llama : add Qwen2VL support + multimodal RoPE (#10361)
* Barebone Qwen2VL LLM convertor * Add Qwen2VL cli entrypoint * [WIP] add qwen2vl arch * Verify m-rope output * Add vl-rope/2d-rope support for qwen2vl ViT * update qwen2vl cli tool * update 5D tensor op workaround * [WIP] qwen2vl vision model * make batch and clip utils compatible with qwen2vl * [WIP] create inference workflow, gguf convert script but fix * correcting vision-rope behavior, add the missing last layer back to ViT * add arg parser to qwen2vl_surgery * replace variable size array with vector * cuda-gdb cmake preset * add fp32 mrope, vision rope kernel * add fp16 support for qwen2vl and m-rope * add `GGML_ROPE_TYPE_MROPE`, `GGML_ROPE_TYPE_VISION` * fix rope op mode switching, out dated func args * update `llama_hparams` * update to keep up stream changes * resolve linter, test errors * add makefile entry, update speical image padding token * add mrope unit test, fix few compiler warnings * rename `mrope` related function, params * minor updates on debug util, bug fixs * add `m-rope` testcase to `test-backend-ops` * Apply suggestions from code review Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * fix traililng whitespce * store `llama_hparams.rope_sections` with fixed size array * update position id tensor size check in GGML_OP_ROPE * minor updates * update `ggml_backend_*_supports_op` of unsupported backends * remote old `rope_section` compare operator --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
parent
56eea0781c
commit
ba1cb19cdd
24 changed files with 1873 additions and 114 deletions
|
@ -138,7 +138,7 @@ int main(int /*argc*/, const char ** /*argv*/) {
|
|||
struct ggml_tensor * x;
|
||||
|
||||
// rope f32
|
||||
for (int m = 0; m < 3; ++m) {
|
||||
for (int m = 0; m < 5; ++m) {
|
||||
const int ndims = 4;
|
||||
|
||||
const int64_t n_rot = 128;
|
||||
|
@ -147,28 +147,69 @@ int main(int /*argc*/, const char ** /*argv*/) {
|
|||
const int n_past_0 = 100;
|
||||
const int n_past_2 = 33;
|
||||
|
||||
struct ggml_tensor * p0 = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ne[2]);
|
||||
struct ggml_tensor * p1 = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ne[2]);
|
||||
struct ggml_tensor * p2 = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ne[2]);
|
||||
|
||||
for (int i = 0; i < ne[2]; ++i) {
|
||||
((int32_t *) p0->data)[i] = n_past_0 + i;
|
||||
((int32_t *) p1->data)[i] = n_past_2 - n_past_0;
|
||||
((int32_t *) p2->data)[i] = n_past_2 + i;
|
||||
}
|
||||
|
||||
// test mode 0, 2, 4 (standard, GPT-NeoX, GLM)
|
||||
const int mode = m == 0 ? 0 : m == 1 ? 2 : 4;
|
||||
|
||||
struct ggml_tensor * r0;
|
||||
struct ggml_tensor * r1;
|
||||
struct ggml_tensor * r2;
|
||||
x = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
|
||||
int mode = -1;
|
||||
|
||||
// 100, 101, 102, ..., 172
|
||||
struct ggml_tensor * r0 = ggml_rope(ctx0, x, p0, n_rot, mode);
|
||||
// -67, -67, -67, ..., -67
|
||||
struct ggml_tensor * r1 = ggml_rope(ctx0, r0, p1, n_rot, mode); // "context swap", i.e. forget n_past_0 - n_past_2 tokens
|
||||
if (m < 3) {
|
||||
struct ggml_tensor * p0 = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ne[2]);
|
||||
struct ggml_tensor * p1 = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ne[2]);
|
||||
struct ggml_tensor * p2 = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ne[2]);
|
||||
|
||||
// 33, 34, 35, ..., 105
|
||||
struct ggml_tensor * r2 = ggml_rope(ctx0, x, p2, n_rot, mode);
|
||||
for (int i = 0; i < ne[2]; ++i) {
|
||||
((int32_t *) p0->data)[i] = n_past_0 + i;
|
||||
((int32_t *) p1->data)[i] = n_past_2 - n_past_0;
|
||||
((int32_t *) p2->data)[i] = n_past_2 + i;
|
||||
}
|
||||
// test mode 0, 2, 4 (standard, GPT-NeoX, GLM)
|
||||
mode = m == 0 ? 0 : m == 1 ? 2 : 4;
|
||||
|
||||
// 100, 101, 102, ..., 172
|
||||
r0 = ggml_rope(ctx0, x, p0, n_rot, mode);
|
||||
// -67, -67, -67, ..., -67
|
||||
r1 = ggml_rope(ctx0, r0, p1, n_rot, mode); // "context swap", i.e. forget n_past_0 - n_past_2 tokens
|
||||
|
||||
// 33, 34, 35, ..., 105
|
||||
r2 = ggml_rope(ctx0, x, p2, n_rot, mode);
|
||||
} else {
|
||||
// testing multi-dimension rope position embedding mode
|
||||
struct ggml_tensor * p0 = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ne[2] * 4);
|
||||
struct ggml_tensor * p1 = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ne[2] * 4);
|
||||
struct ggml_tensor * p2 = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ne[2] * 4);
|
||||
|
||||
int sections[4] = {16, 24, 24, 0};
|
||||
mode = (m == 3) ? GGML_ROPE_TYPE_MROPE : GGML_ROPE_TYPE_VISION;
|
||||
|
||||
for (int i = 0; i < ne[2]; ++i) {
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
((int32_t *) p0->data)[i + ne[2] * j] = n_past_0 + i + j;
|
||||
((int32_t *) p1->data)[i + ne[2] * j] = n_past_2 - n_past_0;
|
||||
((int32_t *) p2->data)[i + ne[2] * j] = n_past_2 + i + j;
|
||||
}
|
||||
}
|
||||
|
||||
// [[100, 101, 102, ..., 172],
|
||||
// [101, 102, 103, ..., 173],
|
||||
// [102, 103, 104, ..., 174]]
|
||||
r0 = ggml_rope_multi(
|
||||
ctx0, x, p0, nullptr,
|
||||
n_rot, sections, mode, 32768, 1000000, 1, 0, 1, 32, 1);
|
||||
// [[-67, -67, -67, ..., -67]
|
||||
// [-67, -67, -67, ..., -67]
|
||||
// [-67, -67, -67, ..., -67]]
|
||||
r1 = ggml_rope_multi(
|
||||
ctx0, r0, p1, nullptr,
|
||||
n_rot, sections, mode, 32768, 1000000, 1, 0, 1, 32, 1);
|
||||
|
||||
// [[33, 34, 35, ..., 105]
|
||||
// [34, 35, 36, ..., 106]
|
||||
// [35, 36, 37, ..., 107]]
|
||||
r2 = ggml_rope_multi(
|
||||
ctx0, x, p2, nullptr,
|
||||
n_rot, sections, mode, 32768, 1000000, 1, 0, 1, 32, 1);
|
||||
}
|
||||
|
||||
ggml_cgraph * gf = ggml_new_graph(ctx0);
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue