llama : add Qwen2VL support + multimodal RoPE (#10361)
* Barebone Qwen2VL LLM convertor * Add Qwen2VL cli entrypoint * [WIP] add qwen2vl arch * Verify m-rope output * Add vl-rope/2d-rope support for qwen2vl ViT * update qwen2vl cli tool * update 5D tensor op workaround * [WIP] qwen2vl vision model * make batch and clip utils compatible with qwen2vl * [WIP] create inference workflow, gguf convert script but fix * correcting vision-rope behavior, add the missing last layer back to ViT * add arg parser to qwen2vl_surgery * replace variable size array with vector * cuda-gdb cmake preset * add fp32 mrope, vision rope kernel * add fp16 support for qwen2vl and m-rope * add `GGML_ROPE_TYPE_MROPE`, `GGML_ROPE_TYPE_VISION` * fix rope op mode switching, out dated func args * update `llama_hparams` * update to keep up stream changes * resolve linter, test errors * add makefile entry, update speical image padding token * add mrope unit test, fix few compiler warnings * rename `mrope` related function, params * minor updates on debug util, bug fixs * add `m-rope` testcase to `test-backend-ops` * Apply suggestions from code review Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * fix traililng whitespce * store `llama_hparams.rope_sections` with fixed size array * update position id tensor size check in GGML_OP_ROPE * minor updates * update `ggml_backend_*_supports_op` of unsupported backends * remote old `rope_section` compare operator --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
parent
56eea0781c
commit
ba1cb19cdd
24 changed files with 1873 additions and 114 deletions
|
@ -9133,6 +9133,64 @@ static void ggml_rope_cache_init(
|
|||
}
|
||||
}
|
||||
|
||||
static void ggml_mrope_cache_init(
|
||||
float theta_base_t, float theta_base_h, float theta_base_w, float theta_base_e, int sections[4], bool indep_sects,
|
||||
float freq_scale, const float * freq_factors, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
|
||||
float * cache, float sin_sign, float theta_scale) {
|
||||
// ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
|
||||
float theta_t = theta_base_t;
|
||||
float theta_h = theta_base_h;
|
||||
float theta_w = theta_base_w;
|
||||
float theta_e = theta_base_e; // extra position id for vision encoder
|
||||
int sect_dims = sections[0] + sections[1] + sections[2] + sections[3];
|
||||
int sec_w = sections[1] + sections[0];
|
||||
int sec_e = sections[2] + sec_w;
|
||||
GGML_ASSERT(sect_dims <= ne0);
|
||||
|
||||
for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
|
||||
const float ff = freq_factors ? freq_factors[i0/2] : 1.0f;
|
||||
|
||||
int sector = (i0 / 2) % sect_dims;
|
||||
if (indep_sects) {
|
||||
// compute theta independently for each dim sections
|
||||
// (i.e. reset corresponding theta when `i0` go from one section to another)
|
||||
if (sector == 0) {
|
||||
theta_t = theta_base_t;
|
||||
}
|
||||
else if (sector == sections[0]) {
|
||||
theta_h = theta_base_h;;
|
||||
}
|
||||
else if (sector == sec_w) {
|
||||
theta_w = theta_base_w;
|
||||
}
|
||||
else if (sector == sec_e) {
|
||||
theta_e = theta_base_e;
|
||||
}
|
||||
}
|
||||
|
||||
float theta = theta_t;
|
||||
if (sector >= sections[0] && sector < sec_w) {
|
||||
theta = theta_h;
|
||||
}
|
||||
else if (sector >= sec_w && sector < sec_w + sections[2]) {
|
||||
theta = theta_w;
|
||||
}
|
||||
else if (sector >= sec_w + sections[2]) {
|
||||
theta = theta_e;
|
||||
}
|
||||
|
||||
rope_yarn(
|
||||
theta/ff, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
|
||||
);
|
||||
cache[i0 + 1] *= sin_sign;
|
||||
|
||||
theta_t *= theta_scale;
|
||||
theta_w *= theta_scale;
|
||||
theta_h *= theta_scale;
|
||||
theta_e *= theta_scale;
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_compute_forward_rope_f32(
|
||||
const struct ggml_compute_params * params,
|
||||
struct ggml_tensor * dst,
|
||||
|
@ -9143,6 +9201,7 @@ static void ggml_compute_forward_rope_f32(
|
|||
const struct ggml_tensor * src2 = dst->src[2];
|
||||
|
||||
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
|
||||
int sections[4];
|
||||
|
||||
//const int n_past = ((int32_t *) dst->op_params)[0];
|
||||
const int n_dims = ((int32_t *) dst->op_params)[1];
|
||||
|
@ -9156,6 +9215,7 @@ static void ggml_compute_forward_rope_f32(
|
|||
memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
|
||||
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
|
||||
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
|
||||
memcpy(§ions, (int32_t *) dst->op_params + 11, sizeof(int)*4);
|
||||
|
||||
GGML_TENSOR_UNARY_OP_LOCALS
|
||||
|
||||
|
@ -9188,6 +9248,16 @@ static void ggml_compute_forward_rope_f32(
|
|||
ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
|
||||
|
||||
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
|
||||
const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE; // ggml_rope_multi, multimodal rotary position embedding
|
||||
const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
|
||||
|
||||
if (is_mrope) {
|
||||
GGML_ASSERT(sections[0] > 0 || sections[1] > 0 || sections[2] > 0);
|
||||
}
|
||||
|
||||
if (is_vision) {
|
||||
GGML_ASSERT(n_dims == ne0/2);
|
||||
}
|
||||
|
||||
const float * freq_factors = NULL;
|
||||
if (src2 != NULL) {
|
||||
|
@ -9203,18 +9273,63 @@ static void ggml_compute_forward_rope_f32(
|
|||
|
||||
const int32_t * pos = (const int32_t *) src1->data;
|
||||
|
||||
for (int64_t i3 = 0; i3 < ne3; i3++) {
|
||||
for (int64_t i2 = 0; i2 < ne2; i2++) {
|
||||
const int64_t p = pos[i2];
|
||||
for (int64_t i3 = 0; i3 < ne3; i3++) { // batch
|
||||
for (int64_t i2 = 0; i2 < ne2; i2++) { // seq-len
|
||||
|
||||
float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
|
||||
ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
|
||||
if (!is_mrope) {
|
||||
const int64_t p = pos[i2];
|
||||
ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
|
||||
}
|
||||
else {
|
||||
const int64_t p_t = pos[i2];
|
||||
const int64_t p_h = pos[i2 + ne2];
|
||||
const int64_t p_w = pos[i2 + ne2 * 2];
|
||||
const int64_t p_e = pos[i2 + ne2 * 3];
|
||||
ggml_mrope_cache_init(
|
||||
p_t, p_h, p_w, p_e, sections, is_vision,
|
||||
freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
|
||||
}
|
||||
|
||||
for (int64_t i1 = 0; i1 < ne1; i1++) {
|
||||
for (int64_t i1 = 0; i1 < ne1; i1++) { // attn-heads
|
||||
if (ir++ < ir0) continue;
|
||||
if (ir > ir1) break;
|
||||
|
||||
if (!is_neox) {
|
||||
if (is_neox || is_mrope) {
|
||||
if (is_vision){
|
||||
for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
|
||||
const int64_t ic = i0/2;
|
||||
|
||||
const float cos_theta = cache[i0 + 0];
|
||||
const float sin_theta = cache[i0 + 1];
|
||||
|
||||
const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
|
||||
float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
|
||||
|
||||
const float x0 = src[0];
|
||||
const float x1 = src[n_dims];
|
||||
|
||||
dst_data[0] = x0*cos_theta - x1*sin_theta;
|
||||
dst_data[n_dims] = x0*sin_theta + x1*cos_theta;
|
||||
}
|
||||
} else {
|
||||
for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
|
||||
const int64_t ic = i0/2;
|
||||
|
||||
const float cos_theta = cache[i0 + 0];
|
||||
const float sin_theta = cache[i0 + 1];
|
||||
|
||||
const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
|
||||
float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
|
||||
|
||||
const float x0 = src[0];
|
||||
const float x1 = src[n_dims/2];
|
||||
|
||||
dst_data[0] = x0*cos_theta - x1*sin_theta;
|
||||
dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
|
||||
const float cos_theta = cache[i0 + 0];
|
||||
const float sin_theta = cache[i0 + 1];
|
||||
|
@ -9228,8 +9343,10 @@ static void ggml_compute_forward_rope_f32(
|
|||
dst_data[0] = x0*cos_theta - x1*sin_theta;
|
||||
dst_data[1] = x0*sin_theta + x1*cos_theta;
|
||||
}
|
||||
} else {
|
||||
for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
|
||||
}
|
||||
|
||||
if (is_vision) {
|
||||
for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
|
||||
const int64_t ic = i0/2;
|
||||
|
||||
const float cos_theta = cache[i0 + 0];
|
||||
|
@ -9239,19 +9356,20 @@ static void ggml_compute_forward_rope_f32(
|
|||
float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
|
||||
|
||||
const float x0 = src[0];
|
||||
const float x1 = src[n_dims/2];
|
||||
const float x1 = src[n_dims];
|
||||
|
||||
dst_data[0] = x0*cos_theta - x1*sin_theta;
|
||||
dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
|
||||
dst_data[0] = x0*cos_theta - x1*sin_theta;
|
||||
dst_data[n_dims] = x0*sin_theta + x1*cos_theta;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// fill the remain channels with data from src tensor
|
||||
for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
|
||||
const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
|
||||
float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
||||
|
||||
for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
|
||||
const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
|
||||
float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
||||
|
||||
dst_data[0] = src[0];
|
||||
dst_data[1] = src[1];
|
||||
dst_data[0] = src[0];
|
||||
dst_data[1] = src[1];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -9269,6 +9387,7 @@ static void ggml_compute_forward_rope_f16(
|
|||
const struct ggml_tensor * src2 = dst->src[2];
|
||||
|
||||
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
|
||||
int sections[4];
|
||||
|
||||
//const int n_past = ((int32_t *) dst->op_params)[0];
|
||||
const int n_dims = ((int32_t *) dst->op_params)[1];
|
||||
|
@ -9281,6 +9400,8 @@ static void ggml_compute_forward_rope_f16(
|
|||
memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
|
||||
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
|
||||
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
|
||||
memcpy(§ions, (int32_t *) dst->op_params + 11, sizeof(int)*4);
|
||||
|
||||
|
||||
GGML_TENSOR_UNARY_OP_LOCALS
|
||||
|
||||
|
@ -9313,6 +9434,16 @@ static void ggml_compute_forward_rope_f16(
|
|||
ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
|
||||
|
||||
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
|
||||
const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
|
||||
const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
|
||||
|
||||
if (is_mrope) {
|
||||
GGML_ASSERT(sections[0] > 0 || sections[1] > 0 || sections[2] > 0);
|
||||
}
|
||||
|
||||
if (is_vision) {
|
||||
GGML_ASSERT(n_dims == ne0/2);
|
||||
}
|
||||
|
||||
const float * freq_factors = NULL;
|
||||
if (src2 != NULL) {
|
||||
|
@ -9330,16 +9461,61 @@ static void ggml_compute_forward_rope_f16(
|
|||
|
||||
for (int64_t i3 = 0; i3 < ne3; i3++) {
|
||||
for (int64_t i2 = 0; i2 < ne2; i2++) {
|
||||
const int64_t p = pos[i2];
|
||||
|
||||
float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
|
||||
ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
|
||||
if (!is_mrope) {
|
||||
const int64_t p = pos[i2];
|
||||
ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
|
||||
}
|
||||
else {
|
||||
const int64_t p_t = pos[i2];
|
||||
const int64_t p_h = pos[i2 + ne2];
|
||||
const int64_t p_w = pos[i2 + ne2 * 2];
|
||||
const int64_t p_e = pos[i2 + ne2 * 3];
|
||||
ggml_mrope_cache_init(
|
||||
p_t, p_h, p_w, p_e, sections, is_vision,
|
||||
freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
|
||||
}
|
||||
|
||||
for (int64_t i1 = 0; i1 < ne1; i1++) {
|
||||
if (ir++ < ir0) continue;
|
||||
if (ir > ir1) break;
|
||||
|
||||
if (!is_neox) {
|
||||
if (is_neox || is_mrope) {
|
||||
if (is_vision) {
|
||||
for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
|
||||
const int64_t ic = i0/2;
|
||||
|
||||
const float cos_theta = cache[i0 + 0];
|
||||
const float sin_theta = cache[i0 + 1];
|
||||
|
||||
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
|
||||
ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
|
||||
|
||||
const float x0 = GGML_FP16_TO_FP32(src[0]);
|
||||
const float x1 = GGML_FP16_TO_FP32(src[n_dims]);
|
||||
|
||||
dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
|
||||
dst_data[n_dims] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
|
||||
}
|
||||
} else {
|
||||
for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
|
||||
const int64_t ic = i0/2;
|
||||
|
||||
const float cos_theta = cache[i0 + 0];
|
||||
const float sin_theta = cache[i0 + 1];
|
||||
|
||||
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
|
||||
ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
|
||||
|
||||
const float x0 = GGML_FP16_TO_FP32(src[0]);
|
||||
const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
|
||||
|
||||
dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
|
||||
dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
|
||||
const float cos_theta = cache[i0 + 0];
|
||||
const float sin_theta = cache[i0 + 1];
|
||||
|
@ -9353,8 +9529,10 @@ static void ggml_compute_forward_rope_f16(
|
|||
dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
|
||||
dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
|
||||
}
|
||||
} else {
|
||||
for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
|
||||
}
|
||||
|
||||
if (is_vision) {
|
||||
for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
|
||||
const int64_t ic = i0/2;
|
||||
|
||||
const float cos_theta = cache[i0 + 0];
|
||||
|
@ -9364,19 +9542,19 @@ static void ggml_compute_forward_rope_f16(
|
|||
ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
|
||||
|
||||
const float x0 = GGML_FP16_TO_FP32(src[0]);
|
||||
const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
|
||||
const float x1 = GGML_FP16_TO_FP32(src[n_dims]);
|
||||
|
||||
dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
|
||||
dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
|
||||
dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
|
||||
dst_data[n_dims] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
|
||||
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
|
||||
ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
||||
|
||||
for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
|
||||
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
|
||||
ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
||||
|
||||
dst_data[0] = src[0];
|
||||
dst_data[1] = src[1];
|
||||
dst_data[0] = src[0];
|
||||
dst_data[1] = src[1];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue