + grid = (const uint8_t *)(kgrid_q2xs + idx); + float mse = 0; + for (int j = 0; j < 8; ++j) { + float diff = db * grid[j] * signs[j] - xk[j]; + mse += wk[j] * diff * diff; + } + if (mse < best_mse) { + best_mse = mse; best_index = idx; + } + } + u |= (best_index << 8*k); + grid = (const uint8_t *)(kgrid_q2xs + best_index); + //grid = (const uint8_t *)(kgrid_q2xs + aux8[k]); + for (int j = 0; j < 8; ++j) { + float q = db * grid[j] * signs[j]; + sumqx += wk[j] * q * xk[j]; + sumq2 += wk[j] * q * q; + } + } + q2[2*ib] = u; + if (sumq2 > 0) y[ibl].d = GGML_FP32_TO_FP16(d*sumqx/sumq2); + } + memcpy(y[ibl].qs, q2, QK_K/4); + } +} + +static void quantize_row_iq2_xs_impl(const float * restrict x, void * restrict vy, int n, const float * restrict quant_weights) { + + const int gindex = iq2_data_index(512); + + const uint64_t * kgrid_q2xs = iq2_data[gindex].grid; + const int * kmap_q2xs = iq2_data[gindex].map; + const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours; + + GGML_ASSERT(quant_weights); + GGML_ASSERT(kmap_q2xs); + GGML_ASSERT(kgrid_q2xs); + GGML_ASSERT(kneighbors_q2xs); + GGML_ASSERT(n%QK_K == 0); + + const int kMaxQ = 3; + + const int nbl = n/256; + + block_iq2_xs * y = vy; + + float scales[QK_K/16]; + float weight[16]; + float xval[16]; + int8_t L[16]; + int8_t Laux[16]; + float waux[16]; + bool is_on_grid[2]; + bool is_on_grid_aux[2]; + uint8_t block_signs[2]; + uint16_t q2[2*(QK_K/16)]; + + for (int ibl = 0; ibl < nbl; ++ibl) { + + y[ibl].d = GGML_FP32_TO_FP16(0.f); + memset(q2, 0, QK_K/4); + memset(y[ibl].scales, 0, QK_K/32); + + float max_scale = 0; + + const float * xbl = x + QK_K*ibl; + float sumx2 = 0; + for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i]; + float sigma2 = sumx2/QK_K; + + for (int ib = 0; ib < QK_K/16; ++ib) { + const float * xb = xbl + 16*ib; + const float * qw = quant_weights + QK_K*ibl + 16*ib; + for (int i = 0; i < 16; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]); + for (int i = 0; i < 16; ++i) waux[i] = sqrtf(weight[i]); + for (int k = 0; k < 2; ++k) { + int nflip = 0; + uint8_t s = 0; + for (int i = 0; i < 8; ++i) { + if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i]; + else { + xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i); + } + } + if (nflip%2) { + int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin]; + for (int i = 1; i < 8; ++i) { + float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i]; + if (ax < min) { + min = ax; imin = i; + } + } + xval[8*k+imin] = -xval[8*k+imin]; + s ^= (1 << imin); + } + block_signs[k] = s & 127; + } + float max = xval[0]; + for (int i = 1; i < 16; ++i) max = MAX(max, xval[i]); + if (!max) { + scales[ib] = 0; + memset(L, 0, 16); + continue; + } + float best = 0; + float scale = max/(2*kMaxQ-1); + is_on_grid[0] = is_on_grid[1] = true; + for (int is = -9; is <= 9; ++is) { + float id = (2*kMaxQ-1+is*0.1f)/max; + float this_scale = 1/id; + for (int k = 0; k < 2; ++k) { + for (int i = 0; i < 8; ++i) { + int l = nearest_int(0.5f*(id*xval[8*k+i]-1)); + Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l)); + } + uint16_t u = 0; + for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i); + int grid_index = kmap_q2xs[u]; + is_on_grid_aux[k] = true; + if (grid_index < 0) { + is_on_grid_aux[k] = false; + const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1; + grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k); + } + } + float sumqx = 0, sumq2 = 0; + for (int i = 0; i < 16; ++i) { + float w = weight[i]; + float q = 2*Laux[i] + 1; + sumqx += w*xval[i]*q; + sumq2 += w*q*q; + } + if (sumq2 > 0 && sumqx*sumqx > best*sumq2) { + scale = sumqx/sumq2; best = scale*sumqx; + for (int i = 0; i < 16; ++i) L[i] = Laux[i]; + for (int k = 0; k < 2; ++k) is_on_grid[k] = is_on_grid_aux[k]; + } + } + int n_not_ongrid = 0; + for (int k = 0; k < 2; ++k) if (!is_on_grid[k]) ++n_not_ongrid; + if (n_not_ongrid > 0 && scale > 0) { + float id = 1/scale; + for (int k = 0; k < 2; ++k) { + if (is_on_grid[k]) continue; + uint16_t u = 0; + for (int i = 0; i < 8; ++i) { + int l = nearest_int(0.5f*(id*xval[8*k+i]-1)); + l = MAX(0, MIN(kMaxQ-1, l)); + u |= (l << 2*i); + L[8*k + i] = l; + } + int grid_index = kmap_q2xs[u]; + if (grid_index < 0) { + const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1; + grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k); + } + } + float sumqx = 0, sumq2 = 0; + for (int i = 0; i < 16; ++i) { + float w = weight[i]; + float q = 2*L[i] + 1; + sumqx += w*xval[i]*q; + sumq2 += w*q*q; + } + if (sumq2 > 0) scale = sumqx/sumq2; + } + if (scale < 0) { + scale = -scale; + for (int k = 0; k < 2; ++k) block_signs[k] = (~block_signs[k]) & 127; + } + for (int k = 0; k < 2; ++k) { + uint16_t u = 0; + for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i); + int grid_index = kmap_q2xs[u]; + if (grid_index < 0) { + printf("Oops: found point %u not on grid:", u); + for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]); + printf("\n"); + GGML_ASSERT(false); + } + q2[2*ib+k] = grid_index | (block_signs[k] << 9); + } + GGML_ASSERT(scale >= 0); + scales[ib] = scale; + max_scale = MAX(max_scale, scale); + } + + if (!max_scale) { + memset(y[ibl].qs, 0, QK_K/4); + continue; + } + + float d = max_scale/31; + y[ibl].d = GGML_FP32_TO_FP16(d); + float id = 1/d; + for (int ib = 0; ib < QK_K/16; ++ib) { + int l = nearest_int(0.5f*(id*scales[ib]-1)); + l = MAX(0, MIN(15, l)); + if (ib%2 == 0) y[ibl].scales[ib/2] = l; + else y[ibl].scales[ib/2] |= (l << 4); + } + memcpy(y[ibl].qs, q2, QK_K/4); + + } +} + +size_t quantize_iq2_xxs(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) { + (void)hist; + GGML_ASSERT(n_per_row%QK_K == 0); + int nblock = n_per_row/QK_K; + char * qrow = (char *)dst; + for (int row = 0; row < nrow; ++row) { + quantize_row_iq2_xxs_impl(src, qrow, n_per_row, quant_weights); + src += n_per_row; + qrow += nblock*sizeof(block_iq2_xxs); + } + return nrow * nblock * sizeof(block_iq2_xxs); +} + +size_t quantize_iq2_xs(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) { + (void)hist; + GGML_ASSERT(n_per_row%QK_K == 0); + int nblock = n_per_row/QK_K; + char * qrow = (char *)dst; + for (int row = 0; row < nrow; ++row) { + quantize_row_iq2_xs_impl(src, qrow, n_per_row, quant_weights); + src += n_per_row; + qrow += nblock*sizeof(block_iq2_xs); + } + return nrow * nblock * sizeof(block_iq2_xs); +} + diff --git a/ggml-quants.h b/ggml-quants.h index df5e7ae80..e5d110230 100644 --- a/ggml-quants.h +++ b/ggml-quants.h @@ -196,8 +196,6 @@ void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict y, int k); void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict y, int k); void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int k); -void quantize_row_iq2_xxs_reference(const float * restrict x, block_iq2_xxs * restrict y, int k); -void quantize_row_iq2_xs_reference (const float * restrict x, block_iq2_xs * restrict y, int k); void quantize_row_q4_0(const float * restrict x, void * restrict y, int k); void quantize_row_q4_1(const float * restrict x, void * restrict y, int k); @@ -212,8 +210,6 @@ void quantize_row_q4_K(const float * restrict x, void * restrict y, int k); void quantize_row_q5_K(const float * restrict x, void * restrict y, int k); void quantize_row_q6_K(const float * restrict x, void * restrict y, int k); void quantize_row_q8_K(const float * restrict x, void * restrict y, int k); -void quantize_row_iq2_xxs(const float * restrict x, void * restrict y, int k); -void quantize_row_iq2_xs (const float * restrict x, void * restrict y, int k); // Dequantization void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k); @@ -246,3 +242,11 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, const void * restrict vx, void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy); void ggml_vec_dot_iq2_xxs_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy); void ggml_vec_dot_iq2_xs_q8_K (int n, float * restrict s, const void * restrict vx, const void * restrict vy); + +// +// Quantization utilizing an importance matrix (a.k.a. "Activation aWare Quantization") +// +size_t quantize_iq2_xxs(const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix); +size_t quantize_iq2_xs (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix); +size_t quantize_q2_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix); + diff --git a/ggml.c b/ggml.c index bcfb6652c..52467475a 100644 --- a/ggml.c +++ b/ggml.c @@ -585,8 +585,8 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = { .type_size = sizeof(block_iq2_xxs), .is_quantized = true, .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs, - .from_float = quantize_row_iq2_xxs, - .from_float_reference = (ggml_from_float_t) quantize_row_iq2_xxs_reference, + .from_float = NULL, + .from_float_reference = NULL, .vec_dot = ggml_vec_dot_iq2_xxs_q8_K, .vec_dot_type = GGML_TYPE_Q8_K, }, @@ -596,8 +596,8 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = { .type_size = sizeof(block_iq2_xs), .is_quantized = true, .to_float = (ggml_to_float_t) dequantize_row_iq2_xs, - .from_float = quantize_row_iq2_xs, - .from_float_reference = (ggml_from_float_t) quantize_row_iq2_xs_reference, + .from_float = NULL, + .from_float_reference = NULL, .vec_dot = ggml_vec_dot_iq2_xs_q8_K, .vec_dot_type = GGML_TYPE_Q8_K, }, @@ -18665,8 +18665,11 @@ size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * return (n/QK8_0*sizeof(block_q8_0)); } -size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) { +size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, + int nrows, int n_per_row, int64_t * hist, const float * imatrix) { + (void)imatrix; size_t result = 0; + int n = nrows * n_per_row; switch (type) { case GGML_TYPE_Q4_0: { @@ -18701,8 +18704,11 @@ size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, i case GGML_TYPE_Q2_K: { GGML_ASSERT(start % QK_K == 0); - block_q2_K * block = (block_q2_K*)dst + start / QK_K; - result = ggml_quantize_q2_K(src + start, block, n, n, hist); + GGML_ASSERT(start % n_per_row == 0); + size_t start_row = start / n_per_row; + size_t row_size = ggml_row_size(type, n_per_row); + result = quantize_q2_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix); + GGML_ASSERT(result == row_size * nrows); } break; case GGML_TYPE_Q3_K: { @@ -18731,14 +18737,22 @@ size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, i case GGML_TYPE_IQ2_XXS: { GGML_ASSERT(start % QK_K == 0); - block_iq2_xxs * block = (block_iq2_xxs*)dst + start / QK_K; - result = ggml_quantize_iq2_xxs(src + start, block, n, n, hist); + GGML_ASSERT(start % n_per_row == 0); + GGML_ASSERT(imatrix); + size_t start_row = start / n_per_row; + size_t row_size = ggml_row_size(type, n_per_row); + result = quantize_iq2_xxs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix); + GGML_ASSERT(result == row_size * nrows); } break; case GGML_TYPE_IQ2_XS: { GGML_ASSERT(start % QK_K == 0); - block_iq2_xs * block = (block_iq2_xs*)dst + start / QK_K; - result = ggml_quantize_iq2_xs(src + start, block, n, n, hist); + GGML_ASSERT(start % n_per_row == 0); + GGML_ASSERT(imatrix); + size_t start_row = start / n_per_row; + size_t row_size = ggml_row_size(type, n_per_row); + result = quantize_iq2_xs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix); + GGML_ASSERT(result == row_size * nrows); } break; case GGML_TYPE_F16: { diff --git a/ggml.h b/ggml.h index b18ba7812..1187074f7 100644 --- a/ggml.h +++ b/ggml.h @@ -2067,10 +2067,13 @@ extern "C" { GGML_API size_t ggml_quantize_q4_K(const float * src, void * dst, int n, int k, int64_t * hist); GGML_API size_t ggml_quantize_q5_K(const float * src, void * dst, int n, int k, int64_t * hist); GGML_API size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * hist); - GGML_API size_t ggml_quantize_iq2_xxs(const float * src, void * dst, int n, int k, int64_t * hist); - GGML_API size_t ggml_quantize_iq2_xs (const float * src, void * dst, int n, int k, int64_t * hist); - GGML_API size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist); + GGML_API size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, + int start, int nrows, int n_per_row, int64_t * hist, const float * imatrix); + + // These are needed for IQ2_XS and IQ2_XXS quantizations + GGML_API void ggml_init_iq2_quantization(enum ggml_type type); + GGML_API void ggml_deinit_iq2_quantization(enum ggml_type type); // // Importance matrix diff --git a/llama.cpp b/llama.cpp index 8e20e72a2..107b05114 100644 --- a/llama.cpp +++ b/llama.cpp @@ -8429,9 +8429,23 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) { new_type = GGML_TYPE_Q8_0; } + else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS) { + new_type = GGML_TYPE_Q5_K; + } else if (new_type != GGML_TYPE_Q8_0) { new_type = GGML_TYPE_Q6_K; } + } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS) { + if (name.find("attn_v.weight") != std::string::npos) { + if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K; + else new_type = GGML_TYPE_Q2_K; + ++qs.i_attention_wv; + } + else if (name.find("ffn_down") != std::string::npos) { + if (qs.i_feed_forward_w2 < qs.n_feed_forward_w2/8) new_type = GGML_TYPE_Q2_K; + ++qs.i_feed_forward_w2; + } + else if (name == "token_embd.weight") new_type = GGML_TYPE_Q2_K; } else if (name.find("attn_v.weight") != std::string::npos) { if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) { @@ -8601,6 +8615,13 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s if (params->only_copy) { ftype = model.ftype; } + const std::unordered_map> * imatrix_data = nullptr; + if (params->imatrix) { + imatrix_data = static_cast>*>(params->imatrix); + if (imatrix_data) { + printf("================================ Have weights data with %d entries\n",int(imatrix_data->size())); + } + } const size_t align = GGUF_DEFAULT_ALIGNMENT; struct gguf_context * ctx_out = gguf_init_empty(); @@ -8658,6 +8679,8 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s // placeholder for the meta data ::zeros(fout, meta_size); + std::set used_iq2; + for (int i = 0; i < ml.n_tensors; ++i) { struct ggml_tensor * tensor = ml.get_tensor_meta(i); @@ -8710,6 +8733,35 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s } else { const size_t nelements = ggml_nelements(tensor); + if ((new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_XS) && used_iq2.find(new_type) == used_iq2.end()) { + ggml_init_iq2_quantization(new_type); + used_iq2.insert(new_type); + } + + const float * imatrix = nullptr; + if (imatrix_data) { + auto it = imatrix_data->find(tensor->name); + if (it == imatrix_data->end()) { + printf("\n====== %s: did not find weights for %s\n", __func__, tensor->name); + } else { + if (it->second.size() == (size_t)tensor->ne[0]) { + imatrix = it->second.data(); + } else { + printf("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__, + int(it->second.size()), int(tensor->ne[0]), tensor->name); + } + } + } + if ((new_type == GGML_TYPE_IQ2_XXS || + new_type == GGML_TYPE_IQ2_XS || + (new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) { + fprintf(stderr, "\n\n============================================================\n"); + fprintf(stderr, "Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name); + fprintf(stderr, "The result will be garbage, so bailing out\n"); + fprintf(stderr, "============================================================\n\n"); + throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name)); + } + float * f32_data; if (tensor->type == GGML_TYPE_F32) { @@ -8730,21 +8782,28 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s new_data = work.data(); std::array hist_cur = {}; - static const int chunk_size = 32 * 512; + const int n_per_row = tensor->ne[0]; + const int nrows = nelements / n_per_row; + + static const int min_chunk_size = 32 * 512; + const int chunk_size = n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row); + const int nchunk = (nelements + chunk_size - 1)/chunk_size; const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1; if (nthread_use < 2) { - new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nelements, hist_cur.data()); + new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, hist_cur.data(), imatrix); } else { - size_t counter = 0; + int counter = 0; new_size = 0; - auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, nelements]() { + auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, chunk_size, + nrows, n_per_row, imatrix]() { std::array local_hist = {}; + const int nrows_per_chunk = chunk_size / n_per_row; size_t local_size = 0; while (true) { std::unique_lock lock(mutex); - size_t first = counter; counter += chunk_size; - if (first >= nelements) { + int first_row = counter; counter += nrows_per_chunk; + if (first_row >= nrows) { if (local_size > 0) { for (int j=0; j %8.2f MiB | hist: ", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0); + LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0); int64_t tot_count = 0; for (size_t i = 0; i < hist_cur.size(); i++) { hist_all[i] += hist_cur[i]; @@ -8774,6 +8834,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s } if (tot_count > 0) { + LLAMA_LOG_INFO(" | hist: "); for (size_t i = 0; i < hist_cur.size(); i++) { LLAMA_LOG_INFO("%5.3f ", hist_cur[i] / float(nelements)); } @@ -8802,6 +8863,10 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s fout.close(); + for (auto type : used_iq2) { + ggml_deinit_iq2_quantization(type); + } + gguf_free(ctx_out); LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0); @@ -9166,6 +9231,7 @@ struct llama_model_quantize_params llama_model_quantize_default_params() { /*.quantize_output_tensor =*/ true, /*.only_copy =*/ false, /*.pure =*/ false, + /*.imatrix =*/ nullptr, }; return result; diff --git a/llama.h b/llama.h index 01d6fafaa..79c8335b6 100644 --- a/llama.h +++ b/llama.h @@ -249,6 +249,7 @@ extern "C" { bool quantize_output_tensor; // quantize output.weight bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored bool pure; // disable k-quant mixtures and quantize all tensors to the same type + void * imatrix; // pointer to importance matrix data } llama_model_quantize_params; // grammar types diff --git a/tests/test-backend-ops.cpp b/tests/test-backend-ops.cpp index d9b8b106a..22a7856d4 100644 --- a/tests/test-backend-ops.cpp +++ b/tests/test-backend-ops.cpp @@ -56,7 +56,7 @@ static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float m GGML_ASSERT(size % ggml_blck_size(tensor->type) == 0); std::vector dataq(ggml_row_size(tensor->type, size)); int64_t hist[16]; - ggml_quantize_chunk(tensor->type, data.data(), dataq.data(), 0, size, hist); + ggml_quantize_chunk(tensor->type, data.data(), dataq.data(), 0, size/tensor->ne[0], tensor->ne[0], hist, nullptr); ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size()); } else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) { // This is going to create some weird integers though. From ac32902a87147f78d63c931aa8a23dee762660e7 Mon Sep 17 00:00:00 2001 From: Karthik Kumar Viswanathan <195178+guilt@users.noreply.github.com> Date: Sun, 14 Jan 2024 00:41:44 -0800 Subject: [PATCH 3/9] llama : support WinXP build with MinGW 8.1.0 (#3419) --- CMakeLists.txt | 8 ++++++-- llama.cpp | 4 ++++ 2 files changed, 10 insertions(+), 2 deletions(-) diff --git a/CMakeLists.txt b/CMakeLists.txt index 668669c6d..2741568ed 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -1,4 +1,4 @@ -cmake_minimum_required(VERSION 3.13) # for add_link_options +cmake_minimum_required(VERSION 3.14) # for add_link_options and implicit target directories. project("llama.cpp" C CXX) set(CMAKE_EXPORT_COMPILE_COMMANDS ON) @@ -76,6 +76,10 @@ if (NOT MSVC) option(LLAMA_F16C "llama: enable F16C" ${INS_ENB}) endif() +if (WIN32) + option(LLAMA_WIN_VER "llama: Windows Version" 0x602) +endif() + # 3rd party libs option(LLAMA_ACCELERATE "llama: enable Accelerate framework" ON) option(LLAMA_BLAS "llama: use BLAS" OFF) @@ -686,7 +690,7 @@ endif() if (MINGW) # Target Windows 8 for PrefetchVirtualMemory - add_compile_definitions(_WIN32_WINNT=0x602) + add_compile_definitions(_WIN32_WINNT=${LLAMA_WIN_VER}) endif() # diff --git a/llama.cpp b/llama.cpp index 107b05114..51e9bdaed 100644 --- a/llama.cpp +++ b/llama.cpp @@ -987,6 +987,7 @@ struct llama_mmap { } if (prefetch > 0) { +#if _WIN32_WINNT >= 0x602 // PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG); HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll"); @@ -1004,6 +1005,9 @@ struct llama_mmap { llama_format_win_err(GetLastError()).c_str()); } } +#else + throw std::runtime_error("PrefetchVirtualMemory unavailable"); +#endif } } From 5f5fe1bd608fa2ed42af97b5f2ea31be6625fc48 Mon Sep 17 00:00:00 2001 From: Alex Azarov Date: Sun, 14 Jan 2024 09:44:39 +0100 Subject: [PATCH 4/9] metal : correctly set SIMD support flags on iOS (#4923) * Correctly set support_simdgroup_reduction and support_simdgroup_mm on iPhone/iPad * log a little bit more info on iOS --- ggml-metal.m | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/ggml-metal.m b/ggml-metal.m index cae52c983..2ca726055 100644 --- a/ggml-metal.m +++ b/ggml-metal.m @@ -330,7 +330,6 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) { } } -#if TARGET_OS_OSX // print MTL GPU family: GGML_METAL_LOG_INFO("%s: GPU name: %s\n", __func__, [[ctx->device name] UTF8String]); @@ -370,6 +369,7 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) { GGML_METAL_LOG_INFO("%s: simdgroup reduction support = %s\n", __func__, ctx->support_simdgroup_reduction ? "true" : "false"); GGML_METAL_LOG_INFO("%s: simdgroup matrix mul. support = %s\n", __func__, ctx->support_simdgroup_mm ? "true" : "false"); GGML_METAL_LOG_INFO("%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false"); +#if TARGET_OS_OSX GGML_METAL_LOG_INFO("%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1e6); if (ctx->device.maxTransferRate != 0) { GGML_METAL_LOG_INFO("%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1e6); From a128c38de862431f1aae9ccc40b792fbc1b8b682 Mon Sep 17 00:00:00 2001 From: Kawrakow <48489457+ikawrakow@users.noreply.github.com> Date: Sun, 14 Jan 2024 10:53:39 +0200 Subject: [PATCH 5/9] Fix ffn_down quantization mix for MoE models (#4927) * Fix ffn_down quantization mix for MoE models In #4872 I did not consider the part where every third tensor is quantized with more bits. Fir MoE this leads to tensors of the same layer being quantized with different number of bits, which is not considered as a possibility in the inference implementation (it is assumed all experts use the same quantization). * Fix the fix * Review suggestion --------- Co-authored-by: Iwan Kawrakow --- llama.cpp | 34 ++++++++++++++++++++++++++-------- 1 file changed, 26 insertions(+), 8 deletions(-) diff --git a/llama.cpp b/llama.cpp index 51e9bdaed..b1d6015e2 100644 --- a/llama.cpp +++ b/llama.cpp @@ -8480,13 +8480,31 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty new_type = GGML_TYPE_Q8_0; } } else if (name.find("ffn_down") != std::string::npos) { + const int n_expert = std::max(1, (int)qs.model.hparams.n_expert); + int i_layer, n_layer; + if (n_expert == 1) { + i_layer = qs.i_feed_forward_w2; + n_layer = qs.n_feed_forward_w2; + } else { + // Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but iccasionally randomly + // sprinkled in the model. Hence, simply dividing i_feed_forward_w2 by n_expert does not work + // for getting the current layer as I initially thought, and we need to resort to parsing the + // tensor name. + n_layer = qs.n_feed_forward_w2 / n_expert; + if (sscanf(name.c_str(), "blk.%d.ffn_down", &i_layer) != 1) { + throw std::runtime_error(format("Failed to determine layer for tensor %s", name.c_str())); + } + if (i_layer < 0 || i_layer >= n_layer) { + throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name.c_str(), n_layer)); + } + } if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) { - if (qs.i_feed_forward_w2 < qs.n_feed_forward_w2/8) new_type = GGML_TYPE_Q4_K; + if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) { - new_type = qs.i_feed_forward_w2 < qs.n_feed_forward_w2/16 ? GGML_TYPE_Q5_K - : arch != LLM_ARCH_FALCON || use_more_bits(qs.i_feed_forward_w2, qs.n_feed_forward_w2) ? GGML_TYPE_Q4_K + new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K + : arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) { @@ -8494,14 +8512,14 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty } else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) { if (arch == LLM_ARCH_FALCON) { - new_type = qs.i_feed_forward_w2 < qs.n_feed_forward_w2/16 ? GGML_TYPE_Q6_K : - use_more_bits(qs.i_feed_forward_w2, qs.n_feed_forward_w2) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K; + new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K : + use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K; } else { - if (use_more_bits(qs.i_feed_forward_w2, qs.n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K; + if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K; } } - else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(qs.i_feed_forward_w2, qs.n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K; - else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && qs.i_feed_forward_w2 < qs.n_feed_forward_w2/8) { + else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K; + else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) { new_type = GGML_TYPE_Q5_K; } ++qs.i_feed_forward_w2; From 03c526749041c863b0cd842b26b8907e1ea0e0b1 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Sun, 14 Jan 2024 11:03:19 +0200 Subject: [PATCH 6/9] llama : use LLAMA_LOG_ macros for logging --- llama.cpp | 46 +++++++++++++++++++++++----------------------- 1 file changed, 23 insertions(+), 23 deletions(-) diff --git a/llama.cpp b/llama.cpp index b1d6015e2..51821965e 100644 --- a/llama.cpp +++ b/llama.cpp @@ -1114,7 +1114,7 @@ struct llama_mlock { suggest = false; } - fprintf(stderr, "warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s", + LLAMA_LOG_WARN("warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s", size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : ""); return false; } @@ -1123,7 +1123,7 @@ struct llama_mlock { static void raw_unlock(void * addr, size_t size) { if (munlock(addr, size)) { - fprintf(stderr, "warning: failed to munlock buffer: %s\n", std::strerror(errno)); + LLAMA_LOG_WARN("warning: failed to munlock buffer: %s\n", std::strerror(errno)); } } #elif defined(_WIN32) @@ -1141,7 +1141,7 @@ struct llama_mlock { return true; } if (tries == 2) { - fprintf(stderr, "warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n", + LLAMA_LOG_WARN("warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n", len, size, llama_format_win_err(GetLastError()).c_str()); return false; } @@ -1150,7 +1150,7 @@ struct llama_mlock { // set size and try again. SIZE_T min_ws_size, max_ws_size; if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) { - fprintf(stderr, "warning: GetProcessWorkingSetSize failed: %s\n", + LLAMA_LOG_WARN("warning: GetProcessWorkingSetSize failed: %s\n", llama_format_win_err(GetLastError()).c_str()); return false; } @@ -1163,7 +1163,7 @@ struct llama_mlock { min_ws_size += increment; max_ws_size += increment; if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) { - fprintf(stderr, "warning: SetProcessWorkingSetSize failed: %s\n", + LLAMA_LOG_WARN("warning: SetProcessWorkingSetSize failed: %s\n", llama_format_win_err(GetLastError()).c_str()); return false; } @@ -1172,7 +1172,7 @@ struct llama_mlock { static void raw_unlock(void * ptr, size_t len) { if (!VirtualUnlock(ptr, len)) { - fprintf(stderr, "warning: failed to VirtualUnlock buffer: %s\n", + LLAMA_LOG_WARN("warning: failed to VirtualUnlock buffer: %s\n", llama_format_win_err(GetLastError()).c_str()); } } @@ -1184,7 +1184,7 @@ struct llama_mlock { } bool raw_lock(const void * addr, size_t len) const { - fprintf(stderr, "warning: mlock not supported on this system\n"); + LLAMA_LOG_WARN("warning: mlock not supported on this system\n"); return false; } @@ -2085,13 +2085,13 @@ namespace GGUFMeta { __func__, override_type_to_str(override->tag), override->key); switch (override->tag) { case LLAMA_KV_OVERRIDE_BOOL: { - printf("%s\n", override->bool_value ? "true" : "false"); + LLAMA_LOG_INFO("%s\n", override->bool_value ? "true" : "false"); } break; case LLAMA_KV_OVERRIDE_INT: { - printf("%" PRId64 "\n", override->int_value); + LLAMA_LOG_INFO("%" PRId64 "\n", override->int_value); } break; case LLAMA_KV_OVERRIDE_FLOAT: { - printf("%.6f\n", override->float_value); + LLAMA_LOG_INFO("%.6f\n", override->float_value); } break; default: // Shouldn't be possible to end up here, but just in case... @@ -6993,7 +6993,7 @@ static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list< if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break; #ifdef PRETOKENIZERDEBUG - fprintf(stderr, "FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str()); + LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str()); #endif auto source = std::distance(buffer.begin(), it); @@ -7006,7 +7006,7 @@ static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list< buffer.emplace_after(it, (*raw_text), left_reminder_offset, left_reminder_length); #ifdef PRETOKENIZERDEBUG - fprintf(stderr, "FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str()); + LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str()); #endif it++; } @@ -7022,7 +7022,7 @@ static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list< buffer.emplace_after(it, (*raw_text), right_reminder_offset, right_reminder_length); #ifdef PRETOKENIZERDEBUG - fprintf(stderr, "FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str()); + LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str()); #endif it++; @@ -7038,7 +7038,7 @@ static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list< raw_text_base_length = right_reminder_length; #ifdef PRETOKENIZERDEBUG - fprintf(stderr, "RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str()); + LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str()); #endif } else { if (source == 0) { @@ -7095,7 +7095,7 @@ static std::vector llama_tokenize_internal(const llama_vocab & } #ifdef PRETOKENIZERDEBUG - fprintf(stderr,"TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str()); + LLAMA_LOG_WARN(TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str()); #endif llm_tokenizer_spm tokenizer(vocab); llama_escape_whitespace(raw_text); @@ -7116,7 +7116,7 @@ static std::vector llama_tokenize_internal(const llama_vocab & auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length); #ifdef PRETOKENIZERDEBUG - fprintf(stderr,"TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str()); + LLAMA_LOG_WARN(TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str()); #endif llm_tokenizer_bpe tokenizer(vocab); tokenizer.tokenize(raw_text, output); @@ -8641,7 +8641,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s if (params->imatrix) { imatrix_data = static_cast>*>(params->imatrix); if (imatrix_data) { - printf("================================ Have weights data with %d entries\n",int(imatrix_data->size())); + LLAMA_LOG_INFO("================================ Have weights data with %d entries\n",int(imatrix_data->size())); } } @@ -8764,12 +8764,12 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s if (imatrix_data) { auto it = imatrix_data->find(tensor->name); if (it == imatrix_data->end()) { - printf("\n====== %s: did not find weights for %s\n", __func__, tensor->name); + LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name); } else { if (it->second.size() == (size_t)tensor->ne[0]) { imatrix = it->second.data(); } else { - printf("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__, + LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__, int(it->second.size()), int(tensor->ne[0]), tensor->name); } } @@ -8777,10 +8777,10 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s if ((new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_XS || (new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) { - fprintf(stderr, "\n\n============================================================\n"); - fprintf(stderr, "Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name); - fprintf(stderr, "The result will be garbage, so bailing out\n"); - fprintf(stderr, "============================================================\n\n"); + LLAMA_LOG_ERROR("\n\n============================================================\n"); + LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name); + LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n"); + LLAMA_LOG_ERROR("============================================================\n\n"); throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name)); } From 9408cfdad6b1c090a7e1419d4434edc260b7e47e Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Sun, 14 Jan 2024 11:08:09 +0200 Subject: [PATCH 7/9] scripts : sync-ggml-am.sh option to skip commits --- scripts/sync-ggml-am.sh | 14 +++++++++++++- scripts/sync-ggml.last | 2 +- 2 files changed, 14 insertions(+), 2 deletions(-) diff --git a/scripts/sync-ggml-am.sh b/scripts/sync-ggml-am.sh index 248cf1023..6b2514a11 100755 --- a/scripts/sync-ggml-am.sh +++ b/scripts/sync-ggml-am.sh @@ -5,7 +5,7 @@ # Usage: # # $ cd /path/to/llama.cpp -# $ ./scripts/sync-ggml-am.sh +# $ ./scripts/sync-ggml-am.sh -skip hash0,hash1,hash2... # set -e @@ -24,6 +24,11 @@ fi lc=$(cat $SRC_LLAMA/scripts/sync-ggml.last) echo "Syncing ggml changes since commit $lc" +to_skip="" +if [ "$1" == "-skip" ]; then + to_skip=$2 +fi + cd $SRC_GGML git log --oneline $lc..HEAD @@ -40,6 +45,13 @@ if [ -f $SRC_LLAMA/ggml-src.patch ]; then fi while read c; do + if [ -n "$to_skip" ]; then + if [[ $to_skip == *"$c"* ]]; then + echo "Skipping $c" + continue + fi + fi + git format-patch -k $c~1..$c --stdout -- \ include/ggml/ggml*.h \ src/ggml*.h \ diff --git a/scripts/sync-ggml.last b/scripts/sync-ggml.last index 753d227a7..be9e408fb 100644 --- a/scripts/sync-ggml.last +++ b/scripts/sync-ggml.last @@ -1 +1 @@ -1890780da4ea10db88736fcde85f285abf6c64b0 +b306d6e996ec0ace77118fa5098822cdc7f9c88f From bb0c1392479398f9aba86d9ec98db0b95ede6e6d Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Sun, 14 Jan 2024 13:26:53 +0200 Subject: [PATCH 8/9] llama : check LLAMA_TRACE env for extra logging (#4929) * llama : minor fix indent * llama : check LLAMA_TRACE env for extra logging ggml-ci --- llama.cpp | 32 ++++++++++++++++++-------------- 1 file changed, 18 insertions(+), 14 deletions(-) diff --git a/llama.cpp b/llama.cpp index 51821965e..63f37ecdb 100644 --- a/llama.cpp +++ b/llama.cpp @@ -2190,6 +2190,11 @@ struct llama_model_loader { LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN); llama_model_loader(const std::string & fname, bool use_mmap, const struct llama_model_kv_override * param_overrides_p) : file(fname.c_str(), "rb") { + int trace = 0; + if (getenv("LLAMA_TRACE")) { + trace = atoi(getenv("LLAMA_TRACE")); + } + struct gguf_init_params params = { /*.no_alloc = */ true, /*.ctx = */ &ctx_meta, @@ -2242,11 +2247,10 @@ struct llama_model_loader { type_max = type; } - // TODO: make runtime configurable -#if 0 - struct ggml_tensor * meta = ggml_get_tensor(ctx_meta, gguf_get_tensor_name(ctx_gguf, i)); - LLAMA_LOG_INFO("%s: - tensor %4d: %32s %-8s [ %s ]\n", __func__, i, ggml_get_name(meta), ggml_type_name(type), llama_format_tensor_shape(meta).c_str()); -#endif + if (trace > 0) { + struct ggml_tensor * meta = ggml_get_tensor(ctx_meta, gguf_get_tensor_name(ctx_gguf, i)); + LLAMA_LOG_INFO("%s: - tensor %4d: %32s %-8s [ %s ]\n", __func__, i, ggml_get_name(meta), ggml_type_name(type), llama_format_tensor_shape(meta).c_str()); + } } switch (type_max) { @@ -6451,15 +6455,15 @@ static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) { static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) { static const char * hex = "0123456789ABCDEF"; switch (llama_vocab_get_type(vocab)) { - case LLAMA_VOCAB_TYPE_SPM: { - const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 }; - return vocab.token_to_id.at(buf); - } - case LLAMA_VOCAB_TYPE_BPE: { - return vocab.token_to_id.at(bytes_to_unicode_bpe(ch)); - } - default: - GGML_ASSERT(false); + case LLAMA_VOCAB_TYPE_SPM: { + const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 }; + return vocab.token_to_id.at(buf); + } + case LLAMA_VOCAB_TYPE_BPE: { + return vocab.token_to_id.at(bytes_to_unicode_bpe(ch)); + } + default: + GGML_ASSERT(false); } } From 467a882fd2e5b6172897b49aa45aa29bd3f27685 Mon Sep 17 00:00:00 2001 From: Kawrakow <48489457+ikawrakow@users.noreply.github.com> Date: Sun, 14 Jan 2024 16:21:12 +0200 Subject: [PATCH 9/9] Add ability to use importance matrix for all k-quants (#4930) Co-authored-by: Iwan Kawrakow --- examples/quantize/quantize.cpp | 2 +- ggml-quants.c | 443 ++++++++++++++++++++++++++++++++- ggml-quants.h | 5 +- ggml.c | 28 ++- 4 files changed, 462 insertions(+), 16 deletions(-) diff --git a/examples/quantize/quantize.cpp b/examples/quantize/quantize.cpp index f4e2175f1..2ae046933 100644 --- a/examples/quantize/quantize.cpp +++ b/examples/quantize/quantize.cpp @@ -82,7 +82,7 @@ static void usage(const char * executable) { printf(" --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n"); printf(" --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n"); printf(" --pure: Disable k-quant mixtures and quantize all tensors to the same type\n"); - printf(" --imatrixfile_name: use data in file_name as importance matrix for quant optimizations\n"); + printf(" --imatrix file_name: use data in file_name as importance matrix for quant optimizations\n"); printf(" --include-weights tensor_name: use importance matrix for this/these tensor(s)\n"); printf(" --exclude-weights tensor_name: use importance matrix for this/these tensor(s)\n"); printf("Note: --include-weights and --exclude-weights cannot be used together\n"); diff --git a/ggml-quants.c b/ggml-quants.c index 9290d54cf..0750fe1bb 100644 --- a/ggml-quants.c +++ b/ggml-quants.c @@ -1244,7 +1244,8 @@ static inline int nearest_int(float fval) { return (i & 0x007fffff) - 0x00400000; } -static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, int rmse_type) { +static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, int rmse_type, + const float * restrict qw) { float max = 0; float amax = 0; for (int i = 0; i < n; ++i) { @@ -1270,14 +1271,13 @@ static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t * rmse_type = -rmse_type; return_early = true; } - int weight_type = rmse_type%2; float sumlx = 0; float suml2 = 0; for (int i = 0; i < n; ++i) { int l = nearest_int(iscale * x[i]); l = MAX(-nmax, MIN(nmax-1, l)); L[i] = l + nmax; - float w = weight_type == 1 ? x[i] * x[i] : 1; + float w = qw ? qw[i] : rmse_type == 1 ? x[i] * x[i] : rmse_type == 2 ? 1 : rmse_type == 3 ? fabsf(x[i]) : sqrtf(fabsf(x[i])); sumlx += w*x[i]*l; suml2 += w*l*l; } @@ -1293,7 +1293,7 @@ static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t * for (int i = 0; i < n; ++i) { int l = nearest_int(iscale * x[i]); l = MAX(-nmax, MIN(nmax-1, l)); - float w = weight_type == 1 ? x[i] * x[i] : 1; + float w = qw ? qw[i] : rmse_type == 1 ? x[i] * x[i] : rmse_type == 2 ? 1 : rmse_type == 3 ? fabsf(x[i]) : sqrtf(fabsf(x[i])); sumlx += w*x[i]*l; suml2 += w*l*l; } @@ -2089,6 +2089,112 @@ size_t ggml_quantize_q3_K(const float * restrict src, void * restrict dst, int n return (n/QK_K*sizeof(block_q3_K)); } +static void quantize_row_q3_K_impl(const float * restrict x, block_q3_K * restrict y, int n_per_row, const float * restrict quant_weights) { +#if QK_K != 256 + (void)quant_weights; + quantize_row_q3_K_reference(x, y, n_per_row); +#else + assert(n_per_row % QK_K == 0); + const int nb = n_per_row / QK_K; + + int8_t L[QK_K]; + float scales[QK_K / 16]; + float weight[16]; + float sw[QK_K / 16]; + int8_t Ls[QK_K / 16]; + + for (int i = 0; i < nb; i++) { + + float sumx2 = 0; + for (int j = 0; j < QK_K; ++j) sumx2 += x[j]*x[j]; + float sigma2 = 2*sumx2/QK_K; + + for (int j = 0; j < QK_K/16; ++j) { + if (quant_weights) { + const float * qw = quant_weights ? quant_weights + QK_K * i + 16*j : NULL; + for (int l = 0; l < 16; ++l) weight[l] = qw[l] * sqrtf(sigma2 + x[16*j+l]*x[16*j+l]); + } else { + for (int l = 0; l < 16; ++l) weight[l] = x[16*j+l]*x[16*j+l]; + } + float sumw = 0; + for (int l = 0; l < 16; ++l) sumw += weight[l]; + sw[j] = sumw; + + scales[j] = make_qx_quants(16, 4, x + 16*j, L + 16*j, 1, weight); + + } + + memset(y[i].scales, 0, 12); + + float d_block = make_qx_quants(QK_K/16, 32, scales, Ls, 1, sw); + for (int j = 0; j < QK_K/16; ++j) { + int l = Ls[j]; + if (j < 8) { + y[i].scales[j] = l & 0xF; + } else { + y[i].scales[j-8] |= ((l & 0xF) << 4); + } + l >>= 4; + y[i].scales[j%4 + 8] |= (l << (2*(j/4))); + } + y[i].d = GGML_FP32_TO_FP16(d_block); + + int8_t sc; + for (int j = 0; j < QK_K/16; ++j) { + sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4; + sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32; + float d = GGML_FP16_TO_FP32(y[i].d) * sc; + if (!d) { + continue; + } + for (int ii = 0; ii < 16; ++ii) { + int l = nearest_int(x[16*j + ii]/d); + l = MAX(-4, MIN(3, l)); + L[16*j + ii] = l + 4; + } + } + + memset(y[i].hmask, 0, QK_K/8); + // We put the high-bit for the 1st 8 quants into bit 0, the next 8 into bit 1, etc. + int m = 0; + uint8_t hm = 1; + for (int j = 0; j < QK_K; ++j) { + if (L[j] > 3) { + y[i].hmask[m] |= hm; + L[j] -= 4; + } + if (++m == QK_K/8) { + m = 0; hm <<= 1; + } + } + for (int j = 0; j < QK_K; j += 128) { + for (int l = 0; l < 32; ++l) { + y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6); + } + } + + x += QK_K; + } +#endif +} + +size_t quantize_q3_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) { + (void)hist; + int row_size = ggml_row_size(GGML_TYPE_Q3_K, n_per_row); + if (!quant_weights) { + quantize_row_q3_K_reference(src, dst, nrow*n_per_row); + } + else { + char * qrow = (char *)dst; + for (int row = 0; row < nrow; ++row) { + quantize_row_q3_K_impl(src, (block_q3_K*)qrow, n_per_row, quant_weights); + src += n_per_row; + qrow += row_size; + } + } + return nrow * row_size; +} + // ====================== 4-bit (de)-quantization void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict y, int k) { @@ -2254,6 +2360,108 @@ size_t ggml_quantize_q4_K(const float * restrict src, void * restrict dst, int n return (n/QK_K*sizeof(block_q4_K)); } +static void quantize_row_q4_K_impl(const float * restrict x, block_q4_K * restrict y, int n_per_row, const float * quant_weights) { +#if QK_K != 256 + (void)quant_weights; + quantize_row_q4_K_reference(x, y, n_per_row); +#else + assert(n_per_row % QK_K == 0); + const int nb = n_per_row / QK_K; + + uint8_t L[QK_K]; + uint8_t Laux[32]; + float weights[32]; + float mins[QK_K/32]; + float scales[QK_K/32]; + + for (int i = 0; i < nb; i++) { + + float sum_x2 = 0; + for (int l = 0; l < QK_K; ++l) sum_x2 += x[l] * x[l]; + float sigma2 = sum_x2/QK_K; + float av_x = sqrtf(sigma2); + + float max_scale = 0; // as we are deducting the min, scales are always positive + float max_min = 0; + for (int j = 0; j < QK_K/32; ++j) { + if (quant_weights) { + const float * qw = quant_weights + QK_K*i + 32*j; + for (int l = 0; l < 32; ++l) weights[l] = qw[l] * sqrtf(sigma2 + x[32*j + l]*x[32*j + l]); + } else { + for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]); + } + scales[j] = make_qkx3_quants(32, 15, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.9f, 0.05f, 36, false); + //scales[j] = make_qkx2_quants(32, 15, x + 32*j, weights, L + 32*j, &mins[j], Laux, -1.f, 0.1f, 20, false); + float scale = scales[j]; + if (scale > max_scale) { + max_scale = scale; + } + float min = mins[j]; + if (min > max_min) { + max_min = min; + } + } + + float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f; + float inv_min = max_min > 0 ? 63.f/max_min : 0.f; + for (int j = 0; j < QK_K/32; ++j) { + uint8_t ls = nearest_int(inv_scale*scales[j]); + uint8_t lm = nearest_int(inv_min*mins[j]); + ls = MIN(63, ls); + lm = MIN(63, lm); + if (j < 4) { + y[i].scales[j] = ls; + y[i].scales[j+4] = lm; + } else { + y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4); + y[i].scales[j-4] |= ((ls >> 4) << 6); + y[i].scales[j-0] |= ((lm >> 4) << 6); + } + } + y[i].d = GGML_FP32_TO_FP16(max_scale/63.f); + y[i].dmin = GGML_FP32_TO_FP16(max_min/63.f); + + uint8_t sc, m; + for (int j = 0; j < QK_K/32; ++j) { + get_scale_min_k4(j, y[i].scales, &sc, &m); + const float d = GGML_FP16_TO_FP32(y[i].d) * sc; + if (!d) continue; + const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m; + for (int ii = 0; ii < 32; ++ii) { + int l = nearest_int((x[32*j + ii] + dm)/d); + l = MAX(0, MIN(15, l)); + L[32*j + ii] = l; + } + } + uint8_t * q = y[i].qs; + for (int j = 0; j < QK_K; j += 64) { + for (int l = 0; l < 32; ++l) q[l] = L[j + l] | (L[j + l + 32] << 4); + q += 32; + } + + x += QK_K; + + } +#endif +} + +size_t quantize_q4_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) { + (void)hist; + int row_size = ggml_row_size(GGML_TYPE_Q4_K, n_per_row); + if (!quant_weights) { + quantize_row_q4_K_reference(src, dst, nrow*n_per_row); + } + else { + char * qrow = (char *)dst; + for (int row = 0; row < nrow; ++row) { + quantize_row_q4_K_impl(src, (block_q4_K*)qrow, n_per_row, quant_weights); + src += n_per_row; + qrow += row_size; + } + } + return nrow * row_size; +} + // ====================== 5-bit (de)-quantization void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict y, int k) { @@ -2349,7 +2557,7 @@ void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict #else float max_scale = 0, amax = 0; for (int j = 0; j < QK_K/16; ++j) { - scales[j] = make_qx_quants(16, 16, x + 16*j, L + 16*j, 1); + scales[j] = make_qx_quants(16, 16, x + 16*j, L + 16*j, 1, NULL); float abs_scale = fabsf(scales[j]); if (abs_scale > amax) { amax = abs_scale; @@ -2460,6 +2668,123 @@ size_t ggml_quantize_q5_K(const float * restrict src, void * restrict dst, int n return (n/QK_K*sizeof(block_q5_K)); } +static void quantize_row_q5_K_impl(const float * restrict x, block_q5_K * restrict y, int n_per_row, const float * quant_weights) { +#if QK_K != 256 + (void)quant_weights; + quantize_row_q5_K_reference(x, y, n_per_row); +#else + assert(n_per_row % QK_K == 0); + const int nb = n_per_row / QK_K; + + uint8_t L[QK_K]; + float mins[QK_K/32]; + float scales[QK_K/32]; + float weights[32]; + uint8_t Laux[32]; + + for (int i = 0; i < nb; i++) { + + float sum_x2 = 0; + for (int l = 0; l < QK_K; ++l) sum_x2 += x[l] * x[l]; + float sigma2 = sum_x2/QK_K; + float av_x = sqrtf(sigma2); + + float max_scale = 0; // as we are deducting the min, scales are always positive + float max_min = 0; + for (int j = 0; j < QK_K/32; ++j) { + if (quant_weights) { + const float * qw = quant_weights + QK_K*i + 32*j; + for (int l = 0; l < 32; ++l) weights[l] = qw[l] * sqrtf(sigma2 + x[32*j + l]*x[32*j + l]); + } else { + for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]); + } + scales[j] = make_qkx3_quants(32, 31, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.9f, 0.05f, 36, false); + float scale = scales[j]; + if (scale > max_scale) { + max_scale = scale; + } + float min = mins[j]; + if (min > max_min) { + max_min = min; + } + } + + float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f; + float inv_min = max_min > 0 ? 63.f/max_min : 0.f; + for (int j = 0; j < QK_K/32; ++j) { + uint8_t ls = nearest_int(inv_scale*scales[j]); + uint8_t lm = nearest_int(inv_min*mins[j]); + ls = MIN(63, ls); + lm = MIN(63, lm); + if (j < 4) { + y[i].scales[j] = ls; + y[i].scales[j+4] = lm; + } else { + y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4); + y[i].scales[j-4] |= ((ls >> 4) << 6); + y[i].scales[j-0] |= ((lm >> 4) << 6); + } + } + y[i].d = GGML_FP32_TO_FP16(max_scale/63.f); + y[i].dmin = GGML_FP32_TO_FP16(max_min/63.f); + + uint8_t sc, m; + for (int j = 0; j < QK_K/32; ++j) { + get_scale_min_k4(j, y[i].scales, &sc, &m); + const float d = GGML_FP16_TO_FP32(y[i].d) * sc; + if (!d) continue; + const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m; + for (int ii = 0; ii < 32; ++ii) { + int l = nearest_int((x[32*j + ii] + dm)/d); + l = MAX(0, MIN(31, l)); + L[32*j + ii] = l; + } + } + + uint8_t * restrict qh = y[i].qh; + uint8_t * restrict ql = y[i].qs; + memset(qh, 0, QK_K/8); + + uint8_t m1 = 1, m2 = 2; + for (int n = 0; n < QK_K; n += 64) { + for (int j = 0; j < 32; ++j) { + int l1 = L[n + j]; + if (l1 > 15) { + l1 -= 16; qh[j] |= m1; + } + int l2 = L[n + j + 32]; + if (l2 > 15) { + l2 -= 16; qh[j] |= m2; + } + ql[j] = l1 | (l2 << 4); + } + m1 <<= 2; m2 <<= 2; + ql += 32; + } + + x += QK_K; + + } +#endif +} + +size_t quantize_q5_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) { + (void)hist; + int row_size = ggml_row_size(GGML_TYPE_Q5_K, n_per_row); + if (!quant_weights) { + quantize_row_q5_K_reference(src, dst, nrow*n_per_row); + } + else { + char * qrow = (char *)dst; + for (int row = 0; row < nrow; ++row) { + quantize_row_q5_K_impl(src, (block_q5_K*)qrow, n_per_row, quant_weights); + src += n_per_row; + qrow += row_size; + } + } + return nrow * row_size; +} + // ====================== 6-bit (de)-quantization void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict y, int k) { @@ -2476,7 +2801,7 @@ void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict for (int ib = 0; ib < QK_K/16; ++ib) { - const float scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1); + const float scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, NULL); scales[ib] = scale; const float abs_scale = fabsf(scale); @@ -2608,6 +2933,112 @@ size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * return (n/QK_K*sizeof(block_q6_K)); } +static void quantize_row_q6_K_impl(const float * restrict x, block_q6_K * restrict y, int n_per_row, const float * quant_weights) { +#if QK_K != 256 + (void)quant_weights; + quantize_row_q6_K_reference(x, y, n_per_row); +#else + assert(n_per_row % QK_K == 0); + const int nb = n_per_row / QK_K; + + int8_t L[QK_K]; + float scales[QK_K/16]; + //float weights[16]; + + for (int i = 0; i < nb; i++) { + + //float sum_x2 = 0; + //for (int j = 0; j < QK_K; ++j) sum_x2 += x[j]*x[j]; + //float sigma2 = sum_x2/QK_K; + + float max_scale = 0; + float max_abs_scale = 0; + + for (int ib = 0; ib < QK_K/16; ++ib) { + + float scale; + if (quant_weights) { + const float * qw = quant_weights + QK_K*i + 16*ib; + //for (int j = 0; j < 16; ++j) weights[j] = qw[j] * sqrtf(sigma2 + x[16*ib + j]*x[16*ib + j]); + //scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, weights); + scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, qw); + } else { + scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, NULL); + } + scales[ib] = scale; + + const float abs_scale = fabsf(scale); + if (abs_scale > max_abs_scale) { + max_abs_scale = abs_scale; + max_scale = scale; + } + + } + + if (!max_abs_scale) { + memset(&y[i], 0, sizeof(block_q6_K)); + y[i].d = GGML_FP32_TO_FP16(0.f); + x += QK_K; + continue; + } + + float iscale = -128.f/max_scale; + y[i].d = GGML_FP32_TO_FP16(1/iscale); + for (int ib = 0; ib < QK_K/16; ++ib) { + y[i].scales[ib] = MIN(127, nearest_int(iscale*scales[ib])); + } + + for (int j = 0; j < QK_K/16; ++j) { + float d = GGML_FP16_TO_FP32(y[i].d) * y[i].scales[j]; + if (!d) { + continue; + } + for (int ii = 0; ii < 16; ++ii) { + int l = nearest_int(x[16*j + ii]/d); + l = MAX(-32, MIN(31, l)); + L[16*j + ii] = l + 32; + } + } + + uint8_t * restrict ql = y[i].ql; + uint8_t * restrict qh = y[i].qh; + for (int j = 0; j < QK_K; j += 128) { + for (int l = 0; l < 32; ++l) { + const uint8_t q1 = L[j + l + 0] & 0xF; + const uint8_t q2 = L[j + l + 32] & 0xF; + const uint8_t q3 = L[j + l + 64] & 0xF; + const uint8_t q4 = L[j + l + 96] & 0xF; + ql[l+ 0] = q1 | (q3 << 4); + ql[l+32] = q2 | (q4 << 4); + qh[l] = (L[j + l] >> 4) | ((L[j + l + 32] >> 4) << 2) | ((L[j + l + 64] >> 4) << 4) | ((L[j + l + 96] >> 4) << 6); + } + ql += 64; + qh += 32; + } + + x += QK_K; + + } +#endif +} + +size_t quantize_q6_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) { + (void)hist; + int row_size = ggml_row_size(GGML_TYPE_Q6_K, n_per_row); + if (!quant_weights) { + quantize_row_q6_K_reference(src, dst, nrow*n_per_row); + } + else { + char * qrow = (char *)dst; + for (int row = 0; row < nrow; ++row) { + quantize_row_q6_K_impl(src, (block_q6_K*)qrow, n_per_row, quant_weights); + src += n_per_row; + qrow += row_size; + } + } + return nrow * row_size; +} + // ====================== "True" 2-bit (de)-quantization static const uint64_t iq2xxs_grid[256] = { diff --git a/ggml-quants.h b/ggml-quants.h index e5d110230..99467936a 100644 --- a/ggml-quants.h +++ b/ggml-quants.h @@ -249,4 +249,7 @@ void ggml_vec_dot_iq2_xs_q8_K (int n, float * restrict s, const void * restrict size_t quantize_iq2_xxs(const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix); size_t quantize_iq2_xs (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix); size_t quantize_q2_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix); - +size_t quantize_q3_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix); +size_t quantize_q4_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix); +size_t quantize_q5_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix); +size_t quantize_q6_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix); diff --git a/ggml.c b/ggml.c index 52467475a..ef5888ab2 100644 --- a/ggml.c +++ b/ggml.c @@ -18713,26 +18713,38 @@ size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, i case GGML_TYPE_Q3_K: { GGML_ASSERT(start % QK_K == 0); - block_q3_K * block = (block_q3_K*)dst + start / QK_K; - result = ggml_quantize_q3_K(src + start, block, n, n, hist); + GGML_ASSERT(start % n_per_row == 0); + size_t start_row = start / n_per_row; + size_t row_size = ggml_row_size(type, n_per_row); + result = quantize_q3_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix); + GGML_ASSERT(result == row_size * nrows); } break; case GGML_TYPE_Q4_K: { GGML_ASSERT(start % QK_K == 0); - block_q4_K * block = (block_q4_K*)dst + start / QK_K; - result = ggml_quantize_q4_K(src + start, block, n, n, hist); + GGML_ASSERT(start % n_per_row == 0); + size_t start_row = start / n_per_row; + size_t row_size = ggml_row_size(type, n_per_row); + result = quantize_q4_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix); + GGML_ASSERT(result == row_size * nrows); } break; case GGML_TYPE_Q5_K: { GGML_ASSERT(start % QK_K == 0); - block_q5_K * block = (block_q5_K*)dst + start / QK_K; - result = ggml_quantize_q5_K(src + start, block, n, n, hist); + GGML_ASSERT(start % n_per_row == 0); + size_t start_row = start / n_per_row; + size_t row_size = ggml_row_size(type, n_per_row); + result = quantize_q5_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix); + GGML_ASSERT(result == row_size * nrows); } break; case GGML_TYPE_Q6_K: { GGML_ASSERT(start % QK_K == 0); - block_q6_K * block = (block_q6_K*)dst + start / QK_K; - result = ggml_quantize_q6_K(src + start, block, n, n, hist); + GGML_ASSERT(start % n_per_row == 0); + size_t start_row = start / n_per_row; + size_t row_size = ggml_row_size(type, n_per_row); + result = quantize_q6_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix); + GGML_ASSERT(result == row_size * nrows); } break; case GGML_TYPE_IQ2_XXS: {