remove trailing whitespace
This commit is contained in:
parent
581e5eb954
commit
b9ef08ccab
1 changed files with 38 additions and 38 deletions
|
@ -825,15 +825,15 @@ struct ggml_tensor * forward_batch(
|
||||||
// compute the transposed [N, n_embd] V matrix
|
// compute the transposed [N, n_embd] V matrix
|
||||||
// wv shape [n_embd, n_embd, 1, 1]
|
// wv shape [n_embd, n_embd, 1, 1]
|
||||||
// Vcur shape [N, n_embd, n_batch, 1]
|
// Vcur shape [N, n_embd, n_batch, 1]
|
||||||
struct ggml_tensor * Vcur = ggml_cont(ctx0,
|
struct ggml_tensor * Vcur = ggml_cont(ctx0,
|
||||||
ggml_permute(ctx0,
|
ggml_permute(ctx0,
|
||||||
ggml_reshape_3d(ctx0,
|
ggml_reshape_3d(ctx0,
|
||||||
ggml_mul_mat(ctx0,
|
ggml_mul_mat(ctx0,
|
||||||
model->layers[il].wv,
|
model->layers[il].wv,
|
||||||
cur),
|
cur),
|
||||||
n_embd, N, n_batch),
|
n_embd, N, n_batch),
|
||||||
1, 0, 2, 3));
|
1, 0, 2, 3));
|
||||||
|
|
||||||
assert_shape_3d(Vcur, N, n_embd, n_batch);
|
assert_shape_3d(Vcur, N, n_embd, n_batch);
|
||||||
|
|
||||||
// kv_self.k shape [n_embd * n_ctx * n_batch * n_layer]
|
// kv_self.k shape [n_embd * n_ctx * n_batch * n_layer]
|
||||||
|
@ -852,12 +852,12 @@ struct ggml_tensor * forward_batch(
|
||||||
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
|
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
|
||||||
} //*/
|
} //*/
|
||||||
|
|
||||||
kc = ggml_set_2d(ctx0, kc,
|
kc = ggml_set_2d(ctx0, kc,
|
||||||
ggml_reshape_2d(ctx0, Kcur, n_embd*N, n_batch),
|
ggml_reshape_2d(ctx0, Kcur, n_embd*N, n_batch),
|
||||||
ggml_element_size(kc)*n_embd*n_ctx,
|
ggml_element_size(kc)*n_embd*n_ctx,
|
||||||
(ggml_element_size(kc)*n_embd)*(il*n_batch*n_ctx + n_past));
|
(ggml_element_size(kc)*n_embd)*(il*n_batch*n_ctx + n_past));
|
||||||
vc = ggml_set_2d(ctx0, vc,
|
vc = ggml_set_2d(ctx0, vc,
|
||||||
ggml_reshape_2d(ctx0, Vcur, N*n_embd, n_batch),
|
ggml_reshape_2d(ctx0, Vcur, N*n_embd, n_batch),
|
||||||
ggml_element_size(vc)*n_ctx*n_embd,
|
ggml_element_size(vc)*n_ctx*n_embd,
|
||||||
ggml_element_size(vc)*(n_past + il*n_embd*n_batch*n_ctx));
|
ggml_element_size(vc)*(n_past + il*n_embd*n_batch*n_ctx));
|
||||||
|
|
||||||
|
@ -878,10 +878,10 @@ struct ggml_tensor * forward_batch(
|
||||||
struct ggml_tensor * K =
|
struct ggml_tensor * K =
|
||||||
ggml_permute(ctx0,
|
ggml_permute(ctx0,
|
||||||
ggml_reshape_4d(ctx0,
|
ggml_reshape_4d(ctx0,
|
||||||
ggml_view_3d(ctx0,
|
ggml_view_3d(ctx0,
|
||||||
kc,
|
kc,
|
||||||
n_embd,
|
n_embd,
|
||||||
(n_past + N),
|
(n_past + N),
|
||||||
n_batch,
|
n_batch,
|
||||||
n_embd*ggml_element_size(kc),
|
n_embd*ggml_element_size(kc),
|
||||||
n_ctx*n_embd*ggml_element_size(kc),
|
n_ctx*n_embd*ggml_element_size(kc),
|
||||||
|
@ -1036,7 +1036,7 @@ struct ggml_tensor * forward_batch(
|
||||||
|
|
||||||
{
|
{
|
||||||
// inpL shape [n_vocab,N,n_batch,1]
|
// inpL shape [n_vocab,N,n_batch,1]
|
||||||
inpL = ggml_reshape_3d(ctx0,
|
inpL = ggml_reshape_3d(ctx0,
|
||||||
inpL,
|
inpL,
|
||||||
n_vocab, N, n_batch);
|
n_vocab, N, n_batch);
|
||||||
assert_shape_3d(inpL, n_vocab, N, n_batch);
|
assert_shape_3d(inpL, n_vocab, N, n_batch);
|
||||||
|
@ -1346,23 +1346,23 @@ void sample_softmax_batch(struct ggml_context * ctx, struct ggml_tensor * logits
|
||||||
GGML_ASSERT(n_vocab == probs->ne[0]);
|
GGML_ASSERT(n_vocab == probs->ne[0]);
|
||||||
GGML_ASSERT(n_tokens == probs->ne[1]);
|
GGML_ASSERT(n_tokens == probs->ne[1]);
|
||||||
GGML_ASSERT(n_batch == probs->ne[2]);
|
GGML_ASSERT(n_batch == probs->ne[2]);
|
||||||
|
|
||||||
for (int k=0; k<n_batch; ++k) {
|
for (int k=0; k<n_batch; ++k) {
|
||||||
struct ggml_tensor * best_samples_k = ggml_view_1d(ctx,
|
struct ggml_tensor * best_samples_k = ggml_view_1d(ctx,
|
||||||
best_samples,
|
best_samples,
|
||||||
best_samples->ne[0],
|
best_samples->ne[0],
|
||||||
k*best_samples->nb[1]);
|
k*best_samples->nb[1]);
|
||||||
struct ggml_tensor * logits_k = ggml_view_2d(ctx,
|
struct ggml_tensor * logits_k = ggml_view_2d(ctx,
|
||||||
logits,
|
logits,
|
||||||
logits->ne[0],
|
logits->ne[0],
|
||||||
logits->ne[1],
|
logits->ne[1],
|
||||||
logits->nb[1],
|
logits->nb[1],
|
||||||
k*logits->nb[2]);
|
k*logits->nb[2]);
|
||||||
struct ggml_tensor * probs_k = ggml_view_2d(ctx,
|
struct ggml_tensor * probs_k = ggml_view_2d(ctx,
|
||||||
probs,
|
probs,
|
||||||
probs->ne[0],
|
probs->ne[0],
|
||||||
probs->ne[1],
|
probs->ne[1],
|
||||||
probs->nb[1],
|
probs->nb[1],
|
||||||
k*probs->nb[2]);
|
k*probs->nb[2]);
|
||||||
sample_softmax(logits_k, probs_k, best_samples_k);
|
sample_softmax(logits_k, probs_k, best_samples_k);
|
||||||
}
|
}
|
||||||
|
@ -1436,15 +1436,15 @@ void get_example_targets_batch(struct ggml_context * ctx, int example_id, struct
|
||||||
GGML_ASSERT(n_batch == targets->ne[2]);
|
GGML_ASSERT(n_batch == targets->ne[2]);
|
||||||
|
|
||||||
for (int k=0; k<n_batch; ++k) {
|
for (int k=0; k<n_batch; ++k) {
|
||||||
struct ggml_tensor * tokens_input_k = ggml_view_1d(ctx,
|
struct ggml_tensor * tokens_input_k = ggml_view_1d(ctx,
|
||||||
tokens_input,
|
tokens_input,
|
||||||
tokens_input->ne[0],
|
tokens_input->ne[0],
|
||||||
k*tokens_input->nb[1]);
|
k*tokens_input->nb[1]);
|
||||||
struct ggml_tensor * targets_k = ggml_view_2d(ctx,
|
struct ggml_tensor * targets_k = ggml_view_2d(ctx,
|
||||||
targets,
|
targets,
|
||||||
targets->ne[0],
|
targets->ne[0],
|
||||||
targets->ne[1],
|
targets->ne[1],
|
||||||
targets->nb[1],
|
targets->nb[1],
|
||||||
k*targets->nb[2]);
|
k*targets->nb[2]);
|
||||||
get_example_targets(example_id*n_batch + k, tokens_input_k, targets_k);
|
get_example_targets(example_id*n_batch + k, tokens_input_k, targets_k);
|
||||||
}
|
}
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue